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An Entailment Tree Generation Approach for Multimodal
Multi-HopQuestion Answering with Mixture-of-Experts and

Iterative Feedback Mechanism
Anonymous Authors

ABSTRACT
With the rise of large-scale language models(LLMs), it is currently
popular and effective to convert multimodal information into text
descriptions for multimodal multi-hop question answering. How-
ever, we argue that the current methods of multi-modal multi-hop
question answering still mainly face two challenges: 1) The re-
trieved evidence containing a large amount of redundant informa-
tion, inevitably leads to a significant drop in performance due to
irrelevant information misleading the prediction. 2) The reasoning
process without interpretable reasoning steps makes the model
difficult to discover the logical errors for handling complex ques-
tions. To solve these problems, we propose a unified LLMs-based
approach but wihout heavily relying on them due to the LLM’s
potential errors, and innovatively treat multimodal multi-hop ques-
tion answering as a joint entailment tree generation and question
answering problem. Specifically, we design a multi-task learning
framework with a focus on facilitating common knowledge shar-
ing across interpretability and prediction tasks while preventing
task-specific errors from interfering with each other via mixture of
experts. Afterward, we design an iterative feedback mechanism to
further enhance both tasks by feeding back the results of the joint
training to the LLM for regenerating entailment trees, aiming to it-
eratively refine the potential answer. Notably, our method has won
the first place in the official leaderboards of WebQA (since April
10, 2024), and achieving competitive results on MultimodalQA.

CCS CONCEPTS
•Computingmethodologies→ Reasoning about belief and knowl-
edge.

KEYWORDS
MultimodalMulti-HopQuestionAnswering, Entailment Tree, knowl-
edge reasoning

1 INTRODUCTION
Multimodal multi-hop question answering (MMQA)[3] is a com-
plex task that involves multiple input sources such as text, tables,
and images. It requires reasoning through different modalities to
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Warrior was an Australian 
bred Thoroughbred 
racehorse that won the 1869 
Melbourne Cup at odds of 
20/1.

a group of people riding on 
the backs of horses; Kentucky 
Derby; racing brown horse; 
white large stadium; riding 
white jockey;

Image to Text:

Row one’s Finish is 3rd, race is 
Oak Tree Derby, distance is One 
and One-Elighth Miles(Turf), 
Track is Oak Tree at Santa Anita 
Park ; Row two’s Finish is ... ; 
Row three’s Finish is .... ; Row 
five’s Finish is ..., Race is 
Kentucky Derby ..., Track is 
Churchill Downs, ...; 

Table to Text: Text to Text:

Warrior was an Australian 
bred Thoroughbred racehorse 
that won the 1869 Melbourne 
Cup at odds of 20/1.

What animal race in the race of A.P. Warrior at the Churchill downs track?

Figure 1: Examples of current methods that converting mul-
timodal information to text on the MultiModalQA dataset.
In the figure, much redundant multimodal information has
been converted into text(black font). Meanwhile, the key in-
formation has a strong logical relationship with each other,
and current methods also have not utilized this relationship.

generate accurate and complete answers. Currently, most multi-
modal multi-hop question answering methods adopt the approach
of converting multimodal information into textual descriptions (by
transforming images through image caption models, and tables
through natural language descriptions), and then using large-scale
language models (LLMs) to generate answers [8, 11, 26, 27]. The
salient advantage of this method is that it can leverage the powerful
language understanding and generation capabilities of LLMs, as
well as the interpretability of textual descriptions. However, this
method indiscriminately converts all multimodal information into
textual descriptions, inevitably producing a large amount of redun-
dant information. As shown in Figure 1, the current general method
in the field of multimodal question answering only requires a small
amount of key information to answer the multi-hop question. For
instance, to find the “churchill down truck”, only the fifth row of
the table is needed. The other information in the table is not helpful
to answer the question. Similarly, in the picture, only the “racing
brown horse” needs to be paid attention to. The other entities are
of little help to answer the question.

However, the previous method generates too much redundant
textual information, which may mislead the model into generating
incorrect answers. More importantly, there are an inherent reason-
ing relationships between these key pieces of information, which

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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has been ignored by the current methods for interpreting and uti-
lizing this logical relationship between them, avoiding the logical
and factual errors when dealing with complex questions [17].

Different from previous methods with redundancy and having no
interpretability, we innovatively treat multimodal multi-hop ques-
tion answering as a joint entailment tree generation and question
answering problem. To the best of our knowledge, this is the first
work introducing entailment tree generation from amutual-beneficial
perspective, bridging small model and large model generation in mul-
timodal multi-hop question answering.

In the field of Natural Language Processing(NLP), entailment
tree generation is an important sub-task in the question-answering
task [6, 10, 20] while it has not yet been applied in the multimodal
domain. The reason is that it is nontrivial to directly apply the
existing method in NLP to our cases for benefiting the answering
beyond the interpretability. During our attempt to directly transfer
entailment tree generation methods to the multimodal multi-hop
question-answering domain, we discovered that the current entail-
ment tree generation methods have very low accuracy in generating
entailment trees. Even predicting the structure of entailment trees
yields similarly low accuracy. Therefore, we propose a new LLMs-
based method that introduces the task of entailment tree generation
into the multimodal multi-hop question answering task, to address
both prediction and interpretability problems, and allows the intro-
duced entailment tree to be iteratively refined.

Although LLMs show promising performance in many tasks,
we still have observed that the entailment trees generated by LLM
mainly contain two types of errors: 1) incorrect selection of leaf
nodes. 2) incorrect structure of the entailment tree. Therefore, we
propose the LLM and smaller model interactively based framework
to carry out the fact retrieval generation task and the question-
answering task. We use multi-task learning with smaller models,
and use an iterative feedback mechanism to re-predict the structure
of the entailment tree based on the leaf nodes and the answers
predicted by the small model. Inspired by the idea of [9, 22, 23] , to
facilitate mutual enhancement among the small models’ multi-task
learning, we employ a shared multi-task mixture-of-experts model,
allowing interactions between the fact selection and supervised QA
tasks as guidance for LLM.

