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Figure 1: We propose SAVOR, a method that combines tool affordances and food affordances to
select the appropriate manipulation skill for robust bite acquisition.

Abstract: Robot-assisted feeding requires reliable bite acquisition, a challeng-
ing task due to the complex interactions between utensils and food with diverse
physical properties. These interactions are further complicated by the temporal
variability of food properties—for example, steak becomes firm as it cools even
during a meal. To address this, we propose SAVOR, a novel approach for learn-
ing skill affordances for bite acquisition—how suitable a manipulation skill (e.g.,
skewering, scooping) is for a given utensil-food interaction. In our formulation,
skill affordances arise from the combination of tool affordances (what a uten-
sil can do) and food affordances (what the food allows). Tool affordances are
learned offline through calibration, where different utensils interact with a vari-
ety of foods to model their functional capabilities. Food affordances are charac-
terized by physical properties such as softness, moisture, and viscosity, initially
inferred through commonsense reasoning using a visually-conditioned language
model and then dynamically refined through online visuo-haptic perception using
SAVOR-Net during interaction. Our method integrates these offline and online
estimates to predict skill affordances in real time, enabling the robot to select the
most appropriate skill for each food item. Evaluated on 20 single food items and
10 in-the-wild meals, our approach improves bite acquisition success rate by 13%
over state-of-the-art (SOTA) category-based methods (e.g. use skewer for fruits).
These results highlight the importance of modeling interaction-driven skill affor-
dances for generalizable and effective robot-assisted bite acquisition. Website:
https://emprise.cs.cornell.edu/savor
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1 Introduction

Eating is a fundamental human activity, yet millions struggle to feed themselves due to mobility lim-
itations [1]. A robot-assisted feeding system has the potential to help them regain independence and
dignity while ensuring their needs are met reliably [2]. Bite acquisition, the process of picking up a
food item from a plate or bowl, is a critical step in robot-assisted feeding, but it is highly challenging:
(i) Food items exhibit diverse and temporally variable physical properties (e.g., rice becomes firm
when it cools down, and tofu is fragile and can break without careful manipulation). (ii) Physical
interaction with food items varies significantly for different utensils. To address these challenges, a
robot must reason about three types of affordances. First, food affordances describe what the food
allows, such as whether the food can be skewered or scooped. Second, tool affordances character-
ize what a utensil can do, given its functionality. Skill affordances arise from reasoning jointly over
food and tool affordances and capture whether a manipulation skill is appropriate, given the food’s
physical properties and the tool’s capabilities.

To this end, our key insight is that a better understanding of skill affordances—achieved by combin-
ing calibrated tool affordances and commonsense food affordances that are updated using online
information gathering—enhances bite acquisition across diverse food items. Take humans as an
example. We begin with an understanding of tool affordance, e.g., knowing that a plastic fork may
not penetrate firm foods. Upon seeing a food item, we form initial beliefs about its food affordances
from visual cues, such as assuming a piece of steak is moderately soft and suitable for skewering.
However, these assumptions are not always accurate. During interaction, visual and haptic feedback
can reveal unexpected firmness (e.g., a well-done steak), prompting an adjustment of the chosen
skill. This process highlights the importance of (i) understanding tool capabilities, (ii) estimating
food properties visually, and (iii) refining estimates through visuo-haptic feedback for skill selection.

Building on these insights, we propose SAVOR, an approach for learning skill affordances from tool
affordances and food affordances for bite acquisition (Figure 2). The system operates in two stages:
(i) Prior to deployment, we learn tool affordances through offline calibration, where different uten-
sils interact with various foods to evaluate manipulation skills to model tool capabilities. (ii) During
deployment, we estimate food affordances by inferring food physical properties, including softness,
moisture, and viscosity. We initially estimate food properties through commonsense reasoning us-
ing a visually-conditioned language model, and dynamically refine them through online visuo-haptic
perception with our developed SAVOR-Net during the interaction. Together, combining offline tool
affordances and online food affordances guides robust skill selection for bite acquisition.

Overall, our contributions are: (i) an algorithm that learns food affordances based on physical
properties, initially informed by commonsense priors and dynamically refined through online visuo-
haptic perception; (ii) a method that characterizes the affordances of manipulation skills across
diverse food items and tools and uses the learned model for adaptive skill selection; (iii) a compre-
hensive evaluation on 20 single food items and 10 in-the-wild dishes, showing improved bite ac-
quisition success over state-of-the-art approaches; and (iv) a dataset of bite acquisition trials, which
is the first to involve varied manipulation skills applied to diverse foods, and provides synchronized
visual and haptic signals throughout the trajectory.

2 Related Work

Food Manipulation for Robot-Assisted Feeding. Feeding [3–7] is an important activity of daily
living (ADL). One crucial step in feeding is bite acquisition, which involves executing various skills,
such as skewering [8–12], twirling [13], and scooping [14, 15]. To compose these skills, VA-
PORS [13] focuses on noodle dishes and employs physics-based simulations for decision-making
between twirling and grouping noodles. The closest relevant work, FLAIR [3], proposes to select
skills by food categories inferred from only visual observations. Such a category-based approach
overlooks the intricate physical properties of food, often resulting in failures with items of varying
softness. To address this, SAVOR selects manipulation skills based on estimated food affordances
to enable more adaptive bite acquisition across diverse food items.
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Figure 2: SAVOR Framework. Before deployment, we perform an offline tool calibration to un-
derstand tool affordances. During deployment, we first use a visually-conditioned language model
to estimate food physical properties and then refine it through online visuo-haptic perception.

