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Abstract. This paper introduces ViscoNet, a novel one-branch-adapter
architecture for concurrent spatial and visual conditioning. Our lightweight
model requires trainable parameters and dataset size multiple orders of
magnitude smaller than the current state-of-the-art IP-Adapter. How-
ever, our method successfully preserves the generative power of the frozen
text-to-image (T2I) backbone. Notably, it excels in addressing mode col-
lapse, a pervasive issue previously overlooked. Our novel architecture
demonstrates outstanding capabilities in achieving a harmonious visual-
text balance, unlocking unparalleled versatility in various human image
generation tasks, including pose re-targeting, virtual try-on, stylization,
person re-identification, and textile transfer.Demo and code are available
from project page https://soon-yau.github.io/visconet/.

Fig. 1: Our proposed Visconet demonstrates broad versatility in multimodal human image tasks
including visual prompts, pose re-target, virtual try-on, re-identification using either text or visual
prompt, text prompt, texture transfer, stylization and latent space interpolation to perform human
morphing.
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1 Introduction

Diffusion models [14, 26, 29, 35] are powerful tools for generating realistic and
diverse images and videos from various inputs. Among them, latent diffusion
models (LDM) [32], more notably Stable Diffusion (SD) [32], have shown im-
pressive results in text-to-image (T2I) synthesis, thanks to their high quality and
open-source availability. However, relying solely on text as the input condition
introduces several limitations, notably the challenge of providing a comprehen-
sive description of an image. Furthermore, concept bleeding is a prevalent issue
in T2I, as highlighted by works such as [4, 21], where the text becomes erro-
neously associated with incorrect subjects in the generated images. In human
image generation (HIG), this misassociation may manifest in inaccuracies such
as assigning the wrong clothing color or experiencing color spillover between
clothing and the background, and vice versa.

Fig. 2: To motivate our work, this figure illustrates how increasing text complexity in ControlNet [46]
can expose (c) domain gap and eventually lead to mode collapse in (d). IP-Adapter [43] also exhibits
(e) catastrophic forgetting, resulting in the inability to generate a rich background. Both show the
concept of bleeding by assigning the wrong color to clothing garments.

Fig. 3: Our method retains generative power of the T2I backbone in (a)-(d) various image styles and
rich backgrounds while maintaining the person and clothing appearance, assigning correct clothing
colors. In (e), we can control the level of stylization to expand it to the clothing styles.

While incorporating new conditioning factors, such as pose information, into
a model for novel tasks necessitates retraining from scratch [8, 20, 23, 45], de-
manding substantial datasets and computational resources. Recognizing this
challenge, recent methodologies like T2I-Adapter [25] and ControlNet [46] have
introduced a pragmatic approach. They integrate a lightweight adapter branch
[15] to encode spatial conditioning information, such as pose or segmentation
maps, onto a frozen pre-trained T2I LDM backbone. In a more recent develop-
ment, methods such as IP-Adapter [43] and MasaCtrl [2] extend this concept
by introducing visual conditioning capabilities. However, they cannot control
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pose independently and require a separate spatial adapter, introducing addi-
tional computational complexity to the overall architecture. However, training
adapters on smaller and disparate datasets may introduce a domain gap with the
frozen LDM model. As noted by [2,20], this conflict between branches can man-
ifest in the model’s inability to generate people following specified text and pose
conditions. The situation may be exacerbated when multiple adapter branches
are employed. Our work addresses this issue by striving to develop a lightweight
adapter that accommodates both pose and visual conditioning. This singular
adapter aims to excel in a spectrum of human image generation tasks, unifying
functionalities currently achievable through utilizing distinct models.

We illustrate the domain gap and conflict of adapters in Figure 2 where Con-
trolNet attempts to reconstruct reference images with increasing text complexity
from (b) to (d). Figure 2c shows a sign of domain gap as dark-skinned people
were not typical in ancient Japanese drawing (Ukiyoe style). We continue adding
“khaki”, a more modern term, into the text prompt. The complexity eventually
exposes the domain gap between ControlNet and T2I. As a result, ControlNet
resorts to generating realistic people that it learned from its small training data
(Figure 2d). This is a phenomenon we call mode collapse (MC). Mode collapse
has existed since GANs [13] but has not been discussed recently despite widely
affecting recent diffusion model-based adapters. We are the first to study mode
collapse in an adapter-based diffusion model systematically. There is currently
no effective mechanism to control and manage this conflict; only when one of the
conflicting texts, i.e., khaki or Ukiyoe style, is removed will it escape the stuck
mode. Unfortunately, this restricts the image content that can be generated. The
general solution is to train a more extensive dataset to close the domain gap.
HumanSD [20] compiled a 1M image dataset, up from ControlNet’s 200k, while
IP-Adapter uses 10M [43] and more recent Hyperhuman [23] ballooned to 340M!
This is an inefficient use of computing resources, and as we will show, this is
insufficient to eradicate mode collapse completely. Conversely, training on a lim-
ited dataset may lead to overfitting and, consequently, catastrophic forgetting.
This is evident in the model’s diminished ability to generate diverse individuals,
varied image backgrounds, or encompassing artistic styles as depicted by the
input prompts. In contrast, our method trains only on about 50K images, many
orders of magnitudes smaller than reference methods.