Specifically, in entailment tree initialization stage, we iteratively
use large-scale language models[2] to decompose an existing multi-
hop question into sub-questions that need to be solved, and com-
pletes them based on existing evidence (question, answer) for as
facts to construct a fact base. For entailment tree generation [6],
since even predicting the structure of the entailment tree can only
achieve a very low accuracy, which is much harder for our case,
we propose to first generate entailment tree structure without the
details, using the existing method of entailment tree generation [6]
in NLP, then use large models to continuously fill in the values of
the missing intermediate nodes in the entailment tree.

Different from those in previous entailment tree generation tasks,
where the leaf nodes and answers were provided simultaneously[6, 10,
20], for multi-modal multi-hop question answering tasks, the an-
swers are not visible during testing, so our definition of entailment
tree generation tasks is different from the past[6]. When we build
the entailment tree, the input is a set of leaf nodes (facts from the
fact base) and a question as hypothesis, while previous methods

require inputting a set of leaf nodes and answer. After initializing
the entailment tree in our method, both the leaf nodes and inter-
mediate nodes are filled (the intermediate nodes are generated by
the LLM through the collection of their child nodes), and we do
not predict the final answer during the initialization phase of the
entailment tree, but predict the answer in the second stage. For a
detailed definition of our entailment tree generation, please refer
to section 3.1.2.

Our method introduces entailment tree generation into the field
of multi-modal multi-hop question answering, filters facts by gener-
ating entaiment tree, models logical relationships between different
modalities, eliminates irrelevant information in multi-modal con-
texts, and maintains logical consistency.

We conduct experiments on two public MMQA datasets, namely
WebQA [3] and MultiModalQA [21]. We use accuracy, F1 score
and reasoning path quality as evaluation metrics. Our experimental
results show that our method achieve sota result onWebQA dataset.
We also show the entailment trees generated by our method, demon-
strating the effectiveness and explainability of our method. To the
best of our knowledge, this is the first attempt to improve Multi-
modal Multi-Hop QA that uses entailment trees to constrain the
process of converting multimodal information into text. The main
contributions of our paper are as follows:

• By constructing a fact base, we reduce information redun-
dancy, and use the fact base to build an entailment tree to
generate explicit reasoning steps, which assist the model in
generating more accurate answers.

• We introduce entailment tree generation into multi-modal
multi-hop question answering. In order to correct potential
errors in the entailment tree generated by the LLM, we pro-
posed a multi-task mixture-of-experts model and iterative
feedback mechanism.

• We achieve state-of-the-art results on WebQA dataset, and
achieve competitive results onMultimodalQA dataset, demon-
strating the effectiveness of our method.

2 RELATEDWORK
Multimodal Multi-Hop Question AnsweringMultimodal multi-
hop question answering is a task based on multimodal question
answering, but it requires multi-hop reasoning to generate the final
answer. VQA [1] is first proposed to answer questions from visual-
only inputs. Later, WebQA [3] and MultimodalQA [21] require
integrating information across free text, images, or semi-structured
tables, to answer multi-hop reasoning question. To address the
challenge of finding answers from multiple sources of information,
MuRAG [5] designs a multi-modal transformer architecture to ac-
cept both text and image feature inputs, and builds a million-scale
dataset for pretraining the model. [17, 17, 25, 27] unifiedmultimodal
information into text using image caption model and table lineariza-
tion method, they proposed a new multimodal question answering
paradigm, but there is no restriction during transfer, resulting a lot
of information redundancy and affecting the performance of the
model. Also, there are many recent works on multimodal question
answering using large models. [11] train an image caption model to
generate image caption for gpt-3 to understand images then gener-
ate responses; [15] use multimodal large model LLaVA to generate
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more accurate image caption, then construct different in-context
learning templates according to each modalities, enabling GPT-3
to leverage its powerful performance in this task. Both approaches
need to generate image caption for the large language model to un-
derstand question, but there are no conditional restrictions during
the image caption generation stage; or when generating image cap-
tions directly based on multi-hop questions, the questions contain
information cannot be asked by a single image, which causes errors
during the image caption generation stage.

For the above problems we found, we proposed an approach
to filtered redundant information through the logical structure of
the entailment tree, ensure the simplicity of information and the
rationality of reasoning.
Entailment Tree Generation The task of entailment tree gen-
eration currently serves NLP question answering systems primar-
ily. [6] introduce EntailmentBank, a dataset specifically designed
for the task of entailment tree generation. Each multi-step en-
tailment tree in EntailmentBank serves as an explanation, clearly
demonstrating the reasoning process behind a hypothesis based.
Recent methods[10, 14, 20] have presented multi-step generation
approaches, which iteratively select premise facts and generate
intermediate conclusions.

At present, the all correct score(only if all of the leaves, steps,
and intermediates are all correct) of entailment tree structure gener-
ation in the field of NLP is very low(2.9% in full corpus) and cannot
be directly applied to other fields; however, in the current multi-
modal question answering datasets, the questions are relatively
simple. According to the statistics of two datasets [3, 21], for the
MultimodalQA dataset, the proportion of complex questions (with
reasoning hops greater than or equal to 3) is only 11.3%. After re-
moving the simple multiple comparison questions, the proportion
of complex questions only accounts for 1% of the total dataset. For
the WebQA dataset, the proportion of complex questions (with
reasoning hops greater than or equal to 3) is only 1%. These two
datasets are currently the most complex in multimodal multi-hop
question answering, suitable for evaluating our methods.
Multi-TaskMixture-of-Experts Recent rumors suggest that GPT-
4’s internal structure employs a mixture-of-experts (MoE) approach,
which has been influential in the development of large-scalemodels[12,
23, 28]. The use of MoE as an architectural foundation has become
prevalent in recent large models, propelling the advancement of
both the models themselves and the MoE concept.

