
OPT2024: 16th Annual Workshop on Optimization for Machine Learning

ACCO: Accumulate while you Communicate,
Hiding Communications in Distributed LLM Training

Adel Nabli1,2 ADEL.NABLI@SORBONNE-UNIVERSITE.FR

Louis Fournier1
Pierre Erbacher1
Louis Serrano1
Eugene Belilovsky2
Edouard Oyallon1

1Sorbonne Université, CNRS, ISIR, Paris - France
2Mila - Quebec AI Institute, Concordia University, Montréal - Québec

Abstract
Training Large Language Models (LLMs) relies heavily on distributed implementations, employ-
ing multiple GPUs to compute stochastic gradients on model replicas in parallel. However, syn-
chronizing gradients in data parallel settings induces a communication overhead increasing with
the number of distributed workers, impeding the efficiency gains of parallelization. To address this
challenge, local optimization algorithms such as the ones used in Federated Learning have emerged.
While effective in minimizing communication overhead, they incur significant memory costs, hin-
dering scalability: in addition to extra momentum variables, optimizer’s states cannot be partitioned
among workers as communications are only allowed between rounds of local optimization steps.
To conceal communication costs, we propose instead to synchronize delayed gradients while com-
puting new ones between each model’s update. Accumulating local gradients on the workers until
the communication finishes naturally reduces the idle time of GPUs and even allows the use of het-
erogeneous hardware. However, we show that the one-step delay inherent in parallel execution of
gradient computations and communications has drastic impacts on Transformers’ convergence. To
compensate this delay we introduce a novel technique, ACcumulate while COmmunicate (ACCO),
a memory-efficient optimization algorithm tailored for distributed training of LLMs which leads to
training dynamics aligned with standard distributed optimization. Compared to ZeRO, our imple-
mentation and experiments on several LLMs pre-training and fine-tuning tasks demonstrates that
ACCO reduces the learning time up to 87% and successfully allows both sharding optimizer states
across workers and the use of heterogeneous hardware.

1. Introduction

Training modern Large Language Models (LLMs) with billions of parameters requires thousands of
GPUs running in parallel [67]. This is done by relying on a distributed version of the backpropaga-
tion algorithm [30] with a gradient-based optimizer such as Adam [25] or AdamW [34]. However
at this scale, the communication overhead necessary to synchronize gradients between workers in
the data parallel setting can dominate the time to compute the model updates [47], and it has been
estimated that it will remain the case even if models and hardware evolve [50], hindering the bene-
fits of parallelization. Moreover, as all workers are synchronized through gradient communication,
the training only proceeds at the speed of the slowest machine (straggler) [11, 39].

© A. Nabli1,2, L. Fournier1, P. Erbacher1, L. Serrano1, E. Belilovsky2 & E. Oyallon1.

ACCO: ACCUMULATE WHILE YOU COMMUNICATE

To alleviate this issue, distributed optimization algorithms reducing the amount of communi-
cation between workers have been developed, such as local optimization methods [63, 71] which
are especially used in Federated Learning [27, 38]. These methods authorize performing multiple
optimization steps locally before communicating and synchronizing the distributed workers, reduc-
ing the communication overhead. As communication rounds can last longer than a local gradient

8 16 32 64 12824
workers

0

2

4

6

8

t (
s) comp./comm.

 computation
All-Reduce

Figure 1: Time spent computing and aver-
aging gradients of a Llama-2 7B
model depending on the number of
workers (GPUs).

computation (see Fig. 1), they also naturally allow
to hide the cost of communications in the training
time by running them in parallel to several con-
secutive local computation steps [59, 65, 70, 78].
Moreover, on heterogeneous hardware, the number
of computation steps can be tuned locally to the
worker’s speed so that slow ones compute less than
fast ones, maxing out workers’ usage [10, 36].

However, this comes at a drastic memory cost.
Indeed, in the standard data parallel setting, most
of the memory consumption of model states comes
from storing the optimizer’s parameters, especially
when training with mixed precision. To avoid the
replication of redundant optimizer states across the
workers, methods such as ZeRO [52] shard them.
Due to limited GPU memory and large models’
size, all frameworks used in practice nowadays to train LLMs at scale use a form of partitioning
method [2, 55]. However these sharding methods rely heavily on the fact that each mini-batch gra-
dient is averaged over all the workers during the backward step. This is no longer the case with
local optimization algorithms: if it were, then an averaging would happen at each step, defeating
the purpose of the local method. This forces each worker to host a full copy of the optimizer’s pa-
rameters, increasing the memory requirements. Moreover, to prevent local steps from reducing the
accuracy of the resulting model, local methods often introduce an outer optimizer step at each com-
munication, which comes with additional momentum terms [65, 71], leading to significant memory
overheads as shown in Tab. 1. This raises the following question:

Is it possible to design a memory-efficient optimization algorithm that hides the communication
cost of distributed training of LLMs and accommodates heterogeneous hardware?

To completely hide the communication cost while being memory-efficient, making sharded op-
timizers compatible with the idea of overlapping gradient computations and communications seems
natural. The concept of running two parallel processes is already present in the sharded optimiza-
tion literature, but for a different purpose. ZeRO-Offload [57] introduces the ”Delayed Parameter
Update” (DPU) which allows running the optimizer on the CPU while computing and averaging
gradients on the GPU. By running these processes in parallel, the gradients computed during one
step are on a version of the model parameters that are no longer up to date, as they have been up-
dated by the optimizer concurrently. In practice, this one-step staleness hurts convergence, and the
method can only be used after sufficiently many warmup steps of non-delayed optimization [57].

Contributions. We introduce ACcumulate while COmmunicate (ACCO), a memory-efficient op-
timization algorithm that (1) allows to shard the optimizer parameters across workers, (2) over-
laps gradients computations and communications, hiding the communication overhead while (3)

2

ACCO: ACCUMULATE WHILE YOU COMMUNICATE

Table 1: Comparison of characteristics and memory consumption between several methods. Ψ:
number of parameters in the model. N : number of workers. K: memory multiplier of
the optimizer (Adam). While no additional momentum is required for our method, we still
need a communication buffer.

Method No comm. Handle hetero. Sharded No add. Memory consumed K = 12, N = 64,
overhead hardware Opt. momentum per worker Ψ = 7.5B

Baseline DDP [30] ✗ ✗ ✗ ✓ (2+2+K)×Ψ 120 GB
ZeRO-1 [52] ✗ ✗ ✓ ✓ (2+2+K

N)×Ψ 31 GB
SlowMo [71] ∼ ✗ ✗ ✗ (2+2+2×2+K)×Ψ 150 GB
CO2 [65] ✓ ✗ ✗ ✗ (2+2+4×2+K)×Ψ 180 GB
ACCO (Ours) ✓ ✓ ✓ ✓ (2+2+2+K

N)×Ψ 46 GB

maximizing GPU usage, even with heterogeneous hardware. (4) We introduce a novel method to
compensate for the one-step delay induced by parallel execution of the gradient computations and
communications, removing the need for warmup steps and (5) perfectly matching the training dy-
namic of standard distributed optimization. Our experiments across multiple LLMs training and
fine-tuning tasks consistently show that ACCO allows for significant time gains.

↑

Reduce-
Scatter

Time

G
PU

 s
lo

w
G

PU
 fa

st

All-Gather

↓

↑↓
 acc.

stream

comm.
stream

comm.
stream

 acc.
stream

Compute estimates Compute

Sharded
Opt. step

Reduce-
Scatter

Reduce-
Scatter

Sharded
Opt. step

All-Gather Reduce-
Scatter

Sharded
Opt. step

Sharded
Opt. step

All-Gather

All-Gather

↑↓

↑↓ . . .

↑ ↓Comm. buffer → params buffer → comm. buffer

Figure 2: ACCO with a slow and a fast worker running in parallel, showing no idle time on both
and hiding communications. The delayed update is compensated by splitting the mini-
batch in two, leading to two steps in our timeline. The first uses half of the mini-batch to
estimate ”next step” parameters, and the second uses the full mini-batch to update them.

2. Method

We describe our method, including the approach to compensate for the delayed update. The algo-
rithm will be described from the point of view of each worker i ∈ {1, ..., N}.

Delayed Parameter Update. First, we explain the presence of a delay by re-purposing the ”De-
layed Parameter Update” (DPU) [57] to fit in our framework. Contrary to the original DPU, we
run gradient communications in the same stream as the optimizer step, in parallel to the gradient

3

ACCO: ACCUMULATE WHILE YOU COMMUNICATE

computations. To prevent GPU i from being idle at step t, gradients are accumulated over as many
mini-batches N (t)

i ≥ 1 as necessary until the communication process finishes, which varies depend-
ing on the speed of the worker as shown in Fig. 2. Each worker i starts from the same neural network
parameters θ(0) ∈ Rd. F : Rd → R is the differentiable loss computed by our workers. A random
mini-batch (modeled through the random variable ξ ∈ Ξ following some law P) is drawn from the
local data shard Di to initialize the stochastic gradient gi(−1) = ∇F (θ(0), ξ

(0)
i) and N

(−1)
i = 1.

