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Abstract
Using representations learned by large, pretrained
models, also called foundation models, in new
tasks with fewer data has been successful in a
wide range of machine learning problems. Re-
cently, Galanti et al. (2022) introduced a theoreti-
cal framework for studying this transfer learning
setting for classification. Their analysis is based
on the recently observed phenomenon that the
features learned by overparameterized deep clas-
sification networks show an interesting clustering
property, called neural collapse (Papyan et al.,
2020). A cornerstone of their analysis demon-
strates that neural collapse generalizes from the
source classes to new target classes. However,
this analysis is limited as it relies on several unre-
alistic assumptions. In this work, we provide an
improved theoretical analysis significantly relax-
ing these modeling assumptions.

1. Introduction
Transfer learning is a prominent approach for dealing with
overfitting (see, e.g., Caruana, 1995; Bengio, 2012; Yosin-
ski et al., 2014). A popular approach for transfer learning
suggests to pretrain a large neural network on a large-scale
source task (e.g., ResNet-50 on ImageNet ILSVRC, Rus-
sakovsky et al., 2015), and then to train a relatively small
network on top of the penultimate layer of the pretrained
model, using the available data in the target task. In fact,
due to the impressive success of transfer learning, large pre-
trained models that can be effectively adapted to a wide va-
riety of tasks (Brown et al., 2020; Ramesh et al., 2021) have
recently been characterized as ‘foundation models’ (Bom-
masani et al., 2021), emphasizing their adaptive nature.

While foundation models are intended to be generic and
widely adaptive to downstream tasks, when some specifics
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of the target tasks are known, often special-purpose algo-
rithms are designed to utilize this information. This is the
case, for example, in few-shot learning, where it is known
in advance that the target problems come with a very small
training set (Vinyals et al., 2016; Ravi & Larochelle, 2017;
Finn et al., 2017; Lee et al., 2019). Even though these
approaches significantly improved the state of the art for a
long time, surprisingly, recent works have demonstrated that
predictors trained on top of pretrained models can achieve
better performance on few-shot learning benchmarks (Tian
et al., 2020; Dhillon et al., 2020; Galanti et al., 2022).

Complementing the empirical results, Galanti et al. (2022)
also studied this approach theoretically,and provided an ex-
planation for its success based on the recently discovered
phenomenon of neural collapse (Papyan et al., 2020). In-
formally, neural collapse (see Section 3) identifies training
dynamics of deep networks for standard classification tasks,
where the features (the output of the penultimate layer) as-
sociated with training samples belonging to the same class
concentrate around their class feature mean. Galanti et al.
(2022) showed that this property generalizes to new data
points and new classes (e.g., the target classes), when the
model is trained on several classes with many samples for
each. In addition, they showed that in the presence of neural
collapse, training a linear classifier on top of the learned
feature map can generalize well, even if trained with few
samples only. However, their analysis demonstrating that
neural collapse generalizes to new classes relies on some
hard-to-justify assumptions regarding the feature maps, mak-
ing their results less relevant in practical situations.

In this paper we provide a stronger theoretical analysis for
this problem without relying on this kind of assumptions.

2. Problem Setup
We consider a transfer learning setting, where a model is
pretrained on some source task and is adapted to solve many
downstream tasks. To model this problem, we assume that a
final downstream task is a k-class classification problem (a
target problem), and the auxiliary task where the feature rep-
resentation is learned on is an l-class classification problem,
called the source problem. Formally, a target task is defined
by a distribution P over samples (x, y) ∈ X × Yk, where
X ⊂ Rd is the instance space, and Yk = [k] := {1, . . . , k}
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is a label space. For a pair (x, y) with distribution P , we
denote by Pc the class-conditional distribution of x given
y = c (i.e., Pc(·) := P[x ∈ · | y = c]).

For a given target task, our goal is to learn a classifier h :
X → Yk that minimizes the target test error

LP (h) := E(x,y)∼P
[
I[h(x) 6= y]

]
, (1)

where I[E] denotes the indicator function of an event E
(equals 1 if the event holds and 0 otherwise). As usual, P is
unknown and the algorithm is provided with some training
data S = {(xi, yi)}nki=1. In this work we assume that P is
a balanced distribution (i.e., P [y = c] = 1/k) with class-
conditionals {Pc}kc=1 and that the data S is also a balanced
set over the k classes, that is, S = ∪kc=1{(xci, c)}ni=1, where
the sets Sc = {xci}ni=1 ∼ Pnc are drawn independently.

