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Abstract

Selection bias is ubiquitous in real-world data, pos-
ing a risk of yielding misleading results if not ap-
propriately addressed. We introduce a condition-
ing operation on simple Structural Causal Models
(SCMs), which is a more general model class than
acyclic SCMs, to model latent selection from a
causal perspective. We show that the conditioning
operation transforms an SCM with the presence
of an explicit latent selection mechanism into an
SCM (without a selection mechanism) encoding
as much causal semantics of the selected subpopu-
lation according to the original SCM as possible.
Graphically, in Directed Mixed Graphs we extend
the semantics of bidirected edges, which originally
represent only latent common causes, to also rep-
resent latent selection bias. Furthermore, we show
that this conditioning operation preserves the sim-
plicity, acyclicity, and linearity of SCMs, and com-
mutes with marginalization and the conditioning
itself. Thanks to these properties, combined with
marginalization and intervention, the condition-
ing operation offers a valuable tool for conduct-
ing causal modeling, causal reasoning, and causal
model learning tasks within causal models where
latent details have been abstracted away. Through
illustrative examples, we demonstrate how this ab-
straction process diminishes the complexity inher-
ent in these three tasks, emphasizing both the theo-
retical clarity and practical utility of our proposed
approach. We hope that our results can deepen
the understanding of selection bias from the per-
spective of SCMs and be integrated into the causal
modeling toolbox, ultimately helping modelers de-
velop more reliable and trustworthy causal models.

1 INTRODUCTION

In data analysis, certain challenges persist, particularly in
addressing (latent) selection bias. There are many types of
selection bias and various methods to address them. In the
current work, we focus on the “truncated selection bias”,
which arises when there is an underlying (unobserved) fil-
tering process that selects individual samples taking some
specific values and can be mathematically modeled as con-
ditioning on an event {XS ∈ S}.

To understand its structural behavior, one approach is to
model selection bias via a Causal Model that explicitly
describes the selection mechanism, which necessitates a
detailed knowledge of the selection mechanism. However,
in many situations the selection mechanism is unobserved
so that detailed knowledge is often unavailable, which in-
troduces a mysterious dimension with infinitely many pos-
sibilities. The goal of the current work is to study how to
model latent selection bias by effectively abstracting away
its details in a Structural Causal Model (SCM).

Marginalization of causal models is a powerful tool for
abstracting away latent details, which makes causal mod-
eling more manageable and trustworthy. By marginalizing
out latent variables, we use one simplified model to rep-
resent infinitely many complex models, abstracting away
unnecessary latent details while preserving important causal
information such as causal semantics, d-separations or σ-
separations, and ancestral relationships on the observed
variables. For example, the model G in Figure 1 effectively
abstracts models Gi for i = 1, . . . , 5, . . ., and one has the
same identification results regardless of the latent structure:
P(C = c | do(S = s)) =

∑
t P(C = c | T = t)P(T = t |

S = s).

Selection bias is ubiquitous, often latent and can lead to im-
precise results, therefore not taking them into account may
lead to an untrustworthy model. Now the question is: (i) Is
marginalization also able to deal with latent selection bias?
(ii) If not, can we always find an SCM without a selection
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Figure 1: G effectively abstracts Gi for i = 1, . . . , 5, . . .

mechanism to represent an SCM with selection faithfully?
(iii) If not, can we characterize which part of causal seman-
tics of an SCM with selection mechanism can be represented
via an SCM in general? (iv) Given such characterization,
can we define transformations both on SCMs and causal
graphs constructively? (v) What properties do these transfor-
mations have and how do the “conditioned SCMs” M|XS∈S
and the “conditioned causal graphs” G(M)|S interact with
each other? The interaction of marginalized SCM M\L and
marginalized causal graph G(M)\L can be partly summa-
rized by Figure 2 (where SCM M has endogenous variables
XV and O denote V \ L or V \ S), can we have a simi-
lar diagram for conditioning? We shall give systematic and
complete answers to these questions in our work.

To illustrate, we first discuss a toy example, demonstrating
that marginalization is not sufficient for tackling selection
bias and how to obtain correct results without assuming any
specific details about the latent selection mechanism.

Example 1 (Car mechanic) Cars start successfully if their
battery is charged and their start engine is operational. In-
troduce latent binary endogenous variables B0 (“battery”),
E0 (“start engine”) and S0 (“car starts”) measured at time
t0 and observed variables B1, E1 and S1 with similar mean-
ing for the same car but measured at time t1 with t1 > t0.
We model this by the following SCM M and denote by M∗

its marginalized model over observed endogenous variables.

M :

 UB ∼ Ber(1− δ), UE ∼ Ber(1− ϵ),
B0 = UB , E0 = UE , S0 = B0 ∧ E0,
B1 = B0, E1 = E0, S1 = B1 ∧ E1,

M∗ :

{
UB ∼ Ber(1− δ), UE ∼ Ber(1− ϵ),
B1 = U0, E1 = U0, S1 = B1 ∧ E1,

where UB and UE are

latent exogenous independent Bernoulli-distributed random
variables with parameters 1 − δ and 1 − ϵ. Their graphs
are depicted in Figure 3.

The question is whether there exists an SCM with variables
B1, E1, S1 encoding the casual semantics of M under the
subpopulation (S0 = 0)? Consider the SCM M̃ , whose
graph is depicted in Figure 3, given by

M̃ :

{
(UB , UE) ∼ Pθ(UB , UE)
B1 = UB , E1 = UE , S1 = B1 ∧ E1

Pθ(UB , UE) UE = 0 UE = 1

UB = 0 δϵ
δ+(1−δ)ϵ

δ(1−ϵ)
δ+(1−δ)ϵ

UB = 1 (1−δ)ϵ
δ+(1−δ)ϵ 0

As one can check,

PM̃ (B1, E1, S1) = PM (B1, E1, S1 | S0 = 0)

̸= PM∗(B1, E1, S1)

PM̃ (S1 = 1 | do(B1 = 1)) =
δ(1− ϵ)

δ + (1− δ)ϵ

= PM (S1 = 1 | do(B1 = 1), S0 = 0)

̸= PM∗(S1 = 1 | do(B1 = 1))

PM̃ (S1 = 1 | do(E1 = 1)) =
(1− δ)ϵ

ϵ+ δ(1− ϵ)

= PM (S1 = 1 | do(E1 = 1), S0 = 0)

̸= PM∗(S1 = 1 | do(E1 = 1))

So, the car mechanic (who might not even be aware of
the latent selection mechanism S0 = 0) can still use an
SCM as an accurate causal model to predict the effects
of interventions on the subpopulation of cars that are of
her concern. Note that the marginalized model does not
possess the correct causal semantics of the subpopulation.
Besides, graphically the graph G(M̃) correctly express the
information that B1 and E1 are dependent given {S0 =
0} while the graph G(M∗) wrongly claims that B1 and
E1 are independent given {S0 = 0} via the d-separation
criteria for acyclic directed mixed graphs. Therefore M̃
effectively abstracts away irrelevant latent modeling details:
(i) the latent variables B0, E0 and S0, (ii) their causal
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Figure 2: Commutative diagram of conditional indpendencies and graphical separations in causal models.

mechanisms, and (iii) the selection step on S0 = 0. However,
the marginalized model M∗ does not.
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Figure 3: The causal graphs of the SCMs M , M∗ and M̃
in Example 1. The gray nodes are latent. Conditioning on
S0 = 0 yields M̃ . Marginalizing latent variables out yields
M∗.

Our Contribution We provide an approach to model se-
lection bias by effectively abstracting away latent selection
mechanisms. To be more precise, given a Structural Causal
Model M with an selection mechanism {XS ∈ S} where
variable XS takes values in a measurable subset S, we de-
fine a transformation that maps (M, {XS ∈ S}) to a “con-
ditioned” SCM M|XS∈S without any selection mechanism,
so that M|XS∈S is an effective abstraction of M w.r.t. the
selection {XS ∈ S} in the sense that:

• the conditioned SCM M|XS∈S correctly encodes as
much causal semantics (observational, interventional
and counterfactual) of M under the subpopulation as
possible;

• this conditioning operation interacts well with other op-
erations on SCMs, e.g., intervention, the conditioning
operation itself, and marginalization;

• the conditioning operation preserves important model
classes, e.g., linear, acyclic and simple SCMs;

• one can read off enough qualitative causal information
about M under the selected subpopulation from the
causal graph of M|XS∈S and the conditioned graph
G(M)|S .

In our work, we introduce the rigorous mathematical defi-
nition of the conditioning operation and demonstrate that it
possesses all the aforementioned properties.

The significance of this conditioning operation lies in the
fact that we can take M|XS∈S as a simplified “proxy” for
M w.r.t. the selection {XS ∈ S}, which effectively ab-
stracts away details about latent selection (i.e., satisfying
the properties listed previously). This makes it a versatile
tool for causal inference confronted with latent selection
bias. Specifically:

(i) Causal Reasoning: One can directly apply all the causal
inference tools on SCMs to M|XS∈S , e.g., adjustment
criterion, Pearl’s do-calculus and ID-algorithm, which
simplifies causal reasoning tasks without sacrificing
generality.

