
Multi-stream Sequence Learning

Mohamed Elsayed 1 2 A. Rupam Mahmood 1 2 3

Abstract

We re-evaluate the suitability of the independent
and identically distributed (IID) training paradigm
for sequence learning, where long data streams
are segmented into shorter and shuffled chunks,
thereby breaking their natural continuity and un-
dermining long-range credit assignment. This
paper offers multi-stream sequence learning, a
training framework that presents multiple data
streams in their natural order. To support this
framework, we propose Memora, a recurrent-only
architecture whose persistent hidden states make
it more suitable for sequence learning than Trans-
formers. Memora builds on Gated Linear Recur-
rent Unit (GLRU)—a new lightweight recurrent
unit designed for efficient parallel training and
robust temporal reasoning—and achieves effec-
tive learning on long byte-level sequences. Our
experiments on structured and byte-level bench-
marks demonstrate that models trained under the
multi-stream sequence learning framework con-
sistently outperform standard recurrent and state-
space models trained with IID training setting,
underscoring the importance of preserving conti-
nuity in sequence learning.

1. Introduction
Modern sequence models, particularly Transformers, have
achieved remarkable performance across diverse domains by
adopting the independent-and-identically-distributed (IID)
training paradigm where long continuous data streams
are partitioned into randomized, fixed-length segments.
This segmentation strategy fully exploits modern hardware,
achieves high-throughput parallel processing, and under-
pins state-of-the-art results in language, vision, and beyond
(Brown et al. 2020, Hoffmann et al. 2022, Touvron et al.

1Department of Computing Science, University of Alberta, Ed-
monton, Canada 2Alberta Machine Intelligence Institute 3CIFAR
AI Chair. Correspondence to: Mohamed Elsayed <mohamedel-
sayed@ualberta.ca>.

Efficient Systems for Foundation Models Workshop at the Interna-
tional Conference on Machine Learning (ICML). Copyright 2025
by the author(s).

2023, Guo et al. 2025). Yet this very convenience comes
at the expense of severing the temporal continuity intrin-
sic to data streams. Natural streams (e.g., linguistic text,
audio waveforms, videos, or genomic code) may rely on
dependencies that span far beyond individual chunks. As a
stopgap, practitioners extend context windows (Ding et al.
2024, Pal et al. 2023, Wang et al. 2024b), an approach that
rapidly escalates computational cost and becomes imprac-
tical for those with limited resources (Huang et al. 2024).
This tension invites a pivotal question: does the IID regime
inherently constrain the capacity to learn genuine long-range
dependencies?

The temporal segmentation not only disrupts the natural con-
tinuity of streams but also hinders the model’s ability to cap-
ture dependencies that extend beyond segment boundaries.
Transformers, when trained on arbitrarily chunked windows,
lack mechanisms to relate patterns across segments, leaving
long-range structure unmodeled. While recurrent architec-
tures (Hochreiter and Schmidhuber 1997, Arjovsky et al.
2016, Orvieto et al. 2023) are, in principle, better suited for
such dependencies by maintaining hidden state over time,
modern variants typically conform to the same IID regime.
In practice, they reset hidden states at segment boundaries
(e.g., Gu and Dao 2024, De et al. 2024), discarding accumu-
lated memory and undermining their temporal expressivity.
A recurrent framework that fully leverages persistent state
across long sequences remains largely unrealized.

Motivated by the limitations of the IID training paradigm
and the untapped capacity of recurrent architectures, we
propose the multi-stream sequence learning paradigm, a
training framework that maintains temporal coherence by
presenting multiple parallel data streams in their natural or-
der and resetting states only at stream boundaries (e.g., end
of document). Unlike IID-based chunking, this approach
makes learning updates sequentially, enabling the model to
preserve contextual memory and build representations that
extend beyond each update block. This paradigm aligns
naturally with real-world applications like online inference
and real-time decision-making, where the assumption of
independent samples does not hold. Under this setting, a
recurrent architecture can maintain a persistent state across
the entire stream to perform long-range credit assignment,
unlocking modeling capabilities that IID training inherently
disrupts and revitalizing the strength of recurrence.

1

Multi-stream Sequence Learning

Realizing multi-stream sequence learning at scale requires
an architecture that balances the efficiency of parallel train-
ing with the expressivity of recurrence—we propose Mem-
ora, a lightweight recurrent-only backbone built on the
Gated Linear Recurrent Unit (GLRU). GLRU employs gat-
ing mechanisms with parallelizable formulation, narrowing
the throughput gap with Transformers. GLRU enables sta-
ble performance under various update strides, including a
stride of 1, making Memora adaptable to diverse training
scenarios, from offline pretraining to real-time learning.1

Through extensive evaluations on byte-level sequence mod-
eling, we demonstrate that Memora trained under the multi-
stream paradigm consistently surpasses both standard recur-
rent and state-space models trained with the IID paradigm,
and rivals Transformer models. Our work contributes (1) a
formalization of multi-stream sequence learning paradigm,
(2) the Memora architecture with the GLRU cell for efficient,
scalable recurrence supporting both truncated backpropaga-
tion through-time and real-time recurrent learning, and (3)
empirical evidence that continuity-aware training unlocks
performance gains on long-sequence tasks for recurrent-
based models.

2. A new learning framework
We propose multi-stream sequence learning, a new training
framework designed to preserve temporal continuity across
update blocks by presenting multiple data streams in their
natural order. Unlike IID training, where update blocks
are randomized chunked segments of the original stream,
our approach treats each stream temporally in a continuous
manner and only presents a new stream at semantically
meaningful boundaries (e.g., end of document or video).

Figure 1. Overview of multi-stream sequence learning. Four
streams (B=4) each yield blocks of length T=3; when an episode
ends it is immediately replaced by a new one starting at t0.

Figure 1 illustrates the workflow of the multi-stream se-
quence learning. The learner is presented with B parallel
streams, each containing a series of episodes (e.g., an article,
a video, or a complete conversation). When one episode
ends, we dynamically swap it with a new episode that starts
from t0. Training is done by collecting a block of stride T

1We provide a minimal easy-to-follow implementation of Mem-
ora under the IID and multi-stream settings through this Colab
Notebook.

from each stream, giving an effective batch size of B × T
for an update. This setup generalizes several regimes, for
example, when B = 1 and T = 1, the model reduces to
what is known as streaming learning (e.g., Elsayed et al.
2024). We refer to T as the update stride, which is known as
the sequence length for IID training. However, we reserve
the latter for IID training, where—unlike in multi-stream
training—the sequence is broken at the block boundary.

While each episode is randomly selected from the corpus,
the temporal coherence within each episode, which can
be as long as a whole book, is preserved. This enables
the model to maintain and evolve hidden states across up-
date blocks, supporting long-range credit assignment and
structured memory accumulation. Recurrent architectures
naturally lend themselves to this paradigm, in contrast to
Transformer-based models. Yet, current recurrent learning
paradigms do not evolve hidden states across update blocks,
as they pick the blocks IID. In contrast, update blocks in
multi-stream learning are contiguous and from the same
episode unless the episode ends before a block completes.

Multi-stream sequence learning aligns closely with real-
world deployment scenarios, such as online prediction (Car-
reira et al. 2024), continual learning (Elsayed and Mah-
mood 2024), and real-time control (Vasan et al. 2024),
where the assumption of independent samples breaks down.
Furthermore, it retains compatibility with modern hardware
by enabling efficient parallelism across streams, while un-
locking new capabilities through temporal continuity. We
provide a comprehensive background on recurrent learning
in Appendix A and the related works in Appendix D.

3. The Memora Architecture
To study the multi-stream learning framework, we introduce
the Memora architecture, a simplified recurrent-only archi-
tecture that is compatible with the multi-stream learning
paradigm. The Memora architecture depends on the Gated
Linear Recurrent Unit (GLRU), which is a gated recurrent
architecture. We start by describing GLRU and explain how
it can be used with T-BPTT and RTRL; then we describe
the components of the Memora architectural design.

3.1. Learning Temporal Dependencies with GLRU

Recent advancements in recurrent learning (e.g., Gu and
Dao 2024, De et al. 2024) demonstrated the importance of
gated recurrence in solving complex tasks such as language.
In addition, gated recurrent has been shown to be able to
implement the linear attention (Katharopoulos et al. 2020)
operation (Zucchet et al. 2024, Huang et al. 2023, Dao and
Gu 2024). Our design builds on previous works and relies
on gating both the input and the state. Specifically, GLRU
builds on LRU (Orvieto et al. 2023), which uses complex-

2

https://colab.research.google.com/drive/1ejV4gNIZrdqYwGiDbQvv0w4P3niYNRzR?usp=sharing
https://colab.research.google.com/drive/1ejV4gNIZrdqYwGiDbQvv0w4P3niYNRzR?usp=sharing

Multi-stream Sequence Learning

valued, non-gated recurrence, but incorporates a real-valued,
gated recurrence instead. The GLRU recurrence formulation
is given by

ht = r(xt) ◦ ht−1 + γt ◦ g(xt) ◦ (Bxt), (1)

where γt =
√
1− r2t , g(xt) = Gxt, r(xt) =

e−ceν◦σ(Rxt), xt ∈ Rd, ht ∈ Rn, and G,B ∈ Rn×d.
We set c to 3. We do not apply gating on the output since
the Memora architecture provides that gating, similar to
the Hawk architecture (De et al. 2024). The output of the
recurrence is given by yt = ht. Learning with T-BPTT is
straightforward and can be done using Algorithm 2. How-
ever, learning with RTRL (see Algorithm 1) requires deriv-
ing the sensitivity matrices for each learnable parameter in
the recurrence equation, namely: ν,B,R,G. We provide
the update equations here and defer the full derivation to
Appendix F. The RTRL sensitivity update equations are
given by

Sν
t = r(xt) ◦ Sν

t−1 − ceν ◦ σ(Rxt) ◦ r(xt) ◦ ht−1

+ c
r(xt)

2

γ
◦ eν ◦ σ(Rxt) ◦ g(xt) ◦ (Bxt),

SB
t = Diag (r(xt))S

B
t−1 + (γ ◦ g(xt))x

⊤
t ,

SG
t = Diag (r(xt))S

G
t−1 + (γ ◦ (Bxt))x

⊤
t ,

SR
t = Diag(r(xt))S

R
r

+

(
d ◦
(
ht−1 −

r(xt)

γ
◦ g(xt) ◦ (Bxt)

))
x⊤
t ,

where d = cr(xt) ◦ eν ◦ σ(Rxt) ◦ (1− σ′(Rxt)), and the
division is performed element-wise.

