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Abstract

We propose a method for estimating the 3D position of a
target point, given multiple measurements of it, using mm-
wave radar data. Given azimuth headings and range es-
timates from posed radar positions, we find the 3D posi-
tion, using an approximate, but geometrically and statis-
tically meaningful cost. The 3D position is found in an
optimal way, using this approximate cost. By deriving the
Lagrangian of the corresponding maximum likelihood and
maximum a posteriori estimates, we show that we can find
all local minima by solving an eigenvalue problem. The
global optimum can then easily and efficiently be extracted
from these solutions. We validate the method on synthetic
data and test it on several real world datasets, and release
public code'.

1. Introduction

Over the last years we have seen a renewed interest in radar
applications, especially in combination with camera data.
One of the attractive points of this combination is the sen-
sors’ complementary nature and failure modes. Cameras
and lidars suffer from severe degradation in harsh environ-
ments (containing smoke, dust, fog, rain, and snow). With
longer wavelengths, radars can penetrate through such mat-
ter to a larger extent. Radars are also installed on various
mobile platforms in the desire to reduce the sensor pay-
load, giving them larger roles in applications where cam-
eras are traditionally used, such as positioning, localization,
mapping, object detection and classification. These uses
make radar sensors and networks of radar sensors prevalent
in robotics [13, 15] and autonomous vehicles [34, 46, 48].
Of course, radar sensors also exhibit a number of limita-
tions, e.g. low angular resolution, unique noise characteris-
tics, from spurious returns throughout the sensor range, to
complicated speckle noise and multi-path effects as well as
problems with distinguishing between closely located ob-
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Figure 1. Observations of a 3D point &, from two radar positions
(y, and y,) will constrain the point to lie in the intersection of two
spheres and two planes. Without noise this will in general give a
unique solution for @, but if we have noise in the measurements,
we would like to find the optimal estimate of @.

jects, [46]. In this paper we work with imaging or scanning
radars. A radar data point consists of a range, azimuth and
doppler speed measurement. There are also radars that di-
rectly give the full 3D position, but most often the vertical
angle resolution is very poor [34, 49]. The geometry of
range and angle measurements from two sensors is illus-
trated in Figure 1.

The main objective in this paper is to present a method
for estimating the 3D target point, given a number of such
measurements, from known positions and orientations of
the radar sensor, i.e. the triangulation problem. One of
the main goals of this paper is to formulate this problem
in a geometrically and statistically meaningful way. The
triangulation problem is interesting for estimating 3D struc-
ture, given tracked measurements, in positioning applica-
tions such as SLAM, localization, path planning, and obsta-
cle avoidance. It could also play a role in semantic tasks
such as object recognition and tracking. As such, robust,
accurate and efficient methods for triangulation represent
important fundamental building blocks in many systems.

Our main contributions in the paper are:

* A geometrically motivated and statistically valid error
model for the radar triangulation problem in 3D,
e derivation of the corresponding Maximum likelihood



(ML) and Maximum a posteriori (MAP) estimates,

* a fast and non-iterative method that finds the global opti-
mizers to a close approximation of both the ML and the
MAP triangulation problem.

1.1. Related work

Related to the radar triangulation problem, there has been
much work on point cloud estimation [38], object detec-
tion [14, 47], and occupancy grid estimation [40]. These
methods are typically data driven and learning based. For
our approach we assume known positions of the sensors
and feature correspondences. This can e.g. be obtained
using SLAM systems [5, 19] or from some form of cali-
bration process. Calibration of sensors is often done us-
ing specialized calibration targets [9, 37]. One can also
assume planar scenes [42, 43] or other properties of the
3D scene [34]. Related to the radar triangulation prob-
lem that we investigate in this paper, is the triangulation
problem given only range measurements. This problem is
also known as single-source localization, and has broad ap-
plication areas within e.g. communication, chemistry, and
robotics [10, 12, 26, 32, 35]. The measurements can come
from Time Of Arrival (TOA) or Received Signal Strength
(RSS), where the estimation problem is known as trilater-
ation. For Time Difference Of Arrival (TDOA) measure-
ments the problem is known as multilateration. These prob-
lems are typically both nonlinear and nonconvex optimiza-
tion problem, with multiple local minima. There is a rich
body of work, but most approaches are iterative or based on
relaxations of the problem [3, 4, 8, 20, 21, 29, 31, 39]. Most
closely related to our approach is the optimal trilateration
method presented in [25]. If we are given two angle mea-
surements and a range measurement from each sensor, i.e.
as in the case of lidar or time-of-flight cameras, we directly
get an estimate for the 3D position from each sensor. The
optimal triangulation then simply corresponds to doing av-
eraging. If we do not have accurate estimates of the sensor
positions, the problem can be solved using optimal regis-
tration methods [36, 45]. For triangulation using ordinary
cameras, the 3D position can be found by simply intersect-
ing the back-projected image rays. However, if we want
to minimize some statistical error such as the reprojection
error in many views, finding the global minimizer is inher-
ently difficult, since we need to estimate a depth in every
image. For two views it’s possible, [17], but for three views
it’s numerically and theoretically much harder [7, 24, 41],
and for more views even more difficult. Iterative methods,
that do not guarantee any global optimum have also been
proposed [2, 18, 23, 28]. Other methods include geometric
methods that minimize the L.-error [16, 33] and Branch-
and-Bound methods [22, 30], with worst case exponential
convergence.