(ii) Causal Modeling: Utilizing the marginalization and
conditioning operation, we can represent infinitely
many SCMs with a single marginalized conditioned
SCM. This significantly streamlines causal modeling,
eliminating the need to enumerate all the possibilities
with different latent (un)conditioned structures. More-
over, it enhances model robustness and trustworthiness
by reducing sensitivity to various causal assumptions.

(iii) Causal Model Learning: In many learning algorithm,
selection bias is ruled out by assumption, which is of-
ten not a realistic setting. One can use usual algorithm
to learn M|XS∈S instead of M , which can deal with se-
lection bias automatically and reduces the complexity
of the learning process.

Connections to Related Work In a series of papers
[Bareinboim and Pearl, 2012, Bareinboim and Tian, 2015],
the authors explored the ‘s-recoverability’ problem, aim-
ing to recover causal quantities for the whole population
from selected data. This investigation operated under qual-
itative causal assumptions on the selection nodes, explic-
itly expressed in terms of causal graphs. However, such
knowledge about selection nodes is not always available
[Richardson and Robins, 2013, Footnote 11]. In the current
work, we focus on the problem of how to model selection
bias with an SCM without explicitly modeling the selection
mechanism and draw (causal) conclusions for the selected
subpopulation.

There are graphical models with well-behaved marginal-
ization and conditioning operations such as maximal an-



cestral graphs (MAGs) [Richardson and Spirtes, 2002], d-
connection graphs [Hyttinen et al., 2014] and σ-connection
graphs [Forré and Mooij, 2018]. Among them, MAGs were
originally developed as a smallest model class containing
the conditional independence models of the marginalized
conditioned conditional independence models of DAGs. By
summarizing the common causal features of causal DAGs
represented by a MAG, one can give a causal interpretation
to MAGs and call them causal MAGs. One single causal
MAG can represent infinitely many SCMs with different
graphs but the same conditional independences among ob-
served variables. Interpreting a graph as a causal graph of
an SCM and as a causal MAG respectively will not give
the same causal conclusions in general.1 Due to the nature
of model abstraction, MAGs are well suited for causal dis-
covery, and one can further draw some causal conclusions
from MAGs [Spirtes et al., 1995b, Richardson, 2003, Zhang,
2008, Mooij and Claassen, 2020]. However, MAGs are not
always suitable for causal modeling under selection bias in
some cases, since: (i) it is not clear how to read off causal
relationships (direct causal relations, confounding) from
MAGs; (ii) there are no identification results for MAGs un-
der selection bias yet; (iii) currently the standard theory of
MAGs cannot deal with causal cycles and counterfactual
reasoning. On the other hand, our conditioning operation
transforms an SCM with selection mechanisms to an ordi-
nary SCM, which carries an intuitive causal interpretation.
All the theory for SCMs (causal identification, cycles, coun-
terfactual reasoning) can be directly extended to the case
with selection bias via the conditioning operation. Therefore,
our results can address causal inference tasks such as fair-
ness analysis [Kusner et al., 2017, Zhang and Bareinboim,
2018], causal modeling of dynamical systems [Bongers
et al., 2022, Peters et al., 2022] and biological systems with
feedback loops [Versteeg et al., 2022] under selection bias.
Another subtle difference between SCM conditioning and
MAG conditioning is that they consider different forms of
conditioning.

Although causal graphs provide a means to differentiate
selection bias from confounding due to common causes
[Hernán et al., 2004, Cooper, 1995], the potential outcome
community tends to amalgamate the two [Richardson and
Robins, 2013, Hernán MA, 2020]. In many cases, one can
be sure about the existence of “non-causal dependency”, but
cannot be sure whether it is induced by a latent common
cause or latent selection bias or the combination of the two
(see e.g., Richardson and Robins [2013, Footnote 11] and
Pearl [2009, p.163]). Our conditioning operation formalizes

1For example, consider a graph consisting of A B C
and A C. If it is a causal graph of an SCM, then we can
conclude that variable A has a direct causal effect on C according
to this model and we can identify P(C = c | do(A = a)) =
P(C = c | A = a) under the positivity and discreteness assump-
tion. However, if it is a MAG, then we cannot obtain the above two
conclusions.

this ambiguity within SCMs. Graphically, we employ bidi-
rected edges to symbolize the dependence of two variables
arising from either unmeasured common causes, latent selec-
tion bias, or any intricate combination of the two. Therefore,
in causal modeling, our work allows the modeler to be able
to represent such non-causal dependency abstractly via bidi-
rected edges.

Some work considers the abstraction of causal models from
the perspective of grouping low-level variables to high-level
variables and merging values of variables [Rubenstein et al.,
2017, Beckers and Halpern, 2019]. Geiger et al. [2023] study
the so-called “constructive abstraction” of causal models.
They show that it can be characterized as a composition of
clustering sets of variables, merging values of variables, and
marginalization. Our conditioning operation does not fall
under the umbrella of “constructive abstraction” of Geiger
et al. [2023].

2 CONDITIONING OPERATION ON
SCMS

In Section 2.1, we define the conditioning operation on sim-
ple SCMs and present some discussions about the definition
in Appendix. We shall derive some properties of it in Sec-
tion 2.2, and the proofs can be found in Appendix. We make
some important caveats on how to interpret the conditioned
SCMs when modeling in Appendix E. We follow the formal
setup of Bongers et al. [2021]. In the whole section, we
assume:

Assumption 1 M = (V,W,X ,P, f) is a simple SCM such
that PM (XS ∈ S) > 0 for some S ⊆ V and measurable
subset S ⊆ XS .

We write O := V \ S. We use PM (XO | do(XT =
xT ), XS ∈ S) := PMdo(XT =xT )

(XO | XS ∈ S) to rep-
resent the probability distribution of XO when first interven-
ing on XT = xT and second conditioning on XS ∈ S.2

2.1 DEFINITION OF CONDITIONING
OPERATION

Suppose that we condition on the event {XS ∈ S}. Then
roughly speaking, the conditioning operation can be divided
into three steps:

1. merging all the exogenous random variables that are
ancestors of the selection variables;

2. updating the exogenous probability distribution to the
posterior given the observation XS ∈ S;

3. marginalizing out the selection variables.
2“First” and “second” here refer to the order of applying the

operations on the SCM.



We give the formal definition of the conditioned SCMs
specializing to the class of simple SCMs for simplicity. See
Figure 4 for an intuitive graphical representation.3

Definition 2 (Conditioned SCM) Assume Assumption 1.
Write B := AncGa(M)(S). Let gS : XW × XO → XS

be the essentially unique solution function of M w.r.t. S. We
define the conditioned SCM M|XS∈S :=

(
V̂ , Ŵ , X̂ , P̂, f̂

)
by:

• V̂ := V \ S;

• Ŵ := (W \B) ∪̇ {⋆W } with ⋆W := B ∩W ;

• X̂ := XO × X̂Ŵ := XO ×
(
XW\B ×X⋆W

)
, where

X⋆W
:= XW∩B;

• P̂ := P(XW\B) ⊗ P(X⋆W
), where P(X⋆W

) :=
PM (XW∩B | XS ∈ S);

• f̂(xV̂ , xŴ )
:= fO(xO, g

S(xO, xW\B , x⋆W
), xW\B , x⋆W

).

It is easy to check that M|XS∈S is indeed an SCM.

Notation 3 We often denote M|XS∈S by M|S if it is clear
from the context that S is a measurable subset in which the
variable XS takes values.

E1 E2

E3 E4
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X Y

S

Z1

Z2

Z3

Ga(M)

E{1,2}

E3 E4

E5

X Y
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Figure 4: Graphical representation of conditioning on XS ∈
S. First merge the exogenous ancestors of S, i.e., E1 and
E2, to get a merged node E{1,2}. Then update the exoge-
nous probability distribution P(XE1

, XE2
) to the posterior

PM (XE1
, XE2

| XS ∈ S). Finally, marginalize out the
node S. X and Y are dashed, since we mark them as non-
intervenable.

Note that the above conditioning operation is defined on
simple SCMs. For causal modeling purposes, people often
use causal graphs to communicate causal knowledge without
referring to the underlying SCMs. To support this, we give a
purely graphical conditioning operation defined on directed
mixed graphs (DMGs).

3In the graphical representations of the conditioning operation
such as Figure 4, we assume no causal effects canceled out because
of marginalization or changing the underlying population.

Definition 4 (Conditioned DMG) Let G = (V,E,H) be
a DMG consisting of nodes V , directed edges E and bidi-
rected edges H . For S ⊆ V , we define the conditioned
DMG as

G|S =
(
V|S , E|S , H|S

)
:

• V|S := V \S with AncG(S) \ S dashed;

• E|S consists of all v u with v, u ∈ V \ S and
v ̸= u for which there exists a directed walk in G:
v s1 · · · sn u, where all intermediate
nodes s1, . . . , sn ∈ S (if any);

• H|S consists of all bidirected edges v u with
v, u ∈ V \ S and v ̸= u, for which there exists a
bifurcation in G: v s1 · · · sk−1

sk · · · sn u with all intermediate
nodes s1, . . . , sn ∈ S (if any), or for which v, u ∈
AncG(S) ∪ SibG(AncG(S)).4

We give an example in Appendix D.1. As we will show in the
next subsection, the purely graphical conditioning operation
interacts well with the SCM conditioning operation.

