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ABSTRACT

While self-attention is known to learn relations among tokens, we lack a formal understanding of its
capacity: how many distinct relations can a single layer reliably recover for a given budget?
To formalize this, we introduce Relational Graph Recognition (RGR), where the key-query channel
represents a graph onm items withm′ directed edges, and, given a context of items, must recover the
neighbors of each item. We measure resources by the total key dimension DK = h dk. Within this
framework, we analytically derive a capacity scaling law and validate it empirically. We show that
DK = Θ(m′ logm′/dmodel) is both necessary (information-theoretic lower bound) and sufficient
(explicit construction) in a broad class of graphs to recover m′ relations. This scaling law directly
leads to a new, capacity-based rationale for multi-head attention that applies even when each item
only attends to a single target. When embeddings are uncompressed (m = dmodel) and the graph is a
permutation, a single head suffices. However, compression (m > dmodel) forces relations into over-
lapping subspaces, creating interference that a single large head cannot disentangle. Our analysis
shows that allocating a fixed DK across many small heads mitigates this interference, increasing the
number of recoverable relations. Controlled single-layer experiments mirror the theory, revealing a
sharp performance threshold that matches the predicted capacity scaling and confirms the benefit of
distributing DK across multiple heads.
Altogether, these results provide a concrete scaling law for self-attention capacity and a principled
design rule for allocating key-query budget across heads.

1 INTRODUCTION

The transformer architecture, and its self-attention mechanism in particular, has revolutionized fields from natural
language processing to computer vision (60). At its core, self-attention computes a similarity-weighted pattern of
pairwise relationships among items in a context: queries match keys; the resulting scores route information via val-
ues (53; 36; 72; 61; 16; 57). We ask a basic question: for a fixed self-attention mechanism size, how many target
relationships can a single attention layer represent and reliably recover? We call this the layer’s capacity. Capac-
ity is a foundational property for several reasons. (i) It imposes a hard ceiling on relational computation: beyond a
threshold, no training procedure or dataset can make a layer uniformly recover all relations, much like rank bounds
in linear models. (ii) It complements mechanistic work that isolates specific attention circuits in trained transformers
(9; 63; 46; 33), by asking how many independent circuits can coexist. (iii) It provides an actionable resource scaling
law, by describing how relationship capacity grows with increasing attention mechanism budget.

We also demonstrate that capacity impacts when increasing the number of heads is useful. Multiple heads are often
conceived as a way for a source concept to attend to multiple different targets (60), but looking at self-attention
through the lens of capacity demonstrates that multiple heads are beneficial even in the simple case where each concept
attends to only a single target. Specifically, when compressed embeddings are used, many relations must be stored
in overlapping subspaces; distributing the self-attention budget across many small heads reduces interference and
increases the number of relations that can be cleanly separated—consistent with both pruning/specialization studies
and expressivity results for attention (64; 45; 10).

One might hope to answer capacity empirically by probing large trained models. In practice, this is ill-posed. Modern
transformers superpose many relationships in shared subspaces; heads are polyfunctional and context-dependent, so
the number of “active” relations is not directly observable. Moreover, attention weights need not align with causal
importance (28), and even sophisticated circuit-tracing pipelines currently miss parts of the QK computation that
determine where a head attends (33). Beyond these methodological issues, superposition makes enumeration intrinsi-
cally hard: models can store more features than basis directions, packing multiple concepts into overlapping subspaces
(18; 7). As a result, interpretability work thus far has not revealed how many relationships can be supported by a fixed
attention budget.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

We therefore introduce a framework—Relational Graph Recognition (RGR)—and analyze an idealized
self-attention model for solving RGR. The framework allows us to explicitly control both the structure and the number
of attention relationships by casting self-attention as recovering edges of a relational graph among m items, while the
model preserves the computational constraints and symmetries of attention. This allows predictions through principled
analysis as well as controlled simulations that directly test those predictions. Our abstraction isolates the key–query
computation that determines where a head attends, separating it from the OV pathway that determines what is writ-
ten—a split made explicit in recent mechanistic analyses of attention heads (33). As a result, our attention budget is
defined in terms of the total key dimension DK = h dk, where h is the number of heads and dk the per-head key (and
query) width.

Problem Formulation: Relational Graph Recognition (RGR) To make “relationships” precise, we cast the core
task of self-attention as a graph recovery problem.

Task. Let G = (V,E) be a directed graph on m = |V | items with m′ = |E| edges. A context is an ordered tuple
C = (vi1 , . . . , viℓ) with 1 ≤ ℓ ≤ m. The Relational Graph Recognition (RGR) mapping takes (G, C) and, for each
v ∈ C, returns its in-context neighbors NG(v; C) = {v′ ∈ C : (v, v′) ∈ E}. Given a graph G, we wish to find a
parameterization Θ(G) such that the mapping defined by Θ(G) correctly produces NG(v; C) for every context C and
every v ∈ C.

Capacity question. Fix an input embedding dimension dmodel. For a graph family Gm,m′ = {G : |V | = m, |E| =
m′}, we ask for the minimal total key dimension DK = h dk (number of heads times per-head key/query width)
such that the self-attention model in Section 3 can realize the RGR mapping for all G ∈ Gm,m′ and all contexts C. We
refer to this minimal DK as the capacity required by Gm,m′ at embedding dimension dmodel.

Why this abstraction. RGR isolates the key–query channel that determines where attention goes, while preserving
the permutation symmetries and parameter sharing of self-attention1. It lets us dial graph complexity (m,m′) and the
budget DK independently, enabling the information-theoretic bounds, constructive designs, and targeted experiments
reported below. Exact mechanics (score computation, aggregation across heads, and omitted components such as
softmax and values) are specified in Section 3.

SUMMARY OF RESULTS

Our analysis yields both fundamental limits and constructive proofs of capability for self-attention as a relational
reasoner, and our experiments validate the predictions in an idealized setting that mirrors the theoretical model. The
main contributions are:

Formal model and budget. We cast “where to attend” as Relational Graph Recognition (RGR) and analyze an ide-
alized attention layer that preserves attention symmetries while isolating the key–query computation. The complexity
measure is the total key dimension DK = h dk (Sec. 3).

Information-theoretic lower bound. We show that recovering m′-edge graphs on m items with fixed margin re-
quires

DK = Ω
(

m′

dmodel
log m2

m′

)
,

independent of parameter precision and for any context length ℓ ≥ 2 (Sec. A of the Appendix). This formalizes the
intuition that the key-query matrices need to express sufficient information to describe the underlying relational graph.
It also shows that representing more relationships demands greater key–query capacity, and that a smaller embedding
dimension requires a larger total key dimension.

Asymptotically Optimal Constructions. We provide explicit attention-based algorithms for RGR within the ideal-
ized model (Section 4). We achieve

DK = O
(

(m′+∆)
dmodel

logm′
)
,

where ∆ is the maximum degree of the graph G. Under a mild condition around balanced degrees ((∆/davg ≤
m/dmodel), this closes the gap between upper and lower bounds for all but very dense graphs, which have a gap factor
of logm. These constructions assume random Gaussian unit norm embeddings and also extend to any embedding

1We also describe below how positional embeddings can be incorporated into the model.
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satisfying a superposition hypothesis style near-orthogonality condition. These constructions also surface the core
computational principles of self-attention and serve as concrete, testable hypotheses about the internal mechanisms
transformers might learn.

Capacity-Based Rationale for Multi-Head Attention. Our analysis shows that multiple heads are beneficial even
when each source has a single correct target (Section 5): when using compressed embeddings dmodel ≪ m, the signals
for different relationships are superposed and multiple heads mitigate interference by specializing on disjoint subsets
of relationships, thereby allowing the per-head dimension to be small. This provides a principled capacity-centric
justification for multi-head attention as a method to reduce noise.

Empirical Validation of Capacity and Head Scaling. In controlled single-layer experiments that mirror the ideal-
ized model, performance exhibits a sharp transition as DK increases (Section 6). The minimal DK needed to reach
high accuracy (micro-F1 ≳ 0.99) grows rapidly withm and shrinks with dmodel, consistent with the theory. We recover
the predicted scaling:

D⋆
K ≈ C

m logm

dmodel

with a single global threshold at test time. A one-parameter fit to all data yieldsC = 1.19 withR2 = 0.944. Discarding
three data points that the theory predicts to perform slightly worse yields C = 0.966 with R2 = 0.992. We also find a
pronounced multi-head advantage even for permutation graphs: the smallest passing models use several heads while
keeping per-head width small and the optimal head count scales linearly with m

dmodel
, as predicted by the theory. We

also see that capacity is largely insensitive to context length over ℓ∈{16, 32}.

Together, these findings yield a quantitative scaling law for capacity as a function of DK and dmodel, and reveal a
principled multi-head advantage even when each source has only a single correct target—clarifying when and how
to allocate key–query budget across heads. The close alignment between our constructive bounds and empirical
thresholds provides a concrete, falsifiable foundation for the computational principles that enable self-attention.

2 RELATED WORK

Given the breadth of prior work on attention, we defer an extended survey to Appendix E, covering expressivity,
language-theoretic limits, connectivity, memorization, superposition, interpretability, and graph-structured models.

Closest to our focus are works on memorization capacity (58; 35; 32), including analyses of memorization in attention
modules (42). While aligned in spirit, the problem formulations are different: memorization typically maps each
context to a single output token/label, whereas our RGR setting asks for the recovery of in-context neighbors for
every context from a set of possible tokens. Reductions between the two would require memorization handling a
combinatorial number of contexts (polynomial in m for fixed ℓ, and exponential when ℓ scales with m), and we are
not aware of efficient reductions that preserve guarantees in either direction. Accordingly, bounds in one setting do
not directly imply bounds in the other. Not surprisingly, capacity results for memorization provide different scaling
laws then ours. For example they often include explicit dependence on sequence length ℓ (42; 35; 32), whereas in our
analysis and experiments, length plays a limited role. Our abstraction isolates the key–query addressing step—“where
to attend”—which mechanistic analyses identify as central to head routing (33). In this sense, RGR complements
parameter-centric memorization settings that emphasize “what to output”: we target the capacity required to select the
correct neighbors across contexts.

Beyond memorization, prior theory characterizes what Transformers can compute with sufficient re-
sources—universality/approximation (70), fine-grained attention-matrix expressivity (39), and structural bottlenecks
such as per-head low rank and rank collapse without mixing (5; 15). Language-theoretic and composition results map
limitations at fixed budgets (24; 47); orthogonally, restricting connectivity rather than dimensions shows universality
of O(ℓ)-sparse patterns and principled pruning of dense ones (71; 67); and algorithmic views analyze in-context pro-
cedures (38). Mechanistic studies find head specialization and prune-ability (9; 45), while memory-centric views link
attention and FFNs to associative/key–value memories (50; 22). See Appendix E for more details.

3 MODELING THE SELF-ATTENTION MECHANISM

We model the key–query (QK) channel of a single self-attention layer for RGR, retaining permutation symmetry and
parameter sharing while omitting components that do not affect the binary edge decision (softmax, 1/

√
dk scaling,

3
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and values; see Appendix. D). The input is an ordered context of distinct vertices of length ℓ ≤ m, given as C =
(vi1 , . . . , viℓ), one each to ℓ attention units. Each v ∈ V is described using a unique embedding xv ∈ Rdmodel .
Positional information is not explicitly modeled; if needed, positions can be incorporated by treating (token, position)
as distinct vertices.

Single head. Each attention unit with a single head uses the same shared projection matrices WQ,WK ∈ Rdmodel×dk .
For each vip ∈C,

qip = xipWQ, kip = xipWK .

The unnormalized score from source vip to target viq is

Spq = qip · k⊤
iq .