Then, for t ∈ [[0, T]] we repeat the following step, with the left and right sides running in parallel:

g
(t)
i =

N
(t)
i∑

k=1

∇F (θ(t), ξ
(t)
i,k) , θ(t+1) = Opt

(
θ(t),

∑
i g

(t−1)
i∑

iNi
(t−1)

)
, (DPU)

where Opt is the optimizer of our choice (e.g. Adam or AdamW for LLM training). Note that the
right side combines both the gradient averaging (communications) and the optimizer step, which
runs in parallel to the gradient computations to the left. Remark that, except at the first step t = 0,
the gradients used by Opt are computed on parameters θ(t−1) which differ from θ(t), the ones we
apply them to. This is inherently due to the parallel nature of our execution, and what we denote by
”delayed update”. We show in Sec. 3 that this has drastic impacts on the convergence in practice.

Toward ACCO. To counter this, we estimate what would be the parameters θ(t+2) in addition to
computing θ(t+1). This allows the gradients at the next round to be computed on these estimates
rather than the parameters of the last step. We denote this rule by ”Weight Prediction” (WP). We
initialize a common θ(0), g̃i(0) = ∇F (θ(0), ξ

(0)
i), N (0)

i = 1 and θ̃(1) = Est(•), where Est is our
estimation function that could take any argument at this point. This leads to the following:

g̃
(t+1)
i =

N
(t+1)
i∑
k=1

∇F (θ̃(t+1), ξ
(t+1)
i,k) , θ(t+1) = Opt

(
θ(t),

∑
i g̃

(t)
i∑

iNi
(t)

)
, θ̃(t+2) = Est(•) . (WP)

Thanks to Est, the optimizer now applies to the parameters θ(t) the gradients that were computed
on an estimated version θ̃(t), compensating the one-step delay. Akin to the idea of [6] to counter
delays in pipelining, a simple estimation function could be to re-use the gradients just received

and apply a second optimizer step, i.e. using θ̃(t+2) = Opt

(
θ(t+1),

∑
i g̃

(t)
i∑

i Ni
(t)

)
. We investigate

this method (denoted by ACCO-wp) in Sec. 3, but found that its training dynamic differs from the
baseline, whereas ACCO, the algorithm we present next, perfectly matches it. The crux of ACCO is

G
PU

comm./opt.
stream

 acc.
stream

Init. Step 1 Step 2 Step 3 Step 4

Figure 3: Illustration of ACCO’s two-stage mechanism (1)-(2) to compensate the delayed updates.

to split the computation of the mini-batch gradients into two successive stages, where the first half

4

ACCO: ACCUMULATE WHILE YOU COMMUNICATE

of the mini-batch is used to estimate θ̃(t+1) while θ(t+1) is computed using the full mini-batch. This
is motivated by the fact that gradient accumulation is often used to reach the extremely large batch
sizes required to train LLMs [80], and if gradients are computed sequentially on a worker, we can
leverage this to produce our estimate. Thus, starting with an initialized θ(0), g̃i(0) = ∇F (θ(0), ξ

(0)
i)

and N
(0)
i = 1, the two stages illustrated in Fig. 3 are (left and right side running in parallel):

g
(t)
i =

N
(t)
i∑

k=1

∇F (θ(t), ξ
(t)
i,k) , θ̃(t+1) = Opt

(
θ(t),

∑
i g̃

(t)
i∑

i Ñi
(t)

)
, (1)

g̃i
(t+1)=

Ñi
(t)∑

k=1

∇F (θ̃(t+1), ξ̃
(t+1)
i,k) , θ(t+1) = Opt

(
θ(t),

∑
i g

(t)
i + g̃

(t)
i∑

iN
(t)
i + Ñi

(t)

)
. (2)

We describe the different components of our two-stage mechanism as follows:

(1) The gradient computation stream uses the second half of the mini-batch to compute the gra-
dients g

(t)
i with respect to parameters θ(t) while the communication stream estimates what

would be the next steps parameters θ̃(t+1) using the estimated gradients g̃(t)i .

(2) The computation stream uses the first half of the mini-batch to estimate what would be the
gradients g̃

(t+1)
i of the next parameters θ(t+1) using estimated parameters θ̃(t+1) while the

communication stream computes θ(t+1) using the full mini-batch. Note that it starts from the
same version of the parameters θ(t) as in step (1). The first half g̃(t)i was estimated at step (2)
of the last round, while the second half g(t)i was just computed in (1).

3. Experiments

First we experiment with small language models on the TinyStories dataset [12] to demonstrate the
impact of the delay on Transformers’ convergence and the benefits of ACCO. Then, we confirm the
performances of our method with larger models by pre-training on the OpenWebText dataset [18]
and instruction fine-tuning on the Alpaca dataset [66]. Each distributed worker is hosted on a single
GPU. Details on our experimental settings, ACCO’s pseudo code and profiling of our implementation
can be found in the Appendix, as well as experiment results on heterogeneous hardware.

0 10000 20000 30000 40000
minibatch

2

4

6

8

Tr
ain

in
g

lo
ss

Method
ACCO
DDP
DPU
DPU-warmup 40
DPU-warmup 500

0 10000 20000 30000 40000
minibatch

2

4

6

8

Tr
ain

in
g

lo
ss

Method
ACCO
DDP
ACCO-wp

Figure 4: Comparison between DPU, ACCO and its Weight Prediction version on TinyStories.

5

ACCO: ACCUMULATE WHILE YOU COMMUNICATE

Impact of delayed updates. We run three variants of DPU [57] as described in Sec. 2: (1) with
no warmup, (2) with 40 warmup steps of non-delayed optimization step before switching to DPU
(recommended recipe in [57]), and (3) with 500 steps of warmup. We report in Fig. 4 our training
losses on 8 distributed workers averaged over 3 runs. We remark that using delayed updates can
greatly hurt convergence, especially when no or too few warmup steps are performed. We also
remark that, while ACCO perfectly matches the DDP baseline at all times, ACCO-wp displays worse
behavior, especially at the beginning of the training.

0.0 0.5 1.0 1.5 2.0
minibatch 1e6

4

6

8

10

Tr
ain

in
g

lo
ss

Method
ACCO
DDP

0 5000 10000 15000 20000
minibatch

1.10

1.15

1.20

Va
lid

ati
on

 lo
ss

Method
ACCO
DDP
DPU

Figure 5: Loss for the pre-training task (left) and fine-tuning task (right) with larger models.

Passing the scaling test. We used the GPT-Neo architecture [5] with 125 million parameters and
compared ACCO and DDP with 32 workers on a pre-training task for 50B tokens on the Open-
WebText dataset [18]. We also fine-tuned on the Alpaca dataset [66] a GPT-Neo 2.7B model [5]
pre-trained on the Pile dataset [17]. For that, we used two configurations: 8 A100-80G on a single
node, and 8 A100-80G distributed equally across 2 nodes. We confirm in Fig. 5 that ACCO matches
the training dynamic of the baseline, but Tab. 2 displays a significant speedup for our method.

Table 2: Pre-training and finetuning time speedup with ACCO against DDP on various setups.

Stage Model GPUs #tokens DDP ACCO (∆T)

Pre-training GPT-Neo-125M
1x8 6B 4h41min 4h25min (−5.69%)
4x8 50B 14h41min 10h55min (−25.65%)

Finetuning GPT-Neo-2.7B
1x8 80M 43min 25min (−41.86%)
2x4 80M 3h46min 29min (−87.17%)

Conclusion

We propose ACCO, a novel algorithm that allows for parallel computation and communication of
gradients while partitioning the optimizer states. Our two-stage mechanism compensates for the
delayed update inherent to this parallel setting, ensuring consistent convergence dynamics with
the standard optimization algorithm for large-scale distributed LLM training. We empirically dis-
play the benefits of our methods over several pre-training and finetuning tasks, reporting drastically
reduced training times compared to our baseline, especially in multi-node settings or with hetero-
geneous devices.

6

ACCO: ACCUMULATE WHILE YOU COMMUNICATE

References

[1] Alekh Agarwal and John C Duchi. Distributed delayed stochastic optimization. In
J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and K.Q. Weinberger, editors, Ad-
vances in Neural Information Processing Systems, volume 24. Curran Associates, Inc.,
2011. URL https://proceedings.neurips.cc/paper_files/paper/2011/
file/f0e52b27a7a5d6a1a87373dffa53dbe5-Paper.pdf.