rd

Figure 2. A radar at y is swept in the zy-plane, giving a range es-
timate 7 and an azimuth direction 6 for a target point . The range
estimate is assumed to have an error standard deviation of o and
the azimuth angle standard deviation is §. At the target point @,
the standard deviation relative the azimuth plane is approximated
by ¢ (assuming a small 9).

2. Problem formulation

A schematic of the geometry for two 2D radars is given in
Figure 1. The radar measures the distance to a point in 3D
(r), and also the angle to the point in the plane that the radar
is swept in (). This means that in the coordinate system of
the radar, the 3D point is constrained to lie on a great circle,
on the intersection of a sphere and a plane in 3D.

An approximation that simplifies the geometry is to as-
sume that all points lie in the plane that the radar is swept
in. The benefit of this approximation is that one can directly
compute the target 3D position from the radar measurement,
simply as & = (r cos 6, r sin 6, 0) if the radar is swept in the
plane z = 0. Of course, if the true 3D position of the point is
away from this plane, this is a bad approximation. This ap-
proximation is valid if the height (i.e. offset from the radar
plane) is small compared to the distance from the radar.

If we would like to find the true 3D position of the target
point, we need to look at the constraints that the measure-
ment poses on this point. We know that the target point
x should have a distance r to the radar position y, which
means that we have

|z —yll2 =7 M

Furthermore, the angle measurement € constrains the point
to lie on a plane. We can write this constraint as
T
n (z-y) =0, (@)

where n is the normal to the plane. The normal is directly
given by the angle 6 and the plane in the local radar frame.



For instance, if the radar is swept in the xy-plane (with zero
angle corresponding to the x-direction) then n is given by

sin(6)
—cos(0) | . 3)
0

n(0) =

The downside of this model is of course that we now need
more than one radar position to estimate a 3D position. This
leads us to the following basic problem

Problem 1 Given N observations (r;,0;),i=1,... N, of
a 3D point, from radar positions y;, what is the best esti-
mate of the 3D point position x?

Since each measurement puts two constraints on  we need
at least two measurements to estimate x.

2.1. Linear solution

Given two or more radar positions, we can linearly estimate
the unknown target 3D position x, using standard tech-
niques. For example, if we have two radar measurements
from y, and y, respectively, we have

|z — |5 =7, 4)
n{(z—y;) =0, 5)
|z — s[5 =73, (6)
nd(x —y,) =0. (7

Taking (4) — (6) will give a linear constraint on x, giving a
linear formulation for the solution of & according to

n{ niryl
Tng T T 2 2 nzTTy2 T - ®
2y; — 2y TT—T —Y1Y1 T Y2 Yo

If we have more measurements, we can simply stack the
linear equations, giving an overdetermined system of 2N —
1 equations given /N radar positions.

2.2. Minimal solution

Given two radar observations we can also simply derive
a minimal solution by dropping one of the quadratic con-
straints. Using (5) and (7) will constrain « to

T =v,+ \vy, )

where v,, and v, are known vectors depending only on the
data, and X is an unknown parameter. Inserting this expres-
sion into (4) gives a second-degree polynomial in A lead-
ing to two potential solutions for . These solutions can
be checked in (6) for the final estimate. If we have more
available radar measurements, we can directly use this sim-
ple minimal solver in a RANSAC framework [11] to get a
robust estimate of x.

