
Provenance Design and Evolution in a Production ML Library

Adam Pocock 1 Joseph Wonsil 2 Romina Mahinpei 3 Jack Sullivan 1 Margo Seltzer 2

Abstract
Data Provenance is a formal record document-
ing how a digital artifact came to be in its present
state. In the context of a Machine Learning model,
provenance includes the data sources, data trans-
formations, and algorithmic hyperparameters that
are used to create the model. We present the de-
sign of Tribuo1, an open-source, production ML
library with integrated data provenance. Tribuo
collects provenance automatically requiring no
user action or intervention. Using the prove-
nance data, we developed systems for reproduc-
ing ML models and generating model cards. Like
a type-system, integrated provenance collection
constrains design choices and provides utility in
other parts of the system. Our integrated prove-
nance approach has allowed us to automatically
fix bugs in old models, detect non-obvious plat-
form dependencies and deeply understand and
debug models built by other groups. Integrating
provenance collection into the library influences
the design and evolution of the system, which
requires making trade-offs among provenance fi-
delity, provenance size, and developer flexibility.

1. Introduction
Machine Learning models are integrated into many large
pieces of software, providing critical features and function-
ality. Regulatory agencies frequently require understanding
and tracking the behaviour of ML models, which is also nec-
essary for developers to debug their systems. Consequently,
there is much interest in data provenance and reproducibility
in ML (Schelter et al., 2017; Gundersen & Kjensmo, 2018;

1Oracle Labs, Burlington, MA, USA 2Department of Com-
puter Science, University of British Columbia, Vancouver, BC,
Canada 3Department of Computer Science, Princeton Univer-
sity, Princeton, NJ, USA. Correspondence to: Adam Pocock
<adam.pocock@oracle.com>.

Proceedings of the ICML 2025 Workshop on Championing Open-
source Development in Machine Learning (CODEML ’25). Copy-
right 2025 by the author(s).

1Website: https://tribuo.org, GitHub: https://
github.com/oracle/tribuo.

Semmelrock et al., 2025). Data provenance (or lineage) is
a record of how an object (i.e., dataset, model, evaluation)
came to be (Carata et al., 2014). For ML models, this prove-
nance must contain information about the training data, the
training algorithm, model hyperparameters, and machine
state. Together, this information provides the story of how
the model was created, which is necessary for auditing and
is the first step towards reproducing the model.

Provenance can be captured at different granularities de-
pending on the requirements of the task, from fine-grain
provenance that captures system calls to coarse-grain prove-
nance that logs only the executable and source repository in-
formation (Carata et al., 2014). However the source code of
the training program may not be sufficient as it does not fully
capture the data & runtime environment (e.g., CPU/GPU,
number of threads, library versions) from model creation.
In Machine Learning, we are interested in the story of the
model creation, so fine-grained provenance, capturing each
individual matrix multiply or file open, hides that story. Sim-
ilarly, noting that the user executed a jupyter notebook may
not provide enough information to recreate the story.

Automatically capturing the provenance information with
minimal user intervention tends to provide the best expe-
rience; relying on manual logging can lead to gaps in the
data. Many existing provenance collection frameworks wrap
other ML libraries to automatically extract provenance infor-
mation. For example MLFlow (Chen et al., 2020) has two
modes, either manual logging by users (similar to Weights
and Biases (Biewald, 2020)) or “autolog”, which modifies
the Python code for each tracked library to record prove-
nance information when executed. Autologging relies on
parameter reporting by the training library, along with a
deep understanding of how that library behaves so it can
patch it to track appropriate behaviour. If there is no single
tracking point (e.g., in PyTorch where users write their own
training loop), then the autologging has no central point
to intercept and track the user’s actions, requiring manual
logging. Integrating provenance collection into the ML li-
brary itself provides the greatest likelihood of capturing the
relevant information with sufficient fidelity. Such integra-
tion allows the library itself to decide what information is
pertinent and does not require the users of the library to
deeply understand the library internals to capture its state.