[2] Alex Andonian, Quentin Anthony, Stella Biderman, Sid Black, Preetham Gali, Leo Gao, Eric
Hallahan, Josh Levy-Kramer, Connor Leahy, Lucas Nestler, Kip Parker, Michael Pieler, Ja-
son Phang, Shivanshu Purohit, Hailey Schoelkopf, Dashiell Stander, Tri Songz, Curt Tigges,
Benjamin Thérien, Phil Wang, and Samuel Weinbach. GPT-NeoX: Large Scale Autore-
gressive Language Modeling in PyTorch, 9 2023. URL https://www.github.com/
eleutherai/gpt-neox.

[3] By Mahmoud Assran, Arda Aytekin, Hamid Reza Feyzmahdavian, Mikael Johansson, and
Michael G. Rabbat. Advances in asynchronous parallel and distributed optimization. Pro-
ceedings of the IEEE, 108(11):2013–2031, 2020. doi: 10.1109/JPROC.2020.3026619.

[4] Mahmoud Assran, Nicolas Loizou, Nicolas Ballas, and Mike Rabbat. Stochastic gradient
push for distributed deep learning. In Kamalika Chaudhuri and Ruslan Salakhutdinov, edi-
tors, Proceedings of the 36th International Conference on Machine Learning, volume 97 of
Proceedings of Machine Learning Research, pages 344–353. PMLR, 09–15 Jun 2019.

[5] Sid Black, Gao Leo, Phil Wang, Connor Leahy, and Stella Biderman. GPT-Neo: Large Scale
Autoregressive Language Modeling with Mesh-Tensorflow, March 2021. URL https://
doi.org/10.5281/zenodo.5297715.

[6] Chi-Chung Chen, Chia-Lin Yang, and Hsiang-Yun Cheng. Efficient and robust parallel dnn
training through model parallelism on multi-gpu platform, 2019.

[7] Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets with sublinear
memory cost, 2016.

[8] Xiangyi Chen, Xiaoyun Li, and P. Li. Toward communication efficient adaptive gradient
method. Proceedings of the 2020 ACM-IMS on Foundations of Data Science Conference,
2020. URL https://api.semanticscholar.org/CorpusID:224805256.

[9] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao, Marc' au-
relio Ranzato, Andrew Senior, Paul Tucker, Ke Yang, Quoc Le, and Andrew Ng. Large scale
distributed deep networks. In F. Pereira, C.J. Burges, L. Bottou, and K.Q. Weinberger, edi-
tors, Advances in Neural Information Processing Systems, volume 25. Curran Associates, Inc.,
2012. URL https://proceedings.neurips.cc/paper_files/paper/2012/
file/6aca97005c68f1206823815f66102863-Paper.pdf.

[10] Michael Diskin, Alexey Bukhtiyarov, Max Ryabinin, Lucile Saulnier, Quentin Lhoest, Anton
Sinitsin, Dmitry Popov, Dmitriy Pyrkin, Maxim Kashirin, Alexander Borzunov, Albert Vil-
lanova del Moral, Denis Mazur, Ilia Kobelev, Yacine Jernite, Thomas Wolf, and Gennady
Pekhimenko. Distributed deep learning in open collaborations. In A. Beygelzimer, Y. Dauphin,

7

https://proceedings.neurips.cc/paper_files/paper/2011/file/f0e52b27a7a5d6a1a87373dffa53dbe5-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2011/file/f0e52b27a7a5d6a1a87373dffa53dbe5-Paper.pdf
https://www.github.com/eleutherai/gpt-neox
https://www.github.com/eleutherai/gpt-neox
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715
https://api.semanticscholar.org/CorpusID:224805256
https://proceedings.neurips.cc/paper_files/paper/2012/file/6aca97005c68f1206823815f66102863-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/6aca97005c68f1206823815f66102863-Paper.pdf

ACCO: ACCUMULATE WHILE YOU COMMUNICATE

P. Liang, and J. Wortman Vaughan, editors, Advances in Neural Information Processing Sys-
tems, 2021. URL https://openreview.net/forum?id=FYHktcK-7v.

[11] Sanghamitra Dutta, Jianyu Wang, and Gauri Joshi. Slow and stale gradients can win the
race. IEEE Journal on Selected Areas in Information Theory, 2(3):1012–1024, 2021. doi:
10.1109/JSAIT.2021.3103770.

[12] Ronen Eldan and Yuanzhi Li. Tinystories: How small can language models be and still speak
coherent english?, 2023.

[13] Mathieu Even, Raphaël Berthier, Francis Bach, Nicolas Flammarion, Hadrien Hendrikx, Pierre
Gaillard, Laurent Massoulié, and Adrien Taylor. A continuized view on nesterov accelera-
tion for stochastic gradient descent and randomized gossip. In A. Beygelzimer, Y. Dauphin,
P. Liang, and J. Wortman Vaughan, editors, Advances in Neural Information Processing Sys-
tems, 2021.

[14] Shiqing Fan, Yi Rong, Chen Meng, Zongyan Cao, Siyu Wang, Zhen Zheng, Chuan Wu, Guop-
ing Long, Jun Yang, Lixue Xia, et al. Dapple: A pipelined data parallel approach for training
large models. In Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Prac-
tice of Parallel Programming, pages 431–445, 2021.

[15] Hamid Reza Feyzmahdavian and Mikael Johansson. Asynchronous iterations in optimization:
New sequence results and sharper algorithmic guarantees. Journal of Machine Learning Re-
search, 24(158):1–75, 2023. URL http://jmlr.org/papers/v24/22-0555.html.

[16] Louis Fournier and Edouard Oyallon. Cyclic data parallelism for efficient parallelism of deep
neural networks, 2024.

[17] Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason
Phang, Horace He, Anish Thite, Noa Nabeshima, et al. The pile: An 800gb dataset of diverse
text for language modeling. arXiv preprint arXiv:2101.00027, 2020.

[18] Aaron Gokaslan, Vanya Cohen, Ellie Pavlick, and Stefanie Tellex. Openwebtext corpus.
http://Skylion007.github.io/OpenWebTextCorpus, 2019.

[19] Eduard Gorbunov, Alexander Rogozin, Aleksandr Beznosikov, Darina Dvinskikh, and Alexan-
der Gasnikov. Recent Theoretical Advances in Decentralized Distributed Convex Optimiza-
tion, pages 253–325. Springer International Publishing, Cham, 2022. ISBN 978-3-031-00832-
0. doi: 10.1007/978-3-031-00832-0 8.

[20] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia Chen, Hy-
oukJoong Lee, Jiquan Ngiam, Quoc V Le, Yonghui Wu, et al. Gpipe: Efficient training of
giant neural networks using pipeline parallelism. Advances in neural information processing
systems, 32, 2019.

[21] Jörn-Henrik Jacobsen, Arnold W.M. Smeulders, and Edouard Oyallon. i-revnet: Deep in-
vertible networks. In International Conference on Learning Representations, 2018. URL
https://openreview.net/forum?id=HJsjkMb0Z.

8

https://openreview.net/forum?id=FYHktcK-7v
http://jmlr.org/papers/v24/22-0555.html
http://Skylion007.github.io/OpenWebTextCorpus
https://openreview.net/forum?id=HJsjkMb0Z

ACCO: ACCUMULATE WHILE YOU COMMUNICATE

[22] Dhiraj Kalamkar, Dheevatsa Mudigere, Naveen Mellempudi, Dipankar Das, Kunal Baner-
jee, Sasikanth Avancha, Dharma Teja Vooturi, Nataraj Jammalamadaka, Jianyu Huang, Hec-
tor Yuen, Jiyan Yang, Jongsoo Park, Alexander Heinecke, Evangelos Georganas, Sudarshan
Srinivasan, Abhisek Kundu, Misha Smelyanskiy, Bharat Kaul, and Pradeep Dubey. A study
of bfloat16 for deep learning training, 2019.

[23] Sai Praneeth Karimireddy, Martin Jaggi, Satyen Kale, Mehryar Mohri, Sashank J. Reddi, Se-
bastian U. Stich, and Ananda Theertha Suresh. Mime: Mimicking centralized stochastic algo-
rithms in federated learning. ArXiv, abs/2008.03606, 2020.

[24] Chiheon Kim, Heungsub Lee, Myungryong Jeong, Woonhyuk Baek, Boogeon Yoon, Ildoo
Kim, Sungbin Lim, and Sungwoong Kim. torchgpipe: On-the-fly pipeline parallelism for
training giant models, 2020.