3. Optimal approximate triangulation

Using the linear solution given in Section 2.1 will often give
a reasonable solution if we have many measurements, from
radars that are spatially separated. However, if we have
many measurements, and if we have some knowledge about
the accuracy of our measurements, we would like to use this
to find a statistically more valid solution. We would also
like to find the target position where the cost is geometri-
cally well founded. We will in this section describe how we
can model our problem and derive a non-iterative method
for finding the near optimal solution in a statistical sense.
To this end, we assume that our measurements are corrupted
by additive noise, that is also assumed to be independent
between measurements. Our error model is illustrated in
Figure 2. The range measurement is simply assumed to be
offset with additive noise with zero mean and standard de-
viation o (in e.g. meters). We will throughout the paper
assume that we have a reasonable estimate of o given. The
azimuth heading is assumed to be disturbed with zero mean
noise of standard deviation d, given in angle units. Again,
we assume this quantity to be known. Now, if we look at a
measurement, the standard deviation of the orthogonal off-
set to the corresponding plane n (due to the error in #) can
then be well approximated with 4. If we assume that the er-
rors follow normal distributions, we get for a measurement
the following equations,

llz —yllo — 7 =€, e € N(0,0), (10)
In"z —nTyllz _

= €9, (7} GN(O,T5). (11D

nTn
We will in the following assume (w.l.o.g) that n”n = 1.

3.1. Maximum likelihood formulation

Given N measurements, we would like to find the a that
maximizes the likelihood of getting these measurements
(the ML estimate). On the assumption that the errors in
these measurements € = (€.,, €, .., €gy ), are indepen-
dent we get the following maximization problem

N
arg max P(e|x) = arg max H P(e,|x)Pleg,|x). (12)
i=1
We will in this paper assume that the errors follow normal
distributions, and hence the probabilities are given by

1 —(llz—y;]l=ry)?

Ple,,|x) = Toral 207 , (13)
1 Z —(nfe—nTy)?
P(Egi w) = me 27?512 . (14)

Looking at the Negative Log Likelihood (NLL), and disre-
garding the normalization constants, will then give us the



following non-linear least squares problem,

arg max P(e|x) = argmin — log P(e|x) =
x x

5)
N
arg min Z —log P(e,,|x) —log Pleg,|x) =
i=1
(16)
N
, (llz —yilla =r:)* = (nfx—niy,)’

arg mén ; 2012 + 27}'2 5? .

a7)

This is a non-linear and non-convex problem, so it’s diffi-
cult to derive a closed-form solution. If at least the cost was
polynomial in & we could potentially differentiate the La-
grangian of (17), and solve for all possible local minima,
and evaluate these to find the optimal . In order to do this,
we linearize the square root in the first terms of the sum in
(17) to get

1
(I = yill2 = r:)* ~ 52z - yill3 =19 (18

Note that we choose the point that we linearize around to
be the actual measurement r;. Inserting this approximation
into (17) will then give a cost on the form

N
L(@) =Y willlz —yill3 - r))* + 7i(nfz —niy,)*
i=1

(19)
with w; ' = 87202 and v; ' = 2r?§2. This is then the
problem that we would like to solve,

Problem 2 Given N observations (r;,n;), with standard
deviations o; and 0;, i = 1, ... N, from radar positions y;,
what is the approximate maximum likelihood estimate of the
3D point position x, i.e. that minimizes (19)?

3.2. Maximum a posteriori formulation

The previous section described how we can formulate the
ML problem for triangulation. In some cases, we have some
prior information on the position x, such as e.g. that the
height is close to some ground plane. We will now show
how we can incorporate such priors in our model. Using
Bayes formula, we can directly formulate this problem as

P(@)Plel)

Ple) 20

arg max P(x|e) = argmax
T x

The optimization problem will not depend on P(€), so we
can discard this factor. The second factor in the nominator
is the likelihood described in the previous section. If we
model the prior P(x) using a Gaussian with mean @y and

covariance matrix ¢ and take the negative logarithm of (20)
we will get the following problem

x =argmin L(x) + (£ — xo) @7 (x — z), (21)

with L(x) given by (19). This gives us the Maximum a
posteriori (MAP) problem formulation

Problem 3 Given N observations (r;,m;), with standard
deviations o; and 0;, i = 1,... N, from radar positions y;,
and the prior assumption that x € N (xo, ®), what is the
approximate MAP estimate given by (21).

3.3. Solution by enumerating all local minima

We will now describe our method for finding the solution
to Problem 2. We will do this by differentiating the cost in
(19) w.r.t. &, and finding all solutions. The global optimum
of (19) will be located at one of these local minima. Here
L(z) is of fourth-degree in x, so the derivatives will be of
degree three,

N
L'(x) = Z4wi(llw —ylli - —y)+ (22
=1
2vi(nfx —nly)n;. (23

We can write this in the following way, in terms of different
degree terms in x,

L'(z) =a(z"x)x + (x"xl + zz")b+ Cx +d, (24)

with

a1x1 = 240% bsx1 = Z*‘lwiyi,
5 i

Csx3 = Z‘lwi((yiTyi — )1 +2y,y]) + 2y,
5

dsx1 = — Z dwi(yi y; — 1)y + 2vi(nd y)ni.

