
Published in Transactions on Machine Learning Research (12/2024)

Reinforcement Learning for Node Selection in Branch-and-
Bound

Alexander Mattick alexander.mattick@iis.fraunhofer.de
Christopher Mutschler christopher.mutschler@iis.fraunhofer.de
Fraunhofer IIS, Fraunhofer Institute for Integrated Circuits IIS
Nordostpark 84, 90411 Nürnberg, Germany

Reviewed on OpenReview: https: // openreview. net/ forum? id= VrWl6yNk1E

Abstract

A big challenge in branch-and-bound lies in identifying the optimal node within the search
tree from which to proceed. Current state-of-the-art selectors utilize either hand-crafted
ensembles that automatically switch between naive subnode selectors, or learned node
selectors that rely on individual node data. In contrast to existing approaches that only
consider isolated nodes, we propose a novel simulation technique that uses reinforcement
learning (RL) while considering the entire tree state. To achieve this, we train a graph neural
network that produces a probability distribution based on the path from the model’s root to
its “to-be-selected” leaves. Representing node-selection as a probability distribution allows
us to train a decision-making policy using state-of-the-art RL techniques that capture both
intrinsic node-quality and node-evaluation costs. Our method induces a high quality node
selection policy on a set of varied and complex problem sets, despite only being trained
on specially designed synthetic traveling salesmen problem (TSP) instances. Using such a
fixed pretrained policy shows significant improvements on several benchmarks in optimality
gap reductions and per-node efficiency under a short time limit of 45s and demonstrates
generalization to a significantly longer 5min time limit.

1 Introduction

The optimization paradigm of mixed integer programming plays a crucial role in addressing a wide range of
complex problems, including scheduling (Bayliss et al., 2017), process planning (Floudas & Lin, 2005), and
network design (Menon et al., 2013). A prominent algorithmic approach employed to solve these problems
is branch-and-bound (BnB), which recursively subdivides the original problem into smaller sub-problems
through variable branching and pruning based on inferred problem bounds. BnB is also one of the main
algorithms implemented in SCIP (Bestuzheva et al., 2021), a state-of-the art mixed integer linear and mixed
integer nonlinear solver.

An often understudied aspect is the node selection problem, which involves determining which nodes within the
search tree are most promising for further exploration. This is due to the intrinsic complexity of understanding
the emergent effects of node selection on overall performance for human experts. Contemporary methods
addressing the problem of node selection typically adopt a perspective per node (Yilmaz & Yorke-Smith, 2021;
He et al., 2014; Morrison et al., 2016), incorporating varying levels of complexity and relying on imitation
learning (IL) from existing heuristics (Yilmaz & Yorke-Smith, 2021; He et al., 2014). However, they fail to
fully capture the rich structural information present within the branch-and-bound tree itself.

We propose a novel selection heuristic that leverages the power of bi-simulation: The BnB tree structure and
its expansion/pruning dynamics are directly replicated inside our neural network model. We now employ
reinforcement learning (RL) to learn a heuristic that is naturally well aligned to the branch-and-bound
problem, see Fig. 1. The resulting method is able to take advantage of the inherent structure within the

1

https://openreview.net/forum?id=VrWl6yNk1E

Published in Transactions on Machine Learning Research (12/2024)

𝑛!

𝑛" 𝑛#

𝑛$ 𝑛%

Independent Node Processing

extract features

normalize

for each node

MLP processing

Branch and Bound Tree

ℎ!(𝑛")

ℎ!(𝑛#) ℎ$(𝑛%)

ℎ!(𝑛&) ℎ!(𝑛')

𝐾 steps message passing
(+ MLP)

à node representation à tree-dependent node
representations ℎ!(𝑛")

Path Extraction

ℎ!(𝑛")

ℎ!(𝑛#) ℎ$(𝑛%)

ℎ!(𝑛&) ℎ!(𝑛')

branching candidates 𝑛#, 𝑛$, 𝑛%

𝑃 𝑛! = 1
2& 𝑤 ℎ" 𝑛! + 𝑤 ℎ" 𝑛#

𝑃 𝑛$ = 1
3& 𝑤 ℎ" 𝑛$ + 𝑤 ℎ" 𝑛% + 𝑤 ℎ" 𝑛#

𝑃 𝑛& = 1
3& 𝑤 ℎ" 𝑛& + 𝑤 ℎ" 𝑛% + 𝑤 ℎ" 𝑛#

𝜎 ⋅ branching node

1. 2. 3.
4.

Figure 1: Overview of our approach: (1) SCIP solves individual nodes and executes existing heuristics.
(2) Features are extracted from every branch-and-bound node and sent to individual normalization and
embedding. (3) The node embeddings are subject to K steps of GNN message passing on the induced
tree-structure. The embeddings are projected to scalar weights and values using a Multi Layer Perceptron
(MLP). (4) Based on the node embeddings, we generate root-to-leave paths, from which we sample the next
node. The resulting node is submitted to SCIP and we return to step 1.

branch-and-bound algorithm, leading to a superior generalization compared to the seminal work by Labassi
et al. (2022). This allows the RL policy to directly account for the BnB tree’s dynamics.

We reason that RL specifically is a good fit for this type of training as external parameters outside the
pure quality of a node have to be taken into account. For example, a node A might promise a significantly
bigger decrease in the expected optimality gap than a second node B, but node A might take twice as
long to evaluate, making B the “correct” choice despite its lower theoretical utility. By incorporating the
bi-simulation technique, we can effectively capture and propagate relevant information throughout the tree.

The main contributions of this paper are:
1. a method for processing branch-and-bound trees of arbitrary size, which probabilistically samples leaves

of the BnB tree by modeling the selection as a root-to-leaf traversal of the BnB tree,
2. a new way of sampling optimization instances of intermediary difficulty,
3. a thorough time-limited benchmark on industrial-scale instances contained in TSPLIB, MINLPLib, and

MIPLIB, and
4. an analysis of the learned node selector using explainable-AI techniques

To the best of our knowledge, we are the first to present a learned selection method that now only generalizes
across instance types but that is also applicable to nonlinear mixed-integer optimization.

The rest of this article is structured as follows. Sect. 2 describes branch-and-bound and Sect. 3 discusses
related work. Sect. 4 explains our method, i.e., our node representation, our node selection agent, and how
we generate training instances. Sect. 5 discusses the experiments, and Sect. 6 discusses limitations. Sec. 7
concludes.

2 Branch and Bound

BnB is one of the most effective methods for solving mixed integer programming (MIP) problems. It
recursively solves relaxed versions of the original problem, gradually strengthening the constraints until it
finds an optimal solution. The first step relaxes the original MIP instance into a tractable subproblem by
dropping all integrality constraints such that the subproblem can later be strictified into a MIP solution.
For simplicity, we focus our explanation to the case of mixed integer linear programs (MILP) while our
method theoretically works for any type of constraint allowed in SCIP (see nonlinear results in Sec. 5.3.1,

2

Published in Transactions on Machine Learning Research (12/2024)

and Bestuzheva et al. (2023)). Concretely a MILP has the form

PMILP = min{cT
1 x + cT

2 y|Ax + By ≥ b, y ∈ Zn}, (1)

where c1 and c2 are coefficient vectors, A and B are constraint matrices, and x and y are variable vectors. The
integrality constraint y ∈ Zn requires y to be an integer. In the relaxation step, this constraint is dropped,
leading to the following simplified problem:

Prelaxed = min{cT
1 x + cT

2 y|Ax + By ≥ b}. (2)

Now, the problem becomes a linear program without integrality constraints, which can be exactly solved
using the Simplex (Dantzig, 1982) or other efficient linear programming algorithms.

After solving the relaxed problem, BnB proceeds to the branching step: First, a non-integral yi is chosen.
The branching step then derives two problems: The first problem (Eq. 3) adds a lower bound to variable yi,
while the second problem (Eq. 4) adds an upper bound to variable yi. These two directions represent the
rounding choices to enforce integrality for yi:1

P 1
relaxed = min{cT

1 x + cT
2 y|Ax + By ≥ b, yi ≤ ⌊c⌋} (3)

P 2
relaxed = min{cT

1 x + cT
2 y|Ax + By ≥ b, yi ≥ ⌈c⌉} (4)

The resulting decision tree, with two nodes representing the derived problems can now be processed recursively.
However, a naive recursive approach exhaustively enumerates all integral vertices, leading to an impractical
computational effort. Hence, in the bounding step, nodes that are deemed to be worse than the currently
known best solution are discarded. To do this, BnB stores previously found solutions which can be used as a
lower bound to possible solutions. If a node has a lower bound larger than a currently found integral solution,
no node in that subtree has to be processed.

The interplay of these three steps—relaxation, branching, and bounding—forms the core of branch-and-bound.
It enables the systematic exploration of the solution space while efficiently pruning unpromising regions.
Through this iterative process, the algorithm converges towards the globally optimal solution for the original
MIP problem, while producing optimality bounds at every iteration.

3 Related Work

Learning node selection, where learned heuristics pick the best node to continue from the search tree, has
only rarely been addressed in research. Prior work that learns such node selection strategies made significant
contributions to improve the efficiency and effectiveness of the optimization.

Notably, many approaches rely on per-node features and Imitation Learning (IL). Otten & Dechter (2012)
study the estimation of subproblem complexity as a means to enhance parallelization efficiency. By estimating
the complexity of subproblems, the algorithm can allocate computational resources of parallel solvers more
effectively. Yilmaz & Yorke-Smith (2021) employ IL to directly select the most promising node for exploration.
Their approach utilizes a set of per-node features to train a model that can accurately determine which node
to choose. He et al. (2014) make use of support vector machines and IL to create a hybrid heuristic based on
existing heuristics. By leveraging per-node features, their approach aims to improve node selection decisions.
While these prior approaches yield valuable insights, they are inherently limited by their focus on per-node
features.

Labassi et al. (2022) propose the use of Siamese graph neural networks, representing each node as a graph
that connects variables with the relevant constraints. Their objective is to directly imitate an optimal diving
oracle, which descends depth-first towards a node containing a minimal value. This approach facilitates
learning from node comparisons and enables the model to make informed decisions during node selection.
This means that Labassi et al. (2022) manages to study pairs of leaf-subproblems, rather than studying every

1There are non-binary, “wide” branching strategies which we will not consider here explicitly. However, our approach is
flexible enough to allow for arbitrary branching width. See Morrison et al. (2016) for an overview.

3

Published in Transactions on Machine Learning Research (12/2024)

subproblem in isolation. However, this method still does not utilize the high information content given by
the tree structure itself: The search tree itself slowly gathers information in the form of, e.g., cutting planes
or the optimality of solutions close to (but not inside) the current subproblem’s feasible set.

Aside of the work in learning node selection, there is also substantial work in learning different heuristics
for branch and bound. One commonly learned component of branch-and-bound is the variable selection
heuristic (Scavuzzo et al., 2022; Parsonson et al., 2022; Gasse et al., 2019; Etheve et al., 2020). Variable
selection is the problem of which variable to apply the branch for the subproblems, i.e., which yi to add
a constraint to in Eqs 3 and 4. Other frequently learned heuristics include cut-selection methods (Tang
et al., 2019; Wang et al., 2023; Paulus et al., 2022; Turner et al., 2022). Cut selection is part of an extension
of branch-and-bound known as branch-and-cut, which additionally adds constraints to sub-problems that
remove solutions that are feasible in a node’s linear relaxation, but are infeasible in the original MILP model.
Specifically, if x is a solution to the relaxed Equation 2, but not a solution to the MILP Equation 1, a new
constraint is placed into the relaxation that removes the found x from the problem. Such cuts are generally
not unique. Cut selection is the process of picking the best cuts from a set of different feasible cuts. However,
all these (types of) heuristics are orthogonal to our node selection problem: One can apply both our learned
node selector as well as any combination of cut and variable selectors.

Compared to both cut and variable selection, node selection is severely under-researched due to its inherent
complexity. While both variable selection and cut selection can be solved by studying a single sub-problem in
isolation, node selection has to study the set of all possible sub-problems as a whole, which increases the
complexity of building node selectors.

4 Methodology

We model the node selection process as a sequential Markov Decision Process (MDP). An MDP consists of a
set of observable states s ∈ S, a set of controllable actions a ∈ A, a reward function R(s) describing the quality
of an individual state s ∈ S in isolation, and a (typically unknown) transition distribution T : S ×A → S
that takes in a current state s ∈ S and an action a ∈ A, proposed by a decision-making policy π : S → A, and
produces a distribution over new state s′ ∈ S. The policy is usually thought of as a conditional distribution
π(a|s) producing the next action a ∈ A under the knowledge of the current state s ∈ S. Our objective is to
find the policy optimal π∗, which maximizes the expected discounted sum of future rewards:

π∗ = argmaxπ E

[
tmax∑
t=0

γtR(st)π(at|st)T (st+1|st, at)
]

, (5)

where 0 < γ < 1 is a factor to trade immediate over future rewards (Sutton & Barto, 2018).

RL is the process of solving such MDPs by repeatedly rolling out π on an environment and using the resulting
trajectories to find a policy π that maximizes the return. Several solvers for MDPs exist, such as Deep
Q-Networks (DQN) (Mnih et al., 2015) or Proximal Policy Optimization (PPO) (Schulman et al., 2017). In
this paper we use PPO to solve the MDP.

In our case, we phrase our optimization problem as an MDP, where states st are represented using directed
branch-and-bound trees, actions at are all selectable leaf-nodes, and the reward R is set according to Eq. 6
in Sec. 4.1. The transitions are given by the SCIP-solver and its heuristics: Given the current state (BnB
tree) and the node selection by π, the SCIP solver produces new nodes as children of the selected ones, and
prunes unnecessary nodes from the tree. To solve the MDP, PPO needs a representation for the policy π and
a model describing the state-value-function, defined as V (s) = maxa Q(st, a) (see Schulman et al. (2017)).

In our model, we represent the branch-and-bound tree as a directed Graph Neural Network (GNN) whose
nodes and edges are in an 1:1 correspondence to the branch-and-bound nodes and edges, see Sec. 4.2. This
means that for every node in the BnB tree there is exactly one node in the GNN, and every connection in the
BnB tree is replicated in the GNN graph. As the BnB tree grows, the GNN graph grows as well, solving one
of the biggest issues in node selection: Since the BnB tree grows and shrinks dynamically, the number of
different node selections (= actions) changes drastically. One benefit of our GNN model is that the resulting

4

Published in Transactions on Machine Learning Research (12/2024)

directed graph automatically grows/shrinks the action space as new nodes are added/pruned from the tree
since the policy’s action-space directly corresponds to the leaves of the GNN/BnB tree. This allows our
network to phrase node selection explicitly as a distribution over node-selections, rather than using implicit
comparisons as in Labassi et al. (2022).

4.1 Reward Definition

A common issue in MIP training is the lack of good reward functions. For instance, the primal-dual integral
used in Gasse et al. (2022) has the issue of depending on the scale of the objective, needing a primally feasible
solution at the root, and being very brittle if different instance difficulties exist in the instance pool. Gasse
et al. (2022) circumvents these issues by generating similar instances, while also supplying a feasible solution
at the root. However, to increase generality, we do not want to make as strict assumptions as having similar
instance difficulties, introducing a need for a new reward function. A reasonable reward measure captures the
achieved performance against a well-known baseline. In our case, we choose our reward, to be

r = −
(

gap(Node Selector)
gap(SCIP) − 1

)
, (6)

where gap(SCIP) denotes the optimality gap reachable by the standard SCIP node selector in the set time
limit (for us 45s), and gap(node selector) denotes the gap reachable by our method within the set time limit.
This represents the relative performance of our selector compared to the performance achieved by SCIP.

Intuitively, the aim of this reward function is to decrease the optimality gap achieved by our node-selector
(i.e., gap(node selector)), normalized by the results achieved by the existing state-of-the-art node-selection
methods in the SCIP (Bestuzheva et al., 2021) solver (i.e., gap(SCIP)). This accounts for varying instance
hardness in the dataset. Further, we shift this performance measure, such that any value > 0 corresponds to
our selector being superior to existing solvers, while a value < 0 corresponds to our selector being worse,
and clip the reward between (1,−1) to ensure symmetry around zero as is commonly done in prior work
(see, e.g. Mnih et al. (2015); Dayal et al. (2022)). This formulation has the advantage of looking at relative
improvements over a baseline, rather than absolute performance, which allows us to use instances of varying
complexity during training.

We also experimented with other metrics that aim to normalize for the complexity of the instance themselves
(see Appendix C). We found that the reward metric as proposed here is the most stable to train and yields
the best results w.r.t. minimizing the optimality gap.

4.2 Tree Representation

To represent the MDP’s state, we propose a novel approach that involves bi-simulating the existing branch-
and-bound tree using a graph neural network (GNN). Specifically, we consider the state to be a directed tree
T = (V, E), where V are individual subproblems created by SCIP, and E are edges set according to SCIP’s
node-expansion rules. More precisely, the tree’s root is the principle relaxation (Eq. 2), and its children
are the two rounding choices (Eqs. 3 and 4). BnB proceeds to recursively split nodes, adding the splits as
children to the node it was split from.

For processing inside the neural network, we extract features (see Appendix A) from each node, keeping the
structure intact: T = (extract(V), E). We ensure that the features stay at a constant size, independent from,
e.g., the number of variables and constraints, to enable efficient batch-evaluation of the entire tree.