[25] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Interna-
tional Conference on Learning Representations (ICLR), San Diega, CA, USA, 2015.

[26] Anastasia Koloskova, Sebastian U. Stich, and Martin Jaggi. Sharper convergence guarantees
for asynchronous sgd for distributed and federated learning. In Proceedings of the 36th In-
ternational Conference on Neural Information Processing Systems, NIPS ’22, Red Hook, NY,
USA, 2024. Curran Associates Inc. ISBN 9781713871088.

[27] Jakub Konecný, H. B. McMahan, Daniel Ramage, and Peter Richtárik. Federated optimiza-
tion: Distributed machine learning for on-device intelligence. ArXiv, abs/1610.02527, 2016.
URL https://api.semanticscholar.org/CorpusID:2549272.

[28] Atli Kosson, Vitaliy Chiley, Abhinav Venigalla, Joel Hestness, and Urs Köster. Pipelined
backpropagation at scale: Training large models without batches, 2021.

[29] Dmitry Kovalev, Adil Salim, and Peter Richtarik. Optimal and practical algorithms for smooth
and strongly convex decentralized optimization. In H. Larochelle, M. Ranzato, R. Hadsell,
M.F. Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems, vol-
ume 33, pages 18342–18352. Curran Associates, Inc., 2020.

[30] Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis, Teng Li, Adam
Paszke, Jeff Smith, Brian Vaughan, Pritam Damania, and Soumith Chintala. Pytorch dis-
tributed: experiences on accelerating data parallel training. Proc. VLDB Endow., 13(12):
3005–3018, aug 2020. ISSN 2150-8097. doi: 10.14778/3415478.3415530. URL https:
//doi.org/10.14778/3415478.3415530.

[31] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia
Smith. Federated optimization for heterogeneous networks. In ICML Workshop on Adaptive
& Multitask Learning: Algorithms & Systems, 2019. URL https://openreview.net/
forum?id=SkgwE5Ss3N.

[32] Tao Lin, Sebastian U. Stich, Kumar Kshitij Patel, and Martin Jaggi. Don’t use large mini-
batches, use local sgd. In International Conference on Learning Representations, 2020.

9

https://api.semanticscholar.org/CorpusID:2549272
https://doi.org/10.14778/3415478.3415530
https://doi.org/10.14778/3415478.3415530
https://openreview.net/forum?id=SkgwE5Ss3N
https://openreview.net/forum?id=SkgwE5Ss3N

ACCO: ACCUMULATE WHILE YOU COMMUNICATE

[33] Yuliang Liu, Shenggui Li, Jiarui Fang, Yanjun Shao, Boyuan Yao, and Yang You. Colossal-
auto: Unified automation of parallelization and activation checkpoint for large-scale models,
2023.

[34] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In Interna-
tional Conference on Learning Representations, 2019. URL https://openreview.
net/forum?id=Bkg6RiCqY7.

[35] Karttikeya Mangalam, Haoqi Fan, Yanghao Li, Chao-Yuan Wu, Bo Xiong, Christoph Feicht-
enhofer, and Jitendra Malik. Reversible vision transformers. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 10830–10840, 2022.

[36] Artavazd Maranjyan, Mher Safaryan, and Peter Richtárik. Gradskip: Communication-
accelerated local gradient methods with better computational complexity, 2022.

[37] Ryan McDonald, Keith Hall, and Gideon Mann. Distributed training strategies for the struc-
tured perceptron. In Human Language Technologies: The 2010 Annual Conference of the
North American Chapter of the Association for Computational Linguistics, HLT ’10, page
456–464, USA, 2010. Association for Computational Linguistics. ISBN 1932432655.

[38] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Ar-
cas. Communication-Efficient Learning of Deep Networks from Decentralized Data. In
Aarti Singh and Jerry Zhu, editors, Proceedings of the 20th International Conference on
Artificial Intelligence and Statistics, volume 54 of Proceedings of Machine Learning Re-
search, pages 1273–1282. PMLR, 20–22 Apr 2017. URL https://proceedings.mlr.
press/v54/mcmahan17a.html.

[39] Konstantin Mishchenko, Francis Bach, Mathieu Even, and Blake Woodworth. Asynchronous
SGD beats minibatch SGD under arbitrary delays. In Alice H. Oh, Alekh Agarwal, Danielle
Belgrave, and Kyunghyun Cho, editors, Advances in Neural Information Processing Systems,
2022. URL https://openreview.net/forum?id=4XP0ZuQKXmV.

[40] Konstantin Mishchenko, Grigory Malinovsky, Sebastian Stich, and Peter Richtárik. Proxskip:
Yes! local gradient steps provably lead to communication acceleration! finally! arXiv preprint
arXiv:2202.09357, 2022.

[41] Ioannis Mitliagkas, Ce Zhang, Stefan Hadjis, and Christopher Ré. Asynchrony begets mo-
mentum, with an application to deep learning. In 2016 54th Annual Allerton Conference on
Communication, Control, and Computing (Allerton), page 997–1004. IEEE Press, 2016. doi:
10.1109/ALLERTON.2016.7852343. URL https://doi.org/10.1109/ALLERTON.
2016.7852343.

[42] Adel Nabli and Edouard Oyallon. DADAO: Decoupled accelerated decentralized asyn-
chronous optimization. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara En-
gelhardt, Sivan Sabato, and Jonathan Scarlett, editors, Proceedings of the 40th International
Conference on Machine Learning, volume 202 of Proceedings of Machine Learning Research,
pages 25604–25626. PMLR, 23–29 Jul 2023.

10

https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://proceedings.mlr.press/v54/mcmahan17a.html
https://proceedings.mlr.press/v54/mcmahan17a.html
https://openreview.net/forum?id=4XP0ZuQKXmV
https://doi.org/10.1109/ALLERTON.2016.7852343
https://doi.org/10.1109/ALLERTON.2016.7852343

ACCO: ACCUMULATE WHILE YOU COMMUNICATE

[43] Adel Nabli, Eugene Belilovsky, and Edouard Oyallon. $\textbf{A}ˆ2\textbf{CiD}ˆ2$:
Accelerating asynchronous communication in decentralized deep learning. In Thirty-
seventh Conference on Neural Information Processing Systems, 2023. URL https://
openreview.net/forum?id=YE04aRkeZb.

[44] Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri, Nikhil R Devanur,
Gregory R Ganger, Phillip B Gibbons, and Matei Zaharia. Pipedream: Generalized pipeline
parallelism for dnn training. In Proceedings of the 27th ACM Symposium on Operating Sys-
tems Principles, pages 1–15, 2019.

[45] Deepak Narayanan, Amar Phanishayee, Kaiyu Shi, Xie Chen, and Matei Zaharia. Memory-
efficient pipeline-parallel dnn training. In International Conference on Machine Learning,
pages 7937–7947. PMLR, 2021.

[46] John Nguyen, Kshitiz Malik, Hongyuan Zhan, Ashkan Yousefpour, Mike Rabbat, Mani Malek,
and Dzmitry Huba. Federated learning with buffered asynchronous aggregation. In Gus-
tau Camps-Valls, Francisco J. R. Ruiz, and Isabel Valera, editors, Proceedings of The 25th
International Conference on Artificial Intelligence and Statistics, volume 151 of Proceed-
ings of Machine Learning Research, pages 3581–3607. PMLR, 28–30 Mar 2022. URL
https://proceedings.mlr.press/v151/nguyen22b.html.

[47] Jose Javier Gonzalez Ortiz, Jonathan Frankle, Mike Rabbat, Ari Morcos, and Nicolas Ballas.
Trade-offs of local sgd at scale: An empirical study. In NeurIPS 2020 OptML Workshop, 2021.

[48] Denis Paperno, Germán Kruszewski, Angeliki Lazaridou, Ngoc Quan Pham, Raffaella
Bernardi, Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Fernandez. The LAM-
BADA dataset: Word prediction requiring a broad discourse context. In Proceedings of the
54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Pa-
pers), pages 1525–1534, Berlin, Germany, August 2016. Association for Computational Lin-
guistics. URL http://www.aclweb.org/anthology/P16-1144.

[49] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Köpf, Edward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: an imperative style, high-
performance deep learning library. In Proceedings of the 33rd International Conference on
Neural Information Processing Systems, Red Hook, NY, USA, 2019. Curran Associates Inc.

[50] Suchita Pati, Shaizeen Aga, Mahzabeen Islam, Nuwan Jayasena, and Matthew D. Sinclair.
Computation vs. communication scaling for future transformers on future hardware, 2023.

[51] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Lan-
guage models are unsupervised multitask learners. 2019.