1

https://tribuo.org
https://github.com/oracle/tribuo
https://github.com/oracle/tribuo


Provenance Design and Evolution in a Production ML Library

We discuss the design of the integrated provenance system in
our open source Machine Learning library Tribuo. Tribuo is
used in multiple Oracle products supplying ML functionality
in enterprise SaaS applications with millions of records
and also in large open source projects such as OpenSearch.
These environments require that provenance collection is
low overhead, to reduce cost, and accurate, to allow auditing
of the model and application. Our approach evolved in
response to the reality of our early internal users treating
Tribuo as they would any other software library; sending bug
reports to the development team without any information
other than the model file itself and a rough description of
the error. We found a small, accurate provenance object
contained within the model itself provides a substantial
amount of insight into the behaviour of the system to help
debug the library and the surrounding code. This requires
making a trade-off between provenance fidelity, provenance
size, and developer flexibility. Given Tribuo’s position as a
production (rather than research) ML library, we chose to
maximize fidelity and minimize provenance size with some
cost to developer flexibility. In general, we encapsulate
structures within the library; providing a simple API surface
and wrapping things such as training loops, model random
state, and third-party model implementations.

2. Design of the provenance system
Tribuo is an open source Java ML library; development
started internally in 2016, and the first open source release
followed in 2020. It’s available under an Apache 2.0 license
and developed in the open with contributions welcome from
external users. It provides implementations of tabular ML
algorithms such as trees, boosting, linear models, factor-
ization machines, along with clustering algorithms, feature
transformations, data ingestion pipelines, and evaluation
methods for classification, regression, and clustering. In
contrast to the fit/predict API popularised by scikit-learn (Pe-
dregosa et al., 2011), which accepts ndarray inputs, we re-
quire strongly typed objects derived from our interfaces as
inputs to the training and evaluation functions. This lets us
begin provenance collection when data is loaded into our
system.

The workflow to build and use a model consists of the follow-
ing four steps. 1) Create a Dataset object from a data source
(e.g., a file, database connection, in-memory representation).
2) Create a Trainer object based on a set of hyperparame-
ters. 3) Create a Model by passing a Dataset to a Trainer’s
train method. 4) Evaluate the Model by first creating an
Evaluator object for the prediction type (e.g., a LabelEval-
uator for classification) and then invoking the Evaluator’s
evaluate method, passing in a Model and Dataset, to create
an Evaluation object containing the relevant results.

Each of these objects contains a provenance function that

returns a description of the object and its state. The prove-
nance is a tree of immutable objects; for example Model
provenance includes Dataset provenance and Trainer prove-
nance. In turn the Trainer provenance can contain other
Trainer provenances (e.g., a bagged ensemble trainer con-
tains a provenance object for both the ensemble and the
weak learner’s trainer). Each Model and Evaluation con-
tains an immutable provenance object, as they themselves
are immutable. Datasets and Trainers generate provenance
objects on request, as they contain mutable state such as
the current list of dataset transformations and the state of
the trainer’s internal Pseudo-Random Number Generator
(PRNG). Importantly, the Dataset provenance contains meta-
data only about the original data source, e.g., location, hash,
timestamp, feature extraction information, but not the data
itself. A Model provenance contains a Trainer provenance,
a train Dataset provenance and system metadata such as
the OS version. An Evaluation provenance contains both
a Model provenance and a test Dataset provenance. A full
model provenance is given in Appendix A. The types are
extensible, so new algorithms can be added provided the
developer implements a provenance object. This restriction
ensures that everything is tracked.