3

This problem has the same structure as the optimal trilater-
ation problem described in [25]. We will follow the same
solution strategy here, which will lead to an eigenvalue for-
mulation. To see this, we first translate our coordinate sys-
tem so that b = > —4w;y, = 0. This will eliminate second
degree terms. We then do an orthogonal diagonalization of
the symmetric matrix C' = U cuT. Writing this in terms
of & = Uz andd = Ud gives a separation of variables
according to

(@"%)i; + Cyaj+dj =0, j=1,2,3, (25

where & = [f1, &2, 23]7 and d = [dh do, dg]T. Mul-
tiplying each equation with & ; then leads to the following



eigenvalue formulation of the problem

~C  —diag(d) 03

0343 -C —d | w=\w, (26)
1.3 013 0

Q7x7
T 2

with A = & & and w = [#2, 22, 22, 21, 29, 23, 1]T. The
matrix ) on the left-hand side is 7 x 7, and there are hence
seven eigenvectors. Each possible eigenvector will corre-
spond to a local minimum of our problem, and we can find
the global optimum by simply evaluating the cost for each
solution, and choose the best one. The different steps are
summarized in Algorithm 1. This approach gives us the

Algorithm 1 ML Eigenvalue solver
i=1,...,N

Require: y,,7:,n;,0;,0;,
Ensure:

1: Change coordinate system
Build the matrix @ in (26)
Find the eigenvectors wi of @, k=1,...,7
Change back to original coordinate system
For all eigenvectors extract local minimizers xy,
x =argming, L(zg), k=1,...,7

AN AN

solution to Problem 2, but we can use the exact same ap-
proach to solve Problem 3 using some minor changes. We
get the derivative of the cost in (21) by simply adding the
term S(x — x¢) to (24), where STS = ®~1. The only
change that this leads to is that we will use the modified
constants

C'=C+S, d=d- Sz, (27)

in the algorithm.

4. Experimental evaluation

We will now evaluate our proposed solver in a number of
ways, on synthetic and real data. The Matlab implementa-
tion of our solver runs in 60us on an Apple M3 Pro. For
real radar datasets, it’s difficult to annotate and find ground
truth for 3D target point data. For this reason, we have
constructed semi-synthetic data, based on publicly available
large structure from motion reconstruction datasets.

4.1. Synthetic data

We will start by evaluating the solver on synthetic data with
no noise added. We generated problems with N = 15 radar
positions, and a randomly positioned target x;. From this
we calculated corresponding measurements 7; and 1n;. Run-
ning Algorithm | gives an estimate position . We can then
calculate the norm between the ground truth and the esti-
mate. We repeat this a large number of times (100000).
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Figure 3. Histogram of logarithmic errors on synthetic data with
no noise, given 100000 random instances using 15 radars. The
largest error was in this case 3.2e-12

A histogram of the logarithm of the errors is given in Fig-
ure 3. One can see that we get close to machine precision
errors in this case. Next, we would like to test how the
method performs in the presence of noise. To this end we
again generated synthetic sequences of data but added dif-
ferent amounts of noise to the measurements. We do the
tests by varying the standard deviations of the range mea-
surements o and of the angle measurements J, individually
and in combination. We compare our proposed solver with
the linear approach described in Section 2.1. The distance
between the estimates and the ground truth as a function of
standard deviation of the added noise is shown in Figure 4.
From left to right we vary o, § and both (o, ) in combi-
nation, respectively. One can see that the proposed solver
consistently gives more accurate solutions than the linear
solver. One can also see that when only one of the stan-
dard deviations increase, the error in the estimate becomes
bounded, even for very large standard deviations. When
both standard deviations are increased the error increases
linearly in the standard deviations. In the graphs we also
show the oracle maximum likelihood estimate (in dashed
yellow). This is obtained by minimizing the real (not ap-
proximate) cost given in (17). We find the minimum using
a Levenberg-Marquardt solver with the ground truth posi-
tion as starting point. One can see that our proposed op-
timal solver consistently finds a very close estimate to the
true ML estimate. All metrics are based on a large number
of runs (10000) for each standard deviation, and the mean
of the runs is reported in the graphs. The previous graphs
showed the errors compared to the ground truth positions.
We can also look at the errors that we optimize, i.e. the cost
in (19). Figure 5 shows these errors for the exact same ex-
periment. Since we normalize the cost with the given stan-
dard deviations, we should get a constant cost, for varying
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Figure 4. Results on synthetic data, for varying amounts of added noise. We compare our optimal solution with the linear solver