[52] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: memory opti-
mizations toward training trillion parameter models. In Proceedings of the International Con-
ference for High Performance Computing, Networking, Storage and Analysis, SC ’20. IEEE
Press, 2020. ISBN 9781728199986.

11

https://openreview.net/forum?id=YE04aRkeZb
https://openreview.net/forum?id=YE04aRkeZb
https://proceedings.mlr.press/v151/nguyen22b.html
http://www.aclweb.org/anthology/P16-1144

ACCO: ACCUMULATE WHILE YOU COMMUNICATE

[53] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory opti-
mizations toward training trillion parameter models, 2020.

[54] Samyam Rajbhandari, Olatunji Ruwase, Jeff Rasley, Shaden Smith, and Yuxiong He. Zero-
infinity: Breaking the gpu memory wall for extreme scale deep learning, 2021.

[55] Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. Deepspeed: System
optimizations enable training deep learning models with over 100 billion parameters. In Pro-
ceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, KDD ’20, page 3505–3506, New York, NY, USA, 2020. Association for Com-
puting Machinery. ISBN 9781450379984. doi: 10.1145/3394486.3406703.

[56] Sashank J. Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub
Konečný, Sanjiv Kumar, and Hugh Brendan McMahan. Adaptive federated optimiza-
tion. In International Conference on Learning Representations, 2021. URL https:
//openreview.net/forum?id=LkFG3lB13U5.

[57] Jie Ren, Samyam Rajbhandari, Reza Yazdani Aminabadi, Olatunji Ruwase, Shuangyan Yang,
Minjia Zhang, Dong Li, and Yuxiong He. Zero-offload: Democratizing billion-scale model
training, 2021.

[58] Kevin Scaman, Francis Bach, Sébastien Bubeck, Yin Tat Lee, and Laurent Massoulié. Opti-
mal algorithms for smooth and strongly convex distributed optimization in networks. In Doina
Precup and Yee Whye Teh, editors, Proceedings of the 34th International Conference on Ma-
chine Learning, volume 70 of Proceedings of Machine Learning Research, pages 3027–3036.
PMLR, 06–11 Aug 2017.

[59] Shuheng Shen, Linli Xu, Jingchang Liu, Xianfeng Liang, and Yifei Cheng. Faster distributed
deep net training: computation and communication decoupled stochastic gradient descent.
In Proceedings of the 28th International Joint Conference on Artificial Intelligence, page
4582–4589. AAAI Press, 2019. ISBN 9780999241141.

[60] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan
Catanzaro. Megatron-lm: Training multi-billion parameter language models using model par-
allelism. arXiv preprint arXiv:1909.08053, 2019.

[61] Shaden Smith, Mostofa Patwary, Brandon Norick, Patrick LeGresley, Samyam Rajbhandari,
Jared Casper, Zhun Liu, Shrimai Prabhumoye, George Zerveas, Vijay Korthikanti, et al. Using
deepspeed and megatron to train megatron-turing nlg 530b, a large-scale generative language
model. arXiv preprint arXiv:2201.11990, 2022.

[62] Zhuoqing Song, Lei Shi, Shi Pu, and Ming Yan. Optimal gradient tracking for decen-
tralized optimization. Mathematical Programming, Jul 2023. ISSN 1436-4646. doi:
10.1007/s10107-023-01997-7.

[63] Sebastian U. Stich. Local SGD converges fast and communicates little. In International Con-
ference on Learning Representations, 2019. URL https://openreview.net/forum?
id=S1g2JnRcFX.

12

https://openreview.net/forum?id=LkFG3lB13U5
https://openreview.net/forum?id=LkFG3lB13U5
https://openreview.net/forum?id=S1g2JnRcFX
https://openreview.net/forum?id=S1g2JnRcFX

ACCO: ACCUMULATE WHILE YOU COMMUNICATE

[64] Sebastian U. Stich and Sai Praneeth Karimireddy. The error-feedback framework: better rates
for sgd with delayed gradients and compressed updates. Journal of Machine Learning Re-
search, 21(1), jan 2020. ISSN 1532-4435.

[65] Weigao Sun, Zhen Qin, Weixuan Sun, Shidi Li, Dong Li, Xuyang Shen, Yu Qiao, and Yiran
Zhong. CO2: Efficient distributed training with full communication-computation overlap.
In The Twelfth International Conference on Learning Representations, 2024. URL https:
//openreview.net/forum?id=ZO5cn4IfaN.

[66] Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin,
Percy Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama
model. https://github.com/tatsu-lab/stanford_alpaca, 2023.

[67] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas
Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernan-
des, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal,
Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez,
Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux,
Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor
Mihaylov, Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein,
Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Sub-
ramanian, Xiaoqing Ellen Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan,
Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan
Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, and Thomas Scialom. Llama 2:
Open foundation and fine-tuned chat models, 2023.

[68] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors,
Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

[69] Guanhua Wang, Heyang Qin, Sam Ade Jacobs, Connor Holmes, Samyam Rajbhandari,
Olatunji Ruwase, Feng Yan, Lei Yang, and Yuxiong He. Zero++: Extremely efficient col-
lective communication for giant model training, 2023.

[70] Jianyu Wang, Hao Liang, and Gauri Joshi. Overlap local-sgd: An algorithmic approach
to hide communication delays in distributed sgd. In ICASSP 2020 - 2020 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, May
2020. doi: 10.1109/icassp40776.2020.9053834. URL http://dx.doi.org/10.1109/
ICASSP40776.2020.9053834.

[71] Jianyu Wang, Vinayak Tantia, Nicolas Ballas, and Michael Rabbat. Slowmo: Improving
communication-efficient distributed sgd with slow momentum. In International Conference
on Learning Representations, 2020. URL https://openreview.net/forum?id=
SkxJ8REYPH.

13

https://openreview.net/forum?id=ZO5cn4IfaN
https://openreview.net/forum?id=ZO5cn4IfaN
https://github.com/tatsu-lab/stanford_alpaca
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
http://dx.doi.org/10.1109/ICASSP40776.2020.9053834
http://dx.doi.org/10.1109/ICASSP40776.2020.9053834
https://openreview.net/forum?id=SkxJ8REYPH
https://openreview.net/forum?id=SkxJ8REYPH

ACCO: ACCUMULATE WHILE YOU COMMUNICATE

[72] Blake Woodworth, Kumar Kshitij Patel, Sebastian Stich, Zhen Dai, Brian Bullins, Brendan
Mcmahan, Ohad Shamir, and Nathan Srebro. Is local SGD better than minibatch SGD? In
Hal Daumé III and Aarti Singh, editors, Proceedings of the 37th International Conference on
Machine Learning, volume 119 of Proceedings of Machine Learning Research, pages 10334–
10343. PMLR, 13–18 Jul 2020. URL https://proceedings.mlr.press/v119/
woodworth20a.html.

[73] Xuyang Wu, Sindri Magnusson, Hamid Reza Feyzmahdavian, and Mikael Johansson. Delay-
adaptive step-sizes for asynchronous learning. In Kamalika Chaudhuri, Stefanie Jegelka,
Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato, editors, Proceedings of the
39th International Conference on Machine Learning, volume 162 of Proceedings of Ma-
chine Learning Research, pages 24093–24113. PMLR, 17–23 Jul 2022. URL https:
//proceedings.mlr.press/v162/wu22g.html.

[74] Cong Xie, Sanmi Koyejo, and Indranil Gupta. Asynchronous federated optimization. In
NeurIPS 2020 OptML Workshop, 2020.

[75] Bowen Yang, Jian Zhang, Jonathan Li, Christopher Ré, Christopher R. Aberger, and Christo-
pher De Sa. Pipemare: Asynchronous pipeline parallel dnn training, 2020.

[76] Kun Yuan, Qing Ling, and Wotao Yin. On the convergence of decentralized gradient descent.
SIAM Journal on Optimization, 26(3):1835–1854, 2016. doi: 10.1137/130943170.

[77] Jian Zhang and Ioannis Mitliagkas. Yellowfin and the art of momentum tuning. In A. Tal-
walkar, V. Smith, and M. Zaharia, editors, Proceedings of Machine Learning and Systems,
volume 1, pages 289–308, 2019. URL https://proceedings.mlsys.org/paper_
files/paper/2019/file/b205b525b7ce002baae53228bab6d26b-Paper.
pdf.

[78] Sixin Zhang, Anna Choromanska, and Yann LeCun. Deep learning with elastic averaging
sgd. In Proceedings of the 28th International Conference on Neural Information Processing
Systems - Volume 1, NIPS’15, page 685–693, Cambridge, MA, USA, 2015. MIT Press.