Integrating the provenance collection in this way shifts the
burden of collection from the user of the library to the devel-
opers of the library. The library developer needs to capture
all the relevant user controlled state in an object, along with
the object’s type and any relevant environmental state such
as the CPU architecture or OS. We capture library version
information automatically as the implementations all refer
to a core class which holds the version information. This
doesn’t capture source control information as we expect
production use cases to use a tagged version number which
is recorded in the Tribuo version class. Our library was
developed on top of a configuration system that we use to
automate provenance collection. Object fields annotated
with @Config can be automatically inserted or read. At
provenance collection time (i.e., when a model is trained or
the data is modified), the library automatically reflectively
iterates over the object’s annotated fields to capture initial
provenance, which the implementation can augment with
more metadata such as timestamps and RNG state. Environ-
mental state such as the CPU architecture, OS version, and
Java version are captured during construction of the model
provenance classes. This can be expanded to collect more
information from the operating system process such as the
environment variables, but we don’t yet collect this informa-
tion, as it is more likely to include sensitive information the
user wouldn’t expect to be captured. As Tribuo is designed
for training models on a single node it doesn’t have any
hooks to collect cluster level information. However, there is
an additional runtime hook for the user of the library to add
additional provenance information into any given training

2



Provenance Design and Evolution in a Production ML Library

run. We use this functionality to add external links to a
model, such as to a bug tracking system, so the provenance
object can direct users to other relevant places for informa-
tion about the model. The runtime provenance hook also
provides a location to insert version control information like
a git hash, which is particularly useful during development
when extending Tribuo with new classes outside the core
library.

Tribuo is integrated into large enterprise applications, where
privacy and security of user data is paramount. A model’s
provenance might contain private information, e.g., recog-
nizable training data or details of the feature transformation
pipeline. If the model is released publicly or deployed at
another customer site, then the private information in the
provenance must be removed. We can remove provenance
from a model and replace it with a hash value computed
from that provenance; this allows us to track the model while
simultaneously keeping private information in a secure lo-
cation. In practice many more models are created during
development than are deployed into less secure production
locations, so making provenance collection the default be-
havior proves useful.

PRNG state is an important facet of an ML system, which
we need to track to accurately construct model provenance.
Tracking the full PRNG state is expensive, so we do not
expose any internal random states to users, but instead en-
sure that we can easily compute the current state given the
PRNG’s seed. We use splittable PRNGs (Steele Jr et al.,
2014), which allow the construction of a new PRNG by
splitting it from an existing one. Thus, we need only store
the initial seed and the PRNG’s split history in provenance,
as that is sufficient to reconstruct its random state (Wonsil
et al., 2023). This is similar to how JAX uses splittable
functional PRNGs (Bradbury et al., 2018).

3. Consequences of designing for provenance
Our initial attempt at provenance in Tribuo consisted of
text representing the dataset and trainer parameters. Incor-
porating provenance information made it much simpler to
diagnose and debug issues without increasing the burden
on users. The text-based system, while useful, was clearly
deficient as it was not machine parsable without substantial
effort, so in 2018 we started development of the provenance
system described in Section 2. Our early focus on prove-
nance substantially shaped the development of the library.
The provenance acts as an ever-present stack trace, describ-
ing how a trained model came to be, which is helpful for
debugging issues inside the library and in user code. This
vastly improved the developer experience when addressing
issues in model training or deployment, as the model can be
introspected without access to the user’s source code.

A single trainer object can be used concurrently to train
multiple models (e.g., training each tree in a random forest).
Each training job needs an independent source of random-
ness, so we sequentially split out PRNGs from the trainer’s
base PRNG. This implicitly gives an ordering to the collec-
tion of trained models, which needs to be respected when
reproducing the ensemble. Similar considerations are neces-
sary for internal parallelization within a single training run;
otherwise, the provenance does not allow for perfect repro-
ducibility. However our goal is accurate provenance, not
necessarily perfect reproduction, so Tribuo has a mixture of
models that reproduce exactly (on the same hardware/run-
time) and those that produce extremely similar models but
differ due to order-of-operation differences when using float-
ing point arithmetic. The latter case is true for many other
ML libraries, as it is difficult to produce deterministic be-
haviour from parallel accelerators such as GPUs.