In this paper, we propose a novel architecture extending ControlNet [46],
which we call ViscoNet (Visual ControlNet), bridging and harmonizing visual
and text conditioning. Our method’s ability to fuse and control the balance of
both text and visual conditioning unlocks unparalleled versatility in HIG, which
includes pose re-target (transfer), virtual try-on, person re-identification (face
swap) with both text and visual, image stylization, textile transfer, and visual-
text latent space interpolation to achieve morphing as shown in Figure 1. The
summary of our contributions:

1. A lightweight one-branch adapter architecture for spatial and visual condi-
tioning.

2. Excellent ability to control and harmonize text and visual prompts, signifi-
cantly mitigating mode collapse and empowering various HIG capabilities.
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3. Our training with feature masking effectively preserves the backbone model’s
generative capabilities on a small dataset, mitigating catastrophic forgetting.

2 Related Works

Human Image Generation in early days uses GANs [24, 31, 44, 47, 49] pre-
dominately taking pose and reference image as input conditions to perform
pose re-target and virtual try-on. Later, architectures based on transformer [38]
e.g., [10, 30] and notably diffusion models [1, 14, 20, 26, 29, 32, 35] increasingly
became the mainstream image generation methods. However, they used only ei-
ther text or image but not both as input modality, limiting the controllability.
Therefore, text prompt is added to specialist HIG models [7,8,19] to enrich the
finer level of control. These models are typically trained from scratch on small
datasets resulting in overfitting and an inability to generalize to generate realistic
images in diverse, real-world scenarios.

Visual Conditioning. Image personalization methods [11,34] explore fine-
tuning text vocabularies to define specific identities. [5,12] follow the same idea,
while [6, 18, 36] leverage large-scale upstream training to eliminate the need for
test-time finetuning. These methods use text to control visual aspects rather
than images as input conditioning. In HIG, UPGPT [8] pioneered visual condi-
tioning in the T2I diffusion model by concatenating visual tokens alongside text
tokens and pose tokens. However, it changes the model architecture and unable
to re-use the pre-trained model weights.

Adapter. More recently, adapter modules and lightweight models have been
added to pre-trained, frozen diffusion models for faster finetuning requiring less
data; among them are ControlNet [46], T2I-Adapter [25]. However, as they add
the learned feature spatially to the UNet’s multi-resolution layers in the diffu-
sion model, the control signals are limited to the spatial dimension. Although the
T2I-Adapter demonstrates the use of reference images for visual conditioning, it
is constrained to the overall artistic style of the image. MasaCtrl [2] is a tuning-
free method that injects masked self-attention features from a reference image
in the T2I denoising step. IP-Adapter [43] uses a separate cross-attention map
for image conditioning to be added to the textual attention map. The balance
can be adjusted using a weighted average between the two attention maps. Both
IP-Adapter and MasaCtrl are conditioned on a single image for a global im-
age, lacking fine-grained visual conditioning. Uni-ControlNet [48] supports both
global and local image but still employs dual-branch design. InstantID [39] is
based on IP-Adapter’s architecture, with the main difference being swapping
the CLIP image encoder with a specialized face encoder. While they focus on
human face, our method exhibits a broader capacity, generating full human body
with higher complexity.

Dancing Avatar. This group of models re-purposes T2I into image-only-
conditioning to reconstruct humans for dancing avatar videos faithfully. They
sacrifice the T2I’s text capability and are not directly comparable to our method.
Nevertheless, we scrutinize their pose-and-visual methods. Disco [40] uses Con-
trolNet to inject static image background signal. To ensure visual consistency



ViscoNet 5

of the moving foreground person, it applies a visual signal to cross-attention of
UNet in image-to-image SD variant [27], which requires re-training. MagicAn-
imate [42] and AnimateAnyone [16] use a dedicated adapter branch to encode
visual information to be fused with UNet using cross-attention.

Overall, existing methods [2,16,25,40,42,43,46,48] employs multiple adapters
for simultaneous pose (e.g. ControlNet) and visual control (e.g. IP-Adapter).
Our method introduces improvements over a single ControlNet to offer both
pose and visual control, saving computational requirements and potentially mit-
igating conflicts introduced by multiple branches.

3 Method

3.1 Preliminaries

Fig. 4: Architectural diagram showing our contribution concerning backbone LDM and ControlNet
layers. We omit time embedding, zero convolution, and some blocks from the ControlNet diagram [46]
for simplicity.

Stable Diffusion (SD), a backbone LDM [32], and a ControlNet model [46] are
shown in the left and right block in Figure 4. SD uses a UNet [33] as the denoising
network and progressively refines the input noise into latent variables that can be
reconstructed into realistic synthetic images, relying on understanding intricate
image distributions. The words within a text prompt are decomposed into smaller
subword units and tokenized and encoded with a CLIP [28] text transformer [38].
The text embedding is injected into the cross-attention layers in UNet, serving
as the sole conditioning in image generation. The loss function of the LDM is:

LMSE := Ez,c,t,ϵ∼N (0,1)
[
∥ϵ − ϵθ(zt, t, c)∥2

2
]

(1)
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where c is the text conditioning token, t is the diffusion time step, and z is the
latent variable (denoted as input in Figure 4).

Instead of training from scratch, ControlNet [46] adds a learnable branch
parallel with a now frozen pre-trained LDM, as shown on the block on the
right in Figure 4. The branch consists of an identical LDM UNet encoder copy,
sharing the same latent noise input and text embedding. It learns to control pose
conditions by adding skeleton image features into the latent noise input at the
branch input. ControlNet generates spatial control signals and adds them to the
SD decoder across multiple spatial resolutions.