[79] Zhen Zhang, Shuai Zheng, Yida Wang, Justin Chiu, George Karypis, Trishul Chilimbi, Mu Li,
and Xin Jin. Mics: Near-linear scaling for training gigantic model on public cloud, 2022.

[80] Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian
Min, Beichen Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen Yang, Yushuo Chen, Zhipeng
Chen, Jinhao Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang Liu, Peiyu Liu, Jian-Yun Nie,
and Ji-Rong Wen. A survey of large language models, 2023.

[81] Yanli Zhao, Andrew Gu, Rohan Varma, Liang Luo, Chien-Chin Huang, Min Xu, Less Wright,
Hamid Shojanazeri, Myle Ott, Sam Shleifer, Alban Desmaison, Can Balioglu, Pritam Dama-
nia, Bernard Nguyen, Geeta Chauhan, Yuchen Hao, Ajit Mathews, and Shen Li. Pytorch fsdp:
Experiences on scaling fully sharded data parallel, 2023.

[82] Shuxin Zheng, Qi Meng, Taifeng Wang, Wei Chen, Nenghai Yu, Zhi-Ming Ma, and Tie-Yan
Liu. Asynchronous stochastic gradient descent with delay compensation. In Proceedings of the

14

https://proceedings.mlr.press/v119/woodworth20a.html
https://proceedings.mlr.press/v119/woodworth20a.html
https://proceedings.mlr.press/v162/wu22g.html
https://proceedings.mlr.press/v162/wu22g.html
https://proceedings.mlsys.org/paper_files/paper/2019/file/b205b525b7ce002baae53228bab6d26b-Paper.pdf
https://proceedings.mlsys.org/paper_files/paper/2019/file/b205b525b7ce002baae53228bab6d26b-Paper.pdf
https://proceedings.mlsys.org/paper_files/paper/2019/file/b205b525b7ce002baae53228bab6d26b-Paper.pdf

ACCO: ACCUMULATE WHILE YOU COMMUNICATE

34th International Conference on Machine Learning - Volume 70, ICML’17, page 4120–4129.
JMLR.org, 2017.

[83] Fan Zhou and Guojing Cong. On the convergence properties of a k-step averaging stochas-
tic gradient descent algorithm for nonconvex optimization. In Proceedings of the Twenty-
Seventh International Joint Conference on Artificial Intelligence, IJCAI-18, pages 3219–
3227. International Joint Conferences on Artificial Intelligence Organization, 7 2018. doi:
10.24963/ijcai.2018/447. URL https://doi.org/10.24963/ijcai.2018/447.

[84] Huiping Zhuang, Zhiping Lin, and Kar-Ann Toh. Accumulated decoupled learning: Mitigating
gradient staleness in inter-layer model parallelization. arXiv preprint arXiv:2012.03747, 2020.

[85] Huiping Zhuang, Yi Wang, Qinglai Liu, and Zhiping Lin. Fully decoupled neural network
learning using delayed gradients. IEEE transactions on neural networks and learning systems,
33(10):6013–6020, 2021.

[86] Martin Zinkevich, Markus Weimer, Lihong Li, and Alex Smola. Parallelized stochastic gra-
dient descent. In J. Lafferty, C. Williams, J. Shawe-Taylor, R. Zemel, and A. Culotta, edi-
tors, Advances in Neural Information Processing Systems, volume 23. Curran Associates, Inc.,
2010. URL https://proceedings.neurips.cc/paper_files/paper/2010/
file/abea47ba24142ed16b7d8fbf2c740e0d-Paper.pdf.

15

https://doi.org/10.24963/ijcai.2018/447
https://proceedings.neurips.cc/paper_files/paper/2010/file/abea47ba24142ed16b7d8fbf2c740e0d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2010/file/abea47ba24142ed16b7d8fbf2c740e0d-Paper.pdf

ACCO: ACCUMULATE WHILE YOU COMMUNICATE

Appendix A. Related Work

Local optimization methods. Local optimization methods allow to perform several local model
updates between periodic averaging. With the SGD optimizer, these algorithms predate the deep
learning era [37, 86], and their convergence properties are still investigated nowadays [40, 63, 72,
83]. Due to their practical and efficient communication scheme, they have since been used for
the Distributed Training of Deep Neural Networks (DNNs) with methods such as EASGD [78],
SlowMo [71] or Post-local SGD [32, 47], and are ubiquitous in Federated Learning [27, 31, 38],
broadening the choice of optimizers beyond SGD [8, 23, 56]. By overlapping communications over
consecutive steps of local computations, they allow to hide communication bottlenecks, resulting
in algorithms such as Overlap local-SGD [70], COCO-SGD [59] or CO2 [65]. Moreover, with
heterogeneous hardware, they can adapt their local computation rate to their hardware capacity
[10, 36]. However this comes at the price of additional memory requirements: due to their local
nature, not only do these methods prevent the use of sharded optimizers such as ZeRO [52], but
they also introduce additional control variables [40, 65, 71], hindering their scalability as shown in
Tab. 1. Moreover, catering for heterogeneous hardware is not straightforward, as using different
numbers of local updates leads to models shifting at different speeds, requiring extra care to counter
this effect [36]. On the contrary, ACCO does not lead to such disparities: it just affects how the
required batch size is reached.

Overlap decentralized optimization. The communication complexity being a core concern in
decentralized optimization [19, 76], strategies have been devised to reduce communication over-
heads. For synchronous methods, works focus on designing algorithms with accelerated commu-
nication rates, leveraging Chebyshev polynomials [29, 58, 62]. For the asynchronous ones, they
rely on the properties of the graph resistance [13, 42, 43]. Alternatively, some approaches over-
lap gradient and communication steps, either explicitly [4], or by modeling them with independent
stochastic processes [42, 43]. However, none of these works focus on memory efficiency. Thus,
they introduce additional variables and do not consider sharding the optimizer states. Moreover,
they do not study optimizers other than SGD, and extending their beneficial properties to adaptive
methods commonly used for DNN training such as Adam is still an ongoing research topic [3].

Memory-efficient distributed training of LLMs. The activation memory overhead required for
training Transformers [68] can be mitigated for an extra computational cost by reconstructing the
input with reversible architectures [21, 35], or recomputing the activations via checkpointing [7].
Efficient LLM training also combines parallelism methods. Classical data parallelism (DP) [9] suf-
fers both from a high communication volume and a linear increase in memory due to the model
replicas. ZeRO-DP [53] and Fully-Sharded DP [81] avoid this issue by sharding the model states
(i.e., the optimizer states, gradients, and parameters) between workers. This comes at the cost of
further increasing the synchronization between workers and the communication volume, which can
be mitigated by compression [69], memory trade-offs [79], or delayed gradients [16]. The mem-
ory can be even more reduced using expensive CPU-GPU communications to unload states on the
CPU [54, 57]. On the other hand, model parallelism partitions the DNN components for paral-
lelization, either with tensor parallelism [60] by slicing a layer’s computation on several workers, or
with pipeline parallelism, which divides a model into sets of layers trained in parallel on mini-batch
slices. Popularized by [20], this method leaves some workers idling and an inefficient memory
overhead [14]. Allowing delay in the gradients avoids worker idleness [44, 84] but exacerbates

16

ACCO: ACCUMULATE WHILE YOU COMMUNICATE

the memory overhead, which can be partially mitigated with gradient accumulation [45, 85] and
activation checkpointing [24, 33]. Combining these frameworks results in the effective 3D paral-
lelism [61].

Delayed updates. Delays being intrinsic to distributed asynchronous optimization, there is a rich
literature studying them. In the case of distributed SGD in a parameter server setting, while early
analysis showed convergence rates depending on the maximal delay [1, 64], recent lines of work im-
proved these dependencies [15, 26, 73], proving that asynchronous SGD beats standard mini-batch
SGD even with unbounded delays [39]. However, they only study plain SGD, which is hardly used
for DNN training. In this context, some work focused on the interplay between SGD with momen-
tum and delays [41, 77], while delay compensation schemes such as re-scaling updates [74, 82] or
buffering them [46] were proposed for Federated Learning. But still, they only study versions of
SGD and not adaptive methods commonly used for LLMs trainingsuch as Adam [25] or AdamW
[34]. Closer to our work, DPU was introduced as a memory-efficient way to train LLMs by running
the optimizer on the CPU while gradients are computed on the GPU [57], inducing a one-step delay
between the gradients computed and the corresponding optimizer step. To mitigate it, they advise
starting training by warming up for several steps with a standard method with no delay. Perhaps
surprisingly, we find in our experiments that this one-step delay has a noticeable influence on the
convergence of LLMs training, even when using warmup steps. Contrary to DPU, we remove the
need for them, with no impact on the convergence of our training. Moreover, as it is not its purpose,
DPU still runs communications in the gradient computation stream, and is thus impacted both by
the communication overhead of scaling and hardware heterogeneity. Finally, in pipeline parallelism,
gradient delays also affect computation, and weight prediction methods have been proposed to mit-
igate the effect of staleness, by predicting the future weights using the optimizer’s momentum [6].
More elaborate predictions have been proposed for SGD to further reduce the impact of the delay
[28, 75].