We declare an edge (vip , viq ) present iff Spq > τ for a global threshold τ . Only pairs inside C are tested.

Multi-head extension. With h heads, each head k has (W (k)
Q ,W

(k)
K ) ∈ Rdmodel×dk and produces S(k)

pq . We aggregate
per pair by

Smax
pq = max

k∈{1,...,h}
S(k)
pq , and decide (vip , viq ) ∈ E ⇔ Smax

pq > τ.

This “OR-of-heads” view matches the common specialization picture. Also, replacing max by log-sum-exp yields an
equivalent classifier after a global threshold shift; see App. D.

Algorithmic objective and budget. A construction for RGR maps a graph G = (V,E) to weights
{(W (k)

Q ,W
(k)
K )}hk=1 and a threshold τ that realize the correct edge decisions for all contexts C, regardless of length ℓ.

We measure complexity by the total key dimension
DK = h dk,

since QK is implemented as two batched multiplications with concatenated weights W cat
Q = [W

(1)
Q | · · · |W (h)

Q ] and

W cat
K = [W

(1)
K | · · · |W (h)

K ] in Rdmodel×(hdk); the dominant cost and parameter footprint scale with h dk rather than h or
dk alone (see Appendix D).2 Our goal is to minimize DK over a graph family Gm,m′ for a given dmodel.

In Appendix D, we provide further justification for many of our model choices. Specifically, we address the use of
thresholding instead of scaling/softmax, our head aggregation rule, as well as the lack of a value pathway.

4 EXPLICIT CONSTRUCTIONS FOR RELATIONAL GRAPH RECOGNITION

In this section, we provide explicit constructions for the attention weights that solve RGR within the idealized model
of Section 3. These constructions establish an upper bound on the DK required to solve RGR, providing a concrete
measure of the self-attention mechanism’s capacity for this task. Each design is proven to perform with high probabil-
ity (w.h.p.), meaning at least 1−m−γ for some constant γ > 2. We begin with a brief warm-up sketch—recognizing
permutation graphs with one-hot embeddings—then move to compressive embeddings. We then generalize to arbi-
trary graphs. Throughout, i indexes the source and j a candidate target in E; keys are tied to targets and queries are
tied to sources.

Construction I: Permutation Graphs with One-Hot Embeddings (Warm-up/sketch). We consider a permutation
graph G on m items with edges E = {(vi, vπ(i))} and one-hot node encodings xi = ei ∈ Rm (so dmodel = m). A
single head (h = 1) suffices. Assign each target vj a random binary signature as its key kj by drawing WK ∈
{0, 1}m×dk with i.i.d. Bernoulli(p) entries (e.g., p = 1/4) and setting kj = ejWK . For each source vi, set the query
to the signature of its target: qi = kπ(i), i.e., the i-th row of WQ equals the π(i)-th row of WK . With dk = C logm

and threshold τ = p+p2

2 dk, one has

Si,π(i) = kπ(i) ·kπ(i) ∼ Binomial(dk, p), Sij = kπ(i) ·kj ∼ Binomial(dk, p
2) (j ̸=π(i)).

Chernoff bounds and a union bound over all (i, j) yield simultaneous separation Si,π(i) > τ > Sij w.h.p. when
dk = Θ(logm), so a single head recovers all edges. This matches the Ω(logm) lower bound (Appendix A) and
the same argument extends to softmax scoring (Appendix D). Full details—algorithm and proof—are deferred to
Appendix C as a “warm-up” proof; Construction II below generalizes this scheme to compressive embeddings, but
first we point out that a separation of the the type described is sufficient to handle contexts of any length.

2All statements remain (up to a factor of two) if one counts DQ +DK .
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Lemma 4.1 (Context-robustness). Fix parameters {(W (k)
Q ,W

(k)
K )}hk=1 and a threshold τ . Let the aggregated score

be Smax
ij := maxk S

(k)
ij . If, simultaneously for all i ∈ V ,

Smax
i,π(i) > τ and Smax

ij < τ for all j ̸= π(i), (⋆)

then for every context C ⊆ V and every source i ∈ C: (i) if π(i) ∈ C then Smax
i,π(i) > τ and Smax

ij < τ for all
j ∈ C\{π(i)}; (ii) if π(i) /∈ C then Smax

ij < τ for all j ∈ C. Hence the same parameters recognize E|C for every C
and every length ℓ.

Proof. Restricting from V to C only removes candidate targets. If π(i) ∈ C, the inequalities in (⋆) remain true after
removing all j /∈ C. If π(i) /∈ C, every remaining j ∈ C satisfies j ̸= π(i), so Smax

ij < τ by (⋆).

Construction II: Permutations Under Compressive Embeddings We now extend the permutation case to the
compressive regime dmodel ≪ m under a Gaussian unit-norm embedding.3 Each item vi is embedded as a fixed vector
xi ∈ Rdmodel drawn i.i.d. as x̃i ∼ N (0, I/dmodel) and then L2-normalized, i.e., xi = x̃i/∥x̃i∥2. Write X ∈ Rm×dmodel

for the matrix with i-th row x⊤
i . Given such an embedding and permutation π, our goal is to construct attention

parameters that recognize G.

Multi-Head Algorithmic Construction The fundamental challenge with embeddings is that the input xi is a su-
perposed representation of the node’s identity. Our construction first approximately inverts the embedding process,
projecting the dmodel-dimensional vector xi back into the m-dimensional one-hot space using the transpose of the
embedding matrix. We then apply the logic from the one-hot case. However, doing this with a single head yields too
much noise due to the inversion being only approximate. We mitigate this noise by using multiple attention heads,
where each is responsible for recognizing the outgoing edges from a disjoint subset of sources. This results in smaller
individual heads, and thus less noise.

Algorithm 1 Construction for Permutation Graphs with Compressive Embeddings

1: Input: Permutation graph G = (V,E) with π : V → V ; embedding matrix X ∈ Rm×dmodel .
2: Parameters: Number of heads h = m

dmodel
; per-head key/query dimension dk = C logm for a sufficiently large

absolute constant C. Set Threshold: τ = 1
2dk.

3: Partition sources and targets: Split V into h disjoint blocks V1, . . . , Vh of size |Vk| = dmodel. For each head k,
define its target set Tk := {π(s) : s ∈ Vk}, which is a permutation of Vk. Head k is responsible for sources in
Vk and targets in Tk (a permutation of Vk).

4: Random signatures: Draw Wsig ∈ {±1}m×dk with i.i.d. Rademacher entries; let wj be its j-th row.
5: Ideal one-hot-space templates (for each head k):
6: Query Matrix: W ′

Q,(k) ∈ Rm×dk with row i equal to wπ(i) if i ∈ Vk, and 0 otherwise.
7: Key Matrix: W ′

K,(k) ∈ Rm×dk with row j equal to wj if j ∈ Tk, and 0 otherwise.
8: Project back to model space (approximate de-embedding):

W
(k)
Q = X⊤W ′

Q,(k), W
(k)
K = X⊤W ′

K,(k).

Theorem 4.2 (Multi-head recognition under Gaussian unit-norm embeddings). Assume the setup above with h =
m

dmodel
heads, per-head dimension dk = C logm for a sufficiently large absolute constant C, and threshold τ = 1

2dk.
If dmodel ≥ c0 logm for a sufficiently large absolute constant c0, then with probability at least 1−m−3 over the draw
of (X, signatures),

∀i ∈ V ∃ k ∈ [h] with i ∈ Vk : S
(k)
i,π(i) > τ and S

(k)
ij < τ ∀j ̸= π(i).

Consequently, max-pooling over heads correctly recognizes all edges and DK = h dk = Θ
(

m logm
dmodel

)
.

3Random spherical codes are nearly orthogonal—inner products concentrate tightly around 0—which lets us obtain clean
dot-product thresholds and O(logm) scaling in our separation arguments. This cosine-geometry is also standard and effective in
practice: many systems explicitly constrain features to a hypersphere (e.g., NormFace and ArcFace in face recognition; Spherical
Text Embedding in NLP; spherical objectives in metric learning). See (62; 13) for concentration/JL background and (66; 14; 44; 73)
for representative uses of unit-sphere embeddings.
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Proof sketch (intuition). Write G = XX⊤ and note G ≈ I w.h.p. when dmodel ≳ logm. For a source i ∈ Vk, the
de-embedded vector ui := xiX

⊤ equals ei + δi where the leakage δi has small ℓ2 mass on the head-local blocks Vk
and Tk. Using Rademacher signatures, the score decomposes as

S
(k)
ij = wπ(i) ·wj · I(j ∈ Tk)︸ ︷︷ ︸

Signal

+ terms linear/quadratic in δi, δj︸ ︷︷ ︸
Noise

.

At the true edge j = π(i), Signal equals dk exactly; at non-edges it is 0 (if j /∈ Tk) or a sub-Gaussian fluctuation
O(

√
dk logm) (if j ∈ Tk \ {π(i)}). Concentration results for random spherical codes implies (i) per-head leakage

energy ∥δi,S∥22 ≲ 1 for S ∈ {Vk \{i}, Tk} and (ii) small cross-terms ⟨δi,π−1(Tk), δj,Tk
⟩ ≲

√
logm
dmodel

. Thus each

Noise component concentrates to O(
√
dk logm)+o(dk); choosing dk = C logm and dmodel ≥ c0 logm makes Noise

< 1
4dk, while Signal at the true edge is dk. Setting τ = 1

2dk yields S(k)
i,π(i) > τ > S

(k)
ij uniformly, and a union bound

over (i, j, k) gives the stated probability. A full proof with explicit constants and concentration lemmas appears in
Appendix C.

Consequences. The total key budget satisfies DK = O
(
m logm
dmodel

)
, which matches our lower bound up to constants.

Moreover, the non-edge bounds hold head-wise, so for any j ̸= π(i) we have S(k)
ij < τ for all k and hence Smax

ij < τ ,
while Smax

i,π(i) > τ at the true target. By Lemma 4.1, the same parameters correctly recognize E|C for every context C
and for every context length. (As in Construction I, the thresholding analysis translates to softmax; see Section D.)

Construction III: More General Embeddings (Summary). In Appendix C, we abstract the geometric assump-
tions used in Construction II into a reusable, block-level condition on the embedding X: restricted self-incoherence
(Def. C.4), which requires the existance of a block size parameter B such that (a) after rescaling by a global factor
µ, the Gram matrix XX⊤ has diagonals close to 1; (b) when a row of XX⊤ is restricted to any subset of at most B
indices, the off-diagonal “leakage” energy is small (so projecting xi back with Xinv := 1

µX
⊤—a scaled transpose

acting as an approximate inverse—yields a near one-hot vector on any B-sized block); and (c) the leakage patterns
of two different rows have small inner product on any such block (small “cross-leakage”). Given these conditions,
we synthesize reference one-hot weight matrices for keys/queries on each block of size B, and realize them in model
space by multiplying with Xinv. With sparse Bernoulli or Rademacher signatures of width dk = Θ(logm) and a fixed
dot-product threshold, each head cleanly separates the true target within its block; max-pooling over h ≍ m/B heads
then recognizes all edges w.h.p., using a total key budget DK = Θ

(
(m/B) logm

)
.

Informally, our assumptions are superposition-style: many items are encoded in a shared low-dimensional space so
that a single linear decoder approximately recovers each one-hot identity while keeping interference within any block
of at most B items uniformly small. Technically, this is a block-wise low-coherence (JL/RIP-style) requirement on
XX⊤, not a general superposition claim. This framework recovers Construction II as a special case: for Gaussian
unit–norm embeddings (Cor. C.6) one may take B = Θ(dmodel), giving DK = Θ

(
m logm/dmodel

)
; for sparse random

binary compressive embeddings with pB = Θ(logm/dmodel) (Cor. C.7), one can take B = Θ(dmodel/ logm), giving
DK = Θ

(
m log2m/dmodel

)
. Full algorithms, constants, and proofs appear in Appendix C.