Learning with RTRL allows learning in real-time from the
samples as they arrive. It is compatible with our multi-
stream learning paradigm and can achieve efficient learning
with T = 1. One fundamental limitation of RTRL is that
its parallelization with parallel scan (when T > 1) is expen-
sive since the sensitivity equations are based on matrices.
Therefore, we limit the usage to the case where T = 1 with
B parallel streams.

Finally, we place GLRU in the landscape of recurrent units
in Table 1. Notably, our GLRU allows for state expansion
since the input xt can be expanded to larger space using
B, similar to the LRU unit and unlike RG-LRU. Addition-
ally, our design allows for efficient RTRL implementation,
which is facilitated by the element-wise input and output
gating. RG-LRU design, in principle, also allow for efficient
RTRL. In contrast, the RTRL mode of GRU (Chung et al.
2014) is intractable and requires computational complexity
of O(n4). The RTRL mode of RG-LRU is not introduced
in the literature, so we derive its RTRL mode in Appendix
F to compare it with GLRU in the experiments and skip
comparing with RTRL-mode of S6 due to its derivation and
implementation complexity.

3.2. Architectural Design

Memora is a recurrent-only architecture with two main com-
ponents: 1) residual normalized gated recurrent block fol-
lowed by 2) residual normalized MLP block. This design
follows the general Transformer architecture outline where
the first block captures the temporal relations and the other
learns representations (see Touvron et al. 2023). We apply
pre-normalization using RMSNorm (Zhang and Sennrich
2019) on each block with learnable parameters. Each block
employs the gated linear unit design (Shazeer 2020) where
the input is expanded then contracted using the block linear
maps. This design is common across many architectures
(e.g., De et al. 2024, (Gu and Dao 2024)). We propose a new
variation where we use layer norm (Ba et al. 2016) without
learnable parameters after each linear mapping and also after
each element-wise multiplication. Our gated recurrent block
is very close to the gated MLP and instead of using a linear
map in one of the GLU branches, we replace it with GLRU.
Lastly, the activation σ we use is GeLU (Hendrycks and
Gimpel 2016). Figure 2 outlines the Memora architecture
and its two main components.

Gated RNN

RN

LN

+

Gated MLP

RN

+

R
e

p
e

a
t
N

 t
im

e
s

Embedding

Linear + Softmax

(a) Memora

Linear Map

Linear Map

Linear Map

LN

LN

LN

×

(b) Gated MLP

Linear Map

Linear Map

Recurrent
Unit

LN

LN

LN

×

(c) Gated Recurrence

Figure 2. The Memora architecture. Filled blocks represent
components with learnable parameters. LN/RN denotes Layer-
Norm/RMSNorm. M is the model dimension and S is the state
dimension.

4. Experiments
In this section, we start by studying long-range memory
capabilities and selective attention under high memory de-
mand using the selective copying task (Gu and Dao 2024).
Then we study the effect of varying sequence lengths for
IID or update strides for multi-stream on the quality of byte-
level language modeling with TinyStories (Eldan and Li
2023). After that, we study how Memora scales with the
number of parameters using byte-level language modeling
with FineWebEdu (Penedo et al. 2024) and DNA modeling
with the human genome dataset (HG38, Schneider et al.
2017). We then study learning from one sample at a time
with RTRL and 1-step BPTT. Finally, we consider GLRU
alternatives to show the performance gain with GLRU when

3

Multi-stream Sequence Learning

Gated LRU
(Ours)

RG-LRU
(De et al. 2024)

LRU
(Orvieto et al. 2023)

GRU
(Chung et al. 2014)

State expansion Yes No Yes Yes
RTRL mode Efficient Efficient Efficient Intractable

Gated/Selective Yes Yes No Yes
T-BPTT Scan Efficient Efficient Efficient Intractable

Table 1. Comparison of Gated LRU, RG-LRU, LRU, and GRU. Gated LRU is the first gated recurrent unit that supports different modes
of training: multi-stream learning with T-BPTT, RTRL, and parallelization for learning with RTRL.

used with Memora compared to other baselines in Appendix
G. Here, we focus on the key results and experimental details
and provide the full experimental details and configurations
in Appendix H.

4.1. Selective Copying
The selective copying task is a variation of the original
copying task (Arjovsky et al. 2016), where the learner must
memorize tokens at varying positions within a sequence.
This task demands context-aware reasoning and effectively
differentiates models that use gating mechanisms from those
that do not. Gating enables models to selectively retain
or discard information, making this task easier to solve.
Our experimental setup follows Gu and Dao (2024) but
with a reduced training budget of 50, 000 iterations instead
of 200, 000, allowing us to study training efficiency under
limited compute. For simplicity, we let each model see the
full episode—full BPTT is used instead of truncated BPTT.

Table 2 reports validation performance for Llama2 Trans-
former, Hawk, Mamba2 models, and Memora variants, each
with two layers. Both Memora with GLRU and Hawk
quickly solve the task with relatively few parameters, us-
ing model dimensionality of 64 and state dimensionality
of 256. In contrast, Transformer and Mamba require in-
creased model dimensionality to achieve comparable results
within the same number of iterations. Notably, Memora
with GLRU attains the highest accuracy with the fewest
parameters, relying solely on its recurrent architecture with-
out temporal convolutions. Replacing GLRU with another
gated unit (MinGRU) or a non-gated unit (LRU) leads to
a significant performance drop, underscoring the superior
memory capacity of GLRU.

4.2. Byte-level language modeling with varying
sequence lengths or update strides

We study byte-level language modeling on the TinyStories
dataset (Eldan and Li 2023), focusing on how performance
scales with sequence length for IID and with update stride
for multi-stream, while keeping the effective batch size BT
fixed. In the multi-stream setup, sequences are presented in
natural order, which we hypothesize favors recurrent models.
In contrast, we do not expect Transformers to benefit from
this structure due to their lack of persistent memory, but we

still add multi-stream Transformer (Llama2) experiments.

Stream Gap

Figure 3. Performance scaling with sequence length (for the IID
setting) or update stride (for the multi-stream setting). We show
the final performance of different baselines trained on TinyStories
using the IID and multi-stream settings. The average document
size is 895.60, which means models with sequence lengths of 1024
may contain an entire document in an update block.

Figure 3 shows the performance of Mamba, Llama2, Hawk,
and Memora in the IID setting, and compares them with
Memora in the multi-stream setting. We also adapt Hawk
and Llama2 to the multi-stream setup, representing existing
recurrent-based and Transformer-based models, respectively.
Sequence length (or update stride) is varied from 2 to 1024.
In the IID setting, all models perform similarly but degrade
significantly at shorter sequence lengths—as expected, be-
cause shorter contexts reduce temporal credit assignment. In
contrast, both Memora and Hawk perform well in the multi-
stream setting even with an update stride of 2. Note that
multi-stream Llama2 showed no advantage over IID train-
ing due to lack of states. This suggests that maintaining a
persistent state across update blocks helps recurrent models
recover long-range dependencies lost in the IID setting. We
further evaluate Memora in the multi-stream setting with re-
duced training budgets (half and quarter). Even with limited
training, Memora consistently outperforms IID-trained mod-
els across nearly all sequence lengths, further emphasizing
its superior memory capabilities in multi-stream.

4.3. DNA modeling

DNA sequences are naturally long, presenting a challenge
for modern sequence models. For instance, human chro-
mosome 2 contains approximately 250 million base pairs
(Hillier et al. 2005). We use the human genome dataset

4

Multi-stream Sequence Learning

Model Arch. Type Accuracy Parameter Count
Llama2 Transformer 98.5200%± 0.8701 888,768
Hawk Recurrent + Temp. Conv. 99.0120%± 0.4391 438,080

Mamba2 Recurrent + Temp. Conv. 99.4280%± 0.3646 553,828
Memora w/ MinGRU Recurrent-only 53.8280%± 12.5294 206,080

Memora w/ LRU Recurrent-only 11.0160%± 0.6581 304,896
Memora w/ GLRU Recurrent-only 99.5620%± 0.1918 239,360

Table 2. Validation Accuracy on the Selective Copying Task. Each model is trained for 50K iterations with batch size of 64. Each episode
has a length of 4096 with only 16 numbers to remember with varying positions. We show the average over 5 runs with its standard error.

(HG38; Schneider et al. 2017) with the train-validation splits
defined by Avsec et al. (2021). The sequences span up to
131,072 base pairs, making this a strong benchmark for
evaluating long-range dependency modeling.

221 222 223 224 225 226

Number of Parameters

2.75

2.80

2.85

2.90

2.95

3.00

3.05

P
er

pl
ex

it
y

Multi-stream Memora

Multi-stream Hawk

IID Hawk

IID Llama

IID Mamba-2

(a) HG38 DNA

223 224 225 226 227

Number of Parameters

2.0

2.1

2.2

2.3

2.4

2.5

2.6

P
er

pl
ex

it
y

Multi-stream Memora

Multi-stream Hawk

IID Hawk

IID Llama

IID Mamba-2

(b) Deduplicated FineWebEdu

Figure 4. (A) Performance scaling with number of parameters on
the HG38 DNA dataset. (b) Performance scaling with number of
parameters on the de-duplicated FineWebEdu dataset. The average
document size is 4667.55 and the sequence length or the update
stride is 512.

In Figure 4(a), we compare the performance of Llama2,
Hawk, and Mamba2 in the IID setting, and contrast them
with Memora and Hawk in the multi-stream setting. In
IID training, Llama2 outperforms both Hawk and Mamba2,
demonstrating the strength of Transformer architectures.
However, in the multi-stream setting, where a persistent
state is maintained, Hawk surpasses Llama2 at most scales.
Memora achieves the best overall performance, despite its
simpler, recurrent-only design and lack of temporal convolu-
tions, highlighting its strong memory capacity for capturing
long-range structure.

4.4. Byte-level language modeling with FineWebEdu

Next, we next study byte-level language modeling using a
deduplicated version of the FineWebEdu dataset (Penedo
et al. 2024), released as part of the SmolLM dataset (Allal
et al. 2025). Byte-level modeling enables flexible, modality-
agnostic sequence learning across domains like text, audio,
and genomics by operating directly on raw bytes, removing
the need for tokenization or domain-specific preprocessing.
This approach can also improve generalization by avoid-
ing biases introduced by methods like subword tokenization
(Wang et al. 2024a). However, they usually require more up-
dates. In Figure 4(b), we present performance scaling with
model size for multi-stream Memora, multi-stream Hawk,
IID Llama2, IID Mamba2, and IID Hawk. We observe
trends consistent with the previous task: (1) IID Llama2
outperforms both IID Hawk and IID Mamba2, and (2) multi-
stream Hawk and Memora outperform IID Llama2 in most
scales, with Memora slightly outperforming Hawk.