Appendix B. Experimental Details and Further Results

B.1. Experimental setup

.

.

.

GPU0 GPUi GPUN-1

Ze
R

O
-1

B
as

el
in

e
A

cc
o

Parameters Gradients Comm. buffer Optimizer State

Figure 6: Memory requirements of ACCO vs
DDP and ZeRO-1, see Tab.1 for quan-
titative details.

All of our experiments are performed on our
local cluster of NVIDIA A100-80GB GPUs
with 8 GPUs per node and an Omni-PAth in-
terconnection network at 100 Gb/s for inter-
node connections, intra-node connections being
done with NVLink 300 GB/s. Each distributed
worker is hosted on a single GPU. Our imple-
mentation is in Pytorch [49], and we verified
that our code for ACCO does indeed produces
two different CUDA streams running in paral-
lel for the computations and communications
using NVIDIA’s Nsight System to profile it, as
shown in Fig. 10. We trained all our models
with AdamW [34], using mixed precision: our

model parameters, gradient accumulation buffer, and communication buffers are in bfloat16

17

ACCO: ACCUMULATE WHILE YOU COMMUNICATE

[22] while our sharded optimizer states are in single precision, as shown in Fig. 6. We compared
our algorithm ACCO to several baselines in different settings, including Pytorch’s Distributed Data
Parallel (DDP) method [30] with ZeRO-1 [52].

B.2. Details on Fig. 1

In Fig. 1, we empirically motivate the need for methods mitigating communication overhead in
Distributed Data Parallel (DDP) [30]. Our goal is to illustrate that the time spent communicating
gradients can quickly trump the one used for computing them when using DDP to train LLMs. For
that, we measure the time necessary to perform a forward and backward pass on a Llama-2 model
[67] with 7B parameters hosted on a single GPU, using a batch size maxing out its memory. We
compare this to the time necessary to compute an All-Reduce on those gradients with the NCCL
backend, varying the number of distributed workers. We observe in Fig. 1 that when we communi-
cate outside of a GPU node in our cluster, the time needed to average the gradients across workers
can take more than four times the one spent on the whole forward and backward step. As DDP
only partially hides communications during the backward [30], this means that our GPUs remain
idle the majority of the time when we use more than 24 distributed workers, motivating the need for
methods leveraging this time to compute instead.

B.3. Pre-training on TinyStories

We experiment with small language models on the TinyStories dataset [12], using the configuration
available on the Huggingface Hub 1 and following the training hyper-parameters of their paper
[12] to the best of our abilities. Hence, we use a 36M parameters GPT-Neo based [5] decoder-only
transformer architecture. To match the 10k vocabulary they used, we trained our own BPE tokenizer
on the TinyStories dataset. For our experiments, we used up to 8 workers on a single node.

B.4. Pre-training on OpenWebText

Table 3: Perplexity of our trained LLMs
Method LAMBADA (ppl ↓) OpenWebText (ppl ↓)

ACCO 1x8 47.1 24.2
DDP 1x8 47.5 24.3

ACCO 4x8 45.5 22.5
DDP 4x8 44.1 21.7

To assess how ACCO scales with larger models
and more data, we pre-trained a model equiv-
alent to GPT-2 [51] with both ACCO and DDP.
Specifically, we used the GPT-Neo architecture
[5] with 125 million parameters and the Open-
WebText dataset [18], which contains 40 GB
of text. We used the GPT-Neo tokenizer, pre-
trained on the Pile dataset [17]. The models were trained on sequences of 1024 tokens, with docu-
ments concatenated using end-of-sequence tokens. The configuration used to instantiate the GPT-
Neo 125M is available on the Huggingface Hub2. We only changed the ”max position embeddings”
parameter from 2048 to 1024. We used the OpenWebText dataset available on Huggingface3. To
assess the impact of using different hardware, the experiment was repeated on 2 different clusters.
The first was conducted on 8 H100-PCIe 80GB on a single node, and report results in Fig. 7. The

1. Tiny Stories Available at: https://huggingface.co/datasets/roneneldan/TinyStories
2. GPT-neo 125M Configuration Available at: https://huggingface.co/EleutherAI/gpt-neo-125m/
blob/main/config.json

3. OpenWebText Dataset Available at: https://huggingface.co/datasets/Skylion007/
openwebtext

18

 https://huggingface.co/datasets/roneneldan/TinyStories
https://huggingface.co/EleutherAI/gpt-neo-125m/blob/main/config.json
https://huggingface.co/EleutherAI/gpt-neo-125m/blob/main/config.json
https://huggingface.co/datasets/Skylion007/openwebtext
https://huggingface.co/datasets/Skylion007/openwebtext

ACCO: ACCUMULATE WHILE YOU COMMUNICATE

second was on 32 A100-80G GPU distributed on 4 nodes. We maxed out the memory of our GPUs
with a local mini-batch size of 24. To reach a sufficiently large overall batch size, we used 1 step
of gradient accumulation for DDP, and none for ACCO as our method naturally accumulates over
1 step, resulting for the first and second experiments in respectively 400K and 1.5M tokens per
effective batch for both ACCO and DDP. In Tab. 2, we report additional experimental details, and
notice that training with ACCO allows for significant time gains, which is additionally illustrated in
Fig. 5. Moreover, to prevent GPUs from idling while waiting for communications, ACCO adaptively
scheduled 315 supplementary accumulation steps over the whole training.

0 50000 100000 150000 200000 250000
minibatch

101

3 × 100

4 × 100

6 × 100

Tr
ain

in
g

lo
ss

Method
ACCO
DDP

(a) Training loss during training on Open-
WebText with 8 H100 GPUs and 6B to-
kens.

0 1000 2000 3000 4000 5000
Time (s)

4

6

8

10

Tr
ain

in
g

lo
ss

Method
ACCO
DDP

(b) Focus on the first part of the training with
32 A100-80GB GPUs w.r.t time.

Figure 7: Training curves for ACCO and DDP on OpenWebText.

Tab. 3 reports the perplexity of trained language models with both methods, which is a com-
monly used metric to evaluate pre-trained language models, as it quantifies the uncertainty of a
model at predicting the next token. We evaluate the perplexity of language models on LAMBADA
[48] and a test split of OpenWebText, and report similar results for both methods.

Table 4: Training hyperparameters for ACCO and DDP configurations.
Hyperparameter 8 H100 32 A100
mini-batch size 24 24
n grad accumulation ACCO: -DDP: 1 ACCO: -DDP: 1
sequence len 1024 1024
#tokens batch 400K 1.5M
optimizer AdamW AdamW
learning rate 6e-4 6e-4
weight decay 0.1 0.1
adam beta1 0.9 0.9
adam beta2 0.95 0.95
nb steps tot 50000 50000
scheduler cosine cosine
n warmup steps 0 0

19

ACCO: ACCUMULATE WHILE YOU COMMUNICATE

B.5. Instruction Fine-Tuning

In previous sections, we compared ACCO against DDP in the pre-training stage. To further validate
our algorithm, we additionally fine-tuned a pre-trained model on supervised instruction data. We
consider the GPT-Neo 2.7B model [5] pre-trained on the Pile dataset [17] and finetuned it on the
Alpaca dataset [66] containing 52k pairs of instruction/answer. We used the pre-trained GPT-neo
2.7B available on the Huggingface Hub4 and the associated tokenizer. We used the Alpaca dataset
available on Huggingface5. We fine-tuned the model using two configurations: 8 A100-80G on a
single node, and 8 A100-80G distributed equally across 2 nodes. Samples are padded to match the
longest sequence in the mini-batch. We fixed the mini-batch size at 4, leading to a total batch size of
128 for all methods. For DDP and DPU, we used a gradient accumulation of 4, while for ACCO , a
gradient accumulation of 2 to account for the ACCO accumulation described in Sec. 2. The learning
rate was set to 2× 10−5 for all methods with a warmup of 50 steps, for DPU.