3.2 Replace Text with Visual Prompt

That ControlNet’s sharing of the exact text embedding with the LDM is unnec-
essary when learning the spatial condition. Their mandatory use of text-image
pairs in training places an excessive burden on data collection and annotation to
the specific image and text styles. The text entanglement also increases potential
conflict between the branch and LDM [20]. Therefore, in our architecture, we re-
move the text prompt from ControlNet to sever the entanglement and replace it
with a visual prompt. Unlike [40,43] that use a single reference image for overall
visual conditioning, we use multiple images consisting of segmented body parts
(e.g. hair, face, top clothing, bottom clothing) for fine-grained visual control on
individual clothing garment pieces (Figure 1a-e).

The de-facto image encoding method for the diffusion model uses a CLIP
image encoder to extract a global image embedding, but this is insufficient in
capturing intricate image details. Therefore, we utilize the larger dimension local
CLIP embedding before the pooling layer. We project the local CLIP embedding
of individual images using a linear layer into length N and concatenate them
like the text tokens they replace. N can be adjusted based on the number of
conditioning images and the text token length limit of ControlNet, and we use
N=8 in this work. The linear layer consists of only 2K parameters. It is the
only additional trainable parameter introduced by our method, 10,000 times
fewer than IP-Adapter’s 22M parameters. Controlling all the human information
(pose and visual appearance) within the single adapter branch creates effective
disentanglement from the LDM to avoid conflict. For example, “ripped jeans”
may conflict with “Picasso painting”; having both in a text prompt could trigger
mode collapse in ControlNet. Instead, we can avoid this by removing “ripped
jeans” from the text prompt and replacing it with an image in the visual prompts.

3.3 Control Feature Masking

DeepFashion [51] is a popular and de-facto dataset in many HIG tasks in machine
vision literature. However, all the images consist of plain studio backgrounds,
which will overfit and severely restrain LDM generative capability, resulting
in dull and bland image backgrounds. This phenomenon is observed with IP-
Adapter [43] in Figure 2e despite it being trained on a large dataset of 10M
images. To tackle this issue, we apply a binary human silhouette mask to the
control signals originating from our adapter branch before injecting it into the
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LDM. This eliminates unwanted image backgrounds leaking into and causing
overfitting in the LDM. The disentanglement between foreground people and
background contributes to reducing the image domain gap with the LDM. This
improvement empowers our method to harness LDM text capability to generate
vibrant backgrounds in various artistic image styles despite training only on a
relatively tiny dataset (only 52K) of images with plain backgrounds. In Section
5, we delve into further analysis, demonstrating that feature masking is essential
during training rather than used solely during image sampling.

The feature mask is also applied to the LDM loss function (Equation 1) at
the output in Figure 4. The training loss backpropagates via the frozen LDM to
train the model. This approach is akin to [8, 20], although they use it to assign
weight loss to different body segmentation parts rather than masking a region
entirely. We add masking to the LDM loss function 1:

LMSE := Ez,c,v,t,ϵ∼N (0,1)
[
∥M ⊙ (ϵ − ϵβ(zt, t, c, v)∥2

2)
]

(2)

where ϵβ is the model, v is the image embedding, ⊙ is the element-wise multi-
plication, and M ∈ RH,W is the binary mask resized to resolution (H, W) of the
LDM output. Although text conditions are not used in the model, they are used
by LDM in training and, thus, are included in the equation.

3.4 Harmonizing Text and Visual Influence

The versatility of our approach in performing diverse human image generation
tasks arises from its ability to seamlessly integrate and regulate the balance
between visual and textual conditioning. We achieve this by multiplying scalar
values [0.0, 1.0] with the control features. Scaling control signals is commonplace
in adapter-based approaches, but our novel model architecture unlocks unprece-
dented effects not observed in existing methods. Despite innovations adopted to
reduce data conflict between the adapter and the LDM, mode collapse can still
happen in challenging image styles. In this scenario, we can decrease the con-
trol signal strength to weaken the visual prompt strength to escape the mode
collapse. As we will show, the application of this approach has no discernible
impact on mitigating mode collapse in ControlNet [46] and other spatial con-
ditioned models [20, 25]. This is attributed to the fact that its control signals
exclusively influence pose conditioning, whereas the root causes of the conflict
lie in the image domain gap and text entanglement. In contrast, our innovative
architecture, which involves the separation and subsequent bridging of text and
visual conditioning, empowers us to dynamically adjust their balance, thereby
enabling latent space interpolation (Figure 1h) and eliminating mode collapse.

On the other hand, IP-Adapter [43] supports visual prompts, and it can
adjust the text-visual balance by changing the scales of the respective cross-
attention map, but the effect is global to the image. For example, tipping the
balance away from the visual prompt of a realistic photo of a man towards the
text prompt “a girl, Chinese ink painting” would result in the global transfor-
mation of a modern man towards a Chinese girl wearing period Chinese clothing
in Chinese ink painting style. Our method can apply different scaling at each
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multi-spatial resolution to customize at different image levels. This is demon-
strated in Figure 1f, which depicts only the image’s artistic style while retaining
the person’s identity and appearance, and Figure 1h, which shows the morphing
only of the person, leaving the background essentially unchanged.

