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Abstract
Summary: Drug response is conventionally measured at the cell level, often quantified by metrics like IC50. However, to gain a deeper under
standing of drug response, cellular outcomes need to be understood in terms of pathway perturbation. This perspective leads us to recognize a 
challenge posed by the gap between two widely used large-scale databases, LINCS L1000 and GDSC, measuring drug response at different lev
els—L1000 captures information at the gene expression level, while GDSC operates at the cell line level. Our study aims to bridge this gap by in
tegrating the two databases through transfer learning, focusing on condition-specific perturbations in gene interactions from L1000 to interpret 
drug response integrating both gene and cell levels in GDSC. This transfer learning strategy involves pretraining on the transcriptomic-level 
L1000 dataset, with parameter-frozen fine-tuning to cell line-level drug response. Our novel condition-specific gene–gene attention (CSG2A) 
mechanism dynamically learns gene interactions specific to input conditions, guided by both data and biological network priors. The CSG2A net
work, equipped with transfer learning strategy, achieves state-of-the-art performance in cell line-level drug response prediction. In two case 
studies, well-known mechanisms of drugs are well represented in both the learned gene–gene attention and the predicted transcriptomic pro
files. This alignment supports the modeling power in terms of interpretability and biological relevance. Furthermore, our model’s unique capacity 
to capture drug response in terms of both pathway perturbation and cell viability extends predictions to the patient level using TCGA data, dem
onstrating its expressive power obtained from both gene and cell levels.
Availability and implementation: The source code for the CSG2A network is available at https://github.com/eugenebang/CSG2A.

1 Introduction
Drug response prediction plays a pivotal role in cancer treat
ment and personalized medicine. Drug response can be de
fined at multiple levels, including the gene (transcriptome) 
level, cell line (in vitro) level, and patient (clinical) level. At 
the transcriptomic-level, the task involves predicting per
turbed gene expression profiles in response to chemical treat
ments (Pham et al. 2021, Zhu et al. 2021). Cell line-level 
drug response prediction utilizes basal gene expression pro
files and chemical information to predict cell viability meas
ures like inhibitory concentration 50 (IC50) values (Garnett 
et al. 2012, Rees et al. 2016), while patient-level prediction 
aims to distinguish responders from non-responders (Ding 
et al. 2016, Huang et al. 2020).

Conventionally, drug response has been measured at the 
cell level, often quantified by metrics such as IC50. Utilizing 
large-scale databases, predicting cell line-level drug responses 
from transcriptomic profiles is well-explored (Chen and 
Zhang 2021, Partin et al. 2023), supported by biological rele
vance as drug–target binding initiates pathway perturbations 
influencing cellular outcomes (Pak et al. 2023). This cascade 
of perturbation propagates through the intracellular gene– 
gene network, subsequently influencing changes in both tran
scriptomic and cellular measurements. Hence, a deeper 

understanding of drug response requires modeling intricate 
pathway perturbations influencing cellular outcomes.

However, this comprehensive endeavor faces a substantial 
challenge arising from the existing gap between two exten
sively utilized drug response databases: LINCS L1000 
(Library of Integrated Network-based Cellular Signatures) 
(Subramanian et al. 2017) and GDSC (Genomics of Drug 
Sensitivity in Cancer) (Garnett et al. 2012). LINCS provides 
gene-level drug response measures, while GDSC operates at 
the cell line level. This measurement level gap presents a sub
stantial obstacle in comprehensive int egration for modeling 
drug response mechanisms.

On the other hand, existing models focus on single-level 
drug responses, particularly at the cell level, overlooking the 
essential integration of gene-level information for compre
hensive modeling of drug response. AutoEncoder-based 
approaches (Chiu et al. 2019, Ramp�a�sek et al. 2019) project 
omics profiles into lower dimensions, losing gene context and 
interactions. Graph neural network (GNN)-based 
approaches (Nguyen et al. 2022, Shin et al. 2022) face addi
tional limitations due to non-condition-specific knowledge, 
such as fixed structures protein–protein interaction networks 
or pathway information.

In response to these challenges, we introduce a novel ap
proach that is to bridge the gap between LINCS L1000 and 
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GDSC. We revisit attention mechanisms to model chemical- 
induced gene–gene network perturbations and employ a 
transfer learning approach to learn from the transcriptomic 
landscape, transferring knowledge obtained from gene-level 
to cell line-level drug responses (Fig. 1).

Our trans-level transfer learning involves pretraining on 
LINCS L1000 and fine-tuning on cell line-level drug 
responses. This procedure enables our model to adeptly cap
ture the chemical-induced perturbations in gene interactions, 
comprehensively understanding gene-level interactions for 
transfer to higher-level drug response. The key component of 
our approach is the condition-specific gene–gene attention 
(CSG2A) mechanism, designed to dynamically learn gene 
interactions specific to input conditions, guided by both data 
and biological network priors.