Construction IV: General Graphs (Summary). We also extend the compressive permutation scheme (Construc-
tion II) to any directed graph G = (V,E) with |V | = m and |E| = m′. First, we pack E into disjoint matchings of
size at most dmodel by edge-coloring the bipartite incidence graph (Kőnig) and batching: this yields H =

⌈
m′

dmodel

⌉
+∆

heads, where ∆ = max{∆out,∆in}. Head k operates on one matching Mk (a partial permutation πk : Vk→Tk) and
reuses the Construction II machinery: shared Rademacher signatures, approximate de-embedding viaX⊤ under Gaus-
sian unit-norm embeddings, per-head dimension dk = C logm, and a global threshold τ = 1

2dk. Exactly one head
contains each true edge, while non-edges lie below τ in every head; with dmodel ≥c0 logm, concentration and a union
bound give uniform separation S(k)

i,πk(i)
> τ > S

(k)
ij w.h.p., so max-pooling recovers E and inherits context-robustness

(Lemma 4.1). The total key budget is

DK = O

(
m′ logm

dmodel
+ ∆ logm

)
.

Under the mild skew condition ∆ ≤ m′

dmodel
(equivalently ∆/davg ≤ m/dmodel with davg = m′/m), we can take

H = ⌈m′/dmodel⌉ and obtain the tighter DK = Θ
(

m′ logm′

dmodel

)
, matching the information-theoretic lower bound up to

constants for all but the densest graphs. Full algorithms, constants, and proofs are deferred to Appendix C.
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5 THE POWER OF MULTIPLE HEADS

With no compression (Construction I), a single head suffices: queries and keys can coincide exactly on true edges
and be nearly orthogonal otherwise, yielding true-edge scores Θ(dk) and non-edge scores concentrated near 0. In the
compressive setting (Construction II), we first approximately de-embed ui := xiX

⊤ = ei+δi, so each source carries
a small leakage vector δi that spreads mass across many coordinates. With Rademacher signatures (see §4) the head-k
score decomposes into a signal term—Θ(dk) for true edges and concentrated near 0 for non-edges—and a noise term
controlled by the leakage. The dominant component of this noise, denoted N3 in Appendix C, scales with the block
size B := |Tk| served by a head. Intuitively, if the block size is too large, there is too much noise, and so multiple
heads are required to keep the block size small.

N3(B) ≍ B

dmodel

√
dk logm. (1)

To guarantee (w.h.p.) a fixed margin between the true target and all non-targets, it must be that, for constants c1, c2 > 0,

N3(B) ≤ c1dk =⇒ dk ≥ c2
B2

d2model
logm. (2)

Single head with compression. If one head serves all items, then B = m. Applying (2) gives the requirement
dk ≥ c2

m2

d2
model

logm, and since h = 1 here, the total key dimension is DK = dk.
Multiple heads with compression. Construction II partitions the items into m

dmodel
heads with B = dmodel per head.

Plugging B = dmodel into (1) yields N3(B) = Θ(
√
dk logm). Taking dk = c3 logm with c3 larger than the constant

in (1) ensures N3 ≤ c1dk w.h.p., and the total key dimension is DK = h dk = O
(

m
dmodel

logm
)
.

Consequence. As a result, in the compressive regime, if m = ω(dmodel), the single head requirement above implies
asymptotically larger Dk than the multihead construction. Or, equivalently, for a fixed Dk budget, multiple heads
can handle more edges (relationships) than a single head, even in a permutation graph. Multiple heads do not boost
per-head expressivity; they localize de-embedding noise by reducing block size B, so that each head aggregates
leakage over only fewer coordinates, bringing the noise to a manageable level. Note that this is not a lower bound for
all conceivable single-head designs, but it shows that within the de-embedding to signature template we use, a single
head cannot perform as well as multiple heads.

6 EXPERIMENTS

We conduct experiments in an idealized self-attention setting, mirroring our theoretical model, to test several predic-
tions. First, we compare the empirical minimum total key dimension, D̂⋆

K , to the predicted theoretical scaling law of

Θ
(

m logm
dmodel

)
, noting that optimization may fail to find a solution matching the theoretical constructive bound. And

second, we test predictions regarding head count: whether a multi-head advantage appears in permutation graphs and
how the empirically optimal number of heads tracks the theory.

Experimental implementation We empirically instantiate the idealized attention layer of our framework with two
learned projections WQ,WK ∈ Rdmodel×DK partitioned into h heads (dk = DK/h). For a context matrix XC , head k
computes S(k) = Q(k)(K(k))⊤ with Q(k) = XCW

(k)
Q and K(k) = XCW

(k)
K ; scores are combined by an elementwise

max Smax = maxk S
(k), and we predict an edge (p→ q) iff Smax(p, q) > τ for a single learned global threshold τ .

There is no 1/
√
dk scaling, softmax, or value pathway, so capacity is purely key–query. Tasks are permutation graphs

on m items (one out/in-edge per node). Node embeddings xi∼N (0, I/dmodel) are L2-normalized and frozen, making
DK the sole capacity knob. Contexts of length ℓ (default ℓ=16) are sampled with target-in-context rate ρ=0.5.

We train WQ,WK , τ with AdamW (lr 10−3, weight decay 0) using a weighted logistic loss over all ordered pairs
within a context (positive weight ℓ−1; logit sharpness α=10), one context per step. For each run, a single permutation
π and embedding matrix are fixed by seed; training contexts are drawn on-the-fly, with 500 validation and 2,000
held-out test contexts from the same (ℓ, ρ) distribution. Early stopping checks validation micro-F1 every 500 steps
and halts after five consecutive checks above 0.995. We report micro-F1 on the fixed test set with the single learned
τ ; the “minimum DK” is the smallest DK achieving mean test micro-F1 ≥ 0.99 for at least one head count h. Full
details appear in App. B.1.
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6.1 RESULTS AND COMPARISON TO THEORY

We probe capacity on permutation graphs withm∈{64, 128, 256, 512} and dmodel∈{16, 32, 64}. For each (m, dmodel)
we sweep head counts h ∈ {1, 2, 4, 8, 16, 32, 64} and several total key sizes DK=h dk (multiple DK per h). Each
configuration is trained from 10 seeds with the protocol described above (AdamW, fixed embeddings, single global
threshold τ ). We evaluate average test micro–F1 on a fixed held-out set and define the empirical threshold

D⋆
K = min{DK : ∃h s.t. mean test micro-F1 ≥ 0.99 }.

We denote by h⋆ a head count that attains D⋆
K . Full grids and per-config step limits are in App. B.2.

To isolate sequence-length effects at fixed embedding compression, we also traverse the diagonal r def
=m/dmodel=8 with

(m, dmodel) ∈ {(128, 16), (256, 32), (512, 64), (1024, 128), (2048, 256), (4096, 512)}, using 3 seeds for the largest
points and increased budgets (App. B.2). Finally, to probe extreme compression we include a second r=32 point
(1024, 32) (in addition to (512, 16)). We also repeat a subset of runs with a variable context length (App. B.3).

Qualitative phenomena. We observe: (i) a sharp F1 transition in a narrow DK window (capacity threshold) across
all (m, dmodel, h) (Fig. 1 below and Fig. 6 in App. B.2); (ii) a pronounced multi-head advantage for many (m, dmodel),
even though each query has a single target—splitting a fixed DK across more heads reduces interference from super-
position (Fig. 2); and (iii) the optimal head count increases with compression r=m/dmodel (Fig. 2), while per-head
width at the threshold remains modest.

Figure 1: Example F1–DK curve. Each line is a fixed number of heads. A
single head has significantly worse performance than multiple heads. Error
bars are 95% CIs over 10 runs.

Figure 2: More heads are needed as
m grows and as dmodel shrinks. See
App. B.2 for error bar description.

Empirical thresholds on the base grid. The minimumD⋆
K grows rapidly withm and decreases rapidly with dmodel;

exact values appear in Figure 5 (in the Appendix). A single head often fails to reach 0.99 F1 within the scanned DK

(e.g., (m, dmodel)∈{(512, 64), (256, 32)}, Fig. 6), whereas several small heads pass at substantially smaller DK .

Scaling laws Plotting D⋆
K against m logm

dmodel
yields a tight linear relation (Fig. 3):

D⋆
K ≈ 1.19 · m logm

dmodel
(R2 = 0.944).

We see small deviations when dmodel is too small relative to logm; this is consistent with our theoretical results.
Excluding the three (dmodel=16, m>64) points (above the line in Fig 3)—which violate the precondition dmodel ≳
c0 logm used by our constructions—gives slope 0.966 with R2=0.992. Thus, the empirical capacity closely matches
the theoretical Θ

(
m logm
dmodel

)
rate. The head count that attainsD⋆

K scales approximately linearly with compression (Fig. 7
in the Appendix):

h⋆ ≈ 1.65
m

dmodel
− 6.64 (R2 = 0.824).
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At D⋆
K , per-head widths are small: d⋆k ∈ [5, 24] on the base grid (median 11), indicating gains come primarily from

adding heads rather than making each head wide (Table 1; App. B.2).

Figure 3: Comparison of D⋆
K to theoretical scaling law.

x-axis: scaling law prediction. y-axis: observed behav-
ior. See App. B.2 for error bar description.

Figure 4: Fixed compression diagonal with r = 8. Line
(left axis): minimumD⋆

K achieving F1≥ .99. Bars (right
axis): h achieving that minimum. See App. B.2 for error
bar description.

Fixed-compression diagonal (r=8). Holding r constant collapses the prediction to D⋆
K ∝ r logm, so the depen-

dence on m should be logarithmic. Along (128, 16)→ (4096, 512) we observe roughly this behavior from m≥512
onward (Fig. 4): D⋆

K grows slowly while m grows exponentially, matching the logm factor. The first two points are
slightly conservative (smaller dmodel) and align with the same dmodel ≳ logm finite-size effect. We also expect the
optimal head count to be proportional to r; the observed results align well with this expectation.

Takeaways. Empirical thresholds align closely with the m logm/dmodel capacity law and expose a clear multi-head
advantage even for one-target graphs. Discrepancies appear exactly where theory anticipates stronger superposition
(small dmodel and very large m). Overall, allocating key–query budget across more heads with modest width is the
efficient path to capacity in compressed embeddings. In Appendix B.3, provide evidence that these results are largely
independent of context length. Specifically, thresholds were stable across ℓ ∈ {16, 32} with a small shift only when
testing at longer ℓ than used for training.

7 LIMITATIONS

Theory. Our constructive upper bounds are tight only under a mild degree–skew assumption (e.g., ∆/davg ≤
m/dmodel). When this condition is violated—or in very dense graphs—the present upper bounds do not match the
information-theoretic lower bound. Moreover, our sufficiency results rely on geometric properties of the embeddings
(near-orthogonality / restricted self-incoherence). While we verify these conditions for idealized random embeddings,
we do not quantify how embeddings learned in trained models satisfy (or deviate from) these properties, nor the effect
of such deviations on the constants in our bounds.

