
The Geometry of Mixability

Armando J. Cabrera Pacheco a.cabrera@uni-tuebingen.de
University of Tübingen and Tübingen AI Center,
Germany

Robert C. Williamson bob.williamson@uni-tuebingen.de
University of Tübingen and Tübingen AI Center,
Germany

Reviewed on OpenReview: https: // openreview. net/ forum? id= VrvGHDSzZ7

Abstract

Mixable loss functions are of fundamental importance in the context of prediction with expert
advice in the online setting since they characterize fast learning rates. By re-interpreting
properness from the point of view of differential geometry, we provide a simple geometric
characterization of mixability for the binary and multi-class cases: a proper loss function
ℓ is η-mixable if and only if the superprediction set spr(ηℓ) of the scaled loss function ηℓ
slides freely inside the superprediction set spr(ℓlog) of the log loss ℓlog, under fairly general
assumptions on the differentiability of ℓ. Our approach provides a way to treat some concepts
concerning loss functions (like properness) in a “coordinate-free” manner and reconciles
previous results obtained for mixable loss functions for the binary and the multi-class cases.

1 Introduction

In the context of prediction with expert advice as described by Vovk (1998; 2001), an information game is
considered between three players: the learner, N ∈ N experts and nature1. At each step t ∈ Z+,

• each expert makes a prediction γti ∈ Γ, i = 1, ..., N , (here Γ is the prediction space) which the learner
is allowed to see,

• the learner makes a prediction γt ∈ Γ,
• nature chooses an outcome ωt ∈ Ω (here Ω is the set of outcomes),
• for a fixed loss function ℓ : Ω × Γ −→ [0,∞], the cumulative loss is calculated for the learner and

each of the experts:

Lt(learner) :=
t∑
i=1

ℓ(ωi, γi),

Lt(expertk) :=
t∑
i=1

ℓ(ωi, γik),

where expertk denotes the k-th expert (k = 1, ..., N).

The goal is to bound the difference between the learner’s loss and the experts’ loss, which is often called the
regret. That is, we want to bound the quantity

Rtk := Lt(learner)− Lt(expertk)

for all k.
1We refer the reader to (Vovk, 1998; 2001) for discussions about the desired (or required) assumptions on Γ, Ω and ℓ.
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1.1 Mixable games and characterizations of mixable and fundamental loss functions

For a wide class of games, called η-mixable games for η > 0, the Aggregating algorithm (see for example (Vovk,
2001)) ensures an optimal bound for the regret (Rtk ≤ η−1 lnN , for all k = 1, ..., N) independent of the
trial t. Since the mixability of a game depends on the loss function ℓ, a loss function ℓ is η-mixable if the
corresponding game is mixable. Since arguably the aggregating algorithm is one of the most well founded and
studied prediction algorithms, there is a natural interest in understanding properties and characterizations of
mixable loss functions.

Examples of mixable loss functions include the log loss, relative entropy for binary outcomes (Haussler et al.,
1998) and the Brier score (Vovk & Zhdanov, 2009; van Erven et al., 2012). Mixability of a loss function
ℓ is characterized by a “stronger convexity” of the superprediction set of ℓ, which can be described as the
convexity of the superprediction set of ℓ after an “exponential projection” (see (1.3) below and Vovk (2015)
and van Erven et al. (2012)). Unfortunately, this characterization of mixability lacks a transparent geometric
interpretation.

The main goal of this work is to provide such geometric interpretation. The motivation stems from an
observation made by Vovk (2015): a η-mixable loss can be characterized as the positiveness of the infimum of
the quotient of the curvatures of the a strictly proper loss function ℓ and the log loss ℓlog for binary outcomes.
Here as usual, loss functions are defined on the 2-simplex ∆2 (see (1.1)). Moreover, he then proves that
fundamentality (see Vovk (Vovk, 2015)) of a loss can be characterized as the finiteness of the supremum of
the same quotient of curvatures. These two results suggest that these properties are geometric, meaning
that they can be studied using differential geometry tools, and in this regard, mixability and fundamentality
should not depend on the coordinates chosen to express them.

Loosely speaking, in convex geometry a convex set L is said to slide freely inside a convex set K, if for any
point x in the boundary of K, there is a translation vector y such that the translation of L by y (i.e., the
Minkowski sum L + y, see (4.2)), intersects K at x, and L + y ⊂ K. We provide the following geometric
characterization of mixability and fundamentality, as a geometric comparison to the log loss (see Figure 1).
Let spr(ℓ) denote the superprediction set of a loss function ℓ (see (1.4)).
Theorem 1.1 (Informal statement). A continuously twice differentiable proper loss function is η-mixable if
and only there is η > 0 such that spr(ηℓ) slides freely inside spr(ℓlog). In addition, the same ℓ is fundamental
if and only if there exists γ > 0 such that spr(ℓlog) slides freely inside spr(γℓ).

This new characterization of mixability appeals because it is stated directly in terms of the superprediction
sets of the loss functions, rather than the exponentiated super-prediction set. In order to obtain this theorem
it is necessary to re-interpret properness from a differential geometry point of view, which constitutes a big
part of this work. However, this technical effort pays off. van Erven et al. (2012) characterized η-mixable
(differentiable) loss functions for multi-class loss functions and moreover, related η to the Hessian of the
Bayes risk of ℓ and the log loss (see Definition 1.3), which is interpreted as its curvature. By generalizing the
tools developed here for the binary case, we were able to obtain a multi-class analog result to Theorem 1.1
and to build a bridge to the results in (van Erven et al., 2012)2.

Finally we note that the large field of information geometry (Amari, 2016) strives to understand the basic
problems of statistical inference from a geometric perspective, with a strong focus on the geometry of statistical
manifolds. Likewise, there are strongly geometric theories which describe the effect of hypothesis classes in
machine learning (Mendelson & Williamson, 2002; Van Erven et al., 2015). Our hope is that by geometrizing
the theory of loss functions we may be able to bridge these diverse perspectives.

1.2 Description of results and structure of the article

Using the same setting as (van Erven et al., 2012), we obtain a geometric characterization of η-mixable loss
functions in the sense of differential geometry. Loss functions are considered to be maps ℓ : ∆n −→ Rn≥0, which
under the conditions assumed in this work, give rise to submanifolds ℓ(relint(∆n)) of Rn whose geometric

2In fact, the present paper can be seen as the successful realization of the attempt of (van Erven et al., 2012), where we felt
that the whole argument should be doable in a coordinate-free manner, but did not then have the skills to achieve that.

2



Published in Transactions on Machine Learning Research (09/2023)

•

ℓlog

•

ℓ

•
ηℓ

spr(ηℓ+ y)•

Figure 1: We abuse notation and denote the image of a loss function ℓ by simply ℓ. The figure shows how the
superprediction set of a translation of the scaling of ℓ slides freely inside the spr(ℓlog). The bullet points are
located at the image of p ∈ ∆2.

properties are determined by ℓ (see the relevant precise definitions below). We first discuss the case n = 2
(binary classification loss functions) since it is more intuitively understandable, and then the case n ≥ 2. We
summarize the main results as follows.

1. We recast the notion of a (strictly) proper loss as a geometric property of the loss itself rather than
its superprediction set. That is, properness is no longer considered a parametrization dependent
property, it is a statement about the geometric properties of the “loss surface” ℓ(relint(∆n)) (the
boundary of the superprediction set). See lemmas 2.7 and 3.2.

2. A geometric comparison is performed. For n = 2 in terms of the curvature of the “loss curves” (see
Section 1.5 below), and for n ≥ 2 in terms of the scalar second fundamental form of the “loss surfaces”
(see Section 3 and Appendix A), which measure how they curve inside Rn. The precise statements
are given in Lemma 2.13 and Lemma 3.6. Intuitively, these results tell us how the superprediction set
of ℓ sits inside the superprediction set of the log loss. We remark a fundamental difference between
the cases n = 2 and n ≥ 2: for n = 2, as Vovk (2015) observes, mixability can be related to the
quotient of the curvature of ℓ and the curvature of ℓlog. In this case the image of ℓ is a curve in R2

whose curvature can be easily computed. In higher dimensions the notion of curvature is far more
complicated and different notions of curvature exist (see for example (Lee, 2018)). For n ≥ 2, our
geometric comparison relies on a comparison of the second fundamental forms of the “loss surfaces”
defined by ℓ and ℓlog – the second fundamental form measures how a surfaces is curved inside an
ambient space, which is Rn in our case (see Appendix A). In this regard, part of our work can be
interpreted as a coordinate independent version of the main computations carried out in (van Erven
et al., 2012).

3. Finally, we interpret our result from the point of view of convex analysis to give a new characterization
of mixability. More precisely, we show that a (strictly) proper loss function ℓ is η-mixable if and only
if the superprediction set of ℓ slides freely (see Definition 4.11) inside the superprediction set of the
log loss.
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As byproducts, we obtain a general way to define mixability with respect to a fixed (strictly) proper loss
function, further properties and consequences for binary classification loss functions, particularly for composite
losses and canonical links, and a bridge to the results obtained in (van Erven et al., 2012).

Since we treat loss functions from the point of view of differential geometry and convex geometry, a considerable
background in these topics is needed. We present this work as self-contained as possible and spend some
time providing the intuition and motivation for the results (and sometimes the background) which naturally
results in a longer exposition. In Section 2 we treat the binary case, in Section 3 the multi-class case to
obtain the geometric interpretation of properness and mixability and perform the geometric comparison (in
terms of curvature). In Section 4 we make the connections to convex geometry and obtain the geometric
characterization of mixability in terms of the sliding freely conditions of superprediction sets. In Section 5, we
provide some additional comments and remarks, and provide a bridge between our results and those in van
Erven et al. (2012).

1.3 Setup

Here we summarize our setup, for more details see van Erven et al. (2012). Denote by [n] the set of natural
numbers {1, ..., n}. The set of probability distributions on a finite set Y with |Y| = n ∈ N is given by

∆n =
{
(p1, ..., pn) ∈ Rn

∣∣∣∣ n∑
i=1

pi = 1, pi ≥ 0, for i = 1, ..., n
}
. (1.1)

We note that ∆n is a manifold with (non-smooth) boundary of dimension n−1. Moreover, ∆n is a hypersurface
in Rn; we denote the interior (as a manifold) of ∆n as int(∆n) which is the same set as the relative interior
relint(∆n) of ∆n. We define the standard parametrization of ∆n as the map Φstd : Sn−1 ⊂ Rn−1 −→ ∆n

given by

Φstd(t1, ..., tn−1) =
(
t1, ..., tn−1, 1−

n−1∑
i=1

ti

)
, (1.2)

where Sn−1 =
{
(t1, ..., tn−1) ∈ Rn−1 |

∑n−1
i=1 ti ≤ 1, ti ≥ 0, for i = 1, ..., n− 1

}
.

In particular, when n = 2 the standard parametrization of ∆2 is the map Φstd : [0, 1] −→ ∆2 given by
Φstd(t) = (t, 1− t).
Definition 1.2. A loss function is a map ℓ : ∆n×Y −→ R≥0 such that for each k ∈ Y, the map ℓ(·, k) : ∆n −→
R is continuous.

Given a loss function ℓ, p ∈ ∆n and k ∈ Y, the value ℓ(p, k) represents the penalty of predicting p upon
observing k. We define the partial losses of a loss function ℓ as the maps ℓi : ∆n −→ R≥0 given by ℓi(p) = ℓ(p, i).
A loss function can be described in terms of its partial losses as

ℓ(p, k) =
n∑
i=1

[[k = i]]ℓi(p).

Thus, we can identify a loss function ℓ with the map ℓ : ∆n −→ Rn≥0 determined by its partial losses

ℓ(p) = (ℓ1(p), ..., ℓn(p)) .