For processing the tree T , we use message-passing from the children to the parent. Pruned or missing nodes
are replaced with a constant to maintain uniformity over the graph structure. Message-passing enables us to
consider the depth-K subtree under every node by running K steps of message passing from the children to
the parent. Concretely, the internal representation can be thought of initializing h0(n) = x(n) (with x(n)
being the features associated with node n) and then running K iterations jointly for all nodes n:

ht+1(n) = ht(n) + emb
(

ht(left(n)) + ht(right(n))
2

)
, (7)

5

Published in Transactions on Machine Learning Research (12/2024)

where left(n) and right(n) are the left and right children of n, respectively, ht(n) is the hidden representation
of node n after t steps of message passing, and emb is a function that takes the mean hidden state of all
embeddings and creates an updated node embedding. Doing this for K steps aggregates the information of
the depth-K limited subtree of n into the node n.

4.3 RL for Node Selection

While the GNN model is appealing, it is impossible to train using contemporary imitation learning techniques,
as the expert’s action domain (i.e., leaves) may not be the same as the policy’s action domain, meaning that
the divergence between these policies is undefined.

To solve this problem, we choose to use model-free reinforcement learning techniques to directly maximize
the probability of choosing the correct node. State-of-the-art reinforcement learning techniques, such as
proximal policy optimization (PPO) (Schulman et al., 2017), need to be able to compute two functions:
The value function V (s) = maxa∈A Q(s, a), and the likelihood function π(a|s). PPO uses the value function
to reduce the variance of the advantage computation. In our work, we utilize the Generalized Advantage
Estimator (GAE) Schulman et al. (2015) which provides a continuous mixture of bootstrapped and Monte
Carlo estimated advantages. As it turns out, there are efficient ways to compute both of these values from a
tree representation:

Firstly, we can produce a probability distribution of node-selections (i. e., our actions) by computing the
expected “weight” across the unique path from the graph’s root to the “to-be-selected” leaves. These weights
are mathematically equivalent to the unnormalized log-probabilities of choosing a leaf-node by recursively
choosing either the right or left child with probability p and 1− p respectively. The full derivation of this can
be found in Appendix B. Concretely, let n be a leaf node in the set of choosable nodes C , also let P (r, n) be
the unique path from the root r to the candidate leaf node, with |P (r, n)| describing its length. We define
the expected path weight W ′(n) to a leaf node n ∈ C as

W ′(n) = 1
|P (r, n)|

∑
u∈P (r,n)

W (hK(u)). (8)

Selection now is performed in accordance to sampling from a selection policy π induced by

π(n| tree) = softmax ({W ′(n)|∀n ∈ C }). (9)

Intuitively, this means that we select a node exactly if the expected utility along its path is high. Note that
this definition is naturally self-correcting as erroneous over-selection of one subtree will lead to that tree
being completed, which removes the leaves from the selection pool C .

Similar to the log-likelihood, we parameterize the value function as a root-to-leaf sum, which is aggregated
using a max(·) over paths.

f(n|s) = f̃(n|s)
|P (r, n)| (10)

f̃(n|s) = f̃(left|s) + f̃(right|s) + f(hK(n)|s) (11)
V (s) = max {f(n) | ∀n ∈ C } , (12)

where f(hn) is a trained per-node estimator, f̂ is the path-aggregated f -function, and C is the set of open
nodes as proposed by the branch-and-bound method. For an alternative parametrization of V (·) that justifies
the use of f̃ as a Q-function, see Appendix J.

Since we can compute the action likelihood π(a|s), the value function V (s), and the Q-function Q(s, a), we
can use any Actor-Critic method (like PPO (Schulman et al., 2017) or A3C (Mnih et al., 2016)) for training
this model. We use PPO due to its ease of use and robustness.

According to these definitions, we only need to predict the node embeddings for each node hK(n), the
per-node q-function q(hK(n)|s), and the weight of each node W (hK(u)). We parameterize all of these as
MLPs (more architectural details can be found in Appendix E).

6

Published in Transactions on Machine Learning Research (12/2024)

This method provides low, but measurable overhead compared to existing node selectors, even if we discount
the fact that our Python-based implementation is vastly slower than SCIP’s highly optimized C-based
implementation. Hence, we focus our model on being efficient at the beginning of the selection process, where
good node selections are exponentially more important as finding more optimal solutions earlier allows to
prune more nodes from the exponentially expanding search tree. Specifically we evaluate our heuristic at
every node for the first 250 selections, then at every tenth node for the next 750 nodes, and finally switch to
classical selectors for the remaining nodes.2

4.4 Data Generation & Agent Training

In training MIPs, a critical challenge lies in generating sufficiently complex training problems. First, to learn
from interesting structures, we need to decide on some specific problem, whose e.g. satisfiability is knowable
as generating random constraint matrices will likely generate empty polyhedrons, or polyhedrons with many
eliminable constraints (e.g., in the constraint set consisting of cT x ≤ b and cT x ≤ b + ρ with ρ ̸= 0 one
constraint is always eliminable). This may seem unlikely, but notice how we can construct aligned c vectors
by linearly combining different rows (just like in LP-dual formulations). In practice, selecting a sufficiently
large class of problems may be enough as during the branch-and-cut process many sub-problems of different
characteristics are generated. Since our algorithm naturally decomposes the problem into sub-trees, we can
assume any policy that performs well on the entire tree also performs well on sub-polyhedra generated during
the branch-and-cut.

For this reason we consider the large class of Traveling Salesman Problem (TSP), which itself has rich
use-cases in planning and logistics, but also in optimal control, the manufacturing of microchips and DNA
sequencing (see Cook et al. (2011)). The TSP problem consists of finding a round-trip path in a weighted
graph, such that every vertex is visited exactly once, and the total path-length is minimal (for more details
and a mathematical formulation, see Appendix F).

For training, we would like to use random instances of TSP but generating them can be challenging. Random
sampling of distance matrices often results in easy problem instances, which do not challenge the solver.
Consequently, significant effort is being devoted into devising methods for generating random but hard
instances, particularly for problems like the TSP, where specific generators for challenging problems have
been designed (see Vercesi et al. (2023) and Rardin et al. (1993)). However, for our specific use cases, these
provably hard problems may not be very informative as they rarely contain efficiently selectable nodes.

To generate these intermediary-difficult problems, we adopt a multi-step approach: We begin by generating
random instances and then apply some mutation techniques (Bossek et al., 2019) to introduce variations, and
ensure diversity within the problem set. Next, we select the instance of median-optimality gap from the pool,
which produces an instance of typical difficulty. The optimality gap, representing the best normalized difference
between the lower and upper bound for a solution found during the solver’s budget-restricted execution,
serves as a crucial metric to assess difficulty. This method is used to produce 200 intermediary-difficult
training instances.

To ensure the quality of candidate problems, we exclude problems with more than 100% or zero optimality
gap, as these scenarios present challenges in reward assignment during RL. To reduce overall variance of
our training, we limit the ground-truth variance in optimality gap. Additionally, we impose a constraint on
the minimum number of nodes in the problems, discarding every instance with less than 100 nodes. This is
essential as we do not expect such small problems to give clean reward signals to the reinforcement learner.

5 Experiments

For our experiments we consider the instances of TSPLIB (Reinelt, 1991) and MIPLIB (Gleixner et al., 2021)
which are one of the most used datasets for benchmarking MIP frameworks and thusly form a strong baseline
to test against. We further test against the UFLP instance generator by (Kochetov & Ivanenko, 2005), which

2This accounts for the “phase-transition” in MIP solvers where optimality needs to be proved by closing the remaining
branches although the theoretically optimal point is already found (Morrison et al., 2016). Note that with a tuned implementation
we could run our method for more nodes, where we expect further improvements.

7

Published in Transactions on Machine Learning Research (12/2024)

specifically produces instances hard to solve for branch-and-bound, and against MINLPLIB (Bussieck et al.,
2003), which contains mixed integer nonlinear programs, to show generalization to vastly different problems.

We perform all our training and the experiments on a Ryzen 7 5800x3d CPU, where training completes after
approx. 6h. After the model is trained on the synthetic TSP instances, we freeze the network and apply it to
both the “in distribution” TSPLIB and the “out of distribution” UFLP, MINLPLIB and MIPLIB instances.
This is in contrast to prior work such as those from Labassi et al. (2022), who train separate models for all
instance types and do not manage to generalize to foreign instances (see Sec 5.4). Our source code is publicly
available and can be used to reproduce the experiments.3 We use the default hyperparameters as proposed
by CleanRL (Huang et al., 2021).

For our benchmarks on TSPLIB, UFLP, MIPLIB and MINLPLIB, we impose a time limit of 45s and
5min. We report the expected reward (Eq. 6), the geometric mean of the achieved gap for both our and the
baseline method, and the win-rate of our method as defined by gap(ours) ≤ gap(baseline).4 For longer runs
with a timelimit of 30min see Appendix D.

5.1 Baselines

We run both our method and SCIP for 45s. We then filter out all runs where SCIP has managed to explore
less than 5 nodes, as in these runs even perfect node selection makes no difference in performance. If we
included those in our average, we would have a significant number of lines where our node-selector has zero
advantage over the traditional SCIP one, not because our selector is better or worse than SCIP, but simply
because it wasn’t called in the first place. We set this time-limit relatively low as our prototype selector only
runs at the beginning of the solver process, meaning that over time the effects of the traditional solver take
over.

Additionally, we also consider an evaluation with a 5min time limit. For those runs, the limit until we switch
to the naive node selector is set to 650 nodes to account for the higher time limit. In general, the relative
performance of our method compared to the baseline increases with the 5min budget.

Finally, we also benchmark against the previous state-of-the-art by Labassi et al. (2022), which represents
optimal node selection as a comparison problem where a siamese network is used to compare different leaf
nodes against each other and picking the “highest” node as the next selection.

5.2 Results

While all results can be found in Appendix I we report an aggregated view for each benchmark in Table 1.
In addition to our “reward” metric we report the winning ratio of our method over the baseline, and the
geometric mean of the gaps at the end of solving (lower is better).

For benchmarking and training, we leave all settings, such as presolvers, primal heuristics, diving heuristics,
constraint specializations, etc. at their default settings to allow the baseline to perform best. All instances
are solved using the same model without any fine-tuning. We expect that tuning, e.g., the aggressiveness of
primal heuristics, increases the performance of our method, as it decreases the relative cost of evaluating
a neural network, but for the sake of comparison we use the default parameters for all our tests. We train
our node selection policy on problem instances according to Sec. 4.4 and apply it on problems from different
benchmarks.

3Source code: https://github.com/MattAlexMiracle/BranchAndBoundBisim
4All of these metrics give a slightly different view of the performance of our method: The reward metric is naturally

balanced to weight the improvement relative to the difficulty of the problem as reward captures the improvement over the
baseline in percent (higher is better). The downside of this is that because reward is balanced, it will assign the same reward
to an improvement of 5gap → 2.5gap as to 0.5gap → 0.25gap, which can overemphasize the impact of easy to solve instances.
Win-rate is a supplementary metric showing the percentage of instances where our model beats the baseline. This can help
show how the improvements are distributed among the instances (higher is better). Finally, comparing the geometric mean is
the gold-standard tool in measuring solver performance (Bestuzheva et al., 2021). In contrast to the reward metric, geometric
means are specifically designed to reject outliers increasing the robustness of the metric. We report both our geometric mean
and the SCIP baseline’s geometric mean (our gap < SCIP gap is better).

8

https://github.com/MattAlexMiracle/BranchAndBoundBisim

Published in Transactions on Machine Learning Research (12/2024)

Table 1: Performance across benchmarks (the policy only saw TSP instances during training). The reward
is the normalized improvement over the baseline (Eq. 6) averaged over the benchmarking dataset, the
win-rate shows how often our method produces a better (or in case of both methods reaching 0% gap equal)
optimality gap, and the geometric means are the shifted geometric means of optimality gaps computed over
the benchmarking dataset.

Benchmark Reward Win-rate geo-mean Ours geo-mean SCIP

TSPLIB (Reinelt, 1991) 0.184 ±0.52 0.50 0.931 0.957
UFLP (Kochetov & Ivanenko, 2005) 0.078 ±0.19 0.636 0.491 0.520
MINLPLib (Bussieck et al., 2003) 0.487 ±0.60 0.852 28.783 31.185
MIPLIB (Gleixner et al., 2021) 0.140 ±0.69 0.769 545.879 848.628
TSPLIB@5min 0.192 ±0.51 0.600 1.615 2.000
MINLPlib@5min 0.486 ±0.60 0.840 17.409 20.460
MIPLIB@5min 0.150 ±0.69 0.671 66.861 106.400

First, we will discuss TSPLIB itself, which while dramatically more complex than our selected training
instances, still contains instances from the same problem family as the training set (Sec. 5.2.1). Second,
we consider instances of the Uncapacitated Facility Location Problem (UFLP) as generated by Kochetov
& Ivanenko (2005)’s problem generator. These problems are designed to be particularly challenging to
branch-and-bound solvers due to their large optimality gap (Sec. I.1). While the first two benchmarks focused
on specific problems (giving you a notion of how well the algorithm does on the problem itself) we next
consider “‘meta-benchmarks” that consist of many different problems, but relatively few instances of each.
MINLPLIB (Bussieck et al., 2003) is a meta-benchmark for nonlinear mixed-integer programming (Sec. 5.3.1),
and MIPLIB (Gleixner et al., 2021) a benchmark for mixed integer programming (Sec. 5.3.2). We also
consider generalization against the uncapacitated facility location problem using a strong instance generator,
see Appendix I.1. Our benchmarks are diverse and complex and allow to compare algorithmic improvements
in state-of-the-art solvers.

5.2.1 TSPLIB

From an aggregative viewpoint we outperform the SCIP node selection by ≈ 20% in reward. However, the
overall “win-rate” is only 50% as the mean-reward is dominated by instances where our solver has significant
performance improvements: When our method loses, it loses by relatively little (e. g., att48: ours 0.287 vs
base 0.286), while when it wins, it usually does so by a larger margin.

Qualitatively, it is particularly interesting to study the problems our method still loses significantly against
SCIP (in four cases). A possible reason why our method significantly underperforms on Dantzig42 is that
our implementation is just too slow, considering that the baseline manages to evaluate ≈ 40% more nodes. A
similar observation can be made on eil51 where the baseline manages to complete 5× more nodes. rd100 is
also similar to Dantzig and eil51 as the baseline is able to explore 60% more nodes. KroE100 is the first
instance our method loses against SCIP, despite exploring a roughly equal amount of nodes. We believe that
this is because our method commits to the wrong subtree early and never manages to correct into the proper
subtree. Ignoring these four failure cases, our method is either on par (up to stochasticity of the algorithm)
or exceeds the baseline significantly.

It is also worthwhile to study the cases where both the baseline and our method hit 0 optimality gap. Both
algorithms reaching zero optimality gap can be seen as somewhat of a special case, since soley looking at
the solution value is insufficient to figure out which method performs better in practice. A quick glance at
instances like bayg29, fri26, swiss42 or ulysses16 shows that our method tends to finish these problems
with significantly fewer nodes explored. This is not captured by any of our metrics since those only look at
solution quality, not the efficiency of reaching that solution. If the quality of the baseline and ours is the
same, it makes sense to look at solution efficiency instead. Qualitatively, instances like bayg29 manage to
reach the optimum in only 1

3 the number of explored nodes, which showcases a significant improvement in
node-selection quality. It is worth noting that, due to the different optimization costs for different nodes, it

9

Published in Transactions on Machine Learning Research (12/2024)

not always true that evaluating fewer nodes is faster in wall-clock time. In practice, “fewer nodes is better”
seems to be a good rule-of-thumb to check algorithmic efficiency.

5.3 UFLP

The UFLP benchmark designed by Kochetov & Ivanenko (2005) is specifically built to be hard to solve by
branch-and-bound solvers due to its large duality gap. Despite this, our method manages to outperform the
baseline significantly. This is meaningful since this benchmark is a specially designed worst-case scenario:
The fact that our method still outperforms the baseline provides good evidence of the efficacy of the method.

5.3.1 MINLPLIB

We now consider MINLPs. To solve these, SCIP and other solvers use branching techniques that cut
nonlinear (often convex) problems from a relaxed master-relaxation towards true solutions. We consider
MINLPLib (Bussieck et al., 2003), a meta-benchmark consisting of hundreds of diverse synthetic and real-world
MINLP instances of varying different types and sizes. As some instances take hours to solve even a single
node, we filter out all problems with fewer than 5 nodes, as the performance in those cases is independent of
the node-selectors performance (Full results Appendix I.4).

Our method still manages to outperform SCIP, even on MINLPs, despite never having seen a single MINLP
problem before, see Table 1. Qualitatively, our method either outperforms or is on par with the vast majority
of problems, but also loses significantly in some problems, greatly decreasing the average. Studying the cases
our method loses convincingly (see Appendix I.4), we find a similar case as in TSPLIB, where the baseline
implementation is so much more optimized that significantly more nodes can get explored. We suspect the
reason our method has the biggest relative improvements on MINLPs is due to the fact that existing e.g.
pseudocost based selection methods do not perform as well on spatial-branch-and-bound tasks.

We expect features specifically tuned for nonlinear problems to increase performance by additional percentage
points, but as feature selection is orthogonal to the actual algorithm design, we leave more thorough discussion
of this to future work 5.

5.3.2 MIPLIB

Last, but not least we consider the meta-benchmark MIPLIB (Gleixner et al., 2021), which consists of
hundreds of real-world mixed-integer programming problems of varying size, complexity, and hardness. Our
method is either close to or exceeds the performance of SCIP, see Table 1.

Considering per-instance results, we see similar patterns as in previous failure cases: Often we underperform
on instances that need to close many nodes, as our method’s throughput lacks behind that of SCIP. We
expect that a more efficient implementation alleviates the issues in those cases.