Consistently available provenance information across library
versions allows transparent bug fixing when users load old
models. An older version of Tribuo had a bug where multi-
dimensional regression outputs would have incorrect indices
due to incorrect traversal order in the mapping. The output
dimensions were permuted, though each individual output
was computing the correct function. This bug affected the
serialized forms of the models; they were corrupted on disk
in a way that required rewriting the model on load. When
fixing this bug, we found we could automatically correct
older models during deserialization, because the provenance
records the library version and the trainer hyperparameters
(only some settings triggered the bug), so the fix could be
selectively applied only to the corrupted models. Therefore
all users had to do was load their model in a newer ver-
sion of the library, then save it again to permanently fix the
model. This does raise the question of what to record in the
provenance for this kind of fix, as the model has changed; at
the moment, we merely add a marker field denoting the fix.

Integrating with external libraries is more complicated when
provenance capture is required. No single machine learn-
ing library can include all algorithms of interest to users,
so many libraries either provide a mechanism for wrap-
ping third-party libraries, like Amazon’s DJL (djl, 2019),
or expose a simple interface for others to implement like
scikit-learn’s fit/predict (Pedregosa et al., 2011). We chose
the former method, as we do not expect our API to become
universal in the way scikit-learn’s has become, so we need
to automatically capture provenance information from those
third-party libraries without relying upon them collecting it
for us. In practice this means the third-party library needs
to be completely wrapped in our API, preventing users from
directly calling its training methods. If the library exposes
configuration objects (e.g., LibSVM (Chang & Lin, 2011)),
then these need to be parseable by our code, so they can be
decomposed into primitives suitable for provenance collec-

3



Provenance Design and Evolution in a Production ML Library

tion. In some cases, this can be quite restrictive. It is hard
to automatically capture concise provenance from a library
that requires users to write their own gradient descent loop
like PyTorch does (Paszke et al., 2019). Consequently, our
integration with deep learning libraries provides a simplified
API, similar to Keras’s fit method, with the restriction that
users cannot write custom training loops. This is similar to
the issues MLFlow has with automatically capturing prove-
nance information, except we expose only those methods
from which we can capture provenance rather than hav-
ing a potentially lossy capture, if the user steps outside the
supported API.

Refactoring code is a natural part of development, though
many libraries take care to conform to some kind of se-
mantic versioning for their public API, ensuring minimal
changes across versions. Provenance information is an-
other public API surface (as is a model’s serialized form),
so it is important to consider when a refactoring would
modify provenance information. For example, our original
termination criterion for SGD training was the step count.
Transforming this to a more flexible system in which the
user can supply different termination criterion functions
leads to two provenances, one from before the switch with a
simple integer field, and one afterwards with a provenance
object representing the termination criterion (which may
just contain a step count). That raises the question of how
to treat old provenance. Should it be silently upgraded to
new style provenance, containing a criterion object with a
step count, or should the step count field be left to support
old models? Never removing a provenance field guarantees
that the hashes computed on it remain valid. However, the
vestigial field requires keeping the old code path alive, both
in the training code and the provenance code to enable repro-
ducibility from old provenance, or it requires implementing
special cases in the reproducibility framework. We’ve not
found a clear answer to this kind of question, but it is repre-
sentative of the things we need to consider when evolving
the provenance.

We chose to build Tribuo in Java as our goal was to build a
ML library for use in large enterprise applications, which are
typically written in Java. We could have built the library in
another language and exported the models for deployment in
Java, but this would preclude usecases where the application
wants to train a model, and the export process would need
to preserve the provenance information. While the ML
ecosystem in Java is smaller, in practice many algorithms
and libraries have Java bindings, and in some cases we’ve
written and open sourced new bindings for specific libraries
that we required such as ONNX Runtime (ONNX Runtime
developers, 2020). There have been several benefits of
building a provenance system in a statically typed language
like Java, principally in the way it allows the developer to
control how the system is extended, and to enforce compile

time constraints. It’s not possible for a Tribuo developer
to accidentally put a string in a timestamp field as that
field is typed in the model’s provenance. Furthermore the
runtime type checking means that the provenance objects are
validated for type errors on load. This makes it much simpler
to build a provenance system, and also to rely upon the
output in downstream tasks. Rapid iteration on a research
idea is slightly slower in such a system, both due to the
type system and also due to the requirement to think about
provenance capture while implementing the idea, but as
our focus is on production environments where users are
unlikely to change the model implementation itself this is
not a large problem for our use case.