In this work we follow this convention unless stated otherwise. Note that this way we can see a loss function
ℓ as an embedding of int(∆n) into Rn≥0 (assuming enough properties on ℓ). We will see later that properness
ensures the image of this embedding to be a nice hypersurface of Rn with appealing geometric properties.
Under the assumption that the outcomes are distributed with probability p ∈ ∆n, we make the below
definitions following (van Erven et al., 2012; Reid & Williamson, 2010).
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Definition 1.3. Given a loss function ℓ, we define the conditional risk as the map L : ∆n ×∆n −→ R as

L(p, q) := ⟨ℓ(q), p⟩,

and the associated conditional Bayes risk as the map L : ∆n −→ R given by

L(p) := inf
q∈∆n

L(p, q) = inf
q∈∆n

⟨ℓ(q), p⟩.

Definition 1.4. A loss function ℓ : ∆n −→ Rn≥0 is said to be proper if for any p ∈ ∆n

p = inf
q∈∆n

L(p, q)

for all q ∈ ∆n. In other words, L(p, ·) has a minimum at p. When p is the only minimum of L(p, ·) we say
that ℓ is strictly proper.

Proper losses are the natural losses to use when predicting class probabilities — they are such that perfect
prediction is not penalized; for further discussion of why they are important, and additional references to the
literature, see (Buja et al., 2005; Williamson & Cranko, 2022; Williamson et al., 2016).

For our geometric considerations it will be useful to denote the image of ∆n under ℓ by Mℓ, and impose
enough differentiability conditions on ℓ so that Mℓ is (at least) a C2-manifold. See Definitions 2.1 and 3.1
below.

We now recall the definition of mixability (see for example, (Vovk, 2015; van Erven et al., 2012)). For η > 0,
let Eη : Rn −→ Rn be the η-exponential projection defined as

Eη(y) := (e−ηy1 , ..., e−ηyn). (1.3)

A loss function ℓ is called η-mixable if the image of its superprediction set, spr(ℓ), given by

spr(ℓ) := {λ ∈ [0,∞)n | there is q ∈ ∆n such that ℓi(q) ≤ λi for i ∈ [n]}, (1.4)

is convex under the η-exponential projection, that is Eη(spr(ℓ)) ⊂ [0, 1]n is convex. We say that ℓ is mixable
if ℓ is η-mixable for some η > 0.
Definition 1.5. Let ℓ be a mixable loss function. The mixability constant of ℓ, η∗ℓ , is defined as

η∗ℓ := sup
η>0

{η > 0 | ℓ is η-mixable} .

1.4 Motivation

In this part we mainly discuss the case n = 2 since it is more intuitively accessible. It has been made evident
that there is a strong relation between properness and mixability. Here we make this relation more explicit
and transparent from a geometric point of view. The basic motivation is as follows. It is commonly understood
that properness is a property that depends on the parametrization of the boundary of the superprediction
set of ℓ (Vovk, 2015). It has been also shown that it is related to the “curvature” of the Bayes risk, since
it requires that the superprediction set remains convex under the η-exponential projection given by (1.3)
(with the standard parametrization of the simplex ∆2) (Buja et al., 2005; Reid & Williamson, 2010; van
Erven et al., 2012). Mixability is considered to be a stronger notion of convexity (Vovk, 2015), for some
η > 0. The basic observation in this work is that it is possible recast properness from a geometric point of
view, i.e., independent of the parametrization of ∆n. More precisely, we define properness in terms of the
loss function viewed as a map ℓ : ∆n −→ Rn≥0 rather than in terms of the superprediction set spr(ℓ) (as it is
usually defined). More precisely, to determine whether a given ℓ is proper or not, it is not enough to look
at image ℓ(∆n) (as the boundary of spr(ℓ)) but rather how ∆n is mapped into Rn≥0 by ℓ — since we will
be using tools of differential geometry, we will assume C2 differentiability (see Section 2). More precisely,
restricting first to n = 2 (see Lemma 2.7 below), a given loss function ℓ : ∆2 −→ R2

≥0 will be (strictly) proper
if and only if
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Figure 2: Consider the two loss functions given by ℓ1(p1, p2) = (− log(p1),− log(p2)) and ℓ2(p1, p2) =
(− log(p2),− log(p1)), for p = (p1, p2) ∈ ∆2. Although spr(ℓ1) = spr(ℓ2), ℓ2 is not proper since the normal
vector at ℓ2(p) is not ±p/|p| for any p ∈ ∆2.

1. the normal vector to ℓ(∆n) at ℓ(p) is equal to ±p/|p| for all p ∈ int(∆2), and

2. the curvature (see Section 1.5 below) at any point ℓ(p) with respect to the unit normal vector
n = p/|p| is strictly positive for all p ∈ int(∆2).

As observed in Figure 2, spr(ℓ1) = spr(ℓ2), which implies that their boundaries coincide (as a set). In
particular, this implies that it is possible to “parametrize” the boundary of ℓ2(∆2), ∂(ℓ2(∆2)), in the same
way as ∂(ℓ1(∆2)) in order to have a proper loss. However, note that this changes the map ℓ2 and hence from
the point of view of this work, this is a different loss function. In practice, one is given a loss function ℓ rather
than a superprediction set spr(ℓ), therefore we look at losses as individual maps from ∆2 to R2

≥0 instead of
looking at their superpredictions sets and obtaining a proper loss by choosing a convenient parametrization
of ∂(spr(ℓ)).
Remark 1.6. Our strength by characterizing proper loss functions in this way is that we will be able to apply
techniques from differential geometry, however, these considerations only work for loss functions which are
sufficiently differentiable. For a general set up, it is possible to characterize properness of a loss function
in a fairly simple way via the convexity of its superprediction set. More precisely, the “loss surface” is the
subgradient of the support function of the superprediction set. This was thoroughly studied by Williamson &
Cranko (2022). We briefly explore some connections to our work in Section 4. Alternative approaches to
extending and better understanding mixability include (Reid et al., 2015) and (Mhammedi & Williamson,
2018).

1.5 Comments about the curvature of planar curves

The second condition for ℓ to be proper mentioned above involves a condition on the curvature of ℓ(int(∆2)).
We now make this notion precise. Recall that if α(t) = (x1(t), x2(t)) is a C2 curve with α′(t) = (x′1(t), x′2(t)) ̸=
(0, 0) for all t in its domain, then its curvature can be seen a measurement of the variation of its unit normal
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Figure 3: For a regular curve α, at each point we have two normal unit vectors.

vector at each point. We define the canonical normal vector at α(t), nc(t), as the unit normal vector in the
direction obtained by rotating α′(t) 90◦ counterclockwise. Then, the signed curvature of α at t is defined as

κα(t) :=
x′′1(t)x′2(t)− x′1(t)x′′2(t)
(x′1(t)2 + x′2(t)2)

3/2 . (1.5)

The interpretation of this number is as follows: κα(t) is positive if α “curves” in the direction of nc(t).
However, note that at each point we have two normal vectors: ±nc(t). Thus, nc(t) and κα depend on the
direction of α (i.e., α′), and their values differ by a negative sign. Thus, we can talk about the curvature of α
with respect to a chosen unit vector n (either choosing nc or −nc for all points, assuming this is possible,
which is the case for the curves we will consider here, see Figure 3) and denote it by κ+α . In the case when
n = nc, then κ+α = κα, and when n = −nc, then κ+α = −κα. Since κα is invariant under reparametrizations
(up to a sign), we can simply talk at the curvature of α at a given point p in the image of α. In Section 2 we
make precise our choice in (2) above. For a summary of geometry of curves see Appendix A.

Going back to loss functions, suppose ℓ : ∆2 −→ R2
≥0 is a loss function. Since ∆2 is a 1-manifold, any

parametrization around a point (of its interior) can be assumed to be of the form Φ: (a, b) ⊂ R −→ ∆2 for
some a < b. Thus, the local expression of ℓ under this parametrization ℓ̃ = ℓ ◦Φ is a curve in R2. By changing
Φ around the same point, we are reparametrizing ℓ̃. Since curvature is independent of coordinates (i.e., of the
Φ used) up to a sign, we can define the curvature of the loss curve ℓ(int(∆2)) with respect to a chosen unit
normal vector (which will depend only on ℓ). To compute it from its definition in (1.5), we need to choose a
parametrization Φ, and as we will see, many times it is convenient to take Φ = Φstd.

Remark 1.7. One could avoid part of the technical complications above by choosing beforehand Φ = Φstd, as
it is usually implicitly done, and then requiring ℓ1 and ℓ2 to be monotone (cf. Buja et al. (2005); Reid &
Williamson (2010); Shuford et al. (1966); Vovk (2015)) – essentially, this amounts to choosing “direction” for
the admissible loss curves. Although this approach is appealing since the curve parameter (t in our case) can
be directly interpreted as a probability, and moreover it simplifies calculations since in this case the convention
can be chosen so that the signed curvature coincide with κ+ (see for example Vovk (2015)), when considering
the multi-class case, the notion of “direction” breaks down and it is not clear which properties of Mℓ = ℓ(∆n)
one should consider. The approach we consider here gives a concrete logical path to a generalization to the
multi-class case (see Section 3).

1.6 Reconciling this point of view with previous works

In this part we explain how to “translate” the results we obtain here to previous results regarding proper
losses and mixability. We do this in particular with (Reid & Williamson, 2010) and (Vovk, 2015).
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(Reid & Williamson, 2010) Let Φ = Φstd. The parameter η̂ in (Reid & Williamson, 2010) corresponds
to the parameter t here, ℓ1(η̂) and ℓ−1(η̂) correspond to ℓ̃1(t) and ℓ̃2(t), respectively. Although the
regularity assumption in (Reid & Williamson, 2010) is initially only differentiability of the partial
losses, when discussing the weight of a loss function they impose C2 regularity. From (Reid &
Williamson, 2010, Theorem 1), we see that a loss ℓ is proper if (in particular) ℓ′−1 > 0 and ℓ′0 < 0. We
can heuristically say that ℓ goes from “right” to “left”. This means that in this case, κ+ℓ (η̂) = −κℓ(η̂).
The log loss in this case is ℓlog(η̂) = (− ln(η̂),− ln(1− η̂)).

(Vovk, 2015) In (Vovk, 2015) the loss functions are defined as maps (λ0(p), λ1(p)), with λ0 increasing and
λ1 decreasing (infinite differentiable). In this case, heuristically, losses go from “left” to “right” so
that κ+λ (p) = κλ(p). To relate this convention to ours, we set Φ(t) = (1− t, t). Then the parameter p
in (Vovk, 2015) corresponds to t and λ0 and λ1 correspond to ℓ̃1 and ℓ̃2. The log loss is then given
by λ(p) = (− ln(1− p),− ln(p)).

Therefore, from our point of view, in previous works there is an implicit choice of a parametrization of ∆2,
particularly motivated to interpret the parameter as a probability. However, sometimes this might not be the
case and a link function is needed (Reid & Williamson, 2010) – this fits well with our approach as a link
function for us is a different choice of parametrization; this will carefully explained in Section 2.7. In favor of
the study of loss functions using tools from differential geometry we are then motivated to eliminate this
choice of parametrization and consider ℓ as a map between manifolds (namely, int(∆2) and ℓ(int(∆2)) as a
submanifold of R2). Although picking a general parametrization of ∆2 complicates the interpretation of the
parameter, it makes other properties of loss functions transparent. This approach has, to the knowledge of
the authors, never been explored. We remark that, however, one can always set Φ = Φstd and reinterpret
the results of this work as the parameter being a probability. With this geometric characterization of loss
functions and properness at hand we continue to study mixability.