2.2 PROPERTIES OF CONDITIONING
OPERATION

The conditioning operation ensures the preservation of sim-
plicity, linearity, and acyclicity in SCMs.

Proposition 5 (Simplicity/Acyclicity/Linearity) If M is
a simple (resp. acyclic) SCM with conditioned SCM
M|XS∈S , then the conditioned SCM M|XS∈S is simple
(resp. acyclic). If M is also linear, then so is M|XS∈S .

This implies that opting for simple/acyclic/linear SCMs as
a model class, and performing model abstraction through
the conditioning operation, will consistently maintain one
within the chosen model class. This convenience proves
valuable in practical applications, where adherence to spe-
cific model class is often desired.

The following lemma states that the conditioning commutes
with interventions on the non-ancestors of the conditioning
variables.

Lemma 6 (Conditioning & intervention) Assume As-
sumption 1. Then we have

(
Mdo(XT=xT )

)
|XS∈S =(

M|XS∈S
)
do(XT=xT )

for any T ⊆ O \AncGa(M)(S) and
xT ∈ XT .

Remark 7 Since M is simple and T ⊆ O \AncGa(M)(S),
the probability PMdo(XT=xT )(XS ∈ S) = PM (XS ∈ S)
is well defined and strictly larger than zero.

4SibG(v) := {w ∈ G | v w ∈ G}, and sk−1 sk
means either sk−1 sk or sk−1 sk.



The next presented theorem establishes that the conditioned
SCM faithfully encapsulates the conditional observational
distribution of every endogenous variable and the condi-
tional causal semantics of the non-ancestors of S, in accor-
dance with the original SCM.

Theorem 8 (Preserving causal semantics) Assume
Assumption 1. Then we have

(1) PM|XS∈S (XO) = PM (XO | XS ∈ S);
(2) for any T ⊆ V \AncGa(M)(S) and xT ∈ XT ,

PM|XS∈S

(
XO\T | do(XT = xT )

)
= PM

(
XO\T | do(XT = xT ), XS ∈ S

)
;

(3) for any T1 ⊆ V \AncGa(M)(S) and xT1
∈ XT1

, and
any T2 ⊆ (V \AncGa(M)(S))

′ and xT2
∈ XT2

,

P(M|XS∈S)
twin(X(O∪O′)\(T1∪T2) |

do(XT1
= xT1

, XT2
= xT2

))

= PMtwin(X(O∪O′)\(T1∪T2) |
do(XT1

= xT1
, XT2

= xT2
), XS ∈ S).

This result assures that the simplified abstracted model re-
tains the capacity to yield identical results as the original
more intricate model, thereby solidifying the foundation for
the effectiveness of the proposed abstraction process.

The following corollary implies that different orderings of it-
erative conditioning operations give rise to counterfactually
equivalent SCMs.

Corollary 9 Assume Assumption 1 with S = S1 ∪ S2 and
S = S1 × S2 with S1 ⊆ XS1 and S2 ⊆ XS2 both measur-
able. Then (M|S1

)|S2
, (M|S2

)|S1
, and M|S1×S2

are coun-
terfactually equivalent w.r.t. V \AncGa(M)(S1 ∪ S2).5

The subsequent result establishes the commutativity of con-
ditioning and marginalization.

Proposition 10 (Conditioning & marginalization)
Assume Assumption 1 and let L ⊆ V \S. Then we have that
(M\L)|S and (M|S)\L are counterfactually equivalent.

Recall that marginalization commutes with itself and that
the order of conditioning operations does not matter up to
counterfactual equivalence. Given a set of latent uncondi-
tioned variables and latent conditioned variables, irrespec-
tive of the intermediate steps taken, one consistently arrives
at counterfactually equivalent models in practice by using
marginalization and the conditioning operation to abstract

5See Definition 25 or Bongers et al. [2021, Definition 4.5] for
the definition of counterfactual equivalence.

away latent details. This underscores the robustness and
reliability of the overall procedure.

The following proposition states that the purely graphical
conditioning operation is compatible with the SCM condi-
tioning operation.

Proposition 11 (Conditioned SCM & DMG) Let M be
a simple SCM with conditioned SCM M|XS∈S . Then
G(M|XS∈S) is a subgraph of G(M)|S .

Remark 12 Note that G(M|XS∈S) can be a strict sub-
graph of G(M)|S . This means that G(M)|S is generally
a more conservative representation of the underlying SCM
with less causal information due to the nature of abstraction.

Markov properties connect the causal graph and the induced
distribution of M in the sense that they enable one to read
off conditional independence relations from the graph via
the d- or σ-separation criterion (see Appendix A or Bongers
et al. [2021]). Obviously, PM|XS∈S (XO) satisfies this prop-
erty relative to G(M|XS∈S). Notably, PM|XS∈S (XO) also
satisfies this property relative to G(M)|S , illustrating the
role of the conditioned graph G(M)|S as an effective graph-
ical abstraction.

Corollary 13 (Markov property) If M is simple, then
PM|XS∈S (XO) satisfies the generalized directed global
Markov property relative to G(M)|S . If M is acyclic, then
PM|XS∈S (XO) satisfies the directed global Markov prop-
erty relative to G(M)|S .

3 SOME APPLICATIONS

The conditioning operation has a wide spectrum of appli-
cations. All the classical results for SCMs, such as iden-
tification results (the back-door adjustment, do-calculus),
can be applied to conditioned SCMs M|XS∈S immedi-
ately. Using the properties of the conditioning operation,
we can then translate these conclusions on M|XS∈S back to
(M,XS ∈ S). Combining with marginalization, the condi-
tioning operation also provides a way to interpret a DMG as
a causal graph that compactly encodes causal assumptions,
where latent details of both latent common causes and latent
selection have been abstracted away.

For illustration, we briefly discuss several examples in this
section. They form a cohesive sequence navigating us from
philosophical implications of the conditioning operation
(“generalized Reichenbach’s principle”), to the versatility
of applications of classical results to conditioned SCMs
(back-door criterion, instrumental variables, ID-algorithm,
mediation analysis), and finally concrete practical applica-
tion of conditioned SCMs in modeling real-world problems
(COVID example). For the sake of space, some examples
are given in Appendix.



Example 2 (Reichenbach’s principle) Reichenbach’s
Principle of Common Cause [Reichenbach, 1956] is often
stated in this way: if two variables are dependent, then one
must cause the other, or the variables must have a common
cause (or any combination of these three possibilities). Note
that this conclusion holds only when latent selection bias is
ruled out, an assumption that is often left implicit.

With our conditioning operation, we can generalize it in
the following way. Assume that M is a simple SCM that
has two observed endogenous variables X and Y . By the
Markov property, if X and Y are dependent, then X Y ,
X Y , or X Y (or any combination of these three
possibilities) are in the graph G(M). There exist infinitely
many SCMs M i, i ∈ I with an infinite index set I , such
that (M i

\Li
)|Si

= M where Li is a set of latent variables
of M i and XSi

∈ Si is the latent selection in M i. Hence, it
implies that if two variables are dependent, then one causes
the other, or the variables have a common cause, or are
subject to latent selection (or any combination of these four
possibilities).

This provides one possible explanation for some real-world
scenario in which one can exclude the possibilities of causal
effects and common causes between two variables but can
still observe the stochastic dependency between them.

Example 3 (Back-door theorem) Let M1 and M2 be two
SCMs with three variables T (“treatment”), X (“covari-
ates”), and Y (“outcome”) whose causal graphs are shown
in Figure 5. Under some assumptions, Pearl’s Back-Door
Theorem [Pearl, 2009] gives, for i = 1, 2, the identification
result:6

PMi(Y | do(T = t))

=

∫
PMi(Y | X = x, T = t)PMi(X ∈ dx).

(1)

T

X

Y

G(M1)

T

X

Y

G(M2)

Figure 5: Causal graphs of SCMs M1 and M2 in Example
3.

Thanks to marginalization and the conditioning opera-
tion, we can see M1 and M2 as abstractions of other
SCMs, i.e., M i = (M̃ i

\Li)|Si , for SCMs M̃ i, latent vari-
ables Li = {Li

1, . . . , L
i
n}, and latent selection variables

Si = {Si
1, . . . , S

i
m} taking values in measurable sets Si

6For simplicity, here we ignore the measure-theoretic subtlety.
Indeed, we need to assume PMi(X) ⊗ PMi(T ) ≪ PMi(X,T )
and then the identity holds PMi(T )-a.s.

with i = 1, 2. For both M1 and M2, we present two ex-
amples M̃ i

(j) for j = 1, 2, respectively, out of the infinite
possibilities in Figure 6.

We can write (1) as

PM̃i(Y | do(T = t), Si ∈ Si)

=

∫
PM̃i(Y | X = x, T = t, Si ∈ Si)PM̃i(X ∈ dx | Si ∈ Si).

(2)
Thus, the back-door theorem can be applied directly to the
conditioned SCM, which is useful especially if the specific
latent structure of the SCM is unknown.
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T
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Y
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1
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G(M̃2
(2))

Figure 6: Some possible causal graphs of SCMs M̃ i in
Example 3.

One can generalize other identification results similarly.