When n is small, training a classifier on S may not be
sufficient to achieve reasonable performance. To facilitate
finding a good solution, we aim to find a classifier of the
form h = g ◦ f , where f ∈ F ⊂ {f ′ : Rd → Rp}
is a feature map and g ∈ G ⊂ {g′ : Rp → Rk} is a
classifier used on the feature space Rp. The idea is that the
feature map f can be learned on some other problem where
more data is available, and then g is trained to solve the
hopefully simpler classification problem of finding y based
on f(x), instead of x. That is, g is actually a function of
the modified training data {(f(xi), yi)}nki=1; to emphasize
this dependence, we use the notation gf,S for the trained
classifier based on the features, and hf,S = gf,S ◦ f for the
full classifier (to be specified in Section 4).

We assume that the source task helping to find f is a single
l-class classification problem over the same sample space
X , given by a distribution P̃ , and here we are interested
in finding a classifier h̃ : X → Rl of the form h̃ = g̃ ◦ f ,
where g̃ ∈ G̃ ⊂ {g′ : Rp → Rl} is a classifier over the
feature space f(X ) := {f(x) : x ∈ X}. Given a training
dataset S̃ = {(x̃i, ỹi)}mli=1, the classifier h̃ is trained on S̃,
with the goal of minimizing the source test error, LP̃ (h̃S̃).

Similarly to the target task, we assume that P̃ is balanced
(i.e., P̃ [y = c] = 1/l) with class-conditionals {P̃c}lc=1, and
that the dataset S̃ = ∪lc=1{(x̃ci, c)}mi=1 is also balanced
with S̃c = {x̃ci}mi=1 ∼ P̃mc . Finally, we assume that the
classes in the source and target tasks are selected randomly:
that is, the sets of class-conditionals P̃ = {P̃c}lc=1 and
P = {Pc}kc=1 for the source and target tasks are sampled
i.i.d. from a distribution D over a set of class-conditional
distributions E . This completes the definition of the distri-
bution of P and P̃ (which are random themselves).

In a typical setting, the classifier h̃ is a deep neural network,
f is the representation in the last internal layer of the net-
work (i.e., the penultimate, a.k.a. embedding layer), and g̃,
the last layer of the network, is a linear map; similarly, g in

the target problem is often taken to be linear. The learned
feature map f is called a foundation model (Bommasani
et al., 2021) when it can be effectively used in a wide range
of target tasks. In particular, its effectiveness in dealing
with downstream tasks (for any f ) can be measured by its
expected transfer error,

LD(f) := EPES [LP (hf,S)], (2)

where the expectation is taken over the random choice of P
(i.e., averaging over randomly selected target tasks) and the
training data S for the target class.

Notice that while the feature map f is evaluated on the
distribution of target tasks P determined by D, the training
of f in a foundation model, as described above, is fully
agnostic of this target. In the rest of the paper we analyze
this setting, and provide an explanation through the recent
concept of neural collapse.

Notation. ‖ · ‖ denotes the Euclidean norm for vectors
and the spectral norm for matrices. For a distribution Q
over X ⊂ Rd and u : X → Rp, the mean and variance of
u(x) for x ∼ Q are denoted by µu(Q) := Ex∼Q[u(x)] and
by Varu(Q) := Ex∼Q[‖u(x) − µu(Q)‖2]. For a finite set
A = {ai}ni=1, we denote Avgni=1[ai] := 1

n

∑n
i=1 ai and by

U [A] the uniform distribution over A.

3. Neural Collapse
Neural collapse (NC) is a recently discovered phenomenon
in deep learning (Papyan et al., 2020): it has been observed
that during the training of deep networks for standard clas-
sification tasks, the features (the output of the penultimate,
a.k.a. embedding layer) associated with training samples
belonging to the same class concentrate around the mean
feature value for the same class, also satisfying some addi-
tional conditions (such as the mean feature vectors being
orthogonal to each other).

From these we focus on the class-features variance collapse
(called NC1 by Papyan et al., 2020), and used a simplified
version inroduced by Galanti et al. (2022): For a feature map
f : Rd → Rp and two distributions Q1, Q2 over X ⊂ Rd,
we define their class-distance normalized variance (CDNV)
as

Vf (Q1, Q2) :=
Varf (Q1)

‖µf (Q1)− µf (Q2)‖2

(the definition can be extended to finite sets S1, S2 ⊂ X by
defining Vf (S1, S2) = Vf (U [S1], U [S2])). This quantity
essentially measures to what extent the feature vectors of
samples from Q1 and Q2 are clustered in space. We say that
a training process satisfies neural collapse if

lim
t→∞

Avgi 6=j∈[l][Vf(t)(S̃i, S̃j)] = 0, (3)

where f (t) is the penultimate layer of a neural network
h(t) = g(t) ◦ f (t) that is trained to fit S̃ for t steps. It has



Improved Generalization Bounds for Transfer Learning via Neural Collapse

been observed (Papyan et al., 2020; Galanti et al., 2022) that
for several problems the left-hand side of (3) indeed reduces
to some small value during training.