For the sake of discussion, the 13 individual control strength scales (c0-c12)
can be roughly grouped into three blocks - Low Blocks (LB), Mid Blocks (MB),
and High Blocks (HB) arranged hierarchically from low to high spatial resolu-
tion. We can adjust their values separately to create different effects. Through
experimentation, we observed that LB exerts negligible influence and can effec-
tively be set to 0. The MB is the most influential in overall visual appearance
styles among them. HB regulates fine image texture, aligning with our expecta-
tions for image hierarchy control. Setting HB alone yields the notable outcome
of transferring only the texture of the visual prompt (Figure 1g). We can also
constrain our control to pose only by setting c4 to 0.5 while leaving others 0.0,
allowing using text prompts to control the whole person’s appearance.

3.5 Training Setup

To train the model, we employ 52K-images DeepFashion In-shop Clothes Re-
trieval dataset [51] and adopt the train-test split proposed by [50] for the pose
transfer task, padding the images to the size of 512 × 512. Pose information is
extracted using OpenPose [3] to create body-and-hand skeleton images, and we
use pre-segmented fashion images from [8]. We employ a simple text prompt of
“a person” for all the images. This serves two purposes: first, the neutral de-
scription avoids potential conflicts with the LDM, proving our method does not
need to annotate text to match the style of the LDM carefully. Secondly, it acts
as an unconditional text embedding, enabling users to amplify the desired visual
effect using positive prompts, negative prompts, and guidance scales [9].

Many adapter models are based on pre-trained SD or similar-sized models.
Thus, we also performed our experiments using SD2.1 [37] for a fair comparison.
We initialize our adapter branch by copying frozen weights from the SD. How-
ever, since the cross-attention input has shifted from global CLIP text embedding
to local CLIP image embedding, we re-initialize the weights in the cross-attention
layer at the start of training. All weights in the SD, CLIP text, and image en-
coders are frozen. We use CLIP image encoder clip-vit-large-patch14 [17]. We
trained the model on a single desktop GPU GTX 3090 for 2 epochs, using a
batch size of 4 with four gradient accumulations per batch, resulting in an effec-
tive batch size of 16. We retained the remaining configurations from [46].

3.6 Image Resolution

We use an image resolution of 512×512 throughout the paper. In our experiment,
we utilized 3/4 length to full-body images, resulting in smaller human faces within
the images. The stringent demand for high pixel density per latent variable can
lead to suboptimal face construction [8] compared to high resolution face images
generated by [39,43]. This inherent limitation is a characteristic drawback of the
LDM rather than a weakness of our method.
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4 Experiments

In Section 4.1, we perform an in-depth study of the effect of control strength on
mode collapse as observed in image artistic styles. We show that visual prompt
methods (IP-Adapter and ours) effectively reduce mode collapse compared to
ControlNet. Then, in Section 4.2, we perform further, more challenging exper-
iments in person re-identification to show our method has superior text-visual
harmonization capability compared to IP-Adapter. Lastly, we performed large-
scale human evaluation in Section 4.3 to prove our image quality over SOTA
HIG models.

4.1 Mode Collapse and Control Strength

In this section, we examine the prevalence of mode collapse and its impact on
existing spatial and visual adapter models compared to our proposed model.
In Figure 5, conditioned on the same human pose, we generate images of Pi-
casso style at different control strengths. ControlNet does not have visual input.
Therefore, we use text to describe the person’s appearance and background,
which include conflicting word “ripped jeans” to invoke mode collapse. In this
example, mode collapse happens to both ControlNet [46], IP-Adapter [43], and
our proposed ViscoNet at a control strength of 80%, as observed with the re-
alistic person and background in Figure 5e. However, our method has quickly
escaped mode collapse at a control strength of 60% (Figure 5d), as at this point,
the visual conditioning is still effective, maintaining the overall clothing styles
and colors. We can also observe the harmonized transition towards the desired
image style as reduced control strength tips the balance towards text prompt
depicting “Picasso”(Figure 5a). Both reference methods only managed to escape
mode collapse at around 40% (Figure 5b), which has considerably weakened pose
or visual control for ControlNet and IP-Adapter, respectively.
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(a) 20% (b) 40% (c) 50% (d) 60% (e) 80% (f) Reference

Fig. 5: Effect of control strength (%). Compared to ControlNet and IP Adapter, our method can
escape mode collapse faster, generating a harmonious image style while maintaining good visual
control.
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We confirm our qualitative observation with quantitative results. Like [43],
we measure the effectiveness in generating the correct image styles by employing
the CLIP similarity score between the text prompt and the generated image. A
high CLIP score indicates a low or absence of mode collapse. We measure control
effectiveness by measuring pose accuracy using the Object Keypoint Similarity
(OKS) standard in MSCOCO challenge [22]. We will also introduce new metrics
to measure and interpret mode collapse better. In this experiment, we selected
5 image styles - Picasso, Van Gogh, oil painting, Ukiyoe, and stained glass that
are more likely to conflict with modern clothing. We generated 20 samples at
each control strength (over 5000 images). The results are plotted in Figure 6,
and we include the entire table in the appendix.

