
OPT2024: 16th Annual Workshop on Optimization for Machine Learning

ACCO: Accumulate while you Communicate,
Hiding Communications in Distributed LLM Training

Adel Nabli1,2 ADEL.NABLI@SORBONNE-UNIVERSITE.FR

Louis Fournier1
Pierre Erbacher1
Louis Serrano1
Eugene Belilovsky2
Edouard Oyallon1
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Abstract
Training Large Language Models (LLMs) relies heavily on distributed implementations, employ-
ing multiple GPUs to compute stochastic gradients on model replicas in parallel. However, syn-
chronizing gradients in data parallel settings induces a communication overhead increasing with
the number of distributed workers, impeding the efficiency gains of parallelization. To address this
challenge, local optimization algorithms such as the ones used in Federated Learning have emerged.
While effective in minimizing communication overhead, they incur significant memory costs, hin-
dering scalability: in addition to extra momentum variables, optimizer’s states cannot be partitioned
among workers as communications are only allowed between rounds of local optimization steps.
To conceal communication costs, we propose instead to synchronize delayed gradients while com-
puting new ones between each model’s update. Accumulating local gradients on the workers until
the communication finishes naturally reduces the idle time of GPUs and even allows the use of het-
erogeneous hardware. However, we show that the one-step delay inherent in parallel execution of
gradient computations and communications has drastic impacts on Transformers’ convergence. To
compensate this delay we introduce a novel technique, ACcumulate while COmmunicate (ACCO),
a memory-efficient optimization algorithm tailored for distributed training of LLMs which leads to
training dynamics aligned with standard distributed optimization. Compared to ZeRO, our imple-
mentation and experiments on several LLMs pre-training and fine-tuning tasks demonstrates that
ACCO reduces the learning time up to 87% and successfully allows both sharding optimizer states
across workers and the use of heterogeneous hardware.

1. Introduction

Training modern Large Language Models (LLMs) with billions of parameters requires thousands of
GPUs running in parallel [67]. This is done by relying on a distributed version of the backpropaga-
tion algorithm [30] with a gradient-based optimizer such as Adam [25] or AdamW [34]. However
at this scale, the communication overhead necessary to synchronize gradients between workers in
the data parallel setting can dominate the time to compute the model updates [47], and it has been
estimated that it will remain the case even if models and hardware evolve [50], hindering the bene-
fits of parallelization. Moreover, as all workers are synchronized through gradient communication,
the training only proceeds at the speed of the slowest machine (straggler) [11, 39].
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To alleviate this issue, distributed optimization algorithms reducing the amount of communi-
cation between workers have been developed, such as local optimization methods [63, 71] which
are especially used in Federated Learning [27, 38]. These methods authorize performing multiple
optimization steps locally before communicating and synchronizing the distributed workers, reduc-
ing the communication overhead. As communication rounds can last longer than a local gradient

8 16 32 64 12824
# workers

0

2

4

6

8

t (
s)  comp./comm.

 computation
All-Reduce 

Figure 1: Time spent computing and aver-
aging gradients of a Llama-2 7B
model depending on the number of
workers (GPUs).

computation (see Fig. 1), they also naturally allow
to hide the cost of communications in the training
time by running them in parallel to several con-
secutive local computation steps [59, 65, 70, 78].
Moreover, on heterogeneous hardware, the number
of computation steps can be tuned locally to the
worker’s speed so that slow ones compute less than
fast ones, maxing out workers’ usage [10, 36].

However, this comes at a drastic memory cost.
Indeed, in the standard data parallel setting, most
of the memory consumption of model states comes
from storing the optimizer’s parameters, especially
when training with mixed precision. To avoid the
replication of redundant optimizer states across the
workers, methods such as ZeRO [52] shard them.
Due to limited GPU memory and large models’
size, all frameworks used in practice nowadays to train LLMs at scale use a form of partitioning
method [2, 55]. However these sharding methods rely heavily on the fact that each mini-batch gra-
dient is averaged over all the workers during the backward step. This is no longer the case with
local optimization algorithms: if it were, then an averaging would happen at each step, defeating
the purpose of the local method. This forces each worker to host a full copy of the optimizer’s pa-
rameters, increasing the memory requirements. Moreover, to prevent local steps from reducing the
accuracy of the resulting model, local methods often introduce an outer optimizer step at each com-
munication, which comes with additional momentum terms [65, 71], leading to significant memory
overheads as shown in Tab. 1. This raises the following question:

Is it possible to design a memory-efficient optimization algorithm that hides the communication
cost of distributed training of LLMs and accommodates heterogeneous hardware?