4. Provenance Use Cases
We cannot validate the correctness of provenance systems
without downstream usecases, preferably ones which use
the provenance information in an automated process. We
now discuss two provenance-based use cases that are built
into the library.

4.1. Automated and Integrated Reproducibility

Reproducing ML models is a complicated problem, even
with the detailed provenance captured by Tribuo. However
the ability to reproduce a model is important, as it validates
that no changes have happened to the data or the training
pipeline, and it provides a way of verifying provenance
information correctness for auditing purposes. It’s also a
starting point for systems that let users explore hyperparam-
eter and modelling choices; without reliable re-execution,
the effect of any given hyperparameter cannot be isolated
from other uncaptured randomness in the system.

Building a reproducible system requires three steps. First,
collect sufficient information about the system to allow re-
production, including data sources, transformations, hyper-
parameters, and training algorithms used. Second, reassem-
ble and appropriately configure the training pipeline from
the information in the initial training run. Third, execute that
pipeline on the same data in a similar compute environment.
The similarity of the compute environment is necessary to
ensure that the reproduced model does not diverge too much
from the original model (Zhuang et al., 2022).

All the information required for this is already collected
by Tribuo’s provenance system. The configuration system
provides the mechanism for constructing individual compo-
nents such as the Trainer, though the user needs to tie them
together. Executing the rebuilt pipeline produces a model,
which can then be evaluated alongside the original, and the
two Model provenances can be compared directly. This
system allowed us to diagnose that some training algorithms
are sensitive to the Java version, due to differences in the im-

4



Provenance Design and Evolution in a Production ML Library

plementation of the exp function. Tribuo’s reproducibility
system is described in more detail in Wonsil et al. (2023).

4.2. Model Card Generation

As machine learning becomes more integrated with other
systems, it becomes more important to accurately and con-
sistently describe each model. Model Cards (Mitchell et al.,
2019) provide a well understood template for writing model
descriptions and use cases. A model card contains the in-
formation about how a model was produced, data sources
and their licenses, any relevant bias or fairness analysis, in-
tended uses, and performance analysis. Tribuo’s provenance
captures model training details, evaluation performance, and
the training and evaluation data. We automatically populate
those parts of the model card, allowing users to focus on the
parts external to ML software, such as licensing, intended
uses, citation details, and contact information.

5. Conclusions
Building an ML library with integrated provenance changes
how the library is written in much the same way a language’s
type system changes the way a program is written. It con-
strains some areas, while enabling new or more reliable
functionality elsewhere (such as in the bug fixing example).
As provenance is a core part of the library, it makes it eas-
ier to build functionality on top of it. The reproducibility
and model card systems were added after the provenance
system was completed. In theory, adding reproducibility
would require no changes to the existing system. In prac-
tice, implementing these features uncovered bugs in the
pre-existing infrastructure, reinforcing the necessity of hav-
ing executable usecases for provenance as aids to validating
its correctness.

There are several desirable features of a provenance system
that are in tension: accurate provenance collection, small/ef-
ficient provenance objects, and the amount of user control.
In Tribuo we’ve focused on the first two at the expense of
the third, consequently, our provenance collection is ex-
tremely accurate allowing perfect reproducibility, and the
provenance objects are small and quickly collected. The
overhead of our provenance collection is minimal, taking
less than a millisecond to capture provenance across a wide
range of experiments. The price for this decision comes in
user flexibility. Tribuo must remain in control of the training
loop and cannot expose the training functions of third-party
libraries, as this would allow users to construct models with
inaccurate provenance. This choice imposes more develop-
ment cost on the developers of Tribuo as integrating new
algorithms is harder, but from a user perspective everything
has reliable and consistent provenance with no additional
effort on their part.