Integrating Vision and Haptics in Robotics. Vision-only manipulation has demonstrated effective-
ness in robotic domains such as semantic grasping and deformable object manipulation [9, 16–19].
However, contact-rich tasks, such as in-hand manipulation [20, 21] and object packing [22], benefit
significantly from the integration of vision and haptic information. Previous studies [5, 10, 23–31]
have highlighted the importance of haptic feedback in food manipulation. More recently, Sundaresan
et al. [8] and Gordon et al. [10] combine a single image with time-series haptics to learn skewering
skills, but rely either on haptics alone or static visual input. In contrast, SAVOR focuses on learning
food physical properties from time-series observations of both vision and haptics, allowing us to
capture dynamic changes, such as deformation and surface texture variations, which enables a more
comprehensive understanding of the food physical properties and their temporal variations.

Foundation Models in Robot Manipulation. Foundation models [32] are widely used for
language-conditioned planning in robotics by prompting them with task context, available skills,
and agent state information [33–44]. Similarly, SAVOR leverages a visually-conditioned language
model to form initial beliefs about food physical properties from an image. These estimates are then
dynamically refined through visuo-haptic perception during interaction.

3 Problem Formulation
We consider the problem of bite acquisition, where a robot equipped with a utensil needs to acquire
food items from a plate in a specified sequence. The user specifies the desired food sequence (e.g.,
via natural language [3]), and the robot executes one or more actions per item to acquire it. Upon
a successful attempt, the item is removed from the tool, and the robot proceeds to the next. The
objective is to maximize the number of food items acquired within a limited number of attempts.

We formulate this as a Partially Observable Markov Decision Process (POMDP) [45], defined by
the tuple (S,A,O0,O, T ,Z, R, L). The state s ∈ S comprises the robot end-effector pose, the
target food item, and the positions and physical properties of all food items on the plate. Actions
a ∈ A are discrete skills selected from a predefined library: {push, cut, skewer, dip, scoop,
twirl} [3]. The initial observation o0 ∈ O0 consists of a single RGB-D image I0 ∈ RW×H×4

from a wrist-mounted camera. Subsequent observations o ∈ O include a time series of RGB-D
images I ∈ RT×W×H×4, force-torque readings F ∈ RT×6, and end-effector poses P ∈ RT×6.
The length of the time series T varies depending on the execution of the skill. The target food item
and its position are assumed to be observable. The transition model T and observation model Z are
unknown. The reward function R : S → R returns 1 for successful acquisition of the target item,
and 0 otherwise. The time horizon L ∈ Z is finite.

Importantly, the physical properties of food are not directly observed, but we hypothesize that the
visuo-haptic observations I and F can be used to infer these properties towards completing an esti-
mate of the partially-observable state s. We consider five physical properties: shape, size, softness,
moisture, and viscosity. We assume that shape and size can be estimated from vision alone, while
softness, moisture, and viscosity require integrating vision and haptic feedback. Shape and size are
represented as categorical descriptors in natural language (e.g., “bite-sized,” “round”), and the re-
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Figure 3: (a) Skill library for bite acquisition. (b) SAVOR-Net model architecture.

maining properties are scalar values from 1 to 5, similar to a 5-point Likert scale. For example, a
softness score of 1 indicates very hard, while a score of 5 indicates very soft. We hypothesize that
the visuo-haptic observations (I, F ) provide sufficient information to infer these physical proper-
ties. The robot should use its estimates of these latent physical properties to guide skill selection and
maximize bite acquisition success.

4 SAVOR
Robust bite acquisition requires reasoning over both food affordances and tool affordances. To esti-
mate tool affordances, we begin with an offline calibration phase, where the robot executes various
skills on diverse food items (Section 4.1). The resulting calibration dataset serves as an implicit
representation of the tool’s affordances. In parallel, we offline train SAVOR-Net, a neural network
that predicts physical food properties from raw visuo-haptic observations (Section 4.2). At test
time, given a new plate of food, we first initialize food physical property estimates using a visually-
conditioned language model (VLM), and refine them online with SAVOR-Net (Section 4.3). For
action selection, we prompt a VLM-based planner with the estimated food properties and the tool
calibration dataset to generate a skill sequence (Section 4.4). We detail each component below.

4.1 Pre-Deployment: Offline Tool Calibration
The goal of tool calibration is to provide the robot with contextual knowledge of the utensil’s af-
fordances. We capture tool affordances implicitly by collecting a small offline calibration dataset
consisting of randomly sampled skill executions on diverse food items, annotated by humans with
utensil type, food type, physical properties, and execution outcomes. For example:

The robot arm interacts with various food items using a plastic fork. We summarize
the history as follows:
Food Item: Nuts, Shape: Oval, Size: Bite-sized, Softness: 1, Moisture: 1, Viscosity: 1
Skill with Success Rate: Skewer 0/5, Scoop 3/5, Cut 0/5, Push 5/5, Dip 5/5

This calibration dataset serves as an implicit representation of tool affordances, particularly the
success rates of various skills with a specific tool, expressed in natural language and later used as
input for VLM-based planning (Section 4.4).