and the oracle maximum likelihood solver. On the y-axis the distance between the ground truth and the estimates are shown. From left to
right the graphs show reconstruction errors as functions of increasing noise in range individually, angle individually and range and angle in
combination, respectively. Due to the complementary nature of range and angle measurements, we get bounded errors if one of the errors
is fixed. Note that the linear solver is very sensitive to range errors due to (8).
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Figure 5. Results on synthetic data, as in Figure 4, but showing the maximum likelihood cost (17) for the estimates on the y-axis.
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experiments we added gaussian noise with the same stan-
dard deviation to all the radar measurements. In Figure 6
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Figure 6. Comparison between the proposed optimal solver and
the linear solver when we have varying standard deviations for
the 15 different radar positions. The graph shows histograms of
logarithms of distances between estimates and the ground truth
3D positions.

degrees of added noise. One can see that when we vary
both the standard deviations, we overestimate the standard

we show the result of an experiment where we randomly
chose standard deviations for the different radar measure-
ments (but these are still assumed to be known). The graph
shows the histogram of the logarithms of the distances to
the ground truth target position. One can see that the pro-
posed optimal solver gives much lower errors than the linear
solution in this case also.

4.2. Large-scale semi-synthetic data

In order to perform a controlled, but large-scale experiment
with realistic data, we used real structure from motion data,
and generated simulated radar data from the given camera
positions. We show results from two reconstructions, the
Notre Dame data from [44] and the Coliseum part of the
Romel6K dataset [27]. We use the estimated 3D struc-
ture as ground truth. For each camera position, we calcu-
late the range and heading angle to all visible 3D points in
that camera. We use the visibility given by the feature point
associations in each camera. We then add random noise
to the measurements with some realistic standard deviation
(o = 0.024m and § = 0.45°). The resulting reconstruc-
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Figure 7. Example 3D reconstructions from the semi-synthetic experiment. Left shows the original 3D reconstruction from the datasets.
Also shown in white are the camera positions. Second shows the reconstruction from the simulated radar data, using the proposed optimal
method. The simulated radar positions are the same as the camera positions in white. Third shows the reconstruction using the linear
method. To the right the reconstruction error distributions are shown (on the z-axis we have the logarithmic distance from the estimates to

the ground truth 3D positions).
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Figure 8. Figure shows 3D reconstruction from real radar data from [6]. The blue path shows the ground truth path of the vehicle that was
used in the reconstruction. In green, the 3D points estimated using the proposed optimal method are shown.

tions from the simulated radar data is given in Figure 7. To
the left the original SfM reconstruction is shown. In the
middle the proposed optimal solver is shown, and to the
right is the reconstruction using the linear solver. The 3D
points are colored with the colors from the reconstruction
for visualization purposes. Also shown in each image are
the camera/radar positions in white. In the rightmost panel
the error distributions for the two datasets are shown. The

graphs show histograms of the logarithms of the distances
to the ground truth positions. One can see that we get small
errors and better estimates using the proposed solver com-
pared to the linear solver.

4.3. Real data use-case

In order to test our method on real data we have used the
large-scale dataset Boreas (A Multi-Season Autonomous



Figure 9. Reprojections for eight radar positions for the experiment based on the real data from [6]. The grayscale images show the raw
radar measurements in the cartesian frame centered and aligned with the radar. The blue dots are the extracted and tracked feature points
using the SLAM system of [1, 19]. The red circles are the corresponding reprojected 3D points, estimated by the proposed optimal method.
The rms values for these reprojected points are 0.41m, 1.1m, 8.6m, 0.97m, 0.53m, 0.92m, 0.72m, and 6.1m respectively.

Driving Dataset) [6]. There is unfortunately not any ground
truth available for the radar detections. We take the raw
radar measurement and run a radar SLAM pipeline to ex-
tract features and track them throughout a sequence. We
have used the open source implementation given in [1],
which is an implementation of the SLAM odometry system
described in [19]. We then use the ground truth positions
and orientations of the radar positions when we triangulate
the 3D points. We estimate points that are seen in at least
five radar positions, and where the baseline of the radars is
at least five meters in total. As standard deviations we used
the half-width of the measurement resolution (o = 0.024m
and 0 = 0.45°). The resulting reconstruction is shown in
Figure 8. In blue the ground truth path of the car (and
the radar) is shown. The estimated 3D points are shown
in green, with a number of close-ups given. We see that
we get reasonable estimates of the 3D structure that follows
the path of the vehicle. In Figure 9 the reprojections for a
number of radar positions are shown. The grayscale image
shows the raw radar data in the cartesian frame centered
around the vehicle (at pixel (320,320) in the image). The
blue dots indicate the feature points that were extracted and
tracked by the SLAM system. The red circles show the re-
projections of the estimated 3D points in these frames. One
can see that we get small reprojection errors for most points.
There seem to be some outliers in the data, but we haven’t
done any additional filtering before we ran our solver. It’s
also clear that the tracking system fails to detect and track
a large portion of the potential data points in the radar im-
ages. The SLAM system in [19] is working purely in 2D.
We believe that having stronger 3D representations could
benefit radar SLAM and reconstruction systems. Here the
use of our solver could potentially make the mapping both
more robust and accurate.