We also see challenges in problems that are far from the training distribution, specifically satisfaction problems.
Consider fhnw-binpack4-48, were the baseline yields an optimality gap of 0 while we end at +∞. This is
due to the design of the problem: Instead of a classical optimization problem, this is a satisfaction problem,
where not an optimal value, but any feasible value is searched, i.e., we either yield a gap of 0 (solution found),
or a gap of +∞ (solution not found), as no other gap is possible. Notably, these kinds of problems may pose
a challenge for our algorithm, as the node-pruning dynamics of satisfying MIPs are different than the one for
optimizing MIPs: Satisfying MIPs can only rarely prune nodes since, by definition, no intermediary primally
valid solutions are ever found.

5.4 Comparison against “Learning to compare nodes”

Aside from comparisons against SCIP, we also compare against the previous state-of-the-art method by
Labassi et al. (2022). One complication when benchmarking against Labassi et al. (2022) is that they assume

5We are not aware of a learned BnB node-selection heuristic used for MINLPs, so guidance towards feature selection doesn’t
exist yet. Taking advantage of them presumably also requires to train on nonlinear problems.

10

Published in Transactions on Machine Learning Research (12/2024)

Table 2: Comparison against (Labassi et al., 2022). Note that we use a single network, evaluated out-of-
distribution, while (Labassi et al., 2022) uses different networks, all trained on that specific type of mixed
integer linear program. For all metrics, lower is better.

FMCNF GISP WPMS
Nodes Runtime Nodes Runtime Nodes Runtime

Labassi FMCNF 339.53 ± 5.90 29.45 ± 2.13 — — — —
Labassi GISP — — 1219 ± 1.73 26.50 ± 1.55 — —
Labassi WPMS — — — — 215.26 ± 1.97 10.46 ± 1.56
Ours 187.33 ± 3.67 19.99 ± 2.25 1216.16 ± 1.91 16.94 ± 1.49 221.73 ± 1.78 8.04 ± 1.72

a separate model for each problem type, while our method is already flexible enough to handle all problem
types within a single model. Since Labassi et al. (2022) needs to re-train for each instance type and only works
for linear problems, we cannot test it against MIPLIB and MINLPLIB. Instead, we reproduce all benchmarks
used by Labassi et al. (2022) (each with their own separate models), and compare against them against our
single model.

Labassi et al. (2022) considers the problem of minimizing time-to-solution and minimizing the number of
nodes explored over a set of synthetic problems. This means that rather than the problem of minimizing the
gap that can be reached within a given time limit (Table 1), here we always optimize to completion and track
the runtime elapsed until the problem is solved. We use the “transfer” instances and best performing models
provided by Labassi et al. (2022) and re-run the benchmarks on our hardware.

As we report in Table 2, we convincingly beat the prior work on every single benchmark (aside of WPMS
node count), despite our method never having seen any of these problem types during training. This is
surprising because Labassi et al. (2022) should have a convincing advantage due to the fact they not only
have a dedicated agents for every single one of their problems, they also use the same generator for their
training and testing instances. This implies that your single solver, evaluated out-of-distribution, manages to
outperform the specialized agents proposed by Labassi et al. (2022) evaluated in-distribution. In general, our
method improves upon Labassi et al. (2022) by between 30% and 56% with respect to runtime.

5.5 Ablations

We ablate the importance of the individual features used in our node selector using the SHAP (Lundberg
& Lee, 2017) interpretability algorithm (see Appendix H). We find that our node selector automatically
discovers best-practices from the classical node selection community, such as preferentially selecting nodes
with lower lower-bound, balanced by greedy “best node” selection. Specifically interesting, we find that our
selector significantly incorporates the amount of cutting planes applied to each node, hinting at a stronger
than expected connection between node-utility and cutting planes.

In addition to the feature importance analysis done above, we also investigate running the model without a
GNN: We find that when removing the GNN, the model tends to become very noisy and produce unreproducible
experiments. Considering only the cases where the GNN-free model does well, we still find the model needs
roughly 30% more nodes than the SCIP or our model with a GNN. More importantly, we notice the GNN-free
model diverges during training: starting with a reward of roughly zero, the model diverges down to a reward
of ≈ −0.2, which amounts to a score roughly 20% worse than SCIP. We therefore conclude that, at least for
our architecture, the GNN is necessary for both robustness and performance.

6 Limitations

There are still many open questions that give rise to future research or further investigation. First, while we
report initial results in our ablation study (see Sec. 5.5 and Appendix H) on the importance of features, feature
selection remains an area where we expect significant improvements, especially for nonlinear programming,
which contemporary methods do not account for.

11

Published in Transactions on Machine Learning Research (12/2024)

Second, one possible limitation is the limited runtime during training. Unfortunately, it is not computationally
tractable for us to train on such large time-frames. However, we demonstrate in Sec. 5, that our model
trained on a 45s time limit generalizes flawlessly to larger time limits of 5min. Hence we also expect our
method to work on considerably larger problem sets.

Third, we also expect significant improvements in performance through code optimization. An important area
for research lies in generalized instance generation: Instead of focusing on single domain instances for training
(e.g. from TSP), an instance generator should create problem instances with consistent, but varying levels of
difficulty across different problem domains. Further, the number of nodes used before switching to classical
node selectors is only done heuristically. Finding optimal switching points between different node selectors is
still an open problem even beyond learned solutions and represents an interesting place for further research.

7 Conclusion

We have proposed a novel approach to branch-and-bound node selection, that uses the structure of the
branch-and-bound process and reinforcement learning to convincingly beat classical SCIP and learnt node
selectors. By aligning our model with the branch-and-bound tree structure, we have demonstrated the
potential to develop a versatile heuristic that can be applied across various optimization problem domains,
despite being trained on a narrow set of instances. To our knowledge, this is the first demonstration of learned
node selection to mixed-integer (nonlinear) programming.

Acknowledgments

This work was supported by the Bavarian Ministry for Economic Affairs, Infrastructure, Transport and
Technology through the Center for Analytics-Data-Applications (ADA-Center) within the framework of
“BAYERN DIGITAL II”.

References
Marcin Andrychowicz, Anton Raichuk, Piotr Stańczyk, Manu Orsini, Sertan Girgin, Raphael Marinier,

Léonard Hussenot, Matthieu Geist, Olivier Pietquin, Marcin Michalski, Sylvain Gelly, and Olivier Bachem.
What Matters In On-Policy Reinforcement Learning? A Large-Scale Empirical Study, June 2020.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Thomas C. Bachlechner, Bodhisattwa Prasad Majumder, Huanru Henry Mao, G. Cottrell, and Julian
McAuley. Rezero is all you need: Fast convergence at large depth. In Conference on Uncertainty in
Artificial Intelligence, 2020. URL https://api.semanticscholar.org/CorpusID:212644626.

Christopher Bayliss, Geert De Maere, Jason Adam David Atkin, and Marc Paelinck. A simulation scenario
based mixed integer programming approach to airline reserve crew scheduling under uncertainty. Annals of
Operations Research, 252:335–363, 2017.

Ksenia Bestuzheva, Mathieu Besançon, Wei-Kun Chen, Antonia Chmiela, Tim Donkiewicz, Jasper van
Doornmalen, Leon Eifler, Oliver Gaul, Gerald Gamrath, Ambros Gleixner, Leona Gottwald, Christoph
Graczyk, Katrin Halbig, Alexander Hoen, Christopher Hojny, Rolf van der Hulst, Thorsten Koch, Marco
Lübbecke, Stephen J. Maher, Frederic Matter, Erik Mühmer, Benjamin Müller, Marc E. Pfetsch, Daniel
Rehfeldt, Steffan Schlein, Franziska Schlösser, Felipe Serrano, Yuji Shinano, Boro Sofranac, Mark Turner,
Stefan Vigerske, Fabian Wegscheider, Philipp Wellner, Dieter Weninger, and Jakob Witzig. The SCIP
Optimization Suite 8.0. Technical report, Optimization Online, December 2021.

Ksenia Bestuzheva, Antonia Chmiela, Benjamin Müller, Felipe Serrano, Stefan Vigerske, and Fabian Wegschei-
der. Global Optimization of Mixed-Integer Nonlinear Programs with SCIP 8, January 2023.

Jakob Bossek, Pascal Kerschke, Aneta Neumann, Markus Wagner, Frank Neumann, and Heike Trautmann.
Evolving diverse tsp instances by means of novel and creative mutation operators. In Proceedings of the 15th

12

https://api.semanticscholar.org/CorpusID:212644626

Published in Transactions on Machine Learning Research (12/2024)

ACM/SIGEVO Conference on Foundations of Genetic Algorithms, FOGA ’19, pp. 58–71, New York, NY,
USA, 2019. Association for Computing Machinery. ISBN 9781450362542. doi: 10.1145/3299904.3340307.

Michael R. Bussieck, Arne Stolbjerg Drud, and Alexander Meeraus. MINLPLib—a collection of test models
for mixed-integer nonlinear programming. INFORMS Journal on Computing, 15(1):114–119, February
2003. doi: 10.1287/ijoc.15.1.114.15159.

William J Cook, David L Applegate, Robert E Bixby, and Vasek Chvatal. The traveling salesman problem: a
computational study. Princeton university press, 2011.

George B. Dantzig. Reminiscences about the origins of linear programming. Operations Research Letters, 1
(2):43–48, 1982. ISSN 0167-6377. doi: https://doi.org/10.1016/0167-6377(82)90043-8.

Aveen Dayal, Linga Reddy Cenkeramaddi, and Ajit Jha. Reward criteria impact on the performance of
reinforcement learning agent for autonomous navigation. Applied Soft Computing, 126:109241, 2022. ISSN
1568-4946. doi: https://doi.org/10.1016/j.asoc.2022.109241. URL https://www.sciencedirect.com/
science/article/pii/S1568494622004586.

Marc Etheve, Zacharie Alès, Côme Bissuel, Olivier Juan, and Safia Kedad-Sidhoum. Reinforcement learning
for variable selection in a branch and bound algorithm. ArXiv, abs/2005.10026, 2020. URL https:
//api.semanticscholar.org/CorpusID:211551730.

Christodoulos A. Floudas and Xiaoxia Lin. Mixed integer linear programming in process scheduling: Modeling,
algorithms, and applications. Annals of Operations Research, 139:131–162, 2005.

Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact combinatorial
optimization with graph convolutional neural networks. In Neural Information Processing Systems, 2019.
URL https://api.semanticscholar.org/CorpusID:174797862.

Maxime Gasse, Quentin Cappart, Jonas Charfreitag, Laurent Charlin, Didier Ch’etelat, Antonia Chmiela,
Justin Dumouchelle, Ambros M. Gleixner, Aleksandr M. Kazachkov, Elias Boutros Khalil, Pawel Lichocki,
Andrea Lodi, Miles Lubin, Chris J. Maddison, Christopher Morris, Dimitri J. Papageorgiou, Augustin
Parjadis, Sebastian Pokutta, Antoine Prouvost, Lara Scavuzzo, Giulia Zarpellon, Linxin Yangm, Sha
Lai, Akang Wang, Xiaodong Luo, Xiang Zhou, Haohan Huang, Sheng Cheng Shao, Yuanming Zhu,
Dong Zhang, Tao Manh Quan, Zixuan Cao, Yang Xu, Zhewei Huang, Shuchang Zhou, Cheng Binbin,
He Minggui, Hao Hao, Zhang Zhiyu, An Zhiwu, and Mao Kun. The machine learning for combinatorial
optimization competition (ml4co): Results and insights. ArXiv, abs/2203.02433, 2022. URL https:
//api.semanticscholar.org/CorpusID:247245014.

Alan E. Gelfand and Adrian F. M. Smith. Sampling-based approaches to calculating marginal densities.
Journal of the American Statistical Association, 85(410):398–409, 1990. ISSN 01621459. URL http:
//www.jstor.org/stable/2289776.

Ambros Gleixner, Gregor Hendel, Gerald Gamrath, Tobias Achterberg, Michael Bastubbe, Timo Berthold,
Philipp Christophel, Kati Jarck, Thorsten Koch, Jeff Linderoth, Marco Lübbecke, Hans D. Mittelmann,
Derya Ozyurt, Ted K. Ralphs, Domenico Salvagnin, and Yuji Shinano. MIPLIB 2017: Data-driven
compilation of the 6th mixed-integer programming library. Mathematical Programming Computation, 13
(3):443–490, September 2021. ISSN 1867-2957. doi: 10.1007/s12532-020-00194-3.

He He, Hal Daume III, and Jason M Eisner. Learning to search in branch and bound algorithms. In
Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K.Q. Weinberger (eds.), Advances in Neural
Information Processing Systems, volume 27. Curran Associates, Inc., 2014.

Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye, and Jeff Braga. Cleanrl: High-quality single-
file implementations of deep reinforcement learning algorithms. ArXiv, abs/2111.08819, 2021. URL
https://api.semanticscholar.org/CorpusID:260421728.

13

https://www.sciencedirect.com/science/article/pii/S1568494622004586
https://www.sciencedirect.com/science/article/pii/S1568494622004586
https://api.semanticscholar.org/CorpusID:211551730
https://api.semanticscholar.org/CorpusID:211551730
https://api.semanticscholar.org/CorpusID:174797862
https://api.semanticscholar.org/CorpusID:247245014
https://api.semanticscholar.org/CorpusID:247245014
http://www.jstor.org/stable/2289776
http://www.jstor.org/stable/2289776
https://api.semanticscholar.org/CorpusID:260421728

Published in Transactions on Machine Learning Research (12/2024)

Shengyi Huang, Rousslan Fernand Julien Dossa, Antonin Raffin, Anssi Kanervisto, and Weixun Wang.
The 37 implementation details of proximal policy optimization. In ICLR Blog Track, 2022. URL
https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/. https://iclr-blog-
track.github.io/2022/03/25/ppo-implementation-details/.

Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. CoRR, abs/1312.6114, 2013. URL
https://api.semanticscholar.org/CorpusID:216078090.

Yuri Kochetov and Dmitry Ivanenko. Computationally Difficult Instances for the Uncapacitated Facility
Location Problem, pp. 351–367. Springer US, Boston, MA, 2005. ISBN 978-0-387-25383-1. doi: 10.1007/
0-387-25383-1_16.

Abdel Ghani Labassi, Didier Chételat, and Andrea Lodi. Learning to compare nodes in branch and bound
with graph neural networks. In Advances in Neural Information Processing Systems 35, 2022.

Ilya Loshchilov and Frank Hutter. Fixing weight decay regularization in adam. ArXiv, abs/1711.05101, 2017.
URL https://api.semanticscholar.org/CorpusID:3312944.

Scott M. Lundberg and Su-In Lee. A unified approach to interpreting model predictions. In Neural Information
Processing Systems, 2017. URL https://api.semanticscholar.org/CorpusID:21889700.

Govind Menon, M. Nabil, and Sridharakumar Narasimhan. Branch and bound algorithm for optimal
sensor network design. IFAC Proceedings Volumes, 46(32):690–695, 2013. ISSN 1474-6670. doi: https:
//doi.org/10.3182/20131218-3-IN-2045.00143. 10th IFAC International Symposium on Dynamics and
Control of Process Systems.

C. E. Miller, A. W. Tucker, and R. A. Zemlin. Integer programming formulation of traveling salesman
problems. J. ACM, 7(4):326–329, oct 1960. ISSN 0004-5411. doi: 10.1145/321043.321046.

Hans D. Mittelmann. Decison Tree for Optimization Software. https://plato.asu.edu/sub/nlores.html,
2021. Accessed: 2023-09-02.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra, and
Martin A. Riedmiller. Playing atari with deep reinforcement learning. ArXiv, abs/1312.5602, 2013. URL
https://api.semanticscholar.org/CorpusID:15238391.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Bellemare, Alex
Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie, Amir
Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis
Hassabis. Human-level control through deep reinforcement learning. Nature, 518(7540):529–533, February
2015. doi: 10.1038/nature14236. URL https://doi.org/10.1038/nature14236.

Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timothy P. Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement learning.
In International Conference on Machine Learning, 2016. URL https://api.semanticscholar.org/
CorpusID:6875312.

David R. Morrison, Sheldon H. Jacobson, Jason J. Sauppe, and Edward C. Sewell. Branch-and-bound
algorithms: A survey of recent advances in searching, branching, and pruning. Discrete Optimization, 19:
79–102, 2016. ISSN 1572-5286. doi: https://doi.org/10.1016/j.disopt.2016.01.005.

Lars Otten and Rina Dechter. A Case Study in Complexity Estimation: Towards Parallel Branch-and-Bound
over Graphical Models. Uncertainty in Artificial Intelligence - Proceedings of the 28th Conference, UAI
2012, October 2012.

Christopher W. F. Parsonson, Alexandre Laterre, and Thomas D. Barrett. Reinforcement learning for branch-
and-bound optimisation using retrospective trajectories. In AAAI Conference on Artificial Intelligence,
2022. URL https://api.semanticscholar.org/CorpusID:249192146.

14

https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/
https://api.semanticscholar.org/CorpusID:216078090
https://api.semanticscholar.org/CorpusID:3312944
https://api.semanticscholar.org/CorpusID:21889700
https://plato.asu.edu/sub/nlores.html
https://api.semanticscholar.org/CorpusID:15238391
https://doi.org/10.1038/nature14236
https://api.semanticscholar.org/CorpusID:6875312
https://api.semanticscholar.org/CorpusID:6875312
https://api.semanticscholar.org/CorpusID:249192146

Published in Transactions on Machine Learning Research (12/2024)

Max B. Paulus, Giulia Zarpellon, Andreas Krause, Laurent Charlin, and Chris J. Maddison. Learning to cut
by looking ahead: Cutting plane selection via imitation learning. In International Conference on Machine
Learning, 2022. URL https://api.semanticscholar.org/CorpusID:250072284.