4.2 Pre-Deployment: Offline Training SAVOR-Net
While still offline, we next train SAVOR-Net, a neural network that predicts physical food properties
(i.e., softness, moisture, and viscosity) from visuo-haptic observations. We discretize food property
values into C = 5 levels (e.g., Viscosity ∈ {1, 2, . . . , 5}). The input to SAVOR-Net at time t
includes all three time-series observations (It, Ft, Pt) and the output is ψt ∈ R3×C , a vector of log
probabilities for each of the 3 predicted food properties: softness, moisture, and viscosity. We select
these three properties based on prior work [4, 46] and insights obtained by querying a VLM about
which food physical properties are relevant for the bite acquisition task. SAVOR-Net uses separate
encoders for each of the time series and further splits the RGB-D inputs into RGB and depth for
separate encoding. Each encoder outputs a vector in R128. The four vectors are concatenated into
a unified multimodal representation and then passed to an LSTM with 2 layers and a hidden size of
512. A three-layer MLP takes output from the LSTM and produces the final output ψt. We present
the structure of the model in Figure 3.

We pretrain SAVOR-Net on an existing dataset [47], which contains 400 examples of human skew-
ering various food items, and then fine-tune it on our own dataset, consisting of 300 examples of a
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robot performing skewering, pushing, twirling, cutting, dipping, and scooping across 20 food items.
More details about the model and the training process are available in Appendix B.3.

4.3 During Deployment: State Estimation

Given a tool calibration dataset and a trained SAVOR-Net, the robot is ready to acquire bites from
novel dishes and food items (Figure 2). At the first time step, it initializes a state estimate using only
visual observations. As the robot attempts to acquire a target item (e.g., cutting then skewering
a banana), it collects visuo-haptic data for SAVOR-Net to refine the estimate, which is especially
important when the attempt fails. Once the item is acquired, a new target is specified. Although the
robot initially lacks physical knowledge of the new item, it can leverage prior interaction history for
improved estimation (e.g., banana slices on the same plate likely share physical properties). We now
describe the state estimation process in more detail.

Initializing State Estimates. Given an initial RGB-D observation I0, we prompt a VLM (GPT-
4V [48]) to extract semantic labels of food items (e.g., [‘potato’, ’chicken’]). We then use
GroundingDINO [49] to obtain segmentation masks for them. Finally, we prompt VLM again with
the masks and in-context examples (Appendix B.4) to estimate physical properties for each item.
These estimates are used by a VLM planner to select an appropriate skill (Section 4.4).

Refining State Estimates with SAVOR-Net. If the skill (Section 4.4) selected based on the initial
estimate of food physical properties fails, we use SAVOR-Net to refine the state estimate for the
target food item for each timestep t > 0. The time series (It, Ft, Pt) in ot are input to SAVOR-Net,
which produces log probability outputs ψt. For each predicted property, if its log probability is less
than a threshold θth, the prediction is ignored. Otherwise, the estimate is updated. This process
yields a refined ŝt, where only the target item’s properties are potentially modified from ŝt−1.

Generating State Estimates for New Targets. When the target item changes at timestep t > 0
and no interaction data is available, we initialize the estimate using prior outcomes on similar items.
We run the same detection and segmentation pipeline, then prompt a VLM (Appendix B.4) with: (i)
segmented images, (ii) past attempt summaries, (iii) the previous estimate ŝt−1, and (iv) in-context
examples. The VLM predicts ŝt by matching the new item’s visual features to similar examples.
This estimate is later refined through interaction, using SAVOR-Net as mentioned above.

4.4 During Deployment: Planning

Given the tool calibration dataset and the estimated food state ŝt, we query a VLM (GPT-4V [48])
to select a skill from the skill library. Our prompt for the VLM includes (i) the calibration dataset;
(ii) a brief description of each skill; (iii) a natural-language history of acquisition attempts; (iv) the
segmented food item image; and (v) the estimated physical properties of the target food item. Below,
we present an example prompt. The full prompting strategy is detailed in Appendix B.4.

[Calibration Summary] [Skill descriptions] [History of acquisition attempts]
This is a food item: Mashed Potatoes. <Image>
The robot uses a plastic fork to try picking up the food.
The food physical properties, which range from 1 to 5, are as follows:
Shape: Circular, Size: bite-sized, Softness: 4, Moisture: 3, Viscosity: 3
Please select an action from ['skewer, 'scoop', 'twirl', 'dip'] to pick up the food item or
select one action from ['cut', 'push'] to manipulate items to facilitate subsequent
acquisition. Always follow the format: Reasoning: <your reason>. Answer: <your answer>.

For the low-level skills, we use the skill library from FLAIR [3], which includes four acquisition
skills (skewer, twirl, scoop, dip) and two pre-acquisition skills (cut, push), illustrated in Figure 3.
Given these low-level skills, SAVOR enables effective skill selection for each food item, despite
variations in physical properties and the partial observability present during deployment.
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Figure 4: Experimental setup: 10 in-the-wild dishes. ∗ denotes food items unseen during training.
Table 1: Quantitative results on bite acquisition. We evaluate our approach on 10 different dishes
(Figure 4) and report both Attempt Efficiency (AE) and Success Rate (SR), averaged across plates.