Moreover, multi-task MoE models have seen significant develop-
ment prior to their integration into large-scale models. [18] propose
a multi-layer gated network based on different tasks, allowing each
task to have its independent experts, thereby enabling the model
to better capture the inter-task correlations. Additionally, based
on the previous method, [22] propose a method which retains the
shared experts, allowing for interaction between different experts.
[9] devise a task-aware gating mechanism within sparse MoEs to
route the input (tokens from different tasks) to specialized experts
conditioned on the task.

We combine the methods of multi-task MoE from previous re-
search with the current MoE training approaches based on large
models, enabling the multi-task MoE model to be suitable for multi-
task learning with data generated by large-scale models.

3 METHOD
As shown in Figure 2, our method is divided into two stages: (a) en-
tailment tree initialization stage and (b) iterative mixture-of-experts
optimization stage. The goal of the first stage is to initialize the en-
tailment tree for the use of small model in assisting with answering
and providing interpretability. We decompose the original question
to build a fact base, and use LLM to initialize the structure of the
entailment tree based on the fact base. The goal of the second stage
is to correct the leaf node and structural errors in the initialized
entailment tree through joint learning of fact retrieval generation
task and question answering task, and to iteratively optimize the
entailment tree through the feedback of the results of joint learning
to the LLM.

3.1 Entailment Tree Initialization Stage
3.1.1 Fact Base Construction. In the fact base construction module,
we need to decompose the multi-hop question into several sub-
questions based on different evidence and process them differently
according to the modality of the corresponding evidence.
Decompose Multi-Hop Question First, we need to retrieve the
multimodal evidence required to answer the multi-hop question.
However, since our method generates image captions by decom-
posing the question, we use the global image caption and image
attribute features to retrieve evidences according to the method in
[27], and finally retrieve the required multimodal evidence set E:

𝐸 = BERT𝑟𝑒𝑡𝑟𝑖 (𝑇𝑒𝑥𝑡𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒 ) = [𝐸1, 𝐸2, ..., 𝐸𝑛], (1)

where “n” represents the number of evidence in the evidence set.
‘𝑇𝑒𝑥𝑡𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒 ’ refers to all the evidence obtained after converting
‘images, text, tables’ into text, which is referred to as ‘𝑇𝑒𝑥𝑡𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒 ’.
After obtaining all the retrievedmultimodal evidence𝐸 = [𝐸1, 𝐸2, ..., 𝐸𝑛],
we prompt GPT-3.5 to decompose the original question based on
all the evidence 𝐸 and generate n sub question 𝑞𝑠 with their cor-
responding evidence. Suppose that the k-th question of 𝑞𝑠 has L
tokens, denoted as 𝑞𝑠

𝑘
= (𝑦1

𝑘
, 𝑦2

𝑘
, ..., 𝑦𝐿

𝑘
), the decoding process can

be formulated as:

𝑦𝑙
𝑘
= argmax𝐿𝐿𝑀 (𝐸𝑘 , 𝑦𝑙𝑘 |𝑦

<𝑙
𝑘
;𝑝𝑞, 𝑞, 𝐸) (2)

where 𝑝𝑞 is the instruction prompt. The outline of the prompt 𝑝𝑞
for LLM is as shown in Figure 3:

After obtaining all the decomposed sub-questions based on each
evidence, we process them differently according to the modality of
the corresponding evidence and convert them into facts stored in
the fact base.
Image Fact For the image modality, we further decompose each
sub-question into atomic questions 𝑞𝑖 using GPT-3.5. Suppose that
the r-th atomic question of 𝑞𝑖 decomposed from 𝑞𝑠

𝑘
has 𝐿𝑖 tokens,

denoted as 𝑞𝑖
𝑘
= (𝑦1

𝑘
, 𝑦2

𝑘
, ..., 𝑦𝐿

𝑖

𝑘
), the decoding process can be for-

mulated as:

𝑦𝑙
𝑖

𝑟 = argmax𝐿𝐿𝑀 (𝑦𝑙
𝑖

𝑟 |𝑦<𝑙
𝑖

𝑟 ;𝑝𝑞, 𝑞𝑠𝑘 , 𝐸𝑘 ) (3)

Then, we input the decomposed atomic question 𝑞𝑖 and correspond-
ing image 𝐸𝑖𝑚 into the VQA model to obtain answers. We use
LLaVA-1.5[13] as our VQA model. it uses Clip[19] as the visual
feature extractor:

𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑖𝑚𝑔 = CLIP(𝐸𝑘 ) (4)
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Image 1: Pontresina

Image 2: Rasen-Antholz

Which location with large hills and mountains covered by grass was 
where Eirik Kvalfoss won 2 victories (2 sp) in the 1982-83 season?

Image 1 question: 
Is Pontresina with 
large hills and 
mountains covered 
by grass? 

Image 2 question: 
Is Rasen-Antholz 
with large hills and 
mountains covered 
by grass? 

Table 1: Eirik_Kvalfoss

Table 1 question: 
where Eirik Kvalfoss 
won 2 victories (2 sp) 
in the 1982-83 
season? 

 Is Pontresina with large 
hills ?

Is mountains covered by 
grass ?

Is Rasen-Antholz with 
large hills ?

Is mountains covered by 
grass ?

row one’s season is...

row two’s season is...

row three’s season is...
......