Ronald L. Rardin, Craig A. Tovey, and Martha G. Pilcher. Analysis of a Random Cut Test Instance Generator
for the TSP. In Complexity in Numerical Optimization, pp. 387–405. WORLD SCIENTIFIC, July 1993.
ISBN 978-981-02-1415-9. doi: 10.1142/9789814354363_0017.

Gerhard Reinelt. TSPLIB—a traveling salesman problem library. ORSA Journal on Computing, 3(4):376–384,
November 1991. doi: 10.1287/ijoc.3.4.376.

Christian P. Robert and Gareth O. Roberts. Rao-blackwellization in the mcmc era. 2021. URL https:
//api.semanticscholar.org/CorpusID:230437867.

Lara Scavuzzo, F. Chen, Didier Ch’etelat, Maxime Gasse, Andrea Lodi, N. Yorke-Smith, and Karen I. Aardal.
Learning to branch with tree mdps. ArXiv, abs/2205.11107, 2022. URL https://api.semanticscholar.
org/CorpusID:248987388.

J. Schulman, Philipp Moritz, S. Levine, Michael I. Jordan, and P. Abbeel. High-Dimensional Continuous
Control Using Generalized Advantage Estimation. CoRR, June 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization
algorithms. ArXiv, abs/1707.06347, 2017.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez, Marc
Lanctot, L. Sifre, Dharshan Kumaran, Thore Graepel, Timothy P. Lillicrap, Karen Simonyan, and Demis
Hassabis. Mastering chess and shogi by self-play with a general reinforcement learning algorithm. ArXiv,
abs/1712.01815, 2017. URL https://api.semanticscholar.org/CorpusID:33081038.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Yunhao Tang, Shipra Agrawal, and Yuri Faenza. Reinforcement learning for integer programming: Learning
to cut. ArXiv, abs/1906.04859, 2019. URL https://api.semanticscholar.org/CorpusID:186206599.

Mark Turner, Thorsten Koch, Felipe Serrano, and Michael Winkler. Adaptive cut selection in mixed-integer
linear programming. Open J. Math. Optim., 4:1–28, 2022. URL https://api.semanticscholar.org/
CorpusID:247026030.

Eleonora Vercesi, Stefano Gualandi, Monaldo Mastrolilli, and Luca Maria Gambardella. On the generation
of metric TSP instances with a large integrality gap by branch-and-cut. Mathematical Programming
Computation, 15(2):389–416, June 2023. ISSN 1867-2957. doi: 10.1007/s12532-023-00235-7.

Zhihai Wang, Xijun Li, Jie Wang, Yufei Kuang, Min jie Yuan, Jianguo Zeng, Yongdong Zhang, and Feng
Wu. Learning cut selection for mixed-integer linear programming via hierarchical sequence model. ArXiv,
abs/2302.00244, 2023. URL https://api.semanticscholar.org/CorpusID:256459559.

Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. Empirical evaluation of rectified activations in convolutional
network. ArXiv, abs/1505.00853, 2015. URL https://api.semanticscholar.org/CorpusID:14083350.

Kaan Yilmaz and Neil Yorke-Smith. A Study of Learning Search Approximation in Mixed Integer Branch and
Bound: Node Selection in SCIP. AI, 2(2):150–178, April 2021. ISSN 2673-2688. doi: 10.3390/ai2020010.

15

https://api.semanticscholar.org/CorpusID:250072284
https://api.semanticscholar.org/CorpusID:230437867
https://api.semanticscholar.org/CorpusID:230437867
https://api.semanticscholar.org/CorpusID:248987388
https://api.semanticscholar.org/CorpusID:248987388
https://api.semanticscholar.org/CorpusID:33081038
https://api.semanticscholar.org/CorpusID:186206599
https://api.semanticscholar.org/CorpusID:247026030
https://api.semanticscholar.org/CorpusID:247026030
https://api.semanticscholar.org/CorpusID:256459559
https://api.semanticscholar.org/CorpusID:14083350

Published in Transactions on Machine Learning Research (12/2024)

Appendix

A Features

Table 3 lists the features used on every individual node. The features split into two different types: One being
“model” features, the other being “node” features. Model features describe the state of the entire model at
the currently explored node, while node features are specific to the yet-to-be-solved added node. We aim
to normalize all features with respect to problem size, as e. g., just giving the lower-bound to a problem is
prone to numerical domain shifts. For instance a problem with objective cT x, x ∈ P is inherently the same
from a solver point-of-view as a problem 10cT x, x ∈ P , but would give different lower-bounds. Since NNs are
generally nonlinear estimators, we need to make sure such changes do not induce huge distribution shifts.
We also clamp the feature values between [−10, 10] which represent “infinite” values, which can occur, for
example in the optimality gap. Last but not least, we standardize features using empirical mean and standard
deviation. These features are inspired by prior work, such as Labassi et al. (2022); Yilmaz & Yorke-Smith

Table 3: Features used per individual node.

m
od

el
fe

at
ur

es Number of cuts applied normalized by total number of constraints
Number of separation rounds
optimality gap
lp iterations
mean integrality gap
percentage of variables already integral
histogram of fractional part of variables 10 evenly sized buckets

no
de

fe
at

ur
es

depth of node normalized by total number of nodes
node lowerbound normalized by min of primal and dual bound
node estimate normalized by min of primal and dual bound

(2021), but adapted to the fact that we do not need e. g., explicit entries for the left or right child’s optimality
gap, as these (and more general K-step versions of these) can be handled by the GNN.

Further, to make batching tractable, we aim to have constant size features. This is different from e. g., Labassi
et al. (2022), who utilize flexibly sized graphs to represent each node. The upside of this approach is that
certain connections between variables and constraints may become more apparent, with the downside being
the increased complexity of batching these structures and large amounts of nodes used. This isn’t a problem
for them, as they only consider pairwise comparisons between nodes, rather than the entire branch-and-bound
graph, but for us would induce a great deal of complexity and computational overhead, especially in the larger
instances. For this reason, we represent flexibly sized inputs, such as the values of variables, as histograms:
i.e., instead of having k nodes for k variables and wiring them together, we produce once distribution of
variable values with 10-buckets, and feed this into the network. This looses a bit of detail in the representation,
but allows us to scale to much larger instances than ordinarily possible.

In general, these features are not optimized, and we would expect significant improvements from more
well-tuned features. Extracting generally meaningful features from branch-and-bound is a nontrivial task and
is left as a task for future work.

B Theoretical Derivation

One naive way of parameterizing actions is selecting probabilistically by training the probability of going to
the left or right child at any node. This effectively gives a hierarchical Bernoulli description of finding a path
in the tree. A path is simply a sequence of left (“zero direction”) and right (“one direction”) choices, with
the total probability of observing a path being the likelihood of observing a specific chain

p(leaf) =
∏

i∈P(root,leaf)

pi,

16

Published in Transactions on Machine Learning Research (12/2024)

Figure 2: Naive approach using recursive selection. The probabilities are computed based on which “fork” of
the tree is traveled. Sampling this can be done by sampling left or right based on pi

with pi being the i’th decision in the graph (see Fig 2). Node selection can now be phrased as the likelihood
of a random (weighted) walk landing at the specified node. However, using this parametrization directly
would yield a significant number of problems:

Removing illegal paths from the model is quite challenging to do with sufficiently high performance. If a node
gets pruned or fully solved, the probability to select this node has to be set to zero. This information has to
be propagated upward the tree to make sure that the selection never reaches a “dead-end”. This is possible,
but turns out to be rather expensive to compute since it needs to evaluate the entire tree from leaves to root.

From a theoretical point of view, the hierarchical Bernoulli representation also has a strong prior towards
making selections close to the root, as the probability of reaching a node a depth K consists of p1 · p2 · · · · · pK

selections. Since all pi are set to an uninformative prior 0 < pi < 1, the model at initialization has an
increased likelihood to select higher nodes in the tree. Considering that classical methods specifically mix
plunging heuristics into their selection to get increased depth exploration (see Sec. 3), this “breadth over depth”
initialization is expected to give low performance. Therefore, one would need to find a proper initialization
that allows the model to e. g., uniformly select nodes independent of depth to get good initialization.

The fact that multiple sampling sites exist in this method also poses issues with RL, as small errors early in
the tree can have catastrophic effects later. This means the tree based model is a significantly higher variance
estimator than the estimator we propose in Sec 4.3, which yields much worse optimization characteristics. It
is well established in existing deep learning (e. g., (Kingma & Welling, 2013)) and general Bayesian Inference
(e. g., (Robert & Roberts, 2021; Gelfand & Smith, 1990)) literature, that isolating or removing sampling sites
can lead to lower variance, and therefore much more performant, statistical estimators.

Using those insights, we can now rewrite this naive approach into the one we propose in Sec. 4.3: First,
instead of sampling just one path, we can sample all possible paths and compute the likelihood for each. The
result will be a probability p at every possible leaf. If one parameterizes this as a logarithmic probability the
likelihood of sampling any individual leaf, can be written as

log pleaf =
∑

i∈P (root,leaf)

log pi. (13)

We can further assume that the log p’s are given as unnormalized logits W ′ and only normalize them at the
end such that to likelihood of all leaves together is 1.

This already gives an increase in performance, as the paths can be computed in parallel without needing
iterated random sampling, which tends to be a very expensive operation. One also has fewer discrete choices,

17

Published in Transactions on Machine Learning Research (12/2024)

meaning fewer backpropagation graph-breaks, which improves overall stability. The change to unnormalized
logits acts essentially as a reparametrization trick (for other examples of reparametrization, see (Kingma &
Welling, 2013)).

If one considers unnormalized log-probabilities, which have a range (−∞,∞), this scheme becomes very
similar to the one we ended up using in Sec. 4.3. Let f(node, tree) denote the unnormalized probabilities
such that p(node, tree) = f(node,tree)

Z . One can compute the likelihood of selecting a specific node as:

p(leaf|tree) = f(leaf, tree)∑
c∈C f(c, tree) normalization

= exp(log(f(leaf, tree))∑
c∈C exp(log(f(c, tree) log f are unnormalized logits

= exp(W ′(leaf))∑
c∈C exp(W ′(c)) definition W’ as unnormalized logit

= softmaxleaf{W ′(c)|∀c ∈ C } definition softmax,

where softmaxleaf refers to the softmax-entry associated with leaf. The resulting decomposition is, while not
the same, equivalent to the original Bernoulli decomposition (in the sense that for any Bernoulli decomposition
there exists a softmax-based decomposition). Beyond the massive reduction in sampling sites from O(depth)
to a single sampling site, phrasing the problem using unnormlized-log p representations gives rise to additional
optimizations:

Firstly, to achieve uniform likelihood for all nodes at the beginning of training, we simply have to initialize
W (n) = 0 for all nodes, which can be done by setting the output weights and biases to zero (in practice we
set bias to zero and weights to a small random value).

Secondly to account for pruned or solved nodes, we do not need to change the unnormalized probabilities.
Instead, we simply only sample the paths associated with selectable nodes, as we know the likelihood of
selecting a pruned or solved node is zero. This means we can restrict ourselves to only evaluating the
candidate paths C , rather than all paths (see Eq. 9).

The last modification we made in our likelihood computation (see Eq. 8), is to normalize the weights based on
depth. This is done mainly for numerical stability, but in our Bayesian framework is equivalent to computing
the softmax-normalization Eq. 9 using weights inversely proportional to depth. The resulting algorithm
is much more stable and performant than the naive parametrization. In early implementations we used
the recursive-sampling approach to compute likelihoods, but the resulting scheme did not manage to reach
above random results on the training set, presumably due to the higher computational burden and worse
initialization. There are also other advantages to our parametrization, such as the fact that one can easily
include a sampling temperatur τ into the process

node ∼ softmax{W ′(c)/τ |∀c ∈ C }

which can be nice to tune the model more into the direction “exploitation” during testing. For our later
benchmarking (Sec 5) we keep τ = 1 (i. e., no temperature), as it would introduce a further tunable
hyperparameter, but this could be interesting for future work.

This construction has interesting parallels to Monte-Carlo Tree Search (MCTS) Silver et al. (2017) based
reinforcement learning methods. The difference in our method is that we consider iterative updates to a
policy distribution π rather than a Q-function, and therefore can be seen as a policy-based tree search scheme:
While traditional MCTS uses variants of UCB-scores to guide the search, our method can be thought of as
variants of Thompson sampling to facilitate the exploration-exploitation tradeoff. We leave a more thorough
investigation of this to future work.

18

Published in Transactions on Machine Learning Research (12/2024)

Table 4: Performance across benchmarks (the policy only saw TSP instances during training). The 5min
runs use the same model, evaluated for the first 650 nodes, and processed according to Sec. 5.1.

Benchmark Reward Utility Utility/Node Win-rate geo-mean Ours geo-mean SCIP

TSPLIB (Reinelt, 1991) 0.184 0.030 0.193 0.50 0.931 0.957
UFLP (Kochetov & Ivanenko, 2005) 0.078 0.093 -0.064 0.636 0.491 0.520
MINLPLib (Bussieck et al., 2003) 0.487 0.000 0.114 0.852 28.783 31.185
MIPLIB (Gleixner et al., 2021) 0.140 -0.013 0.208 0.769 545.879 848.628
TSPLIB@5min 0.192 0.056 0.336 0.600 1.615 2.000
MINLPlib@5min 0.486 -0.012 0.078 0.840 17.409 20.460
MIPlib@5min 0.150 -0.075 0.113 0.671 66.861 106.400

C Additional metrics

Aside from the previously discussed Reward in Section 4.1, we also considered two different ways of measuring
the quality of our method compared to SCIP. While both of these have theoretical problems, we still find
them interesting to consider as they act as additional reference points for the behavior of the policies.

Utility defines the difference between both methods normalized using the maximum of both gaps:

Utility =
(

gap(scip)− gap(node selector)
max (gap(node selector), gap(scip))

)
. (14)

The reason we do not use this as a reward measure is because we empirically found it to produce worse
models. This is presumably because some of the negative attributes of our reward, e.g., the asymmetry of the
reward signal, lead to more robust policies. In addition, the utility metric gives erroneous measurements
when both models hit zero optimality gap. This is because utility implicitly defines 0

0 = 0, rather than
reward, which defines it as 0

0 = 1. In some sense the utility measurement is accurate, in that our method
does not improve upon the baseline. On the other hand, our method is already provably optimal as soon as
it reaches a gap of 0%. In general, utility compresses the differences more than reward which may or may not
be beneficial in practice.

Utility per Node normalizes Utility by the number of nodes used during exploration:

Utility/Node =
(

scip− selector
max (selector, scip)

)
, (15a)

where selector = gap(node selector)
nodes(node selector) and scip = gap(scip)

nodes(scip) . The per-node utility gives a proxy for the total
amount of “work” done by each method. However, it ignores the individual node costs, as solving the different
LPs may take different amounts of resources (a model with higher “utility/node” is not necessarily more
efficient as our learner might pick cheap but lower expected utility nodes on purpose). Further, the metric
is underdefined: comparing two ratios, a method may become better by increasing the number of nodes
processed, but keeping the achieved gap constant. In practice the number of nodes processed by our node
selector is dominated by the implementation rather than the node choices, meaning we can assume it is
invariant to changes in policy. Another downside arises if both methods reach zero optimality gap, the
resulting efficiency will also be zero regardless of how many nodes we processed. As our method tend to reach
optimality much faster (see Sec. 5 and Appendix I), all utility/node results can be seen as a lower-bound for
the actual efficiency.

D Comparisons of Runtime to completion

We also compare the runtime of our selector against the SCIP baseline on TSPLIB. For this we set a maximum
time limit of 30min and run both methods. It is worth noting that due to the inherent difficulty of TSPLIB, a
significant number of problems are still unsolved after 30min, in which case these models are simply assigned
the maximum time as their overall completion time. Note that this also implies that the SCIP solver itself not
capable of solving these problems due to their scale. We reckon that this is also the reason why e.g., Labassi

19

Published in Transactions on Machine Learning Research (12/2024)

Method Runtime shifted geometric mean Nodes Processed geometric mean
SCIP 1016.61s 4122.67
Ours 1003.03s 2735.33

Table 5: The shifted geometric mean (shifted by +10) of runtime and number of nodes processed.

et al. (2022) does not even attempt to benchmark on these large scale problems. Our method outperforms
the baseline, however due to the fact that our method aims to improve the quality of early selections in
particular, the amount of improvement is rather small. Further, our method is fundamentally undertrained
to adequately deal with longer time horizons and we would assume the effect of our method is larger the
longer the model is trained. Despite this being a worst-case evaluation scenario, our method manages to
outperform the baseline in both runtime and number of nodes needed.

Interestingly, we also manage to reach this superior performance while utilizing only about half the number
of nodes. This discrepancy cannot be explained by just considering the slowdown due to our policy needing
to be evaluated, as, while it is a significant overhead due to the Python implementation, it is very far from
being large enough to justify a 50% slowdown over the course of 30min. This also shows more generally that
even if one restricts themselves to only processing the beginning of the branch-and-bound tree, one can reach
superior performance to the standard node-selection schemes.

E Architecture

Our network consists of two subsystems: First, we have the feature embedder that transforms the raw features
into embeddings, without considering other nodes this network consists of one linear layer |dfeatures| → |dmodel|
with LeakyReLU (Xu et al., 2015) activation followed by two |dmodel| → |dmodel| linear layers (activated by
LeakyReLU) with skip connections. We finally normalize the outputs using a Layernorm (Ba et al., 2016)
without trainable parameters (i. e., just shifting and scaling the feature dimension to a normal distribution).