To completely hide the communication cost while being memory-efficient, making sharded op-
timizers compatible with the idea of overlapping gradient computations and communications seems
natural. The concept of running two parallel processes is already present in the sharded optimiza-
tion literature, but for a different purpose. ZeRO-Offload [57] introduces the ”Delayed Parameter
Update” (DPU) which allows running the optimizer on the CPU while computing and averaging
gradients on the GPU. By running these processes in parallel, the gradients computed during one
step are on a version of the model parameters that are no longer up to date, as they have been up-
dated by the optimizer concurrently. In practice, this one-step staleness hurts convergence, and the
method can only be used after sufficiently many warmup steps of non-delayed optimization [57].

Contributions. We introduce ACcumulate while COmmunicate (ACCO), a memory-efficient op-
timization algorithm that (1) allows to shard the optimizer parameters across workers, (2) over-
laps gradients computations and communications, hiding the communication overhead while (3)
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Table 1: Comparison of characteristics and memory consumption between several methods. Ψ:
number of parameters in the model. N : number of workers. K: memory multiplier of
the optimizer (Adam). While no additional momentum is required for our method, we still
need a communication buffer.

Method No comm. Handle hetero. Sharded No add. Memory consumed K = 12, N = 64,
overhead hardware Opt. momentum per worker Ψ = 7.5B

Baseline DDP [30] ✗ ✗ ✗ ✓ (2+2+K)×Ψ 120 GB
ZeRO-1 [52] ✗ ✗ ✓ ✓ (2+2+K

N )×Ψ 31 GB
SlowMo [71] ∼ ✗ ✗ ✗ (2+2+2×2+K)×Ψ 150 GB
CO2 [65] ✓ ✗ ✗ ✗ (2+2+4×2+K)×Ψ 180 GB
ACCO (Ours) ✓ ✓ ✓ ✓ (2+2+2+K

N )×Ψ 46 GB

maximizing GPU usage, even with heterogeneous hardware. (4) We introduce a novel method to
compensate for the one-step delay induced by parallel execution of the gradient computations and
communications, removing the need for warmup steps and (5) perfectly matching the training dy-
namic of standard distributed optimization. Our experiments across multiple LLMs training and
fine-tuning tasks consistently show that ACCO allows for significant time gains.
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Figure 2: ACCO with a slow and a fast worker running in parallel, showing no idle time on both
and hiding communications. The delayed update is compensated by splitting the mini-
batch in two, leading to two steps in our timeline. The first uses half of the mini-batch to
estimate ”next step” parameters, and the second uses the full mini-batch to update them.

2. Method

We describe our method, including the approach to compensate for the delayed update. The algo-
rithm will be described from the point of view of each worker i ∈ {1, ..., N}.

Delayed Parameter Update. First, we explain the presence of a delay by re-purposing the ”De-
layed Parameter Update” (DPU) [57] to fit in our framework. Contrary to the original DPU, we
run gradient communications in the same stream as the optimizer step, in parallel to the gradient
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computations. To prevent GPU i from being idle at step t, gradients are accumulated over as many
mini-batches N (t)

i ≥ 1 as necessary until the communication process finishes, which varies depend-
ing on the speed of the worker as shown in Fig. 2. Each worker i starts from the same neural network
parameters θ(0) ∈ Rd. F : Rd → R is the differentiable loss computed by our workers. A random
mini-batch (modeled through the random variable ξ ∈ Ξ following some law P) is drawn from the
local data shard Di to initialize the stochastic gradient gi(−1) = ∇F (θ(0), ξ

(0)
i ) and N

(−1)
i = 1.

Then, for t ∈ [[0, T ]] we repeat the following step, with the left and right sides running in parallel:

g
(t)
i =

N
(t)
i∑

k=1

∇F (θ(t), ξ
(t)
i,k) , θ(t+1) = Opt

(
θ(t),

∑
i g

(t−1)
i∑

iNi
(t−1)

)
, (DPU)

where Opt is the optimizer of our choice (e.g. Adam or AdamW for LLM training). Note that the
right side combines both the gradient averaging (communications) and the optimizer step, which
runs in parallel to the gradient computations to the left. Remark that, except at the first step t = 0,
the gradients used by Opt are computed on parameters θ(t−1) which differ from θ(t), the ones we
apply them to. This is inherently due to the parallel nature of our execution, and what we denote by
”delayed update”. We show in Sec. 3 that this has drastic impacts on the convergence in practice.