Fact Base
fact 1: Pontresina is with large 
hills.
fact 2: Pontresina’s mountains 
is covered by grass.
fact 3: Rasen-Antholz is with 
large hills.
fact 4: Rasen-Antholz’s 
mountain is covered by grass
fact 5: row one’s season is ..., 
Date is ..., location is ...,
fact 6: row two’s season is ..., 
Date is ..., location is ...,

..........VQA

(question,  answer) into fact

      Entailment Tree Structure Generation

fact 1 & fact 2 -> int 1 ; fact 3 & fact 4 -> int 2; 
int 1 & fact 7 -> int 3; int 2 & fact 7 -> int 4; 

int 3 & int 4 -> answer

      Entailment Tree Refinement

Fact Base Construction Module  

(a) Entailment Tree Initialization Stage

QuestionEntailment Tree Text Description

Fact 1 Fact 2 ... Answer

Possible Facts and Answer

Iterative Feedback Mechanism

fact 1 - fact n

cross-attention score

(b) Iterative Mixture-of-Expert Optimization Stage

Shared Encoder

FRG Decoder QA Decoder

Gate A Gate B
FRG Expert Shared Expert QA Expert

Entailment Tree Gneration Module

Entailment Tree Gneration Module

LLM

LLM

Figure 2: In our proposed (a) Entailment Tree Initialization Stage, we build a fact base by decomposing multi-hop questions and
initialize an entailment tree using GPT-3.5. In our proposed (b) Iterative Mixture-of-Experts Optimization Stage, we convert the
initialized tree into text, concatenate it with the origin question, and then input into shared encoder, and using two separate
gates to select experts, then use two decoders for fact retrieval generation and question answering, where the FRG Decoder
denoted as the Fact Retrieval Generation Decoder, and the QA Decoder denoted as Question Answering Decoder. After these two
tasks, we convert the retrieved facts and answer back into text for reference in regenerating the tree structure using Iterative
Feedback Mechanism.

/* Instruction for the decompose question task */
Please decompose the TARGET-QUESTION into K sub questions:
sub questions:
/* n in-context examples */
TARGET-QUESTION: q1 \n
EVIDENCES:
<Image Evidence 1> Evidence image \n
<Table Evidence 1> Evidence table \n
<Text Evidence 1> Evidence text \n
Sub-Questions:
<Image Evidence 1>: sub-question for image evidence 1 \n

Figure 3: The prompt template of decomposemulti-hop ques-
tion

Suppose that the r-th atomic question’s answer 𝑎𝑟 has 𝐿𝑎 tokens,
denoted as 𝑎𝑟

𝑘
= (𝑦1

𝑘
, 𝑦2

𝑘
, ..., 𝑦𝐿

𝑘
), the decoding process can be formu-

lated as:

𝑦𝑙
𝑎

𝑟 = argmax𝑉𝑄𝐴 (𝑦𝑙
𝑎

𝑟 |𝑦<𝑙
𝑎

𝑟 ;𝑞𝑖
𝑘
, 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑖𝑚𝑔) (5)

Then we use GPT-3.5 to refine the obtained (atomic question,
answer) pairs into facts stored in the fact base.
Table Fact After we decompose the origin question, and obtained
sub-question 𝑞𝑡𝑏 for table evidences, we use [27] which use simple
natural language templates to transform tables into sentences that

sound natural to humans. As an example, we can turn the table
into a sentence by arranging the cells in a linear fashion, like this:
"row one’s seaon is ..., Date is ..., location is ...", and then feed into
GPT-3.5 to obtain (sub-question,answer) pairs into facts stored in
the fact base. Suppose that the t-th table’s sub-question 𝑞𝑡𝑏𝑡 has
𝐿𝑡𝑏 tokens, denoted as 𝑞𝑡𝑏𝑡 = (𝑦1𝑡 , 𝑦2𝑡 , ..., 𝑦𝐿𝑡 ), the decoding process
can be formulated as:

𝑦𝑙
𝑡𝑏

𝑡 = argmax𝐿𝐿𝑀 (𝑦𝑙
𝑡𝑏

𝑡 |𝑦<𝑙
𝑡𝑏

𝑟 ;𝑝𝑡𝑏 , 𝑞𝑡𝑏𝑡 , 𝐸𝑘 ) (6)

3.1.2 Entailment Tree Generation.

Definition 3.1. The entailment tree generation task input consists
of a corpus of premises C (facts from fact base) and a hypothesis h
(original question). The objective is to generate an entailment tree
T that explains the hypothesis h by using a subset of the premises
in C as building blocks. Entailment trees are represented as a tuple
𝑇 = (ℎ, 𝐿, 𝐸, 𝑆), where leaf nodes 𝑙𝑖 ∈ 𝐿 are retrieved from the corpus
(𝑖 .𝑒 .𝐿 ⊆ 𝐶), internal tree nodes 𝑒𝑖 ∈ 𝐸 are intermediate conclusions
(new sentences not present in corpus C, note that intermediate
conclusions are generated by LLM), and 𝑠𝑖 ∈ 𝑆 is a list of entailment
steps that can explain the hypothesis h, which is always the tree
root and the final conclusion.

Entailment Tree Structure Generation The main function
of the entailment tree structure generation module is to select leaf
nodes and generate the entailment tree structure. At this stage, we
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use predefined symbols for the entailment tree structure generation
task which introduced by [6], where the facts in the fact base serve
as a set of possible leaf nodes, and the original question serves as
the conclusion. The entailment tree structure is generated using
GPT-3.5, where the facts are the leaf nodes, and several leaf nodes
are combined to form intermediate nodes. In the entailment tree
structure generation module, only facts and the original question
are given, and the intermediate nodes generated do not contain any
specific information. In the initialization phase of the entailment
tree, we do not directly predict the answer. Instead, we continuously
fill the entailment tree with leaf nodes by predicting the structure
of the entailment tree, and constantly improve the corresponding
intermediate nodes through the combination of leaf nodes.

After predicting the structure of the entailment tree based on
the question and perfecting the entailment tree, since the root
node (question) does not contain the answer, we use the “answer”
placeholder to replace the root node and input it into the second
phase to perfect the entailment tree.