Since its re-discovery by the transformer model (Vaswani 
et al. 2017), attention mechanism plays a crucial role in effi
ciently learning relevant relations of input entities through 
all-pairwise similarity computation. Harnessing the expres
siveness of self-attention, our CSG2A mechanism efficiently 
learns dependencies among genes at the transcriptome scale 
without relying on predefined features. Additionally, our 
unique design choice of leveraging attention scores as neural 
network parameters facilitates seamless knowledge transfer. 
To further guide this learning process with prior knowledge, 
we introduce a protein–protein interaction (PPI) adja
cency matrix.

Our CSG2A network, coupled with trans-level transfer 
learning strategy, achieves state-of-the-art performance com
pared to existing drug response prediction models on the 
GDSC dataset. Case studies further validate the alignment of 
learned CSG2A with the known mode of action of drugs, 
highlighting the interpretability and biological relevance of 
our model. Additional experiments demonstrate its adapt
ability to predict drug responses in cancer patients from the 
TCGA dataset.

2 Related work
2.1 Large-scale drug response datasets
2.1.1 Gene (transcriptome) level
The LINCS connectivity map (CMAP) L1000 (Subramanian 
et al. 2017) is a large-scale pharmacogenomics screening 
dataset from the LINCS. This dataset contains flow 
cytometry-based transcriptomic responses of cell lines to vari
ous perturbations, covering a wide spectrum of chemical 
treatments, cell types, and experimental conditions. The land
mark genes in the LINCS L1000 dataset refer to a selected 
representative 978 genes directly measured across all assays, 
providing a condensed snapshot of cellular transcrip
tomic dynamics.

2.1.2 Cell line (in vitro) level
There are several comprehensive resources for understanding 
the relationship between genomic features and drugs at the 
cell line level: GDSC (Garnett et al. 2012) and NCI-60 
(Shoemaker 2006). GDSC, one of the representative ones, 
provides drug sensitivity profiles for a variety of anti-cancer 
drugs, illustrating how different cancer cell lines respond to 
these drugs based on their genomic features.

2.1.3 Patient (clinical) level
The Cancer Genome Atlas (TCGA) (Weinstein et al. 2013) is 
a crucial resource that provides molecular characterization 
data for patients with various types of cancer. While TCGA 
primarily focuses on understanding the genomic landscape of 
cancers, it helps identify therapeutic targets, biomarkers, and 
patient subgroups, ultimately contributing to the develop
ment of more effective and personalized cancer treatments.

2.2 Drug response prediction in multiple levels
There has been various deep-learning approaches proposed 
for predicting drug responses on the cell level including 
autoencoders (Chiu et al. 2019, Ramp�a�sek et al. 2019), 
GNNs (Nguyen et al. 2022, Shin et al. 2022), and other 
architectures (Deng et al. 2020, Chawla et al. 2022, Jiang 
et al. 2022) (Supplementary Methods). However, multi- 
leveled transfer learning strategy from the gene level to higher 
levels has been rarely explored.

Dr.VAE (Ramp�a�sek et al. 2019) is the only work attempt
ing to transfer knowledge from gene expression level drug re
sponse to cell line drug response prediction. Utilizing the 
Variational AutoEncoder framework, the authors pretrained 
models on LINCS L1000 data and applied additional classi
fiers to predict cell line-level drug responses. However, Dr. 
VAE trains separate models for each drug without consider
ation of various chemical treatment conditions, only allowing 
transfer learning on the drugs enlisted in the LINCS L1000 
dataset. This model design resulted in a limited ability to pre
dict responses across various drugs and treatment conditions 
effectively.

3 Materials and methods
3.1 Condition-specific gene–gene attention network
We define the problem of predicting chemical-perturbed gene 
expression profile, denoted as gc, as the design of a 
condition-specific prediction model pθ. The predictive frame
work for the chemical-induced transcriptomic profile with 
the condition-specific neural network pθ with parameters θ 
can be expressed as: 

gc ¼ pðθjcÞðg0Þ ¼ pðθjg0;S;d;tÞðg0Þ:

An essential aspect of this formulation is the explicit depen
dence of the parameters θ on the set of conditions 
c ¼ ðg0; S;d; tÞ. Here, g0 represents the basal gene expression 
profile before compound treatment, S denotes the chemical 
structure, and d and t as treatment dose and time, respec
tively. This formulation establishes a comprehensive frame
work for the prediction of chemical-induced gene expression 
profiles, where the neural network’s behavior is intricately 
linked to the specific conditions.

3.1.1 Chemical condition encoder
Chemical-induced transcriptomic perturbation results from a 
biological cascade initiated by the binding of a chemical to its 
target proteins. The impact of this perturbation is mainly dic
tated by the chemical’s structure, with additional dependen
cies on exposure dosage and time. Therefore, encoding the 
chemical condition necessitates incorporating not only struc
tural information but also dosage and time factors.