Experiments. Empirically we restrict to permutation graphs (out-degree = 1) and do not test graphs with larger
out-degree. We also evaluate a QK-only layer and thus do not experimentally validate modeling assumptions such
as adding a value pathway or incorporating a softmax decision rule. Our search over DK is coarse because DK is
tuned in multiples of the head count; there remains room to probe all cross-points in the scanned range and to explore
substantially larger dimensions, but we did not do so due to compute limits. Finally, while capacity appeared largely
insensitive to context length within ℓ ∈ {16, 32}, we did not study much longer contexts for the same reason.
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8 REPRODUCIBILITY STATEMENT

We describe the exact places in the paper and Appendix that contain the information needed for reproducibility. The
task and model are formally specified in Section 3 (RGR and the QK-only attention layer), with constructive algorithms
and the multi-head rationale in Sections 4–5. We provide details of our lower bound in Appendix A, and complete
proofs of our upper bounds in Appendix C. Details of the experimental setup—including synthetic data generation
and context sampling, training procedure, metrics, search grids, and step budgets—is documented in Section 6 and
Appendix B.1. An anonymized code package with the data generator, training/evaluation scripts, and plotting and
graphing scripts is provided in the supplementary materials to reproduce all figures. These references collectively
provide the assumptions, proofs, and procedures needed to re-create our results.
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A LOWER BOUND ON RELATIONAL GRAPH RECOGNITION

In this section, we provide our lower bound on any self-attention mechanism that uniformly recovers every directed
graph on m items with exactly m′ edges in our model from Section 3 under a fixed positive margin γ. The number
of such graphs is

(
m(m−1)

m′

)
; essentially what we show is that the QK parameters must carry (at least) the description

length of the edge set, and thus the total key dimension

DK = Ω
(

log (m(m−1)

m′ )
dmodel

)
= Ω

(
m′ log(m2/m′)

dmodel

)
.

The result is independent of parameter precision and applies to any context length ℓ ≥ 2.

We start with some preliminaries. We first point out that we can focus only on length-2 contexts. Uniform correctness
for RGR requires that, for every ordered pair (u, v) ∈ V × V , the decision “(u, v) ∈ E?” is the same in every context
containing u and v. In particular it must be correct in the length-2 context C = (u, v). Hence any lower bound proved
using only length-2 contexts applies to the full problem. We next provide two structural reductions.

(i) Multi-head to a single bilinear form. For a length-2 context and any monotone per-pair head aggregator (max,
log-sum-exp, sum), replacing it by the sum only makes the model more permissive. Writing

M =

h∑
k=1

W
(k)
Q W

(k)⊤
K ∈ Rdmodel×dmodel ,

the score on (u, v) is the single bilinear form

S(u, v) = x⊤
uM xv, (3)

and an edge is recognized iff S(u, v) > τ for a global threshold τ . Since each summand W (k)
Q W

(k)⊤
K has rank at most

dk,

rank(M) ≤
h∑

k=1

dk = DK . (4)

Thus, on length-2 contexts, multi-head QK collapses to thresholding a single rank-≤ DK bilinear form.

(ii) Edge-set description length. Let m = |V | and N = m(m− 1) be the number of ordered, loop-free pairs. For any
target size m′, the family Gm,m′ of directed graphs with exactly m′ edges has cardinality

(
N
m′

)
; hence any procedure

that can realize an arbitrary E ⊆ [N ] with |E| = m′ must (implicitly) transmit at least

L(m,m′) = ln

(
N

m′

)
(5)

nats about the edge set. Our proof quantifies the number of distinct edge labelings the rank-≤ DK bilinear model can
realize at margin γ, via a covering-number (metric entropy) argument, and compares it to

(
N
m′

)
.
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Definition A.1 (Constant-margin recovery on length-2 contexts). A parameter choice
(
{W (k)

Q ,W
(k)
K }hk=1, τ

)
recovers

a graph G = (V,E) with margin γ > 0 if, for every ordered pair (u, v) with u ̸= v,

(u, v) ∈ E ⇒ x⊤
uM xv ≥ τ + γ, (u, v) /∈ E ⇒ x⊤

uM xv ≤ τ − γ,

where M =
∑

kW
(k)
Q W

(k)⊤
K .

Because the decision rule is homogeneous in (M, τ), we fix scale by requiring

M = UV ⊤, ∥U∥F ≤ 1, ∥V ∥F ≤ 1, |τ | ≤ 1. (6)

Under (6) and ∥xu∥2, ∥xv∥2 ≤ 1, the score map is 1-Lipschitz in Frobenius norm:∣∣x⊤
uUV

⊤xv − x⊤
u Ũ Ṽ

⊤xv

∣∣ ≤ ∥U − Ũ∥F + ∥V − Ṽ ∥F , and |(τ − τ̃)| adds linearly. (7)

Therefore any perturbation of (U, V, τ) of radius at most γ/4 preserves all pairwise signs, and hence the entire edge
set, on length-2 contexts.

Theorem A.2 (Description-length lower bound for QK). Fix m ∈ N and m′ ∈ {0, . . . ,m(m−1)}. Suppose an
attention mechanism of the form (3)–(4), with item embeddings ∥xv∥2 ≤ 1, can recover every graph in Gm,m′ with
margin γ ∈ (0, 1). Then there exists a constant c(γ) > 0 such that

dmodel DK ≥ c(γ) log

(
m(m− 1)

m′

)
− O(1). (8)

Equivalently,

DK = Ω

(
log
(
m(m−1)

m′

)
dmodel

)
. (9)

Proof. Under the normalization (6) and Lipschitz property (7), the parameter set B = {(U, V, τ) : ∥U∥F , ∥V ∥F , |τ | ≤
1} admits an ε-net of radius ε = γ/4 of size at most

Ncov(ε) ≤
(

C
ε

) 2 dmodelDK+1

=
(

C′

γ

) 2 dmodelDK+1

for absolute constants C,C ′ > 0. Each net point induces a unique labeling of the N = m(m− 1) ordered pairs by the
margin, hence at most Ncov(ε) distinct edge sets can be realized. Since the mechanism must realize all

(
N
m′

)
edge sets

of size m′, we obtain
(
N
m′

)
≤ Ncov(ε), which rearranges to (8)–(9).

Equivalent finite-precision statement. If each real parameter in {W (k)
Q ,W

(k)
K , τ} has b = Θ(1) effective bits after

normalization (e.g., due to quantization or stochastic rounding), then the parameter budget contains at most B =
b (2 dmodelDK + 1) bits and thus can realize at most 2B distinct edge sets. Requiring 2B ≥

(
N
m′

)
gives the same

conclusion as (9) with an explicit constant 1/(2b). Under the margin model above, one may take b = Θ(log(1/γ)).

Bounds for specific cases. This demonstrates the following results:

• Exactly m′ = m edges (such as permutation graphs): DK = Ω
(

m′ logm
dmodel

)
.

• Dense regime with m′ = Θ(m2): DK = Ω
(

m′

dmodel

)
.

• Sparse regime with m′ = O(m2−ϵ) for some positive constant ϵ: DK = Ω
(

m′ logm
dmodel

)
.

B MORE DETAILS ON OUR EXPERIMENTS

B.1 EXPERIMENTAL IMPLEMENTATION DETAILS

This appendix reproduces the full experimental protocol (model specification, context sampling procedure, loss, opti-
mization, early stopping, and evaluation criteria) described in Section 6.
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Our experiments instantiate the upper-bound model from Section 3 as follows. The parameters are two learned
projections WQ,WK ∈ Rdmodel×DK and a single global scalar threshold τ . We conceptualize WQ,WK as h head
blocks of width dk = DK/h. Scoring is done for a context matrix XC ∈ Rℓ×dmodel , where head k produces
S(k) = Q(k)(K(k))⊤ ∈ Rℓ×ℓ with Q(k) = XCW

(k)
Q and K(k) = XCW

(k)
K . Scores are aggregated by element-

wise max across heads: Smax = maxk S
(k). At evaluation time we predict an edge (p→ q) iff Smax(p, q) > τ .

This matches the theoretical mechanism exactly: there is no 1/
√
dk scaling, no softmax, and no value pathway—so

capacity is purely key–query driven.

Our primary testbed is the family of permutation graphs {(V,Eπ)} with |V | = m and Eπ = {(i, π(i)) : i ∈ V },
where π is a uniformly random permutation. This realizes the m′ = m constructive case used in our upper bound and
isolates the single-target setting in which head specialization is most interpretable. Consistent with our constructions,
each node i ∈ V has a fixed embedding xi ∈ Rdmodel drawn i.i.d. from N (0, I/dmodel) and then L2-normalized.
Embeddings are frozen throughout training and evaluation. This both aligns with the random (nearly orthogonal)
embedding assumption in our proofs and makes DK the sole capacity knob. An example is a context C of length
ℓ (baseline ℓ = 16). To prevent degenerate class imbalance when π(i) often falls outside C, we enforce a target
per-context positive rate ρ ∈ (0, 1) as follows:

1. Sample a set S ⊆ V of ℓ distinct nodes uniformly.

2. Sample b ∼ Binomial(ℓ, ρ) and choose U ⊆ S with |U | = b.

3. For each i ∈ U , if π(i) /∈ S replace a random j ∈ S \ {i} by π(i), preserving |S| = ℓ and distinctness.

All of our experiments use ρ = 0.5. This preserves the RGR semantics (positives remain exactly those (i, π(i)) that
land in the same context) while reducing the time required to train.

For each experiment we sample one permutation π and one embedding matrix X using a fixed seed. We then generate
a validation set of 500 contexts and a held-out test set of 2,000 contexts with the same (ℓ, ρ) distribution. We then
draw training contexts on the fly from the same generator (one context per optimization step).

We train WQ,WK , τ by minimizing a weighted logistic loss on all ordered pairs within a context:

zpq = α
(
Smax(p, q)− τ

)
, L = 1

|C|2
∑
p,q

[
softplus(−zpq)ypq︸ ︷︷ ︸

positive term

· posweight︸ ︷︷ ︸
=ℓ−1

+softplus(zpq)(1− ypq)
]
,

where ypq = 1 iff (vip , viq ) ∈ E. The weighting posweight = ℓ − 1 reflects that each source has at most one positive
among ℓ candidates.

We use AdamW with learning rate 10−3 and weight decay 0. Parameters are initialized with WQ,WK ∼
N (0, 1/

√
dmodel) and τ = 0. The logit sharpness is α = 10. We train for a number of steps with early stopping:

every 500 steps we compute validation micro-F1; if it exceeds 0.995 for 5 consecutive checks, training halts. The
number of steps increases with problem complexity. We use one context per step (contexts are small and indepen-
dent), which keeps the implementation close to the theoretical algorithm and avoids artifacts from large mini-batches.

All evaluation is conducted on the fixed held-out test set of 2,000 contexts using the single learned threshold τ shared
across all contexts. Our metric is Micro-F1 over all ordered pairs across all test contexts. This directly measures
correctness of binary edge recognition per the RGR objective. While the stopping rule uses validation F1 > 0.995, the
minimum DK we report below is extracted on the test set using a looser criterion: the smallest DK achieving mean
micro–F1 ≥ 0.99 for at least one h. We use 0.99 to keep a margin from the stopping rule. All tables and statements
about minimum DK are based on this 0.99 test criterion.

B.2 RESULT DETAILS

We provide more detail on the results we found, additional details on the configurations used to find them, as well as
the methodology we used for error bar determinination.

METHODOLOGY FOR ERROR INTERVAL CONSTRUCTION

Display CIs for F1 curves. Unless otherwise noted, error bars are 95% t-intervals across seeds: F̄1 ±
t0.975, n−1 s/

√
n, where n is the number of runs and s their sample standard deviation. Intervals reflect training-run

variability with a fixed test set.
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Minimum key dimension D⋆
K . The error interval for the minimum total key dimension, D⋆

K , is designed to reflect
the uncertainty in the F1 score. For any given model configuration, we determine a central estimate along with an
optimistic lower bound and a conservative upper bound, all based on a required F1 score of at least 0.99.

Let the mean F1 score from a set of trials be F̄1, with its corresponding 95% confidence interval being [F1,low, F1,high].
The three reported values for D⋆

K are defined as follows:

• Central Estimate: The primary value reported. It’s the minimum DK found for which the mean F1 score
meets the performance threshold (F̄1 ≥ 0.99).