Toward ACCO. To counter this, we estimate what would be the parameters θ(t+2) in addition to
computing θ(t+1). This allows the gradients at the next round to be computed on these estimates
rather than the parameters of the last step. We denote this rule by ”Weight Prediction” (WP). We
initialize a common θ(0), g̃i(0) = ∇F (θ(0), ξ

(0)
i ), N (0)

i = 1 and θ̃(1) = Est(•), where Est is our
estimation function that could take any argument at this point. This leads to the following:

g̃
(t+1)
i =

N
(t+1)
i∑
k=1

∇F (θ̃(t+1), ξ
(t+1)
i,k ) , θ(t+1) = Opt

(
θ(t),

∑
i g̃

(t)
i∑

iNi
(t)

)
, θ̃(t+2) = Est(•) . (WP)

Thanks to Est, the optimizer now applies to the parameters θ(t) the gradients that were computed
on an estimated version θ̃(t), compensating the one-step delay. Akin to the idea of [6] to counter
delays in pipelining, a simple estimation function could be to re-use the gradients just received

and apply a second optimizer step, i.e. using θ̃(t+2) = Opt

(
θ(t+1),

∑
i g̃

(t)
i∑

i Ni
(t)

)
. We investigate

this method (denoted by ACCO-wp) in Sec. 3, but found that its training dynamic differs from the
baseline, whereas ACCO, the algorithm we present next, perfectly matches it. The crux of ACCO is
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Figure 3: Illustration of ACCO’s two-stage mechanism (1)-(2) to compensate the delayed updates.

to split the computation of the mini-batch gradients into two successive stages, where the first half
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of the mini-batch is used to estimate θ̃(t+1) while θ(t+1) is computed using the full mini-batch. This
is motivated by the fact that gradient accumulation is often used to reach the extremely large batch
sizes required to train LLMs [80], and if gradients are computed sequentially on a worker, we can
leverage this to produce our estimate. Thus, starting with an initialized θ(0), g̃i(0) = ∇F (θ(0), ξ

(0)
i )

and N
(0)
i = 1, the two stages illustrated in Fig. 3 are (left and right side running in parallel):

g
(t)
i =

N
(t)
i∑

k=1

∇F (θ(t), ξ
(t)
i,k) , θ̃(t+1) = Opt

(
θ(t),

∑
i g̃

(t)
i∑

i Ñi
(t)

)
, (1)

g̃i
(t+1)=

Ñi
(t)∑

k=1

∇F (θ̃(t+1), ξ̃
(t+1)
i,k ) , θ(t+1) = Opt

(
θ(t),

∑
i g

(t)
i + g̃

(t)
i∑

iN
(t)
i + Ñi

(t)

)
. (2)

We describe the different components of our two-stage mechanism as follows:

(1) The gradient computation stream uses the second half of the mini-batch to compute the gra-
dients g

(t)
i with respect to parameters θ(t) while the communication stream estimates what

would be the next steps parameters θ̃(t+1) using the estimated gradients g̃(t)i .

(2) The computation stream uses the first half of the mini-batch to estimate what would be the
gradients g̃

(t+1)
i of the next parameters θ(t+1) using estimated parameters θ̃(t+1) while the

communication stream computes θ(t+1) using the full mini-batch. Note that it starts from the
same version of the parameters θ(t) as in step (1). The first half g̃(t)i was estimated at step (2)
of the last round, while the second half g(t)i was just computed in (1).