To model the chemical condition comprehensively, we in
troduce a chemical condition encoder (CCE) (Fig. 1a). This 
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(a)

(b)

(c)

(d)

Figure 1. Overview and architecture of proposed framework. (a) Chemical condition encoder (CCE): built upon the pretrained structural encoder MAT, 
CCE generates chemical condition representations from SMILES, dosage, and treatment duration. (b) Condition-specific gene–gene attention (CSG2A) 
module: taking chemical conditions and basal gene expression as input, CSG2A module conducts self-attention after combining compound and gene 
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encoder takes structural features S, dosage d, and time t as in
put for producing a chemical condition representation DS;d;t.

The base component of our chemical structure encoder is 
the pretrained molecular attention transformer (MAT) 
(Maziarka et al. 2020). MAT is a transformer-based structure 
encoder pretrained on a masked entity prediction task with 
two million compounds from the ZINC15 database (Sterling 
and Irwin 2015). We leverage the pretrained weights pro
vided by the authors throughout our experiments. The dos
age and time conditions, scaled by 100μM and 72 h, 
respectively, are expanded to two dimensions by correspond
ing linear layers. The concatenated vector of these two ex
panded vectors and the MAT representation is then passed 
on to the final multi-layer perceptron (MLP) layer.

The mathematical representation of the chemical condition 
DS;d;t 2 RNgene can be expressed as: 

DS;d;t ¼MLPCCEð½MATðSÞ; d �Wdose; t �Wtime�Þ:

Here, ½�; �� refers to the concatenation operation, 
Wdose;Wtime 2 R1×2 are linear weights for dosage and time 
encoding, respectively, and MLPCCE denotes the final 
MLP layer.

The overall process generates the final chemical condition 
representation aligned with the dimension of the number of 
genes (Ngene). This representation is further utilized by the 
CSG2A module for modeling the perturbed gene- 
gene network.

3.1.2 CSG2A network
To predict the chemical-induced gene expression profile, we 
incorporate CSG2A values as our neural network parameters 
θ (Fig. 1b). This network is designed to capture the intricate 
relationships between genes in the treatment condition c un
der the influence of basal gene expression g0, chemical struc
ture S, dosage d and time t.

The process begins with the basal gene expression profile 
g0 and chemical representation DS;d;t obtained from the CCE. 
Then, the CSG2A module introduces a novel paradigm by 
treating neural network parameters as CSG2A values. This 
differentiation from conventional neural networks, where 
parameters are randomly initialized, enables the model to 
learn the conditional effects of both gene expression 
and drugs.

The calculation of attention values involves self-attention 
on the gene-level condition representation QðCjg0;S;d;tÞ 2

RNgene×h. This self-attention module allows for the explicit 
learning of attention scores in a gene-specific manner, which 
is crucial for capturing gene expression perturbations effec
tively. The gene-level condition representation is defined as 
the sum of the basal gene expression representation and the 
chemical condition representation: 

QðCjg0;S;d;tÞ ¼ QgþQD;
Qg ¼Wgene � g0; QD ¼Wcomp � DS;d;t;

where Wgene and Wcomp 2 RNgene×1×h represent learnable 

linear weights for the dimension expansion of gene expres
sion and chemical condition representations into hidden di
mension h. The utilization of a three-dimensional weight 
tensor W 2 RNgene×1×h with distinct weights for each gene 
ensures that both the input expression value and the context 
of each gene are considered during dimension expansion.

Subsequently, the dot product attention score matrix AQC
is calculated as αi;j ¼ QCi �Q>Cj, where αi;j denotes the atten
tion score between genes i and j. To enhance ability to cap
ture higher-order gene interactions in a biological context 
and reduce the search space by providing a starting point of 
the interactions and the scales, we integrate a PPI adjacency 
matrix (APPI) as prior knowledge as: ACSG2A ¼ AQCþAPPI.

The calculated attention score matrix directly serves as 
neural network weights. The first layer of the CSG2A network 
is a linear layer with weights equal to ACSG2A. The network 
further includes an activation layer, a dropout layer, and a fi
nal linear layer. This comprehensive design allows the CSG2A 
network to effectively capture and leverage condition-specific 
gene–gene interactions for precise predictions of perturbed 
gene expression. The detailed hyperparameters and their 
search space are detailed in Supplementary Table S1.

3.2 Trans-level transfer learning strategy
In order to learn the chemical-perturbed gene network from 
the transcriptome data and leverage such model for higher- 
level drug response predictions, we implement a trans-level 
transfer learning strategy.

3.2.1 LINCS pretraining
In the LINCS pretraining phase (Fig. 1c), our model focuses 
on predicting the chemical-induced transcriptome profile, a 
crucial step in capturing the intricate dynamics of gene ex
pression alterations under various chemical conditions. The 
inputs to this phase consist of the basal gene expression pro
file and the corresponding chemical structure for predicting 
the perturbed gene expression. Notably, our model also takes 
into account additional factors such as drug dosage and treat
ment time, enhancing its capacity to comprehend the nuanced 
aspects of chemical-induced transcriptomic changes. During 
training, our model utilizes mean-squared error (MSE) loss 
on the perturbed gene expression profile, aiming to minimize 
the gap between predicted and actual values.