5. Conclusion

We have in this paper presented a geometrically based
framework for triangulation of 3D target points, given radar
measurements on range and azimuth angle. By formulating
a tractable and statistically meaningful error cost, we can
estimate the 3D point by simply solving a small eigenvalue
problem. We have shown that this gives an estimate that
is very close to the true maximum likelihood estimate, and
which degrades nicely with increasing degrees of noise in
the measurements. We have also shown how to incorpo-
rate priors on our model, in order to find MAP estimates.
We believe that geometric algorithms, such as the one pre-
sented in this paper, could be important building blocks in
many radar SLAM system, leading to increase in robustness
and accuracy. There is also a great potential in using such
geometric methods in bootstrapping learning based feature
extraction and tracking algorithm. This is especially true,
since there is a lack of good ground truth for 3D point data
in radar datasets. Finally, our proposed methods could also
serve other downstream perception tasks, such as detection,
recognition and scene understanding.

References

[1] Raw-roam: Really adverse weather-radar odometry and
mapping (python reimplementation of radarslam). https:
//github.com/Samleo8/RadarSLAMPyY/, 2025. 8

[2] Chris Aholt, Sameer Agarwal, and Rekha Thomas. A qcqp
approach to triangulation. In European Conference on Com-
puter Vision (ECCV), 2012. 2

[3] A. Beck, P. Stoica, and J. Li. Exact and Approximate Solu-
tions of Source Localization Problems. [EEE Transactions
on Signal Processing, 56(5):1770-1778, 2008. Conference
Name: IEEE Transactions on Signal Processing. 2

[4] Amir Beck, Marc Teboulle, and Zahar Chikishev. Iterative
Minimization Schemes for Solving the Single Source Lo-


https://github.com/Samleo8/RadarSLAMPy/
https://github.com/Samleo8/RadarSLAMPy/

(5]

(6]

(7]

(8]

(9]

[10]

(1]

[12]

(13]

(14]

[15]

[16]

(17]

(18]

calization Problem. SIAM Journal on Optimization, 19(3):
1397-1416, 2008. 2

Keenan Burnett, Yuchen Wu, David J Yoon, Angela P
Schoellig, and Timothy D Barfoot. Are we ready for radar to
replace lidar in all-weather mapping and localization? IEEE
Robotics and Automation Letters, 7(4):10328-10335, 2022.
2

Keenan Burnett, David J Yoon, Yuchen Wu, Andrew Z
Li, Haowei Zhang, Shichen Lu, Jingxing Qian, Wei-Kang
Tseng, Andrew Lambert, Keith YK Leung, Angela P Schoel-
lig, and Timothy D Barfoot. Boreas: A multi-season au-
tonomous driving dataset. The International Journal of
Robotics Research, 42(1-2):33-42, 2023. 7, 8

Martin Byrod, Klas Josephson, and Kalle Astrom. Fast opti-
mal three view triangulation. In Asian Conference on Com-
puter Vision (ACCV), 2007. 2

Yiu-Tong Chan, H. Yau Chin Hang, and Pak-chung Ching.
Exact and approximate maximum likelihood localization al-
gorithms. [EEE Transactions on Vehicular Technology, 55
(1):10-16, 2006. Conference Name: IEEE Transactions on
Vehicular Technology. 2

Joris Dombhof, Julian FP Kooij, and Dariu M Gavrila. A joint
extrinsic calibration tool for radar, camera and lidar. /EEE
Trans. on Intelligent Vehicles, 6(3):571-582, 2021. 2

Jack D Dunitz. Distance geometry and molecular conforma-
tion, 1990. 2

Martin A Fischler and Robert C Bolles. Random sample
consensus: a paradigm for model fitting with applications to
image analysis and automated cartography. Communications
of the ACM, 24(6):381-395, 1981. 3