2 Properness and Mixability for Binary Classification

We first restrict our discussion to binary classification, i.e., setting n = 2. Thus, we consider maps
ℓ : ∆2 −→ R2

≥0, where ∆2 = {(p1, p2) ∈ R2 | p1 + p2 = 1}, with partial losses ℓ1(p) and ℓ2(p). In this case the
standard parametrization of ∆2 is given by Φstd(t) = (t, 1− t) for t ∈ [0, 1]. When a parametrization of ∆2,
say Φ, is chosen, then the local expression of ℓ with respect to Φ (ℓ̃ = ℓ ◦ Φ) is a map from some interval
I ⊂ R to R2, that is, a curve in the plane R2.

Dating back to (Haussler et al., 1995; Vovk, 1998) it has been established that properness of a loss function
imposes strong conditions on the first and second derivatives of their partial losses. In (Vovk, 2015) these
relations were expressed by means of the curvature of the loss curve. Moreover, in (Buja et al., 2005; Reid
& Williamson, 2010) properness is related to the second derivative of its Bayes risk, which in a way can be
interpreted as its curvature. However, in these works there is always an implicit choice of parametrization of
∆2, which in turn imposes certain restrictions on the “admissible” loss functions, particularly making the
results parametrization dependent. In this section, we first recast properness as a geometric property which
allows us to obtain results in a parametrization (or coordinate) independent way.
Definition 2.1. An admissible loss function is a map ℓ : ∆2 −→ R2

≥0 such that

(i) ℓ(int(∆2)) ⊂ R2
≥0 is a 1-manifold of class C2,

(ii) there exists a C1 map n : ℓ(int(∆2)) → Nℓ(int(∆2)), n(ℓ(p)) =: nℓ(p), where Nℓ(int∆2) is the normal
space of ℓ(int∆2), and

(iii) n(ℓ(p)) or −n(ℓ(p)) belongs to R2
>0 for all p ∈ int(∆2).

We denote the set of admissible loss functions as L.
Remark 2.2. We give the following interpretation of the previous definition. (i) simply says that the loss
curve (once parametrized) is twice differentiable with continuous second partial derivatives. (ii) prevents some
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“anomalies” on ℓ, for example, ℓ can not be constant on a neighborhood of a point. (iii) defines a subfamily of
loss curves which are not allowed to vary “too much”. This definition should be compared to the definition of
loss functions in (Vovk, 2015, Section 2).
Definition 2.3. Let ℓ ∈ L. Let n : ℓ(int(∆2)) → Nℓ(int(∆2)) be the map that assigns to each ℓ(p) the normal
vector to Mℓ at ℓ(p) that lies in R2

≥0. We denote by κ+α (·) the signed curvature of α with respect to the unit
normal belonging to R2

≥0. We refer to κ+α (·) as the curvature with respect to the unit normal vector pointing
towards R2

≥0.

2.1 Proper losses

Lemma 2.4. Suppose that ℓ in L is strictly proper, then the signed curvature of the loss curve ℓ(∆2) has a
sign. Moreover, its curvature, κℓ, is positive with respect to unit normal vector (field) pointing towards R2

≥0.

Proof. Let p0 ∈ int(∆2) and let Φ: I ⊂ R −→ ∆2 be a parametrization of ∆2 around p0 = Φ(t0), for some
t0 ∈ I, which we use to obtain a parametrization of ∆2×∆2 around (p0, p0)3. We consider the local expression
of L given by

L̃(t, s) = ⟨ℓ(Φ(s)),Φ(t)⟩.

Using strict properness we know that fixing t, the function L̃(t, ·) achieves a minimum at s = t (and it is the
only one), that is

0 = ∂sL̃(t, s)|s=t = ⟨ℓ̃′(t),Φ(t)⟩ = ℓ̃′1(t)Φ1(t) + ℓ̃′2(t)Φ2(t), (2.1)
0 < ∂ssL̃(t, s)|s=t = ⟨ℓ̃′′(t),Φ(t)⟩ = ℓ̃′′1(t)Φ1(t) + ℓ̃′′2(t)Φ2(t). (2.2)

To compute the sign of the signed curvature of ℓ(∆2) it is enough to determine the sign of ℓ̃′1(t)ℓ̃′′2(t)− ℓ̃′′1(t)ℓ̃′2(t).
Without loss of generality, assuming Φ2 ̸= 0 on this coordinate neighborhood we can write

ℓ̃′1(t)ℓ̃′′2(t)− ℓ̃′′1(t)ℓ̃′2(t) = ℓ̃′1(t)ℓ̃′′2(t)− ℓ̃′′1(t)
[
−
ℓ̃′1(t)Φ1(t)

Φ2(t)

]

= ℓ̃′1(t)
Φ2(t)

[
ℓ̃′′2(t)Φ2(t) + ℓ̃′′1(t)Φ1(t)

]
= ℓ̃′1(t)

Φ2(t)
[
⟨ℓ̃′′(t),Φ(t)⟩

]
> 0,

where we have used (2.1) and (2.2). Notice that if ℓ̃′1(t) = 0 for some t then necessarily ℓ̃′2(t) = 0 by (2.1),
which is impossible in L. Therefore ℓ̃′1 has a sign and this sign determines the sign of the signed curvature of
ℓ(∆2).

For the second statement, notice that again using (2.1) we know that ℓ̃′1 and ℓ̃′2 have different signs (and they
do not change). If ℓ̃′1 > 0, then that means that the first coordinate increases and the second decreases, hence
n(t) points towards R2

≥0 and κ
ℓ̃
> 0. If ℓ̃′1 < 0, then we are in the opposite case and in this case n(t) points

to R2
≥0 and κ

ℓ̃
< 0, thus the signed curvature with respect to −n(t) (the unit normal pointing towards R2

≥0)
is positive.

From the proof of the previous theorem we obtain the following corollary.
Corollary 2.5. Let ℓ ∈ L. If ℓ is proper, then p ∈ int(∆2) is normal to the loss curve ℓ(∆2) at ℓ(p).

Proof. It follows directly from (2.1), since for fixed p ∈ int(∆2), ⟨ℓ(q), p⟩ attains a minimum at p.
3Notice that this particular choice of coordinates around (p0, p0) suffices since we want to conclude something about the

curvature of the curve loss ℓ.
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Lemma 2.6. In L, proper implies strictly proper.

Proof. Let p ∈ int(∆2), and suppose that there is p∗ ̸= p ∈ int(∆2), such that

⟨ℓ(p∗), p⟩ = inf
q∈∆2

⟨ℓ(q), p⟩.

Using (2.1), we see that p∗ is normal to ℓ at ℓ(p), and hence p and p∗ are parallel. Since both belong to ∆2, it
follows that p∗ = p, which is a contradiction.

Therefore, in what follows (as long as we stay within L) we will use proper and strictly proper interchangeably.

Note that the converse of Lemma 2.4 does not hold. That is, there are ℓ ∈ L which have positive signed
curvature (with respect to the unit normal pointing towards R2

≥0), but are not proper. Indeed let ℓ be defined
as

ℓ(p) = (− ln(p2),− ln(p1)).

Taking the (standard) parametrization Φstd(t) = (t, 1− t) we see that the loss curve ℓ̃ goes from left to right
so n

ℓ̃(t) points towards R
2
≥0. Moreover, we can readily see that the (signed) curvature κ

ℓ̃
is positive. However,

Φstd(t) is not normal to ℓ̃ at ℓ̃(t), thus by Corollary 2.5, ℓ can not be proper.

Therefore, we obtain the following characterization of proper losses in L.
Lemma 2.7. Let ℓ ∈ L. Then ℓ is strictly proper if and only if p is normal to the loss curve ℓ(∆2) at ℓ(p)
for all p ∈ int(∆2) and the signed curvature of ℓ(∆2) with respect to the normal vector pointing towards R2

≥0
is positive at all points ℓ(p) for p ∈ int(∆2).

Proof. The “if” part is Lemma 2.4. For the “only if” part, let ℓ ∈ L be such that

np = ± p

|p|
, (2.3)

κ+ℓ > 0, (2.4)

where κ+ℓ is the signed curvature of ℓ with respect to the unit normal pointing towards R2
≥0. Let p ∈ int(∆2)

and let Φ be a parametrization around p. We readily see that (2.3) implies that

∂sL̃(t, s)|s=t = 0,

while (2.4) implies ∂ssL̃(t, s)|s=t > 0 by the proof of Lemma 2.4. This implies that fixing t, L̃ achieves its
minimum at s = t. Then ℓ is proper and by Lemma 2.6, we conclude it is strictly proper.

Remark 2.8. Notice that to check whether a given loss function ℓ ∈ L is proper or not, it suffices to do it in
any coordinate system. That is, given Φ, we check conditions (2.3) and (2.4) for ℓ̃ = ℓ ◦ Φ.

2.2 Mixable loss functions

We say that a loss function ℓ is fair if ℓ1(p) → 0 as p→ (0, 1) and ℓ2(p) → 0 as p→ (1, 0) (this is motivated
by the interpretation when using the standard parametrization, see Reid & Williamson (2010)). In addition,
recall that a loss function ℓ ∈ L is proper if and only if

(i) nℓ(p) = p
|p| can be chosen, and

(ii) κ+ℓ (p) > 0

for all p ∈ int(∆2).

Thus, a prototype of a fair proper loss function is shown in Figure 4.

10
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)

)

n
(

)

∆2•

•

ℓ

Φ

(a, b) ⊂ R
ℓ̃ = ℓ ◦ Φ

Figure 4: Prototype of a mixable fair proper loss function.

Recall from Section 1 that mixability is defined in terms of the superprediction set spr(ℓ) of ℓ. More precisely,
for η > 0, consider the map

Eη(y1, y2) =
(
e−ηy1 , e−ηy2

)
,

where Eη : R2
≥0 −→ [0, 1]2 is the exponential projection (1.3). Then, ℓ is η-mixable if and only if Eη(spr(ℓ)) is

convex.
Remark 2.9. We stress the fact that this definition depends on the superprediction set of ℓ rather than on
ℓ itself – two different loss functions with the same superprediction set will be equally mixable. From our
perspective, when talking about mixability of the map ℓ (i.e., without making reference to the superprediction
set), we see that we can define it as follows. A loss ℓ is mixable if the 1-dimensional manifold Eη ◦ ℓ(int(∆2))
has signed curvature κ+Eη◦ℓ ≤ 0. We will adopt the latter version here. Although clearly these definitions are
equivalent, it is useful to have this at hand to relate mixability with properness. For now on, when we say ℓ is
mixable we mean in the latter way. See Figure 5.

We close this part by describing the log loss, which will play an important role. Let ℓlog : ∆2 −→ R2, given by

ℓlog(p) = (− ln(p1),− ln(p2)) . (2.5)

Let Φ = Φstd. Then
ℓ̃log(t) = (− ln(t),− ln(1− t)) .

Since ℓ̃′log(t) =
(
−t−1, (1− t)−1), its canonical normal vector is

n
ℓ̃log(t)

= − 1√
t2 + (1− t)2

(
(1− t)−1, t−1) .

The curvature with respect to −n
ℓ̃log(t)

, the normal vector pointing towards R2
≥0, is then given by

κ+
ℓ̃log

= −κ
ℓ̃log

= t(1− t)
(t2 + (1− t)2)3/2

> 0. (2.6)

When there is no risk of confusion we denote κ+
ℓ̃log

simply as κ+log.
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Sℓ

n∆2•

•

ℓ

Φ

(a, b) ⊂ R

ℓ̃
Eη

Eη(Sℓ)

(0, 1)

(0, 0) (1, 0)

Figure 5: Diagram depicting how convexity of Eη(spr(ℓ)) is characterized by the principal curvatures of
Eη ◦ ℓ(int(∆2)).