4.5. Learning from one sample at a time
Next, we study the challenging problem of learning lan-
guage models using one sample (e.g., a character) at a time
in an online fashion, the canonical learning mode of RTRL.
Specifically, we consider a multi-stream setting in which the
model receives one data point per time step from each of
several parallel streams. Learning from continuous, unshuf-
fled data streams enables a range of practical applications,
including autonomous vehicles (Verma et al. 2023), video
generation (Carreira et al. 2024), adaptive chatbots (Dai
et al. 2025), and robotics (Vasan et al. 2024).

In Figure 5, we evaluate language modeling performance
in this setting using a single update stride with 1024 paral-
lel streams. We compare Hawk and Memora, each tested
under two modes: RTRL and 1-step BPTT. We find that
both modes of Memora outperform their Hawk counterparts.
Additionally, Memora performs better with RTRL than with
1-step BPTT presumably because RTRL is able to assign
credit over longer temporal dependencies, making it more
effective for real-time learning.

Lastly, we investigate streaming sequence learning, where
the model is updated at every time step with an update

5

Multi-stream Sequence Learning

0 50 100 150 200 250 300 350 400

Iteration (x1000)

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

V
al

id
at

io
n

L
os

s
Hawk (T-BPTT)

Hawk (RTRL)

Memora (T-BPTT)

Memora (RTRL)

Figure 5. Learning with an update stride of 1 using 1024 parallel
streams from TinyStories. We compare Hawk and Memora under
the multi-stream setting with RTRL against 1-step BPTT.

stride of 1 and using a single continuous stream of data.
This streaming setting—commonly explored in prior work
(e.g., Goyal et al. 2009, Elsayed et al. 2024)—is particularly
suited for on-device learning and real-time adaptation to
non-stationary inputs, such as fine-tuning a pretrained model
during deployment. Here, we tackle the challenging setting
of streaming learning from scratch using byte-level inputs.

Figure 6 compares the performance of Memora trained with
RTRL against 1-step BPTT over 6M iterations. Both meth-
ods reduce the validation loss, but RTRL consistently outper-
forms 1-step BPTT. We note here that we train both systems
for 6M bytes where the dataset is about 2B bytes, which
means both system are severely under trained. Nonetheless,
to our knowledge, this is the first successful demonstration
of deep sequence learning under strict streaming constraints.
This result underscores the strong capacity of Memora to
learn under stringent online learning constraints.

0 1000 2000 3000 4000 5000 6000

Iteration (x1000)

1.4

1.6

1.8

2.0

2.2

2.4

V
al

id
at

io
n

L
os

s

Memora (1-step BPTT)

Memora (RTRL)

Figure 6. Streaming sequence learning (using an update stride of 1
and a single stream of data) on TinyStories. We compare RTRL
against 1-step BPTT both using the Memora architecture.

5. Conclusion, limitations, and future works
This paper challenged the IID training paradigm for se-
quence learning and introduced multi-stream sequence mod-
eling, a framework that preserves temporal continuity by
presenting data in natural order and resetting only at mean-

ingful boundaries (e.g., end of document). To support this
paradigm, we proposed Memora, a lightweight recurrent
architecture designed to maintain a persistent state across
long sequences. Our results demonstrated that Memora
under the multi-stream setting effectively models long-
range dependencies—even beyond the sequence length—
and uniquely supports learning at extremely short update
strides, including stride of 1. Within the sub-120M pa-
rameter regime, Memora consistently outperforms strong
baselines, including Transformers, highlighting the poten-
tial of continuity-aware training and recurrence as a viable
alternative to IID-based approaches.

While this work demonstrates the effectiveness of multi-
stream sequence learning and the Memora architecture on
long-range language modeling tasks, several limitations
remain. Our experiments are limited to models with up to
120M parameters due to computational constraints typical in
academic research settings, and it remains an open question
whether the observed gains persist at larger scales where
Transformers dominate. The scope of our evaluation is
also restricted to byte-level language modeling; extending
the paradigm to other modalities such as audio, video, or
vision is an important direction for future work. Finally,
we focus exclusively on next-token prediction with cross-
entropy loss, leaving the application of multi-stream training
to settings requiring long-range credit assignment, such as
reinforcement learning, for future research.

References
Allal, L. B., Lozhkov, A., Bakouch, E., Blázquez, G. M.,

Penedo, G., Tunstall, L., Marafioti, A., Kydlı́ček, H.,
Lajarı́n, A. P., Srivastav, V., et al. (2025). Smollm2: When
smol goes big–data-centric training of a small language
model. arXiv preprint arXiv:2502.02737.

Arjovsky, M., Shah, A., and Bengio, Y. (2016). Unitary
evolution recurrent neural networks. In International con-
ference on machine learning, pages 1120–1128. PMLR.

Avsec, Ž., Agarwal, V., Visentin, D., Ledsam, J. R., Grabska-
Barwinska, A., Taylor, K. R., Assael, Y., Jumper, J., Kohli,
P., and Kelley, D. R. (2021). Effective gene expression
prediction from sequence by integrating long-range inter-
actions. Nature methods, 18(10):1196–1203.

Ba, J. L., Kiros, J. R., and Hinton, G. E. (2016). Layer
normalization. arXiv preprint arXiv:1607.06450.

Bai, S., Kolter, J. Z., and Koltun, V. (2018). An em-
pirical evaluation of generic convolutional and recur-
rent networks for sequence modeling. arXiv preprint
arXiv:1803.01271.

Blelloch, G. E. (1990). Prefix sums and their applications.

6

Multi-stream Sequence Learning

Technical Report CMU-CS-90-190, School of Computer
Science, Carnegie Mellon University.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. (2020). Language models are few-shot
learners. Advances in neural information processing sys-
tems, 33:1877–1901.

Carreira, J., King, M., Patraucean, V., Gokay, D., Ionescu,
C., Yang, Y., Zoran, D., Heyward, J., Doersch, C., Aytar,
Y., et al. (2024). Learning from one continuous video
stream. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 28751–
28761.

Cho, K. (2014). On the properties of neural machine trans-
lation: Encoder-decoder approaches. arXiv preprint
arXiv:1409.1259.

Chung, J., Gulcehre, C., Cho, K., and Bengio, Y. (2014).
Empirical evaluation of gated recurrent neural networks
on sequence modeling. arXiv preprint arXiv:1412.3555.

Dai, X., Xie, Y., Liu, M., Wang, X., Li, Z., Wang, H., and
Lui, J. (2025). Multi-agent conversational online learning
for adaptive llm response identification. arXiv preprint
arXiv:2501.01849.

Dao, T. and Gu, A. (2024). Transformers are SSMs: Gener-
alized models and efficient algorithms through structured
state space duality. In Forty-first International Conference
on Machine Learning.

De, S., Smith, S. L., Fernando, A., Botev, A., Cristian-
Muraru, G., Gu, A., Haroun, R., Berrada, L., Chen, Y.,
Srinivasan, S., et al. (2024). Griffin: Mixing gated linear
recurrences with local attention for efficient language
models. arXiv preprint arXiv:2402.19427.

Ding, Y., Zhang, L. L., Zhang, C., Xu, Y., Shang, N., Xu, J.,
Yang, F., and Yang, M. (2024). Longrope: Extending llm
context window beyond 2 million tokens. arXiv preprint
arXiv:2402.13753.

Eldan, R. and Li, Y. (2023). Tinystories: How small can
language models be and still speak coherent english?
arXiv preprint arXiv:2305.07759.

Elelimy, E., White, A., Bowling, M., and White, M. (2024).
Real-time recurrent learning using trace units in reinforce-
ment learning. In The Thirty-eighth Annual Conference
on Neural Information Processing Systems.

Elsayed, M. and Mahmood, A. R. (2024). Addressing loss of
plasticity and catastrophic forgetting in continual learning.
In The Twelfth International Conference on Learning
Representations.

Elsayed, M., Vasan, G., and Mahmood, A. R. (2024).
Streaming deep reinforcement learning finally works.
arXiv preprint arXiv:2410.14606.

Feng, L., Tung, F., Ahmed, M. O., Bengio, Y., and Hajimir-
sadegh, H. (2024). Were rnns all we needed? arXiv
preprint arXiv:2410.01201.

Goyal, A., Daumé III, H., and Venkatasubramanian, S.
(2009). Streaming for large scale nlp: Language mod-
eling. In Proceedings of Human Language Technolo-
gies: The 2009 Annual Conference of the North American
Chapter of the Association for Computational Linguistics,
pages 512–520.

Gu, A. and Dao, T. (2024). Mamba: Linear-time sequence
modeling with selective state spaces. In First Conference
on Language Modeling.

Gu, A., Goel, K., and Ré, C. (2021). Efficiently model-
ing long sequences with structured state spaces. arXiv
preprint arXiv:2111.00396.

Guo, D., Yang, D., Zhang, H., Song, J., Zhang, R., Xu, R.,
Zhu, Q., Ma, S., Wang, P., Bi, X., et al. (2025). Deepseek-
r1: Incentivizing reasoning capability in llms via rein-
forcement learning. arXiv preprint arXiv:2501.12948.

Han, T., Gokay, D., Heyward, J., Zhang, C., Zoran, D.,
Pătrăucean, V., Carreira, J., Damen, D., and Zisserman, A.
(2025). Learning from streaming video with orthogonal
gradients. arXiv preprint arXiv:2504.01961.

Hayes, T. L., Cahill, N. D., and Kanan, C. (2019). Memory
efficient experience replay for streaming learning. In 2019
International Conference on Robotics and Automation
(ICRA), pages 9769–9776. IEEE.

Hayes, T. L. and Kanan, C. (2022). Online contin-
ual learning for embedded devices. arXiv preprint
arXiv:2203.10681.

Hendrycks, D. and Gimpel, K. (2016). Gaussian error linear
units (gelus). arXiv preprint arXiv:1606.08415.

Hillier, L. W., Graves, T. A., Fulton, R. S., Fulton, L. A.,
Pepin, K. H., Minx, P., Wagner-McPherson, C., Layman,
D., Wylie, K., Sekhon, M., et al. (2005). Generation and
annotation of the dna sequences of human chromosomes
2 and 4. Nature, 434(7034):724–731.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term
memory. Neural Computation, 9(8):1735–1780.

Hoffmann, J., Borgeaud, S., Mensch, A., Buchatskaya,
E., Cai, T., Rutherford, E., Casas, D. d. L., Hendricks,
L. A., Welbl, J., Clark, A., et al. (2022). Training
compute-optimal large language models. arXiv preprint
arXiv:2203.15556.