Z Jason Geng and Leonard S Haynes. A “3-2-1” kinematic
configuration of a stewart platform and its application to
six degree of freedom pose measurements. Robotics and
computer-integrated manufacturing, 11(1):23-34, 1994. 2
Timo Grebner, Vinzenz Janoudi, Pirmin Schoeder, and
Christian Waldschmidt. ~Self-calibration of a network of
radar sensors for autonomous robots. IEEE Trans. on
Aerospace and Electronic Systems, 59(5):6771-6781, 2023.
1

Yiduo Hao, Sohrab Madani, Junfeng Guan, Mohammed Al-
loulah, Saurabh Gupta, and Haitham Hassanieh. Bootstrap-
ping autonomous driving radars with self-supervised learn-
ing. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 15012—15023,
2024. 2

Kyle Harlow, Hyesu Jang, Timothy D Barfoot, Ayoung
Kim, and Christoffer Heckman. A new wave in robotics:
Survey on recent mmwave radar applications in robotics.
arXiv:2305.01135,2023. 1

Richard Hartley and Frederik Schaffalitzky. L;, ; minimiza-
tion in geometric reconstruction problems. In Computer Vi-
sion and Pattern Recognition (CVPR), 2004. 2

Richard I Hartley and Peter Sturm. Triangulation. Com-
puter Vision and Image Understanding (CVIU), 68(2):146—
157, 1997. 2

Johan Hedborg, Andreas Robinson, and Michael Felsberg.
Robust three-view triangulation done fast. In Proceedings

(19]

(20]

(21]

(22]

(23]

(24]

(25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops, pages 152—-157,2014. 2

Ziyang Hong, Yvan Petillot, Andrew Wallace, and Sen
Wang. Radar slam: A robust slam system for all weather
conditions. arXiv preprint arXiv:2104.05347,2021. 2, 8
Darya Ismailova and Wu-Sheng Lu. Penalty convex-concave
procedure for source localization problem. In 2016 IEEE
Canadian conference on electrical and computer engineer-
ing (CCECE), pages 1-4. IEEE, 2016. 2

R. Jyothi and P. Babu.  SOLVIT: A Reference-Free
Source Localization Technique Using Majorization Mini-
mization. [EEE/ACM Transactions on Audio, Speech, and
Language Processing, 28:2661-2673, 2020. Conference
Name: IEEE/ACM Transactions on Audio, Speech, and Lan-
guage Processing. 2

Fredrik Kahl, Sameer Agarwal, Manmohan Krishna Chan-
draker, David Kriegman, and Serge Belongie. Practical
global optimization for multiview geometry. International
Journal of Computer Vision (IJCV), 2008. 2

Kenichi Kanatani, Yasuyuki Sugaya, and Hirotaka Niitsuma.
Triangulation from two views revisited: Hartley-sturm vs.
optimal correction. In British Machine Vision Conference
(BMVC), 2008. 2

Zuzana Kukelova, Tomas Pajdla, and Martin Bujnak. Fast
and stable algebraic solution to 12 three-view triangulation.
In International Conference on 3D Vision (3DV), 2013. 2
Martin Larsson, Viktor Larsson, Kalle Astrom, and Mag-
nus Oskarsson. Optimal trilateration is an eigenvalue prob-
lem. In ICASSP 2019-2019 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pages
5586-5590. IEEE, 2019. 2, 4

Mao Li, Feng Jiang, and Cong Pei. Review on positioning
technology of wireless sensor networks. Wireless Personal
Communications, 115(3):2023-2046, 2020. 2

Yunpeng Li, Noah Snavely, and Daniel P Huttenlocher. Lo-
cation recognition using prioritized feature matching. In
European conference on computer vision, pages 791-804.
Springer, 2010. 6

Peter Lindstrom. Triangulation made easy. In Computer
Vision and Pattern Recognition (CVPR), 2010. 2

Thomas Lipp and Stephen Boyd. Variations and extension of
the convex—concave procedure. Optimization and Engineer-
ing, 17:263-287, 2016. 2

Fangfang Lu and Richard Hartley. A fast optimal algorithm
for 1 2 triangulation. In Asian Conference on Computer Vi-
sion (ACCV), 2007. 2

D. Russell Luke, Shoham Sabach, Marc Teboulle, and Kobi
Zatlawey. A simple globally convergent algorithm for the
nonsmooth nonconvex single source localization problem.
Journal of Global Optimization, 69(4):889-909, 2017. 2
Chengqi Ma, Bang Wu, Stefan Poslad, and David R Selviah.
Wi-fi rtt ranging performance characterization and position-
ing system design. IEEE Transactions on Mobile Comput-
ing, 21(2):740-756, 2020. 2