2.3 Mixability and curvature

Haussler et al. (1995) gave a characterization of the mixability constant of a mixable proper binary loss
function ℓ in terms of the first and second derivatives of its partial losses. We reprove this characterization
from a geometric point of view, that is, independent of the parametrization chosen for ∆n.

Let ℓ ∈ L be proper and Φ a 1-chart parametrization4 of ∆2, then Eη(spr(ℓ)) will be convex if and only if
the curve γ(t) = E(ℓ(Φ(t))) has negative curvature with respect to the unit normal pointing towards R2

≥0.
Since ℓ is proper we can assume without loss of generality that κℓ(p) = κ+ℓ (p) > 0. We are then interested in
computing the signed curvature of

g(t) = (g1(t), g2(t)) =
(
E(ℓ̃1(t)), E(ℓ̃2(t))

)
=
(
e−ηℓ̃1(t), e−ηℓ̃2(t)

)
,

and showing that κg ≥ 0. We have

g′1(t) = −ηℓ̃′1(t)e−ηℓ̃1(t)

g′′1 (t) = −ηℓ̃′′1(t)e−ηℓ̃1(t) + η2ℓ̃′1(t)2e−ηℓ̃1(t)

= ηe−ηℓ̃1(t)
[
ηℓ̃′1(t)2 − ℓ̃′′1(t)

]
and

g′2(t) = −ηℓ̃′2(t)e−ηℓ̃2(t)

4This means that the map Φ: D −→ ∆2 is such that Φ(D) = ∆2.
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g′′2 (t) = −ηℓ̃′′2(t)e−ηℓ̃2(t) + η2ℓ̃′2(t)2e−ηℓ̃2(t)

= ηe−ηℓ̃2(t)
[
ηℓ̃′2(t)2 − ℓ̃′′2(t)

]
,

and thus we have(
g′1(t)2 + g′2(t)2

)3/2
κg(t) =− ηℓ̃′1(t)e−ηℓ̃1(t)ηe−ηℓ̃2(t)

[
ηℓ̃′2(t)2 − ℓ̃′2(t)

]
− ηe−ηℓ̃1(t)

[
ηℓ̃′1(t)2 − ℓ̃′′1(t)

] (
−ηℓ̃′2(t)e−ηℓ̃0(t)

)
=η2e−ηℓ̃1(t)e−ηℓ̃2(t)

[
ℓ̃′1(t)ℓ̃′′2(t)− ℓ̃′1(t)ηℓ̃′2(t)2 + ℓ̃′2(t)ηℓ̃′1(t)2 − ℓ̃′2(t)ℓ̃′′1(t)

]
=η2e−ηℓ̃1(t)e−ηℓ̃2(t)

[
ηℓ̃′2(t)ℓ̃′1(t)(ℓ̃′1(t)− ℓ̃′2(t)) +

[
ℓ̃′1(t)ℓ̃′′2(t)− ℓ̃′2(t)ℓ̃′′1(t)

]]
.

Note that the sign of ℓ̃′1(t)ℓ̃′′2(t)− ℓ̃′2(t)ℓ̃′′1(t) is the sign of κ
ℓ̃
. If κ

ℓ̃
is positive, then one can check that ℓ̃′1(t) > 0

and ℓ̃′2(t) < 0, thus the first term in brackets is necessarily negative. Thus by making η large κg(t) will
become negative. Then we want

ηℓ̃′2(t)ℓ̃′1(t)(ℓ̃′1(t)− ℓ̃′2(t)) +
[
ℓ̃′1(t)ℓ̃′′2(t)− ℓ̃′2(t)ℓ̃′′1(t)

]
≥ 0,

that is,

η ≤
ℓ̃′1(t)ℓ̃′′2(t)− ℓ̃′2(t)ℓ̃′′1(t)

(−ℓ̃′2(t)ℓ̃′1(t))(ℓ̃′1(t)− ℓ̃′2(t))
.

When considering the case when the signed curvature is negative, we have:
Lemma 2.10. Suppose that ℓ ∈ L is a proper loss function. Then, if ℓ is mixable, for any 1-chart
parametrization Φ of ∆2, the mixability constant is given by

η∗ℓ = inf
t∈Φ−1(int(∆2))

∣∣∣∣∣ ℓ̃′1(t)ℓ̃′′2(t)− ℓ̃′2(t)ℓ̃′′1(t)
ℓ̃′1(t)ℓ̃′2(t)(ℓ̃′1(t)− ℓ̃′2(t))

∣∣∣∣∣ . (2.7)

Conversely, if (2.7) holds, then ℓ is mixable with mixability constant η∗ℓ .

By the local nature of curvature, it would be possible to consider a “local version” of Lemma 2.10, which
would characterize a “local” notion of mixability. This alternative will not be pursued here.

Vovk (2015) observed that mixability for proper losses is equivalent to a quotient of curvatures being bounded
away from zero. For the reader’s convenience we prove this statement. To recover Vovk’s statement observe
that the properties he imposes on the loss functions imply that κ+ is the signed curvature (see Section 1.6).
Lemma 2.11. A proper loss function ℓ ∈ L is mixable if and only if

inf
p

κ+ℓ (p)
κ+log(p)

> 0,

where κ+log denotes the curvature of ℓlog. Moreover, when this holds,

η∗ℓ = inf
p

κ+ℓ (p)
κ+log(p)

> 0,

Proof. By Lemma 2.10, ℓ is proper with mixability constant η∗ℓ > 0 if and only if

η∗ℓ = inf
t∈Φ−1(int(∆2))

∣∣∣∣∣ ℓ̃′1(t)ℓ̃′′2(t)− ℓ̃′2(t)ℓ̃′′1(t)
ℓ̃′2(t)ℓ̃′1(t)(ℓ̃′1(t)− ℓ̃′2(t))

∣∣∣∣∣ ,
13
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for any given 1-chart parametrization Φ. Setting Φ = Φstd and using (2.6), we have the following. For any
t ∈ Φ−1(int(∆2)),∣∣∣∣∣ ℓ̃′1(t)ℓ̃′′2(t)− ℓ̃′2(t)ℓ̃′′1(t)

ℓ̃′2(t)ℓ̃′1(t)(ℓ̃′1(t)− ℓ̃′2(t))

∣∣∣∣∣
=

∣∣∣∣∣∣∣
ℓ̃′1(t)ℓ̃′′2(t)− ℓ̃′2(t)ℓ̃′′1(t)(
ℓ̃′1(t)2 + ℓ̃′2(t)2

)3/2
∣∣∣∣∣∣∣
(
ℓ̃′1(t)2 + ℓ̃′2(t)2

)3/2
(

1
(1−t)2 + 1

t2

)3/2
(

1
(1−t)2 + 1

t2

)3/2
1

(1−t)2
1
t2

1
(1−t)2

1
t2

|ℓ̃′2(t)ℓ̃′1(t)(ℓ̃′1(t)− ℓ̃′2(t))|

=
κ+
ℓ̃
(t)

κ+
ℓ̃log

(t)

(
ℓ̃′1(t)2 + ℓ̃′2(t)2

1
(1−t)2 + 1

t2

)3/2 1
(1−t)2

1
t2

|ℓ̃′2(t)ℓ̃′1(t)(ℓ̃′1(t)− ℓ̃′2(t))|

=
κ+
ℓ̃
(t)

κ+
ℓ̃log

(t)

 ℓ̃′1(t)2
(
1 + t2

(1−t)2

)
t2+(1−t)2
t2(1−t)2

3/2
1

(1−t)2
1
t2

| t
1−t ℓ̃

′
1(t)3(1 + t

1−t )|

=
κ+
ℓ̃
(t)

κ+
ℓ̃log

(t)
,

where we used that by properness ℓ̃′2(t) = − t
1−t ℓ̃

′
1(t) (see (2.1)).

Since κ+ is independent of the parametrization, we obtain the result.

Remark 2.12. Lemma 2.11 exemplifies the usefulness of Φstd. The curvature of ℓlog is easily computed with
respect to the standard parametrization, by fixing Φ = Φstd we can easily recognize when the curvature of ℓlog
appears in our computation. However, since curvature is a geometric quantity we know this relation between
curvatures will hold for any other parametrization as well.

Using this point of view, the following observations enlighten why the weight function in (Buja et al., 2005)
and in (Reid & Williamson, 2010) basically encodes all the relevant information in the binary case. Recall
that given a proper loss function ℓ, the weight of ℓ (with respect to a local parametrization Φ of ∆2) is defined
as

wℓΦ(t) =
∣∣∣∣∣ ℓ̃′1(t)Φ2(t)

∣∣∣∣∣ =
∣∣∣∣∣ ℓ̃′2(t)Φ1(t)

∣∣∣∣∣ . (2.8)

We stress that the weight depends on the coordinates Φ of ∆ that we use, and hence we use the notation
ℓΦ. As observed in Remark 2.12, we sometimes set Φ = Φstd (as it is done in (Buja et al., 2005; Reid &
Williamson, 2010)) to be able to recognize some terms.
Lemma 2.13. Let ℓ ∈ L be a proper loss and Φ a local parametrization of ∆2, denote by ℓ̃Φ its local expression
and by wℓΦ be its weight. Then we have for any t ∈ Φ−1(int(∆2)),

k+
ℓ̃Φ
(t) = 1

wℓΦ(t)
|Φ′

1(t)|
(

1
Φ1(t)2 +Φ2(t)2

)3/2

and moreover, if λ is another proper loss,

κ+
ℓ̃Φ
(t)

κ+
λ̃Φ

(t)
= wλΦ(t)
w
ℓ̃Φ
(t) . (2.9)

In particular, when Φ = Φstd,

k+
ℓ̃std

(t) = 1
wℓstd(t)

(
1

t2 + (1− t)2

)3/2

.
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and if in addition, λ = ℓlog (with Φ = Φstd),

k+
ℓ̃std

(t)

κ+
ℓ̃log

(t)
= 1
wℓstd(t)

1
t(1− t) =

wℓlog(t)
wℓstd(t)

. (2.10)

Proof. Let ℓ : ∆2 −→ R2
≥2 be a proper loss and let Φ be any parametrization of ∆2 around p. Let us compute

κ+
ℓ̃Φ

(assuming w.l.o.g. that κ+
ℓ̃Φ

= κ
ℓ̃Φ
, which means ℓ̃′1 > 0 and Φ′

1 < 0).