Example 4 (ID-algorithm) Pearl’s do-calculus is proved
to be sound and complete (under some conditions) for iden-
tifying interventional distributions given a causal graph
[Pearl, 1995a, Huang and Valtorta, 2006]. Using a causal
graph and observational distribution as inputs, the ID-
algorithm, as a sound and complete algorithm, systemati-
cally outputs a functional of the observational distribution
to the target interventional distribution if it is identifiable
and outputs FAIL if it is not [Tian and Pearl, 2002, Shpitser
and Pearl, 2006, Huang and Valtorta, 2008]. Various vari-
ants of the ID-algorithm exist, each with different targets
and inputs (see e.g., Kivva et al. [2023] and the references
therein).

One such variant, the s-ID-algorithm, is a sound and com-
plete algorithm for the s-identification problem, whose goal
is to identify interventional distributions on a subpopulation
(P(XA | do(XT = xT ), XS = 1)) given a causal graph
with selection mechanism (Gs) and selected observational
distribution (P(XV | XS = 1)) [Abouei et al., 2024a, The-
orem 1, Corollary 2].7 As we shall see, the conditioning

7Note that in the usual c-ID-algorithm for conditional interven-
tional distribution, the input is P(XV ) but not P(XV | XS = 1).



operation can help simplify some parts of the original proof.

For simplicity, we only consider the single-variable case
via the conditioning operation. In the setting of Abouei
et al. [2024a], there are no latent variables. Therefore, if
T = {t} ∩ AncGs(S) = ∅, then there are no bidirected
edges connecting to t in Gs

|S , which implies that P(XA |
do(XT = xT ), XS = 1) is identifiable by Tian and Pearl

[2002, Theorem 1]. Now, assuming that A
d

⊥
Gs

X

T | S, the

second rule of Pearl’s do-calculus provides the identification
result. Combining these two gives a sound and complete
algorithm for the s-identification problem [Abouei et al.,
2024a, Theorem 1].

Besides, if T ∩AncGs(S) = ∅, then one can also consider
identifying the conditional causal effect on the subpopula-
tion P(XA | do(XT = xT ), XB , XS = 1) from a graph
with latent variables and selected observation distribution
P(XV | XS = 1), by first applying the conditioning op-
eration on Gs to get Gs

|S and then applying the classical
ID-algorithm on Gs

|S for conditional causal effect with la-
tent variables.8 This result seems to be new in the literature
to our knowledge.9 Similar generalizations can be made
for other variants of the ID-algorithm, by first applying
the conditioning operation on the graph and then apply-
ing the corresponding version of the ID-algorithm to the
conditioned graph.

However, one should note that applying the ID-algorithm
to the conditioned graph alone can hardly give a complete
algorithm in general, due to the abstraction nature of the
conditioning operation. For example, in the case of the s-ID-
algorithm, we can use the conditioning operation to handle
cases where T ∩AncGs(S) = ∅, but a complete algorithm
should also be able to address cases where T∩AncGs(S) ̸=

∅ or T
d

⊥
Gs

X

A | S (see Abouei et al. [2024a, Theorem 1]),

which can be tackled by combining with the second rule of
Pearl’s do-calculus.

Example 5 (Causal discovery) Many causal discovery al-
gorithms address unobserved common causes, exclude selec-
tion bias, and output a single graph. In fact, we can interpret
the output of such algorithms as G((M\L)|S) where M is
a simple (or acyclic) SCM with latent nodes L, selection

8If T ∩AncGs(S) ̸= ∅, one can still apply the corresponding
ID-algorithm to Gs

|S , but the algorithm would output an expres-
sion for P(XA(xT ) | XS = 1) instead of P(XA | do(XT =
xT ), XS = 1).

9When we were writing this manuscript, we found that an
s-ID-algorithm under latent variables was proposed in Abouei
et al. [2024b]. However, they only consider identification for
the unconditional interventional distribution P(XA | do(XT =
xT ), XS = 1) not for the conditional interventional distribution
P(XA | do(XT = xT ), XB , XS = 1).

mechanism XS ∈ S, and L ∩ S = ∅. This can give a cer-
tain causal interpretation to the output of these algorithms
under selection bias even if they exlcude selection bias in
their original formulations.

For one instance, Wang and Drton [2023] explored recov-
ering causal graphs uniquely from data generated by an
acyclic linear non-Gaussian SCM with a bow-free graph
(i.e., no simultaneous bidirected and directed edges between
two variables) and rule out selection bias. Assume that the
data are generated from an acyclic linear SCM M and there
is no latent common cause or selection bias between any
two variables that have a direct causal effect according to
M . Then, according to the properties of marginalization
and the conditioning operation, (ML)|S is an acyclic linear
SCM with a bow-free graph (see Proposition 5 and Bongers
et al. [2021, Proposition 5.11, C.5]). If the exogenous dis-
tribution of (ML)|S is non-Gaussian, then we can use the
algorithm BANG in Wang and Drton [2023] to recover the
graph of (M\L)|S .

If we know from data or prior knowledge that a node t is not
an ancestor of S, then we can give a causal interpretation
of Xt in the discovered graph and apply causal identifica-
tion results to identify PM (XO | do(Xt = xt), XS ∈ S)
with O := V \ (L ∪ S). For example, if the data are se-
lected by XS = xS , we can sometimes read off whether
t /∈ AncG(M)(S) from a PAG (Partial Ancestral Graphs)
or a MAG [Spirtes et al., 1995a, Richardson and Spirtes,
2002].10

Example 6 (Causal modeling) In this example, we show
how the conditioning operation can help with causal mod-
eling under selection bias.11 The high-level idea is from
Example 2 that even if there are no causal effects and no
common causes between two variables there could still be
dependency between them caused by selection bias.

To state the example, recall that one possible workflow of
causal inference is:

(i) asking causal queries;

(ii) building a causal model from prior knowledge and
data;

(iii) determining the target causal quantity and identifying
the estimand in terms of available observational and
interventional distributions;

(iv) using data to estimate the estimand.

10Note that if t ∈ AncG(M)(S), we can still apply the identifi-
cation result to the interventional distribution given do(Xt = xt)
in M|XS∈S , but the causal identification results will output a for-
mula for PM (XO(xt) | XS ∈ S) instead of PM (XO | do(Xt =
xt), XS ∈ S).

11How to perform causal modeling under selection bias is the
original motivation for this work.



As concise encodings of causal assumptions, causal graphs
can be used to decide the estimand for addressing causal
queries, and therefore incorrect graphs may generate wrong
results. For example, to understand the causal effect of treat-
ment strategies from different countries on the fatality rate
of the COVID-19 case, Von Kügelgen et al. [2021] analyzed
data from the initial virus outbreaks in 2020 in China and
Italy, and assumed the causal graph G shown in Figure 7.
For COVID-19 infected people, age (A), country of resi-
dence (C) at the time of infection and fatality rate (F ) are
recorded.

The data suggest that C and A are dependent. In the tradi-
tional understanding of bidirected edges, assuming that C
and A do not share a latent common cause, one has to draw
a directed edge between C and A so that the hypothesized
graph is compatible with the observation. However, drawing
a directed edge from C to A is not a reasonable causal as-
sumption. It assumes that if we conduct a randomized trail
to assign people to different countries, then immediately
(A and C are measured almost the same time) the result-
ing age distribution will differ depending on the assigned
country. Similarly, A C would also be an unreasonable
assumption.

However, the conditioning operation tells us that bidirected
edges do not have to represent latent common causes only,
but can also represent latent selection bias. Therefore, we
can draw a bidirected edge C A as shown in G̃ to
explain the statistical association between C and A, which
could represent different latent selection mechanisms or
latent common causes or combinations of the two between
C and A.12 First, the age distribution may differ between
two countries already before the outbreak of the virus (latent
selection on ‘person was alive (S′ = 1) in early 2020’, as
in G1). Second, since only infected patients were registered
and both the country and the age may influence the risk of
getting infected, selection of the infection status (S = 1) can
also lead to C A (as in G2). The combinations of both
selection mechanisms (such as in G3 or G4) also lead to
C A. With the conditioning operation, we do not need
to list (potentially infinitely many) all the possible causal
graphs in detail, including all relevant latent variables that
model the selection mechanism. We only need to consider
DMGs on these three observed variables, which is a much
smaller (finite) model space.

Thanks to properties of the conditioning operation, we can
answer causal queries like “what would be the effect on
fatality of changing from China to Italy". It allows us to
compute the total causal effect TCE(Y ; c′ → c) := E[F |
do(C = c)] − E[F | do(C = c′)] via the abstracted (con-
ditioned) model G̃ (e.g., by adjusting on age) without fully
knowing all the latent details. Note that the results based

12Note that the difference of common cause and selection bias
does not matter for the current task, which shows the power of
model abstraction.

on G and G̃ are clearly different. In fact, for an SCM with
graph G, one has:

TCE(Y ; c′ → c) := E[F | do(C = c)]−E[F | do(C = c′)].

On the other hand, for an SCM with graph G̃, one has:

TCE(Y ; c′ → c) := E[F | do(C = c)]− E[F | do(C = c′)]

̸=
∑
a

(E[F | C = c, A = a]P(A = a | C = c)

− E[F | C = c′, A = a]P(A = a | C = c′))

= E[F | C = c]− E[F | C = c′],

where in the second equality we use the back-door theorem
allowed by the graph G̃.
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C ′

A′

S
S′

F

G3
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S
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Figure 7: Causal graphs for COVID-19 data. Note that after
applying the conditioning operation to selection variables
and marginalizing out remaining latent variables, we reduce
Gi to G̃ for i = 1, 2, 3, 4.