7

Multi-stream Sequence Learning

Huang, C., Zhu, G., Wang, X., Luo, Y., Ge, G., Chen, H., Yi,
D., and Wang, J. (2024). Recurrent context compression:
Efficiently expanding the context window of llm. arXiv
preprint arXiv:2406.06110.

Huang, F., Lu, K., CAI, Y., Qin, Z., Fang, Y., Tian, G., and
Li, G. (2023). Encoding recurrence into transformers.
In The Eleventh International Conference on Learning
Representations.

Irie, K., Gopalakrishnan, A., and Schmidhuber, J. (2024).
Exploring the promise and limits of real-time recurrent
learning. In The Twelfth International Conference on
Learning Representations.

Javed, K., Shah, H., Sutton, R. S., and White, M. (2023).
Scalable real-time recurrent learning using columnar-
constructive networks. The Journal of Machine Learning
Research, 24(1):12024–12057.

Katharopoulos, A., Vyas, A., Pappas, N., and Fleuret, F.
(2020). Transformers are rnns: Fast autoregressive trans-
formers with linear attention. In International conference
on machine learning, pages 5156–5165. PMLR.

Kyrylov, V. (2024). Accelerated Scan.

LeCun, Y. A., Bottou, L., Orr, G. B., and Müller, K.-R.
(2012). Efficient BackProp, pages 9–48. Springer Berlin
Heidelberg, Berlin, Heidelberg.

Lieber, O., Lenz, B., Bata, H., Cohen, G., Osin, J.,
Dalmedigos, I., Safahi, E., Meirom, S., Belinkov, Y.,
Shalev-Shwartz, S., et al. (2024). Jamba: A hybrid
transformer-mamba language model. arXiv preprint
arXiv:2403.19887.

Orvieto, A., Smith, S. L., Gu, A., Fernando, A., Gulcehre,
C., Pascanu, R., and De, S. (2023). Resurrecting recurrent
neural networks for long sequences. In International
Conference on Machine Learning, pages 26670–26698.
PMLR.

Pal, A., Karkhanis, D., Roberts, M., Dooley, S., Sundarara-
jan, A., and Naidu, S. (2023). Giraffe: Adventures
in expanding context lengths in llms. arXiv preprint
arXiv:2308.10882.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Rai-
son, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang,
L., Bai, J., and Chintala, S. (2019). Pytorch: An imper-
ative style, high-performance deep learning library. In
Wallach, H., Larochelle, H., Beygelzimer, A., d'Alché-
Buc, F., Fox, E., and Garnett, R., editors, Advances in
Neural Information Processing Systems, volume 32. Cur-
ran Associates, Inc.

Penedo, G., Kydlı́ček, H., allal, L. B., Lozhkov, A., Mitchell,
M., Raffel, C., Werra, L. V., and Wolf, T. (2024). The
fineweb datasets: Decanting the web for the finest text
data at scale. In The Thirty-eight Conference on Neural In-
formation Processing Systems Datasets and Benchmarks
Track.

Press, O. and Wolf, L. (2016). Using the output em-
bedding to improve language models. arXiv preprint
arXiv:1608.05859.

Qian, R., Dong, X., Zhang, P., Zang, Y., Ding, S., Lin, D.,
and Wang, J. (2024). Streaming long video understand-
ing with large language models. Advances in Neural
Information Processing Systems, 37:119336–119360.

Qin, Z., Yang, S., Sun, W., Shen, X., Li, D., Sun, W., and
Zhong, Y. (2024). HGRN2: Gated linear RNNs with state
expansion. In First Conference on Language Modeling.

Saran, A., Yousefi, S., Krishnamurthy, A., Langford, J., and
Ash, J. T. (2023). Streaming active learning with deep
neural networks. In International Conference on Machine
Learning, pages 30005–30021. PMLR.

Schneider, V. A., Graves-Lindsay, T., Howe, K., Bouk, N.,
Chen, H.-C., Kitts, P. A., Murphy, T. D., Pruitt, K. D.,
Thibaud-Nissen, F., Albracht, D., et al. (2017). Evalua-
tion of grch38 and de novo haploid genome assemblies
demonstrates the enduring quality of the reference assem-
bly. Genome research, 27(5):849–864.

Shazeer, N. (2020). Glu variants improve transformer. arXiv
preprint arXiv:2002.05202.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E.,
Azhar, F., et al. (2023). Llama: Open and efficient founda-
tion language models. arXiv preprint arXiv:2302.13971.

Vasan, G., Elsayed, M., Azimi, A., He, J., Shariar, F.,
Bellinger, C., White, M., and Mahmood, A. R. (2024).
Deep policy gradient methods without batch updates, tar-
get networks, or replay buffers. In Globerson, A., Mackey,
L., Belgrave, D., Fan, A., Paquet, U., Tomczak, J., and
Zhang, C., editors, Advances in Neural Information Pro-
cessing Systems, volume 37, pages 845–891. Curran As-
sociates, Inc.

Vaswani, A., Shazeer, N. M., Parmar, N., Uszkoreit, J.,
Jones, L., Gomez, A. N., Kaiser, L., and Polosukhin, I.
(2017). Attention is all you need. In Neural Information
Processing Systems.

Verma, V., Maimone, M. W., Gaines, D. M., Francis, R.,
Estlin, T. A., Kuhn, S. R., Rabideau, G. R., Chien, S. A.,
McHenry, M. M., Graser, E. J., et al. (2023). Autonomous
robotics is driving perseverance rover’s progress on mars.
Science Robotics, 8(80):eadi3099.

8

Multi-stream Sequence Learning

Wang, J., Gangavarapu, T., Yan, J. N., and Rush, A. M.
(2024a). Mambabyte: Token-free selective state space
model. In First Conference on Language Modeling.

Wang, X., Salmani, M., Omidi, P., Ren, X., Rezagholizadeh,
M., and Eshaghi, A. (2024b). Beyond the limits: A
survey of techniques to extend the context length in large
language models. arXiv preprint arXiv:2402.02244.

Williams, R. J. and Peng, J. (1990). An efficient gradient-
based algorithm for on-line training of recurrent network
trajectories. Neural Computation, 2(4):490–501.

Williams, R. J. and Zipser, D. (1989). A learning algorithm
for continually running fully recurrent neural networks.
Neural Computation, 1(2):270–280.

Xue, L., Barua, A., Constant, N., Al-Rfou, R., Narang, S.,
Kale, M., Roberts, A., and Raffel, C. (2022). Byt5: To-
wards a token-free future with pre-trained byte-to-byte
models. Transactions of the Association for Computa-
tional Linguistics, 10:291–306.

Yu, L., Simig, D., Flaherty, C., Aghajanyan, A., Zettlemoyer,
L., and Lewis, M. (2023). Megabyte: Predicting million-
byte sequences with multiscale transformers. Advances
in Neural Information Processing Systems, 36:78808–
78823.

Zhang, B. and Sennrich, R. (2019). Root mean square
layer normalization. Advances in Neural Information
Processing Systems, 32.

Zucchet, N., Kobayashi, S., Akram, Y., Oswald, J. V.,
Larcher, M., Steger, A., and Sacramento, J. (2024). Gated
recurrent neural networks discover attention.

Zucchet, N., Meier, R., Schug, S., Mujika, A., and Sacra-
mento, J. (2023). Online learning of long-range dependen-
cies. In Thirty-seventh Conference on Neural Information
Processing Systems.

Zucchet, N. and Orvieto, A. (2024). Recurrent neural net-
works: vanishing and exploding gradients are not the end
of the story. In The Thirty-eighth Annual Conference on
Neural Information Processing Systems.

9

Multi-stream Sequence Learning

A. Background on Recurrent Learning
Let us consider a recurrent module with dynamics that can be written as ht = f(ht−1,xt,θ), where ht ∈ Rn is the
hidden-state vector, xt ∈ Rd is the input vector, and θ is a set of learnable parameters of the recurrence function, containing
the input-weight and recurrence-weight matrices. The output is given by yt = g(ht,xt,ϕ), where yt ∈ Rm, and ϕ is a
set of learnable parameters of the output function. To learn the parameters, we need to compute ∇LW , ∀W ∈ θ and
∇LV , ∀V ∈ ϕ. The gradient of the loss with respect to W , treating it as a flattened vector, is given by

∂L(yt, ŷt)

∂W
=

(
dht

dW

)⊤
∂L
∂ht

, ∀W ∈ θ. (2)

A.1. Backpropagation Through Time (BPTT)

Note that to obtain dht

dW , we need to consider both the direct and indirect effects of changing W on ht

since there are direct and indirect gradient paths at each time step. Since we can unroll the function ht =
f(f(f(. . . f(h1,x0,θ), . . .xt−2,θ),xt−1,θ),xt,θ), we write the gradient dht

dW as

dht

dW
=

∂ht

∂W
+

∂ht

∂ht−1

dht−1

dW
, ∀W ∈ θ. (3)

We need to keep unrolling further because W again affects ht−1 through two pathways. Let us define It
.
= dht

dW , Jt
.
= ∂ht

∂W ,
and Kt

.
= ∂ht

∂ht−1
. We can write the recursive relationship as follows:

It = Jt +KtIt−1

= Jt +KtJt−1 +KtKt−1It−2

= Jt +KtJt−1 +KtKt−1Jt−2 +KtKt−1KtIt−3

=

t∑
j=1

 t∏
i=j+1

Ki

Jj +

(
t∏

i=1

Kt

)
J0

=

t∑
j=1

 t∏
i=j+1

Ki

Jj . (4)

assuming that that J0 = 0. This relationship is utilized in BPTT by efficiently calculating the summation backward.
Calculating this requires storing all previous inputs and states xi,hi,∀{1, . . . , t}. In other words, we need to backpropagate
the gradient in time, starting from the current time step and going all the way back to the first time step. The computational
and memory resource grows linearly with the number of steps because we need to go from the current step to the beginning
of time for each update.

A.2. Truncated-Backpropagation Through Time (T-BPTT)

We can simplify the intensive computation needed by BPTT if we truncate the backpropagation process. BPTT starts from
time step t and goes all the way to time step 1. Instead, we can go back in time up to time step t− T , where t > T . This
create the Truncated-Backpropagation Through Time (T-BPTT) update (Williams and Zipser 1989):

dht

dW
≈

t∑
j=t−T

 t∏
i=j+1

∂hi

∂hi−1

 ∂hj

∂W
,∀t > T. (5)

T-BPTT needs only to store last T + 1 inputs and states to approximate the gradient. Truncating the gradient drops any
interactions beyond the truncation length, which may make the learner myopic.