κ+
ℓ̃Φ
(t) = ℓ̃′1(t)ℓ̃′′2(t)− ℓ̃′′1(t)ℓ̃′2(t)(

ℓ̃′2(t)2 + ℓ̃′1(t)2
)3/2

=
(
ℓ̃′1(t)ℓ̃′′2(t) + ℓ̃′′1(t)ℓ̃′1(t)

Φ1(t)
Φ2(t)

)(
Φ1(t)2
Φ2(t)2

ℓ̃′1(t)2 + ℓ̃′1(t)2
)−3/2

= ℓ̃′1(t)
Φ2(t)

1
ℓ̃′1(t)3

(
Φ1(t)ℓ̃′′1(t) + Φ2(t)ℓ̃′′2(t)

)(Φ1(t)2
Φ2(t)2

+ 1
)−3/2

= −
ℓ̃′1(t)
Φ2(t)

1
ℓ̃′1(t)3

(
Φ′

1(t)ℓ̃′1(t) + Φ′
2(t)ℓ̃′2(t)

)(Φ1(t)2
Φ2(t)2

+ 1
)−3/2

= −
ℓ̃′1(t)
Φ2(t)

1
ℓ̃′1(t)3

(
Φ′

1(t)ℓ̃′1(t)− Φ′
2(t)

Φ1(t)
Φ2(t)

ℓ̃′1(t)
)(

Φ1(t)2
Φ2(t)2

+ 1
)−3/2

= − 1
Φ2(t)

1
ℓ̃′1(t)

(
Φ′

1(t)− Φ′
2(t)

Φ1(t)
Φ2(t)

)(
Φ1(t)2 +Φ2(t)2

Φ2(t)2

)−3/2

= − 1
Φ2(t)

1
ℓ̃′1(t)

(Φ′
1(t)Φ2(t)− Φ′

2(t)Φ1(t)
Φ2(t)

)(
Φ2(t)2

Φ1(t)2 +Φ2(t)2

)3/2

= −Φ2(t)
ℓ̃′1(t)

(Φ′
1(t)Φ2(t)− Φ′

2(t)Φ1(t))
(

1
Φ1(t)2 +Φ2(t)2

)3/2

= − 1
wℓΦ(t)

(Φ′
1(t)Φ2(t) + Φ′

1(t)Φ1(t))
(

1
Φ1(t)2 +Φ2(t)2

)3/2

= 1
wℓΦ(t)

(−Φ′
1(t)) (Φ2(t) + Φ1(t))

(
1

Φ1(t)2 +Φ2(t)2

)3/2

,

where we have used that by properness we know that ⟨ℓ̃′(t),Φ(t)⟩ = 0 ((2.1)), which implies ⟨ℓ̃′′(t),Φ(t)⟩ =
−⟨ℓ̃′(t),Φ′(t)⟩ by differentiating with respect to t from the third to the fourth equality, and that Φ′

1(t)+Φ′
2(t) =

0 since Φ(t) ∈ ∆2 from the third to last to the second to last equality.

Notice that in the last equation of the previous string of equalities, the only term involving ℓ is ℓ̃′1 (or more
precisely wℓΦ(t)) and the remaining terms depend only on the parametrization Φ. Then we obtain

κ+
ℓ̃Φ
(t)

κ+
λ̃Φ

(t)
= wλΦ(t)
wℓΦ(t)

.

The remaining statements follow from setting Φ = Φstd and (2.6).

Remark 2.14. Combining Lemma 2.11 and (2.10), we recover the characterization of the mixability constant
in terms of the quotient of weights obtained by van Erven et al. (2012, Section 4.1). However for the
corresponding statement involving the quotient of second derivatives of the Bayes risks, the fact that ∆2 has
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an affine parametrization is important. Indeed, this relies on Corollary 3 in (Reid & Williamson, 2010) that
states that w(t) = −L̃

′′
(t). In general, it can be checked that

L̃
′′
(t)−

[Φ′′
1(t)

Φ1(t)

]
L̃
′
(t) = −Φ2(t)ℓ̃′1(t)2

(
1 + Φ2(t)2

Φ1(t)2

)3/2

κ
ℓ̃
(t),

which reduces to w(t) = −L̃
′′
(t) when Φ = Φstd. From the point of view of the present work, L (or a quotient

of them) is not a good quantity to consider since it strongly depends on coordinates. However, notice that if
one restricts to affine parametrizations of ∆2 then L̃

′′
(t) depends on ℓ̃′1(t)2 and κ

ℓ̃
(t) and hence in view of

Lemma 2.13 restricting to a fixed affine parametrization of ∆2 will make quotients of the second derivative of
the Bayes risk well behaved.

Let us remark some points about Lemma 2.13.

• Let ℓ : ∆2 −→ R be a given strictly proper, fair, loss function. Given a parametrization, we obtain a
weight wℓΦ given by (2.8), that is, the weight depends on the parametrization.

• The curvature of ℓ is independent of Φ up to a sign. However, when defining κ+ℓ we made the choice
of the sign in a uniform way, thus the curvature is independent of the parametrization for the family
of losses considered here. Then it follows that the quotient of curvatures is independent of the
parametrization and by (2.9), it also follows that the quotient of weights is also independent of the
coordinates (despite the weights being coordinate dependent themselves).

• A corresponding notion of weight in higher dimensions (for the multi-class case) is way more
complicated and it is unclear whether using them would lead to successful results. One higher
dimensional analog of curvatures is readily seen to be the so called “principal curvatures” of a
hypersurface in Euclidean space (see Appendix A). This will be the main motivation when dealing
with the multi-class case (Section 3) Alternative ways to characterize proper higher dimensional loss
functions have been studied in (Williamson et al., 2016).

2.4 Geometric comparison of loss functions

Fix a proper, fair loss function λ : ∆2 −→ R2. Given another proper, fair loss function ℓ ̸= λ, how might we
compare them? From the point of view of differential geometry, since given p the normal vectors at λ(p)
and ℓ(p) coincide, it is natural to look at their curvatures. Motivated by Lemma 2.11, we impose (for the
moment) the condition

inf
p∈∆2

κ+ℓ (p)
κ+λ (p)

= 1.

Note that this implies that κ+ℓ (p) ≥ κ+λ (p) for all p ∈ ∆2. We divide the comparison in steps for clarity.

(1) Expressing λ(∆2) as a function. Note that since λ is proper and fair, the normal vector to a point
λ(p) can only be (1, 0) when p = (1, 0) (i.e., when evaluating λ at the boundary of ∆2). Thus, the set
λ(int(∆2)) can be expressed as a graph over the x-axis. To obtain an explicit expression let Φ = Φstd.
We use the fact that λ̃1 : (0, 1) −→ (0, l1) (where l1 could be infinity) is invertible. Then, we have that

λ(int(∆2)) = {(x, f(x)) |x ∈ (0, l1)}

where f(x) = λ2(λ̃−1
1 (x), 1− λ̃−1

1 (x)).

(2) Translating and parametrizing ℓ(∆2). Let p0 ∈ int(∆2) with κ+ℓ (p0) > κ+λ (p0), if such p0 does not
exist then ℓ = λ. We define ℓ0 : ∆2 −→ R2 by ℓ0(p) = ℓ(p) + [λ(p0)− ℓ(p0)], i.e., we translate ℓ so that it
coincides with λ at λ(p0). (ℓ0 is not fair anymore, however, the curvature is invariant under translations.)
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We now parametrize ℓ(∆2) as the graph of a function g defined on an interval I0 around x0 (the
x-coordinate of λ(p0)), “aligning” it with λ (we can assume this interval to be maximal). We let
g(x) = ℓ02((ℓ̃01)−1(x), 1− (ℓ̃01)−1(x)). Since κ+ℓ (p0) > κ+λ (p0), we know that around x0 the graph of g is to
the northeast of f .

(3) Comparison. If the graph of g is to the northeast of f on the whole I0, then we see that the
superprediction set of ℓ0 is contained in that of λ. If this does not hold, it means that there is x1 ∈ I0
such that f(x1) = g(x1), and w.l.o.g. we can assume x1 > x0. Thus we know that g(x)− f(x) ≥ 0 on
[x0, x1] and g(x)− f(x) = 0 on {x0, x1}, i.e., the boundary of [x0, x1]. Define the second order operator
which computes the curvature of the graph (x, h(x)) (see (A.1)):

L(h)(x) = κ+h (x) =
1

(1 + h′(x)2)3/2
h′′(x).

Since κ+ℓ (p0) > κ+λ (p0), we see that L(g − f) ≥ 0 on [x0, x1]. The maximum principle now implies that
the supremum of g − f is attained at the boundary on [x0, x1], and hence we know that f(x) = g(x) on
[x0, x1], which is a contradiction. Thus the superprediction set ℓ is contained in the superprediction set
of λ (see Section 4).

More generally, if we assume instead that

inf
p∈∆2

κ+ℓ (p)
κ+λ (p)

= η,

for some η > 0, we see that (see Appendix A) that ℓη(p) = ηℓ(p) satisfies

inf
p∈∆2

κ+ℓη (p)
κ+λ (p)

= 1.

That is, we can reproduce the previous analysis with ℓη instead of ℓ.

The previous discussion motivates right away a comparison between proper, fair loss functions.
Definition 2.15. Let λ : ∆2 −→ R2

≥0 be a proper, fair loss in L, which we call a base loss. We say that a
proper, fair loss ℓ : ∆2 −→ R2 is mixable with respect to λ if

inf
p∈∆2

κ+ℓ (p)
κ+λ (p)

> 0.

2.5 Mixability and fundamentality as comparison to the log loss

Now, suppose ℓ ∈ L is proper and fair. Thus, in particular κ+ℓ (p) > 0 for all p ∈ int(∆2). We want to think
of mixability as a geometric comparison to the log loss as suggested by Vovk (2015) and give a detailed
interpretation of this comparison. We fix the standard parametrization of ∆2, Φ = Φstd : [0, 1] −→ ∆2, given
by

Φ(t) = (t, 1− t).

The log loss in these coordinates is thus given by

ℓ̃log(t) = (− ln(t),− ln(1− t)),

and by (2.6), its curvature with respect to the unit normal pointing towards R2
≥0 is given by

κ+
ℓ̃log

(t) = t(1− t)
(t2 + (1− t)2)3/2

.
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Notice that κ+
ℓ̃log

(t) > 0 for all t ∈ (0, 1) and κ+
ℓ̃log

(t) → 0 as t→ 0 or t→ 1. Thus, clearly by Lemma 2.7, for
any proper subinterval C of [0, 1] (cf. (Vovk, 2015, Corollary 2)), we have

inf
t∈C

κ+ℓ (t)
κ+
ℓ̃log

(t)
> 0.

Thus, whether a proper, fair loss function ℓ is mixable or not will depend of the behavior of the quotient
κ+ℓ (p)/κ

+
log(p) as p approaches (0, 1) and (1, 0). More precisely, we have obtained the following.

Lemma 2.16. Let ℓ ∈ L be a proper loss. Then ℓ is mixable if and only if

lim
p→(0,1)

κ+ℓ (p)
κ+log(p)

> 0, and

lim
p→(1,0)

κ+ℓ (p)
κ+log(p)

> 0.

Motivated by this we make the following definition.
Definition 2.17. Let ℓ be a proper, fair loss function in L, and Φ = Φstd be the standard parametrization of
∆2. We say that is ℓ (B1, B2)-logarithmic at the boundary if

lim
t→0+

κ+
ℓ̃
(t)

κ+
ℓ̃log

(t)
= B−1

1 > 0, and

lim
t→1−

κ+
ℓ̃
(t)

κ+
ℓ̃log

(t)
= B−1

2 > 0.

Let us analyze what this means. Suppose that ℓ is proper and (B1, B2)-logarithmic. Then for any t ∈ (0, 1),
using (2.10) in Lemma 2.13 and (2.8), we have

κ+
ℓ̃
(t)

κ+
ℓ̃log

(t)
= 1
w
ℓ̃std

(t)
1

t(1− t) =
∣∣∣∣∣ 1
ℓ̃′1(t)

∣∣∣∣∣ 1t .
Notice that as t→ 0+,

B−1
1 = lim

t→0+
1
t

1
|ℓ̃′1(t)|

= lim
t→0+

∣∣∣∣∣ (ℓlog)
′
1(t)

ℓ̃′1(t)

∣∣∣∣∣ .
and similarly,

B−1
2 = lim

t→1−
1

1− t

1
|ℓ̃′2(t)|

= lim
t→1−

∣∣∣∣∣ (ℓlog)
′
2(t)

ℓ̃′2(t)

∣∣∣∣∣ .
that is, we are only comparing the rate at which ℓi, i = 1, 2, go to 0 (since they do by fairness) with the rate
at which the log loss does.