4. Generalization Bounds for Transfer
Learning

Galanti et al. (2022) introduced generalization bounds for
transfer learning in the setting of Section 2. Their analysis
takes three main steps; first, they show that if the CDNV
on the training data, Avgi6=j∈[l][Vf (S̃i, S̃j)], is small at the
end of training, then we expect that the CDNV over unseen
samples, Avgi6=j∈[l][Vf (P̃i, P̃j)], would also be small for
the same classes (see Lemma 4.1 below). As a second step,
they bound the expected CDNV between two new target
classes, EPc 6=Pc′ [Vf (Pc, Pc′)], using the CDNV between
the source classes, Avgi 6=j∈[l][Vf (P̃i, P̃j)]. Finally, they

prove that LD(f)
×
≤ (k+k/n) ·EPc 6=Pc′ [Vf (Pc, Pc′)], with

hf,S := arg minc∈[C] ‖f(xj)− µf (Sc)‖ being the nearest
class-center (NCC) classifier.

However, there are multiple limitations to their argu-
ments. First, the term EPc 6=Pc′ [Vf (Pc, Pc′)] may be
very large even when LD(f) is very small. For ex-
ample, if there is at least one anomalous pair of class-
conditionals P1, P2 ∈ E for which µf (P1) = µf (P2), then,
EPc 6=Pc′ [Vf (Pc, Pc′)] = ∞ (as long as D[P1],D[P2] > 0)
even if for all other pairs P ′1, P

′
2 ∈ E , Vf (P ′1, P

′
2) is

tiny. In fact, if the support E of D is infinite and f is
bounded, then clearly infP1 6=P2∈E ‖µf (P1)−µf (P2)‖ = 0
and EPc 6=Pc′ [Vf (Pc, Pc′)] = ∞. Second, the bound of
Galanti et al. (2022) on EPc 6=Pc′ [Vf (Pc, Pc′)] scales with
(inff∈F infP1 6=P2∈E ‖µf (P1)−µf (P2)‖)−1, which may be
very large even if E is finite (e.g., if F contains a constant
function).

In this paper we aim to circumvent these issue and pro-
vide an upper bound on the error of h which does not suf-
fer from these limitations. Instead of bounding the term
EPc 6=Pc′ [Vf (Pc, Pc′)], we bound LD(f) in terms of the av-
eraged margin error of the NCC classifier between pairs of
source classes. As a next step, in Lemma 4.3, we show that
each of these error terms can be bounded using the CDNV
between pairs of source classes. Finally, in Theorem 4.4 we
combine Lemmas 4.1-4.3 and obtain an upper bound on the
transfer error of f in terms of Avgi 6=j∈[l][Vf (S̃i, S̃j)] which
is typically small (see Section 3).

4.1. Neural Collapse Generalizes to New Samples

We start by recalling Proposition 1 of Galanti et al. (2022).
This proposition provides an upper bound on Vf (P̃i, P̃j),
decomposed into Vf (S̃i, S̃j) and additional generalization
gap terms bounding the difference between expectations

and empirical averages for f and its variants, where f is the
output of the learning algorithm with access to S̃.

For any δ ∈ (0, 1), we let εc1(δ) and εc2(δ) be the smallest
positive values such that with probability at least 1− δ, the
learning algorithm returns a function f ∈ F that satisfies∥∥Ex∼P̃c

[f(x)]−Avgx∈S̃c
[f(x)]

∥∥ ≤ εc1(δ);∣∣Ex∼P̃c
[‖f(x)‖2]−Avgx∈S̃c

[‖f(x)‖2]
∣∣ ≤ εc2(δ).