4 CONCLUSIONS

While marginalization plays a role of abstracting away un-
necessary unconditioned latent details of causal models, we
need another operation in case of latent selection mecha-
nisms. We gave a formal definition of a conditioning op-
eration on SCMs to take care of latent selection. The con-
ditioning operation preserves a large part of the causal in-
formation, preserves important model classes and interacts
well with other operations on SCMs. We generalized the
interpretation of bidirected edges in directed mixed graphs
to represent both latent common causes and selection on a
latent event. Combined with marginalization and interven-
tion, the conditioning operation provides a powerful tool for
causal model abstraction and helps with many causal infer-
ence tasks such as prediction of interventions, identification
and model selection.
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A SCM PRELIMINARIES

To be as self-contained as possible, we include the relevant SCM preliminaries. We follow the formal definitions of Bongers
et al. [2021].

Definition 14 (Structural Causal Model) A Structural Causal Model (SCM) is a tuple M = (V,W,X ,P, f) such that

• V,W are disjoint finite sets of labels for the endogenous variables and the exogenous random variables, respectively;

• the state space X =
∏

i∈V ∪̇W Xi is a product of standard measurable spaces Xi;

• the exogenous distribution P is a probability distribution on XW that factorizes as a product P =
⊗

w∈W P(Xw) of
probability distributions P(Xw) on Xw;

• the causal mechanism is specified by the measurable mapping f : X → XV .

Definition 15 (Hard intervention) Given an SCM M , an intervention target T ⊆ V and an intervention value xT ∈ XT ,
we define the intervened SCM

Mdo(XT=xT ) := (V,W,X ,P, (fV \T , xT )).

This replaces the targeted endogenous variables by specified values. In this work, we do not assume that all the endogenous
variables in an SCM can be intervened on, which deviates from the standard modeling assumption. One can define other
types of interventions like soft or probabilistic ones, and the results in the following also hold replacing hard interventions
by other types of interventions.

Besides interventional semantics, one can also describe counterfactual semantics of an SCM by performing interventions in
its twin SCM (see Definition 21).

Given an SCM M , one can define its causal graph G(M) and augmented causal graph Ga(M) to give an intuitive and
compact graphical representation of the causal model (see Definition 23). One can read off useful causal information purely
from the causal graphs without knowing the details of the underlying SCMs.

Notation 16 In all the causal graphs, we use gray nodes to represent latent variables. We assume that latent variables are
non-intervenable. Dashed nodes represent observable but non-intervenable variables, and solid nodes represent observable
and intervenable variables. Exogenous variables are assumed latent.

Definition 17 (Solution function of an SCM) Given an SCM M , we call a measurable mapping gS : XV \S ×XW → XS

a solution function of M w.r.t. S ⊆ V if for P(XW )-a.a. xW ∈ XW and for all xV \S ∈ XV \S , one has that gS(xV \S , xW )
satisfies the structural equations for S, i.e.,

gS(xV \S , xW ) = fS(xV \S , g
S(xV \S , xW ), xW ).

When S = V , we denote gV by g, and call g a solution function of M .
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mailto:<l.chen2@uva.nl>?Subject=Your CAR Workshop 2025 paper


Definition 18 (Unique solvability) An SCM M is called uniquely solvable w.r.t. S ⊆ V if it has a solution function w.r.t.
S that is essentially unique in the sense that if gS and g̃S both satisfy the structural equations for S, then for P(XW )-a.a.
xW ∈ XW and for all xV \S ∈ XV \S , one has gS(xV \S , xW ) = g̃S(xV \S , xW ). If M has an essentially unique solution
function w.r.t. V , we call it uniquely solvable.

Note that a subset S does not inherit unique solvability from unique solvability of any of its supersets in general [Bongers
et al., 2021, Appendix B.2].

Definition 19 (Simple SCM) An SCM M is called a simple SCM if it is uniquely solvable w.r.t. each subset S ⊆ V .

Simple SCMs form a class of SCMs that preserves most convenient properties of acyclic SCMs but allows for weak cycles
(in particular acyclic SCMs are simple). We focus on simple SCMs in this work so that we can avoid many mathematical
technicalities and focus on conceptual issues. We use PM (XV , XW ) to denote the unique probability distribution of
(XV , XW ) induced by a simple SCM M .

For a simple SCM, we can plug the solution function of one component into other parts of the model so that we can get a
simple SCM that “marginalizes” it out while preserving causal semantics of the remaining variables [Bongers et al., 2021].

Definition 20 (Marginalization) Let M be a simple SCM and L ⊆ V . Then we call M\L = (V \L,W,XV \L×XW ,P, f̃)
with

f̃(xV \L, xW ) = fV \L(xV \L, g
L(xV \L, xW ), xW )

a marginalization of M over V \ L.

Definition 21 (Twin SCM) [Bongers et al., 2021, Definition 2.17] Let M = (V,W,X ,P, f) be an SCM. The twinning
operation maps M to the twin structural causal model (twin SCM)

M twin :=
(
V ∪ V ′,W,XV ×XV ′ ×XW ,P, f̃

)
,

where V ′ = {v′ : v ∈ V } is a disjoint copy of V and the causal mechanism f̃ : XV × XV ′ × XW → XV × XV ′ is the
measurable mapping given by f̃ (xV , xV ′ , xW ) = (f(xV , xW ), f (xV ′ , xW )).

Definition 22 (Parent) [Bongers et al., 2021, Definition 2.6] Let M = (V,W,X ,P, f) be an SCM. We call k ∈ V ∪W
a parent of v ∈ V if and only if there does not exist a measurable mapping f̃v : XV \k × XW\k → Xv such that for
P(XW )-almost every xW ∈ XW , for all xV ∈ XV ,

xv = fv(xV , xW ) ⇐⇒ xv = f̃v
(
xV \k, xW\k

)
.

Definition 23 (Graph and augmented graph) [Bongers et al., 2021, Definition 2.7] Let M = (V,W,X ,P, f) be an SCM.
We define:

(1) the augmented graph Ga(M) as the directed graph with nodes V ∪ W and directed edges u → v if and only if
u ∈ V ∪W is a parent of v ∈ V ;

(2) the graph G(M) as the directed mixed graph with nodes V , directed edges u v if and only if u ∈ V is a parent of
v ∈ V and bidirected edges u v if and only if there exists a w ∈ W that is a parent of both u ∈ V and v ∈ V .

Example 7 Consider the SCM

M :

 U ∼ Ber(1− ξ), UB ∼ Ber(1− δ), UE ∼ Ber(1− ε),
B0 = U,E0 = U, S0 = B0 ∧ E0,
B1 = B0 ∧ UB , E1 = E0 ∧ UE , S1 = B1 ∧ E1.

Then we have the (augmented) causal graphs of M shown in Figure 8.
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Figure 8: The (augmented) causal graphs of the SCM M in Example 7.

Definition 24 (Equivalence) [Bongers et al., 2021, Definition 2.5] An SCM M = (V,W,X ,P, f) is equivalent to an SCM
M̃ = (V,W,X ,P, f̃) if for all v ∈ V , for P-a.a. xW ∈ XW and for all xV ∈ XV ,

xv = fv(xV , xW ) ⇐⇒ xv = f̃v(xV , xW ).

Definition 25 (Counterfactual equivalence) [Bongers et al., 2021, Definition 4.5] An SCM M = (V,W,X ,P, f) is
counterfactually equivalent to an SCM M̃ = (Ṽ , W̃ , X̃ , P̃, f̃) w.r.t. O ⊆ V ∩ Ṽ if for any T1 ⊆ O and xT1

∈ XT1
, and

any T2 ⊆ O′ and xT2
∈ XT2

,

PMtwin(X(O∪O′)\(T1∪T2) | do(XT1 = xT1 , XT2 = xT2))

= PM̃twin(X(O∪O′)\(T1∪T2) | do(XT1 = xT1 , XT2 = xT2)).

Definition 26 (Directed global Markov property) Let G = (V,E,H) be a DMG and P(XV ) a probability distribution
on XV =

∏
v∈V Xv for standard measurable spaces Xv. We say that the probability distribution P(XV ) satisfies the

directed global Markov property relative to G if for subsets A,B,C ⊆ V the set A being d-separated from B given C
implies that the random variable XA is conditional independent of XB given XC .

Theorem 27 (Directed Markov property for SCMs [Forré and Mooij, 2017]) Let M be a uniquely solvable SCM that
satisfies at least one of the following three conditions:

(1) M is acyclic;

(2) all endogenous state spaces Xv are discrete and M is ancestrally uniquely solvable;

(3) M is linear and each of its causal mechanisms {fv}v∈V has a nontrivial dependence on at least one exogenous
variable, and P(XW ) has a density w.r.t. the Lebesgue measure on RW .

Then its observational distribution P(XV ) exists, is unique and satisfies the directed global Markov property relative to
G(M).