We use the symbol “&” to denote “and”, and “->” to denote
“entails”, Suppose that the j-th origin question 𝑠 𝑗 and fact base
𝐹𝐵 = [𝑓 𝑎𝑐𝑡1, 𝑓 𝑎𝑐𝑡2, ..., 𝑓 𝑎𝑐𝑡𝑚] are input into GPT-3.5 and generate
entailment tree structure 𝑡𝑠 which has 𝐿𝑡 tokens, denoted as 𝑡𝑠

𝑗
=

(𝑦1
𝑗
, 𝑦2

𝑗
, ..., 𝑦𝐿

𝑗
), the decoding process can be formulated as:

𝑦𝑙
𝑡

𝑗 = argmax𝐿𝐿𝑀 (𝑦𝑙
𝑡

𝑗 |𝑦
<𝑙𝑡

𝑗 ;𝑝𝑡 , 𝑞 𝑗 , 𝐹𝐵) (7)
where 𝑝𝑡 is the instruction prompt. The template of the prompt 𝑝𝑡
for LLM is as follows:

/* Instruction for the decompose question task */
Please generate entailment tree according to the given facts and target-question.\n
/* n in-context examples */
TARGET-QUESTION: origin question q \n
Facts: fact 1: ... , fact 2: ... , ...
Entailment Tree: fact & fact2 -> int1; ...

Figure 4: The prompt template of entailment tree structure
generation

Entailment Tree Refinement The entailment tree refinement
module mainly completes the intermediate nodes span in the al-
ready generated entailment tree structure.
The algorithm we use is shown below: The meaning of "Split the en-
tailment tree structure into multiple sub-trees set T" is that we start
from the root node of the constructed entailment tree structure, con-
tinuously obtain subtrees composed of non-leaf nodes 𝑁𝑟 and their
child nodes 𝑁𝑐 (𝐷𝑒𝑝𝑡ℎ(𝑁𝑐 ) = 𝐷𝑒𝑝𝑡ℎ(𝑁𝑟 ) + 1), and continuously
add them to the set to form a set of subtrees T. we split the set of all
subtrees in the entailment tree structure. If the number of subtrees
in the subtree set is greater than 1, we input all the subtrees one by
one into the large model in order and deduce the root (intermediate
node) of each subtree based on the leaf nodes (facts). Finally, we
merge them into a complete entailment tree 𝑇𝑟𝑒𝑒𝑖𝑛𝑖𝑡𝑖𝑎𝑙 .

3.2 Iterative Mixture-of-Experts Optimization
Stage

Due to the possible leaf node selection errors and entailment tree
structural errors in the previously mentioned initialized entailment

Algorithm 1 Algorithm of Entailment Tree Refinement.
Require: Fact Base, Entailment Tree Structure.
1: Split the entailment tree structure into multiple sub-trees set𝑇 .

2: if 𝑙𝑒𝑛𝑔𝑡ℎ(𝑇 ) > 1 then
3: for 𝑖 = 0 to 𝑙𝑒𝑛𝑔𝑡ℎ(𝑇 ) do
4: Split sub-tree 𝑇𝑖 into node set 𝑁
5: for 𝑗 = 0 to 𝑙𝑒𝑛𝑔𝑡ℎ(𝑁 ) do
6: if 𝑁 𝑗 in Fact Base then
7: Replace 𝑁 𝑗 with 𝑁 𝑗 in Fact Base
8: else
9: Inference intermediate node with other node using

GPT-3.5
10: end if
11: end for
12: end for
13: Complete Entailment Tree = Concat([k for k in T])
14: else
15: Complete Entailment Tree = T
16: end if

tree, we use a hybrid expert model to jointly learn the fact retrieval
generation task (retrieving leaf nodes) and question answering
tasks, and correct the entailment tree structure through an iterative
feedback mechanism.

3.2.1 Jointly Learning of Fact Retrieval Generation And Question
Answering. First, we use T5 encoder to extract the features of each
fact in the fact base as 𝐹𝑓 𝑎𝑐𝑡 = [𝑓 1[𝑚𝑒𝑎𝑛] , 𝑓

2
[𝑚𝑒𝑎𝑛] , ..., 𝑓

𝑛
[𝑚𝑒𝑎𝑛] ], Af-

terwards, we convert the entailment tree into a natural language de-
scription denote as𝑇𝑟𝑒𝑒𝑡𝑒𝑥𝑡

𝑖𝑛𝑖𝑡𝑖𝑎𝑙
and input𝑇𝑟𝑒𝑒𝑡𝑒𝑥𝑡

𝑖𝑛𝑖𝑡𝑖𝑎𝑙
into the shared

encoder of T5, and then concat it with origin question 𝑞 to obtain
the final feature 𝐹𝑒𝑡 :

𝐹𝑒𝑡 = 𝑆ℎ𝑎𝑟𝑒𝑑𝐸𝑛𝑐𝑜𝑑𝑒𝑟 (𝐶𝑜𝑛𝑐𝑎𝑡 ( [𝑇𝑟𝑒𝑒𝑡𝑒𝑥𝑡𝑖𝑛𝑖𝑡𝑖𝑎𝑙
, 𝑞])) (8)

Once we have obtained the features, we input 𝐹𝑒𝑡 into the Mixture-
of-Experts model.

Multi-Task Mixture-of-Experts our mixture-of-experts model
primarily consists of three parts: two gating networks, two task-
specific expert networks, and one shared expert network. The task-
specific expert networks are dedicated to the tasks of fact retrieval
generation and question answering, respectively, while the shared
expert network can be utilized for both tasks. The gating network
is responsible for selecting the appropriate experts. Specifically,
gating network A selects from the fact retrieval generation task and
shared experts, while gating network B selects from the question
answering task and shared experts.