Some libraries have added provenance in pipeline systems
on top of their core algorithmic functionality (e.g., Tensor-
Flow (Abadi et al., 2016), with TensorFlow-Extended and
ML MetaData (TFE)). Automatically capturing provenance
in TensorFlow is tricky, as it allows users to build their own
data pipeline and training loop without using TensorFlow’s
types, limiting the ability of the TensorFlow API to track
how data flows through the system. Using TFE requires the
user to build more of the system with TF’s types, capturing
the input and output locations as part of the pipeline. In this
way, the approach is similar to Tribuo’s, restricting user flex-
ibility to allow provenance capture. Automatic provenance
collection for more flexible systems such as scikit-learn is
possible but requires either deep instrumentation of the lan-
guage runtime (e.g., Phani et al. (2021)) or capturing user
calls before they reach the library as in MLFlow. In the
former case, the provenance information produced is too
fine-grained for easy use (tracking individual matrix oper-
ations leads to large provenance traces missing the higher
level semantic information), and the latter case relies upon
the provenance library keeping pace with the ML library.

References
DJL, 2019. URL http://github.com/
deepjavalibrary/djl.

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean,
J., Devin, M., Ghemawat, S., Irving, G., Isard, M., Kudlur,
M., Levenberg, J., Monga, R., Moore, S., Murray, D. G.,
Steiner, B., Tucker, P., Vasudevan, V., Warden, P., Wicke,
M., Yu, Y., and Zheng, X. TensorFlow: a System for
Large-Scale Machine Learning. In Proceedings of the
12th USENIX Conference on Operating Systems Design
and Implementation, OSDI’16, pp. 265–283, USA, 2016.
USENIX Association. ISBN 9781931971331.

Biewald, L. Experiment tracking with weights and biases,
2020. URL https://www.wandb.com/. Software
available from wandb.com.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary,
C., Maclaurin, D., Necula, G., Paszke, A., VanderPlas, J.,
Wanderman-Milne, S., and Zhang, Q. JAX: composable
transformations of Python+NumPy programs, 2018. URL
http://github.com/jax-ml/jax.

Carata, L., Akoush, S., Balakrishnan, N., Bytheway, T.,
Sohan, R., Seltzer, M., and Hopper, A. A primer on
provenance. Communications of the ACM, 57(5):52–60,
2014.

Chang, C.-C. and Lin, C.-J. LIBSVM: A library for
support vector machines. ACM Transactions on In-
telligent Systems and Technology, 2:27:1–27:27, 2011.

5

http://github.com/deepjavalibrary/djl
http://github.com/deepjavalibrary/djl
https://www.wandb.com/
http://github.com/jax-ml/jax


Provenance Design and Evolution in a Production ML Library

Software available at http://www.csie.ntu.edu.
tw/˜cjlin/libsvm.

Chen, A., Chow, A., Davidson, A., DCunha, A., Gh-
odsi, A., Hong, S. A., Konwinski, A., Mewald, C.,
Murching, S., Nykodym, T., Ogilvie, P., Parkhe, M.,
Singh, A., Xie, F., Zaharia, M., Zang, R., Zheng, J.,
and Zumar, C. Developments in mlflow: A system
to accelerate the machine learning lifecycle. In Pro-
ceedings of the Fourth International Workshop on Data
Management for End-to-End Machine Learning, DEEM
’20, New York, NY, USA, 2020. Association for Com-
puting Machinery. ISBN 9781450380232. doi: 10.
1145/3399579.3399867. URL https://doi.org/
10.1145/3399579.3399867.

Gundersen, O. E. and Kjensmo, S. State of the art: Repro-
ducibility in artificial intelligence. In Thirty-second AAAI
Conference on Artificial Intelligence, 2018.

Mitchell, M., Wu, S., Zaldivar, A., Barnes, P., Vasserman,
L., Hutchinson, B., Spitzer, E., Raji, I. D., and Gebru,
T. Model cards for model reporting. In Proceedings of
the Conference on Fairness, Accountability, and Trans-
parency, pp. 220–229, 2019.