At 100% control strength, IP-Adapter lost most of its text capability, in-
cluding changing image style (Figure 2e), resulting in the lowest CLIP scores
(Figure 6a), indicating substantial mode collapse. The CLIP score for Control-
Net remains constant in regions above 40%, whereas our method exhibits linear
improvement in the same range. Both visual adapters effectively reduce mode
collapse by using weaker control strength as indicated by weaker pose accuracy
(Figure 6c). Our method consistently outperforms IP-Adapter in CLIP score at
every control strength. It is worth noting that the IP-Adapter maintains its pose
control for control strength <40% as they use separate adapters for pose control.
Their drop of <40% is attributed to inaccuracy in pose detectors’ recognition of
humans in artistic painting. Our quantitative results align with qualitative obser-
vations, establishing our method’s superior interpolation capability and ability
to minimize mode collapse.

Fig. 6: (a) Reducing control strength alleviates mode collapse, our method can escape mode collapse
faster, retaining better pose and visual control (b) CLIP accuracy provides better interpretability
of mode collapse (c) Level of control as measured by pose accuracy. Visual prompting methods have
slightly weaker pose control.

While CLIP scores are effective, their limitation lies in the lack of inter-
pretability regarding the degree of mode collapse. Additionally, the absence
of a standardized CLIP model within the machine learning community intro-
duces variability, making cross-model comparisons challenging. Given these chal-
lenges, we explore alternative metrics for a more comprehensive evaluation. As
mode collapse is an inherent discrete state, we employ CLIP binary classifica-
tion (CLIPacc) by comparing CLIP image embedding to two CLIP text classes
- [image style],“real photo”. More generally, two modes are compared - target
mode and stuck mode. In other words, we detect mode collapse if the image is
classified as a real photo when it was supposed to be in the target image style.
As shown in Figure 6b, CLIPacc correlates well to the CLIP similarity score but
provides a normalized score easier for interpretation and enhanced robustness
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against CLIP model variation. We define mode collapse rate (MCR) as :

MCR := 1 − CLIPacc (3)

Mode collapse is a phenomenon that occurs randomly, depending on the
prompts and random seeds applied. Consequently, the MCR is a batch statistic
that reflects the overall method performance. In Figure 6b, we achieve mode
collapse free at a control strength of 40% (MCR=0% or CLIPacc = 100%) while
IP-Adapter reaches that state later at much-weakened control strength.

4.2 Re-identification

(a) Reference (b) 100% (c) 63% (d) 62% (e) 61% (f) 40%

Fig. 7: IP-Adapter showing the transition from the reference image to text prompt “Robert Downey
Jr.” by reducing control strength. There exists a big domain gap between (d) and (e).

(a) Mask (b) 50% (c) 40% (d) 39% (e) 38% (f) 30%

Fig. 8: Method 1 - with head mask, smoother transition with smaller mode gap between (c) and
(d).

(a) Mask (b) 100% (c) 70% (d) 60% (e) 50% (best) (f) 40%

Fig. 9: Method 2 - without head mask. Smooth transition with (e) achieving good balance to deliver
the desired result. The face and hair mask are detected and removed by segmentation tool. Our
method has good tolerance over the mask region and does not require it to be pixel-accurate.

We formulated a demanding task to scrutinize an extreme instance of domain
gap and assess the qualitative efficacy of visual prompting methods in addressing
such challenges. In this task, the goal is to transform the person’s identity in the
reference image into the person depicted in the text prompt, all while preserving
the original clothing depicted in the reference image. In Figure 7, we show that
decreasing control strength in IP-Adapter morphs the face towards the target
(Robert Downey Jr.) at the expense of clothing faithfulness (red dress). A small
control strength change between Figure 7d and 7e causes a significant shift in
the image, indicating a big domain gap it fails to bridge harmoniously.

This common problem also affects our default configuration Method 1, which
uses full human tasks. It achieves good results close to the target as shown in
Figure 8d. Through extensive experimentation, we discovered that the face has
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disproportionately influenced the entire image generation process. Consequently,
it becomes imperative to substantially reduce the control strength (to around
40% in this example) to mitigate the impact of the face, albeit at the expense of
visual control. Leveraging our novel architecture, we can effectively bridge this
gap by selectively excluding the face from the feature mask, as shown in Figure
9 (Method 2). In essence, this action prevents the control signal from reaching
the face region of the LDM. We tried applying a similar approach to the IP-
Adapter by masking off the head from the reference image in pixel space, but
this proved ineffective. This underscores the efficacy of our novel architecture in
harmonizing text-visual controls. This has also proved useful in escaping mode
collapse in certain challenging styles in stylization tasks (see appendix).

Fig. 10: Challenging re-identification task to transform female in (a) reference image to male celebri-
ties depicted in text prompt. We included an additional stylization step (not included in the result)
to demonstrate our ability to bridge the domain gap.

We generated over 5000 images from each method to perform the quantitative
study; some test samples (input image and text) are shown in Figure 10. We in-
clude the image background and style to demonstrate our capability to maintain
a constant background and bridging domain gaps across multiple dimensions to
achieve stylization. We do not include them in our experiments as the objec-
tive is the foreground person identity and clothing. The experiment results are
summarized in Figure 11 (full table in appendix). The presence of steep change
in CLIP score (Figure 11a) and MCR (Figure 11b) with our Method 1 proves
the evident domain gap within the 30%-50% control strength range. However,
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removing the face from the mask in Method 2 drastically improves performance,
outperforming IP-Adapter considerably. On the other hand, we measure effec-
tiveness of visual control with image similarity score MS-SSIM [41] (Figure 11c).
Method 1 (and 2) is consistently higher than IP-Adapter in MS-SSIM, suggest-
ing more faithful visual appearance once escaping mode collapse (Figure 7 and
8) .