Second, we consider the GNN model, whose objective is the aggregation across nodes according to the tree
topology. This consists of a single LeakyReLU activated layer with skip-connections. We use ReZero (Bach-
lechner et al., 2020) initialization to improve the convergence properties of the network. Both the weight and
value heads are simple linear projections from the embedding space. Following the guidance in (Andrychowicz
et al., 2020), we make sure the value and weight networks are independent by detaching the value head’s
gradient from the embedding network.

For this work we choose |dmodel| = 512, but we did not find significant differences between different model
sizes past a width of 256. For training we use AdamW Loshchilov & Hutter (2017) with a standard learning
rate of 3 · 10−4 and default PPO parameters.

F TSP-as-MILP Formulation

In general, due to the fact that TSP is amongst the most studied problems in discrete optimization, we can
expect existing mixed-integer programming systems to have rich heuristics that provide a strong baseline for

20

Published in Transactions on Machine Learning Research (12/2024)

our method. Mathematically, we choose the Miller–Tucker–Zemlin (MTZ) formulation (Miller et al., 1960):

min
x

n∑
i=1

n∑
j ̸=i,j=1

cijxij

subject to
n∑

j=1,i̸=j

xij = 1 ∀i = 1, . . . , n

n∑
i=1,i̸=j

xij = 1 ∀j = 1, . . . , n

u1 − uj + (n− 1)xij ≤ n− 2 2 ≤ i ̸= j ≤ n

2 ≤ ui ≤ n 2 ≤ i ≤ n

ui ∈ Z, xij ∈ {0, 1}

Effectively this formulation keeps two buffers: one being the actual (i, j)-edges travelled xij , the other being a
node-order variable ui that makes sure that ui < uj if i is visited before j. There are alternative formulations,
such as the Dantzig–Fulkerson–Johnson (DFJ) formulation, which are used in modern purpose-built TSP
solvers, but those are less useful for general problem generation: The MTZ formulation essentially relaxes the
edge-assignments and order constraints, which then are branch-and-bounded into hard assignments during
the solving process. This is different to DFJ, which instead relaxes the “has to pass through all nodes”
constraint. DFJ allows for subtours (e. g., only contain node A, B, C but not D, E) which then get slowly
eliminated via the on-the-fly generation of additional constraints. To generate these constraints one needs
specialised row-generators which, while very powerful from an optimization point-of-view, make the algorithm
less general as a custom row-generator has to intervene into every single node. However, in our usecase
we also do not really care about the ultimate performance of individual algorithms as the reinforcement
learner only looks for improvements to the existing node selections. This means that as long as the degree of
improvement can be adequately judged, we do not need state-of-the-art solver implementations to give the
learner a meaningful improvement signal.

G Uncapacitated facility location Problem

Mathematically, the uncapacitated facility location problem can be seen as sending a product zij from facility
i to consumer j with cost cij and demand dj . One can only send from i to j if facility i was built in the first
place, which incurs cost fi. The overall problem therefore is

min
x

n∑
i=1

m∑
i=1

cijdjzij +
n∑

i=0
fixi

subject to
n∑

j=1,i̸=j

zij = 1 ∀i = 1, . . . , m

n∑
i=1,i̸=j

zij ≤Mxi ∀j = 1, . . . , n

zij ∈ {0, 1} ∀i, j = 1, . . . , n

xi ∈ {0, 1} ∀i = 1, . . . , n

where M is a suitably large constant representing the infinite-capacity one has when constructing xi = 1.
One can always choose M ≥ m since that, for the purposes of the polytop is equivalent to setting M to literal
infinity. This is also sometimes referred to as the “big M” method.

The instance generator by Kochetov & Ivanenko (2005) works by setting n = m = 100 and setting all opening
costs at 3000. Every city has 10 “cheap” connections sampled from {0, 1, 2, 3, 4} and the rest have cost 3000,
which represents infinity (i. e., also invoking the big M method).

21

Published in Transactions on Machine Learning Research (12/2024)

H Feature Importance

We try to interpret the learned node-selection heuristic by applying the KernelSHAP (Lundberg & Lee,
2017) method. SHAP methods try to estimate the feature importance by measuring the performance of an
estimator where some portion of the features are replaced with a “neutral” element. Doing this with a large
enough set, one is able to extract the feature importance in the form of the magnitude of the change between
the expected value of the estimator and the value the estimator would have had if a specific feature were
absent.

Analyzing our RL method with SHAP has two significant limitations: Firstly, we ignore the impact of message
passing on the model and instead analyze every node as a leaf node. This is of relatively small impact as the
time where a node was selected it had to have been a leaf node anyways, so the plots faithfully show the
model output at selection time.

The second limitation is that we do not have an iid. dataset, but instead have to build one from the
environment first. To build that dataset, we could sample random BnB trees and evaluate on the nodes, but
this would mean we evaluate our model completely out-of-distribution, as random selection will most likely lead
to states the model would never want to reach and is therefore ill equipped to handle. Therefore, we instead
build our dataset by running our node-selector on a subset of MIPLIB to gather our importance-evaluation
data. This has the downside that the expected value of our selection network is higher than in random
selection, since the model is guided towards selecting higher value nodes.

With these caveats in mind, one can see in fig. 3 that our node selector relies significantly on the node
lowerbound for setting its weight. This makes sense: in node-selection there is a fundamental tension between
raising the lower bound and opportunistically searching for new primal solutions. The current SCIP default
“hybrid best bound search” does exactly that, just using hand-made heuristics where a nodes are selected
based on a mixture of following the currently best bound nodes, and plunging depth-first search to find
better solutions. However, as can be seen in our benchmarks (tab 1), we beat SCIP’s default selector quite
significantly, which implies a nontrivial interaction in the remaining features.

Looking at the beeswarm plot 4, we observe that our model preferentially picks nodes which, in addition to a
low node lowerbound, also uses nodes which have few variables with an integrality gap of 0.2 and 0.3, has a
lot of cuts applied, and has a high expected integrality gap. If we considered a node with all of these features
(and assume there would not be any nonlinear value-dampening effects), such a node would be a prime
candidate for having good child nodes: A node with a low lowerbound means that the node still has significant
room for improvement, while having a lot of cuts applied means that the node’s solution is sufficiently close
to existing integral points to make it feasible to find better values. Looking further into the features, one can
also see that the model dislikes nodes that already have a significant number of “already integral” variables.
This makes sense as nodes with a significant number of integral variables that are not solved already (i. e.,
they have children to split on), can be quite hard to complete while not giving a significant improvement in
solution quality. This is because most likely a primal heuristic has already found the optimal value of that
node, but branch-and-bound still needs a significant number of trials to prove that the found value is optimal
in that subtree.

In short, our solver picks the nodes with the highest degree of possible improvement (low lowerbound), while
also favoring nodes that have more information (more cuts applied) and presumably are nontrivial to solve
via heuristics (high mean to integral gap/low “already integral” ratio).

In general, interpreting dynamic RL policies is highly nontrivial, especially if the estimator is nonlinear, but
the interactions we can clearly see in the SHAP plots indicates that the learned policy is reasonably well
grounded in existing best-practices for node selectors.

I Full Results

The following two sections contain the per-instance results on the two “named” benchmarks TSPLIB (Reinelt,
1991) and MINLPLIB (Bussieck et al., 2003). We test against the strong SCIP 8.0.4 baseline. Due to
compatibility issues, we decided not to test against (Labassi et al., 2022) or (He et al., 2014): These

22

Published in Transactions on Machine Learning Research (12/2024)

Figure 3: Barplot showing feature importance of individual nodes using the KernelSHAP (Lundberg & Lee,
2017) method.

Figure 4: Beeswarm plot showing feature importance of individual nodes using the KernelSHAP (Lundberg
& Lee, 2017) method.

23

Published in Transactions on Machine Learning Research (12/2024)

methods were trained against older versions of SCIP, which not only made running them challenging, but
also would not give valid comparisons as we cannot properly account for changes between SCIP versions.
Labassi et al. (2022) specifically relies on changes to the SCIP interface, which makes porting to SCIP 8.0.4
intractable. In general, this shouldn’t matter too much, as SCIP is still demonstrably the state-of-the-art
non-commercial mixed-integer solver, which frequently outperforms even closed-source commercial solvers
(see Mittelmann (2021) for thorough benchmarks against other solvers), meaning outperforming SCIP can be
seen as outperforming the state-of-the-art.

I.1 Kochetov-UFLP

To demonstrate the generalizability of the learned heuristics, we test our method on the Uncapacitated
Facility Location Problem (see Appendix G) without further finetuning, i.e., we only train on TSP instances
and never show the algorithm any other linear or nonlinear problem. For testing, we generate 1000 instances
using the well-known problem generator by Kochetov & Ivanenko (2005), which was designed to have large
optimality gaps, making these problems particularly challenging.

Our method performs very similar to the highly optimized baseline, despite never having seen the UFL
problem, see Table 1. We argue that this is specifically because our method relies on tree-wide behaviour,
rather than individual features to make decisions. We further hypothesize that the reason for the advantage
over the baseline being so small is due to the fact that UFLP consists of “adversarial examples” to the
branch-and-bound method where cuts have reduced effectiveness. This means clever node-selection strategies
have limited impact on overall performance.

An interesting aspect is that our method processes more nodes than the baseline, which also leads to the loss
in node-efficiency. This implies that our method selects significantly easier nodes, as ordinarily our solver is
slower just due to the additional overhead. Considering that this benchmark was specifically designed to
produce high optimality gaps, it makes sense that our solver favours node quantity over quality, which is an
interesting emergent behaviour of our solver.

I.2 TSPLIB results

24

Published in Transactions on Machine Learning Research (12/2024)

Table 6: Results on TSPLIB (Reinelt, 1991) after 45s runtime. Note that we filter out problems in which
less than 5 nodes were explored as those problems cannot gain meaningful advantages even with perfect
node selection. “Name” refers to the instances name, “Gap Base/Ours” corresponds to the optimization gap
achieved by the baseline and our method respectively (lower is better), “Nodes Base/Ours” to the number of
explored Nodes by each method, and “Reward”, “Utility” and “Utility Node” to the different performance
measures as described in Section 5.

Name Gap Ours Gap Base Nodes Ours Nodes Base Reward Utility Utility/Node
att48 0.287 0.286 1086 2670 -0.002 -0.002 0.593
bayg29 0.000 0.000 2317 7201 1.000 0.000 0.000
bays29 0.000 0.036 11351 10150 1.000 1.000 0.997
berlin52 0.000 0.000 777 1634 1.000 0.000 0.000
bier127 2.795 2.777 23 25 -0.007 -0.007 0.074
brazil58 0.328 0.644 1432 2182 0.491 0.491 0.666
burma14 0.000 0.000 96 65 1.000 0.000 0.000
ch130 8.801 8.783 48 43 -0.002 -0.002 -0.106
ch150 7.803 7.802 18 18 -0.000 -0.000 -0.000
d198 0.582 0.582 10 11 -0.000 -0.000 0.091
dantzig42 0.185 0.100 2498 3469 -0.847 -0.459 -0.248
eil101 2.434 2.430 31 61 -0.002 -0.002 0.491
eil51 0.178 0.017 828 4306 -1.000 -0.907 -0.514
eil76 0.432 1.099 309 709 0.607 0.607 0.829
fri26 0.000 0.000 1470 6721 1.000 0.000 0.000
gr120 7.078 7.083 41 43 0.001 0.001 0.047
gr137 0.606 0.603 30 25 -0.006 -0.006 -0.171
gr17 0.000 0.000 92 123 1.000 0.000 0.000
gr24 0.000 0.000 110 207 1.000 0.000 0.000
gr48 0.192 0.340 586 2479 0.435 0.435 0.866
gr96 0.569 0.552 93 182 -0.032 -0.031 0.472
hk48 0.071 0.106 2571 2990 0.324 0.324 0.419
kroA100 8.937 8.945 102 233 0.001 0.001 0.563
kroA150 11.343 11.340 23 21 -0.000 -0.000 -0.087
kroA200 13.726 13.723 5 7 -0.000 -0.000 0.286
kroB100 7.164 7.082 83 109 -0.011 -0.011 0.230
kroB150 10.965 10.965 16 14 0.000 0.000 -0.125
kroB200 11.740 11.740 7 6 0.000 0.000 -0.143
kroC100 8.721 8.754 118 133 0.004 0.004 0.116
kroD100 7.959 7.938 70 111 -0.003 -0.003 0.368
kroE100 8.573 2.952 105 108 -1.000 -0.656 -0.646
lin105 2.005 2.003 98 149 -0.001 -0.001 0.341
pr107 1.367 1.336 128 217 -0.024 -0.023 0.396
pr124 0.937 0.935 64 61 -0.001 -0.001 -0.048
pr136 2.351 2.350 31 45 -0.000 -0.000 0.311
pr144 2.228 2.200 47 37 -0.012 -0.012 -0.222
pr152 2.688 2.683 14 41 -0.002 -0.002 0.658
pr226 1.091 1.092 6 6 0.001 0.001 0.001
pr76 0.534 0.476 201 855 -0.123 -0.109 0.736
rat99 0.853 0.849 41 80 -0.005 -0.005 0.485
rd100 5.948 4.462 100 166 -0.333 -0.250 0.197
si175 0.270 0.270 8 7 0.000 0.000 -0.125
st70 0.586 3.018 379 1068 0.806 0.806 0.931
swiss42 0.000 0.000 1075 1133 1.000 0.000 0.000
ulysses16 0.000 0.000 18322 19553 1.000 0.000 0.000
ulysses22 0.103 0.127 13911 13313 0.191 0.191 0.154
Mean — — 1321 1799 0.184 0.030 0.193

25

Published in Transactions on Machine Learning Research (12/2024)

I.3 MIPLIB results

Table 7: Results on MIPLIB (Gleixner et al., 2021) after 45s runtime. Note that we filter out problems in
which less than 5 nodes were explored as those problems cannot gain meaningful advantages even with perfect
node selection. “Name” refers to the instances name, “Gap Base/Ours” corresponds to the optimization gap
achieved by the baseline and our method respectively (lower is better), “Nodes Base/Ours” to the number of
explored Nodes by each method, and “Reward”, “Utility” and “Utility Node” to the different performance
measures as described in Section 5. Note that all results where achieved with a policy only trained on TSP
instances

Name Gap Ours Gap Base Nodes Ours Nodes Base Reward Utility Utility/Node

30n20b8 2.662 ∞ 147 301 1.000 1.000 1.000
50v-10 0.101 0.113 303 1094 0.103 0.103 0.752
CMS750_4 0.100 0.072 68 281 -0.389 -0.280 0.664
air05 0.000 0.000 248 523 1.000 0.000 0.000
assign1-5-8 0.085 0.087 17466 23589 0.030 0.030 0.282
binkar10_1 0.000 0.000 2843 2270 1.000 0.000 0.000
blp-ic98 0.127 0.127 26 43 0.001 0.001 0.396
bnatt400 ∞ ∞ 547 1568 0.000 0.000 0.651
bnatt500 ∞ ∞ 148 936 0.000 0.000 0.842
bppc4-08 0.038 0.038 1318 3277 0.000 0.000 0.598
cost266-UUE 0.130 0.143 468 770 0.094 0.094 0.449
csched007 ∞ ∞ 558 1770 0.000 0.000 0.685
csched008 0.070 ∞ 910 1179 1.000 1.000 1.000
cvs16r128-89 0.560 0.601 6 7 0.068 0.068 0.202
drayage-25-23 0.000 0.000 105 267 1.000 0.000 0.000
dws008-01 ∞ ∞ 123 173 0.000 0.000 0.289
eil33-2 0.194 0.189 191 171 -0.025 -0.024 -0.127
fast0507 0.027 0.027 11 7 -0.003 -0.003 -0.366
fastxgemm-n2r6s0t2 18.519 18.519 785 2531 0.000 0.000 0.690
fhnw-binpack4-4 ∞ ∞ 140002 152608 0.000 0.000 0.083
fhnw-binpack4-48 ∞ 0.000 15019 24649 -1.000 -1.000 -1.000
fiball 0.029 0.036 442 610 0.200 0.200 0.420
gen-ip002 0.008 0.010 88794 125319 0.197 0.197 0.397
gen-ip054 0.008 0.010 157950 179874 0.207 0.207 0.263
glass-sc 0.580 0.495 200 328 -0.173 -0.148 0.285
glass4 1.123 1.033 37424 35671 -0.087 -0.080 -0.123
gmu-35-40 0.001 0.001 28534 27077 0.402 0.398 0.276
gmu-35-50 0.001 0.001 16456 22333 0.177 0.176 0.346
graph20-20-1rand 0.000 0.000 416 283 1.000 0.000 0.000
graphdraw-domain 0.421 0.430 49640 56798 0.022 0.022 0.145
ic97_potential 0.023 0.040 39316 30633 0.415 0.415 0.247
icir97_tension 0.011 0.006 6697 7943 -0.882 -0.468 -0.367
irp 0.000 0.000 6 6 1.000 0.000 0.000
istanbul-no-cutoff 0.514 0.393 37 28 -0.309 -0.236 -0.422
lectsched-5-obj ∞ 2.200 1192 1118 -1.000 -1.000 -1.000
leo1 0.118 0.113 34 108 -0.049 -0.046 0.670
leo2 0.345 0.135 49 61 -1.000 -0.609 -0.514
mad ∞ ∞ 78783 81277 0.000 0.000 0.031
markshare2 ∞ ∞ 91135 127265 0.000 0.000 0.284
markshare_4_0 ∞ ∞ 570277 682069 0.000 0.000 0.164
mas74 0.079 0.084 32005 26180 0.060 0.060 -0.129
mas76 0.014 0.015 49987 52401 0.060 0.060 0.100
mc11 0.008 0.009 333 1989 0.139 0.138 0.855
mcsched 0.090 0.086 439 1526 -0.049 -0.046 0.698
mik-250-20-75-4 0.000 0.000 10067 10120 1.000 0.000 0.000
milo-v12-6-r2-40-1 0.038 0.031 340 514 -0.242 -0.195 0.179
momentum1 2.868 2.868 10 9 -0.000 -0.000 -0.100
n2seq36q 0.665 0.665 5 6 0.000 0.000 0.167
n5-3 0.046 0.000 427 595 -1.000 -1.000 -1.000
neos-1171737 0.032 0.032 7 13 0.000 0.000 0.462
neos-1445765 0.000 0.000 190 263 1.000 0.000 0.000
neos-1456979 ∞ 0.344 204 405 -1.000 -1.000 -1.000
neos-1582420 0.016 0.016 11 11 0.000 0.000 0.000
neos-2657525-crna ∞ ∞ 42826 45188 0.000 0.000 0.052
neos-2978193-inde 0.013 0.013 964 2178 0.000 0.000 0.557
neos-3004026-krka ∞ ∞ 1134 1163 0.000 0.000 0.025
neos-3024952-loue ∞ ∞ 246 377 0.000 0.000 0.347
neos-3046615-murg 2.515 2.631 66921 79117 0.044 0.044 0.191
neos-3083819-nubu 0.000 0.000 1683 1687 1.000 0.000 0.000
neos-3381206-awhea 0.000 0.000 969 230 1.000 0.000 0.000
neos-3402294-bobin ∞ ∞ 10 24 0.000 0.000 0.583
neos-3627168-kasai 0.003 0.008 6269 3338 0.577 0.577 0.205