3. Experiments

First we experiment with small language models on the TinyStories dataset [12] to demonstrate the
impact of the delay on Transformers’ convergence and the benefits of ACCO. Then, we confirm the
performances of our method with larger models by pre-training on the OpenWebText dataset [18]
and instruction fine-tuning on the Alpaca dataset [66]. Each distributed worker is hosted on a single
GPU. Details on our experimental settings, ACCO’s pseudo code and profiling of our implementation
can be found in the Appendix, as well as experiment results on heterogeneous hardware.
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Figure 4: Comparison between DPU, ACCO and its Weight Prediction version on TinyStories.
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Impact of delayed updates. We run three variants of DPU [57] as described in Sec. 2: (1) with
no warmup, (2) with 40 warmup steps of non-delayed optimization step before switching to DPU
(recommended recipe in [57]), and (3) with 500 steps of warmup. We report in Fig. 4 our training
losses on 8 distributed workers averaged over 3 runs. We remark that using delayed updates can
greatly hurt convergence, especially when no or too few warmup steps are performed. We also
remark that, while ACCO perfectly matches the DDP baseline at all times, ACCO-wp displays worse
behavior, especially at the beginning of the training.
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Figure 5: Loss for the pre-training task (left) and fine-tuning task (right) with larger models.

Passing the scaling test. We used the GPT-Neo architecture [5] with 125 million parameters and
compared ACCO and DDP with 32 workers on a pre-training task for 50B tokens on the Open-
WebText dataset [18]. We also fine-tuned on the Alpaca dataset [66] a GPT-Neo 2.7B model [5]
pre-trained on the Pile dataset [17]. For that, we used two configurations: 8 A100-80G on a single
node, and 8 A100-80G distributed equally across 2 nodes. We confirm in Fig. 5 that ACCO matches
the training dynamic of the baseline, but Tab. 2 displays a significant speedup for our method.

Table 2: Pre-training and finetuning time speedup with ACCO against DDP on various setups.

Stage Model GPUs #tokens DDP ACCO (∆T )

Pre-training GPT-Neo-125M
1x8 6B 4h41min 4h25min (−5.69%)
4x8 50B 14h41min 10h55min (−25.65%)

Finetuning GPT-Neo-2.7B
1x8 80M 43min 25min (−41.86%)
2x4 80M 3h46min 29min (−87.17%)

Conclusion

We propose ACCO, a novel algorithm that allows for parallel computation and communication of
gradients while partitioning the optimizer states. Our two-stage mechanism compensates for the
delayed update inherent to this parallel setting, ensuring consistent convergence dynamics with
the standard optimization algorithm for large-scale distributed LLM training. We empirically dis-
play the benefits of our methods over several pre-training and finetuning tasks, reporting drastically
reduced training times compared to our baseline, especially in multi-node settings or with hetero-
geneous devices.
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Appendix A. Related Work

Local optimization methods. Local optimization methods allow to perform several local model
updates between periodic averaging. With the SGD optimizer, these algorithms predate the deep
learning era [37, 86], and their convergence properties are still investigated nowadays [40, 63, 72,
83]. Due to their practical and efficient communication scheme, they have since been used for
the Distributed Training of Deep Neural Networks (DNNs) with methods such as EASGD [78],
SlowMo [71] or Post-local SGD [32, 47], and are ubiquitous in Federated Learning [27, 31, 38],
broadening the choice of optimizers beyond SGD [8, 23, 56]. By overlapping communications over
consecutive steps of local computations, they allow to hide communication bottlenecks, resulting
in algorithms such as Overlap local-SGD [70], COCO-SGD [59] or CO2 [65]. Moreover, with
heterogeneous hardware, they can adapt their local computation rate to their hardware capacity
[10, 36]. However this comes at the price of additional memory requirements: due to their local
nature, not only do these methods prevent the use of sharded optimizers such as ZeRO [52], but
they also introduce additional control variables [40, 65, 71], hindering their scalability as shown in
Tab. 1. Moreover, catering for heterogeneous hardware is not straightforward, as using different
numbers of local updates leads to models shifting at different speeds, requiring extra care to counter
this effect [36]. On the contrary, ACCO does not lead to such disparities: it just affects how the
required batch size is reached.

Overlap decentralized optimization. The communication complexity being a core concern in
decentralized optimization [19, 76], strategies have been devised to reduce communication over-
heads. For synchronous methods, works focus on designing algorithms with accelerated commu-
nication rates, leveraging Chebyshev polynomials [29, 58, 62]. For the asynchronous ones, they
rely on the properties of the graph resistance [13, 42, 43]. Alternatively, some approaches over-
lap gradient and communication steps, either explicitly [4], or by modeling them with independent
stochastic processes [42, 43]. However, none of these works focus on memory efficiency. Thus,
they introduce additional variables and do not consider sharding the optimizer states. Moreover,
they do not study optimizers other than SGD, and extending their beneficial properties to adaptive
methods commonly used for DNN training such as Adam is still an ongoing research topic [3].