Plate #Items Acquired / #Total Attempts
SAVOR Haptic-only Vision-only FLAIR VLM SayCan End2End

1 10/15 9/17 6/26 9/18 9/19 9/22 9/15
2 7/13 4/17 4/18 3/15 4/17 5/13 4/13
3 7/11 7/11 6/14 5/11 7/11 5/15 6/11
4 6/12 6/13 6/13 5/15 5/14 7/10 6/12
5 6/13 6/15 5/21 5/14 7/12 5/14 5/17
6 10/18 8/20 7/29 8/23 8/23 8/23 8/16
7 5/17 6/17 4/19 5/17 6/14 4/15 6/12
8 5/9 4/12 4/16 4/12 5/10 5/12 6/9
9 7/10 6/12 5/17 7/11 7/10 5/18 4/17
10 6/16 5/18 5/19 7/16 6/16 5/18 5/16

Average AE (%) 51.5 ± 12.7 40.1 ± 12.2 27.1 ± 8.8 38.2 ± 12.2 43.8 ± 14.3 36.2 ± 12.6 42.7 ± 14.7
SR3 (%) 87.3 ± 10.0 77.2 ± 13.0 65.8 ± 11.2 73.4 ± 15.2 81.0 ± 13.1 73.4 ± 12.4 81.8 ± 14.7

5 Experiments

In this section, we aim to answer the following questions: Q1. Does tool calibration contribute to
effective skill selection? Q2. How does visuo-haptic feedback help estimate the physical properties
of food items? Q3. How effective is our overall approach compared to prior methods? Q4. How
well does SAVOR generalize to unseen food items?

5.1 Setup

Evaluation Scenarios. We evaluate our approach on a diverse set of food items, including 20
individual food items and 10 in-the-wild dishes (Figure 4). The dishes comprise three categories: (i)
fruits and appetizers, (ii) grocery store and restaurant meals, and (iii) homemade dishes.

Baselines. We evaluate three ablations of our approach and compare against four existing methods.
The ablations are: (i) SAVOR w/o calibration: In this ablation, we do not provide calibration in-
formation to the VLM planner. (ii) Vision-only SAVOR and (iii) Haptic-only SAVOR: These two
ablations differ from ours in that it has no haptic/visual perception respectively. We also compare
against the following baselines: (i) FLAIR [3]: This state-of-the-art approach selects bite acquisi-
tion action based on food category. (ii) VLM w/o history: This method queries a VLM to predict
the physical properties of the food from a single post-contact RGB image and subsequently selects
a skill based on the estimated properties. (iii) SayCan [40]: This approach relies on a pre-contact
image to estimate instruction relevance and success likelihood using a value function, which we
train on the same SAVOR dataset. (iv) End2End: This method takes the same input as SAVOR-Net
but directly predicts bite acquisition actions for execution. More details in Appendix B.1.

Evaluation Metrics. We evaluate each method using Success Rate. A trial is considered successful
if the utensil picks up the food item and retains it for at least 5 seconds. Failed attempts leave the item
on the plate, allowing up to three re-attempts before it is manually removed and recorded as a fail-
ure. To capture the efficiency of acquisition, we define Average Attempt Efficiency (average AE) =
#Items Acquired
#Total Attempts to quantify the proportion of successful acquisitions relative to total attempts across all
plates. To further quantify overall performance, we define SR1 as the proportion of items acquired
within the first attempt in a meal, i.e., SR1 = #Items Acquired

#Total Items within one attempt. Similarly, SR2 and
SR3 represent the proportion of items acquired within two and three attempts, respectively.

Hardware. SAVOR is implemented on a Kinova Gen3 robot arm equipped with a motorized feeding
utensil at the end-effector [3] (Figure 5a). The utensil includes a metal/plastic fork attachment with
two degrees of freedom, fork orientation and tilt angle. We use an Intel RealSense D435 camera
mounted on the arm wrist for visual perception and a Nano25 F/T sensor for haptic perception.
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Figure 5: (a) System setup. (b) SR3 using a plastic/metal fork for 10 in-the-wild dishes. (c)
SR{1,2,3} for 10 dishes. ∗ indicates statistically significant differences (p < 0.05).
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Figure 6: Qualitative results on bite acquisition. The robot first attempts to skewer the food
based on its initial property estimate but fails (step 2). Vision and haptic data from this attempt
are processed by SAVOR-Net, refining the estimate with high confidence. A VLM planner then
selects the scoop skill based on this update (step 3). After executing the scoop (step 4), SAVOR-
Net outputs a low-confidence estimate, so the properties are not updated in step 5, and the system
proceeds directly to skill selection and execution (steps 6–8).