• Conservative Upper Bound: This is the minimum DK for which the lower bound of the F1 confidence
interval meets the threshold (F1,low ≥ 0.99). This stricter condition identifies the DK needed to be 95%
confident that the true performance is sufficient.

• Optimistic Lower Bound: This is the minimum DK for which the upper bound of the F1 confidence
interval meets the threshold (F1,high ≥ 0.99). This looser condition identifies the DK for which it is merely
plausible that the true performance is sufficient.

Optimal number of heads. Let h⋆ be the head count achieving D⋆
K (ties broken by larger F̄1). We form a candidate

pool of head counts whose tested DK lies within 10% of D⋆
K . Each candidate is compared to h⋆ using a paired

two-sided t-test on per-seed F1; candidates with p > 0.05 are labeled “not significantly different” and retained.4 The
reported interval spans the minimum and maximum head counts retained.

RESULTS

Figure 5: Minimum total key dimension D⋆
K . Upper right and lower left numbers represent confidence range;

methodology described in the text.

Figure 5 lists D⋆
K , the minimum total key dimension, found for each configuration of m and dmodel we tested. We use

our minimum key dimension D⋆
K intervals methodology, with the upper right corner being the upper bound and the

lower left corner being the lower bound. The d⋆K (per head key size) used to achieve these D⋆
Ks are shown in Table 1,

for numbers in the main sweep.

4We do not interpret p > 0.05 as proof of equivalence; it only indicates insufficient evidence of a difference at α = 0.05.
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dmodel
m 16 32 64

64 5 6 5
128 11 21 7
256 6 16 24
512 7 9 14

Table 1: Per-head key dimension dk from the main sweep.

m dmodel Training step cutoff

64 16, 32, 64 20,000
128 16, 32, 64 20,000
256 32, 64 20,000
256 16 30,000
512 32, 64 20,000
512 16 80,000
1024 128 80,000
2048 256 80,000
4096 512 200,000

Table 2: Training step cutoffs by configuration. Default cutoff is 20,000 steps, with extended budgets for larger
problem sizes.

These are found using the training step upper bounds shown in Table 2, where we increase the steps as the problem
size and complexity increases.

Also, we provide additional examples of our findings from the main sweep of configurations in Fig. 6.

In Fig. 7, we plot the number of heads used in the optimal found configuration versus the compression m/dmodel.

B.3 SENSITIVITY TO CONTEXT LENGTH.

To probe whether capacity depends on the context length ℓ, we repeated the DK sweep with h = 8 for three train/test
settings: (ℓtrain, ℓtest) ∈ {(16, 16), (16, 32), (32, 32)} (Figure 8). Across all (m, dmodel) pairs the F1–DK curves are
strikingly similar: the sharp transition and the minimum DK at which each configuration “passes” shift only slightly
with ℓ. Two small, consistent effects are visible: (i) longer test contexts without retraining (16→32) incur a modest
right-shift and/or reduced saturation, most noticeably in the most compressed regime (e.g., m = 256, dmodel = 16).
This is expected because our metric is micro-F1 over all ordered pairs: with ρ = 0.5 the positive fraction is ρ/ℓ, so
doubling ℓ halves the base rate while the single global threshold τ learned at ℓ = 16 remains fixed. (ii) retraining at
the longer length (32→32) largely closes that gap, bringing the curves back in line with the 16→16 condition. Overall,
the empirical capacity threshold is governed primarily by (m, dmodel) and only weakly by ℓ over the range we tested;
when test-time contexts are longer than those seen in training, a small increase in DK or simply training at the longer
length suffices to recover performance.

C FURTHER DETAILS ON OUR EXPLICIT CONSTRUCTIONS

We here provide additional details on our explicit constructions from Section 4. We start with the easiest case -
permutation graphs with no embedding. This result is subsummed by the second construction, so is only included as
a warm up for the more general case.

C.1 CONSTRUCTION I: PERMUTATION GRAPHS WITH ONE-HOT EMBEDDINGS

Setup. We start with the following two assumptions: (i) G is a permutation on m items, defined by a function
π : V → V , where the edges are E = {(vi, vπ(i)) | vi ∈ V }, and thus m′ = m. (ii) Node vi is represented by the
one-hot vector xi = ei ∈ Rm, setting the model dimension dmodel = m.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Figure 6: Example F1–DK curves. Each panel fixes (m, dmodel) and sweeps heads h and DK = h dk; markers
show mean test micro–F1 and error bars are 95% CIs over 10 runs. The transition from failure to success occurs at a
configuration-specific DK threshold which is dependent on h.

Figure 7: The number of heads needed grows approximately linearly with compression; the dashed line shows a
least-squares fit. See text for a description of the error bars. We do not tie the line to the origin, since heads are clipped
at h ≥ 1.

With these assumptions, a single attention head (h = 1) suffices, so the total key dimension is DK = dk. Our goal is
to define WK , WQ, and a global threshold τ such that the score Sij = (xiWQ) · (xjWK) exceeds τ iff j = π(i). Our
construction works for all vertices V of the graph G, independent of the current context in our model; we formalize
how this applies to specific contexts below.
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Figure 8: Effect of context length on F1–DK . Left: train/test ℓ = 16/16; middle: 16/32 (longer contexts only at
test time); right: 32/32. Error bars are 95% CI over three seeds. Curves and thresholds are nearly length-invariant;
the only systematic drop occurs when evaluating at longer ℓ without retraining, which is largely removed by training
at the longer length.

Algorithmic Construction (one-hot case) The core idea is to assign each node vj a random ”signature” via its key
vector kj . The query vector qi for vi is the signature of its target, vπ(i). The dot product between vectors is maximized
when the query signature matches the key signature.

Algorithm 2 Construction for Permutation Graphs with One-Hot Inputs

1: Input: Graph G = (V,E) defined by permutation π.
2: Setup: Choose a probability p ∈ (0, 1/2), e.g., p = 1/4, and dimension dk = C logm, for sufficiently large

constant C.
3:
4: Construct Key Matrix: Draw WK ∈ Rm×dk with i.i.d. entries (WK)jl ∼ Bernoulli(p).
5: For each node vj , the key is kj = ejWK .
6:
7: Construct Query Matrix: For each node vi, set its query qi = kπ(i).
8: This is equivalent to setting the i-th row of WQ to be the π(i)-th row of WK .
9:

10: Set Threshold: τ = p+p2

2 dk.

Theorem C.1 (Single-head recognition under one-hot inputs). Under the construction above, for dk = C logm with
C sufficiently large (depending only on p), we have with probability at least 1−m−3 over the draw of WK that

Si,π(i) > τ and Sij < τ for all i ∈ V, j ̸= π(i).

Hence a single attention head correctly identifies all edges of G.

Proof. For j = π(i),
Si,π(i) = kπ(i) · kπ(i) ∼ Binomial(dk, p)

with mean µ1 = dkp. For j ̸= π(i),

Sij = kπ(i) · kj ∼ Binomial(dk, p2)

with mean µ2 = dkp
2. Take τ = µ1+µ2

2 = p+p2

2 dk.

For the (lower) tail at the true edge, the Chernoff bound gives

Pr
[
Si,π(i) ≤ τ

]
≤ exp

(
− µ1δ

2
1

2

)
where δ1 = 1− τ

µ1
= 1−p

2 ,

so Pr[Si,π(i) ≤ τ ] ≤ exp
(
− dkp(1−p)2

8

)
. For the (upper) tail at non-edges, the Chernoff bound yields

Pr
[
Sij ≥ τ

]
≤ exp

(
− µ2δ

2
2

2+δ2

)
where δ2 = τ

µ2
− 1 = 1−p

2p ,

hence Pr[Sij ≥ τ ] ≤ exp
(
− dk p(1−p)2

2(1+3p)

)
. A union bound over the m target pairs and the m(m− 1) non-target pairs

gives a total failure probability

me−c1dk +m2e−c2dk with c1 = p(1−p)2

8 , c2 = p(1−p)2

2(1+3p) .

Choosing dk = C logmwithC > max{3/c1, 2/c2} makes this at mostm−3, establishing the simultaneous separation
Si,π(i) > τ > Sij and correctness.
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Lemma 4.1 immediately now yields correctness for every context, independent of context length. Our lower bound
from Section A for this case is Ω( m′

dmodel
logm) = Ω(logm). Our construction achieves an upper bound of dk =

O(logm), demonstrating that the bound is tight for this class of problems. Also note that the threshold proof is
identical if softmax is used; see Appendix D.

C.2 CONSTRUCTION II: PERMUTATIONS UNDER COMPRESSIVE EMBEDDINGS

We next prove the correctness of Construction II, which follows from Theorem 4.2, restated here for convenience.

Theorem C.2 (Multi-head recognition under Gaussian unit-norm embeddings). Assume the setup and construction
of Algorithm 1 with h = m

dmodel
heads, per-head dimension dk = C logm for C sufficiently large, and τ = 1

2dk. If
dmodel ≥ c0 logm for a sufficiently large absolute constant c0, then with probability at least 1 −m−3 over the draw
of (X,Wsig),

∀i ∈ V ∃ k ∈ [h] with i ∈ Vk : S
(k)
i,π(i) > τ and S

(k)
ij < τ ∀j ̸= π(i).

Consequently, max-pooling over heads correctly recognizes all edges and DK = h dk = Θ
(

m logm
dmodel

)
.

Proof. Let ui := xiX
⊤ = ei(XX

⊤) and δi := ui − ei ∈ Rm. Thus ui is the i-th row of the Gram matrix
G := XX⊤; it satisfies ui(i) = 1 and, for j ̸= i, ui(j) = ⟨xi,xj⟩. Fix a head k and a source i ∈ Vk. As in
Construction I, write

q
(k)
i = uiW

′
Q,(k), k

(k)
j = ujW

′
K,(k).

Using ut = et + δt and the definitions of W ′
Q,(k) and W ′

K,(k), decompose, for any j,

S
(k)
ij = (uiW

′
Q,(k)) · (ujW

′
K,(k))

= wπ(i) ·wj · I(j ∈ Tk)︸ ︷︷ ︸
Signal

+wπ(i) ·
∑

t∈Tk
δj,twt︸ ︷︷ ︸

N1

+
( ∑

s∈Vk

δi,swπ(s)

)
·wj · I(j ∈ Tk)︸ ︷︷ ︸

N2

+
( ∑

s∈Vk

δi,swπ(s)

)
·
( ∑

t∈Tk

δj,twt

)
︸ ︷︷ ︸

N3

.

Signal here means the contribution that would remain under a perfect inverse (i.e., ifXX⊤ = I): wπ(i)·wj ·I(j ∈ Tk).
The Noise terms N1, N2, N3 arise solely from the leakage vectors δi, δj due to approximate de-embedding. For
j ∈ Tk \ {π(i)} the cross-inner product wπ(i) ·wj is not counted as noise (it is intrinsic signature cross-correlation)
and is bounded separately. To bound the Noise terms, we next quantify properties of the approximate inverse XX⊤

for unit-norm Gaussian rows.

Lemma C.3 (Concentration of the approximate inverse). Let X be as above and dmodel ≥ c0 logm for a sufficiently
large constant c0. With probability at least 1−m−4, simultaneously for all i ∈ [m] and heads k ∈ [h]:

1. ui(i) = 1 (deterministically).

2. (Leakage L2-mass) For S ∈ {Vk \ {i}, Tk},

∥δi,S∥22 =
∑
s∈S

⟨xi,xs⟩2 ≤ C2

for an absolute constant C2 (e.g., C2 = 2).