Top-2 Selection. According to the formulation above, when g(·)
is a sparse vector, only part of the experts would be activated and
updated by back-propagation during training. We set the gating
layer as a top-K selection as:

𝑔(𝐹𝑒𝑡 ) = 𝑇𝑜𝑝𝐾 (𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑓 (𝐹𝑒𝑡 ))) (9)

where 𝑓 (𝐹𝑒𝑡 ) is routing linear transformation 𝑅𝐷 → 𝑅𝐸 .
Token-choice RoutingWegenerally follow [23] for our routing

design to ensure training stability. Given E trainable experts and
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input representation 𝐹𝑒𝑡 ∈ 𝑅𝑙𝑒𝑛
𝑒𝑡 ∗𝐷 , the output of MoE model can

be formulated as:

𝑀𝑜𝐸 (𝐹𝑒𝑡 ) =
𝑛∑︁
𝑖=1

𝑔(𝐹𝑒𝑡 )𝑖𝑒𝑖 (𝐹𝑒𝑡 ) (10)

where 𝑒𝑖 (𝐹𝑒𝑡 ) is a non-linear transformation 𝑅𝐷 → 𝑅𝐷 of the ith
expert, and 𝑔(𝐹𝑒𝑡 )𝑖 is the i th element of the output of the trainable
router 𝑔(𝐹𝑒𝑡 ), a non-linear mapping 𝑅𝐷 → 𝑅𝐸 . Usually, both 𝑒 (𝐹𝑒𝑡 )
and 𝑔(𝐹𝑒𝑡 ) are parameterized by neural networks. Please note each
expert is an FFN layer instead of a complete Transformer model in
most MoE-based Transformer models, including ours.

After we have selected the experts for the fact retrieval gen-
eration task and the question answering task through the gated
network, we add𝑀𝑜𝐸 (𝐹𝑒𝑡 ) with 𝐹𝑒𝑡 to obtain the final MoE output:

𝑀𝑜𝐸𝑓 = 𝑎𝑑𝑑 (𝑀𝑜𝐸 (𝐹𝑒𝑡 ), 𝐹𝑒𝑡 ) (11)

then we input𝑀𝑜𝐸𝑓 into the decoder of their respective tasks.
Decoders for Multi-Tasks We handle the two decoders differ-

ently. The FRG Decoder performs cross-attention with all fact fea-
tures and the entailment tree description passed through the Shared
Encoder, while the QA Decoder only performs cross-attention with
the entailment tree description passed through the Shared Encoder.
The reason for doing this is that we hope the QA model can get the
answer based solely on the entailment tree. If it cannot, then opti-
mize the entailment tree through the FRG model and the Iterative
Feedback Mechanism until the QA model can answer the question
based solely on the entailment tree.

The decoder for fact retrieval generation 𝐷𝑒𝑐𝑜𝑑𝑒𝑟 𝑓 𝑟𝑔 performs
cross attention with the facts feature 𝐹𝑓 𝑎𝑐𝑡 and shared encoder
output 𝐹𝑒𝑡 :

𝑤𝑡 , 𝑔𝑡 = 𝐶𝑟𝑜𝑠𝑠𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝐶𝑟𝑜𝑠𝑠𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝐷𝑒𝑐𝑜𝑑𝑒𝑟 (𝑞), 𝑀𝑜𝐸𝑓 ), 𝐹𝑓 𝑎𝑐𝑡 )
(12)

where𝑤𝑡 denotes the cross-attention weights at time step t. then
the decoder 𝐷𝑒𝑐𝑜𝑑𝑒𝑟 𝑓 𝑟𝑔 begins to retrieval at time step |𝑄 |, i.e., the
length of the question 𝑞, and then we utilize cross-entropy loss for
it:

𝐿𝑓 𝑟𝑔 = − 1
𝑀

𝑀∑︁
𝑡=0

log
exp(𝛼𝑡,𝑡+)∑𝑛
𝑖=1 exp(𝛼𝑡,𝑖 )

(13)

where 𝛼𝑡,𝑖 denotes the cross-attention scores of the i-th fact at time
step t, 𝛼𝑡,𝑡+ denotes the score of the target source(The fact index
sequence extracted from the entailment tree generated by LLM) at
time step t, M is the number of retrieval steps.

The decoder for the question answering task𝐷𝑒𝑐𝑜𝑑𝑒𝑟𝑞𝑎 performs
cross attention with the overall features𝑀𝑜𝐸𝑓 :

𝑔𝑞 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑐𝑟𝑜𝑠𝑠𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝐷𝑒𝑐𝑜𝑑𝑒𝑟 (𝑞), 𝑀𝑜𝐸𝑓 )) (14)

the decoder 𝐷𝑒𝑐𝑜𝑑𝑒𝑟𝑞𝑎 begins to retrieval at time step |𝑄 |, i.e., the
length of the question 𝑞, and then we utilize cross-entropy loss for
it:

𝐿𝑞𝑎 =

|𝐴 |∑︁
𝑡=0

− log 𝑃𝑡 (𝑎𝑖 |𝑀𝑜𝐸𝑓 , 𝑎<𝑡 ) (15)

The overall loss function is as follows:

𝐿 = 𝐿𝑓 𝑟𝑔 + 𝐿𝑞𝑎 (16)

3.2.2 Iterative Feedback Mechanism. After we complete the tasks
of fact retrieval generation and question answering, we first replace
the fact index obtained from the fact retrieval generation task in
the fact base with the corresponding facts. Then, we concatenate
it with the final answer and input it into GPT-3.5 as additional
information to correct the entailment tree and conduct a second
round of training. We add a prompt 𝑝𝑖 𝑓𝑚 to the original prompt
template which we use to generate the entailment tree structure:
"Given the following potentially relevant facts and the potentially
correct answer, please generate entailment tree in n words. Facts:f
Answer:a Question:q"