5.2 Results and Analysis

Evaluating the Contribution of Tool Calibration. We evaluate the effectiveness of offline tool
calibration using two utensils: a plastic fork and a metal fork. As shown in Figure 5b and Figure 5c,
tool calibration significantly improves success rates (p < 0.05), leading to an 18% increase in SR2
and a 13% increase in SR3. Without tool calibration, the system selects inappropriate skills, such
as skewering a firm steak with a plastic fork. Similarly, without calibration with a metal fork, the
system tries to skewer soft, high-moisture foods such as tofu instead of scooping them. Without
calibration, SAVOR overuses skewering regardless of the context, leading to frequent failures. Tool
calibration helps the system align skill selection with the physical interaction between the utensil
and the food, resulting in more reliable bite acquisition.

Evaluating the Contribution of Visuo-Haptic Perception. We next evaluate how perception
modalities affect performance by comparing SAVOR with its vision-only and haptics-only variants
(Table 1). SAVOR achieves the highest success rate, confirming that combining vision and haptics
improves food property estimation and significantly improves performance from SR1 to SR2 in Fig-
ure 5c (p < 0.05). The vision-only variant performs the worst (27.1% average AE), struggling with
fine-grained utensil–food interactions and often misassigning visually similar items with inaccurate
physical properties. For example, strawberries, watermelon, and carrots on Plate 1 appear similar in
color, but differ significantly in physical properties. The model frequently overestimates softness for
firm items like carrots, leading to repeated skill selection failures. The haptics-only variant performs
better (40.1% average AE) but still falls short of SAVOR. The haptics-only variant often fails when
food items share similar force signatures, such as tofu and nuts. In these cases, small changes in
end-effector pose lead to rapid force increases—either due to skewering through soft items and con-
tacting the plate, or due to deformation of the utensil against firm items. Without visual input, these
ambiguities lead to misinterpretation of food properties. By integrating vision and haptics, SAVOR
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Figure 7: Generalization performance on seen and unseen food items. We compare SAVOR and
SOTA FLAIR across 20 food items. We show SR3 on 10 episodes per food item, where each episode
allows up to 3 attempts. Asterisks (∗) indicate statistically significant differences (p < 0.05).
resolves ambiguities, achieving a 51.5% average AE and 87.3% SR3. Figure 5c demonstrates that
SAVOR effectively learns from interaction during the initial attempt and adapts its skill selection
dynamically, resulting in the greatest improvement in subsequent attempts. These results highlight
the critical role of time-series visuo-haptic perception in estimating food affordances.

Evaluating the Overall Framework. To evaluate our full framework, we compare SAVOR with
the SOTA method (FLAIR), a vision-only variant using a VLM, SayCan and the end2end method.
SAVOR achieves the highest average AE (51.5%) and 87.3% SR3 across 10 diverse plates (Table 1).

FLAIR selects skills based on predefined food categories, achieving 38.2% average AE and 73.4%
SR3. It performs well on stereotypical items (e.g., banana), but fails on atypical foods such as raw
avocado, where category-based reasoning leads to inappropriate actions (e.g., skewering instead of
scooping). VLM improves upon FLAIR, achieving 43.8% average AE and 81.0% SR3 by inferring
food properties from visual input. However, it struggles with visually ambiguous or dynamically
changing items, such as misclassifying avocado or failing to detect firmness changes in cooling
chicken nuggets. Similarly, SayCan achieves only 36.2% average AE and 73.4% SR3, often os-
cillating between skewer and scoop skills. Without compact physical property representations, the
end-to-end policy generalizes poorly, reaching 42.7% average AE and 81.8% SR3.

While all baselines show improvements from SR1 to SR3 in Figure 5c, these gains largely result
from occasional success through repeated trials rather than informed adaptation. Among all meth-
ods, only SAVOR and its variant without calibration achieve significant improvement from SR1 to
SR2 (p < 0.05). As seen in Figure 5c, SAVOR acquires 53.2% food items with its initial attempt
(SR1). By inferring food properties during the initial attempt, the system adapts its skill selection
and successfully picks up 77.2% of the food items with two attempts (SR2), further achieving 87.3%
SR3. It dynamically adjusts skills (e.g., switching from skewering to scooping as nuggets firm up;
Figure 6) and generalizes across similar items on the same plate. These results demonstrate the
effectiveness of SAVOR for adaptive bite acquisition.

Evaluating Generalization to Unseen Food Items. We evaluate SAVOR on 20 single food items,
including 10 that are unseen during training. As shown in Figure 7, SAVOR achieves higher SR3
(p < 0.05) than the SOTA baseline FLAIR in 70% of food items, including raw avocado, cookie,
and chicken. These results highlight the advantage of explicitly estimating physical properties over
relying on fixed food categories. SAVOR achieves the highest overall SR3 and maintains comparable
performance on both seen and unseen items, demonstrating strong generalization.