A.3. Real-time Recurrent Learning (RTRL)

Instead of relying on the rolled-out equation (Eq. 4 or Eq. 5), we can instead compute It = dht

dW , known also as the sensitivity
matrix, incrementally using its recursive relationship. This process is known as Real-Time Recurrent Learning (RTRL)

10

Multi-stream Sequence Learning

(Williams and Peng 1990) given by

It = Jt +KtIt−1. (6)

The quantities Jt and Kt use the current input, and they can be computed easily without BPTT but requiring to store It−1 to
compute It in an incremental fashion. RTRL computes the true gradient without any approximation in contrast to T-BPTT,
given that the parameters are fixed.

A.4. Parallelization with Recurrent Learning

The T-BPTT algorithm is highly parallelizable if the truncation length is set to the update-segment length and the scan
operation is performed on the input sequence to produce the outputs in parallel. This is what powers modern recurrent-based
architectures such as Mamba (Gu and Dao 2024) and Hawk (De et al. 2024). In the IID paradigm, the data streams are split
into fixed-length segments, and learning updates are done based on multiple segments are chosen randomly from the dataset
in batches. This learning procedure makes recurrent-based networks compute the outputs in parallel, which is identical to
the procedure done with the transformer architecture (Vaswani et al. 2017).

Unlike transformer, parallelization in recurrent-based networks is challenging because they have states evolving sequentially
over time. Luckily, parallel scan (Blelloch 1990) can be used to parallelize diagonal linear recurrent-based models, which
reduces the time complexity of training from O(L) to O(logL), where L is the segment length, also known as the sequence
length. We provide a primer on parallel scan in Appendix J and a primer on linear recurrent units in Appendix I.

Parallelizing RTRL is challenging because the computational cost of using parallel scan with the sensitivity equations is
intractable, namely O(n3 logL) for sensitivity matrices such as S ∈ Rn×n. Thus, we only consider parallelization over the
batch dimension and limit the segment length to 1.

B. The RTRL Algorithm under multi-stream sequence learning

Algorithm 1 RTRL with multi-stream sequence learning
1: Require: Number of streams B
2: Require: Recurrent function fθ with parameters θ
3: Require: Output function gϕ with parameters ϕ
4: Require: Data streams Dk,∀k ∈ {1, . . . , B}, step size α
5: Initialize: θ,ϕ, hidden state h0 ← 0
6: Initialize: Sensitivity matrix IW

0 ← 0,∀W ∈ θ
7: for t = 1 . . .∞ do
8: δV ← 0,∀V ∈ ϕ, δW ← 0,∀V ∈ θ
9: for k = 1 . . . B do

10: xt,yt,reset← Dk,t

11: if reset then
12: ht−1 ← 0
13: end if
14: ht ← fθ(ht−1,xt)
15: Update sensitivity: IW

t ← ∂ht

∂W + ∂ht

∂ht−1
IW
t−1, ∀W ∈ θ

16: ŷt ← gϕ(ht,xt)
17: Compute Lt = L(ŷt,yt)

18: δV ← δV + 1
B

(
∂ŷt

∂V

)⊤
∂Lt

∂ŷt
, ∀V ∈ ϕ

19: δW ← δW + 1
B

(
IW
t

)⊤ (∂ŷt

∂ht

)⊤
∂Lt

∂ŷt
, ∀W ∈ θ

20: end for
21: W ←W − α δW , ∀W ∈ θ
22: V ← V − α δV , ∀V ∈ ϕ
23: end for

11

Multi-stream Sequence Learning

C. The T-BPTT Algorithm under multi-stream sequence learning

Algorithm 2 Truncated BPTT with multi-stream sequence learning
1: Require: Number of Streams B, Learning update stride T
2: Require: Recurrent function fθ with parameters θ
3: Require: Output function gϕ with parameters ϕ
4: Require: Data streams Dk,∀k ∈ {1, . . . , B}, step size α
5: Initialize: θ,ϕ, hidden state h0 ← 0
6: for tu = 1 . . .∞ do
7: for k = 1 . . . B do
8: δW ← 0,∀W ∈ θ, δV ← 0,∀V ∈ ϕ, δh ← 0
9: Bk ← ∅

10: for t = 1 upto T do
11: xt,yt,reset← Dk

12: if reset then
13: ht−1 ← 0
14: end if
15: ht ← fθ(ht−1,xt)
16: ŷt ← gϕ(ht,xt)
17: Compute Lt = L(ŷt,yt)

18: δV ← δV +
(

∂ŷt

∂V

)⊤
∂Lt

∂ŷt
, V ∈ ϕ

19: δh ← δh +
(

∂ŷt

∂ht

)⊤
∂Lt

∂ŷt

20: Append (ht−1,xt,ht) to Bk
21: end for
22: for i = t downto 1 do
23: Retrieve (hi−1,xi,hi) from Bk
24: δW ← δW +

(
∂hi

∂W

)⊤
δh·, W ∈ θ

25: δh ←
(

∂hi

∂hi−1

)⊤
δh

26: end for
27: end for
28: W ←W − 1

BT α δW , W ∈ θ
29: V ← V − 1

BT α δV , V ∈ ϕ
30: end for

D. Related Works
Streaming learning. Standard deep learning methods often assume access to the entire dataset; however, real-world
applications require continuous data streams. There are a few supervised deep learning methods that work under the
streaming learning setting (Hayes et al. 2019, Saran et al. 2023, Hayes and Kanan 2022), and additional efforts have
adapted reinforcement learning (Elsayed et al. 2024, Vasan et al. 2024), language models (Goyal et al. 2009), and video
predictors (Carreira et al. 2024, Qian et al. 2024, Han et al. 2025) to work under this setting. In our paper, we consider the
multi-stream setting where there are more than one stream to process in parallel. Future work is needed to make Memora
work with a single stream and a single update stride.

Attention-free models. To avoid the quadratic training cost and linear inference cost of attention on long histories,
recent methods employ linear recurrence for fixed-size state memory, achieving linear training cost and constant inference
cost. Mamba1 (Gu and Dao 2024), an approach that combines state-space approach (e.g., Gu et al. 2021) with temporal
convolution (Bai et al. 2018), was the first method to be used in large-scale systems (Lieber et al. 2024) followed by
Mamba2 (Dao and Gu 2024) and Hawk (De et al. 2024) that was based on the LRU recurrent unit (Orvieto et al. 2023).
These architectures, however, still use IID chunking. In contrast, Memora is purely recurrent, preserving stream continuity
to rival Transformers on long-sequence tasks.

12

Multi-stream Sequence Learning

Byte-level data modeling. Byte-level sequence modeling offers a flexible, domain-agnostic approach across text, audio,
and genomics by operating directly on raw bytes, removing the need for preprocessing or tokenization. This can improve
generalization and robustness to morphological variations like typos or character-level reasoning (Xue et al. 2022). However,
it also introduces challenges due to longer, noisier, and less structured sequences. While recent works have improved
byte-level modeling through architectural innovations (Wang et al. 2024a, Yu et al. 2023), many still rely on static chunking
and overlook the temporal dynamics of streaming data. In contrast, our approach enhances byte-level modeling by processing
streams in their natural order, improving memory and temporal reasoning capabilities critical for long, unsegmented byte
sequences.

E. Complex-valued Gated Linear Recurrent Unit (Complex GLRU)
Here, we describe the complex-valued GLRU unit. We replace our real-valued recurrent gating and input gating with their
complex counterparts.

ht = λ(xt) ◦ ht−1 + γt ◦ g(xt) ◦ (Bxt)

yt = ℜ[Cht],

where λ(xt)
.
= r(xt) ◦ eiθt , γt =

√
1− |λt|, g(xt) = Gxt, and r(xt) = e−ceν◦σ(Rxt). The vector θt ∈ Rn contains the

phase information of the complex-valued system. We need to learn complex-valued matrices, B ∈ Cn×d, G ∈ Cn×d, and
C ∈ Cm×n. Note that R ∈ Rn×n and ν ∈ Rn are still real-valued. We have to use yt = ℜ[Cht] instead of yt = ℜ[ht]
to have no gradient bias. We refer the reader to (Elelimy et al. 2024) and (Orvieto et al. 2023) for more discussion about
gradient bias. We implement complex-valued GLRU using the cosine representation with real-valued systems, and we refer
the reader to Appendix I.4 for the details on how to convert the system from exponential representation form to cosine
representation.

F. RTRL mode of GLRU and RG-LRU recurrent units
Here, we derive the RTRL sensitivity update equations for GLRU and RG-LRU units. We show that in both, their sensitivity
tensors are diagonal and can be stored and computed efficiently.

F.1. GLRU RTRL Sensitivity Equations

The recurrence equation of GLRU is given by

ht = r(xt) ◦ ht−1 + γt ◦ g(xt) ◦ (Bxt)

yt = ht

where γt =
√

1− r2t , g(xt) = Gxt, and r(xt) = e−ceν◦σ(Rxt). Now, we can derive the the sensitivity update equation
for the vector ν using index notations as follows:

Sν
t,i,j =

∂ht,i

∂νj
=

∂

∂νj

(
riht−1,i + γigi

(∑
m

Bi,mxt,m

))

=
∂ri
∂νj

ht−1,i + riS
ν
t−1,i,j +

∂γi
∂νj

gi

(∑
m

Bi,mxt,m

)

= −cδi,jeνiσ

(∑
k

Ri,mxt,m

)
riht−1,i + riS

ν
t−1,i,j

+ cδi,j
r2i
γi

eνiσ

(∑
k

Ri,mxt,m

)
gi

(∑
m

Bi,mxt,m

)

Note how the structure coming from δi,j forces all off-diagonal elements where i ̸= j to be zero. Hence, we can store the
sensitivity elements in a vector instead of a matrix.

13

Multi-stream Sequence Learning

We can also write the recursive relationship using the reduced sensitivity for ν as follows:

Sν
t =

∂

∂ν
(r(xt) ◦ ht−1 + γ ◦ g(xt) ◦ (Bxt))

= r(xt) ◦ Sν
t−1 − ceν ◦ σ(Rxt) ◦ r(xt) ◦ ht−1 + c

r(xt)
2

γ
◦ eν ◦ σ(Rxt) ◦ g(xt) ◦ (Bxt)

where [Sν
t]i

.
=
[
Sν
t,i,j

]
i,j=1

.