Algorithm 2 Algorithm of Iterative Feedback Mechanism.
Require: facts set 𝑓 from fact retrieval generation task, answer 𝑎

from question answering task.
1: iterative number 𝑘 = 𝑛; 𝑓 𝑖 = 𝑓 ;𝑎𝑖 = 𝑎
2: for 𝑖 = 0 to 𝑘 do
3: Fill the prompt with 𝑓 𝑖 and 𝑎𝑖 to get a complete prompt 𝑝𝑖𝑐 .
4: Concat 𝑝𝑖𝑐 with 𝑝𝑡 (shown in Figure 4)
5: Continue the processing of stage 1 to get a new entailment

tree 𝑇 𝑖 .
6: Continue with the steps of stage 2 through 𝑇 𝑖 , and get 𝑓 𝑖𝑛𝑒𝑤

and 𝑎𝑖𝑛𝑒𝑤 respectively from the fact retrieval generation task
and the question answering task.

7: 𝑓 𝑖 = 𝑓 𝑖𝑛𝑒𝑤 ;𝑎𝑖 = 𝑎𝑖𝑛𝑒𝑤
8: end for

4 EXPERIMENTS
4.1 Datasets
We conducted experiments on two of themost representativeMMQA
datasets: WebQA and MultimodalQA.
WebQA [3] is a multimodal and multi-hop question answering
dataset that contains QA pairs that require one or two images and
text snippets to answer. Each question has a set of distractors that
the model must consider along with the correct clues to provide an
answer. WebQA uses BARTScore to measure both the fluency and
keyword accuracy of the answer denote as QA-FL and QA-Acc in
Table 2. These two scores are multiplied together to obtain the QA
score. The clue retrieval can be easily evaluated using F1 score.
MultimodalQA [21] involves answering multi-hop complex ques-
tions by combining information from text, tables, and images. Each
question also includes visual and text distractors. The performance
is measured by F1 score at the word level and the Exact Match (EM)
of the predicted answer.

4.2 Implementation Details
We conduct experiments on two datasets:WebQA, andMultimodalQA.
The information source for WebQA includes both text and image
modalities, while MultimodalQA focuses on text, images, and tables.
For WebQA and MultimodalQA, a candidate clue list is given, and
the model needs to find the most relevant clue to evaluate the accu-
racy of the clue retrieval. The backbone for retrieval is BERT[7]. We
use LLaVA-1.5 as our VQA model, and use T5 as our FRG and QA
model. We utilize the Transformers library and pretrained parame-
ters from HuggingFace 4 and conduct experiments using 24G GPU
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cards. Further, AdamW [16] is used as the optimization algorithm
with a learning rate of 1e-4. The batch sizes for retrieval and qa are
32, 12.

4.3 Results

Model QA-FL QA-Acc QA
OFA-Cap + GPT-3 52.8 55.4 33.5
PROMPTCAP + GPT-3 53.0 57.2 34.5
Our Method 60.1 77.2 47.1

Table 1: Large language model Results on the WebQA vali-
dation set with oracle sources on image queries.

We show our results of WebQA in Table 1-3. Table 1 shows all the
methods that use large models on the webqa dataset. promptcap[11]
trained an image caption model to generate image caption to let
GPT-3 have more information about the images, however, the im-
age captions generated by promptcap are too coarse-grained. Our
method decomposes question by GPT-3.5 and filters the question
to generate image caption, which let image caption model more
focused on specific areas.

Model Retr QA-FL QA-Acc QA
VLP [2022] 0.69 0.43 0.37 0.23
VLP + VinVL [2022] 0.71 0.44 0.39 0.24
MuRAG [2022] 0.75 0.56 0.55 0.36
SKURG [2023] 0.88 0.56 0.57 0.38
Solar [2023] 0.89 0.61 0.59 0.41
PERQA [2023] 0.90 0.62 0.64 0.44
Our Method 0.89 0.68 0.73 0.54

Table 2: WebQA official test-set1results indicated on leader-
board. we achieve the highest result on QA-FL, QA-ACC, QA
score.

Model QA-Acc Retr
VitaminC 57 84
CMU ITL 58 81
HIT TMG 58 89
SDU 69 86
Our Method 73 89

Table 3: WebQA official test-set results on QA-Accuracy and
Retrieve F1. Our method significantly exceeds other current
methods in terms of QA-Accuracy.

Table 2 shows all results onWebQAoffcial test-set result,MuRAG[5]
design a multimodal transformer, SKURG[24] design a entity fu-
sion method, solar[27] unified multimodal into text. we also list the
results of VitaminC, CMU ITL, HIT TMG, SDU on the EvalAI
WebQA open leaderboard in Table 3.

0https://eval.ai/web/challenges/challenge-page/1255/leaderboard/3168

Model Single-Modal Mutli-Modal All

EM F1 EM F1 EM F1
AR 51.7 58.5 34.2 40.2 44.7 51.1
ID 51.6 58.4 44.6 51.2 48.8 55.5
SKURG 66.1 69.7 52.5 57.2 59.8 64.0
PERQA 69.7 74.1 54.7 60.3 62.8 67.8
Solar 69.7 74.8 55.5 65.4 59.8 66.1
Our Method 69.8 74.9 64.7 65.7 68.2 66.5

Table 4: MultimodalQA dataset results.

Also, as shown in Table 4, we surpass sota result on Multi-
modalQA in Single-Modal and Multi-modal set. This demonstrates
that our method possesses superior reasoning abilities.

The WebQA and Multimodalqa dataset both requires measuring
the accuracy of the final answer. Our method achieves much higher
accuracy than othermethods on the final answer, because in the first
step of decomposing the question, GPT-3.5 can comprehensively
decompose the question and match the final multimodal clues. This
leads to a more focused generation of image descriptions based on
the decomposed questions, providing reasoning steps for the final
generation. Therefore, our method achieves a good result in terms
of accuracy.