In (Vovk, 2015), Vovk defines a loss function λ∗ to be fundamental if given a (computable, proper, mixable)
loss function λ and a data sequence in ζ ∈ Z∞ that is random under λ∗ with respect to a prediction algorithm
F , then it is random under λ with respect to F . He shows that a fair, mixable ℓ ∈ L is fundamental if and
only if (using the notation in (Vovk, 2015))

sup
p∈[0,1]

κℓ(p)
κlog(p)

<∞.
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Since we have seen that mixability can be regarded as a comparison of curvatures of the loss curve of ℓ and
that of ℓlog and we have reinterpreted fundamentabiliy as a comparison of ℓ and ℓlog near the boundary
building on Definition 2.15, we can easily come up with a notion of λ-fundamentality.
Definition 2.18. Let λ be a proper, fair loss function in L. We say that a proper, fair loss function ℓ ∈ L is
λ-fundamental if

• ℓ is mixable with respect to λ, and
• when Φ = Φstd, we have

lim
t→0+

κ+
ℓ̃
(t)

κ+
λ̃
(t)

<∞

lim
t→1−

κ+
ℓ̃
(t)

κ+
λ̃
(t)

<∞.

Suppose now that a mixable loss function ℓ ∈ L is fundamental. Then there exist η, γ > 0 such that

η ≤
κ+ℓ (p)
κ+log(p)

≤ γ,

for all p ∈ int(∆2). This implies that

η−1κ+ℓ (p) ≥ κ+log(p) and κ
+
log(p) ≥ γ−1κ+ℓ (p),

for all p ∈ int(∆2), which readily implies (Appendix A) that

κ+ηℓ(p) ≥ κ+log(p) and κ
+
log(p) ≥ κ+γℓ(p),

for all p ∈ int(∆2).

Rephrasing the previous discussion we have obtained the following characterization of fundamentality.
Theorem 2.19. A loss function ℓ ∈ L is fundamental if and only if there exist numbers η, γ > 0, such that
for any p ∈ int(∆2), there are translation vectors xp and yp in R2

≥0 such that

spr(ηℓ+ xp) ⊂ spr(ℓlog) ⊂ spr(γℓ+ yp).

2.6 Constructing new mixable losses from previous

We now observe how mixability helps us to construct new proper, fair and mixable functions from previous
proper, fair and mixable losses. We first define a family of losses that will serve to illustrate the idea. We set
Φ = Φstd and λ = ℓlog. Let a > 0 and define the loss function λa : ∆2 −→ R2

≥0

λa(p) = aλ(p).

It can be readily checked that κ
λ̃a(t) = a−1κ+λ (t), thus since

κ
λ̃a(t)
κ+λ (t)

= 1
a
,

it follows that λa is 1-mixable for a ≤ 1 and it is not if a > 1. Note that λa is still proper and fair. Take then
a < 1, we can readily see that there exists a proper, fair an mixable loss function λ∗ such that

λ = λa + λ∗.
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Indeed, λ∗ = λ− λa = λ1−a, which is fair, proper and 1-mixable.

This process works in a more general setting than scalings of λ. Consider for example the spherical loss σ
defined in coordinates by

σ̃(t) =
(
1− t√

t2+(1−t)2
, 1 + t√

t2+(1−t)2

)
.

It can be easily checked that this is bounded, proper and fair and that κ
σ̃
(t) = 1. Thus

κ+
σ̃
(t)

κ+λ (t)
= (t2 + (1− t)2)3/2

t(1− t) > 1,

thus σ is 1-mixable. Thus, as before, there is a loss function ℓ∗ such that λ = σ + ℓ∗. Moreover, the loss
function given (in coordinates) by

ℓ∗(t) = λ(t)− σ(t) =
(
− ln(t)− 1 + t√

t2+(1−t)2
,− ln(1− t)− 1− t√

t2+(1−t)2

)
,

which can be seen to be unbounded, proper, fair and mixable.

We close this subsection with the following observation. Suppose that ℓ is a proper, fair, mixable loss function
with mixability constant η > 0. Then the loss function ℓη = ηℓ is 1-mixable. Thus, there exists a proper, fair,
mixable loss ℓ∗ such that

ℓlog = ℓη + ℓ∗.

As we will see in Section 4, the previous observation can be interpreted from the point of view of the
superprediction sets of the involved loss functions and convex geometry: spr(ηℓ) slides freely inside spr(λ)
(see Theorem 4.23).

2.7 Composite losses and the canonical link

In this part we discuss composite losses following (Reid & Williamson, 2010). Let us recall their setting.
Let V ⊂ R be a set of prediction values. A link function is a continuous map ψ : [0, 1] −→ V. Given a loss
function ϱ̃ : {0, 1} × [0, 1] −→ R and assuming V = R, if ψ is invertible, we define the composite loss ϱψ as

ϱ̃ψ(y, v) = ϱ̃(y, ψ−1(v)).

Definition 2.20. A composite loss ϱ̃ψ is a proper composite loss if ϱ̃ is a proper loss in the sense of Reid &
Williamson (2010).

Recall that in (Reid & Williamson, 2010), Φ = Φstd is implicitly assumed. Then, given a loss function ϱ̃
(in the (Reid & Williamson, 2010) sense), we can construct a loss function ϱ : ∆2 −→ R2

≥0, by ϱ = ϱ̃ ◦ Φ−1
std.

Then, the composite loss ϱ̃ψ can be expressed as

ϱ̃ψ(v) = (ϱ̃ ◦ ψ−1)(v)
= (ϱ ◦ Φstd ◦ ψ−1)(p)
=
(
ϱ ◦ (Φstd ◦ ψ−1)

)
(p)

In other words, the composite loss ϱ̃ψ is the local expression of ϱ with respect to the parametrization
Φ = Φstd ◦ψ−1 of ∆2. We denote the local expression of ϱ with respect to Φ by ϱ̂, that is ϱ̂ := ϱ◦Φstd ◦Ψ−1 =
ϱ̃ ◦Ψ−1

To show how this reconciliation of terms work, we obtain a result similar to Corollary 12 in (Reid & Williamson,
2010). Suppose that a composite loss ϱ̃ψ is given and it has differentiable partial losses (i.e., the corresponding
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loss ϱ is in L), furthermore, we assume that ψ is a diffeomorphism which in one dimension means it is strictly
monotonic. Then we know that ϱ̃ψ is strictly proper if and only if ϱ is strictly proper (by definition). This
implies that p is normal to ϱ(∆2) at ϱ(p) for all p ∈ int(∆2) and its curvature is positive (with respect to the
unit normal pointing towards R2

≥0). This means for all v ∈ V,

0 = ⟨ϱ̂′(v),Φ(v)⟩
= ϱ̂′1(v)Φ1(v) + ϱ̂′2(v)Φ2(v)
= ϱ̃′1(ψ−1(v))(ψ−1)′(v)Φ1(v) + ϱ̃′2(ψ−1(v))(ψ−1)′(v)Φ2(v)
= ϱ̃′1(ψ−1(v))Φ1(v) + ϱ̃′2(ψ−1(v))(1− Φ1(v)),

where we have used that ψ is a diffeomorphism and that Φ1 + Φ2 = 1 for all parametrizations Φ of ∆2.
Therefore, we have

Φ1(v)
(
ϱ̃′1(ψ−1(v))− ϱ̃′2(ψ−1(v))

)
= −ϱ̃′2(ψ−1(v)),

that is

ψ−1(v) = ϱ̃′2(ψ−1(v))
(ϱ̃′2(ψ−1(v))− ϱ̃′1(ψ−1(v)))

for all v ∈ V.

Since we are working with valid reparametrizations the choice of Ψ will not affect the curvature of ϱ. Hence
we obtain
Corollary 2.21. A composite loss ϱ̃ψ is strictly proper if and only if ϱ ∈ L is strictly proper and ψ satisfies

ψ−1(v) = ϱ̃′2(ψ−1(v))
(ϱ̃′2(ψ−1(v))− ϱ̃′1(ψ−1(v)))

for all v ∈ R.
Remark 2.22. We have seen that whether a loss function ℓ ∈ L is strictly proper or not, depends on whether
conditions (2.3) and (2.4) hold or not. Notice that under a (admissible) change of coordinates, for example
given by a link ψ, (2.4) will not be modified. However, (2.3)might change (since in a way, we are changing
the “velocity” at which we move on ℓ(∆2)). Hence, Corollary 2.21 is giving us a way to define the set of
admissible links (or reparametrizations of ∆2) given a loss function ℓ and the standard parametrization of ∆2.
In this case, the new parametrization is given by Φ = Φstd ◦ ψ−1.

For applications, it is desired to be able to work with a given composite loss ϱ̃ψ, and moreover, to have
convexity of the partial losses ϱ̃ψ1 and ϱ̃ψ2 . From our point of view, we see ϱ̃ψ as the local expression of some
ϱ : ∆2 −→ R, so that ϱ̂ := ϱ ◦ Φ = ϱ ◦

(
Φstd ◦ ψ−1) = (ϱ ◦ Φstd) ◦ ψ−1 = ϱ̃ ◦ ψ−1.

Let us work with the partial losses separately:

d

dv
ϱ̂1(v) = ϱ̃′1(ψ−1(v))(ψ−1)′(v)

d

dv
ϱ̂2(v) = ϱ̃′2(ψ−1(v))(ψ−1)′(v)

Proceeding as in the proof of Lemma 2.4, properness implies

0 = ∂vL̃(u, v)|v=u
= ϱ̃′1(ψ−1(v))(ψ−1)′(v)Φ1(u) + ϱ̃′2(ψ−1(v))(ψ−1)′(v)Φ2(u)|s=u
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or, equivalently,

0 = ϱ̃′1(ψ−1(v))Φ1(v) + ϱ̃′2(ψ−1(v))Φ2(v).

Therefore, we can define w as

w(v) := w
ϱ̃
(Ψ−1(v)) = ϱ̃′2(ψ−1(v))

Φ1(v)
= −

ϱ̃′1(ψ−1(v))
Φ2(v)

, (2.11)

where w
ϱ̃
is the weight of ϱ̃, we can rewrite the derivatives of the partial losses of ϱ̂ as

dϱ̂1
dv

(v) = −w(v)Φ2(v)(ψ−1)′(v),

dϱ̂2
dv

(v) = w(s)Φ1(v)(ψ−1)′(v).

Taking second derivatives we have

d2ϱ̂1
dv2

(v) = −
[
w(v)(ψ−1)′(v)

]′ Φ2(v)−
[
w(v)(ψ−1)′(v)

]
Φ′

2(v),

d2ϱ̂2
dv2

(v) =
[
w(v)(ψ−1)′(v)

]′ Φ1(v) +
[
w(v)(ψ−1)′(v)

]
Φ′

1(v).

A way to guarantee both expressions are positive is as follows. Assume w.l.o.g. that (ψ−1)′ > 0. Since we are
assuming w > 0, ϱ̂2 is increasing and ϱ̂1 is decreasing (also we have Φ1 is increasing and Φ2 is decreasing).
We readily see that imposing

w(v)(ψ−1)′(v) = 1
for all v ∈ R, is enough to guarantee both second derivatives to be strictly positive.
Definition 2.23. Given ϱ ∈ L strictly proper, we define the canonical link ψ as the link defined by

(ψ−1)′(v) = ψ−1(v)
ϱ̃′2(ψ−1(v)) = 1

w(v) , (2.12)

for v ∈ V, where w is defined in (2.11).

The differential equation (2.12) can be seen as separable ordinary differential equation, which is solvable for
loss functions in L.

To give a geometric meaning, we look at the norm of the velocity of the loss curve α(v) = ϱ̂(v).

|α′(v)|2 = w(v)2(ψ−1)′(v)2
[
Φ1(v)2 +Φ2(v)2

]
By assuming w(s)(ψ−1)′(s) = 1 and Φ = Ψ, we have

|α′(s)|2 =
[
Φ0(ψ−1(s))2 +Φ1(ψ−1(s))2

]
.