0 200 400 600
Time (s)

1.10

1.15

1.20

Va
lid

ati
on

 lo
ss

Method
ACCO
DDP
DPU

0 2000 4000 6000
Time (s)

1.1

1.2

1.3
Va

lid
ati

on
 lo

ss

Method
ACCO
DDP

Figure 8: Validation curve with 8 workers on 1 node (left), and 4 workers/node on 2 nodes (right).
In this setting, padding to the longest sequence in the mini-batch induces more variability in the

number of tokens per mini-batch. This results in more variability in the computational load for each
worker, leading to increased wait times for synchronization. We observe in Fig. 8 that ACCO hits a
lower validation loss faster than DDP on both 1 node and 2 nodes settings. Note that the difference
between ACCO and DDP is accentuated when workers are distributed on multiple nodes. In 5, we
observe that ACCO is less data efficient at the beginning of training, as evidenced by a higher loss
compared to DDP for the same number of seen tokens. This is likely due to the fact that ACCO favors
using tokens to increase the batch size to hide communication delays, meaning that fewer optimizer
steps are performed per token compared to DDP. However, both algorithms converge to very similar
loss values by the end of the training.

Appendix C. Experiment Using Heterogeneous Devices

To witness the impact of using heterogeneous devices, we run our algorithm ACCO and compared
it to the DDP baseline in a four workers setting, with one of the GPU four times slower than the
other three, as shown in Fig. 9. As we experiment on a cluster of A100 GPUs, we simulated the
heterogeneity of the hardware by using the time.sleep() python command. First, we measured
the time that a standard forward-backward step takes in our homogeneous cluster, and put to sleep

4. GPT-neo 2.7B Available at: https://huggingface.co/EleutherAI/gpt-neo-2.7B
5. Alpaca Dataset Available at: https://huggingface.co/datasets/tatsu-lab/alpaca

20

https://huggingface.co/EleutherAI/gpt-neo-2.7B
https://huggingface.co/datasets/tatsu-lab/alpaca

ACCO: ACCUMULATE WHILE YOU COMMUNICATE

Table 5: Finetuning hyperparameters for ACCO, DDP and DPU configurations.
Hyperparameter ACCO DDP DPU
mini-batch size 4 4 4
n grad accumulation 2 4 4
total batch size 128 128 128
optimizer AdamW AdamW AdamW
learning rate 2e-5 2e-5 2e-5
weight decay 0.0 0.0 0.0
adam beta1 0.9 0.9 0.9
adam beta2 0.95 0.95 0.95
nb steps tot 50000 50000 50000
scheduler cosine cosine cosine
n warmup steps 0 0 50

one of the four GPUs for three times this amount after each forward-backward pass. In this context,
DDP is only as fast as the slowest worker, meaning that 3 of the 4 workers are idle a third of the
time. With our method, the other workers accumulate during the time they are waiting for the slow
one to finish. This means that ACCO allows to compute gradients for large batch sizes faster than
standard baselines, resulting in faster convergence in terms of wall-clock time, as displayed in Fig.
9.

0 500 1000 1500
Time (s)

2

4

6

8

Tr
ain

in
g

lo
ss

Method
ACCO
DDP

0 1 2 3
GPU rank

0

1

2

3

4

 ac

c.
/ r

ou
nd

0

100

200

300

t (
m

s)
/

t (
m

s)

t (
m

s)

t (
m

s)

t (
m

s)

Figure 9: Training curves with 3 normal workers and 1 slow worker (4× slower).

Appendix D. Limitations

Experiments mainly on one cluster environment. Due to the lack of variety in the compute
environments we have access to, the majority of our experiments were performed on a single cluster,
described in Appendix B. This is a communication-constrained setting, as our hardware is not the
most cutting-edge in that regard as discussed in Appendix B. This particularly flatters our method in
comparison to DDP, as it accentuates the impact of the communication overhead in the wall clock
time. However, to mitigate this one-sidedness, we also run a small pre-training study on one of the
fastest hardware available today, and report in Tab. 2 that even in that case, ACCO leads to a 5%
time gain.

21

ACCO: ACCUMULATE WHILE YOU COMMUNICATE

Communication cost only hidden, not reduced. While local optimization methods tackle the
communication overhead problem with scarce communications, here we only hide them. Thus, our
method does not lead to energy savings, nor question the cost of highly synchronized infrastructure.
However, ACCO naturally maximizes the hardware throughput, allowing to reduce their use time.

Further memory savings avenue not explored. Due to the parallel nature of ACCO, removing the
reliance on communication and gradient buffers seems hardly possible, questioning the feasibility of
further memory savings if all executions are kept on the GPU. But, akin to ZeRO-Offload [57], the
communication and optimizer stream could entirely be run on CPU, which would allow significant
memory gains. We did not experiment with this idea, and let this consideration for future work.

Appendix E. Implementation Details

E.1. Profiling Results

E.2. Algorithm presentation

22

ACCO: ACCUMULATE WHILE YOU COMMUNICATE

 accumula'on stream∇

Cuda kernels on
accumula'on stream

∇

Communica'on
streams

 accumula'on stream∇

Cuda kernels on
accumula'on stream

∇

Communica'on
streams

Clone op'mizer
state to buffer

Load the grads from the
buffer to op'mizer

All reduce the
grad counter

Reduce sca<er the
accumulated gradients
on the buffer

Divide the gradients by
the number of gradient
steps

All gather the
params on the
buffer

Clone buffer to
op'mizer state

Copy the params to
buffer

Figure 10: Nsight system profile of our implementation of ACCO: our two steams do run in parallel.
In this Figure, the computation take more time than the communication because we only
profiled small scale experiments with 8 workers, and small number of parameters (36M
as we profiled on our TinyStories [12] setting). This changes when using larger models
and more workers, as seen in Fig.1.

23

ACCO: ACCUMULATE WHILE YOU COMMUNICATE

Algorithm 1 Training with ACCO in parallel for a worker i

1: Input: Model with differentiable loss F , number of models N , initial parameters θ(0), training
steps T , dataset shards Di.

2: Initialize: gradients gi(−1) = ∇F (θ(0), ξ
(0)
i) and number of gradients N (−1)

i = 1
3: # Computation CUDA stream
4: while t < T do
5: Stage 1.
6: while not Ready for Stage 2 do
7: ξ

(t)
i ← Di

8: g
(t)
i ← g

(t)
i +∇F (θ(t), ξ

(t)
i)

9: N
(t)
i ← N

(t)
i + 1

10: θ̃(t+1) ← Bufferi
11: Bufferi ← (N

(t)
i , g

(t)
i)

12: Stage 2.
13: while not Ready for Stage 1 do
14: ξ

(t)
i ← Di

15: g̃
(t)
i ← g̃

(t)
i +∇F (θ̃(t+1), ξ

(t)
i)

16: Ñ
(t)
i ← Ñ

(t)
i + 1

17: t← t+ 1
18: θ(t+1) ← Bufferi
19: Bufferi ← (Ñ

(t)
i , g̃

(t)
i)

20:

21: # Communication CUDA stream
22: while True do
23: Stage 1.
24: (Ñ

(t)
i , g̃

(t)
i)← Bufferi

25:
∑

i Ñ
(t)
i ← All Reduce(Ñ

(t)
i)

26: Shardi
(∑

i g
(t)
i

)
← Reduce Scatter(g̃

(t)
i)

27: Shardi
(
θ̃(t+1)

)
← ShardedOpt

(
Shardi

(
θ(t)
)
,Shardi

(∑
i g̃

(t)
i∑

i Ñi
(t)

))
28: Bufferi ← All Gather(Shardi

(
θ̃(t+1)

)
)

29: N
(t)
i ← 0

30: Ready for Stage 2← True
31: Ready for Stage 1← False
32: Stage 2.
33: (N

(t)
i , g

(t)
i)← Bufferi

34:
∑

iN
(t)
i + Ñ

(t)
i ← All Reduce(N

(t)
i +

∑
i Ñ

(t)
i)

35: Shardi
(∑

i g
(t)
i + g̃

(t)
i

)
← Reduce Scatter(g

(t)
i +

∑
i g̃

(t)
i)

36: Shardi
(
θ(t+1)

)
← ShardedOpt

(
Shardi

(
θ(t)
)
,Shardi

(∑
i g

(t)
i +g̃

(t)
i∑

i N
(t)
i +Ñi

(t)

))
37: Bufferi ← All Gather(Shardi

(
θ(t+1)

)
)

38: Ñ
(t)
i ← 0

39: Ready for Stage 1← True
40: Ready for Stage 2← False 24

	Introduction
	Method
	Experiments
	Related Work
	Experimental Details and Further Results
	Experimental setup
	Details on Fig. 1
	Pre-training on TinyStories
	Pre-training on OpenWebText
	Instruction Fine-Tuning

	Experiment Using Heterogeneous Devices
	Limitations
	Implementation Details
	Profiling Results
	Algorithm presentation