4.4 Ablation Study

Model Single-Modal Mutli-Modal All
EM EM EM

Our Method 69.8 64.7 68.2
w/o decompose question 68.6 55.2 64.8
w/o LLaVA caption 68.3 56.2 65.2
w/o FRG 67.2 58.4 65.2
w/o MMOE 69.8 63.4 67.3
w/o IFM 67.8 59.2 66.1

Table 5: Ablation study onMultimodalQA dataset results. we
denote Fact Retrieval Generation Module as FRG, Iterative
Feedback Mechanism as IFM.

In this experiment, we ablate the question decomposition, sub-
question image caption modules, fact retrieval generation module,
multi-task mixture-of-experts module, Iterative feedback module.
When ablating the question decomposition module, we directly
use the original question as input, and directly use the original
question as the prompt for LLaVA to generate image captions; when
ablating the sub-question image captionmodule and entailment tree
generation modules, we directly concatenate the retrieved evidence
and sub-questions and input them to GPT-3.5. The results of the
ablation experiments are shown in Table 5. It can be seen that both
question decomposition and the final sub-question image caption
have a positive impact on the results, with the sub-question image
description being particularly significant.

4.5 Case Study
As shown in Figure 5 and Figure 6, we present two case studies in the
Multimodal datasets. Figure 5 shows the entailment tree generated

https://eval.ai/web/challenges/challenge-page/1255/leaderboard/3168
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in the data sample of complex reasoning. Our method can generate
effective entailment trees for a small amount of complex reasoning
to guide the reasoning process. Figure 6 shows that when the first
stage LLM generates an incorrect entailment tree (with errors in
leaf node selection and structure), our proposed second stage can
correct these errors through the joint learning of fact retrieval
generation task and question answering task.

Which of M.O.D.'s albums features stars on its cover and was made under the label Music for Nations?

fact 6 : Title: 
Devolution (album); 

the album cover 
features stars on it.

fact 4 : Title: Busted, 
Broke & American; 

the album cover 
features stars on it.

fact 1:

fact 2:

fact 3:

   fact 3 & fact 4 -> int 1;  fact 1 & fact 5 -> int 2;  fact 2 & fact 6 -> int 3;  int 1 & int 2 & int 3 -> answer

int 1 : Busted, Broke & American cover features stars on it, ... Label is Megaforce.
int 2 : U.S.A. for M.O.D cover features stars on it, ... Label is Megaforce Records.
int 3 : Devolution (album) cover features stars on it, ... Label is Music for Nations.

answer: Devolution(album)

Figure 5: Our Method can generate correct entailment tree
according to the image, table and text.

United States Air Force Academy

Among former members of the Great Western Lacrosse League, on what field did the school with an eagle on their logo play?

fact 1 & fact 10 -> int 1; fact 2 & fact 10 -> int 2; int 1 & int 2 -> answer

Great Western Lacrosse League

fact 1:

fact 2:

fact 3:

fact 4:

fact 5:

fact 6:

fact 7:

fact 8:
fact 9:

fact 10:

 Iterative Mixture-of-Expert 
Optimization Stage

fact 1 & fact 10 -> answer

leaf node select error & structure error

Figure 6: When the entailment tree structure generated by
the LLM is incorrect, or the selection of leaf nodes is wrong,
our proposed IterativeMixture-of-Expert Optimization Stage
can correct the errors.

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 Avg
q-True 86 88 86 96 94 88 86 92 82 88 88.6
r-True 84 84 86 92 88 86 84 90 78 86 85.8

Table 6: Quality Analysis and Explainability on WebQA dev
set. p1-p10 is different evaluator,q-True is an indicator count-
ing whether the question decomposition is correct. r-True
is an indicator that counting whether the entailment tree’s
reasoning path is correct.

4.6 Quality Analysis and Explainability
In this section, we show quality analysis of decomposed questions
and explainability of final reasoning path, including the refined
GPT-3.5 sub-questions and their specific image captions generated
by LLaVA in our method. To evaluate the quality of question decom-
position, we recruited 10 volunteers to conduct human evaluation.
Each evaluator was randomly provided with 50 original questions,
each origin question has corresponding sub-questions and reason-
ing path. We evaluate two indicators which are the accuracy of the
decomposed question, the accuracy of the reasoning path. The accu-
racy of the decomposed question and the reasoning path is 89% and
86.2% respectively. We stipulate that when counting whether the
question decomposition is correct, only when all the decomposed
questions are correct can it be considered correct. When count-
ing the explainable reasoning path, we require that the reasoning
path be considered correct only when the evaluator thinks that the
reasoning path can reason out the final answer.

5 CONCLUSION
We follow the current popular method [4, 8, 27], of unifying multi-
modal information into text information. In this text-driven multi-
modal paradigm, to the best of our knowledge, this is the first time
that an explanatory improvement has been made from the perspec-
tive of entailment tree generation. In this paper, we construct an
entailment tree through LLMs, and iteratively correct the entail-
ment tree by proposing a multi-task MoE and iterative feedback
mechanism. During the process, we can generate entailment trees
based on the set of facts to assist the model in complex problem
reasoning. Different from previous methods of entailment tree gen-
eration, our method not only has interpretability, but also helps
to improve the accuracy of question answering. Our experiments
demonstrate the potential of this approach.

6 LIMITATIONS
While our method has demonstrated its superior performance on
two benchmarks, it still has several limitations. First, this method
might not fully use the sub-question answers, for successively
prompting next sub-question, although it may reduce error propaga-
tion. Second, the majority of data in current multimodal multi-hop
question answering datasets does not entail complex reasoning.
While the question decomposition module primarily contributes
to performance enhancement when employing an entailment tree,
we excel in handling a small fraction of complex problems by gen-
erating entailment trees, which can direct the model’s reasoning
path.
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