A key highlight of the LINCS pretraining phase is the train
ing of the CSG2A network. This network plays a pivotal role 
in learning condition-specific gene–gene interactions, contrib
uting to the accurate prediction of perturbed gene expression 
profiles. By leveraging the diverse and extensive gene-level 
data available in LINCS, our model adapts to variations in 
gene expression induced by different chemical conditions. 
This acquired knowledge plays a critical role in the subse
quent fine-tuning process, ensuring the model’s adaptability 
and effectiveness in predicting in vitro drug responses during 
the later stages of our trans-level transfer learning strategy.

Figure 1. Continued 
expression profile representations. The resulting attention scores are summed with the PPI adjacency matrix, producing the weights θ for the CSG2A network. (c) 
Pretraining on transcriptome level drug response prediction (LINCS L1000): the basal gene expression profile undergoes CSG2A network pθfor predicting chemical- 
induced perturbed gene expression. Computational details of CSG2A from input conditions, basal gene expression, and chemical conditions are shown in panel b. (d) 
Fine-tuning on Cell line-level drug response (GDSC dataset): For trans-level transfer learning, a trainable scaling layer is introduced before the pretrained CSG2A 
network. Using the predicted perturbed gene expression and chemical condition representation from the pretrained CSG2A network, joined with scaled basal gene 
expression, the prediction head layers outputs the IC50 value.
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3.2.2 Fine-tuning on GDSC
In the GDSC fine-tuning phase (Fig. 1d), our model under
goes further refinement to seamlessly adapt to the in vitro 
drug response dynamics observed in the GDSC dataset. The 
inputs for the fine-tuning task are consistent as the pretrain
ing stage, including the basal gene expression profile and the 
corresponding chemical condition. However, the target value 
shifts to predicting the log IC50 value, a key metric in quanti
fying the drug sensitivity of cancer cells.

To facilitate a smooth trans-level transfer, accounting for 
potential batch effects across different datasets, a trainable 
scaling layer is strategically introduced. This layer serves as a 
crucial bridge between the pretrained CSG2A network and the 
GDSC dataset. Notably, we intentionally eliminate all bias 
terms within the layers of our neural network, enhancing the 
adaptability of the transfer process between distinct tran
scriptomic spaces.

The introduced scalable layer incorporates two learnable 
latent variables: mean (μ) and standard deviation (σ). By pass
ing through the scaling equation g

0

0 ¼ ðg0−μÞ=σ, the input 
basal gene expression profile (g0) is aligned with the pre
trained LINCS space. It is important to note that both the 
mean and standard deviation values function as latent varia
bles, not having a preassigned target values. This design 
choice allows the model to autonomously learn and adapt its 
scaling parameters, contributing to its transferability to 
higher-level drug response tasks. The training target is the 
log IC50 value, and the model is optimized to minimize the 
disparity between predicted log IC50 values and actual values 
using the MSE loss.

An empirical observation emphasizes the critical role of the 
LINCS pretraining phase in learning gene–gene attention, 
achieving optimal prediction performance with fully frozen 
pretrained parameters. Further details and insights into this 
observation are discussed in the Results section.

Lastly, it is important to note that the cell viability data 
from GDSC does not include information on the specific 
drug-treated conditions, such as dosage and treatment time. 
Therefore, to maintain consistency and align with the GDSC 
dataset’s data generation process, we utilized the widely ac
cepted treatment time of 72 h for IC50 measurement and the 
dosage at 10 mM, commonly used in LINCS L1000 dataset 
and also cell viability measurements, for all experiments.

3.3 Dataset and metrics
3.3.1 LINCS L1000 dataset
We downloaded the LINCS phase 1 data from GEO with ac
cession number GSE92742 (Subramanian et al. 2017). Since 
DMSO is used as a control corresponding to the compound, 
transcriptome data were obtained from the sample treated 
with DMSO as basal gene expression. A total of 649 batches 
containing samples treated with DMSO were obtained, and 
from these batches, 202 962 transcriptomic profile of sam
ples treated with compounds were obtained. We utilized the 
978 landmark genes that were measured when the LINCS 
data was produced.

3.3.2 GDSC dataset
We obtained basal gene expression profile for cell lines from 
cell model passports (Garcia-Alonso et al. 2018). The 
log 2FPKM values were transformed into robust z-scores to 
be used as input at the same level as the LINCS data. The ro
bust z-score is computed using the following equation: 

zi ¼
xi−medianðXÞ

1:4826 �MADðXÞ
;

where MAD indicates the median absolute deviation, X rep
resents the expression values for a gene for all samples in the 
data, xi is the expression level of a sample i, and zi is a robust 
z-score for the gene of sample i. Additionally, the drug re
sponse values (i.e. log IC50) for each cell line were obtained 
from GDSC (Garnett et al. 2012).