Definition 28 (Generalized directed global Markov property Forré and Mooij [2017]) Let G = (V,E,H) be a DMG
and P(XV ) a probability distribution on XV =

∏
v∈V Xv for standard measurable spaces Xv . We say that the probability

distribution P(XV ) satisfies the generalized directed global Markov property relative to G if for subsets A,B,C ⊆ V the
set A being σ-separated from B given C implies that the random variable XA is conditional independent of XB given XC .

Theorem 29 (Generalized directed Markov property for SCMs [Forré and Mooij, 2017, Bongers et al., 2021]) Let
M be an SCM that is simple. Then its observational distribution P(XV ) exists, is unique and it satisfies the general directed
global Markov property relative to G(M)

B MORE EXAMPLES

Example 8 (ID-algorithm) Pearl’s do-calculus is proved to be sound and complete (under some conditions) for identifying
interventional distributions given a causal graph [Pearl, 1995a, Huang and Valtorta, 2006]. Using a causal graph and
observational distribution as inputs, the ID-algorithm, as a sound and complete algorithm, systematically outputs a



functional of the observational distribution to the target interventional distribution if it is identifiable and outputs FAIL if it
is not [Tian and Pearl, 2002, Shpitser and Pearl, 2006, Huang and Valtorta, 2008]. Various variants of the ID-algorithm
exist, each with different targets and inputs (see e.g., Kivva et al. [2023] and the references therein).

One such variant, the s-ID-algorithm, is a sound and complete algorithm for the s-identification problem, whose goal is
to identify interventional distributions on a subpopulation (P(XA | do(XT = xT ), XS = 1)) given a causal graph with
selection mechanism (Gs) and selected observational distribution (P(XV | XS = 1)) [Abouei et al., 2024a, Theorem 1,
Corollary 2].1 As we shall see, the conditioning operation can help simplify some parts of the original proof.

For simplicity, we only consider the single-variable case via the conditioning operation. In the setting of Abouei et al.
[2024a], there are no latent variables. Therefore, if T = {t}∩AncGs(S) = ∅, then there are no bidirected edges connecting
to t in Gs

|S , which implies that P(XA | do(XT = xT ), XS = 1) is identifiable by Tian and Pearl [2002, Theorem 1]. Now,

assuming that A
d

⊥
Gs

X

T | S, the second rule of Pearl’s do-calculus provides the identification result. Combining these two

gives a sound and complete algorithm for the s-identification problem [Abouei et al., 2024a, Theorem 1].

Besides, if T ∩AncGs(S) = ∅, then one can also consider identifying the conditional causal effect on the subpopulation
P(XA | do(XT = xT ), XB , XS = 1) from a graph with latent variables and selected observation distribution P(XV |
XS = 1), by first applying the conditioning operation on Gs to get Gs

|S and then applying the classical ID-algorithm on
Gs

|S for conditional causal effect with latent variables.2 This result seems to be new in the literature to our knowledge.3

Similar generalizations can be made for other variants of the ID-algorithm, by first applying the conditioning operation on
the graph and then applying the corresponding version of the ID-algorithm to the conditioned graph.

However, one should note that applying the ID-algorithm to the conditioned graph alone can hardly give a complete
algorithm in general, due to the abstraction nature of the conditioning operation. For example, in the case of the s-ID-
algorithm, we can use the conditioning operation to handle cases where T ∩ AncGs(S) = ∅, but a complete algorithm

should also be able to address cases where T ∩ AncGs(S) ̸= ∅ or T
d

⊥
Gs

X

A | S (see Abouei et al. [2024a, Theorem 1]),

which can be tackled by combining with the second rule of Pearl’s do-calculus.

Example 9 (Instrumental variables) In some situations, we cannot achieve point identification results, but we can derive
informative bounds for target causal effects. A well-known example is the instrumental inequality [Pearl, 2009, Balke and
Pearl, 1994, 1997, Pearl, 1995b]. More recent advances include, e.g., showing that the instrumental inequality is sharp
for finite discrete variables under certain constraints on the cardinality of the variables [Van Himbeeck et al., 2019], and
extending the bounds to continuous outcomes [Zhang and Bareinboim, 2021]. Not only can the original instrumental
inequality for binary variables be extended to the case with certain selection bias immediately via the conditioning operation,
but also the results we mentioned above.

The inequality was derived for the SCMs with the graph G(M) shown in Figure 9. Similarly to Example 3, if we know that

for an SCM M̃ with latent variables L and latent selection S ∈ S , the causal graph G

((
M̃\L

)
|S

)
takes the form shown

in Figure 9, then we can conclude that the same form of inequality also holds for M̃ under the subpopulation.

If we further assume a continuous linear model Y = βX + f(U) in M , then the parameter β is identifiable when
Cov(X,Y ) ̸= 0 and is estimated as CovM (T,Y )

CovM (X,Y ) , where selection bias is implicitly ruled out [Imbens et al., 2000]. With
the conditioning operation, we can see that the parameter remains identifiable from the selected conditional distribution
PM̃ (T,X, Y | S ∈ S) with the same formula CovM̃ (T,Y |S∈S)

CovM̃ (X,Y |S∈S) even under certain forms of selection bias. Therefore, we
have extended the identification result to include a certain form of selection bias.

Example 10 (Causal discovery) Many causal discovery algorithms address unobserved common causes, exclude selection
bias, and output a single graph. In fact, we can interpret the output of such algorithms as G((M\L)|S) where M is a

1Note that in the usual c-ID-algorithm for conditional interventional distribution, the input is P(XV ) but not P(XV | XS = 1).
2If T ∩AncGs(S) ̸= ∅, one can still apply the corresponding ID-algorithm to Gs

|S , but the algorithm would output an expression for
P(XA(xT ) | XS = 1) instead of P(XA | do(XT = xT ), XS = 1).

3When we were writing this manuscript, we found that an s-ID-algorithm under latent variables was proposed in Abouei et al. [2024b].
However, they only consider identification for the unconditional interventional distribution P(XA | do(XT = xT ), XS = 1) not for the
conditional interventional distribution P(XA | do(XT = xT ), XB , XS = 1).
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M̃\L

)
|S

)
are graphs for the instrumental variables model. G is the graph of a model with

selection bias whose marginalized and conditioned graph is G
((

M̃\L

)
|S

)
while G̃ is its MAG representation.

simple (or acyclic) SCM with latent nodes L, selection mechanism XS ∈ S , and L ∩ S = ∅. This can give a certain causal
interpretation to the output of these algorithms under selection bias even if they exlcude selection bias in their original
formulations.

For one instance, Wang and Drton [2023] explored recovering causal graphs uniquely from data generated by an acyclic
linear non-Gaussian SCM with a bow-free graph (i.e., no simultaneous bidirected and directed edges between two variables)
and rule out selection bias. Assume that the data are generated from an acyclic linear SCM M and there is no latent common
cause or selection bias between any two variables that have a direct causal effect according to M . Then, according to the
properties of marginalization and the conditioning operation, (ML)|S is an acyclic linear SCM with a bow-free graph (see
Proposition 5 and Bongers et al. [2021, Proposition 5.11, C.5]). If the exogenous distribution of (ML)|S is non-Gaussian,
then we can use the algorithm BANG in Wang and Drton [2023] to recover the graph of (M\L)|S .

If we know from data or prior knowledge that a node t is not an ancestor of S, then we can give a causal interpretation
of Xt in the discovered graph and apply causal identification results to identify PM (XO | do(Xt = xt), XS ∈ S) with
O := V \ (L ∪ S). For example, if the data are selected by XS = xS , we can sometimes read off whether t /∈ AncG(M)(S)
from a PAG (Partial Ancestral Graphs) or a MAG [Spirtes et al., 1995a, Richardson and Spirtes, 2002].4

In addition to the causal discovery algorithms mentioned above, some causal model selection methods, such as the inflation
technique [Wolfe et al., 2019], can also be generalized to deal with selection bias via the conditioning operation.

Example 11 (Mediation analysis and fairness) Mediation analysis is crucial in many fields such as epidemiology, natural
science, and policy making, where understanding “path-specific” causal effects is often necessary [Pearl, 2001, 2014, 2009,
Robins and Greenland, 1992].

Traditional methods relying on linear regression, but linear SCMs have been proven problematic due to potential nonlinear
interactions among variables, latent common causes, and selection bias in real-world problems [Shpitser, 2013]. With
the help of potential outcomes and causal graphs of SCMs, Pearl [2014] and Shpitser [2013] study methods to perform
mediation analysis when there are nonlinear functional dependencies and unobserved common causes. By extending the
interpretation of bidirected edges to also represent selection bias, we can extend these results to account for selection bias
immediately, similarly to the approach in previous examples.

For another example on how the conditioning operation is helpful, suppose that one is interested in the effect of, e.g., A
(obesity) on Y (mortality) while conditioning a mediating variable on the path between them to a specific value (e.g., S = 1:
having heart disease) [Smith, 2020]. The graph G is shown in Figure 10. Applying the graphical conditioning operation
gives G|S . This shows that we can obtain the direct causal effect given such conditioning via back-door adjustment on L.

This extension indicates that the conditioning operation can also play a significant role in fairness analysis [Nabi and
Shpitser, 2018, Chiappa, 2019, Kusner et al., 2017, Zhang and Bareinboim, 2018]. Thus, we can adapt existing results to
address selection bias, ensuring more robust and reliable causal inferences in the presence of such biases.