Memory-efficient distributed training of LLMs. The activation memory overhead required for
training Transformers [68] can be mitigated for an extra computational cost by reconstructing the
input with reversible architectures [21, 35], or recomputing the activations via checkpointing [7].
Efficient LLM training also combines parallelism methods. Classical data parallelism (DP) [9] suf-
fers both from a high communication volume and a linear increase in memory due to the model
replicas. ZeRO-DP [53] and Fully-Sharded DP [81] avoid this issue by sharding the model states
(i.e., the optimizer states, gradients, and parameters) between workers. This comes at the cost of
further increasing the synchronization between workers and the communication volume, which can
be mitigated by compression [69], memory trade-offs [79], or delayed gradients [16]. The mem-
ory can be even more reduced using expensive CPU-GPU communications to unload states on the
CPU [54, 57]. On the other hand, model parallelism partitions the DNN components for paral-
lelization, either with tensor parallelism [60] by slicing a layer’s computation on several workers, or
with pipeline parallelism, which divides a model into sets of layers trained in parallel on mini-batch
slices. Popularized by [20], this method leaves some workers idling and an inefficient memory
overhead [14]. Allowing delay in the gradients avoids worker idleness [44, 84] but exacerbates
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the memory overhead, which can be partially mitigated with gradient accumulation [45, 85] and
activation checkpointing [24, 33]. Combining these frameworks results in the effective 3D paral-
lelism [61].

Delayed updates. Delays being intrinsic to distributed asynchronous optimization, there is a rich
literature studying them. In the case of distributed SGD in a parameter server setting, while early
analysis showed convergence rates depending on the maximal delay [1, 64], recent lines of work im-
proved these dependencies [15, 26, 73], proving that asynchronous SGD beats standard mini-batch
SGD even with unbounded delays [39]. However, they only study plain SGD, which is hardly used
for DNN training. In this context, some work focused on the interplay between SGD with momen-
tum and delays [41, 77], while delay compensation schemes such as re-scaling updates [74, 82] or
buffering them [46] were proposed for Federated Learning. But still, they only study versions of
SGD and not adaptive methods commonly used for LLMs trainingsuch as Adam [25] or AdamW
[34]. Closer to our work, DPU was introduced as a memory-efficient way to train LLMs by running
the optimizer on the CPU while gradients are computed on the GPU [57], inducing a one-step delay
between the gradients computed and the corresponding optimizer step. To mitigate it, they advise
starting training by warming up for several steps with a standard method with no delay. Perhaps
surprisingly, we find in our experiments that this one-step delay has a noticeable influence on the
convergence of LLMs training, even when using warmup steps. Contrary to DPU, we remove the
need for them, with no impact on the convergence of our training. Moreover, as it is not its purpose,
DPU still runs communications in the gradient computation stream, and is thus impacted both by
the communication overhead of scaling and hardware heterogeneity. Finally, in pipeline parallelism,
gradient delays also affect computation, and weight prediction methods have been proposed to mit-
igate the effect of staleness, by predicting the future weights using the optimizer’s momentum [6].
More elaborate predictions have been proposed for SGD to further reduce the impact of the delay
[28, 75].

Appendix B. Experimental Details and Further Results

B.1. Experimental setup
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Figure 6: Memory requirements of ACCO vs
DDP and ZeRO-1, see Tab.1 for quan-
titative details.

All of our experiments are performed on our
local cluster of NVIDIA A100-80GB GPUs
with 8 GPUs per node and an Omni-PAth in-
terconnection network at 100 Gb/s for inter-
node connections, intra-node connections being
done with NVLink 300 GB/s. Each distributed
worker is hosted on a single GPU. Our imple-
mentation is in Pytorch [49], and we verified
that our code for ACCO does indeed produces
two different CUDA streams running in paral-
lel for the computations and communications
using NVIDIA’s Nsight System to profile it, as
shown in Fig. 10. We trained all our models
with AdamW [34], using mixed precision: our

model parameters, gradient accumulation buffer, and communication buffers are in bfloat16
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[22] while our sharded optimizer states are in single precision, as shown in Fig. 6. We compared
our algorithm ACCO to several baselines in different settings, including Pytorch’s Distributed Data
Parallel (DDP) method [30] with ZeRO-1 [52].