3.3.3 TCGA dataset
Using the TCGA classification information of cell lines pro
vided by GDSC, transcriptome data of patients correspond
ing to tumor samples for 21 cancer types were obtained from 
UCSC Xena (Goldman et al. 2020). For each cancer type, 
GDSC data and TCGA data were batch-corrected using 
Combat (Johnson et al. 2007) at the log 2FPKM level and 
then converted to a robust z-score. Curated data on drug 
treatment and responsiveness in TCGA patients were 
obtained from the supplementary data provided in Ding 
et al. (2016).

3.3.4 PPI network
STRING v12.0 (Szklarczyk et al. 2023) was employed as the 
biological network for prior knowledge to guide the gene- 
gene interaction learning process. To ensure the inclusion of 
confident edges, edges with a combined score greater than 
900 were selected.

4 Results and discussion
4.1 Performance on cell line drug 
response prediction
First, we applied our framework and compared with other 
state-of-the-art models in predicting cell line drug responses of 
the GDSC dataset. Aligning with the comprehensive investiga
tion by Partin et al. (2023), our evaluation encompassed a 10- 
fold cross-validation, employing four distinct data partitioning 
schemes further detailed in Supplementary Methods section.

Among the eight comparison models in our evaluation, 
two were machine learning algorithms—random forest (RF) 
and support vector machines (SVM). These models utilized 
Morgan molecular fingerprints and gene expression values as 
input features. Additionally, six deep-learning methods 
(GraphDRP, PathDNN, Precily, DRPreter, DeepCoVDR, 
and DeepTTA) were included in the comparative analysis.

Performance metrics were assessed in terms of root mean 
square error (RMSE, Equation (1)) and Pearson correlation 
coefficient (PCC, Equation (2)), measuring the distance and 
correlation between predicted and true log IC50 values, 
respectively 

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i¼1

ðyi−ŷiÞ
2

s

: (1) 

PCC ¼
Pn

i¼1ðyi−�yÞðŷi−�̂yÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1 ðyi−�yÞ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
i¼1 ðŷi−�̂yÞ2

q : (2) 

Here, n represents the number of samples, yi is the true 
value and ŷi is the predicted value of log IC50 for sample i. 
Also, �y and �̂y are the means of each values.
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Remarkably, our proposed model demonstrated state- 
of-the-art performance across all four partitioning schemes, 
exhibiting significant improvements, particularly in challeng
ing drug-blind and disjoint-set scenarios (Table 1). 
While existing deep-learning approaches have shown im
proved performances in mixed-set settings, they often exhibit 
a lack of generalizability, leading to noticeable decreases in 
performance in harsh split settings. This phenomenon may 
stem from the widely-observed overfitting tendency of deep- 
learning models, allowing conventional machine learning 
algorithms to outperform them. However, our CSG2A net
work consistently achieved the best performances in all splits, 
indicating the robust generalizability of our condition- 
specific pretraining approach to challenging valida
tion settings.

Additional experiments on the NCI-60 dataset (Shoemaker 
2006) with cell level 50% growth inhibitory concentration 
(GI50) prediction also demonstrated the outperformance of 
the CSG2A network compared to baseline models 
(Supplementary Table S2). These results underscore the 
adaptability of our model in diverse application contexts, es
pecially in the challenging grounds of drug discovery.

4.2 Pretraining gene–gene attention from 
transcriptomic landscape improves prediction
Our additional experiments reveal the significant impact of 
transfer learning from LINCS using our CSG2A network on 
enhancing drug response prediction performances. Figure 2 
illustrates the model performances of our model on GDSC 
mixed-set in RMSE, based on the variations on the inclusion 
of pretraining and freezing.

An intriguing finding is that our model achieved its best 
performance when pretrained on LINCS, and the model 
parameters were frozen during fine-tuning. Importantly, our 
analysis exposes a statistically significant drop in 

performance (paired t-test P-value < .05) on 10CV rounds 
when layers were fine-tuned (mean RMSE 0.951) compared 
to the frozen CSG2A network (mean RMSE 0.942). This is 
contrary to the conventional trend in transfer learning for 
deep models, where fine-tuning the parameters typically 
improves performance. This suggests that the gene–gene 
interactions learned from the transcriptomic landscape hold 
substantial value, and losing this context during fine-tuning 
does not contribute to performance improvement.

Moreover, pretrained models consistently exhibited supe
rior performances compared to non-pretrained models, sur
passing even the fine-tuned unfrozen model (mean RMSE 
0.985). This indicates the importance of LINCS pretraining 
in capturing the dynamics of gene–gene network perturba
tion, emphasizing its role in boosting predictive capabilities. 
We also observed a statistically significant decrease in perfor
mance when the PPI network information was not integrated 
into the attention score matrix (mean RMSE 0.945), empha
sizing the importance of informative prior knowledge.