3. (Cross-correlations) For all i, j, ∣∣∣ ∑
a∈Tk

δi,π−1(a) δj,a

∣∣∣ ≤ C3

√
logm

dmodel

for an absolute constant C3.
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Proof. For j ̸= i, ⟨xi,xj⟩ is mean-zero sub-Gaussian with parameter Θ(1/
√
dmodel), and {⟨xi,xj⟩}j∈S are inde-

pendent given xi. Then (⟨xi,xj⟩2)j∈S are i.i.d. sub-exponential with ψ1-norm Θ(1/dmodel) and mean 1/dmodel. For
|S| = dmodel, Bernstein’s inequality gives

Pr
[∑
s∈S

⟨xi,xs⟩2 > 2
]
≤ e−Ω(dmodel).

A union bound over i and the 2h choices of S (recall h = m/dmodel) yields Item 2.

For Item 3, define independent mean-zero sub-exponential variables Ya := ⟨xi,xπ−1(a)⟩ · ⟨xj ,xa⟩ for a ∈
Tk. Each has ψ1-norm Θ(1/dmodel) and EYa = 0. Bernstein’s inequality implies Pr

[∣∣∑
a∈Tk

Ya
∣∣ ≥ t

]
≤

2 exp(−Ω(min{dmodelt
2, dmodelt})). Taking t = C3

√
(logm)/dmodel and union bounding over all i, j, k proves

Item 3 for c0 large enough. Item 1 is immediate from unit-norm rows.

Signal. If j = π(i), then Signal = ∥wπ(i)∥22 = dk (exactly). If j ∈ Tk and j ̸= π(i), then Signal = wπ(i) ·wj is a
sum of dk i.i.d. Rademacher variables and thus sub-Gaussian with mean 0 and variance dk. By a union bound over all
(i, j, k), with probability at least 1−m−5,

|Signal| ≤ C⋆

√
dk logm for all (i, j ∈ Tk \ {π(i)}, k),

for an absolute constant C⋆.

Noise. Condition on X and apply Lemma C.3. For N1,

N1 =

dk∑
r=1

( ∑
t∈Tk

δj,t wt[r]
)
wπ(i)[r]

is a sum of dk i.i.d. mean-zero sub-Gaussian variables with variance proxy ∥δj,Tk
∥22 ≤ C2. Hence, by Bern-

stein/Hoeffding and a union bound over (i, j, k),

|N1| ≤ C4

√
C2 dk logm

holds w.h.p. for an absolute constant C4. The same bound holds for N2 with ∥δi,Vk
∥22 ≤ C2.

For N3, write for each column r,

Xr :=
∑
s∈Vk

δi,s wπ(s)[r], Yr :=
∑
t∈Tk

δj,t wt[r].

Then N3 =
∑dk

r=1XrYr. Conditional on X , {(Xr, Yr)}dk
r=1 are i.i.d.; each Xr and Yr is mean-zero sub-Gaussian

with parameters ≲ ∥δi,Vk
∥2 ≤

√
C2 and ≲ ∥δj,Tk

∥2 ≤
√
C2, respectively. Thus XrYr is mean ⟨δi,π−1(Tk), δj,Tk

⟩
and sub-exponential with ψ1-norm ≲ C2. Consequently,

E[N3 | X] = dk
〈
δi,π−1(Tk), δj,Tk

〉
,

and, by Bernstein plus a union bound, ∣∣N3 − E[N3 | X]
∣∣ ≤ C5 C2

√
dk logm

w.h.p. for an absolute constant C5. Using Lemma C.3(3),∣∣E[N3 | X]
∣∣ ≤ dk C3

√
logm

dmodel
.

Separation. Choose constants c0, C large enough so that

C3

√
logm
dmodel

≤ 1
16 and (C⋆ + 2C4

√
C2 + C5C2)

√
logm
dk

≤ 1
16 .

This is feasible since dmodel ≥ c0 logm and dk = C logm.

Target edge j = π(i). Using the bounds above (recall Signal = dk exactly),

S
(k)
i,π(i) ≥ dk − (C4

√
C2 dk logm)︸ ︷︷ ︸
|N1|

− (C4

√
C2 dk logm)︸ ︷︷ ︸
|N2|

−
(
C5C2

√
dk logm+ 1

16dk
)︸ ︷︷ ︸

|N3|

> 3
4dk > τ.
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Non-edge j ̸= π(i). If j /∈ Tk then Signal = 0 and N2 = 0, so

|S(k)
ij | ≤ C4

√
C2 dk logm+

(
C5C2

√
dk logm+ 1

16dk
)
< 1

4dk < τ.

If j ∈ Tk\{π(i)}, then |Signal| ≤ C⋆

√
dk logm and the same bounds forN1, N2, N3 apply, giving |S(k)

ij | < 1
4dk < τ .

A union bound over all (i, j, k) completes the proof.

Thus, with Gaussian unit-norm embeddings and Rademacher signatures, our construction recognizes the entire graph
using a total key dimension

DK = h · dk = O

(
m logm

dmodel

)
,

This bound is asymptotically optimal, matching our lower bound within a constant factor. In the proof of Theorem 4.2,
the non-edge bounds hold uniformly over all (i, j, k) (we union bound over (i, j, k)), so for any j ̸= π(i) we have
S
(k)
ij < τ for all heads k and hence Smax

ij < τ , while the target edge satisfies Smax
i,π(i) > τ . Lemma 4.1 then yields

correctness on E|C for every context C.

C.3 CONSTRUCTION III: MORE GENERAL EMBEDDINGS

The analysis of Construction II (Gaussian unit–norm) ultimately used only two facts about the Gram matrix XX⊤:
(i) diagonals concentrate around a common scale, and (ii) for any small subset of indices the off–diagonal leakage
has bounded ℓ2 mass, with a mild control on a corresponding cross–leakage term. We package these into a reusable,
block–level notion that subsumes the usual pairwise incoherence and is tight enough to cover sparse/binary compres-
sive embeddings.
Definition C.4 (Restricted self–incoherence at block size B). Fix parameters µ > 0, εd ∈ [0, 1), block size B ∈ N,
and leakage levels ρ, γ ≥ 0. An embedding matrix X ∈ Rm×dmodel with rows {xi}mi=1 is (µ, εd, B; ρ, γ)–restricted
self–incoherent if, writing

Xinv :=
1

µ
X⊤, ui := xiXinv =

1

µ
ei(XX

⊤), δi := ui − ei,

the following hold simultaneously:

1. Diagonal stability: ui(i) ∈ [1− εd, 1 + εd] for all i.

2. Restricted leakage mass: for every i and every S ⊆ [m] \ {i} with |S| ≤ B,

∥δi,S∥22 =
∑
s∈S

δi(s)
2 ≤ ρ.

3. Restricted cross–leakage: for every i, j and S ⊆ [m] with |S| ≤ B,∣∣∣∑
a∈S

δi(a) δj(a)
∣∣∣ ≤ γ.

Theorem C.5 (Recognition under restricted self–incoherence). Let X be (µ, εd, B; ρ, γ)–restricted self–incoherent
for some B. Fix any p ≤ 1/20, take dk = C logm with C a sufficiently large absolute constant, and set τ = p+p2

2 dk.
There exist absolute numerical constants (c1, c2, c3) such that if

εd ≤ c1, ρ ≤ c2
logm

, γ ≤ c3
logm

,

then with probability at least 1−m−3 over Wsig (and the draw of X if random),

∀i ∈ V ∃ k ∈ [h] with i ∈ Vk : S
(k)
i,π(i) > τ and S

(k)
ij < τ ∀j ̸= π(i).

Consequently, max–pooling over heads recovers all edges and the total key budget satisfies

DK = h dk = Θ
(m logm

B

)
.
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Algorithm 3 Construction for Generalized Embeddings

1: Input: Embedding matrix X ∈ Rm×dmodel ; permutation graph G = (V,E) with π : V → V .
2: Parameters: Signature sparsity p ∈ (0, 1/20]; per–head width dk = C logm for a sufficiently large absolute

constant C.
3: Random signatures: Draw Wsig ∈ {0, 1}m×dk with i.i.d. Bernoulli(p) entries; let wj denote its j-th row.
4: Set Threshold: τ := p+p2

2 dk.
5: Choose block size and partition: Pick a block size B (specified per embedding family below). Let h := ⌈m/B⌉

and partition V into blocks V1, . . . , Vh with |Vk| ≤ B. For each head k, define its target set

Tk := {π(s) : s ∈ Vk}.

6: Define one-hot–space templates (for each head k):

W ′
Q,(k)(i, :) =

{
wπ(i) i ∈ Vk

0 else
, W ′

K,(k)(j, :) =

{
wj j ∈ Tk

0 else
.

7: Realize parameters via approximate inverse:

W
(k)
Q = XinvW

′
Q,(k), W

(k)
K = XinvW

′
K,(k).

Proof sketch. As in Construction II, the score decomposes into a signal term plus three noise terms: S(k)
ij = wπ(i) ·

wj · I(j ∈ Tk) + N1 + N2 + N3, with N1, N2, N3 arising from δi, δj . Write ut = et + δt and expand S
(k)
ij

as in Construction II. Conditioned on X , each column of Wsig contributes an independent copy of the signal/noise
decomposition. Using Chernoff for the Bernoulli signal coordinates gives, uniformly over all (i, j, k), the standard
separation µ1 − µ2 = (p− p2)dk between j = π(i) and j ∈ Tk \ {π(i)} up to O(

√
dk logm) fluctuations.

For N1 and N2, restricted leakage mass yields Var(N1),Var(N2) ≲ dk ρ and hence |N1|, |N2| ≲
√
dk ρ logm

uniformly with probability 1 − m−5. For N3, the centered part concentrates at scale ≲
√
dk logm · (ρ)1/2, while

the mean shift equals dk⟨δi,π−1(Tk), δj,Tk
⟩ and is controlled by γ. Choosing C large and (c1, c2, c3) small makes the

total noise < 1
4 (p− p2)dk uniformly, while the target signal sits > 3

4 (p− p2)dk above µ2, giving the stated threshold
separation.

How to pick B. The theorem asks only that ρ, γ ≲ 1/ logm at the chosen block size B. Different embedding
families admit different (ρ, γ)–vs–B trade–offs; plugging the corresponding B into DK = Θ((m/B) logm) yields
the budget.

COROLLARIES FOR COMMON EMBEDDING MODELS

Corollary C.6 (Gaussian unit–norm (GUN)). Let each row xi be drawn i.i.d. as x̃i ∼ N (0, I/dmodel) and then
ℓ2–normalized. Then w.h.p.

εd = 0, ρ ≲
B

dmodel
, γ ≲

√
B

dmodel
,

and Theorem C.5 holds for any B ≤ c dmodel/ logm. Choosing B = Θ(dmodel) yields

h = Θ
( m

dmodel

)
, DK = Θ

(m logm

dmodel

)
,

in agreement with Theorem 4.2 up to constants (the specialized proof in Construction II attains this with the sharp
choice B = dmodel).
Corollary C.7 (Random binary compressive embeddings (RBCE)). Let X ∈ {0, 1}m×dmodel have i.i.d. Bernoulli(pB)
entries with pB = Θ(logm/dmodel) (sparse binary features). Set µ := dmodelpB . Then with probability at least 1−m−4

the following hold simultaneously:

ui(i) ∈ [1− εd, 1 + εd] with εd ≲
1
√
µ
, ρ ≲

B

dmodel
, γ ≲ B p2B .

Consequently, taking

B = Θ
(dmodel

logm

)
=⇒ ρ ≲

1

logm
, γ ≲

logm

dmodel
,
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and Theorem C.5 applies. The number of heads and total key budget become

h = Θ
(m logm

dmodel

)
, DK = h dk = Θ

(m log2m

dmodel

)
.