Fig. 11: Quantitative result showing the effectiveness of our method to escape mode collapse in the
challenging re-identification task.

4.3 Generating Diverse Human Image Styles

We performed large-scale human evaluation comparing specialist SOTA pose-
guided HIG models HumandSD [17], ControlNet [46], and T2I-Adapter [25]. In
this experiment, we generate 1400 images evenly across seven image styles and
the models (Figure 12). We use text prompts to describe clothing for reference
methods and visual prompts for our process. In each test sample, 221 human
evaluators were randomly shown a sample from each model and asked to pick
one that best matches the text prompt. The majority, 55% of 700 responses (full
table included in appendix), prefer our samples, proving overall superiority in
image quality and visual control.

5 Ablations

Necessity of Feature Mask in Training. Catastrophic forgetting can be
demonstrated using the DeepFashion dataset; in our initial experiments, we ap-
plied feature masking to the training loss function but excluded it from the
control signals. However, applying the feature mask post-training is ineffective,
as shown by the pale and dull background in Figure 13a -13c. In particular,
the artifact (circled in red) in Figure 13c gives a clear indication of leakage of
background originating from padding artifact uniquely caused by our dataset
pre-processing error as shown in Figure 13d. Evidently, our method of applying
feature masking in training produces a vibrant background (Figure 13e-13g),
demonstrating that our method is effective in avoiding catastrophic forgetting.

CLIP Local Image Embedding Captures Fine Texture. We experi-
mented with two image embedding methods for visual conditioning - global and
local CLIP image embedding. Figure 14 shows that local CLIP embedding used
in our method is better at capturing fine texture details.
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(a) Picasso (b) Van Gogh (c) Ukiyoe (d) cyberpunk
(e) stained
glass (f) Disney

Fig. 12: All reference methods have the purple clothing color spread into the forest background,
while our method avoids this problem and can generate a vibrant and diverse background.

(a) (b) (c) (d) (e) (f) (g)

Fig. 13: Without feature masking in training :(a)-(c) pale, dull background (d) padding artifact
from dataset. Using feature masking in training: (e)-(g) vibrant colors and rich background.

Fig. 14: Local CLIP image embedding used in our method can capture fine texture details. (left)
local embedding (mid) visual prompt (right) global embedding.

6 Limitations

Like IP-Adapter, the clothing color in generated images is shaped by the inherent
randomness in the initialized latent variables of the LDM backbone. While visual
prompting proves effective with our method, attaining consistent and faithful
image reconstruction necessitates careful selection of random seeds. On the other
hand, by design choice, our model’s visual prompting method learns only the
foreground people and leaves the background generation to the LDM backbone.
Conversely, pose transfer requires perfect reconstruction of the image background
solely from the reference image. Consequently, we refrained from conducting a
large-scale evaluation in virtual try-on and pose transfer tasks. Nevertheless,
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through careful random seed selection, we can still generate high-quality virtual
try-on, pose transfer, and face swap images, as included in the appendix.

7 Conclusions

We present ViscoNet, a pioneering approach that seamlessly integrates visual
control into a spatial adapter. Our method, characterized by a single branch
handling both pose and visual control stands out for its lightweight design and
significantly smaller footprint when compared to existing two-adapter solutions.
Through a comprehensive blend of qualitative and quantitative assessments, we
demonstrate the remarkable efficacy of ViscoNet in seamlessly bridging and har-
monizing text and visual prompts. This unique capability not only mitigates
mode collapse but also empowers the model to excel across diverse tasks, posi-
tioning it as one of the most versatile human image generation models available.

Furthermore, our feature masking technique significantly contributes to our
model’s strength by preserving the generative power of the backbone image
model. Remarkably, this is achieved despite training exclusively on a human
image dataset that is orders of magnitude smaller than the datasets used by
reference methods. This underscores the efficiency and generalization prowess of
ViscoNet in handling image generation tasks with limited training data.
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ViscoNet: Bridging and Harmonizing Visual and

Textual Conditioning for ControlNet
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This appendix is split into 3 sections:

– Section A provides a further quantitative and qualitative comparison with
IP-Adatper in the re-identification task (Section 4.2).

– Section B showcases more image examples produced by our methods in
a variety of tasks, including re-identification, pose re-target, fashion virtual
try-on, and stylization.

– Section C includes the quantitative results from the main paper with fur-
ther analysis (Section 4.1, 4.3).

A Re-identification: Comparing IP-Adapter

In the Section 4.2 experiment, we utilized 7 male celebrities in the text prompt,
6 reference clothing items, and 9 control strengths to generate 10 samples per
control strength, resulting in a total of 7560 images. The quantitative result
corresponds to Figure 11 and is listed in Table 1. We will elaborate on the
quantitative findings in conjunction with the qualitative results.