ONNX Runtime developers. Onnx runtime, 2020. URL
https://onnxruntime.ai/. Version: 1.4.0.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Köpf, A., Yang, E., DeVito, Z., Rai-
son, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang,
L., Bai, J., and Chintala, S. PyTorch: an Imperative
Style, High-Performance Deep Learning Library. In Pro-
ceedings of the 33rd International Conference on Neural
Information Processing Systems, 2019.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cour-
napeau, D., Brucher, M., Perrot, M., and Duchesnay, E.
Scikit-learn: Machine learning in python. The Journal of
Machine Learning Research, 12:2825–2830, 2011.

Phani, A., Rath, B., and Boehm, M. LIMA: Fine-grained
Lineage Tracing and Reuse in Machine Learning Systems.
In Proceedings of the 2021 International Conference on
Management of Data, pp. 1426–1439, 2021.

Schelter, S., Böse, J.-H., Kirschnick, J., Klein, T., and
Seufert, S. Automatically tracking metadata and prove-
nance of machine learning experiments. In NeurIPS work-
shop on ML Systems, 2017.

Semmelrock, H., Ross-Hellauer, T., Kopeinik, S., Theiler,
D., Haberl, A., Thalmann, S., and Kowald, D.

Reproducibility in machine-learning-based research:
Overview, barriers, and drivers. AI Magazine, 46
(2):e70002, 2025. doi: https://doi.org/10.1002/aaai.
70002. URL https://onlinelibrary.wiley.
com/doi/abs/10.1002/aaai.70002.

Steele Jr, G. L., Lea, D., and Flood, C. H. Fast splittable
pseudorandom number generators. ACM SIGPLAN No-
tices, 49(10):453–472, 2014.

Wonsil, J., Sullivan, J., Seltzer, M., and Pocock, A. Inte-
grated reproducibility with self-describing machine learn-
ing models. In Proceedings of the 2023 ACM Conference
on Reproducibility and Replicability, pp. 1–14, 2023.

Zhuang, D., Zhang, X., Song, S., and Hooker, S. Ran-
domness in neural network training: Characterizing the
impact of tooling. Proceedings of Machine Learning and
Systems, 4:316–336, 2022.

6

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm
https://doi.org/10.1145/3399579.3399867
https://doi.org/10.1145/3399579.3399867
https://onnxruntime.ai/
https://onlinelibrary.wiley.com/doi/abs/10.1002/aaai.70002
https://onlinelibrary.wiley.com/doi/abs/10.1002/aaai.70002


Provenance Design and Evolution in a Production ML Library

A. Appendix: Full Provenance Listing
We show the model provenance for a logistic regression trained using stochastic gradient descent with AdaGrad on the Iris
dataset. The provenance is rendered as JSON for ease of reading, though it is natively a tree of objects. We’ve split it into
two chunks, Listing 1 shows the model provenance excluding the data provenance, and Listing 2 shows the data provenance.

The top level JSON object is the model provenance, it contains metadata fields like the Java version, OS, CPU architecture,
Tribuo version, and timestamps. Inside the model provenance are fields for the trainer and the dataset, which repeat some
fields like the timestamps and library version to ensure they stand alone. The trainer provenance records the gradient
optimizer, the optimizer parameters, the training objective, and other ancillary training parameters like the number of training
epochs and the logging frequency. The dataset provenance records the number of features, the number of training examples,
the number of output classes, the data source and any transformations applied to the dataset. The source provenance is from
a class that generates train/test splits from another data source, and it records the seed of the RNG, the size of the initial data
source, the fraction of data used for training, if this portion of data is the training or test split, and the original data source
provenance (which is extracted and presented in Listing 2). The underlying source provenance records the SHA-256 hash of
the source file, the data processors which were used to load the CSV file and featurize it, the file creation timestamp, the
CSV separator and quote characters, and the file path on disk.