Proof idea for Corollary C.7. Row norms are Binomial(dmodel, pB) and concentrate at µ with relative error O(1/
√
µ)

by Chernoff, giving the εd bound. For a fixed i and any S with |S| ≤ B,∑
s∈S

⟨xi,xs⟩2 ≤
∑
s∈S

⟨xi,xs⟩ and E
[
⟨xi,xs⟩

]
= dmodelp

2
B ,

so E∥δi,S∥22 = 1
µ2

∑
s∈S E⟨xi,xs⟩2 ≲ B/dmodel, and a Bernstein + union bound yields ρ ≲ B/dmodel. Similarly,

E
∑

a∈S δi(a)δj(a) =
|S|
µ2 E⟨xi,xa⟩E⟨xj ,xa⟩ ≲ Bp2B , and concentration gives γ ≲ Bp2B uniformly.

Signature family. We stated the construction with Bernoulli(p) signatures because the thresholding analysis natu-
rally separates j = π(i) from j ∈ Tk \ {π(i)} at means pdk vs. p2dk. One can equivalently use Rademacher {±1}
signatures with threshold τ = 1

2dk; all bounds above translate verbatim with the same B and dk = Θ(logm).

Takeaways. Definition C.4 abstracts the only geometric inputs needed by the attention construction. Plugging
in model–specific (ρ, γ)–vs–B trade–offs yields the head count h = Θ(m/B) and total key budget DK =
Θ((m/B) logm). For Gaussian unit–norm embeddings one recovers the DK = Θ(m logm/dmodel) guarantee; for
sparse random binary compressive embeddings one obtains DK = Θ(m log2m/dmodel).

C.4 Construction IV: General Graphs

We now extend the permutation constructions to general directed graphsG = (V,E) with |V | = m vertices and |E| =
m′ edges. In this case, our information theoretic lower bound on total key dimension isDK = Ω

(
m′

dmodel
log(m2/m′)

)
.

We here provide a general upper bound for any graph, and show that for graphs that have a mild skew condition (the
maximum degree is not too much larger than the average degree), it asymptotically matches this lower bound for all
but the densest graphs (which match within a log factor). As before we use max aggregation over heads with a global
scalar threshold τ , and we work under the Gaussian unit-norm embedding model from Construction II: the row vectors
of X ∈ Rm×dmodel are i.i.d. isotropic Gaussian followed by L2-normalization. All probabilities are over the draw of X
and of the (head-shared) random signature matrix.

Packing edges into matchings. The analysis in Theorem 4.2 operates on blocks in which each source has exactly
one outgoing edge and targets are distinct within the block. Equivalently, each head should see a matching (a partial
permutation) between a set of sources and a set of targets.

We will use a simple decompositions of the edge set into matchings of size dmodel which will be our block size. Write
dout(i) and din(i) for the out-/in-degree of vi. Let ∆out := maxi dout(i) and ∆in := maxi din(i) denote the maximum
out- and in-degrees, and write ∆ := max{∆out,∆in}.

Lemma C.8 (Coloring-and-batching decomposition). Let G = (V,E) be any directed graph on m vertices and m′

edges, and let H :=
⌈

m′

dmodel

⌉
+ ∆. Then there exists a partition of E into H disjoint sets M1, . . . ,MH such that for

every k: (i) Mk is a matching (no two edges in Mk share a source or a target); (ii) |Mk| ≤ dmodel.

Proof. Identify G with its bipartite incidence graph B = (VL∪VR, E) where each directed edge (i, j) becomes an
undirected edge between i ∈ VL and j ∈ VR. Then ∆(B) = ∆. By Kőnig’s line-coloring theorem, E = F1∪· · ·∪F∆

with each Fc a matching. Split each Fc into blocks of size at most dmodel; since
∑∆

c=1⌈|Fc|/dmodel⌉ ≤
⌈∑

c |Fc|
dmodel

⌉
+∆ =⌈

m′

dmodel

⌉
+∆ = H , we obtain H matchings Mk each of size at most dmodel.

Thus, after packing via Lemma C.8 head k will operate on the matching Mk. Let Vk ⊆ V and Tk ⊆ V denote the
sources and targets incident to Mk and write πk : Vk → Tk for the bijection defined by Mk.
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Algorithm 4 Construction for General Graphs

1: Input: Directed graph G = (V,E) with |V | = m, |E| = m′; embedding matrix X ∈ Rm×dmodel with Gaussian
unit-norm rows.

2: Parameters: Number of heads h = H =
⌈

m′

dmodel

⌉
+ ∆; per-head key/query dimension dk = C logm for a

sufficiently large absolute constant C. Each head uses block size dmodel.
3: Pack edges into matchings: Decompose E into disjoint matchings M1, . . . ,MH with |Mk| ≤ dmodel using

Lemma C.8. For each k, let Vk and Tk be the sources and targets incident to Mk and write πk : Vk → Tk for the
associated bijection.

4: Random signatures: Draw a shared Rademacher matrix Wsig ∈ {±1}m×dk with i.i.d. entries; let wj denote its
j-th row.

5: Per-head “ideal” matrices:(
W ′

Q,(k)

)
i,· :=

{
wπk(i) i ∈ Vk
0 otherwise

,
(
W ′

K,(k)

)
j,· :=

{
wj j ∈ Tk
0 otherwise

,

where wj is the j-th row of Wsig.
6: Final projections (approximate de-embedding): As in Construction II, use the approximate inverse X⊤:

W
(k)
Q = X⊤W ′

Q,(k), W
(k)
K = X⊤W ′

K,(k).

7: Set Threshold: τ = 1
2dk.

Construction. We reuse the compressive permutation machinery head-by-head.
Theorem C.9 (General graphs). Assume dmodel ≥ c0 logm for a sufficiently large constant c0. With the construction
above (using h =

⌈
m′

dmodel

⌉
+ ∆ heads and dk = C logm), there is a universal C such that, with probability at least

1−m−3 over the draw of (X,Wsig), simultaneously for all ordered pairs (i, j),

Smax
ij = max

1≤k≤H
S
(k)
ij

{
> τ if (i, j) ∈ E,

< τ if (i, j) /∈ E.

Consequently, DK = O
(
m′ logm
dmodel

+∆ logm
)
.

Proof sketch. By Lemma C.8, each head k sees a matching Mk of size at most dmodel, with a bijection πk : Vk → Tk.
Within head k, the score decomposition and concentration bounds are exactly those of Theorem 4.2: for (i, j) =
(i, πk(i)) the Signal term equals dk and the three Noise terms (N1, N2, N3) are controlled using Lemma C.3, since all
leakage sets (Vk \ {i} and Tk) have size ≤ dmodel. For (i, j) ̸= (i, πk(i)), Signal is a sum of i.i.d. Rademachers with
variance dk, while the same leakage bounds control N1, N2, N3. Choosing C and c0 as in Theorem 4.2 yields, within
each head, S(k)

i,πk(i)
> τ and |S(k)

ij | < τ for all j ̸= πk(i) simultaneously with probability 1−m−4.

A union bound over all heads and all pairs in those heads costs only a log factor absorbed by dk = C logm: using
|Mk| ≤ dmodel and

∑
k |Mk| = m′, we have

∑
k |Mk|2 ≤ dmodel

∑
k |Mk| = dmodelm

′ = O(m′dmodel) events in total.
Finally, max pooling across heads preserves separation (non-edges are below τ in every head, and each true edge
belongs to exactly one Mk), and Lemma 4.1 yields context-robustness for arbitrary subsets C ⊆ V .

Degree skew and tightness. Let davg = m′

m . Define the skew factor to be ∆/davg and consider the condition

∆

davg
≤ m

dmodel
. (10)

In other words, the ratio of the maximum degree to the average degree is no larger than the compression of the
embedding, or equivalently, ∆ ≤ m′

dmodel
. This condition automatically holds for all d-regular graphs (since ∆ = davg).

Corollary C.10 (Bounded Skew). Assume dmodel ≥ c0 logm and (10). Then the construction with h0 = ⌈m′/dmodel⌉
heads and dk = C logm achieves the same separation guarantee as Theorem C.9, and DK = Θ

(
m′ logm′

dmodel

)
.

This is immediate from from Theorem C.9 and asymptotically matches the lower bound from Section A for this class
of graphs, provided m′ = O(m2−ϵ) for some positive constant ϵ.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

D ADDITIONAL JUSTIFICATION FOR THE MODEL (SECTION 3)

Computational footprint. While it is natural to consider the number of heads (h) and the per-head key/query di-
mension (dk) as two separate resources, we argue that the most relevant complexity measure is their product. In
practice, the computation for multiple heads is not performed as h distinct operations but as a single, larger batched
operation. Let X ∈ Rℓ×dmodel stack the context embeddings. With W cat

Q ,W cat
K ∈ Rdmodel×(hdk) formed by concatenating

head weights, queries/keys are Qtotal = XW cat
Q and Ktotal = XW cat

K . Both flops and parameter/memory cost scale as
O(ℓ dmodel hdk) and O(dmodel hdk), respectively, motivating DK = hdk as the budget.

While sub-cubic matrix multiplication algorithms could theoretically make one large head asymptotically faster than
several smaller ones, this effect is absent in practice. The true bottleneck for these operations on modern hardware is
memory bandwidth—the rate at which the matrices can be fetched from memory. The total data moved is proportional
to the size of the weight matrices, which is in turn proportional to dmodel · (h · dk). Because deep learning libraries are
highly optimized to perform these batched multiplications, the performance typically tracks the total size of the key
and query matrices, regardless of the number of heads.

Analyzing the QK channel in isolation. Since RGR asks where a source should connect, the OV pathway only
reweights or propagates information after the routing decision has been made. Thus, a correct edge can only dominate
if the QK gate already concentrates sufficient mass on the true target. Increasing value dimension DV amplifies
whatever QK selects; it does not fix mis-routing.5 Furthermore, our construction aligns with recent mechanistic
analyses that separate each attention head into an OV circuit (what is read/written) and a QK circuit (where to attend);
the QK circuit determines the attention pattern and thus the directed edges in RGR (33; 19).

Aggregating across heads. This ‘OR-of-heads’ max is an analysis device for the edge test; it does not assert
cross-head QK interaction in standard MHA implementations (where heads are combined in the value pathway).
However, aggregating multi-head QK scores by a max implements the intended RGR semantics: each head k special-
izes to a relational template, and an (untyped) edge should exist if any template fires, i.e., Smax

pq = maxk S
(k)
pq > τ (an

OR-of-relations). If a smooth alternative is desired, replacing max with log-sum-exp preserves the binary decision up
to a global threshold shift, since for any scores a1, . . . , ah,

max
k

ak ≤ LSE(a) = log

h∑
k=1

eak ≤ max
k

ak + log h,

so one can retune τ by at most log h without changing the classifier (6).

From a detection viewpoint, max is the standard OR-of-detectors aggregator (as in max-pooling): it passes through the
strongest localized evidence while suppressing clutter, whereas averaging or summing allows many weak, unrelated
heads to “conspire” to cross the threshold—undesirable for a yes/no edge test. This aligns with empirical observations
that only a small number of specialized heads dominate while many can be pruned with little effect; a max aggregator
naturally yields a principled winner-take-all over these specialists without paying for redundant heads.

Thresholding vs. Softmax. Our model makes binary edge decisions from the raw QK scores Sij . As a result,
our thresholding decision paradigm can be replaced with the usual 1/

√
dk scaling and softmax without changing

the asymptotic budgets used by our constructions for all but very dense graphs. Throughout this paper, we keep the
thresholding rule for simplicity and ease of exposition, but we describe how to incorporate this change into our results.