B.2. Details on Fig. 1

In Fig. 1, we empirically motivate the need for methods mitigating communication overhead in
Distributed Data Parallel (DDP) [30]. Our goal is to illustrate that the time spent communicating
gradients can quickly trump the one used for computing them when using DDP to train LLMs. For
that, we measure the time necessary to perform a forward and backward pass on a Llama-2 model
[67] with 7B parameters hosted on a single GPU, using a batch size maxing out its memory. We
compare this to the time necessary to compute an All-Reduce on those gradients with the NCCL
backend, varying the number of distributed workers. We observe in Fig. 1 that when we communi-
cate outside of a GPU node in our cluster, the time needed to average the gradients across workers
can take more than four times the one spent on the whole forward and backward step. As DDP
only partially hides communications during the backward [30], this means that our GPUs remain
idle the majority of the time when we use more than 24 distributed workers, motivating the need for
methods leveraging this time to compute instead.

B.3. Pre-training on TinyStories

We experiment with small language models on the TinyStories dataset [12], using the configuration
available on the Huggingface Hub 1 and following the training hyper-parameters of their paper
[12] to the best of our abilities. Hence, we use a 36M parameters GPT-Neo based [5] decoder-only
transformer architecture. To match the 10k vocabulary they used, we trained our own BPE tokenizer
on the TinyStories dataset. For our experiments, we used up to 8 workers on a single node.

B.4. Pre-training on OpenWebText

Table 3: Perplexity of our trained LLMs
Method LAMBADA (ppl ↓) OpenWebText (ppl ↓)

ACCO 1x8 47.1 24.2
DDP 1x8 47.5 24.3

ACCO 4x8 45.5 22.5
DDP 4x8 44.1 21.7

To assess how ACCO scales with larger models
and more data, we pre-trained a model equiv-
alent to GPT-2 [51] with both ACCO and DDP.
Specifically, we used the GPT-Neo architecture
[5] with 125 million parameters and the Open-
WebText dataset [18], which contains 40 GB
of text. We used the GPT-Neo tokenizer, pre-
trained on the Pile dataset [17]. The models were trained on sequences of 1024 tokens, with docu-
ments concatenated using end-of-sequence tokens. The configuration used to instantiate the GPT-
Neo 125M is available on the Huggingface Hub2. We only changed the ”max position embeddings”
parameter from 2048 to 1024. We used the OpenWebText dataset available on Huggingface3. To
assess the impact of using different hardware, the experiment was repeated on 2 different clusters.
The first was conducted on 8 H100-PCIe 80GB on a single node, and report results in Fig. 7. The

1. Tiny Stories Available at: https://huggingface.co/datasets/roneneldan/TinyStories
2. GPT-neo 125M Configuration Available at: https://huggingface.co/EleutherAI/gpt-neo-125m/
blob/main/config.json

3. OpenWebText Dataset Available at: https://huggingface.co/datasets/Skylion007/
openwebtext
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second was on 32 A100-80G GPU distributed on 4 nodes. We maxed out the memory of our GPUs
with a local mini-batch size of 24. To reach a sufficiently large overall batch size, we used 1 step
of gradient accumulation for DDP, and none for ACCO as our method naturally accumulates over
1 step, resulting for the first and second experiments in respectively 400K and 1.5M tokens per
effective batch for both ACCO and DDP. In Tab. 2, we report additional experimental details, and
notice that training with ACCO allows for significant time gains, which is additionally illustrated in
Fig. 5. Moreover, to prevent GPUs from idling while waiting for communications, ACCO adaptively
scheduled 315 supplementary accumulation steps over the whole training.
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Figure 7: Training curves for ACCO and DDP on OpenWebText.

Tab. 3 reports the perplexity of trained language models with both methods, which is a com-
monly used metric to evaluate pre-trained language models, as it quantifies the uncertainty of a
model at predicting the next token. We evaluate the perplexity of language models on LAMBADA
[48] and a test split of OpenWebText, and report similar results for both methods.