Continued on next page

26

Published in Transactions on Machine Learning Research (12/2024)

Name Gap Ours Gap Base Nodes Ours Nodes Base Reward Utility Utility/Node

neos-3754480-nidda ∞ ∞ 87703 106632 0.000 0.000 0.178
neos-4338804-snowy 0.024 0.028 37447 36741 0.125 0.125 0.107
neos-4387871-tavua 0.631 0.634 5 7 0.005 0.005 0.289
neos-4738912-atrato 0.016 0.006 529 1064 -1.000 -0.634 -0.265
neos-4954672-berkel 0.265 0.254 454 775 -0.043 -0.041 0.389
neos-5093327-huahum 0.539 0.559 5 6 0.036 0.036 0.197
neos-5107597-kakapo 2.639 5.077 1885 2332 0.480 0.480 0.580
neos-5188808-nattai ∞ ∞ 16 105 0.000 0.000 0.848
neos-5195221-niemur 106.417 106.417 11 12 0.000 0.000 0.083
neos-911970 0.000 0.000 3905 15109 1.000 0.000 0.000
neos17 0.000 0.000 2151 3346 1.000 0.000 0.000
neos5 0.062 0.059 66231 91449 -0.053 -0.050 0.235
neos859080 0.000 0.000 990 1227 1.000 0.000 0.000
net12 2.592 2.114 56 29 -0.227 -0.185 -0.578
ns1208400 ∞ ∞ 82 150 0.000 0.000 0.453
ns1830653 2.831 1.242 334 686 -1.000 -0.561 -0.099
ns1952667 ∞ ∞ 100 52 0.000 0.000 -0.480
nu25-pr12 0.000 0.000 119 153 1.000 0.000 0.000
nursesched-sprint02 0.000 0.000 9 7 1.000 0.000 0.000
nw04 0.000 0.000 6 6 1.000 0.000 0.000
pg 0.000 0.000 460 491 1.000 0.000 0.000
pg5_34 0.004 0.004 275 592 -0.023 -0.022 0.524
piperout-08 0.000 0.000 223 309 1.000 0.000 0.000
piperout-27 0.000 0.000 47 28 1.000 0.000 0.000
pk1 1.244 1.117 102268 120685 -0.113 -0.102 0.057
radiationm18-12-05 0.057 0.167 886 2569 0.661 0.661 0.883
rail507 0.033 0.033 10 9 0.000 0.000 -0.100
ran14x18-disj-8 0.115 0.092 458 975 -0.251 -0.200 0.412
rd-rplusc-21 ∞ ∞ 137 3542 0.000 0.000 0.961
reblock115 0.106 0.139 80 731 0.238 0.238 0.917
rmatr100-p10 0.216 0.326 43 74 0.337 0.337 0.615
rocI-4-11 0.671 0.837 12054 7909 0.198 0.198 -0.181
rocII-5-11 3.479 1.568 164 287 -1.000 -0.549 -0.211
rococoB10-011000 1.244 1.258 12 26 0.012 0.012 0.544
rococoC10-001000 0.337 0.153 135 866 -1.000 -0.546 0.656
roll3000 0.000 0.000 1156 2046 1.000 0.000 0.000
sct2 0.001 0.002 2117 1215 0.619 0.615 0.332
seymour 0.044 0.035 176 563 -0.243 -0.195 0.611
seymour1 0.003 0.003 329 885 0.146 0.145 0.682
sp150x300d 0.000 0.000 148 124 1.000 0.000 0.000
supportcase18 0.081 0.081 178 1372 0.000 -0.000 0.870
supportcase26 0.224 0.231 11191 20287 0.031 0.031 0.465
supportcase33 27.788 0.371 15 28 -1.000 -0.987 -0.975
supportcase40 0.086 0.094 50 111 0.087 0.087 0.589
supportcase42 0.033 0.050 76 256 0.340 0.340 0.804
swath1 0.000 0.000 311 372 1.000 0.000 0.000
swath3 0.110 0.113 1442 2800 0.020 0.020 0.495
timtab1 0.126 0.094 22112 25367 -0.333 -0.250 -0.139
tr12-30 0.002 0.002 8941 14896 0.019 0.019 0.394
traininstance2 ∞ ∞ 412 821 0.000 0.000 0.498
traininstance6 29.355 ∞ 2549 6376 1.000 1.000 1.000
trento1 3.885 3.885 4 7 -0.000 -0.000 0.429
uct-subprob 0.249 0.195 225 263 -0.276 -0.216 -0.084
var-smallemery-m6j6 0.062 0.062 95 224 -0.002 -0.002 0.575
wachplan 0.125 0.125 422 712 0.000 0.000 0.407

Mean — — 16538 19673 0.140 -0.013 0.208

I.4 MINLPLIB results

Table 8: Results on MINLPLIB (Bussieck et al., 2003) after 45s runtime. Note that we filter out problems in
which less than 5 nodes were explored as those problems cannot gain meaningful advantages even with perfect
node selection. “Name” refers to the instances name, “Gap Base/Ours” corresponds to the optimization gap
achieved by the baseline and our method respectively (lower is better), “Nodes Base/Ours” to the number of
explored Nodes by each method, and “Reward”, “Utility” and “Utility Node” to the different performance
measures as described in Section 5. For all three measures, higher is better.

Name Gap Ours Gap Base Nodes Ours Nodes Base Reward Utility Utility/Node

ball_mk4_05 0.000 0.000 1819 1869 1.000 0.000 0.000

Continued on next page

27

Published in Transactions on Machine Learning Research (12/2024)

Name Gap Ours Gap Base Nodes Ours Nodes Base Reward Utility Utility/Node

ball_mk4_10 ∞ ∞ 31684 37656 0.000 0.000 0.159
ball_mk4_15 ∞ ∞ 1773 2415 0.000 0.000 0.266
bayes2_20 ∞ ∞ 3171 2719 0.000 0.000 -0.143
bayes2_30 ∞ ∞ 4462 4992 0.000 0.000 0.106
bayes2_50 ∞ ∞ 2934 2530 0.000 0.000 -0.138
blend029 0.000 0.000 812 804 1.000 0.000 0.000
blend146 0.097 0.105 12390 18066 0.075 0.075 0.365
blend480 0.071 0.000 4878 6312 -1.000 -1.000 -0.999
blend531 0.000 0.000 3150 7161 1.000 0.000 0.000
blend718 0.898 0.796 22652 26060 -0.127 -0.113 0.020
blend721 0.000 0.000 4650 2708 1.000 0.000 0.000
blend852 0.021 0.000 7726 5413 -1.000 -1.000 -0.997
camshape100 0.076 0.074 18839 22205 -0.027 -0.026 0.128
camshape200 0.145 0.147 8199 9921 0.012 0.012 0.183
camshape400 0.198 0.195 4324 5275 -0.016 -0.016 0.167
camshape800 0.222 0.226 1504 1627 0.019 0.019 0.093
cardqp_inlp 1.436 1.660 4316 7232 0.135 0.135 0.484
cardqp_iqp 1.089 1.660 4766 7285 0.344 0.344 0.571
carton7 0.000 0.000 55 73 1.000 0.000 0.000
carton9 0.000 0.000 9848 7406 1.000 0.000 0.000
catmix100 ∞ ∞ 186 8750 0.000 0.000 0.979
catmix200 ∞ ∞ 123 3870 0.000 0.000 0.968
catmix400 ∞ ∞ 146 3498 0.000 0.000 0.958
catmix800 ∞ ∞ 75 333 0.000 0.000 0.775
celar6-sub0 ∞ ∞ 4 6 0.000 0.000 0.333
chimera_k64ising-01 0.701 16.469 18 21 0.957 0.957 0.964
chimera_k64maxcut-01 0.523 0.199 57 198 -1.000 -0.618 0.246
chimera_k64maxcut-02 0.368 0.239 72 381 -0.536 -0.349 0.710
chimera_lga-02 0.893 0.893 5 6 0.000 0.000 0.167
chimera_mgw-c8-439-onc8-001 0.045 0.021 127 521 -1.000 -0.529 0.482
chimera_mgw-c8-439-onc8-002 0.067 0.046 72 526 -0.449 -0.310 0.802
chimera_mgw-c8-507-onc8-01 0.232 0.233 26 99 0.003 0.003 0.738
chimera_mgw-c8-507-onc8-02 0.188 0.346 14 25 0.455 0.455 0.695
chimera_mis-01 0.000 0.000 7 7 1.000 0.000 0.000
chimera_mis-02 0.000 0.000 7 7 1.000 0.000 0.000
chimera_rfr-01 1.029 1.153 70 61 0.108 0.108 -0.023
chimera_rfr-02 1.148 1.061 74 63 -0.082 -0.076 -0.213
chimera_selby-c8-onc8-01 0.436 0.224 34 111 -0.941 -0.485 0.406
chimera_selby-c8-onc8-02 0.439 0.232 40 92 -0.895 -0.472 0.176
clay0203m 0.000 0.000 19 30 1.000 0.000 0.000
clay0204m 0.000 0.000 266 400 1.000 0.000 0.000
clay0205m 0.000 0.000 4058 3908 1.000 0.000 0.000
clay0303m 0.000 0.000 107 45 1.000 0.000 0.000
clay0304m 0.000 0.000 337 897 1.000 0.000 0.000
clay0305m 0.000 0.000 4057 4204 1.000 0.000 0.000
color_lab3_3x0 1.445 1.725 320 576 0.162 0.162 0.534
color_lab3_4x0 5.581 5.455 265 434 -0.023 -0.023 0.375
crossdock_15x7 4.457 8.216 654 1080 0.458 0.458 0.672
crossdock_15x8 8.578 84.148 391 717 0.898 0.898 0.944
crudeoil_lee1_06 0.000 0.000 48 57 1.000 0.000 0.000
crudeoil_lee1_07 0.000 0.000 57 92 1.000 0.000 0.000
crudeoil_lee1_08 0.000 0.000 161 121 1.000 0.000 0.000
crudeoil_lee1_09 0.000 0.000 107 99 1.000 0.000 0.000
crudeoil_lee1_10 0.000 0.000 78 109 1.000 0.000 0.000
crudeoil_lee2_05 0.000 0.000 10 11 1.000 0.000 0.000
crudeoil_lee2_06 0.000 0.000 45 109 1.000 0.000 0.000
crudeoil_lee2_07 0.000 0.000 286 81 1.000 0.000 0.000
crudeoil_lee2_08 0.000 0.000 150 308 1.000 0.000 0.000
crudeoil_lee2_09 0.142 0.015 44 41 -1.000 -0.897 -0.904
crudeoil_lee3_05 0.000 0.000 1435 1820 1.000 0.000 0.000
crudeoil_lee3_06 0.057 0.013 352 1349 -1.000 -0.764 -0.095
crudeoil_lee4_05 0.000 0.000 306 118 1.000 0.000 0.000
crudeoil_lee4_06 0.000 0.000 129 60 1.000 0.000 0.000
crudeoil_lee4_07 0.000 0.000 193 89 1.000 0.000 0.000
crudeoil_lee4_08 0.000 0.001 41 53 0.187 0.184 0.371
crudeoil_li01 0.049 0.017 16819 11797 -1.000 -0.657 -0.758
crudeoil_li02 0.013 0.013 12172 10426 -0.027 -0.027 -0.165
crudeoil_li03 ∞ ∞ 198 899 0.000 0.000 0.780
crudeoil_li05 0.157 0.142 553 1031 -0.104 -0.095 0.408
crudeoil_li06 ∞ ∞ 41 322 0.000 0.000 0.873
crudeoil_li11 ∞ ∞ 20 70 0.000 0.000 0.714
crudeoil_pooling_ct1 0.943 0.988 2415 6356 0.046 0.046 0.638
crudeoil_pooling_ct2 0.000 0.000 1480 1589 1.000 0.000 0.000
crudeoil_pooling_ct3 42.222 120.618 101 101 0.650 0.650 0.650
crudeoil_pooling_ct4 0.000 0.000 7631 9217 0.365 0.153 0.041
du-opt 0.000 0.000 11282 14174 1.000 0.000 0.000
du-opt5 0.000 0.000 83 60 1.000 0.000 0.000

Continued on next page

28

Published in Transactions on Machine Learning Research (12/2024)

Name Gap Ours Gap Base Nodes Ours Nodes Base Reward Utility Utility/Node

edgecross10-030 0.000 0.000 7 7 1.000 0.000 0.000
edgecross10-040 0.000 0.000 30 39 1.000 0.000 0.000
edgecross10-050 0.000 0.000 487 469 1.000 0.000 0.000
edgecross10-060 0.000 0.000 2058 2138 1.000 0.000 0.000
edgecross10-070 0.321 0.220 255 329 -0.457 -0.314 -0.115
edgecross10-080 0.077 0.077 352 668 0.001 0.001 0.474
edgecross10-090 0.000 0.000 7 6 1.000 0.000 0.000
edgecross14-039 0.000 0.000 624 731 1.000 0.000 0.000
edgecross14-058 1.251 0.549 84 157 -1.000 -0.561 -0.180
edgecross14-078 1.843 1.865 12 14 0.012 0.012 0.153
edgecross14-098 1.120 1.129 24 31 0.007 0.007 0.232
edgecross14-117 0.963 0.947 9 17 -0.017 -0.017 0.462
edgecross14-137 0.537 0.552 20 30 0.028 0.028 0.352
edgecross14-156 0.338 0.353 13 13 0.042 0.042 0.042
edgecross14-176 0.089 0.080 37 135 -0.117 -0.105 0.694
edgecross20-040 0.000 0.000 71 57 1.000 0.000 0.000
edgecross20-080 3.943 3.943 7 7 0.000 0.000 0.000
edgecross22-048 0.615 0.000 56 81 -1.000 -1.000 -1.000
edgecross24-057 5.219 5.219 7 6 0.000 0.000 -0.143
elf 0.000 0.000 115 112 1.000 0.000 0.000
ex2_1_1 0.000 0.000 17 17 1.000 0.000 0.000
ex2_1_10 0.000 0.000 13 11 1.000 0.000 0.000
ex2_1_5 0.000 0.000 17 19 1.000 0.000 0.000
ex2_1_6 0.000 0.000 13 13 1.000 0.000 0.000
ex2_1_7 0.000 0.000 1523 1831 1.000 0.000 0.000
ex2_1_8 0.000 0.000 75 93 1.000 0.000 0.000
ex2_1_9 0.000 0.000 3735 3947 1.000 0.000 0.000
ex3_1_1 0.000 0.000 405 271 1.000 0.000 0.000
ex3_1_3 0.000 0.000 21 27 1.000 0.000 0.000
ex3_1_4 0.000 0.000 23 23 1.000 0.000 0.000
ex4 0.000 0.000 23 29 1.000 0.000 0.000
ex5_2_2_case1 0.000 0.000 39 19 1.000 0.000 0.000
ex5_2_2_case2 0.000 0.000 57 31 1.000 0.000 0.000
ex5_2_4 0.000 0.000 251 227 1.000 0.000 0.000
ex5_2_5 0.359 0.346 30403 33492 -0.038 -0.036 0.058
ex5_3_2 0.000 0.000 33 31 1.000 0.000 0.000
ex5_3_3 0.339 0.331 29464 31558 -0.024 -0.024 0.044
ex5_4_2 0.000 0.000 41 35 1.000 0.000 0.000
ex8_3_2 23.252 23.608 8907 8680 0.015 0.015 -0.011
ex8_3_3 23.004 23.004 9636 10365 0.000 0.000 0.070
ex8_3_4 1.817 1.793 9447 9563 -0.013 -0.013 -0.001
ex8_3_5 143.677 143.677 9427 9699 0.000 0.000 0.028
ex8_3_8 2.071 2.071 2293 3677 0.000 0.000 0.376
ex8_3_9 12.106 12.106 14272 17310 0.000 -0.000 0.176
ex8_4_1 0.000 0.000 670 650 1.000 0.000 0.000
ex9_2_3 0.000 0.000 25 31 1.000 0.000 0.000
ex9_2_5 0.000 0.000 27 29 1.000 0.000 0.000
ex9_2_7 0.000 0.000 11 11 1.000 0.000 0.000
faclay20h 1.727 1.727 16 15 0.000 0.000 -0.062
faclay25 2.468 2.468 6 6 0.000 0.000 0.000
forest 0.003 0.020 29002 25913 0.860 0.859 0.831
gabriel01 0.139 0.139 6753 9744 -0.000 -0.000 0.307
gabriel02 0.556 0.585 1107 1675 0.050 0.050 0.372
gabriel04 ∞ 1.308 129 285 -1.000 -1.000 -1.000
gabriel05 ∞ ∞ 141 326 0.000 0.000 0.567
gasprod_sarawak01 0.000 0.000 11 6 1.000 0.000 0.000
gasprod_sarawak16 0.004 0.009 506 1052 0.585 0.585 0.800
genpooling_lee1 0.000 0.000 690 676 1.000 0.000 0.000
genpooling_lee2 0.000 0.000 1299 2989 1.000 0.000 0.000
genpooling_meyer04 0.957 0.691 12855 17889 -0.385 -0.278 0.005
genpooling_meyer10 1.276 1.385 1910 2815 0.078 0.078 0.375
genpooling_meyer15 6.080 0.691 97 413 -1.000 -0.886 -0.516
graphpart_2g-0099-9211 0.000 0.000 18 14 1.000 0.000 0.000
graphpart_2pm-0077-0777 0.000 0.000 5 6 1.000 0.000 0.000
graphpart_2pm-0088-0888 0.000 0.000 9 7 1.000 0.000 0.000
graphpart_2pm-0099-0999 0.000 0.000 16 12 1.000 0.000 0.000
graphpart_3g-0334-0334 0.000 0.000 21 41 1.000 0.000 0.000
graphpart_3g-0344-0344 0.000 0.000 61 19 1.000 0.000 0.000
graphpart_3g-0444-0444 0.000 0.000 424 562 1.000 0.000 0.000
graphpart_3pm-0244-0244 0.000 0.000 21 15 1.000 0.000 0.000
graphpart_3pm-0334-0334 0.000 0.000 20 38 1.000 0.000 0.000
graphpart_3pm-0344-0344 0.000 0.000 590 619 1.000 0.000 0.000
graphpart_3pm-0444-0444 0.058 0.000 755 1348 -1.000 -1.000 -1.000
graphpart_clique-20 0.000 0.000 22 24 1.000 0.000 0.000
graphpart_clique-30 0.000 0.000 421 337 1.000 0.000 0.000
graphpart_clique-40 1.018 0.920 297 609 -0.106 -0.096 0.461
graphpart_clique-50 5.638 6.032 97 191 0.065 0.065 0.525