Lastly, the performance comparison between the CSG2A 
network and a plain linear prediction model, which does not 
perform attention but just adds the chemical condition repre
sentation and the basal gene expression, empirically demon
strates the importance of utilizing the attention module for 
best performance. Additionally, we have performed perfor
mance comparison of prediction for LINCS L1000 dataset 
prediction, and also observed that our attention-based ap
proach shows superior performance compared to the plain 
linear model, shown in Supplementary Table S3.

In addition, we conducted a zero-shot investigation using 
the LINCS-pretrained CSG2A network on the GDSC dataset. 
By evaluating the Euclidean distance between gene expres
sions before and after treatment, we observed that the per
turbed gene expression points of the sensitive group were 
significantly farther from the basal gene expression points 

Table 1. Cell line drug response prediction performances on GDSC dataset with four different partitioning schemes.

Mixed-set Cell line-blind Drug-blind Disjoint-set

Models RMSE (#) PCC (") RMSE (#) PCC (") RMSE (#) PCC (") RMSE (#) PCC (")

RF 1.212 ± 0.017 0.905 ± 0.003 1.347 ± 0.058 0.881 ± 0.010 2.671 ± 0.579 0.406 ± 0.256 2.906 ± 0.220 0.370 ± 0.138
SVM 1.126 ± 0.016 0.918 ± 0.002 1.346 ± 0.062 0.881 ± 0.011 2.268 ± 0.437 0.520 ± 0.177 2.685 ± 0.350 0.450 ± 0.095
GraphDRP 

(Nguyen 
et al. 2022)

1.217 ± 0.014 0.904 ± 0.002 1.457 ± 0.050 0.859 ± 0.010 2.354 ± 0.394 0.466 ± 0.163 2.844 ± 0.458 0.356 ± 0.108

PathDNN 
(Deng 
et al. 2020)

1.154 ± 0.011 0.928 ± 0.002 1.595 ± 0.076 0.862 ± 0.014 3.257 ± 0.666 0.336 ± 0.271 3.065 ± 0.471 0.383 ± 0.128

Precily 
(Chawla 
et al. 2022)

1.138 ± 0.016 0.917 ± 0.002 1.471 ± 0.063 0.856 ± 0.013 2.825 ± 0.400 0.362 ± 0.109 2.765 ± 0.344 0.426 ± 0.093

DRPreter 
(Shin 
et al. 2022)

1.104 ± 0.078 0.922 ± 0.011 1.495 ± 0.070 0.852 ± 0.013 2.473 ± 0.360 0.443 ± 0.175 2.745 ± 0.393 0.411 ± 0.148

DeepCoVDR 
(Huang 
et al. 2023)

1.019 ± 0.015 0.935 ± 0.002 1.394 ± 0.069 0.875 ± 0.012 2.754 ± 0.245 0.387 ± 0.200 3.001 ± 0.423 0.350 ± 0.139

DeepTTA 
(Jiang 
et al. 2022)

0.974 ± 0.010 0.940 ± 0.001 1.352 ± 0.060 0.881 ± 0.011 2.322 ± 0.496 0.502 ± 0.198 2.806 ± 0.512 0.404 ± 0.125

CSG2A 
(Ours)

0.942 ± 0.011 0.944 ± 0.001 1.342 ± 0.059 0.883 ± 0.010 2.119 ± 0.397 0.611 ± 0.140 2.442 ± 0.304 0.577 ± 0.082

Model performances are assessed using RMSE and PCC metrics. The reported values represent averages and standard deviations across 10 cross-validation. 
The best performance is highlighted in bold, and the second-best performance is underlined. (RMSE, root mean square error; PCC, Pearson 
correlation coefficient).
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compared to the resistant group, demonstrating the capabil
ity of our LINCS-pretrained model to be capable of under
standing the perturbation in cellular conditions at the gene 
level. Further experimental details and results are provided in 
Supplementary Methods and Supplementary Fig. S1.

Overall, these observations underscore the success of our 
trans-level transfer learning strategy with attention module, 
highlighting the effective integration of knowledge from tran
scriptomic landscape to enhance predictions for cell line-level 
drug responses.

4.3 Condition-specific gene attention aligns with 
MoA of drugs
In this section, we showcase a case study that underscores the 
effectiveness of our model in capturing perturbed gene–gene 
interactions aligned with the mechanism of action (MoA) of 
drugs. The gene–gene attention weights for various drugs are 
visualized in Fig. 3a.

We conducted the analysis by collecting data treated with 
either fulvestrant or 5-fluorouracil (5-FU) from the test set, 
resulting in choosing 151 and 99 samples, respectively. 
Subsequently, we generated the corresponding numbers of at
tention maps for 151 and 99 samples as g0s for the two drugs 
from the GDSC fine-tuned model. These attention maps were 
then averaged for each drug to capture a common signal 
among the diverse basal gene expressions.