Table 4: Training hyperparameters for ACCO and DDP configurations.
Hyperparameter 8 H100 32 A100
mini-batch size 24 24
n grad accumulation ACCO: -DDP: 1 ACCO: -DDP: 1
sequence len 1024 1024
#tokens batch 400K 1.5M
optimizer AdamW AdamW
learning rate 6e-4 6e-4
weight decay 0.1 0.1
adam beta1 0.9 0.9
adam beta2 0.95 0.95
nb steps tot 50000 50000
scheduler cosine cosine
n warmup steps 0 0

19



ACCO: ACCUMULATE WHILE YOU COMMUNICATE

B.5. Instruction Fine-Tuning

In previous sections, we compared ACCO against DDP in the pre-training stage. To further validate
our algorithm, we additionally fine-tuned a pre-trained model on supervised instruction data. We
consider the GPT-Neo 2.7B model [5] pre-trained on the Pile dataset [17] and finetuned it on the
Alpaca dataset [66] containing 52k pairs of instruction/answer. We used the pre-trained GPT-neo
2.7B available on the Huggingface Hub4 and the associated tokenizer. We used the Alpaca dataset
available on Huggingface5. We fine-tuned the model using two configurations: 8 A100-80G on a
single node, and 8 A100-80G distributed equally across 2 nodes. Samples are padded to match the
longest sequence in the mini-batch. We fixed the mini-batch size at 4, leading to a total batch size of
128 for all methods. For DDP and DPU, we used a gradient accumulation of 4, while for ACCO , a
gradient accumulation of 2 to account for the ACCO accumulation described in Sec. 2. The learning
rate was set to 2× 10−5 for all methods with a warmup of 50 steps, for DPU.
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Figure 8: Validation curve with 8 workers on 1 node (left), and 4 workers/node on 2 nodes (right).
In this setting, padding to the longest sequence in the mini-batch induces more variability in the

number of tokens per mini-batch. This results in more variability in the computational load for each
worker, leading to increased wait times for synchronization. We observe in Fig. 8 that ACCO hits a
lower validation loss faster than DDP on both 1 node and 2 nodes settings. Note that the difference
between ACCO and DDP is accentuated when workers are distributed on multiple nodes. In 5, we
observe that ACCO is less data efficient at the beginning of training, as evidenced by a higher loss
compared to DDP for the same number of seen tokens. This is likely due to the fact that ACCO favors
using tokens to increase the batch size to hide communication delays, meaning that fewer optimizer
steps are performed per token compared to DDP. However, both algorithms converge to very similar
loss values by the end of the training.

Appendix C. Experiment Using Heterogeneous Devices

To witness the impact of using heterogeneous devices, we run our algorithm ACCO and compared
it to the DDP baseline in a four workers setting, with one of the GPU four times slower than the
other three, as shown in Fig. 9. As we experiment on a cluster of A100 GPUs, we simulated the
heterogeneity of the hardware by using the time.sleep() python command. First, we measured
the time that a standard forward-backward step takes in our homogeneous cluster, and put to sleep

4. GPT-neo 2.7B Available at: https://huggingface.co/EleutherAI/gpt-neo-2.7B
5. Alpaca Dataset Available at: https://huggingface.co/datasets/tatsu-lab/alpaca
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Table 5: Finetuning hyperparameters for ACCO, DDP and DPU configurations.
Hyperparameter ACCO DDP DPU
mini-batch size 4 4 4
n grad accumulation 2 4 4
total batch size 128 128 128
optimizer AdamW AdamW AdamW
learning rate 2e-5 2e-5 2e-5
weight decay 0.0 0.0 0.0
adam beta1 0.9 0.9 0.9
adam beta2 0.95 0.95 0.95
nb steps tot 50000 50000 50000
scheduler cosine cosine cosine
n warmup steps 0 0 50

one of the four GPUs for three times this amount after each forward-backward pass. In this context,
DDP is only as fast as the slowest worker, meaning that 3 of the 4 workers are idle a third of the
time. With our method, the other workers accumulate during the time they are waiting for the slow
one to finish. This means that ACCO allows to compute gradients for large batch sizes faster than
standard baselines, resulting in faster convergence in terms of wall-clock time, as displayed in Fig.
9.
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Figure 9: Training curves with 3 normal workers and 1 slow worker (4× slower).