A.1 Control Strength Analysis

Strength 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.8 1.0

CLIP score
IP-Adapter 0.3066 0.3052 0.3003 0.2910 0.2729 0.2546 0.2231 0.1687 0.1606
Method 1 (ours) 0.3223 0.3230 0.3218 0.2993 0.2139 0.1846 0.1768 0.1670 0.1628
Method 2 (ours) 0.3232 0.3254 0.3250 0.3218 0.3196 0.3064 0.2920 0.2544 0.2312

Mode Collapse Rate (MCR)
IP-Adapter 0.05 0.06 0.11 0.19 0.32 0.45 0.67 0.99 1.00
Method 1 (ours) 0.00 0.00 0.00 0.12 0.74 0.97 1.00 1.00 1.00
Method 2 (ours) 0.00 0.00 0.00 0.00 0.00 0.08 0.15 0.40 0.57

MS-SSIM
IP-Adapter 0.1248 0.1420 0.1705 0.2033 0.2452 0.2888 0.3700 0.4447 0.5107
Method 1 (ours) 0.1514 0.1795 0.2312 0.3781 0.5043 0.5335 0.5498 0.5536 0.5409
Method 2 (ours) 0.1507 0.1627 0.1886 0.2538 0.3661 0.4387 0.4742 0.5173 0.5183

Table 1: Reduced control strength results in higher CLIP scores and accuracy, translating to less
mode collapse.

In Figure 15, we show experiment samples of text prompt Hugh Jackman and
reference image 2, where we randomly sample 50% of the samples for various
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(a) IP-Adapter suffer 100% mode collapse at control strength over 80% and unable to generate the target person
Hugh Jackman. Its visual conditioning power is much weaker when it finally escapes mode collapse at lower control
strength, and unable to generate the short pant, and correct clothing style and color. In contrast, we are robust
against mode collapse and avoid much of the problems above suffered by IP-Adapter, and able to generate desired
results 51 at 100% control strength, preserving faithfulness of both the person identity and clothing appearance.

(b) The conflict between the feminine reference image and Hugh Jackman’s masculine image creates more conflict
and hence mode collapse as suffered by IP-Adatper. IP-Adatper struggles to generate correct faces and pleated dress
patterns (circled in yellow) at weaker control strength. This does not affect our method.

Fig. 15: Comparing the effect of control strength on re-identification task. IP-Adapter suffers much
more severe mode collapse and struggles to create perfect image balancing the reference image and
text prompt of Hugh Jackman.

control strengths from both our and IP-Adapter. With 100% strength, although
IP-Adapter can reconstruct the reference image, it suffers 100%

Overall, our method is effectively mode collapse free at 60% while IP-Adapter
still 1 has 67% MCR. As shown in Figure 15, although high control strength
introduces some mode collapse to our method. However, we can still generate
high-quality images, preserving visual conditioning and a person’s identity.

A.2 Further Quantitative Comparison

We further explore qualitative results in this section. Unlike Figure 7-10, where
we slide along the control strength on the same random seed to demonstrate
latent space discontinuity, we extend Section A to present the best samples
across all control strengths from both methods for direct comparison, as shown
in Figure 16-18.
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(a) Visual reference taken from the unseen test dataset.

(b) Unlike other movie stars with more diverse costumes, Prince Charles’ limited clothing range presents
the toughest challenge. (Top) IP-Adatper cannot produce any image of Prince Charles wearing the ref-
erence clothing. (Bottom) despite the extreme data gap, our method can produce reasonable images.

Fig. 16: Most challenging example in re-identification task - Prince Charles.

Among all the celebrities mentioned in the text prompt, Prince Charles1 -
known for having a limited wardrobe of formal attires in public images - presents
the greatest challenge to the generalization capability of the models. IP-Adapter
encounters difficulties and fails to generate any image of Prince Charles in ca-
sual or feminine clothing, as depicted in the reference image (Figure 16). In
contrast, our method achieves reasonable success despite the monumental chal-
lenge. Figure 17 - 18 shows samples from the rest of the text prompts used in the
experiment. Overall, IP-Adapter needs to have much-lowered control strength to
escape mode collapse, resulting in loss of fidelity in clothing to the reference im-
ages, including the incorrect length of pants or dress, wrong color and pattern,
i.e., loss of the pleated dress pattern, it previously able to generate (Figure 15b).

1 Stable Diffusion was trained on dated data before Prince Charles ascended to be
king, so we adhere to his old title in the experiment.
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(a) Visual reference taken from the unseen test dataset.

(b) Will Smith: (top) IP-Adaptor showing incorrect clothing color, length, or style (no pleated dress
pattern). (bottom) Ours

(c) Dwayne Johnson: (top) IP-Adaptor (bottom) Ours

(d) Hugh Jackman: (top) IP-Adaptor (bottom) Ours.

Fig. 17: Re-identification comparison with IP-Adapter.
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(a) Visual reference taken from the unseen test dataset.

(b) Keanu Reeves: (top) IP-Adaptor (bottom) Ours.

(c) Robert Downey Jr.: (top) IP-Adaptor (bottom) Ours

(d) Tom Cruise: (top) IP-Adaptor (bottom) Ours

Fig. 18: Re-identification comparison with IP-Adapter.
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Fig. 19: Putting our images together shows the consistency of our method in delivering celebrity
re-identification.
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B Versatile Human Image Generation Task

B.1 Re-identification (visual prompt)

Figure 20 shows by conditioning on face and hair images, our method generates
realistic people with diverse skin tones and body shapes correctly matching the
faces despite the DeepFashion dataset consisting of more than 90% of female
images, predominately fair-skinned women.