Continued on next page

29

Published in Transactions on Machine Learning Research (12/2024)

Name Gap Ours Gap Base Nodes Ours Nodes Base Reward Utility Utility/Node

graphpart_clique-60 17.434 9.335 109 204 -0.868 -0.465 0.002
graphpart_clique-70 30.409 35.053 16 27 0.132 0.132 0.486
haverly 0.000 0.000 45 57 1.000 0.000 0.000
himmel16 0.000 0.000 2193 2089 1.000 0.000 0.000
house 0.000 0.000 58675 58399 1.000 0.000 0.000
hvb11 0.018 0.182 19172 15631 0.899 0.899 0.875
hydroenergy1 0.007 0.007 15060 18149 -0.088 -0.081 0.095
hydroenergy2 0.016 0.016 4834 6712 0.038 0.038 0.306
hydroenergy3 0.022 0.023 565 1060 0.006 0.006 0.470
ising2_5-300_5555 0.508 0.407 57 220 -0.248 -0.199 0.677
kall_circles_c6a 3.180 2.094 42813 46497 -0.519 -0.342 -0.285
kall_circles_c6b 2.635 1.452 38722 45596 -0.815 -0.449 -0.351
kall_circles_c6c ∞ ∞ 33357 36374 0.000 0.000 0.083
kall_circles_c7a 1.482 1.376 38682 43723 -0.077 -0.072 0.047
kall_circles_c8a ∞ ∞ 32114 36262 0.000 0.000 0.114
kall_circlespolygons_c1p12 0.000 0.000 44439 64102 -1.000 -0.733 -0.106
kall_circlespolygons_c1p13 0.000 0.000 8621 7914 1.000 0.000 0.000
kall_circlespolygons_c1p5a ∞ ∞ 12369 13200 0.000 0.000 0.063
kall_circlespolygons_c1p6a ∞ ∞ 404 628 0.000 0.000 0.357
kall_circlesrectangles_c1r12 0.000 0.000 42587 48285 0.121 0.114 0.061
kall_circlesrectangles_c1r13 0.000 0.000 4372 3739 1.000 0.000 0.000
kall_circlesrectangles_c6r1 ∞ ∞ 5850 7908 0.000 0.000 0.260
kall_circlesrectangles_c6r29 ∞ ∞ 4181 5220 0.000 0.000 0.199
kall_circlesrectangles_c6r39 ∞ ∞ 2570 2966 0.000 0.000 0.134
kall_congruentcircles_c31 0.000 0.000 101 95 1.000 0.000 0.000
kall_congruentcircles_c32 0.000 0.000 133 139 1.000 0.000 0.000
kall_congruentcircles_c41 0.000 0.000 27 31 1.000 0.000 0.000
kall_congruentcircles_c42 0.000 0.000 205 125 1.000 0.000 0.000
kall_congruentcircles_c51 0.000 0.000 4197 4987 1.000 0.000 0.000
kall_congruentcircles_c52 0.000 0.000 1767 1446 1.000 0.000 0.000
kall_congruentcircles_c61 0.000 0.000 27338 35199 1.000 0.000 0.000
kall_congruentcircles_c62 0.000 0.000 2879 6037 1.000 0.000 0.000
kall_congruentcircles_c63 0.000 0.000 2043 1729 1.000 0.000 0.000
kall_congruentcircles_c71 ∞ ∞ 39102 43349 0.000 0.000 0.098
kall_congruentcircles_c72 0.000 0.000 14686 14089 1.000 0.000 0.000
kall_diffcircles_10 2.276 4.054 32475 41241 0.439 0.439 0.558
kall_diffcircles_5a 0.000 0.000 2020 1218 1.000 0.000 0.000
kall_diffcircles_5b 0.000 0.000 6360 5774 1.000 0.000 0.000
kall_diffcircles_6 0.000 0.000 2827 2383 1.000 0.000 0.000
kall_diffcircles_7 0.000 0.000 9408 9518 1.000 0.000 0.000
kall_diffcircles_8 0.406 0.219 48924 57747 -0.851 -0.460 -0.362
kall_diffcircles_9 1.676 1.052 42056 48915 -0.594 -0.373 -0.270
knp3-12 1.846 1.963 1987 2132 0.060 0.060 0.124
lop97ic ∞ ∞ 19 33 0.000 0.000 0.424
lop97icx 0.008 0.000 3041 1711 -1.000 -0.999 -0.998
maxcsp-langford-3-11 ∞ ∞ 1356 4038 0.000 0.000 0.664
ndcc12 ∞ ∞ 1394 3975 0.000 0.000 0.649
ndcc12persp ∞ ∞ 1092 2994 0.000 0.000 0.635
ndcc13 ∞ ∞ 298 787 0.000 0.000 0.621
ndcc13persp 0.536 0.546 2982 5662 0.018 0.018 0.483
ndcc14 1.030 1.048 234 499 0.018 0.018 0.539
ndcc14persp 1.044 1.080 572 1052 0.033 0.033 0.474
ndcc15 ∞ ∞ 1293 2120 0.000 0.000 0.390
ndcc15persp ∞ ∞ 5227 6549 0.000 0.000 0.202
ndcc16 ∞ ∞ 407 396 0.000 0.000 -0.027
ndcc16persp ∞ ∞ 1035 2183 0.000 0.000 0.526
netmod_dol2 0.047 0.000 112 250 -1.000 -1.000 -1.000
netmod_kar1 0.000 0.000 425 285 1.000 0.000 0.000
netmod_kar2 0.000 0.000 275 285 1.000 0.000 0.000
nous1 0.000 0.000 3092 2816 1.000 0.000 0.000
nous2 0.000 0.000 81 71 1.000 0.000 0.000
nuclearvb ∞ ∞ 1821 3817 0.000 0.000 0.523
nuclearvc ∞ ∞ 1905 1530 0.000 0.000 -0.197
nuclearvd ∞ ∞ 3781 2521 0.000 0.000 -0.333
nuclearve ∞ ∞ 877 5464 0.000 0.000 0.839
nuclearvf ∞ ∞ 256 3596 0.000 0.000 0.929
nvs13 0.000 0.000 9 9 1.000 0.000 0.000
nvs17 0.000 0.000 89 78 1.000 0.000 0.000
nvs18 0.000 0.000 121 75 1.000 0.000 0.000
nvs19 0.000 0.000 161 154 1.000 0.000 0.000
nvs23 0.000 0.000 465 523 1.000 0.000 0.000
nvs24 0.000 0.000 2060 1944 1.000 0.000 0.000
p_ball_10b_5p_2d_m 0.000 0.000 353 326 1.000 0.000 0.000
p_ball_10b_5p_3d_m 0.000 0.000 1204 1032 1.000 0.000 0.000
p_ball_10b_5p_4d_m 0.000 0.000 1424 1765 1.000 0.000 0.000
p_ball_10b_7p_3d_m 0.000 0.000 6178 6151 1.000 0.000 0.000
p_ball_15b_5p_2d_m 0.000 0.000 1377 2068 1.000 0.000 0.000

Continued on next page

30

Published in Transactions on Machine Learning Research (12/2024)

Name Gap Ours Gap Base Nodes Ours Nodes Base Reward Utility Utility/Node

p_ball_20b_5p_2d_m 0.000 0.000 1610 2039 1.000 0.000 0.000
p_ball_20b_5p_3d_m 0.000 0.000 10647 11510 1.000 0.000 0.000
p_ball_30b_10p_2d_m ∞ ∞ 3795 4965 0.000 0.000 0.236
p_ball_30b_5p_2d_m 0.000 0.000 2827 3275 1.000 0.000 0.000
p_ball_30b_5p_3d_m 0.000 0.000 10150 11489 1.000 0.000 0.000
p_ball_30b_7p_2d_m ∞ ∞ 8511 11906 0.000 0.000 0.285
p_ball_40b_5p_3d_m ∞ ∞ 9620 13718 0.000 0.000 0.299
p_ball_40b_5p_4d_m ∞ ∞ 8100 11826 0.000 0.000 0.315
pedigree_ex485 0.019 0.019 315 962 0.030 0.030 0.682
pedigree_ex485_2 0.000 0.000 121 344 1.000 0.000 0.000
pedigree_sim400 0.061 0.053 1094 1533 -0.156 -0.135 0.175
pedigree_sp_top4_250 0.053 0.036 61 173 -0.482 -0.325 0.477
pedigree_sp_top4_300 0.014 0.015 294 670 0.014 0.014 0.567
pedigree_sp_top4_350tr 0.000 0.014 365 1096 1.000 0.999 1.000
pedigree_sp_top5_250 0.050 0.057 28 39 0.125 0.125 0.372
pinene200 ∞ ∞ 12 12 0.000 0.000 0.000
pointpack06 0.000 0.000 2099 2051 1.000 0.000 0.000
pointpack08 0.015 0.000 35620 34315 -1.000 -0.999 -0.978
pointpack10 0.612 0.613 18366 22179 0.001 0.001 0.173
pointpack12 0.854 0.839 15197 17796 -0.018 -0.018 0.131
pointpack14 1.535 1.537 8919 9550 0.001 0.001 0.067
pooling_adhya1pq 0.000 0.000 383 365 1.000 0.000 0.000
pooling_adhya1stp 0.000 0.000 737 638 1.000 0.000 0.000
pooling_adhya1tp 0.000 0.000 611 806 1.000 0.000 0.000
pooling_adhya2pq 0.000 0.000 569 588 1.000 0.000 0.000
pooling_adhya2stp 0.000 0.000 832 934 1.000 0.000 0.000
pooling_adhya2tp 0.000 0.000 345 288 1.000 0.000 0.000
pooling_adhya3pq 0.000 0.000 377 289 1.000 0.000 0.000
pooling_adhya3stp 0.000 0.000 834 1078 1.000 0.000 0.000
pooling_adhya3tp 0.000 0.000 675 585 1.000 0.000 0.000
pooling_adhya4pq 0.000 0.000 274 150 1.000 0.000 0.000
pooling_adhya4stp 0.000 0.000 385 686 1.000 0.000 0.000
pooling_adhya4tp 0.000 0.000 317 387 1.000 0.000 0.000
pooling_bental5stp 0.000 0.000 2818 4434 1.000 0.000 0.000
pooling_digabel16 0.000 0.000 27577 35207 -1.000 -0.715 -0.160
pooling_digabel18 0.013 0.008 4109 5110 -0.496 -0.331 -0.168
pooling_digabel19 0.001 0.001 14953 18095 0.168 0.166 0.267
pooling_foulds2stp 0.000 0.000 36 25 1.000 0.000 0.000
pooling_foulds3stp 0.000 0.000 1084 416 1.000 0.000 0.000
pooling_foulds4stp 0.000 0.000 717 339 1.000 0.000 0.000
pooling_foulds5stp 0.019 0.000 1808 2741 -1.000 -0.999 -0.999
pooling_haverly2stp 0.000 0.000 10 12 1.000 0.000 0.000
pooling_rt2pq 0.000 0.000 237 431 1.000 0.000 0.000
pooling_rt2stp 0.000 0.000 109 195 1.000 0.000 0.000
pooling_rt2tp 0.000 0.000 53 57 1.000 0.000 0.000
pooling_sppa0pq 0.038 0.031 2424 3666 -0.230 -0.187 0.187
pooling_sppa0stp 2.829 2.865 2577 3068 0.012 0.012 0.170
pooling_sppa0tp 0.179 0.183 2804 3623 0.021 0.021 0.242
pooling_sppa5pq 0.037 0.018 709 781 -0.995 -0.499 -0.448
pooling_sppa5stp 3.959 3.959 220 278 0.000 0.000 0.209
pooling_sppa5tp 1.579 1.579 299 448 0.000 0.000 0.333
pooling_sppa9pq 0.007 0.007 222 295 0.000 0.000 0.247
pooling_sppb0pq 0.098 0.098 223 301 0.000 -0.000 0.259
popdynm100 ∞ ∞ 7556 11105 0.000 0.000 0.320
popdynm25 ∞ ∞ 14627 19046 0.000 0.000 0.232
popdynm50 ∞ ∞ 12085 15252 0.000 0.000 0.208
portfol_classical050_1 0.000 0.000 651 817 1.000 0.000 0.000
portfol_classical200_2 0.141 0.125 396 491 -0.134 -0.118 0.086
portfol_robust050_34 0.000 0.000 94 49 1.000 0.000 0.000
portfol_robust100_09 0.000 0.000 489 361 1.000 0.000 0.000
portfol_robust200_03 0.182 0.189 95 75 0.034 0.034 -0.183
portfol_shortfall050_68 0.000 0.000 467 375 1.000 0.000 0.000
portfol_shortfall100_04 0.010 0.010 595 1398 -0.055 -0.052 0.551
portfol_shortfall200_05 0.033 0.028 224 232 -0.169 -0.145 -0.114
powerflow0009r 0.000 0.000 15230 13141 -1.000 -0.037 -0.003
powerflow0014r 0.001 0.001 8052 8041 0.368 0.366 0.346
powerflow0030r 0.023 0.034 369 403 0.328 0.328 0.384
powerflow0039r 0.017 0.016 212 224 -0.058 -0.054 -0.001
product 0.028 0.034 236 650 0.197 0.197 0.708
qap 198.418 ∞ 709 3352 1.000 1.000 1.000
qapw 351.271 ∞ 874 2437 1.000 1.000 1.000
qp3 ∞ ∞ 29875 32155 0.000 0.000 0.071
qspp_0_10_0_1_10_1 0.849 1.238 3860 3982 0.314 0.314 0.335
qspp_0_11_0_1_10_1 1.071 1.886 1314 3036 0.432 0.432 0.754
qspp_0_12_0_1_10_1 1.674 2.102 794 1847 0.204 0.203 0.658
qspp_0_13_0_1_10_1 1.893 4.660 935 1380 0.594 0.594 0.725
qspp_0_14_0_1_10_1 3.038 3.200 299 1081 0.050 0.050 0.737

Continued on next page

31

Published in Transactions on Machine Learning Research (12/2024)