Following this step, we extracted the top 1000 gene pairs 
with the highest pairwise attention score matrix and all the 
genes within the pairs were utilized for downstream enrich
ment analysis. The extracted most-perturbed gene sets were 
then passed down to gene set enrichment analysis for identi
fying the pathways predominantly influenced by chemical 
treatment, using the Enrichr (Xie et al. 2021) with 
Wikipathways (Agrawal et al. 2024) gene sets. The detailed 
analysis procedure is described in Supplementary 
Methods section.

In the case of Fulvestrant, an FDA-approved selective es
trogen receptor degrader (SERD), our model highlighted 
pathways such as integrated breast cancer pathway 
(WP1984) and apoptosis (WP254) (Alves et al. 2016). These 
findings intricately align with Fulvestrant’s MoA, targeting 

estrogen receptor signaling and exhibiting anti-cancer effects, 
particularly in breast cancer (Carlson 2005). Similarly, 5-FU, 
recognized as an anti-metabolite regulating nucleotide syn
thesis essential for DNA replication (Longley et al. 2003), 
manifested perturbations in pathways such as DNA damage 
response (WP707) (De Angelis et al. 2006) and apoptosis 
modulation by HSP70 (WP384) (Grivicich et al. 2007). The 
full list of enriched pathways is listed in Supplementary Table 
S4. In addition, the identical enrichment analysis on the PPI 
network-removed CSG2A network yielded pathways that 
were not aligned with the MoA of fulvestrant and 5-FU 
(Supplementary Table S5), demonstrating on how the PPI 
network guides the attention map with biological prior 
knowledge. Moreover, performing the same investigation 
with only the “potent” samples, defined as samples with the 
lowest 25% IC50 values, resulted in enriched pathways that 
were more relevant to the MoA of the two drugs, with 
smaller scales of adjusted P-values (Supplementary Table S4).

To provide a more systematic demonstration, we explored 
the similarity in gene–gene attention maps concerning the 
MoA of drugs. Categorizing anti-cancer drugs into groups, 
such as DNA cleaving drugs, cross-linking drugs, intercalat
ing drugs, topoisomerase inhibitors, antimetabolites, antitu
bulin drugs, and tyrosine kinase inhibitors, we observed that 
drugs sharing MoA exhibited significantly higher correlation 
in gene–gene attention patterns compared to drugs with dif
fering MoAs (Fig. 3b). The average correlation between drugs 
in different categories was 0.169, while drug pairs within the 
same category showed an average correlation of 0.338 result
ing in median difference of 0.102. This tendency is also evi
dent in Fig. 3a, where the attention weights between 
fulvestrant and tamoxifen, both hormone therapy agents, are 
akin than with 5-FU, an anti-metabolite agent, as shown by 
the Pearson correlation coefficient. Once again, when we 
conducted the identical investigation using the PPI network- 
removed CSG2A network, we observed a notable change in 
the systemic correlation difference, with the difference in me
dian correlations between samples within the same group and 
those within different groups decreasing from 0.102 to 0.064 
(Supplementary Fig. S2). This outcome suggests that the re
moval of the PPI network knowledge resulted in a decline in 

Figure 2. Performances of CSG2A network with variations in each modules. Our attention-based approach, equipped with LINCS L1000 pretraining, PPI 
network information and frozen parameters, shows statistically significant performance enhancements in GDSC dataset mixed-set (�paired t-test P-value 
< .05, ����paired t-test P-value < 1e−4).
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the model’s ability to effectively distinguish the MoA of 
the drugs.

Overall, these comprehensive analyses reinforce the mod
el’s ability to discern condition-specific gene interactions 
aligned with the diverse MoAs of anti-cancer drugs.

4.4 Predicted gene expressions by CSG2A align with 
the MoA of treated compounds
To further validate the effectiveness of our CSG2A network 
in translating knowledge from the transcriptome level to the 
cell level, we conducted a comprehensive analysis on the pre
dicted chemical-induced gene expression profiles. To achieve 
this, we employed two key analyses: differentially expressed 
gene (DEG) analysis and gene set enrichment analy
sis (GSEA).

Starting with the test set predictions from the GDSC data
set, we utilized our model to predict gene expressions based 
on the basal gene expression profile and input compound. 
Subsequently, we categorized the dataset into two groups 
based on IC50 values: high-IC50 and low-IC50. We then per
formed DEG analysis on the resulting gene expression pro
files. Focusing on two most-frequently occurring drugs in the 
test set, oxaliplatin and fulvestrant, we conducted a gene set 
enrichment analysis using the Enrichr (Xie et al. 2021) with 
Wikipathways (Agrawal et al. 2024) gene sets. The top five 
enriched pathways for the “sensitive” low-IC50 group, based 
on adjusted P-values, are summarized in Supplementary 
Table S6.