4Note that if t ∈ AncG(M)(S), we can still apply the identification result to the interventional distribution given do(Xt = xt)
in M|XS∈S , but the causal identification results will output a formula for PM (XO(xt) | XS ∈ S) instead of PM (XO | do(Xt =
xt), XS ∈ S).
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C PROOFS

C.1 PROOF OF PROPOSITION 5

If M is a simple (resp. acyclic) SCM with conditioned SCM M|XS∈S , then the conditioned SCM M|XS∈S is simple (resp.
acyclic). If M is also linear, then so is M|XS∈S .

Proof We first show that the conditioning operation preserves simplicity of SCMs. First note that marginalization preserves
simplicity [Bongers et al., 2021, Proposition 8.2]. Also note that both merging exogenous random variables and changing
the exogenous probability distribution preserve simplicity. Hence, the conditioning operation preserves simplicity.

We give the proof of the fact that the conditioning operation preserves acyclicity of SCMs. First note that merging exogenous
random variables and updating the exogenous probabilistic distribution preserve acyclicity, since exogenous random variables
do not have parents. Then since marginalization preserves acyclicity [Bongers et al., 2021, Proposition 5.11], we get that the
conditioning operation preserves acyclicity.

We now show that the conditioning operation preserves linearity of SCMs. Merging exogenous random variables and
changing the exogenous probability distribution preserve linearity. Marginalization also preserves linearity [Bongers et al.,
2021, Proposition C.5]. Combining these ingredients, we can conclude that the conditioning operation also preserves
linearity of SCMs.

C.2 PROOF OF LEMMA 6

Assume Assumption 1. Then we have
(
Mdo(XT=xT )

)
|XS∈S =

(
M|XS∈S

)
do(XT=xT )

for any T ⊆ O \AncGa(M)(S) and
xT ∈ XT .

Proof In the proof, we set B := AncGa(M)(S) and O := V \ S. We check the definition one by one. For(
M|S

)
do(XT=xT )

:= (V̂ , Ŵ , X̂ , P̂, f̂), we have:

• V̂ = V \ S;

• Ŵ = (W \B) ∪̇ {⋆W } with ⋆W = B ∩W ;

• X̂ = XSc\(B∩W ) ×X⋆W
;

• P̂ = P̂
(
XW\B

)
⊗ P̂(X⋆W

) = P
(
XW\B

)
⊗ PM (XW∩B | XS ∈ S);

• f̂
(
xV̂ , xŴ

)
=

(
fO\T

(
xO, g

S
(
xO, xW\B , x⋆W

)
, xW\B , x⋆W

)
, xT

)
.

We write B̃ := AncGa(Mdo(XT =xT ))(S). Note that since T ∩B = ∅, it follows that B̃ = B. Since T ∩B = T ∩ B̃ = ∅, we
have PM (XB) = PMdo(XT =xT )

(XB̃). Hence, we can conclude that

PM (XW∩B | XS ∈ S) = PMdo(XT =xT )
(XW∩B̃ | XS ∈ S).

Combining all the above ingredients, we have for
(
Mdo(XT=xT )

)
|S := (

ˆ̂
V,

ˆ̂
W,

ˆ̂X ,
ˆ̂
P,

ˆ̂
f):

• ˆ̂
V = V \ S;

• ˆ̂
W =

(
W \ B̃

)
∪̇ {⋆W } = (W \B) ∪̇ {⋆W } with ⋆W = B̃ ∩W = B ∩W ;



• ˆ̂X = XSc\(B̃∩W ) ×X⋆W
= XSc\(B∩W ) ×X⋆W

;

• ˆ̂
P = P(XW\B̃)⊗

ˆ̂
P(X⋆W

) = P(XW\B̃)⊗PMdo(XT =xT )
(XW∩B̃ | XS ∈ S) = P(XW\B)⊗PM (XW∩B | XS ∈ S);

• For the causal mechanism, we have

ˆ̂
f
(
x ˆ̂
V
, x ˆ̂

W

)
= f̃O

(
xO, g̃

S
(
xO, xW\B̃ , x⋆W

)
, xW\B̃ , x⋆W

)
=

(
fO\T

(
xO, g̃

S
(
xO, xW\B , x⋆W

)
, xW\B , x⋆W

)
, xT

)
,

where f̃ is the causal mechanism of Mdo(XT=xT ) and g̃S is the (essentially unique) solution function of Mdo(XT=xT ) w.r.t.
S. Note that gS = g̃S as T ∩B = ∅. Overall, it is then easy to see that

(
Mdo(XT=xT )

)
|S =

(
M|S

)
do(XT=xT )

.

C.3 PROOF OF THEOREM 8

Assume Assumption 1. Then we have

(1) PM|XS∈S (XO) = PM (XO | XS ∈ S);
(2) for any T ⊆ V \AncGa(M)(S) and xT ∈ XT ,

PM|XS∈S

(
XO\T | do(XT = xT )

)
= PM

(
XO\T | do(XT = xT ), XS ∈ S

)
;

(3) for any T1 ⊆ V \AncGa(M)(S) and xT1
∈ XT1

, and any T2 ⊆ (V \AncGa(M)(S))
′ and xT2

∈ XT2
,

P(M|XS∈S)
twin(X(O∪O′)\(T1∪T2) | do(XT1

= xT1
, XT2

= xT2
))

= PMtwin(X(O∪O′)\(T1∪T2) | do(XT1
= xT1

, XT2
= xT2

), XS ∈ S).

Proof We first prove (1) of Theorem 8. Let g : XW → XV be the essentially unique solution function of M . Write
O := V \ S and B := AncGa(M)(S) and ⋆W = B ∩W . First note that the function ĝ : XW\B ×X⋆W

→ XV \S with

ĝ(xW\B , x⋆W
) := gO(xW\B , x⋆W

)

is the essentially unique solution function of M|S . In fact, for P(XW )-a.a. xW ∈ XW and all xV ∈ XV{
xS = gS(xW )
xO = gO(xW )

⇔
{

xS = fS (xV , xW )
xO = fO (xV , xW )

⇔
{

xS = gS (xO, xW )
xO = fO (xV , xW )

⇔
{

xS = gS (xO, xW )
xO = fO

(
xO, g

S(xO, xW ), xW

)
.

Let P̂ denote the exogenous probability distribution of M|S , that is, P̂ := P(XW\B) ⊗ P̂(X⋆W
), where P̂(X⋆W

) =
PM (XW∩B | XS ∈ S). Recall that we have

PM (XV ) = g∗ (P(XW )) (XV ) i.e. PM (XV ∈ A) = P(XW ∈ g−1(A))

for any measurable subset A ⊆ XV . Then we have for any measurable subset A ⊆ XV

PM|S (XO ∈ A) = P̂
(
XŴ ∈ ĝ−1(A)

)
= P̂

(
XŴ ∈ g−1

O (A)
)

= PM (XW ∈ g−1
O (A) | XS ∈ S)

= PM (XO ∈ A | XS ∈ S) .

We then show (2) of Theorem 8. Lemma 6 gives that
(
M|S

)
do(XT=xT )

=
(
Mdo(XT=xT )

)
|S for any T ⊆ V \ B and

xT ∈ XT . We then have for T ⊆ V \B and xT ∈ XT

PM|S

(
XO\T | do(XT = xT )

)
= P(M|S)do(XT =xT )

(
XO\T

)
= P(Mdo(XT =xT ))|S

(
XO\T

)
= PMdo(XT =xT )

(XO\T | g̃S(XW ) ∈ S)
= PM (XO\T | do(XT = xT ), gS(XW ) ∈ S)
= PM (XO\T | do(XT = xT ), XS ∈ S),



where g̃ is the essentially unique solution function of Mdo(XT=xT ), which satisfies g̃S(xW ) = gS(xW ) for P(XW )-a.a.
xW ∈ XW .

We finally show (3) of Theorem 8. Firs note that AncGa(Mtwin)(S) = AncGa(Mtwin)(S
′) and

PMtwin(XAncGa(Mtwin)(S)∩W | XS ∈ S) = PMtwin(XAncGa(Mtwin)(S
′)∩W | XS′ ∈ S ′).

By the definition of conditioning operation and twinning operation, we have
(
(M twin)|S

)
|S′ =

(
(M twin)|S

)
\S′ =

(M|S)
twin, where S ′ ⊆ XS′ is such that S ′ = S and S′ is the copy of S. We have from (2) of Theorem 8 that for any

T1 ⊆ V \AncGa(M)(S) and xT1
∈ XT1

, and for any T2 ⊆ (V \AncGa(M)(S))
′ and xT2

∈ XT2
,

P(M|S)
twin

(
X(O∪O′)\(T1∪T2) | do(XT1 = xT1 , XT2 = xT2)

)
= P((Mtwin)|S)\S′

(
X(O∪O′)\(T1∪T2) | do(XT1

= xT1
, XT2

= xT2
)
)

= P(Mtwin)|S

(
X(O∪O′)\(T1∪T2) | do(XT1

= xT1
, XT2

= xT2
)
)

= PMtwin(X(O∪O′)\(T1∪T2) | do(XT1
= xT1

, XT2
= xT2

), XS ∈ S).