Discussion. Our work highlights the importance of grounding skill affordance learning in physical
interaction by combining tool and food affordances for effective bite acquisition. This integra-
tion allows the system to move beyond state-of-the-art category-based methods and instead make
context-sensitive decisions based on how food interacts with a given tool. A key insight from our
study is that affordances are not static properties, but rather emerge dynamically through interac-
tion—reflecting how the tool and food jointly shape which skills are applicable. Moreover, we find
that visuo-haptic sensing plays a critical role in understanding temporal variations of food physi-
cal properties and resolving ambiguity, particularly in cases where visual or haptic cues alone may
be misleading. These findings underscore the importance of selecting manipulation skills that are
physically grounded in food–utensil interaction for effective bite acquisition.
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Limitations

Our approach effectively leverages visuo-haptic sensing to estimate food physical properties and
tool calibration to assess tool capabilities for adaptive bite acquisition. SAVOR currently treats each
food item as a whole when estimating its properties. However, a single food item may contain
regions with differing physical properties. For instance, foods like broccoli or cauliflower can vary
in softness across different parts due to their fibrous stems. While treating each food item as a
whole has proven effective, incorporating a more fine-grained food representation could further
improve bite acquisition success. Second, while our system already performs well with open-loop
skill execution, it could further benefit from a closed-loop low-level policy to enhance real-time
adaptability. Finally, slippage during manipulation can introduce noise in haptic signals, leading to
inaccurate physical property estimates, which could be mitigated by detecting contact onset, loss, or
lateral motion. These directions present promising avenues for future work.
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Appendix

A Additional Results

A.1 Timing and Latency Analysis

We present a timing analysis in Table 2, highlighting the processes involving VLM queries. The
query for initial state estimation takes about 3.7 seconds to predict the food item’s physical properties
from an image. This step occurs only once per item. In subsequent attempts, SAVOR-Net updates
the physical properties in 0.2 seconds. As shown in Table 2, the major source of latency stems
from querying the VLM, and we envision that ongoing work on efficient VLMs holds promise for
reducing query timing.

Table 2: Timing of each component in SAVOR. ∗ indicates processes that include VLM queries.
Perception State Estimation Planning Control

Object Detection∗ Initial Attempt∗ Subsequent Attempt Skill Selection∗ Skill Execution
Time (s) 2.59 ± 0.32 3.69 ± 0.82 0.21 ± 0.01 3.58 ± 0.74 8.54 ± 1.21

A.2 Ablation Study on Tool Calibration

We provide detailed results of the ablation study on the calibration process for the 10 in-the-wild
dishes (Table 3). Compared to the uncalibrated baseline, tool calibration significantly improves
performance for both the plastic and metal forks. Specifically, with calibration, the plastic fork (PF)
achieves a 51.5% average attempt efficiency and 87.3% SR3, compared to only 38.7% and 75.9%
without calibration (PF-wo). Similarly, the metal fork (MF) benefits from calibration, improving
from 83.5% SR3 to 93.7%. These results demonstrate that understanding tool capabilities through
calibration helps the planner avoid infeasible actions, such as skewering tofu with a metal fork
(Plate 8) or skewering firm steak with a plastic fork (Plate 10), thereby improving skill selection and
acquisition success.

Table 3: Ablation study on calibration. Success rates of bite acquisition across 10 in-the-wild
dishes, comparing the impact of calibration. PF: Plastic fork; PF-wo: Plastic fork without calibra-
tion; MF: Metal fork; MF-wo: Metal fork without calibration. Asterisks (∗) indicates unseen food
items.

Plate #Items Acquired / #Total Attempts
PF PF-wo MF MF-wo

1 10/15 9/19 11/15 11/15
2 7/13 4/17 6/15 5/17
3 7/11 5/15 7/10 7/9
4 6/13 6/13 7/11 7/11
5 6/13 7/12 7/12 7/12
6 10/18 8/21 10/17 10/18
7 5/17 6/17 7/17 7/15
8 5/9 3/12 6/9 5/11
9 7/10 7/10 6/12 6/12

10 6/16 5/19 8/13 7/13
Average AE (%) 51.5% 38.7% 56.1% 54.1%

SR3 (%) 87.3% 75.9% 93.7% 83.5%

A.3 Crumbly and Soft Foods

We evaluate our approach on foods that are particularly soft or crumbly, such as tofu and crackers.
For crackers, our system selects scooping in 80% of trials and attempts skewering in 20% in the
initial attempt. After a skewering attempt, SAVOR identifies low softness, logs the failure in the
attempt history, and switches to scooping. For tofu, we test variants from extra soft to super firm.
The system initially selects skewering for all tofu types but switches to scooping for extra soft tofu.
We achieve a 70% average attempt efficiency for crackers and a 95% average attempt efficiency
for tofu. These results suggest that our method can adapt to diverse food items when informed by
interaction feedback.
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Figure 8: Effect of food physical properties on utensil interactions. The robot skewers food items
of varying softness (top) and viscosity (bottom). Soft tofu and low-viscosity mashed potatoes are
successfully acquired, while firm tofu and high-viscosity mashed potatoes lead to failure, illustrating
the challenges of bite acquisition.

A.4 VLMs Failures

We use a single VLM (GPT-4V) for both state estimation and skill planning, instantiated separately
as GPT-Property and GPT-Skill. While the VLM itself is static, we augment its context after each
interaction with the latest observations. After every interaction, GPT-Property can update food
properties. GPT-Skill can also adjust skill choice because some of its inputs are from GPT-Property.

Most VLM-related failures stem from incorrect initial food property estimates by GPT-Property,
when it infers physical properties from an RGB image before interaction. These vision-only priors
can lead to misidentifications (e.g., confusing carrots with tomatoes) or overlook intra-category
variations (e.g., assuming all avocados are soft). This also affects GPT-Skill as GPT-Skill uses
inputs from GPT-Property. SR1=#Items Acquired

#Total Items within 1 attempt (∼50%) highlights the challenge
of using vision priors alone to estimate food affordances, often leading to failures in first attempts.
These failures lead to more attempts and thus impact the overall average attempt efficiency) in Table
1, though they are later corrected using online visuo-haptic updates (SR2: 77.2%, SR3: 87.3%).