Next, we derive the sensitivity equation for the matrix B as follows:

SG
t,i,j,k =

∂ht,i

∂Gj,k
=

∂

∂Gj,k

(
riht−1,i + γibi

∑
m

Gi,mxt,m

)
= riS

G
t−1,i,j,kδi,j + γibiδi,jxt,k,

where we use bi =
∑

k Bi,kxt,k. Note how the structure coming from δi,j forces all off-diagonal elements where i ̸= j
to be zero. Hence, we can store the sensitivity elements in a matrix instead of a 3-tensor. We can also write the recursive
relationship using the reduced sensitivity objects as follows:

SG
t =

∂

∂G
(r(xt) ◦ ht−1 + γ ◦ g(xt) ◦ (Gxt))

= Diag(r(xt)) ◦ SG
t−1 + (γ ◦Bxt)x

⊤
t ,

where
[
SG
t

]
i,j

.
=
[
SG
t,i,j,k

]
i,j,k=1

.

Next, we derive the sensitivity equation for the matrix B as follows:

SB
t,i,j,k =

∂ht,i

∂Bj,k
=

∂

∂Bj,k

(
riht−1,i + γigi

∑
m

Bi,mxt,m

)
= riS

B
t−1,i,j,kδi,j + γigi

∑
m

δi,jδk,mxt,m

= riS
B
t−1,i,j,kδi,j + γigiδi,jxt,k.

Note how the structure coming from δi,j forces all off-diagonal elements where i ̸= j to be zero. Hence, we can store
the sensitivity elements in a matrix instead of a 3-tensor. We can also write the recursive relationship using the reduced
sensitivity objects as follows:

SB
t =

∂

∂B
(r(xt) ◦ ht−1 + γ ◦ g(xt) ◦ (Bxt))

= Diag(r(xt)) ◦ SB
t−1 + (γ ◦ g(xt))x

⊤
t ,

where
[
SB
t

]
i,j

.
=
[
SB
t,i,j,k

]
i,j,k=1

.

Finally, we derive the sensitivity equation for the matrix R as follows:

SR
t,i,j,k =

∂ht,i

∂Rj,k
=

∂

∂Rj,k

(
riht−1,i + γigi

∑
m

Bi,mxt,m

)

= δi,jriS
R
t−1,i,j +

∂ri
∂Rj,k

ht−1,i

= δi,jriS
R
t−1,i,j − cδi,jrie

νiσ

(∑
k

Ri,mxt,m

)(
1− σ′

(∑
k

Ri,mxt,m

))
ht−1,ixt,k

− cδi,jrie
νiσ

(∑
k

Ri,mxt,m

)(
1− σ′

(∑
k

Ri,mxt,m

))
ri
γi
gi

(∑
m

Bi,mxt,m

)
xt,k

14

Multi-stream Sequence Learning

= δi,jriS
R
t−1,i,j − δi,jdi

(
ht−1,i −

ri
γi
gi
∑
m

Bi,mxt,m

)
xt,k,

where di = crie
νiσ (

∑
k Ri,mxt,m) (1− σ′ (

∑
k Ri,mxt,m)). Note how the structure coming from δi,j forces all off-

diagonal elements where i ̸= j to be zero. Hence, we can store the sensitivity elements in a matrix instead of a 3-tensor. We
can also write the recursive relationship using the reduced sensitivity objects as follows:

SR
t =

∂

∂R
(r(xt) ◦ ht−1 + γ ◦ g(xt) ◦ (Bxt))

= Diag(r(xt))S
R
r +

(
d ◦
(
ht−1 −

r(xt)

γ
◦ g(xt) ◦ (Bxt)

))
x⊤
t .

where d = cr(xt) ◦ eν ◦ σ(Rxt) ◦ (1− σ′(Rxt)) and
[
SR
t

]
i,j

.
=
[
SR
t,i,j,k

]
i,j,k=1

.

F.2. RG-LRU RTRL Sensitivity Equations

The RG-LRU unit was introduced by (De et al. 2024) and is typically used with T-BPTT. Here, we derive its RTRL mode.
We start by writing the RG-LRU unit in the same notation we use in this paper. The RG-LRU unit is given by

ht = r(xt) ◦ ht−1 + γt ◦ g(xt) ◦ xt

yt = ht

where γt =
√
1− r2t , g(xt) = σ(Gxt), r(xt) = e−c log(1+eν)◦σ(Rxt)

The sensitivity update equation for the vector ν are given by:

Sν
t,i,j =

∂ht,i

∂νj
=

∂

∂νj

(
riht−1,i + γigi

(∑
m

Bi,mxt,m

))

=
∂ri
∂νj

ht−1,i + riS
ν
t−1,i,j +

∂γi
∂νj

gi

(∑
m

Bi,mxt,m

)

= −cδi,jσ(νi)σ

(∑
k

Ri,mxt,m

)
riht−1,i + riS

ν
t−1,i,j

+ cδi,j
r2i
γi

σ(νi)σ

(∑
k

Ri,mxt,m

)
gixt,i

Note how the structure coming from δi,j forces all off-diagonal elements where i ̸= j to be zero. Hence, we can store the
sensitivity elements in a vector instead of a matrix.

We can also write the recursive relationship using the reduced sensitivity for ν as follows:

Sν
t =

∂

∂ν
(r(xt) ◦ ht−1 + γ ◦ g(xt) ◦ xt)

= r(xt) ◦ Sν
t−1 − cσ(ν) ◦ σ(Rxt) ◦ r(xt) ◦ ht−1 + c

r(xt)
2

γ
◦ σ(ν) ◦ σ(Rxt) ◦ g(xt) ◦ xt,

where [Sν
t]i

.
=
[
Sν
t,i,j

]
i,j=1

.

Next, we derive the sensitivity equation for the matrix G as follows:

SG
t,i,j,k =

∂ht,i

∂Gj,k
=

∂

∂Gj,k

(
riht−1,i + γixi

∑
m

Gi,mxt,m

)
= riS

G
t−1,i,j,kδi,j + γixiδi,jxt,k,

15

Multi-stream Sequence Learning

Note how the structure coming from δi,j forces all off-diagonal elements where i ̸= j to be zero. Hence, we can store
the sensitivity elements in a matrix instead of a 3-tensor. We can also write the recursive relationship using the reduced
sensitivity objects as follows:

SG
t =

∂

∂G
(r(xt) ◦ ht−1 + γ ◦ g(xt) ◦ xt)

= Diag(r(xt)) ◦ SG
t−1 + (γ ◦ xt)x

⊤
t .

where
[
SG
t

]
i,j

.
=
[
SG
t,i,j,k

]
i,j,k=1

.

Finally, we derive the sensitivity equation for the matrix R as follows:

SR
t,i,j,k =

∂ht,i

∂Rj,k
=

∂

∂Rj,k
(riht−1,i + γigixt,i)

= δi,jriS
R
t−1,i,j +

∂ri
∂Rj,k

ht−1,i

= δi,jriS
R
t−1,i,j − cδi,jri log(1 + eνi)σ

(∑
k

Ri,mxt,m

)(
1− σ′

(∑
k

Ri,mxt,m

))
ht−1,ixt,k

− cδi,jri log(1 + eνi)σ

(∑
k

Ri,mxt,m

)(
1− σ′

(∑
k

Ri,mxt,m

))
ri
γi
gixt,ixt,k

= δi,jriS
R
t−1,i,j − δi,jdi

(
ht−1,i −

ri
γi
gixt,i

)
xt,k,

where di = cri log(1 + eνi)σ (
∑

k Ri,mxt,m) (1− σ′ (
∑

k Ri,mxt,m)). Note how the structure coming from δi,j forces all
off-diagonal elements where i ̸= j to be zero. Hence, we can store the sensitivity elements in a matrix instead of a 3-tensor.
We can also write the recursive relationship using the reduced sensitivity objects as follows:

SR
t =

∂

∂R
(r(xt) ◦ ht−1 + γ ◦ g(xt) ◦ (Bxt))

= Diag(r(xt))S
R
r +

(
d ◦
(
ht−1 −

r(xt)

γ
◦ g(xt) ◦ xt

))
x⊤
t .

where d = cr(xt) ◦ log(1 + eν) ◦ σ(Rxt) ◦ (1− σ′(Rxt)) and
[
SR
t

]
i,j

.
=
[
SR
t,i,j,k

]
i,j,k=1

.

G. Additionl experiment: Considering GLRU alternatives

0 5 10 15 20 25

Iteration (x1000)

0.35

0.40

0.45

0.50

0.55

0.60

0.65

V
al

id
at

io
n

L
os

s

Complex LRU

Complex LRU Restricted

Complex GLRU

Complex GLRU Restricted

MinGRU

Real LRU

Real GLRU

Figure 7. Performance comparison of Memora with dif-
ferent recurrent units.

Here, we conduct a study to assess the importance of our GLRU unit
on a language modeling task using the TinyStories dataset with mod-
els of approximately 50M parameters. Since GLRU is a real-valued
recurrent unit, we introduce a complex-valued variant by incorporat-
ing complex-valued gating in the recurrence, referred to as complex
GLRU. We also compare against complex LRU (Orvieto et al. 2023)
and its real-valued counterpart, real LRU, as well as MinGRU (Feng
et al. 2024). We also evaluate restricted variants of complex GLRU
and complex LRU, where the complex values are constrained as con-
jugate pairs (see Appendix E and I.5 for more details).

Figure 7 presents validation performance across all baselines. Our
model, real GLRU, consistently outperforms both gated (e.g., Min-
GRU) and non-gated (e.g., LRU) alternatives. We also find that con-
straining complex values to be conjugate pairs offers no performance benefit. Our findings align with observations by (Gu
and Dao 2024), where real-valued gated units surpass complex-valued ones on language tasks, further validating our results
in this setting.

16

Multi-stream Sequence Learning

H. Experimental Details
We use Python and Pytorch (Paszke et al. 2019) to implement our algorithms using automatic differentiation to backpropagate
gradients with T-BPTT and RTRL. Additionally, we used the parallel scan implementation by (Kyrylov 2024).

We used LeCun initialization (LeCun et al. 2012) to initialize all weights except for the weights used for contracting
the input (see Figure 2), which we initialize it Wi,j ∼ N (0, 1/

√
2× E ×N), where N is the number of layers in the

model. Additionally, we use the ring initialization (Orvieto et al. 2023) in both RG-LRU and GLRU, using rmin = 0.9,
rmax = 0.999, which is given as: νinit ← log(−0.5 log(u(r2max − r2min) + r2min), where ui ∼ U [0, 1],∀i.

In Figure 3, we list the common training configurations we used in all experiments except for the streaming learning
experiment where we use RMSProp with β2 = 0.999 and no weight decay. We then describe the specific details for each
experiment in the next sections.