Name Gap Ours Gap Base Nodes Ours Nodes Base Reward Utility Utility/Node

qspp_0_15_0_1_10_1 4.356 4.293 229 544 -0.015 -0.015 0.573
ringpack_10_1 0.082 1.000 5346 6348 0.918 0.918 0.931
ringpack_10_2 0.082 0.811 5402 6366 0.899 0.899 0.914
ringpack_20_1 1.551 3.527 525 492 0.560 0.560 0.531
ringpack_20_2 9.000 9.000 239 183 0.000 0.000 -0.234
ringpack_20_3 6.251 6.251 272 243 0.000 0.000 -0.107
ringpack_30_2 14.000 14.000 36 49 0.000 0.000 0.265
sep1 0.000 0.000 39 29 1.000 0.000 0.000
slay04h 0.000 0.000 8 8 1.000 0.000 0.000
slay04m 0.000 0.000 7 7 1.000 0.000 0.000
slay05h 0.000 0.000 64 119 1.000 0.000 0.000
slay06h 0.000 0.000 120 208 1.000 0.000 0.000
slay06m 0.000 0.000 8 8 1.000 0.000 0.000
slay07h 0.000 0.000 420 952 1.000 0.000 0.000
slay07m 0.000 0.000 218 501 1.000 0.000 0.000
slay08h 0.000 0.000 513 1181 1.000 0.000 0.000
slay08m 0.000 0.000 193 554 1.000 0.000 0.000
slay09h 0.104 0.135 612 488 0.229 0.229 0.033
slay09m 0.000 0.000 324 212 1.000 0.000 0.000
slay10h 0.103 0.407 703 451 0.746 0.745 0.603
slay10m 0.000 0.000 3933 4138 1.000 0.000 0.000
smallinvDAXr1b010-011 0.000 0.000 324 264 1.000 0.000 0.000
smallinvDAXr1b020-022 0.000 0.000 657 906 1.000 0.000 0.000
smallinvDAXr1b050-055 0.000 0.000 6083 4430 1.000 0.000 0.000
smallinvDAXr1b100-110 0.000 0.000 15366 34917 1.000 0.000 0.000
smallinvDAXr1b150-165 0.000 0.001 26952 40900 1.000 0.986 0.730
smallinvDAXr1b200-220 0.000 0.001 38238 46021 0.348 0.342 0.269
smallinvDAXr2b010-011 0.000 0.000 254 358 1.000 0.000 0.000
smallinvDAXr2b020-022 0.000 0.000 1204 2016 1.000 0.000 0.000
smallinvDAXr2b050-055 0.000 0.000 7868 6682 1.000 0.000 0.000
smallinvDAXr2b100-110 0.000 0.000 12971 14333 1.000 0.000 0.000
smallinvDAXr2b150-165 0.000 0.000 39670 68543 1.000 0.966 0.421
smallinvDAXr2b200-220 0.000 0.000 712 651 1.000 0.000 0.000
smallinvDAXr3b010-011 0.000 0.000 260 358 1.000 0.000 0.000
smallinvDAXr3b020-022 0.000 0.000 1676 906 1.000 0.000 0.000
smallinvDAXr3b050-055 0.000 0.000 5716 5024 1.000 0.000 0.000
smallinvDAXr3b100-110 0.000 0.000 39948 13726 1.000 0.000 0.000
smallinvDAXr3b150-165 0.000 0.000 34109 22132 1.000 0.000 0.000
smallinvDAXr3b200-220 0.000 0.000 1078 433 1.000 0.000 0.000
smallinvDAXr4b010-011 0.000 0.000 272 292 1.000 0.000 0.000
smallinvDAXr4b020-022 0.000 0.000 1078 990 1.000 0.000 0.000
smallinvDAXr4b050-055 0.000 0.000 3098 2666 1.000 0.000 0.000
smallinvDAXr4b100-110 0.000 0.000 17899 26316 1.000 0.000 0.000
smallinvDAXr4b150-165 0.000 0.000 32042 56419 1.000 0.000 0.000
smallinvDAXr4b200-220 0.000 0.000 935 612 1.000 0.000 0.000
smallinvDAXr5b010-011 0.000 0.000 242 381 1.000 0.000 0.000
smallinvDAXr5b020-022 0.000 0.000 1798 884 1.000 0.000 0.000
smallinvDAXr5b050-055 0.000 0.000 4276 3312 1.000 0.000 0.000
smallinvDAXr5b100-110 0.000 0.000 37028 72501 1.000 0.980 0.570
smallinvDAXr5b150-165 0.000 0.000 40757 78031 1.000 0.966 0.414
smallinvDAXr5b200-220 0.000 0.000 783 585 1.000 0.000 0.000
sonet22v5 3.752 2.911 105 356 -0.289 -0.224 0.620
sonet23v4 1.407 1.366 79 181 -0.030 -0.029 0.550
sonet24v5 4.070 3.914 21 212 -0.040 -0.038 0.897
sonet25v6 5.161 4.812 10 45 -0.072 -0.068 0.762
sonetgr17 2.252 2.602 400 1247 0.134 0.134 0.722
space25 ∞ ∞ 154 143 0.000 0.000 -0.071
spectra2 0.000 0.000 8 8 1.000 0.000 0.000
squfl010-025 0.000 0.000 71985 75945 0.692 0.000 0.000
squfl010-040 0.000 0.000 18478 20101 0.529 0.000 0.000
squfl010-080 0.000 0.000 4509 8339 0.568 -0.000 0.000
squfl010-080persp 0.000 0.000 6 6 1.000 0.000 0.000
squfl015-060 0.000 0.000 7372 10223 0.608 -0.000 0.000
squfl015-060persp 0.000 0.000 6 6 1.000 0.000 0.000
squfl015-080 0.000 0.001 3475 6667 1.000 0.993 0.976
squfl020-040 0.000 0.000 8358 10679 0.570 0.000 0.000
squfl020-050 0.000 0.000 4094 8025 0.365 -0.000 0.000
squfl020-150 0.014 0.014 9 7 0.000 0.000 -0.222
squfl020-150persp 0.000 0.000 16 16 1.000 0.000 0.000
squfl025-025 0.000 0.000 15093 11992 0.997 -0.000 -0.000
squfl025-025persp 0.000 0.000 12 12 1.000 0.000 0.000
squfl025-030 0.000 0.000 5523 14798 1.000 0.000 0.000
squfl025-030persp 0.000 0.000 6 6 1.000 0.000 0.000
squfl025-040 0.000 0.000 6438 7860 0.519 0.000 0.000
squfl025-040persp 0.000 0.000 12 12 1.000 0.000 0.000
squfl030-100 0.000 0.000 1291 1402 0.289 0.000 0.000
squfl040-080 0.000 0.001 1034 1477 1.000 0.983 0.983

Continued on next page

32

Published in Transactions on Machine Learning Research (12/2024)

Name Gap Ours Gap Base Nodes Ours Nodes Base Reward Utility Utility/Node

squfl040-080persp 0.000 0.000 8 8 1.000 0.000 0.000
sssd08-04persp 0.000 0.000 20080 17359 1.000 0.000 0.000
sssd12-05persp 0.131 0.133 63030 73358 0.016 0.016 0.154
sssd15-04persp 0.188 0.181 76121 77773 -0.041 -0.039 -0.018
sssd15-06persp 0.285 0.260 43387 47623 -0.095 -0.087 0.002
sssd15-08persp 0.235 0.234 30374 41340 -0.005 -0.005 0.261
sssd16-07persp 0.232 0.214 41858 46101 -0.086 -0.079 0.014
sssd18-06persp 0.200 0.188 40346 48551 -0.063 -0.059 0.117
sssd18-08persp 0.383 0.372 31676 41841 -0.028 -0.027 0.221
sssd20-04persp 0.202 0.202 63012 69887 0.002 0.002 0.100
sssd20-08persp 0.202 0.195 27951 34670 -0.036 -0.035 0.164
sssd22-08persp 0.228 0.212 31593 33795 -0.077 -0.071 -0.007
sssd25-08persp 0.178 0.172 27400 33837 -0.038 -0.037 0.159
st_bsj2 0.000 0.000 17 15 1.000 0.000 0.000
st_e05 0.000 0.000 59 75 1.000 0.000 0.000
st_e24 0.000 0.000 7 7 1.000 0.000 0.000
st_e25 0.000 0.000 15 15 1.000 0.000 0.000
st_e30 0.000 0.000 47 61 1.000 0.000 0.000
st_e31 0.000 0.000 593 490 1.000 0.000 0.000
st_fp7a 0.000 0.000 297 345 1.000 0.000 0.000
st_fp7b 0.000 0.000 349 341 1.000 0.000 0.000
st_fp7c 0.000 0.000 253 449 1.000 0.000 0.000
st_fp7d 0.000 0.000 277 355 1.000 0.000 0.000
st_fp7e 0.000 0.000 1605 1831 1.000 0.000 0.000
st_fp8 0.000 0.000 69 63 1.000 0.000 0.000
st_glmp_ss1 0.000 0.000 23 25 1.000 0.000 0.000
st_ht 0.000 0.000 13 11 1.000 0.000 0.000
st_iqpbk1 0.000 0.000 37 37 1.000 0.000 0.000
st_iqpbk2 0.000 0.000 39 37 1.000 0.000 0.000
st_jcbpaf2 0.000 0.000 9 13 1.000 0.000 0.000
st_m1 0.000 0.000 783 383 1.000 0.000 0.000
st_m2 0.000 0.000 637 619 1.000 0.000 0.000
st_pan1 0.000 0.000 11 11 1.000 0.000 0.000
st_ph11 0.000 0.000 11 11 1.000 0.000 0.000
st_ph12 0.000 0.000 13 13 1.000 0.000 0.000
st_ph13 0.000 0.000 9 9 1.000 0.000 0.000
st_qpc-m1 0.000 0.000 15 17 1.000 0.000 0.000
st_qpc-m3a 0.000 0.000 1269 1291 1.000 0.000 0.000
st_qpk1 0.000 0.000 7 7 1.000 0.000 0.000
st_qpk2 0.000 0.000 27 27 1.000 0.000 0.000
st_qpk3 0.000 0.000 137 133 1.000 0.000 0.000
st_rv1 0.000 0.000 107 81 1.000 0.000 0.000
st_rv2 0.000 0.000 133 119 1.000 0.000 0.000
st_rv3 0.000 0.000 511 629 1.000 0.000 0.000
st_rv7 0.000 0.000 1143 1153 1.000 0.000 0.000
st_rv8 0.000 0.000 1047 1269 1.000 0.000 0.000
st_rv9 0.000 0.000 3349 1875 1.000 0.000 0.000
st_testgr1 0.000 0.000 38 21 1.000 0.000 0.000
st_z 0.000 0.000 9 9 1.000 0.000 0.000
supplychain 0.000 0.000 119 95 1.000 0.000 0.000
tln12 0.295 0.217 20517 22942 -0.362 -0.266 -0.179
tln4 0.000 0.000 13 25 1.000 0.000 0.000
tln6 0.000 0.000 40 38 1.000 0.000 0.000
tln7 0.075 0.121 52425 60523 0.375 0.375 0.457
toroidal3g7_6666 0.200 0.117 51 213 -0.706 -0.414 0.592
tricp ∞ ∞ 275 356 0.000 0.000 0.228
util 0.000 0.000 48 38 1.000 0.000 0.000
wastewater02m1 0.000 0.000 43 43 1.000 0.000 0.000
wastewater02m2 0.000 0.000 35 31 1.000 0.000 0.000
wastewater04m1 0.000 0.000 117 81 1.000 0.000 0.000
wastewater04m2 0.000 0.000 25 25 1.000 0.000 0.000
wastewater05m1 0.000 0.000 2561 3047 1.000 0.000 0.000
wastewater05m2 0.000 0.000 4068 7429 1.000 0.000 0.000
wastewater11m1 0.116 0.131 40219 43385 0.113 0.113 0.177
wastewater11m2 0.385 0.431 15161 15304 0.106 0.106 0.114
wastewater12m1 0.099 0.045 23070 28082 -1.000 -0.541 -0.440
wastewater12m2 0.460 0.654 7232 7822 0.296 0.296 0.349
wastewater13m1 0.446 0.370 12150 16381 -0.207 -0.171 0.105
wastewater13m2 0.538 0.538 6204 6129 0.000 0.000 -0.012
wastewater14m1 0.151 0.122 38064 42510 -0.236 -0.191 -0.096
wastewater14m2 0.191 0.209 11743 13355 0.084 0.084 0.194
wastewater15m1 0.000 0.000 7735 8130 1.000 0.000 0.000
wastewater15m2 0.000 0.000 54228 59163 0.982 -0.000 -0.000
watercontamination0303 0.000 0.000 9 9 1.000 0.000 0.000
watercontamination0303r ∞ ∞ 22 37 0.000 0.000 0.405
waterund01 0.000 0.000 49001 57176 -0.022 -0.021 0.056
waterund08 0.000 0.000 38355 41489 0.335 0.083 0.003

Continued on next page

33

Published in Transactions on Machine Learning Research (12/2024)

Name Gap Ours Gap Base Nodes Ours Nodes Base Reward Utility Utility/Node

waterund11 0.001 0.001 35021 40695 -0.736 -0.420 -0.241
waterund14 0.009 0.009 9789 10684 -0.012 -0.012 0.072
waterund17 0.001 0.001 35708 36527 0.549 0.545 0.436
waterund18 0.001 0.001 34080 36286 0.049 0.048 0.085
waterund22 0.016 0.017 10195 10702 0.016 0.016 0.062
waterund25 0.080 0.094 11100 10382 0.154 0.153 0.095
waterund27 0.089 0.089 2253 2835 0.001 0.001 0.206
waterund28 0.080 0.080 18 17 0.000 0.000 -0.056
waterund36 0.100 0.082 1841 2443 -0.217 -0.178 0.083

Mean — — 6315 7463 0.487 0.000 0.114

J Alternative value function estimation

Benchmark Reward Win-rate geo-mean Ours geo-mean SCIP
TSPLIB (Reinelt, 1991) 0.150 0.68 0.86 0.957
UFLP (Kochetov & Ivanenko, 2005) -0.071 0.39 0.569 0.552
MINLPLib (Bussieck et al., 2003) 0.497 0.84 32.5 31.185
MIPLIB (Gleixner et al., 2021) 0.038 0.61 789.31 848.628
TSPLIB@5min 0.173 0.63 1.73 2.000
MINLPlib@5min 0.507 0.82 18.04 20.460
MIPLIB@5min 0.282 0.77 44.892 106.400

We compare a different value function V (s) parametrization, which can be interpreted as the value function
as on-policy q-values V (s) =

∫
π(a|s)Q(s, a)da and the fact that our actions correspond to individual nodes:

Q(n|s) = Q̃(n|s)
|P (r, n)| (18)

Q̃(n|s) = Q̃(left|s) + Q̃(right|s) + q(hK(n)|s) (19)

V (s) =
∑

∀n∈C

Q̃(n)π(n|s)dn (20)

where q(hn) are the learned per-node estimator, Q̃ the unnormalized Q-value, and C is the set of open nodes
as proposed by the branch-and-bound method. The advantage of this interpretation is that it allows one to
interpret the path estimates Q̃ as the on-policy q-values for each path. Having access to the q-values may be
necessary for different actor-critic methods or the use of Deep Q-learning (Mnih et al., 2013).

K Pseudocode

Algorithm 1 Pseudocode for node selection using our policy
1: procedure Node Selector
2: Apply message passing over tree T using Eq. 7
3: Compute root-to-leaf paths using Eq. 8
4: Compute policy π over selectable leaves using Eq. 9 ▷ The value-function is only needed for training
5: Sample selected node n ∼ π
6: run SCIP on n to get new children c1, c2
7: append c1 and c2 as children to n in tree T
8: (if necessary) prune T according to SCIP pruning rules

For training, we set Niter = 16, K = 128, and ε = 0.1, and the weight of the entropy regularization λent = 0.01.
In general, the policy improvement is the original PPO loss proposed in (Schulman et al., 2017), combined
with implementation improvements provided in (Huang et al., 2021; 2022).

34

Published in Transactions on Machine Learning Research (12/2024)

Algorithm 2 Pseudocode for training our policy
1: procedure Policy_Evaluation(π,)
2: sample random instance according to Section 4.4
3: Solve using SCIP for 45s and node selector Alg. 2, record all trees {Ti}N

0 , selected nodes {ai}N
0 , and

final optimality gap
4: Solve using SCIP for 45s without our node selector and record the final gap
5: compute the reward r using Eq. 6
6: compute the returns R(st) = γN−tr
7: Compute Advantage {Âi}N

0 using GAE (Schulman et al., 2015) for all {Ti}N
0 using value from Eq. 12.

return {Ti}N
0 , {ai}N

0 , {Âi}N
0 , R(st)

8: procedure Policy_Improvement (Schulman et al., 2017)(π,{Ti}N
0 , {ai}N

0 , {Âi}N
0 , R(st))

9: copy policy function π to πold
10: copy value function V to Vold
11: for iteration=i . . . Niter do
12: Optimize PPO-clip loss

Lt(π) = min
(

π(ai|Ti)
πold(ai|Ti)

Âi, clip
(

π(ai|Ti)
πold(ai|Ti)

, 1− ε, 1 + ε

)
Âi

)
+ λentH(π)

13: using minibatch of size K sampled from the exploration data.
14: Optimize Value estimate using clippe value-estimation

mean = (R(st)− V (st))2

clipped = Vold(st) + clip(Vold(st)− V (st),−ε, +ε)
Lv = max(mean, clipped)

15: using minibatch of size K sampled from the exploration data.
return π, V

16: procedure Train(π, V)
17: for Iterations do
18: {Ti}N

0 , {ai}N
0 , {Âi}N

0 , R(st) ← Policy_Evaluation(π)
19: π, V ← Policy_Improvement({Ti}N

0 , {ai}N
0 , {Âi}N

0 , R(st))
return π, V

35

	Introduction
	Branch and Bound
	Related Work
	Methodology
	Reward Definition
	Tree Representation
	RL for Node Selection
	Data Generation & Agent Training

	Experiments
	Baselines
	Results
	TSPLIB

	UFLP
	MINLPLIB
	MIPLIB

	Comparison against ``Learning to compare nodes''
	Ablations

	Limitations
	Conclusion
	Features
	Theoretical Derivation
	Additional metrics
	Comparisons of Runtime to completion
	Architecture
	TSP-as-MILP Formulation
	Uncapacitated facility location Problem
	Feature Importance
	Full Results
	Kochetov-UFLP
	TSPLIB results
	MIPLIB results
	MINLPLIB results

	Alternative value function estimation
	Pseudocode