Oxaliplatin, a platinum-based chemotherapeutic drug, 
forms DNA adducts and induces DNA damage for its anti- 
cancer effects (Alcindor and Beauger 2011). The enriched 
over-expressed pathways from our model’s predicted tran
scriptomic profiles include DNA Mismatch Repair (WP531), 
DNA Replication (WP466), Nucleotide Excision Repair 
(WP4753), and G1 to S cell cycle control (WP45), directly 
align with the known MoA of oxaliplatin. Additionally, the 
down-regulation of pathways of Chromosomal and microsat
ellite instability in colorectal cancer (WP4216) and 
Pancreatic adenocarcinoma pathway (WP4263) suggests its 
potential therapeutic efficacy in these cancers, consistent with 
the drug’s clinical indications (Comella et al. 2009; Conroy 
et al. 2023). The results highlight the capability of CSG2A in 
capturing and interpreting complex cellular responses at both 
genomic and functional pathway levels.

A similar pattern emerges in the case of fulvestrant, a selec
tive estrogen receptor degrader (SERD). First approved by 
the FDA in 2002, fulvestrant’s MoA is reflected in the most 
enriched pathway for the predicted suppressed genes in the 
low-IC50 group: Estrogen signaling pathway (WP712). The 
down-regulation of the Endometrial cancer pathway, associ
ated with estrogen receptor regulation, further emphasizes 
the drug’s impact on estrogen-related mechanisms. The ob
served over-expression of growth factor pathways including 
PDFG (WP2526) and VEGF (WP3888), coupled with the 
down-regulation of the EGFR inhibitor resistance pathway 
(WP4806), suggests cellular adaptations in the absence of 
estrogen-mediated growth signals. The well-established un
derstanding of the intricate cross-talk between the estrogen 
signaling pathway and the PDGF, VEGF, and EGFR path
ways (Skandalis et al. 2014; Lee et al. 2001) provides insights 
into these observations.

In summary, our analysis of oxaliplatin and fulvestrant 
showcases that the predicted gene expressions by CSG2A 
consistently align with the known MoA of these drugs, dem
onstrating the model’s capability to capture and interpret 
complex cellular responses across both cell line and transcrip
tomic levels.

4.5 Translation to patient-level transcriptome data 
in TCGA
In order to assess the model’s ability to translate its knowl
edge gained from the GDSC dataset to predict drug responses 
in the context of patient-specific data from TCGA, we lever
aged the GDSC-fine-tuned CSG2A model to predict IC50 val
ues for various anti-cancer drugs given patients’ basal tumor 
tissue gene expression profiles (Supplementary Methods). 
The assessment relies on the well-established notion that 
lower IC50 values indicate drug sensitivity, with responders 
exhibiting a lower IC50 distribution than non-responders.

As part of the performance assessment, one-sided t-test 
was employed to compare the lower distribution of predicted 
IC50 values between responders and non-responders. The 
model’s ability to distinguish responders from non- 
responders was further evaluated through a comparative 
analysis with DeepTTA and GraphDRP, also trained on the 
GDSC dataset.

Among 13 drugs with over 10 responders and non- 
responders each, our model demonstrated enhanced 

Figure 3. Analysis of gene–gene attention scores. (a) Visualization of gene–gene attention values for three drugs: fulvestrant, tamoxifen, and 
5-fluorouracil. The pairwise correlation of the attention matrix is presented below. (b) Correlation of gene–gene attentions among drugs within the 
same group and across different groups. The correlation within drug pairs from the same group is significantly higher than those from different groups 
(r: Pearson correlation coefficient).
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discriminative power (Fig. 4 and Supplementary Table S7). 
Specifically, it distinguished responses for five drugs with 
p-values below .05 and seven drugs below .1. In contrast, 
DeepTTA and GraphDRP achieved fewer significant differen
tiations, with two and three drugs below p-values of 0.05, 
and three and four drugs below p-values of 0.1, respectively. 
These results underscore the efficacy of our model in transfer
ring knowledge for predicting patient responses and its out
performance in comparison to existing methods.

5 Conclusion
In conclusion, our study showcases the efficacy of adeptly cap
turing intricate condition-specific gene interactions with atten
tion mechanism. This novel CSG2A learns from both data and 
network priors, and uniquely leverages the condition-specific 
attention scores directly as the neural network parameters.

The success of our trans-level transfer learning strategy is 
demonstrated in the enhanced drug response predictions, 
seamlessly integrating knowledge acquired from the tran
scriptomic landscape of LINCS L1000 dataset. Our pre
trained models consistently outperform non-pretrained 
counterparts, emphasizing the pivotal role of LINCS pre
training. An intriguing observation highlights the value of 
freezing model parameters during fine-tuning, preserving the 
context of gene interactions and contributing to optimal per
formance. Moreover, case studies on gene–gene attention 
scores and DEG analyses validate the interpretability and bio
logical relevance of our model, aligning well with known 
drug mechanisms.

Potential future directions may include exploring the ex
tension of our approach to broader patient populations, con
sideration of multi-omics data, and the integration of 
external knowledge bases for an even more comprehensive 
understanding of drug response mechanisms.

As we conclude, we believe our model demonstrates adapt
ability to diverse application contexts, laying the groundwork 
for future investigations of the transfer learning framework 
into more complex biological scenarios.
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