Configuration Value

Optimizer AdamW
Optimizer parameters β1 = 0.9, β2 = 0.95

Weight decay 0.1
Bias No

Dropout No
Gradient Clipping 1.0

Floating-point precision Bfloat16
GPU used NVIDIA L40

Automatic mixed precision Yes
Embedding Weight Tying (Press and Wolf 2016) Yes

Table 3. The common training configuration shared in all experiments and baselines.

H.1. Selective Copying

We trained all models for 50, 000 iterations using a batch size of 64 and a constant learning rate of 3× 10−4, evaluating
performance on 5, 000 randomly generated examples. Each model consists of two layers. The Memora variants—GLRU,
MinGRU, and LRU—share the same configuration: a model dimension of 64, state dimension of 256, and a gated MLP with
an expansion ratio of 3. Hawk uses a similar setup to Memora, with the addition of a convolution kernel size of 4. Llama2,
by contrast, is configured with a larger model dimension of 192, three attention heads, and an MLP expansion ratio of 4.
Mamba also adopts a model dimension of 192 but differs with a state dimension of 128, a head dimension of 64, an MLP
expansion ratio of 2, and a convolution kernel size of 4. We report the average of 5 independent runs and report the standard
error.

H.2. Byte-level language modeling with TinyStories

We use an effective batch size of BT = 131,072 and vary the sequence length in the IID setting or the update stride
in multi-stream setting with values T ∈ {2, 8, 32, 128, 512, 1024}. All models are trained for 2 epochs using a constant
learning rate of 3 × 10−4, and are configured to have approximately 60 million parameters. The Mamba model uses a
model dimension of 768, a state dimension of 128, a head dimension of 128, 16 layers, a convolutional kernel size of 4, and
an MLP expansion ratio of 2, totaling 60,294,464 parameters. The Hawk model is configured with a model dimension of
512, a state dimension of 768, 14 layers, a gated MLP expansion ratio of 3, and a convolutional kernel size of 4, totaling
66, 259, 968 parameters. The Memora model uses a model dimension of 512, a state dimension of 768, 14 layers, and an
MLP expansion ratio of 3, totaling 60,711,424 parameters. Finally, the Llama2 baseline has a model dimension of 512, 8
attention heads, 18 layers, and an MLP expansion ratio of 4, totaling 61,491,712 parameters. We report the average of 3
runs (the error bars are very small so we do not display it to reduce clutter and enhance visibility).

H.3. DNA modeling

We use an effective batch size of BT = 524, 288 with a batch size of B = 512 and trained for 4 epochs. We used a learning
rate warm-up for 10% of the total iterations followed by cosine annealing with a minimum of 10−5 and a maximum of 10−3.

17

Multi-stream Sequence Learning

We compare Memora, Mamba, Hawk, and Llama2, each of which use 5 different model sizes in each method (sizes with
prefixes S0, S1, S2, S3, S4). We list the model configurations in Table 4.

In Mamba2 and Hawk, the temporal convolutional kernel size is 4. In Hawk and Memora, we use MLP expansion factor of
3 in the gated MLP blocks (by setting E = 3×M in Figure 2). In Mamba2, the expansion factor is set to 2. In Llama2, the
MlP expansion factor is set to 4. We report the average of 3 runs (the error bars are very small to be visible in the figure).

H.4. Byte-level language modeling with FineWebEdu

We use an effective batch size of BT = 262, 144 with a batch size of B = 512 and trained for 100, 000 iterations. We
used a learning rate warm-up for 10% of the total iterations followed by cosine annealing with a minimum of 10−5 and a
maximum of 10−3. We compare Memora, Mamba, Hawk, and Llama2, each of which use 5 different model sizes in each
method (sizes with prefixes S2, S3, S4, S5). We list the model configurations in Table 4. We use the same other model
parameters mentioned in the previous section. We report the average of 2 runs.

H.5. Learning from one sample at a time with RTRL and 1-step BPTT

For both Memora and Hawk, we use a model dimension of 384, a state dimension of 512, six layers, and a gated
MLP expansion factor of 3. Training is conducted over 1024 parallel data streams with a single update stride for two
epochs. We employ a constant learning rate and tune each method by selecting the best learning rate from the set
{3× 10−4, 3× 10−5, 3× 10−6, 3× 10−7, 3× 10−8}. The optimal learning rate was found to be 3× 10−5 for Memora
(both RTRL and 1-BPTT variants) and 3× 10−7 for Hawk (for both RTRL and 1-BPTT). We report the average of 3 runs.

H.6. Memora with GLRU alternatives

We use an effective batch size of BT = 131,072, with a batch size of B = 256. We train for 2 epochs using a constant
learning rate of 3× 10−4. We use a model dimension of 512, a state dimension of 768, 12 layers, and an MLP expansion
factor of 3. We report the average of 3 runs.

H.7. Memora with streaming learning

We use an effective batch size of BT = T = B = 1 and train for 15M iterations with a constant learning rate of 3×10−5 for
RTRL and 3× 10−6 for 1-step BPTT which was selected based on searching in {3× 10−4, 3× 10−5, 3× 10−6, 3× 10−7}.
We used a model dimension of 512, a state dimension of 768, a gated MLP expansion factor of 3, and 6 Memora layers. We
used RMSProp with β2 = 0.999 with no weight decay.

I. Primer on Linear Recurrent Units
The learner usually observes the environment partially; thus, it is required to construct its learner state, some internal
representation of what the state of the environment might be. We denote the state construction function f : Rn × Rd → Rn

given by ht = f(ht−1,xt), where ht ∈ Rn and xt ∈ Rd are the learner state and observation at time step t. The learner
state is considered the learner’s best ability to construct a compact history of the past. The output construction function
g : Rd × Rn → Rm maps the learner state into some usable output yt ∈ Rm for prediction and is given by yt = g(ht,xt).
The evolution of the system is fully described using the following:

ht = f(ht−1,xt),

yt = g(ht,xt).

In the simple case of a linear system, the equations can be formulated as

ht = Aht−1 +Bxt

yt = Cht +Dxt,

where A ∈ Rn×n, B ∈ Rn×d, C ∈ Rn×m, and D ∈ Rd×m.

We can write the square matrix A using its eigenvalue decomposition as A = P−1ΛP , where P ∈ Cn×n contains the
eigenvectors and Λ ∈ Cn×n is a diagonal matrix containing the corresponding eigenvalues. (Orvieto et al. 2023) showed

18

Multi-stream Sequence Learning

Model Params Model Dim State Dim Heads Head Dim Layers (N)

Memora-S5 111,114,240 768 1024 – – 12
Memora-S4 52,057,088 512 768 – – 12
Memora-S3 13,966,848 384 512 – – 6
Memora-S2 6,495,232 256 384 – – 6
Memora-S1 3,470,400 192 256 – – 6
Memora-S0 1,625,600 128 192 – – 6

Hawk-S5 117,455,616 768 1024 – – 12
Hawk-S4 56,813,056 512 768 – – 12
Hawk-S3 14,765,952 384 512 – – 6
Hawk-S2 7,094,528 256 384 – – 6
Hawk-S1 3,673,344 192 256 – – 6
Hawk-S0 1,777,792 128 192 – – 6

Llama2-S5 85,150,464 768 – 12 – 12
Llama2-S4 41,038,336 512 – 8 – 12
Llama2-S3 10,720,128 384 – 6 – 6
Llama2-S2 5,116,928 256 – 4 – 6
Llama2-S1 2,658,048 192 – 4 – 6
Llama2-S0 1,575,424 128 – 4 – 6

Mamba2-S5 79,475,840 1024 128 – 64 12
Mamba2-S4 45,381,216 768 128 – 64 12
Mamba2-S3 20,772,928 512 128 – 64 12
Mamba2-S2 6,062,424 384 128 – 64 6
Mamba2-S1 2,858,384 256 128 – 64 6
Mamba2-S0 1,625,600 192 128 – 64 6

Table 4. Model configurations of Memora, Hawk, Llama2, and Mamba2 models used in the DNA modeling and de-duplicated FineWebEdu
experiments

that we can rewrite the linear recurrent equation as:

ht = P−1ΛPht−1 +Bxt =⇒ Pht = ΛPht−1 + PBxt.

By defining h̃
.
= Ph and B̃

.
= PB, we can write the new recurrence equation as follows:

h̃t = Λh̃t−1 + B̃xt.

Since Λ is a diagonal matrix, we can utilize its diagonal λ .
= diag(Λ). The recurrent equation can be further simplified as:

h̃t = λ ◦ h̃t−1 + B̃xt (7)

yt = ℜ[Ch̃t] +Dxt

which is referred to as an independent recurrent module (Zucchet et al. 2023) because each element in the new state does
not depend on any interaction with the other elements. Some instantiation of independent recurrent modules with different
details and assumptions are LRU (Orvieto et al. 2023), Online LRU (Zucchet et al. 2023), eLSTM (Irie et al. 2024), RTU
(Elelimy et al. 2024), Hawk (De et al. 2024), HGRN (Qin et al. 2024), MinGRU/MinLSTM (Feng et al. 2024), and
columnar networks (Javed et al. 2023). It is worth mentioning that, in our analysis, we have not made any assumptions so far
other than the linearity of f and g. Thus, the equation with a complex-valued diagonal recurrence matrix is representationally
equivalent to the original equation with a real-valued dense recurrence matrix.

I.1. Optimization issues with recurrent learning

One issue with the product term
∏t

i=j+1
∂hi

∂hi−1
in Eq. 4 and Eq. 5 is that it can vanish if the magnitude of the eigenvalues

are less than 1 and explode if they are greater than 1. T-BPTT is less sensitive to this issue than BPTT. Further efforts
include gating mechanisms to prevent vanishing or exploding gradient from excessive multiplication like LSTM (Hochreiter
and Schmidhuber 1997) and GRU (Cho 2014). Other efforts also restricted the eigenvalues of the product matrix to always

19

Multi-stream Sequence Learning

be close to but less than 1 (e.g., Arjovsky et al. 2016). Recently, it was noticed that if the recurrent unit is restricted to be
linear, controlling its eigenvalues becomes much easier, and thus optimization becomes more efficient (Zucchet and Orvieto
2024), which is what powers modern large-scale recurrent learning methods (e.g., Gu and Dao 2024, De et al. 2024, Dao
and Gu 2024).

I.2. Necessity of complex numbers learning

The nature of input signals can vary from discrete to continuous based on the application. For example, they can be discrete,
like language text, or continuous, like audio. Empirically, prior research (Gu and Dao 2024) showed that the recurrent
system benefits from having complex-valued states in cases where the input signal is continuous and with little to no gain in
the case of the discrete input (e.g., language). Thus, the recent recurrent systems with language models usually assume
real-valued state ht ∈ Rn,∀t. In this primer, we focus on the general case where the state is complex-valued.