Scaling. If the decision is made directly on raw scores, the 1/
√
dk factor can be absorbed into the threshold on Sij . If

the decision is made after softmax, we absorb 1/
√
dk into the learned projections WQ,WK so that the effective logits

are unchanged.

Softmax. Let aij = exp(Sij)/
∑

t∈C exp(Sit) be the row-wise softmax over a context C (we assume distinct members
of V in any context, so |C| = ℓ ≤ m). We use a single global (per graph) threshold τ̂ on the attention weight:

decide (i, j) is an edge ⇐⇒ aij ≥ τ̂ ⇐⇒ Sij − lset∈C Sit ≥ log τ̂ .

Let ∆ be the maximum out-degree of the graph, and let

γ := min
i

(
min
j∈Ni

Sij − max
j /∈Ni

Sij

)
5Note that our model is scoped to a single self-attention layer; multi-layer iterative routing is outside our abstraction.
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be the uniform score gap. A standard bound (6) yields, for any positive j ∈ Ni and any ℓ ≤ m,

aij ≥ 1

∆ + (ℓ−∆)e−γ
. (11)

Therefore a single global threshold τ̂ works for all contexts ℓ ≤ m provided

γ ≥ log
( m−∆

1/τ̂ −∆

)
and necessarily τ̂ ≤ 1

∆
. (12)

The condition τ̂ ≤ 1/∆ is unavoidable because the k positive weights in a row sum to at most 1. If ∆ ≤ m1−ε for
some constant ε ∈ (0, 1] and we take τ̂ = c/∆ with any fixed c ∈ (0, 1), then

γ ≥ log
( m−∆

∆(1/c− 1)

)
= log

(
m
∆ − 1

)
+ log

(
c

1−c

)
≥ ε logm + O(1).

In all of our signature-based constructions, the gap satisfies γ = Θ(dk) with high probability; hence choosing dk =
C logm with C large enough to meet (12) yields a valid single global threshold τ̂ for all contexts ℓ ≤ m.

We also note that sparse alternatives to softmax (sparsemax and α-entmax) implement threshold-like attention rules
that align directly with our edge test (43; 48; 11).

E RELATED WORK

We survey work most relevant to our capacity-centric view of self-attention and position our Relational Graph Recog-
nition (RGR) results in that landscape. The central distinction we draw is between what attention can compute in
principle (expressivity), how architectural resources govern this power (capacity), and which parts of the Transformer
carry the binding/addressing load (keys/queries vs. other channels).

MEMORIZATION CAPACITY AND PARAMETER–DEPENDENT BOUNDS

A growing body of work quantifies how many input–label associations Transformers—and, more narrowly, the atten-
tion mechanism—can memorize. As described in Section 2, the bounds from the memorization setting do not directly
imply bounds on RGR, nor the other way around. For the attention module itself, (42) prove that a single MHA layer
with h heads can memorize Ω

(
h min{ℓ, dk}

)
examples under a linear-independence assumption on the inputs, high-

lighting linear scaling in h and the role of the per-head key/query width dk. Complementary analyses bound attention’s
memory depth and clarify depth–capacity trade-offs (41). Moving to full Transformers, constructive results show that
(under token-wise (r, δ)-separated inputs) a stack of 2ℓ self-attention layers suffices to memorize N sequences with
Õ
(
ℓ +

√
ℓN
)

parameters (35); even a single-layer, single-head Transformer has nontrivial capacity under the same
separatedness assumption, whereas replacing softmax by hardmax breaks memorization (31).

Beyond construction-style bounds, (41) give general upper and lower bounds for next-token prediction that scale as
Θ(ωN) in the presence of positional encodings and a vocabulary of size ω, and (8) show that a single-layer Trans-
former can memorize when sequences are sufficiently zero-padded (though not in a parameter-optimal way). Classical
results for ReLU networks connect parameter counts to memorization thresholds and VC-style capacity (58; 59). More
closely related to our focus on resource efficiency, (32) establish nearly matching upper/lower bounds on the minimal
parameter count needed for memorization in Transformers: Õ(

√
N) parameters are sufficient (and necessary up to

logs) for next-token prediction, and Õ(
√
ℓN) for sequence-to-sequence, under token-wise separatedness; they further

suggest that self-attention effectively identifies sequences while the feed-forward network can become the bottleneck
when associating labels.

SUPERPOSITION, CONSTRUCTIVE DESIGNS, AND DEPTH SEPARATION

A concurrent line of work analyzes how networks compute many features in superposition, with lower and upper
bounds for narrow MLPs and constructive designs for multi-feature computation (2; 1; 26). The capacity limits
shown there (stated as upper and lower bounds on neurons to compute a number of Boolean functions in parallel) are
complementary to ours in terms of architectures: their focus is on MLPs while ours is on attention.

Foundational depth-separation and minimal-width universality results motivate the proof template we
adopt—information-theoretic lower bounds matched by explicit constructions (55; 25; 34; 12). In attention, construc-
tive correspondences also explain how multi-head architectures partition pattern spaces; e.g., with relative positions,
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s2 heads can realize any s× s convolution (10). Our constructions similarly partition relational signal across heads to
mitigate interference when dmodel ≪m, explaining the empirical advantage of many small heads and clarifying when
too-small dk triggers low-rank failure (5).

DIMENSION-, RANK-, AND RESOURCE–DRIVEN EXPRESSIVITY

A growing body of theory isolates how dimensional resources govern attention’s representational power. Universality
guarantees establish that sufficiently resourced Transformers can approximate sequence-to-sequence functions (70),
while more refined results show task-dependent strengths and weaknesses (52). Focusing on the attention map, (39)
prove that with fixed error and sparsity, self-attention can approximate dynamic sparse right-stochastic matrices using
only O(log ℓ) hidden dimensions (for context length ℓ), echoing the role of near-orthogonality we exploit in our
constructions. Conversely, (5) identify a per-head low-rank bottleneck: when dk < ℓ, a head cannot realize arbitrary
ℓ × ℓ stochastic attention matrices. This clarifies a trade-off inside the total key/query budget DK = h dk: pushing
DK into many tiny heads can induce head-wise rank limits.

Beyond these, several works develop structural and inductive-bias characterizations of self-attention. (15) show that
pure attention without mixing loses rank doubly-exponentially with depth, explaining failure modes in deep attention
stacks and underscoring the role of residual mixing. (17) analyze variable creation and sparsity patterns induced
by softmax, while (51) use convex duality to give optimization- and geometry-based interpretations of ViT atten-
tion. For sample complexity and approximation, (37) study learning and generalization of shallow ViTs; rates and
approximation guarantees have been developed for Transformer encoders and sequence models (23; 54; 30). Recent
generalization bounds that are (largely) sequence-length independent sharpen this picture (56). Finally, theory has also
pinpointed sparsity-oriented inductive biases: Transformers provably learn sparse token selection that FCNs cannot
(68), and exhibit a simplicity bias for sparse Boolean functions (4).

Empirical observations likewise single out the key/query channel as an operative budget. Our results formalize this
perspective for a concrete family (RGR), deriving matching lower and constructive upper bounds in terms of DK and
the number of relations.

FORMAL-LANGUAGE LIMITS, COMPOSITIONALITY, AND UNIVERSALITY

Formal-language analyses delimit what fixed-size attention can recognize. Beyond general universality (70), there are
sharp impossibility results for periodic and hierarchical languages (24; 3; 69). Recent work uses communication-
complexity arguments to show single-layer self-attention struggles with function composition at fixed embed-
ding/heads, e.g., “grandparent-of” requires resources that scale with domain size (47). Complementing these, (40)
identify additional structural constraints on what Transformers can compute under realistic resource regimes. We view
these results as orthogonal to RGR: they characterize classes of computations, whereas we fix a relational family and
ask how much key/query budget is necessary and sufficient to represent its edges across arbitrary contexts.

IN-CONTEXT LEARNING AND ALGORITHMIC VIEWS OF SELF-ATTENTION

A complementary line of theory frames Transformers—and attention in particular—as executing algorithms over
the context. (38) analyze generalization and implicit model selection in in-context learning; (65) give evidence that
Transformers can implement gradient-descent-like updates in context; and (20) characterize which simple function
classes are learnable in context. These works clarify how attention can implement algorithmic behaviors over token
sets, while our RGR focus quantifies the key–query capacity required to retrieve relational edges reliably.

CONNECTIVITY PATTERNS VS. CAPACITY IN THE KEY/QUERY CHANNEL

An alternative way to constrain attention is by controlling the connectivity pattern of the attention graph. Even O(ℓ)-
sparse patterns can be universal under appropriate designs (71), and systematic pruning of dense patterns maps out
cost–performance frontiers (67). Our analysis treats connectivity as not the bottleneck: given the ability to attend
broadly, the limiting factor for RGR is how much relational information can be encoded and separated in keys/queries
as m and m′ grow.

HEAD SPECIALIZATION, PRUNING, AND INFORMATION BOTTLENECKS

Mechanistic interpretability consistently finds that specific heads specialize to linguistic relations (9; 63). At the
same time, many trained heads can be pruned with small accuracy loss (45; 64), indicating redundancy. Information-
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bottleneck analyses at the head/layer level quantify such redundancy and attribution in both language and vision
models (49; 27), and architectural proposals target representation bottlenecks (21). Our results supply a capacity-
theoretic backbone for these observations: for RGR, performance transitions are governed primarily by DK ; distribut-
ing DK across heads reduces interference between superposed relations, but overly small dk per head incurs rank
limits—predicting both specialization and safe pruning regimes.

ATTENTION AS ASSOCIATIVE MEMORY VS. RELATIONAL ADDRESSING

Modern Hopfield networks are equivalent, in a precise sense, to attention updates and can store exponentially many
patterns in the associative dimension with single-step retrieval (50). FFN layers in Transformers have also been in-
terpreted as key–value memories (22). Our results complement this memory-centric view by isolating the addressing
budget: how much key/query capacity is required to select the correct neighbors (edges) for arbitrary contexts. To-
gether these views separate storage capacity from the cost of accurate retrieval/selection in the key–query channel.

GRAPH TRANSFORMERS AND STRUCTURAL ENCODINGS

Expressivity of graph Transformers is shaped by structural encodings and higher-order tokenization. SEG-WL analy-
ses show that structural features (e.g., SPIS encodings) set the attainable expressivity ceiling and can be matched by
simple Transformer variants (75). Higher-order graph Transformers reach (or fall short of) t-WL power depending on
whether explicit tuple indices and structural signals are provided (74). In the vision setting, (29) prove that ViTs can
learn spatial structure under appropriate conditions, resonating with our assumptions that near-orthogonal embeddings
and structural signals determine how efficiently edges can be packed and recovered; given such signals, ourDK-based
bounds become tight predictors of success.

Summary. Across expressivity, connectivity, memorization, superposition, interpretability, memory equivalence,
and graph structure, prior work identifies the ingredients that make attention powerful and the constraints that limit it.
We contribute a capacity-centric bridge: a concrete relational task (RGR) in which the total key dimension DK is the
critical budget, with lower and upper bounds tight up to logarithmic factors, a principled multi-head advantage, and
empirical thresholds that align with constructive algorithms.

F LLM USAGE STATEMENT

Throughout the preparation of this manuscript, we extensively utilized Large Language Models (LLMs) as assistive
tools. Their application spanned several aspects of our workflow. For writing, LLMs were used to generate rough
drafts from outlines and other notes, improve grammar and clarity, rephrase sentences, and refine the overall prose. In
our software development, they served as coding assistants for generating boilerplate code, debugging, and refactoring
our experimental scripts. Furthermore, LLMs were employed to accelerate our literature search by helping to identify
relevant related work and suggesting key references. We also used them in a brainstorming capacity to ideate on
potential experimental designs and ablation studies. The authors reviewed, edited, and take full responsibility for all
content.
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