Fig. 20: Re-identification with a visual prompt.

B.2 Stylization

Figure 21 and Figure 22 show that our visual conditioning is effective across
many image domains in creating a desired person’s appearance, including various
painting styles and also 3D objects such as statues, sculptures, toys, and 3D
graphics. Some image domains have distinctive characteristics with considerable
divergence from real photos, such as cartoons with disproportionate bigger heads,
which can lead to a higher mode collapse rate. We circumvent this by removing
the face mask to create results such as in Figure 21l and Figure 22l.
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(a) Reference (b) Cartoon (c) Color sketch (d) Van Gogh

(e) Pencil sketch (f) Portrait de Messieurs (g) Cubism Art (h) Picasso

(i) Chinese ink painting (j) Japanese paper art (k) cyberpunk anime (l) Disney’s Frozen

(m) Minecraft (n) Shaun The Sheep (o) Barbie doll (p) Lego

Fig. 21: Stylization. Text prompt: “a woman, in farm.”
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(a) Reference (b) Watercolor (c) Expressionism (d) Picasso

(e) Sketch (f) Children illustration (g) Renaissance Art (h) 8-bit computer graphics

(i) Black & White Manga (j) Marvel’s comics (k) Cyborg, anime (l) Dragonball

(m) Wooden toy (n) Stature (o) Wood Carving (p) Lego

Fig. 22: Stylization. Text prompt: “a man, in a derelict city.”
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B.3 Pose Re-target

(a) Reference (b) (c) (d) (e)

Fig. 23: Pose Transfer from (a) reference person to new poses in (b)-(e)

B.4 Virtual Try-on

Figure 24 demonstrates how we perform fashion virtual try-on using visual and
text prompts. Figure 25 illustrates the culmination of our methods, showcasing
the seamless integration of re-identification, virtual try-on, and pose re-target.
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(a) (b) (c) (d) (e) “yellow jacket”

Fig. 24: High-resolution virtual try-on with real-world background. (Top) reference fashion for visual
conditioning. (Bottom): virtual try-on results.

Fig. 25: Combining re-identification, virtual try-on, and pose re-target, we showcase examples of
posing fashion with celebrity avatars.
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C Quantitative Result

C.1 Section 4.1: Mode Collapse Quantitative Result

Table 2 shows the quantitative results corresponding to Figure 6 in Section 4.1 -
Mode Collapse and Control Strength. Our method produces a higher CLIP score
than the baseline at various control strengths, indicating less mode collapse. This
is more evident in CLIP accuracy; at control strength 0.5, we achieve 100% (or
0% MCR) while baselines have only 46% and 63% ControlNet and IP-Adapter,
respectively.

Strength 0.0 0.2 0.3 0.4 0.5 0.6 0.8 1.0

CLIP score
ControlNet 0.2720 0.2620 0.2440 0.2340 0.2300 0.2300 0.2240 0.2260
IP-Adapter 0.2900 0.2920 0.2780 0.2620 0.2360 0.2120 0.1780 0.1900
ViscoNet(Ours) 0.2860 0.2940 0.2920 0.2900 0.2800 0.2660 0.2420 0.2220

CLIP accuracy
ControlNet 0.8660 0.7720 0.7000 0.6180 0.4620 0.5500 0.5020 0.5760
IP-Adapter 0.9800 0.9700 0.8800 0.7500 0.6300 0.4100 0.1500 0.2100
ViscoNet(Ours) 1.0000 1.0000 1.0000 1.0000 1.0000 0.9000 0.7000 0.5760

Pose accuracy (OKS)
ControlNet 0.0880 0.4139 0.6610 0.8305 0.8596 0.8852 0.9223 0.9348
IP-Adapter 0.5379 0.5412 0.6060 0.6813 0.7546 0.8074 0.9010 0.9298
ViscoNet(Ours) 0.0446 0.1654 0.3869 0.6580 0.7845 0.8253 0.8824 0.9102

Table 2: Reduced control strength results in higher CLIP scores and accuracy, translating to less
mode collapse.

Figure 26 shows the breakdown of CLIP accuracy across the image styles
in Table 2. Based on the same Stable Diffusion model, all models have shown
the highest mode collapse rate in Van Gogh’s painting style, while Ukiyoe is the
least affected.

Fig. 26: CLIP accuracy - comparing different image styles.
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C.2 Section 4.3: Human Evaluation Result

We further conducted a more extensive scale user study on Amazon Mechanical
Turk (AMT) to measure the real-life preferences between our model and the HIG
baseline approaches. We perform a 4-way comparison, asking workers to select
their best preference from randomly shuffled samples, as shown in Figure 27.

Fig. 27: Screenshot of user study presented to users for evaluating the quality of the stylization
against the three baselines.

Human Evaluation
Image Styles HumanSD ControlNet T2I-Adapter ViscoNet (Ours) Ours (%)

Ukiyoe 27 32 4 37 37%
Cyberpunk anime 23 13 21 41 41%
Stained glass 0 32 23 45 45%
Van Gogh 2 13 9 76 76%
Picasso 0 13 42 45 45%
Oil Painting 9 11 7 73 73%
Disney 5 23 5 67 67%

Total 77 139 111 384
Average 9.43% 19.9% 15.9% 54.9%

Table 3: Our method scores the highest in human evaluation, proving its ability to generate good-
quality, diverse image styles.
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