Thus the canonical link gives a parametrization of ∆2 such that ϱ̂ is a curve such that its velocity vector at v
coincides with the length of the vector Φ(ψ−1(v)). In other words, it is a parametrization of the loss curve
ϱ(int(∆2)) such that for ϱ(p) = ϱ̂(v) ∈ ℓ(int(∆2)), the tangent vector at the point has length |p|. We close
this discussion with a charcterization of the canonical link.
Theorem 2.24. Let ϱ ∈ L be a strictly proper loss function and ψ its canonical link. The reparametrization
of ϱ determined by its canonical link is a parametrization of ϱ(int(∆2)) with weight equal to 1.
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Proof. Let ϱ̂ = ϱ ◦ (Φstd ◦ψ−1) = ϱ̃ ◦ψ−1 be the reparametrization of ϱ(int(∆2)) determined by the canonical
link. Since

ϱ̂′2(v) = ϱ̃′2(ψ−1(v))(ψ−1)′(v),

for all v ∈ V, and from Definition 2.23

ϱ̃′2(ψ−1(v))) = ψ−1(v)
(ψ−1)′(v) , (2.13)

for all v ∈ V, we have

ϱ̂′2(v) = ψ−1(v).

Thus w
ϱ̂
(v) =

∣∣∣∣ ϱ̂′2(v)Φ1(v)

∣∣∣∣ = 1.

3 Mixability for Multi-Class Classification

Now we focus our attention on multi-class classification loss functions, that is, maps ℓ : ∆n −→ Rn≥0 given by
the partial losses

ℓ(p) = (ℓ1(p), ..., ℓn(p)).

Our main goal is to interpret mixability as a geometric comparison of a given loss function ℓ to the log loss, as
we did for the binary case. As suggested by the comments after Remark 2.11, the extra work of characterizing
properness and mixability in a geometric way (coordinate independent) will pay off since to carry out the
comparison we will look at the scalar second fundamental forms of ℓ(int(∆n)) and ℓlog(int(∆n)). The scalar
second fundamental form measures how a Riemannian manifold curves inside an “ambient space”, in this
case how ℓ(int(∆n)) curves inside Rn (see Appendix A for details).

The definition of L (Definition 2.1) can be extended to higher dimensions.
Definition 3.1. An admissible loss function is a map ℓ : ∆n −→ Rn≥0 such that

(i) ℓ(int(∆n)) ⊂ Rn≥0 is a (n− 1)-manifold of class C2,

(ii) there exists a C1 map n : ℓ(int(∆n)) → Nℓ(int(∆n)), n(ℓ(p)) =: nℓ(p), where Nℓ(int((∆n)) is the
normal space of ℓ(int((∆n)), and

(iii) n(ℓ(p)) or −n(ℓ(p)) belongs to Rn>0 for all p ∈ int(∆n).

We denote the set of admissible loss functions as Ln, or simply L when the dimension is clear from context.

We fix the log loss and denote it for convenience by λ := ℓlog : ∆n −→ Rn≥0, as the map

λ(p) = (− ln(p1), ...,− ln(pn)),

for p = (p1, ..., pn) ∈ ∆n.

Let ℓ ∈ Ln and consider a parametrization Φ: D ⊂ Rn−1 −→ ∆n of ∆n around p ∈ int(∆n). The local
expression of the conditional risk (using the parametrization Φ× Φ of ∆n ×∆n around (p, p)) is given by

L̃(t, s) = ⟨ℓ̃(s),Φ(t)⟩ =
n∑
k=1

ℓ̃k(s)Φk(t),

where t = (t1, ...tn−1), s = (s1, ..., sn−1) ∈ D and ℓ̃ = ℓ ◦ Φ.
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Imposing ℓ to be proper implies that when fixing t, s = t is a critical point of L̃(t, ·), that is,

0 = ∂siL̃(t, ·)|s=t = ⟨∂si ℓ̃(t),Φ(t)⟩

for all i ∈ {1, ..., n − 1}. Note that since the tangent space of Mℓ at ℓ̃(t), T
ℓ̃(t)ℓ̃(U), is generated by

{∂s1 ℓ̃(t), ..., ∂sn−1 ℓ̃(t)}, we conclude that Φ(t) is a normal vector. In other words, as before, we have

n(ℓ(p)) = ± p

|p|
,

for all p ∈ int(∆n).

The fact that L̃(t, ·) achieves a minimum at s = t (at interior points) is equivalent to requiring that the
Hessian, D2L̃, is positive definite at s = t. The Hessian of L̃(t, ·) at s = t is given by

[D2L̃]ij(t) = ∂sjsiL̃(t, ·)|s=t = ⟨∂2sjsi ℓ̃(t),Φ(t)⟩.

The next step is to relate [D2L̃]ij(t) to the scalar second fundamental form h of Mℓ = ℓ(∆n) (see Appendix A
for its definition). More precisely, we compute the h with respect to a local parametrization Φ of ∆n, i.e.,
we obtain the matrix [hij ] representing h. To do this we need to compute the second derivatives of its
parametrization ℓ̃ = ℓ ◦ Φ (Appendix A). Since,

∂si ℓ̃(s) =
(
∂si ℓ̃1(s), ..., ∂si ℓ̃n−1(s)

)
we have

∂2sjsi ℓ̃(s) =
(
∂2sjsi ℓ̃1(s), ..., ∂

2
sjsi ℓ̃n−1(s)

)
.

The scalar second fundamental form (with respect to the normal vector pointing towards Rn≥0) is then given
by

hij(s) = h(∂si ℓ̃(s), ∂sj ℓ̃(s)) = ⟨∂2sjsi ℓ̃(s),n(ℓ̃(s))⟩

= ⟨∂2sjsi ℓ̃(s),
Φ(s)
|Φ(s)| ⟩

= 1
|Φ(s)| ⟨∂

2
sjsi ℓ̃(s),Φ(s)⟩

= 1
|Φ(s)| [D

2L̃]ij(s), (3.1)

for i, j = 1, ..., n− 1, thus if [D2L̃]ij(s) is positive definite, then the matrix [hij ](s) is positive definite. In this
case its eigenvalues are strictly positive and hence, the principal curvatures of Mℓ at ℓ(s) (see Appendix A),
κ+i (s) (with respect to the unit normal pointing towards Rn≥0) are all positive. Therefore, using a similar
reasoning as we did in the case n = 2, we have obtained the following geometric characterization of properness
(by following the same arguments as in Section 2).
Lemma 3.2. Let ℓ ∈ Ln. ℓ is strictly proper if and only if nℓ(p) = ±p/|p| and the principal curvatures of
Mℓ at ℓ(p), κ+i (p) (i = 1, .., n− 1), are strictly positive for all p ∈ int(∆n).

We briefly explain how the comparison of scalar second fundamental forms will be performed. We follow a
similar procedure as the one described in Section 2.4 for the case n = 2.

1. We establish that given a proper loss function ℓ ∈ Ln, around every p∗ ∈ int(∆n), ℓ(int(∆n)) can be
parametrized as a graph of a function f defined on a neighborhood around some x∗ ∈ Rn such that
(x∗, f(x∗)) = ℓ(p∗). We do this explicitly for the log loss λ.
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n

H

λ(int(∆n))

ηℓ(int(∆n))

•

Figure 6: Geometric interpretation of η-mixability.

2. Since λ and ℓ are proper, the normal vector to λ(int(∆n)) and ℓ(int(∆n)) at λ(p∗) and ℓ(p∗),
respectively, is p∗/|p∗|. Hence we can identify their tangent spaces at these points. We do so and fix
the parametrizations given in step (1).

3. By assuming η-mixability of ℓ, we look at the principal curvatures of Eη(ℓ(int(∆n)) and prove an
equivalent condition for them to be non-negative with respect to normal vector field pointing towards
Eη(spr(ℓ)) (i.e., convexity). The condition to be satisfied is seen to be comparison of the scalar
second fundamental forms of λ and ℓ that we can recognize by step (1).

4. We interpret this comparison as follows. Since the tangent spaces to ℓ(p∗) (and ηℓ(p∗)) and λ(p∗)
coincide for the chosen point p∗, if we translate ℓ to coincide to λ at p∗, call this tangent space H
(and note it can be indetified with the supporting plane of the loss functions at the given point).
Then if we express (locally) ηℓ(int(∆n)) and λ(int(∆n)) over H, the graph of ηℓ(int(∆n)) lies above
the graph of λ(int(∆n)). See Figure 6.

3.1 Representing proper loss functions as graphs over Euclidean spaces

When restricting to the set of admissible loss functions Ln (n ≥ 2), we can represent losses as functions over
Rn−1 (a similar approach was taken in (van Erven et al., 2012); the difference relies on the fact that here we
are after the comparison of second fundamental forms), which allows us to represent geometric quantities in a
simple way. This will be useful to recognize these quantities when comparing a proper loss function ℓ to the
log loss λ, as we did for the binary case in Section 2. Let ℓ : ∆n −→ Rn≥0 be a proper loss in Ln given by

ℓ(p) = (ℓ1(p), ..., ℓn(p)) .

Let Φ: ∆n−1 ⊂ Rn−1 −→ ∆n be the standard parametrization of ∆n given by

Φ(s) = Φstd(s) =
(
s1, ..., sn−1, 1−

n−1∑
i=1

si

)
,

where s = (s1, ..., sn) ∈ ∆n−1. The local expression of ℓ̃ in these coordinates is then given by ℓ̃(s) = (ℓ ◦Φ)(s),
so that ℓ̃i(s) = (ℓi ◦ Φ)(s). Also, we define the projection Π: Rn≥0 −→ Rn−1

≥0 as Π(y1, ..., yn) = (y1, ..., yn−1).

Recall that properness implies that the normal vector of Mℓ = ℓ(∆n) at ℓ(p) can be chosen to be |p|−1p,
for p ∈ int(∆n). As a consequence, the normal vector is never parallel to the hyperplane {(x1, .., xn) ∈
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Rn |xn = 0}, so that around any point ℓ(p) with p ∈ int(∆n), Mℓ can be written as a graph over Rn≥0 × {0}
(as regular as Mℓ is). In general, the existence of this function is guaranteed by the implicit function theorem,
however, in our case we can give an explicit description of it as follows. The function Π|Mℓ

is a map with
injective derivative, say around ℓ(q) for a fixed q ∈ int(∆n), therefore, the inverse function theorem ensures
the existence (and differentiability) of a local inverse, which we can denote by Π|−1

Mℓ
. This inverse map can

be seen as a local parametrization of Mℓ. Thus, the local expression of ℓ (viewed as a map from ∆n to
Mℓ), ℓ : Dq ⊂ Rn−1 −→ Uℓ(q) ⊂ Rn−1 (where the latter are small neighborhoods around Φ−1(q) and Π(ℓ(q))
respectively) is given by

ℓ(s) = (Π ◦ ℓ ◦ Φ)(s) = (Π ◦ ℓ̃)(s) =
(
ℓ̃1(s), ..., ℓ̃n−1(s)

)
.

This map is a diffeomorphism and its inverse ℓ−1 : Uℓ(q) −→ Dq, will be denoted by

ℓ
−1(x) =

(
ℓ̃−1
1 (x), ..., ℓ̃−1

n−1(s)
)
.

We warn the reader about this abuse of notation, ℓ̃−1
i (x) is not the inverse of ℓ̃i(s), it is a map satisfying

xi = ℓ̃i(s),
si = ℓ̃−1

i (x),

(ℓ ◦ ℓ−1)(x) = x,

(ℓ−1
◦ ℓ)(s) = s.