Appendix D. Limitations

Experiments mainly on one cluster environment. Due to the lack of variety in the compute
environments we have access to, the majority of our experiments were performed on a single cluster,
described in Appendix B. This is a communication-constrained setting, as our hardware is not the
most cutting-edge in that regard as discussed in Appendix B. This particularly flatters our method in
comparison to DDP, as it accentuates the impact of the communication overhead in the wall clock
time. However, to mitigate this one-sidedness, we also run a small pre-training study on one of the
fastest hardware available today, and report in Tab. 2 that even in that case, ACCO leads to a 5%
time gain.
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Communication cost only hidden, not reduced. While local optimization methods tackle the
communication overhead problem with scarce communications, here we only hide them. Thus, our
method does not lead to energy savings, nor question the cost of highly synchronized infrastructure.
However, ACCO naturally maximizes the hardware throughput, allowing to reduce their use time.

Further memory savings avenue not explored. Due to the parallel nature of ACCO, removing the
reliance on communication and gradient buffers seems hardly possible, questioning the feasibility of
further memory savings if all executions are kept on the GPU. But, akin to ZeRO-Offload [57], the
communication and optimizer stream could entirely be run on CPU, which would allow significant
memory gains. We did not experiment with this idea, and let this consideration for future work.

Appendix E. Implementation Details

E.1. Profiling Results

E.2. Algorithm presentation
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Figure 10: Nsight system profile of our implementation of ACCO: our two steams do run in parallel.
In this Figure, the computation take more time than the communication because we only
profiled small scale experiments with 8 workers, and small number of parameters (36M
as we profiled on our TinyStories [12] setting). This changes when using larger models
and more workers, as seen in Fig.1.
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Algorithm 1 Training with ACCO in parallel for a worker i

1: Input: Model with differentiable loss F , number of models N , initial parameters θ(0), training
steps T , dataset shards Di.

2: Initialize: gradients gi(−1) = ∇F (θ(0), ξ
(0)
i ) and number of gradients N (−1)

i = 1
3: # Computation CUDA stream
4: while t < T do
5: Stage 1.
6: while not Ready for Stage 2 do
7: ξ

(t)
i ← Di

8: g
(t)
i ← g

(t)
i +∇F (θ(t), ξ

(t)
i )

9: N
(t)
i ← N

(t)
i + 1

10: θ̃(t+1) ← Bufferi
11: Bufferi ← (N

(t)
i , g

(t)
i )

12: Stage 2.
13: while not Ready for Stage 1 do
14: ξ

(t)
i ← Di

15: g̃
(t)
i ← g̃

(t)
i +∇F (θ̃(t+1), ξ

(t)
i )

16: Ñ
(t)
i ← Ñ

(t)
i + 1

17: t← t+ 1
18: θ(t+1) ← Bufferi
19: Bufferi ← (Ñ

(t)
i , g̃

(t)
i )

20:

21: # Communication CUDA stream
22: while True do
23: Stage 1.
24: (Ñ

(t)
i , g̃

(t)
i )← Bufferi

25:
∑

i Ñ
(t)
i ← All Reduce(Ñ

(t)
i )

26: Shardi
(∑

i g
(t)
i

)
← Reduce Scatter(g̃

(t)
i )

27: Shardi
(
θ̃(t+1)

)
← ShardedOpt

(
Shardi

(
θ(t)
)
,Shardi

( ∑
i g̃

(t)
i∑

i Ñi
(t)

))
28: Bufferi ← All Gather(Shardi

(
θ̃(t+1)

)
)

29: N
(t)
i ← 0

30: Ready for Stage 2← True
31: Ready for Stage 1← False
32: Stage 2.
33: (N

(t)
i , g

(t)
i )← Bufferi

34:
∑

iN
(t)
i + Ñ

(t)
i ← All Reduce(N

(t)
i +

∑
i Ñ

(t)
i )

35: Shardi
(∑

i g
(t)
i + g̃

(t)
i

)
← Reduce Scatter(g

(t)
i +

∑
i g̃

(t)
i )

36: Shardi
(
θ(t+1)

)
← ShardedOpt

(
Shardi

(
θ(t)
)
,Shardi

( ∑
i g

(t)
i +g̃

(t)
i∑

i N
(t)
i +Ñi

(t)

))
37: Bufferi ← All Gather(Shardi

(
θ(t+1)

)
)

38: Ñ
(t)
i ← 0

39: Ready for Stage 1← True
40: Ready for Stage 2← False 24
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