Yang Min. L-infinity norm minimization in the multiview
triangulation. In International Conference on Artificial In-
telligence and Computational Intelligence, pages 488—494.
Springer, 2010. 2



[34]

(35]

(36]

(37]

(38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

Ghina El Natour, Omar Ait-Aider, Raphael Rouveure,
Francois Berry, and Patrice Faure. Toward 3d reconstruc-
tion of outdoor scenes using an mmw radar and a monocular
vision sensor. Sensors, 15(10):25937-25967, 2015. 1,2
Evgeny Ochin. Fundamentals of structural and functional
organization of gnss. In GPS and GNSS technology in geo-
sciences, pages 21-49. Elsevier, 2021. 2

Carl Olsson, Fredrik Kahl, and Magnus Oskarsson. Branch-
and-bound methods for euclidean registration problems.
IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 31(5):783-794, 2008. 2

Juraj Persi¢, Ivan Markovi¢, and Ivan Petrovié. Extrinsic
6dof calibration of a radar-lidar-camera system enhanced
by radar cross section estimates evaluation. Robotics and
Autonom. Syst., 114:217-230, 2019. 2

Akarsh Prabhakara, Tao Jin, Arnav Das, Gantavya Bhatt,
Lilly Kumari, Elahe Soltanaghai, Jeff Bilmes, Swarun Ku-
mar, and Anthony Rowe. High resolution point clouds from
mmwave radar. In 2023 IEEE International Conference on
Robotics and Automation (ICRA), pages 4135-4142. 1IEEE,
2023. 2

N. Sirola. Closed-form algorithms in mobile positioning:
Myths and misconceptions. In Navigation and Communica-
tion 2010 7th Workshop on Positioning, pages 38—44, 2010.
2

Liat Sless, Bat El Shlomo, Gilad Cohen, and Shaul Oron.
Road scene understanding by occupancy grid learning from
sparse radar clusters using semantic segmentation. In Pro-
ceedings of the IEEE/CVF International Conference on
Computer Vision Workshops, pages 0-0, 2019. 2

Henrik Stewenius, Frederik Schaffalitzky, and David Nister.
How hard is 3-view triangulation really? In International
Conference on Computer Vision (ICCV), 2005. 2

Shigeki Sugimoto, Hayato Tateda, Hidekazu Takahashi, and
Masatoshi Okutomi. Obstacle detection using millimeter-
wave radar and its visualization on image sequence. In Intl.
Conf. on Pattern Recognition, ICPR, pages 342-345, 2004.
2

Tao Wang, Nanning Zheng, Jingmin Xin, and Zheng Ma.
Integrating millimeter wave radar with a monocular vision
sensor for on-road obstacle detection applications. Sensors,
11(9):8992-9008, 2011. 2

Kyle Wilson and Noah Snavely. Robust global translations
with ldsfm. In European conference on computer vision,
pages 61-75. Springer, 2014. 6

Jiaolong Yang, Hongdong Li, Dylan Campbell, and Yunde
Jia. Go-icp: A globally optimal solution to 3d icp point-
set registration. IEEE transactions on pattern analysis and
machine intelligence, 38(11):2241-2254, 2015. 2

Shanliang Yao, Runwei Guan, Xiaoyu Huang, Zhuoxiao Li,
Xiangyu Sha, Yong Yue, Eng Gee Lim, Hyungjoon Seo,
Ka Lok Man, Xiaohui Zhu, et al. Radar-camera fusion for
object detection and semantic segmentation in autonomous
driving: A comprehensive review. [EEE Trans. on Intelli-
gent Vehicles, 2023. 1

Ryoma Yataka, Pu Wang, Petros Boufounos, and Ryuhei
Takahashi. Sira: scalable inter-frame relation and association

for radar perception. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
15024-15034,2024. 2

[48] De Jong Yeong, Gustavo Velasco-Hernandez, John Barry,

and Joseph Walsh. Sensor and sensor fusion technology in
autonomous vehicles: A review. Sensors, 21(6):2140, 2021.
1

[49] Ao Zhang, Farzan Erlik Nowruzi, and Robert Laganiere.

Raddet: Range-azimuth-doppler based radar object detection
for dynamic road users. In /8th Conf. on Robots and Vision
(CRV), pages 95-102, 2021. 1



	Introduction
	Related work

	Problem formulation
	Linear solution
	Minimal solution

	Optimal approximate triangulation
	Maximum likelihood formulation
	Maximum a posteriori formulation
	Solution by enumerating all local minima

	Experimental evaluation
	Synthetic data
	Large-scale semi-synthetic data
	Real data use-case

	Conclusion