These quantities are typically bounded using Rademacher
complexities (Bartlett & Mendelson, 2002) related to F ,
scaling usually as Om(1/

√
m) (as also shown by Galanti

et al., 2022). Next, we present their bound on the CDNV of
the source distributions.
Lemma 4.1 (Galanti et al., 2022, Proposition 1). Fix two
source classes, i and j with distributions P̃i and P̃j , and let
δ ∈ (0, 1). Let S̃c ∼ P̃mc for c ∈ {i, j}. Let

Aij(δ) :=
εi1(δ/4) + εj1(δ)

‖µf (P̃i)− µf (P̃j)‖

Bij(δ) :=
Avgc∈{i,j}

[
εc2(δ) + 2‖µf (P̃c)‖ · εc1(δ) + εc1(δ)2

]
‖µf (S̃i)− µf (S̃j)‖2

.

Then, with probability at least 1− δ over the selection of
S̃i, S̃j , we have Vf (P̃i, P̃j) ≤ (Vf (S̃i, S̃j) + Bij(δ/4)) ·
(1 +Aij(δ/4))

2.

The bound in the lemma has several terms. The first one is
the empirical CDNV, Vf (S̃i, S̃j), which is assumed to be im-
plicitly minimized by the training algorithm (see Section 3).
The rest of the terms are proportional to the generalization
gaps εc1(δ/4) and εc2(δ/4) — as discussed above, typically
we expect these terms to scale asOm(1/

√
m). As discussed

in (Galanti et al., 2022), the denominators in Aij(δ/4) and
Bij(δ/4) are expected to be lower bounded by positive con-
stants under reasonable conditions.

Therefore, for a pair i 6= j, if the CDNV Vf (S̃i, S̃j) is small
and m is large, then we expect Vf (P̃i, P̃j) to be small, as
well. That is, if neural collapse emerges in the training data
of two source classes, we should also expect it to emerge
in unseen samples of the same classes (for large m). For
an extensive empirical validation of this argument, see the
works of Galanti et al. (2022); Galanti & Galanti (2022).

4.2. Bounding the Transfer Error

In this section we bound the transfer error of f using the
averaged margin error of the NCC classifier between pairs
of source classes. In the analysis, similarly to Galanti et al.
(2022), we treat class-conditional distributions as data points
on which the feature map f is trained. We apply stan-
dard techniques to derive generalization bounds to new data
points, which, in this case, are class-conditional distribu-
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tions. Recall that, in line with this view, we have already as-
sumed that the source and target class-conditionals {P̃c}lc=1

and {Pc}kc=1 are i.i.d. samples from D.

For simplicity, we focus on the case where F , the class of
feature maps is a set of depth-q ReLU neural networks of the
form f(·) = W qσ(W q−1 . . . σ(W 1·)) : Rd → Rp, where
σ(x) := max{0, x} is the element-wise ReLU function,
and W i ∈ Rdi+1×di for i ∈ [q], where d1 = d and dq+1 =
p. Our bounds depend on the spectral complexity of a
network f , which is defined as C(f) := maxj∈[p] ‖W q

j ‖ ·∏q−1
r=1 ‖W r‖. This quantity upper bounds the Lipschitz

constant of f and is similar in fashion to other (slightly
different) notions of spectral complexity for neural networks
(Golowich et al., 2017; Bartlett et al., 2017). We also denote
B := supx∈X ‖x‖.

We start by a generic result that allows us to upper bound
the transfer error of the NCC classifier (on top of the feature
map f ) by the margin-error over the source classes (defined
below), plus some additional terms, depending on the com-
plexity of f and the number of classes. The proof, presented
in Appendix A, is partially based on Corollary 3 of Maurer
& Pontil (2019) and the analysis of Bartlett et al. (2017).

Lemma 4.2. Let δ ∈ (0, 1), l ≥ 2 and let F be a class
of ReLU neural networks of depth q. Then, with probabil-
ity at least 1 − δ over the random selection of the class-
conditionals P̃ = {P̃c}lc=1 of the source classes, for any
f ∈ F and ∆ > 0, we have

LD(f) ≤ (k − 1) ·
[
Avgi 6=j∈[l][L

2∆
ij (f)] + δ

]
+

√
qkpB · dC(f)e

∆
√
l

· polylog(k, δ−1, dC(f)e, | log( ∆
B

)|, l)

whereL∆
ij(f) := Prx̂i,Ŝi,Ŝj

[‖f(x̂i)−µf (Ŝj)‖ ≤ ‖f(x̂i)−
µf (Ŝi)‖+ ∆], where Ŝi ∼ P̃ni , Ŝj ∼ P̃nj and x̂i ∼ P̃i.