C.4 PROOF OF COROLLARY 9

Assume Assumption 1 with S = S1∪S2 and S = S1×S2 with S1 ⊆ XS1
and S2 ⊆ XS2

both measurable. Then (M|S1
)|S2

,
(M|S2

)|S1
, and M|S1×S2

are counterfactually equivalent w.r.t. V \AncGa(M)(S1 ∪ S2).

Proof

Write O := V \ (S1 ∪ S2). From (3) of Theorem 8, it is easy to see that for any T1 ⊆ V \ AncGa(M)(S1 ∪ S2) and
xT1

∈ XT1
, and any T2 ⊆ (V \AncGa(M)(S1 ∪ S2))

′ and xT2
∈ XT2

,

P((M|S1
)|S2)

twin

(
X(O∪O′)\(T1∪T2) | do(XT1 = xT1 , XT2 = xT2)

)
= P(M|S1)

twin

(
X(O∪O′)\(T1∪T2) | do(XT1

= xT1
, XT2

= xT2
), XS2

∈ S2

)
= PMtwin(X(O∪O′)\(T1∪T2) | do(XT1

= xT1
, XT2

= xT2
), XS1

∈ S1, XS2
∈ S2)

= P(M|S2)
twin

(
X(O∪O′)\(T1∪T2) | do(XT1

= xT1
, XT2

= xT2
), XS1

∈ S1

)
= P((M|S2

)|S1)
twin

(
X(O∪O′)\(T1∪T2) | do(XT1 = xT1 , XT2 = xT2)

)
.

Also note that
P(M|S1×S2)

twin

(
X(O∪O′)\(T1∪T2) | do(XT1

= xT1
, XT2

= xT2
)
)

= PMtwin(X(O∪O′)\(T1∪T2) | do(XT1
= xT1

, XT2
= xT2

), XS1
∈ S1, XS2

∈ S2).

C.5 PROOF OF PROPOSITION 10

Assume Assumption 1 and let L ⊆ V \ S. Then we have (M\L)|S and (M|S)\L are counterfactually equivalent.

Proof Since (M\L)|S and (M|S)\L have the same exogenous probability distribution, which equals to PM (XW | XS ∈ S).
Also note that (M\L)\S = (M\S)\L, since S ∩L = ∅ [Bongers et al., 2021, Proposition 5.4]. Combining these implies that
(M\L)|S and (M|S)\L are counterfactually equivalent.



C.6 PROOF OF PROPOSITION 11

Let M be a simple SCM with conditioned SCM M|XS∈S . Then G(M|XS∈S) is a subgraph of G(M)|S .

Proof Recall that we call a subset A of V ancestral if AncG(M)(A) = A and call an SCM M ancestrally uniquely solvable
if for every ancestral subset A of V the SCM M is essentially uniquely solvable w.r.t. A. Since simple SCM is ancestrally
uniquely solvable, we have that G(M\S) is a subgraph of G(M)\S by Bongers et al. [2021, Proposition 5.11]. Note
that in Ga(M|XS∈S) all the exogenous ancestors of S are merged, so in G(M|XS∈S) there might be bidirected edges
between pairs of nodes that are ancestors or siblings of S (the presence of a bidirected edge between a pair depends on the
functional relationships in the SCM M|XS∈S ) but no other new bidirected edge in G(M|XS∈S) compared to G(M). From
the definition of the conditioned DMG, we can conclude that G(M|XS∈S) is a subgraph of G(M)|S

C.7 PROOF OF COROLLARY 13

If M is simple, then PM|XS∈S (XO) satisfies the generalized directed global Markov property relative to G(M)|S . If M is
acyclic, then PM|XS∈S (XO) satisfies the directed global Markov property relative to G(M)|S .

Proof If M is a simple SCM, Proposition 5 implies that M|XS∈S is a simple SCM. Since M|XS∈S is a simple SCM, the
observational distribution PM|XS∈S (XO) satisfies the generalized directed global Markov property relative to G(M|XS∈S)

by Theorem 29. From Proposition 11, we know that G(M|XS∈S) is a subgraph of G(M)|S . Hence, PM|XS∈S (XO) also
satisfies the generalized directed global Markov property relative to G(M)|S .

If M is an acyclic SCM, then by Proposition 5 M|XS∈S is an acyclic SCM. Therefore the observational distribution
PM|XS∈S (XO) satisfies the generalized directed global Markov property relative to G(M|XS∈S) by Theorem 27. Again
Proposition 11 implies that G(M|XS∈S) is a subgraph of G(M)|S . We can therefore conclude that PM|XS∈S (XO) satisfies
the directed global Markov property relative to G(M)|S .

Remark 30 In other words, conditioning operation on SCM will not generate new directed causal path from the graph
of the original SCM. If one starts from a structurally minimal SCM M (we call an SCM structurally minimal if for every
causal mechanism fv the number of the variables that fv depends on cannot be reduced, see Bongers et al. [2021, Definition
2.10]), then the conditioned SCM M|(XS∈S) may not be structurally minimal (similar things happen to marginalization).
Reflecting it in the level of causal graphs means that if one starts with a causal graph in which directed edges are present if
and only if there are some causal effects, then she may end up with a graph in which directed edges only indicate possible
causal effects and no directed edges mean no direct effects surely. A causal effect exists in some subpopulation must exist in
the whole population but not the other way around.

D MORE EXAMPLES

D.1 EXAMPLE OF DEFINITION 4

Here we show an example of the purely graphical conditioning operation, i.e., Definition 4. Assume we are given a graph G
as shown in Figure 11. Then conditioning on the node V5 gives the graph G|V5

shown in Figure 11.

D.2 MORE DETAILS ABOUT EXAMPLE 6

We explain why one has two different answers to the same question in Example 6 based on G and G̃, respectively. For an
SCM with graph G, one has:

TCE(Y ; c′ → c) := E[F | do(C = c)]− E[F | do(C = c′)] = E[F | C = c]− E[F | C = c′].
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Figure 11: DMG G and its Conditioned DMG G|V5
.

On the other hand, for an SCM with graph G̃, one has:

TCE(Y ; c′ → c) := E[F | do(C = c)]− E[F | do(C = c′)]

=
∑
a

(E[F | C = c, A = a]− E[F | C = c′, A = a]) P(A = a)

̸=
∑
a

(E[F | C = c, A = a]P(A = a | C = c)− E[F | C = c′, A = a]P(A = a | C = c′)) (in general)

= E[F | C = c]− E[F | C = c′],

where in the second equality we use the Back-door theorem allowed by the structure of the graph G̃.

E SOME IMPORTANT CAVEATS ON MODELING INTERPRETATION

In Section 2, we presented the conditioning operation as a purely mathematical operation and derived some mathematical
properties of it. In this subsection, we shall make some remarks on how to interpret the conditioned SCMs appropriately to
avoid confusion in modeling applications.

The subtleties are about intervening on ancestors of selection nodes. In this case, conditioning and interventions are not
commutative as we showed before. Therefore, one should be careful about the order of these two operations. On the one
hand, if we first intervene and second condition on descendants of intervened variables, then the selected subpopulation
will also change according to the intervention. On the other hand, first conditioning and second intervening on ancestors of
selection nodes has a “counterfactual flavor”. Suppose that an SCM M with three variables T (“treatment”), Y (“outcome”)
and S (“selection") has causal graph T Y S. Intuitively, “first-conditioning-second-intervening” indicates that we
first observe the results of the treatment and select units with specific values (say S = s) and fix this subpopulation. After
that, we go back to then perform an intervention (say do(T = t)) on this fixed selected subpopulation instead of the total
population. Mathematically, we have

P((M|S=s)do(T=t))(Y ) = PM|S=s
(Y | do(T = t))

= PM (Yt | S = s)

= PMtwin(Y ′ | do(T ′ = t), S = s)

̸= P(Y | do(T = t), S = s), (in general)
= P(

(Mdo(T=t))|S=s

)(Y )

where we used the language of potential outcomes. In Pearl’s terminology, this mixes different rungs: a rung-two query in
the conditioned SCM is equivalent to a rung-three query in the original SCM.

As far as we know, there are two possible ways to use the conditioning operation for modeling without introducing confusion:

• before (or after) performing the conditioning operation, marginalizing out all the ancestors of the selection nodes, so
that one can no longer intervene on the ancestors of the selection nodes;

• specifying in the conditioned SCM and its graph which variables are ancestors of the selection nodes in the original
SCM, and marking them as non-intervenable (e.g., making them dashed).5

5This means that we obtain a graph with mixed interpretation in the sense that some part of the graph is causal and some part is
non-causal (purely probabilistic).



Remark 31 When the selection variables do not have any intervenable ancestors (e.g., all the ancestors of the selection
nodes are latent), one can safely apply the conditioning operation without any extra steps.

As the above discussions showed, there are some relations between conditioned SCMs and counterfactual reasoning. It is an
interesting future work to explore the relation further. There are many important notions defined via nested counterfactual
quantity such as various notions of fairness Kusner et al. [2017], Zhang and Bareinboim [2018]. Although the conditioned
SCM is only able to express unnested counterfactual quantity, we can rewrite nested counterfactual quantity as unnested one
by the Counterfactual Unnesting Theorem [Correa et al., 2021, Theorem 1].
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