A.5 Open-loop Nature of Skill Execution

As mentioned in our limitations section, though our system performs well with open-loop execution,
we acknowledge that it could further benefit from a closed-loop policy, and we plan to address this
in future work. However, we conduct further analysis of the experiments and find that the need
for more closed-loop skills occurs in only specific cases such as slippage during picking up oily
surfaces of salmon and mushrooms, which account for only 7.93% of trials. Note, despite slippage,
re-attempts can potentially pick up the food item.

A.6 Multi-food Interactions on Cluttered Plates

Our study addresses multi-food interactions on cluttered plates. 8 out of 10 dishes contain overlap-
ping food items, where interactions with one food item affect another food item. In such challenging
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cases, SAVOR-Net often gives low confidence for push actions, but when the food is pushed toward
a cluster of rigid items, it provides high confidence scores and meaningful property estimates.

B Implementation Details

B.1 Baselines

We provide implementation details for the baselines as follows:

(i) SayCan [40]: This method selects a skill by combining two scores: the skill’s relevance to the
instruction and its predicted likelihood of success. As the original work does not release the value
function, we train a value function using our SAVOR dataset. The model takes a single RGB image
as input and outputs success probabilities for each skill in our predefined skill library. For rele-
vance estimation, we follow the original SayCan setup and use a vision-language model to compute
instruction-skill alignment scores.

(ii) End2End: We train an end-to-end model for action selection in bite acquisition as a baseline.
This model takes the same input as SAVOR-Net, which includes vision, haptics, and robot poses,
and directly predicts one of the six manipulation skills: skewering, scooping, twirling, pushing,
dipping, or cutting. The model is trained on the SAVOR dataset.

B.2 Data Collection

We collect data by applying each skill from a predefined skill library to food items. The library
includes six manipulation skills: skewering, scooping, twirling, pushing, dipping, and cutting. For
each skill, we perform 5 trials per food item, recording synchronized RGB-D images, haptic feed-
back, and pose data throughout each trajectory. The food items span a range of physical properties
and include: bagel, nuts, mashed potatoes, broccoli, jello, carrot, tofu, pork, orange, cantaloupe,
candy, lettuce, avocado, cheese, turkey, noodles, watermelon, banana, and tomatoes, along with
variations in their cooking or ripeness levels.

B.3 SAVOR-Net

B.3.1 Model Architecture

SAVOR-Net uses separate encoders for each of the time series and further splits the RGB-D in-
puts into RGB and depth for separate encoding. The encoder for RGB images is a pre-trained
ResNet50 followed by a two-layer MLP. The encoder for depth images is a 4-layer convolutional
neural network, followed by a two-layer MLP, where each convolutional layer has a 3×3 kernel and
is followed by Leaky ReLU activation. The encoder for haptics Ft is a two-layer MLP and the en-
coder for end-effector poses Pt is a two-layer MLP. Each encoder outputs a vector in R128. The four
vectors are concatenated into a unified multimodal representation and then passed to an LSTM with
2 layers and a hidden size of 512. A three-layer MLP takes output from the LSTM and produces the
final output ψt.

B.3.2 Training

SAVOR-Net(∼14M parameters) is trained using cross-entropy loss with the hyperparameters listed
in Table 4. Training is conducted on an NVIDIA RTX 4090 GPU and completes in approximately
40 minutes.
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Table 4: Training hyperparameters for SAVOR-Net
Hyperparameter Value

Epochs 200
Learning rate 1e-3

Optimizer Adam
Batch size 16

B.3.3 Tool Calibration

Given the utensil and skill library, tool calibration is performed once and only needs to be repeated
if the tool is modified. Before deployment, we conduct tool calibration by evaluating each skill
five times using the current utensil on five food items with diverse physical properties. During this
process, we record each item’s physical properties and execution outcomes in natural language.
The selected calibration items are raw carrot, cooked carrot, soft tofu, nuts, and cheese. The entire
calibration process takes approximately 20 minutes.

B.4 Prompting Details

B.4.1 Perception

We prompt GPT-4V to generate a set of candidate labels, which are then used by open-set object
detectors Grounded SAM [50] to generate masks for each food item. The prompt we use for this
application is:

For the given image, please list the food items on the plate in a Python list
format.
Here are three examples:
Example Image 1; Answer: [’chicken’,’broccoli’,’sausage’]
Example Image 2; Answer: [’steak’,’mushroom’]
Example Image 3; Answer: [’carrot’,’watermelon’,’strawberries’]
<Given Image>, please list down all the food items in the plate. Follow this
format: Answer: [’first_food’, ’second_food’, ..., ’last_food’]

B.4.2 Calibration

We evaluate the utensil by executing different skills on a small set of diverse food items. During
offline calibration, various utensils interact with a range of foods to assess their functional capabili-
ties. We collect skill execution outcomes, annotated with food type and physical properties. The tool
affordances are represented in natural language and later used as input to the VLM-based planner.
An example of the calibration summary for the plastic fork is provided below:

The robot interacts with various food items using a plastic fork. We summarize
the history as follows:
Food Item: Nuts
Shape: Oval, Size: Bite-sized, Softness: 1, Moisture: 1, Viscosity: 2
Skill with Success Rate: Skewer 0/5, Scoop 3/5, Cut 0/5, Push 5/5, Dip 5/5

Food Item: Cheese
Shape: Block, Size: Bite-sized, Softness: 3, Moisture: 2, Viscosity: 4
Skill with Success Rate: Skewer 5/5, Scoop 3/5, Cut 5/5, Push 5/5, Dip 5/5

Food Item: Raw Carrot
Shape: Cylindrical, Size: Bite-sized, Softness: 2, Moisture: 2, Viscosity: 1
Skill with Success Rate: Skewer 0/5, Scoop 3/5, Cut 0/5, Push 5/5, Dip 5/5

Food Item: Cooked Carrot
Shape: Cylindrical, Size: Bite-sized, Softness: 2, Moisture: 3, Viscosity: 1
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Skill with Success Rate: Skewer 5/5, Scoop 3/5, Cut 4/5, Push 5/5, Dip 5/5

Food Item: Soft Tofu
Shape: Cubic, Size: Large, Softness: 4, Moisture: 3, Viscosity: 2
Skill with Success Rate: Skewer 1/5, Scoop 4/5, Cut 5/5, Push 5/5, Dip 5/5

B.4.3 State Estimation

We prompt GPT-4V to estimate food physical properties based solely on visual cues. Specifically,
we initialize the food property estimate using only an RGB image as input and ask the VLM to infer
physical properties including shape, size, softness, moisture, and viscosity.

<Image on the target food item>
This is a plate of <food item>.
Please estimate the physical properties of the food item, including Shape, Size
, Softness, Moisture, and Viscosity, based on commonsense reasoning. For
Softness, Moisture, and Viscosity, provide a score ranging from 0 to 5, similar
to a 5-point Likert scale (e.g., a softness score of 1 indicates very hard,
while 5 indicates very soft).

Always follow this format:
Answer: Shape: <shape> ; Size: <size>; Softness: <softness score>; Moisture: <
moisture score>; Viscosity: <viscosity score>

B.4.4 Skill Selection

We design prompting templates for skill selection. Each prompt includes a calibration summary, the
history of past attempts, the available skills from the skill library, and the physical properties of the
target food item. The prompt then asks the VLM to choose the most appropriate skill based on this
context. We use a few-shot prompting setup with GPT-4V.

< Calibration Summary >
The robot is using a plastic fork to pick up the food. Please select an
appropriate skill by considering the food’s category, shape, size, softness,
moisture, and viscosity.

We briefly describe the skills as follows:
< Skill description >

The attempt history is summarized as follows:
Steak:
shape: round
size: bite-sized
softness: 2
moisture:2
viscosity: 1
scoop: success

Example Prompt 1: <Image on sausage>
This is a food item: Sausage Slice.
The robot uses a plastic fork to try picking up the food.
The estimated food physical properties are as follows. The scores range from 0
to 5, similar to a 5-pt Likert scale. For example, a softness score of 1
indicates very hard, while a score of 5 indicates very soft.
Shape: cylinder
Size: bite-sized
Softness: 3
Moisture: 2
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Viscosity: 1

Please select an action from [’skewer, ’scoop’, ’twirl’, ’dip’] to pick up the
food item or
select one action from [’cut’, ’push’] to manipulate items to facilitate
subsequent
acquisition. Always follow the format: Reasoning: <your reason>. Answer: <your
answer>.

Example Answer 1:
Reasoning: Sausage slices are moderately firm to maintain their structure.
Skewering is suitable as the fork can easily pierce them without breaking them
apart.
Answer: skewer

Example Prompt 2: <Image on mashed potatoes>
This is a food item: Mashed Potatoes.
The robot uses a plastic fork to try picking up the food.
The estimated food physical properties are as follows. The scores range from 0
to 5, similar to a 5-pt Likert scale. For example, a softness score of 1
indicates very hard, while a score of 5 indicates very soft.
Shape: Amorphous
Size: bite-sized
Softness: 4
Moisture: 3
Viscosity: 2

Please select an action from [’skewer, ’scoop’, ’twirl’, ’dip’] to pick up the
food item or
select one action from [’cut’, ’push’] to manipulate items to facilitate
subsequent
acquisition. Always follow the format: Reasoning: <your reason>. Answer: <your
answer>.

Example Answer 2:
Reasoning: The food is soft and moist, making it suitable to scoop rather than
skewer or cut. The viscosity indicates it will adhere moderately to the fork.
Answer: scoop

This is a food item: Tofu. <image>
The robot uses a plastic fork to try picking up the food.
Food Item: Tofu
Shape: Cubic
Size: bite-sized
Softness: 4
Moisture: 3
Viscosity: 2

Please select an action from [’skewer, ’scoop’, ’twirl’, ’dip’] to pick up the
food item or
select one action from [’cut’, ’push’] to manipulate items to facilitate
subsequent
acquisition. Always follow the format: Reasoning: <your reason>. Answer: <your
answer>.
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