The bound above can be decomposed into several parts. The
first term is the average expected ∆-margin error of a NCC
classifier, when averaged over all classification problems
given by the pairs of source classes with n samples each.
For each pair (i, j), the NCC classifier is defined with two
datasets of size n, Ŝi and Ŝj (which are independent of
the training datasets S̃i and S̃j), and its performance is
evaluated over a new test sample x̂i ∼ P̃i. The second term,
δ, is a free parameter and can be selected to be very small
as the third term scales polylogarithmically with respect to
1/δ. The third term is proportional to the ratio between the
complexity of the selected function f , captured by

√
qpkB ·

dC(f)e and ∆
√
l. Therefore, as long as we increase the

number of source classes l, we can expect the generalization
to new classes to improve.

The next lemma is an extension of Proposition 5 of Galanti
et al. (2022) and relates the margin-error to the CDNV.

Lemma 4.3. Let {P̃i, P̃j} be a pair of class-conditional
distributions. Let f : Rd → Rp be any feature map and
denote µc = µf (P̃c). Let ∆ ≤ 0.12s(f, P̃)−1/2 ·‖µf (P̃i)−
µf (P̃j)‖. Then, we have, for some universal constant C >
0,

1
2 (L∆

ij(f) + L∆
ji(f)) ≤ C

[
1

s(f,P̃)
+ 1

n

]
· Vf (P̃i, P̃j),

where s(f, P̃) = p if {f ◦ P̃c}lc=1 are spherically symmetric
and s(f, P̃) = 1 otherwise.

Informally, the expected margin error L∆
ij(f) of f is upper

bounded by Vf (P̃i, P̃j), and when f◦P̃i and f◦P̃j are spher-
ically symmetric then by (1/p+ 1/n) · Vf (P̃i, P̃j). There-
fore, in case of neural collapse (i.e., when the Vf (P̃i, P̃j)
are small on average), L∆

ij(f) is small, explaining the suc-
cess of foundation models in the low-data regime (such as
in few-shot learning problems) in the presence of neural
collapse. Finally, we also derive a much better bound (see
Lemma B.2) which is exponentially small in p/Vf (P̃1, P̃2)

if f ◦ P̃c are (assumed to be) centered Gaussian distributions
as also assumed by Papyan et al. (2020).

Putting together Lemmas 4.1-4.3, we obtain the following
generalization bound.

Theorem 4.4. Let δ ∈ (0, 1), l ≥ 2 and let F be a class of
ReLU neural networks of depth q. Then, with probability at
least 1−δ over the selection of the source class-conditionals
P̃ = {P̃c}lc=1 and the corresponding source training data
S̃1 . . . , S̃l, for any f ∈ F and ∆ = 0.12s(f, P̃)−1/2 ·
mini6=j∈[l] ‖µf (P̃i)− µf (P̃j)‖, we have

LD(f) ≤ kδ
2

+ Ck ·
[

1

s(f ;P̃)
+ 1

n

]
·Avgi6=j∈[l]

[
(Vf (S̃i, S̃j) +Bij(

δ
8l2

)) · (1 +Aij(
δ

8l2
))2]

+

√
qpkB · dC(f)e

∆
√
l

· polylog(k, δ−1, dC(f)e, | log( ∆
B

)|, l)

for some universal constant C > 0.

Namely, the transfer error of f is bounded by the
sum of the averaged CDNV over the source training
data, Vf (S̃i, S̃j), combinations of the terms Aij( δ

8l2 ) and

Bij(
δ

8l2 ), where εc1( δ
8l2 ) = Õ

(
p
√
q·B·dC(f)e·log(l/δ)√

m

)
and

εc2( δ
8l2 ) = Õ

(
p
√
q·B2·dC(f)e2·log(l/δ)√

m

)
(see Galanti et al.,

2022) and a term that scales as Õ
(√

qpkB·dC(f)e
∆
√
l

)
. There-

fore, if l and m are large and we have neural collapse across
the source training samples (i.e., Avgi6=j∈[l][Vf (S̃i, S̃j)] is
small) and dC(f)e is bounded (as a function of m, l), then
the transfer error LD(f) is also small. Interestingly, in the
presence of neural collapse in the source data, the depen-
dence on n is very weak.
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5. Conclusions
Using pretrained models for transfer learning is a successful
approach in the low-data regime. Recently, Galanti et al.
(2022) suggested a new perspective on analysing this prob-
lem via the newly discovered phenomenon of neural col-
lapse. However, their theoretical analysis relied on several
unrealistic assumptions. In this work we provided better the-
oretical analysis by significantly relaxing their assumptions.
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