I.3. Stability of Recurrent Learning

In Eq. 7, any entry in h̃t can increase without bound if its corresponding eigenvalue is greater than or equal to 1, which
makes the system unstable. To maintain stability, λ entries are restricted to have a magnitude less than 1. If rectangular
representation, a+ ib, is used, then

√
a2 + b2 < 1 maintains stability. If trigonometric representation, r(cos(θ) + i sin(θ)),

or exponential representation, reiθ, are used, then r < 1 maintains stability (Zucchet and Orvieto 2024, Elelimy et al.
2024). Further, if an entry i in λ has a magnitude close to one, |λi| ≈ 1, this might cause instability if the input contribution,
B̃,xt is large (Orvieto et al. 2023). Thus, we can dampen the contribution of the input proportionally to the eigenvalue
magnitude via multiplication by

√
1− |λ|. The resultant recurrence equation becomes h̃t = λ ◦ h̃t−1 + γ ◦ B̃xt, where

γ =
√
1− |λ|. In the following, we skip these stability modifications to have simpler derivations.

I.4. Separating complex into real and imaginary components

The linear recurrent unit in Eq. 7 can be implemented and used with automatic differentiation libraries as shown in LRU
(Orvieto et al. 2023) and online LRU (Zucchet et al. 2023). However, automatic differentiation with complex numbers
in existing software libraries is tricky and might give unexpected results (Elelimy et al. 2024) due to lack of adoption
and support. Thus, it is better to separate the complex numbers into their real and imaginary components so that we have
real equations and imaginary equations. The values of both components are real-valued, and the automatic differentiation
libraries can deal with them more easily.

Let us separate the complex recurrence equation into two equations: real and imaginary. We define h̃t = h̃R
t + ih̃I

t , where
h̃R
t is the real part of the state vector and h̃I

t is the imaginary part. We do the same trick for λ and B̃: λ = λR + iλI and
B̃ = B̃R + iB̃I

The recurrence equation written as:

h̃R
t + ih̃I

t = (λR + iλI) ◦ (h̃R
t−1 + ih̃I

t−1) + (B̃R + iB̃I)xt

= λR ◦ h̃R
t−1 + iλR ◦ h̃I

t−1 + iλI ◦ h̃R
t−1 − λI ◦ h̃I

t−1 + B̃Rxt + iB̃Ixt

Let us separate the real components from the imaginary ones:

h̃R
t = λR ◦ h̃R

t−1 − λI ◦ h̃I
t−1 + B̃Rxt

ih̃I
t = iλR ◦ h̃I

t−1 + iλI ◦ h̃R
t−1 + iB̃Ixt

Note how we can drop i from both sides of the imaginary equations and retain a real-valued equation.

The recurrent state of such a separated system can be seen as h̃combined
t = [h̃R

t ; h̃
I
t] ∈ R2n. One advantage of such a view is

that we no longer need to learn a complex-valued C matrix. The output yt is given by ycombined
t = h̃combined

t Ccombined, where
Ccombined ∈ Rm×2n. This is representationally equivalent to learning a complex-valued state h̃t ∈ Rn and C ∈ Cm×n

where the output is given as yt = ℜ[Ch̃t]. This is because ycombined =

[
h̃R
t

h̃I
t

] [
C1 C2

]
= C1h̃

R
t + C2h̃

I
t , where

C1,C2 ∈ Rm×n. On the other hand, yt = ℜ[Ch̃t] = ℜ[(CR + iCI)(h̃
R
t + ih̃I

t)] = CRh̃
R
t −CI h̃

I
t . If we set CR = C1

and CI = −C2, then we get yt = ycombined
t .

20

Multi-stream Sequence Learning

The cosine representation is better than the rectangular representation for learning (Elelimy et al. 2024) since we can directly
restrict the magnitude of Λ eigenvalues. Utilizing the cosine representation of complex numbers: a+ib = r cos(θ)+i sin(θ),
we can write the two equations differently. We define λR = r cos(θ), λI = r sin(θ). The resultant recurrence equations
are given by:

h̃R
t = r ◦ cos(θ) ◦ h̃R

t−1 − r ◦ sin(θ) ◦ h̃I
t−1 + B̃Rxt,

h̃I
t = r ◦ cos(θ) ◦ h̃I

t−1 + r ◦ sin(θ) ◦ h̃R
t−1 + B̃Ixt,

which recovers RTU unit (Elelimy et al. 2024).

I.5. Enforcing Conjugate Pairs Learning

Since the recurrent unit matrices are real, A ∈ Rn×n, B ∈ Rn×d, and C ∈ Rn×m, then Λ must contain complex conjugate
pairs. It might be beneficial to enforce conjugate pairs in the learning process. We tie the weights of Λ ∈ Cn×n enforce
conjugate pairs and write it as

Λrestricted =

λ1 0 0 · · · 0
0 λ2 0 · · · 0
...

...
. . . · · ·

...
0 0 0 λ∗

2n−1 0
0 0 0 · · · λ∗

2n

 =

[
Λoriginal

0

]
+

[
0

Λconjugate

]
,

where Λoriginal,Λconjugate ∈ Cn
2 ×n

2 . Here, λk, λ
∗
k,∀k are conjugate pairs representing complex eigenvalues. We call recurrent

units with this restriction as restricted complex-valued recurrence.

I.6. Learning with RTRL

To be able to learn with RTRL and the complex recurrent unit, h̃t = λ ◦ h̃t−1 + B̃xt, we need to compute the sensitivity
matrices for λ, and B̃. We denote Sλ .

= ∂ht

∂λ and SB̃ .
= ∂ht

∂B̃
to the sensitivity matrices for λ, and B̃, respectively. We refer

the reader to (Zucchet et al. 2023) for full derivation and analysis for RTRL for complex-valued LRU. In addition, we refer
the reader to (Elelimy et al. 2024) for a derivation for complex-based LRU using real-valued system. Here, we provide the
derivation here for completeness. The sensitivity matrices update equation is given as follows:

Sλ
t,i,j =

∂ht,i

∂λj
=

∂

∂λj

(
λih̃t−1,i +

∑
m

B̃i,mxt,m

)
= δi,j h̃t−1,i + δi,jλiS

λ
t−1,i,j

SB̃
t,i,j,k =

∂ht,i

∂Bj,k
=

∂

∂Bj,k

(
λih̃t−1,i +

∑
m

B̃i,mxt,m

)
= λiS

B̃
t−1,i,j,kδi,j +

∑
m

δi,jδk,mxt,m

= λiS
B̃
t−1,i,j,kδi,j + δi,jxt,k.

We can also write the recursive relationship using the reduced sensitivity objects as follows:

Sλ
t =

∂

∂λ

(
λ ◦ h̃t−1 + B̃xt

)
= λ ◦ Sλ

t−1 + h̃t−1

SB̃
t =

∂

∂B̃

(
λ ◦ h̃t−1 + B̃xt

)
= Diag(λ)SB̃

t−1 + 1x⊤
t

where ◦ denotes element-wise product. Note how the matrix Sλ
t reduces to a vector since δi,j = 0,∀i ̸= j. Similarly, the

3d tensor SB̃
t reduces to a 2d matrix. This structure in the sensitivity objects is a result of the structure of the independent

recurrent module.

21

Multi-stream Sequence Learning

J. Primer on Parallel Scan
Parallel scan (Blelloch 1990) is an operation that applies a binary associative operator • on a number of elements L in a
certain way. Let us consider the linear recurrence hk+1 = Akhk +Bkxk. For a sequence of length L, we can write the
elements belonging to each step k as ck = (Ak,Bkxk). The elements {c1, . . . , cL} are precomputed before applying the
parallel scan operator. The binary associative operator • of this recurrence is given by qi • qj

.
= (qj,1□qi,1, qj,1♢qi,2+ qk,2),

where qi,1 is the 1st entry of the ith element, qi,2 is the 2nd entry of the ith element, □ denotes matrix-matrix multiplication,
♢ denotes matrix-vector multiplication, and + denotes element-wise addition.

First, we perform the upsweep, where we recursively combine adjacent pairs of elements to build a binary tree. At the bottom
level, we combine (c1, c2), (c3, c4), . . . , (cL−1, cL). Each pair is combined using •, and the resulting values form the next
level. This process continues until we reach the root. For example, a node covering c3, c4, c5, c6 will store c3 • c4 • c5 • c6.
These values are reused in the next phase. Second, we perform the downsweep to turn these tree values into the actual
cumulative products. Starting from the root node then traversing the tree, we pass the value of the node to its children where
the right child gets the value of the parent combined with the left child’s value and the left child gets the same value as the
parent. After this process is complete, each leaf node k contains the cumulative product sk = c1 • · · · • ck−1, containing all
hidden states {h1, . . . , hL}.

Because both upsweep and downsweep take O(logL) depth (by combining or distributing pairs in parallel), all hidden states
are produced in O(logL) parallel time. The computational complexity is O(M logL), where M is the cost of matrix-matrix
multiplication. Specifically, the cost is O(n3 logL) using dense recurrence matrix A ∈ Rn×n and O(n logL) for diagonal
recurrence matrix A.

K. Computational Resources
In all experiments, we used Nvidia L40 GPUs and Intel Xeon Gold CPUs to obtain the results. In the selective copying
experiment, we ran 6 baselines each for 5 independent runs, resulting in a total of 6× 7× 5 runs. Each run took around 6
hours to finish. In the second experiment where we varied the sequence length and used the TinyStories dataset, we ran
models across 7 sequence lengths and 7 baselines each for 3 independent runs, resulting in a total of 7× 7× 3 runs. Each
run took about 24 hours of GPU time along with 4 CPUs and 16GB of RAM. In the DNA modeling experiment, we ran 5
models for each baselines with 4 sizes. We ran each model for 3 independent runs, resulting in a total of 5× 4× 3 runs. The
runs of the largest models took around 3 days of GPU time along with 4 CPUs and 16GB of RAM to finish. In the byte-level
FineWebEdu modeling experiment, we ran 5 models for each baselines with 4 sizes. We ran each model for 2 independent
runs, resulting in a total of 5× 4× 2 runs. The runs of the largest models took around 4 days of GPU time along with 4
CPUs and 24GB of RAM to finish. Finally, we ran 7 baselines in the last experiment each for 3 independent runs, resulting
in a total of 7× 3 runs each taking 18 hours of GPU time and 4 CPUs and 16GB of RAM. Finally, there was considerable
but hard-to-quantify amount of compute used for testing initial ideas, implementations, and preliminary experiments.

22