Listing 1. Model provenance for a logistic regression trained on Irises. The data provenance is in Listing 2, it would appear in the “source”
key. Note for review that the library name has been removed from the class names.
{
"class-name" : "org.tribuo.classification.sgd.linear.LinearSGDModel",
"dataset" : {
"class-name" : "org.tribuo.MutableDataset",
"datasource" : {

"class-name" : "org.tribuo.evaluation.TrainTestSplitter",
"is-train" : "true",
"seed" : "1",
"size" : "150",
"source" : { see Listing 2 },
"train-proportion" : "0.7"

},
"is-dense" : "true",
"is-sequence" : "false",
"num-examples" : "105",
"num-features" : "4",
"num-outputs" : "3",
"transformations" : [ ],
"tribuo-version" : "4.3.2"

},
"instance-values" : { },
"java-version" : "24",
"os-arch" : "aarch64",
"os-name" : "Mac OS X",
"trained-at" : "2025-05-23T16:24:39.159986-04:00",
"trainer" : {
"class-name" : "org.tribuo.classification.sgd.linear.

LogisticRegressionTrainer",
"epochs" : "5",
"host-short-name" : "Trainer",
"is-sequence" : "false",
"loggingInterval" : "1000",
"minibatchSize" : "1",
"objective" : {

"class-name" : "org.tribuo.classification.sgd.objectives.LogMulticlass",

7



Provenance Design and Evolution in a Production ML Library

"host-short-name" : "LabelObjective"
},
"optimiser" : {

"class-name" : "org.tribuo.math.optimisers.AdaGrad",
"epsilon" : "0.1",
"host-short-name" : "StochasticGradientOptimiser",
"initialLearningRate" : "1.0",
"initialValue" : "0.0"

},
"seed" : "12345",
"shuffle" : "true",
"train-invocation-count" : "0",
"tribuo-version" : "4.3.2"

},
"tribuo-version" : "4.3.2"

}

Listing 2. Data source provenance, extracted from Listing 1’s “source” key in the model’s provenance. Additionally, due to space
concerns we removed three “DoubleFieldProcessors”, that are the same as the “petalLength” processor given here but for the fields
“petalWidth”, “sepalWidth”, and “sepalLength”. This is due to the way provenance is captured in Tribuo as it occurs after the processors
have been expanded and bound to each field name in the data file, even though the developer only specified they wanted to load float
valued features and the file had 4 columns.
{
"class-name" : "org.tribuo.data.csv.CSVDataSource",
"dataPath" : "/Users/tribuo/development/bezdekIris.data",
"datasource-creation-time" : "2025-05-23T16:24:38.883745-04:00",
"file-modified-time" : "2025-05-23T16:24:30.283-04:00",
"headers" : [ "sepalLength", "sepalWidth", "petalLength", "petalWidth", "

species" ],
"host-short-name" : "DataSource",
"outputFactory" : {
"class-name" : "org.tribuo.classification.LabelFactory"

},
"outputRequired" : "true",
"quote" : "\"",
"resource-hash" : "0FED2A99DB77EC533A62DC66894D3EC6DF3B58B6A8F3CF4A6B47E4086B7F

97DC",
"rowProcessor" : {
"class-name" : "org.tribuo.data.columnar.RowProcessor",
"featureProcessors" : [ ],
"fieldProcessorList" : [ {

"class-name" : "org.tribuo.data.columnar.processors.field.
DoubleFieldProcessor",

"fieldName" : "petalLength",
"host-short-name" : "FieldProcessor",
"onlyFieldName" : "true",
"throwOnInvalid" : "true"

}, ... ],
"host-short-name" : "RowProcessor",
"metadataExtractors" : [ ],
"regexMappingProcessors" : { },
"replaceNewlinesWithSpaces" : "true",
"responseProcessor" : {

8



Provenance Design and Evolution in a Production ML Library

"class-name" : "org.tribuo.data.columnar.processors.response.
FieldResponseProcessor",

"defaultValues" : [ "" ],
"displayField" : "false",
"fieldNames" : [ "species" ],
"host-short-name" : "ResponseProcessor",
"outputFactory" : {

"class-name" : "org.tribuo.classification.LabelFactory"
},
"uppercase" : "false"

},
"weightExtractor" : {

"class-name" : "org.tribuo.data.columnar.FieldExtractor"
}

},
"separator" : ","

}

9