We want to define f : Uℓq −→ R such that graph(f) ⊂ Mℓ. We see that setting Uℓ(q) ⊂ Π(Mℓ), so that it
contains Π(ℓ(q)), we arrive to

f(x) = (ℓn ◦ Φ ◦ ℓ
−1)(x) = ℓ̃n(ℓ

−1(x)).

We have obtained the following result.
Lemma 3.3. Let ℓ ∈ Ln be a strictly proper loss. Let q ∈ int(∆n). Then there exists an open set
U ⊂ Rn−1

≥0 × {0} and a function f : U −→ R≥0 such that Mℓ admits the parametrization

Φf (x) = (x, f(x)),

around ℓ(q).

Let ℓ and f be as in Lemma 3.3. The unit normal vector field (pointing towards Rn≥0) is then given by

nℓ(x) = 1√
|Df(x)|2 + 1

(−Df(x), 1) . (3.2)

We proceed to calculate the scalar second fundamental form. The first and second derivatives of Φf are given
by

∂kΦf (x) = (ek, ∂kf(x)),
∂kmΦf (x) = (0, ∂kmf(x)),

for k,m = 1, ..., n− 1, where ek denotes the canonical basis of Rn−1 and 0 is the 0 vector of Rn−1. Denote
by hℓ the scalar second fundamental form of Mℓ. Thus with respect to this coordinates we have

hℓkm(x) = ⟨∂kmΦf (x),nℓ(x)⟩ = 1√
|Df(x)|2 + 1

∂kmf(x), (3.3)

for k,m = 1, ..., n− 1.
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3.1.1 Mλ as a graph

Fix an arbitrary point q∗ ∈ int(∆n). The local expression of λ (with respect to the standard parametrization
Φ = Φstd around q∗ and Π around ℓ(q∗)) is given by

λ(s) = (− ln(s1), ...,− ln(sn−1)) ,

thus, we have

λ
−1(x) =

(
e−x1 , ..., e−xn−1

)
.

Fix s∗ = Φ−1(q∗). Thus, around x∗ = Π(λ(q∗)), using Lemma 3.3, Mλ around ℓ(q) can be described as

Φg(x) = (x, g(x)).

Moreover, in this case we have the explicit expression g(x) = − ln(1−
∑n−1
i=1 e

−xi). Notice that λ−1(x∗) = s∗.
We now compute the scalar second fundamental form hλ of λ at x∗.

∂kΦg(x) =
(
ek,−

e−xk

1−
∑n−1
i=1 e

−xi

)
,

∂kmΦg(x) =
(
0, δkme

−xk

1−
∑n−1
i=1 e

−xi

+ e−xke−xm

(1−
∑n
i=1 e

−xi)2

)
,

for k,m = 1, ..., n− 1 (here δkm denotes the Kronecker delta). In particular,

∂kΦg(x∗) =
(
ek,−

s∗k

1−
∑n−1
i=1 s

∗
i

)
,

∂kmΦg(x∗) =

0,
δkms

∗
k

1−
∑n−1
i=1 s

∗
i

+
s∗ks

∗
m(

1−
∑n−1
i=1 s

∗
i

)2
 ,

for k,m = 1, ..., n− 1, and since n((x∗, g(x∗)) = 1√∑n−1
i=1

(s∗
i
)2+(1−

∑n−1
i=1

s∗
i
)2
(s∗, 1−

∑n−1
i=1 s

∗
i ) we have

hλkm(x∗) = ⟨∂kmΦg(x∗),n((x∗, g(x∗))⟩ (3.4)

= 1√∑n
i=1(s∗i )2 + (1−

∑n
i=1 s

∗
i )2

(
δkms

∗
k +

s∗ks
∗
m

1−
∑n
i=1 s

∗
i

)
, (3.5)

for k,m = 1, ..., n− 1.
Remark 3.4. Note that if instead of λ we would have used a translation of it, that is, for c ∈ Rn, define a
loss function ϕ : ∆n −→ Rn≥0 by

ϕ(p) = λ(p) + c,

we can repeat the previous computation. The only difference is that we would have a different point xc∗ instead
of x∗.

3.2 Geometric interpretation of mixability

Mixability is defined as a property of the superprediction set of a proper loss ℓ ∈ Ln. More precisely, ℓ is
mixable if and only if Eη(spr(ℓ)) is convex for some η > 0. As before, we can determine whether Eη(spr(ℓ)) is
convex by looking at its boundary ∂Eη(spr(ℓ)) = Eη(ℓ(∆n)). Eη(spr(ℓ)) is convex if the principal curvatures
of Eη(ℓ(∆n) are non-negative (when defined with respect to the inner pointing normal vector) at all points.
Since convexity is a global property that can be tested “locally everywhere”, it makes sense to make the
following definition.
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Definition 3.5 (η-Mixability at p ∈ ∆n). We say that ℓ ∈ Ln is η-mixable at p ∈ int(∆n) if Eη(Mℓ)
has non-negative principal curvatures with respect to the unit normal vector pointing towards Eη(spr(ℓ)) at
Eη(ℓ(p)).

Clearly, ℓ ∈ Ln is η-mixable at all p ∈ int(∆n) if and only if it is η-mixable.

Let ℓ, ϱ ∈ Ln be strictly proper. First, we note that properness implies that the second fundamental forms
of ℓ and ϱ can be compared in the following sense. Given q∗ ∈ ∆n, note that the normal vector to Mℓ and
Mϱ can be chosen to be q∗/|q∗|. A translation does not affect the geometric properties of Mϱ (since it is an
isometry of Rn), thus we consider the translated loss ϱℓ(q∗) : ∆n −→ Rn, given by

ϱℓ(q
∗)(p) = ϱ(p) + [ℓ(q∗)− ϱ(q∗)] ,

i.e., we translate ϱ by the vector cq∗ = λ(q∗)− ℓ(q∗) so that both ϱq∗ and ℓ coincide when evaluated at q∗.
Doing so allows us to identify the tangent spaces to Mϱℓ(q∗) and Mℓ at ϱℓ(q

∗)(q∗) = ℓ(q∗). We will call ϱℓ(q∗)
the translation of ϱ to ℓ(q∗).
Lemma 3.6. Let ℓ ∈ Ln be strictly proper. Let hℓ and hλ denote the scalar second fundamental form of Mℓ

and Mλ (the log loss), respectively. Then, ℓ is η-mixable at p ∈ int(∆n) if and only if

hℓ(ℓ(p))− ηhλ(λ(p)) (3.6)

is positive semi-definite, where hℓ and hλ denote the second fundamental forms of ℓ and λ in the graphical
coordintes described in Lemma 3.3. And therefore, ℓ is η-mixable if and only if (3.6) holds for all p ∈ int(∆n).

Proof. Let ℓ : ∆n −→ Rn≥0 be an admissible proper loss

ℓ(p) = (ℓ1(p), ..., ℓn(p)) .

The η-exponential projection map Eη : Rn −→ Rn is given by

Eη(y) = (e−ηy1 , ..., e−ηyn).

Let q∗ ∈ int(∆n) and write Mℓ around ℓ(q∗) as the graph of a function f over Rn−1, defined on an open
set Ufx∗ containing x∗, such that f(x∗) = ℓ(q∗). We can directly give a parametrization of Eη(Mℓ) around
Eη(ℓ(q∗)) = Eη((x∗, f(x∗)) by

Ψ(x) =
(
e−ηx1 , ..., e−ηxn−1 , e−ηf(x)

)
.

We proceed to compute the second fundamental form of Eη(Mℓ) around Eη(ℓ(q∗)) (with respect to the inward
pointing unit normal vector). The first and second derivatives of Ψ are given by

∂kΨ(x) =
(
−ηe−ηxkek,−η∂kf(x)e−ηf(x)

)
∂kmΨ(x) =

(
η2δkme

−ηxkek,−η∂kmf(x)e−ηf(x) + η2∂kf(x)∂mf(x)e−ηf(x)
)

and noting that the (inward pointing) unit vector field is given by

n(Eη(ℓ(x)) =
1(∑n−1

i=1 ∂if(x)2e2ηxi + e2ηf(x)
)1/2 (∂1f(x)eηx1 , ..., ∂nf(x)eηxn ,−eηf(x)

)

Therefore, letting Eη := Eη(Uf ) = Eη(f(Uf )), the second fundamental form of Eη at Eη((x∗, f(x∗))) is given
by

hE
η

km(x∗)
=⟨∂kmΨ(x∗),n(ℓη(x∗))⟩
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= 1(∑n−1
i=1 ∂if(x∗)2e2ηx

∗
i + e2ηf(x∗)

)1/2
[
⟨η2δkme−ηx

∗
kek,

n∑
i=1

∂if(x∗)eηx
∗
i ei⟩Rn−1

+η∂kmf(x∗)− η2∂kf(x∗)∂mf(x∗)
]

= η(∑n−1
i=1 ∂if(x∗)2e2ηx

∗
i + e2ηf(x∗)

)1/2 [ηδkm∂kf(x∗) + ∂kmf(x∗)− η∂kf(x∗)∂mf(x∗)] .

Thus, since the convexity of Eη(spr(ℓ)) is equivalent to the principal curvatures of Eη(Mℓ) being non-negative
at q∗ for all q∗ ∈ int(∆n) (with respect to the inner pointing normal vector), we see this will be the case if
and only if the matrix

Akm = ∂kmf(x∗)− η [−δkm∂kf(x∗) + ∂kf(x∗)∂mf(x∗)]

is positive semi-definite for all x∗ corresponding to q∗ ∈ int(∆n).

Note that since we have a graphical parametrization Φf of Mℓ around x∗ ∈ U , we have

∂kΦf (x∗) = (ek, ∂kf(x∗))

and by (3.2),
n(x∗, f(x∗)) = 1√

|Df(x∗)|2 + 1
(−Df(x∗), 1) .

On the other hand, since the normal vector to Φf (U) at (x∗, f(x∗)) is q∗

|q∗| , we have

n((x∗, f(x∗))) = 1√∑n
i=1(s∗i )2 + (1−

∑n
i=1 s

∗
i )2

(
s∗1, ..., s

∗
n, 1−

n−1∑
i=1

s∗i

)
,

for s∗ ∈ Rn−1 such that Φ(s∗) = q∗.

By properness we know that

0 = ⟨∂kΦf (x∗),n((x∗, f(x∗)))⟩

= 1√∑n
i=1(s∗i )2 + (1−

∑n
i=1 s

∗
i )2

[
s∗k + ∂kf(x∗)

(
1−

n−1∑
i=1

s∗i

)]

thus
∂kf(x∗) =

−s∗k
1−

∑n−1
i=1 s

∗
i

,

and also

1 + |Df(x∗)|2 = 1 +
∑n−1
j=1 (s∗j )2(

1−
∑n−1
i=1 s

∗
i

)2 =

∑n−1
j=1 (s∗j )2 +

(
1−

∑n−1
i=1 s

∗
i

)2
(
1−

∑n−1
i=1 s

∗
i

)2 . (3.7)

Using (3.3) and the previous observations, we can rewrite the terms of Akm as

∂kmf(x∗) =
√

|Df(x∗)|2 + 1√
|Df(x∗)|2 + 1

∂kmf(x∗)
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= 1(
1−

∑n−1
i=1 s

∗
i

)√∑n−1
j=1 (s∗j )2 +

(
1−

∑n−1
i=1 s

∗
i

)2
hℓkm(x∗)

and

[−δkm∂kf(x∗) + ∂kf(x∗)∂mf(x∗)] =
δkms

∗
k

1−
∑n−1
i=1 s

∗
i

+
s∗ks

∗
m(

1−
∑n−1
i=1 s

∗
i

)2 .
Now, consider the log loss λ and its translation to ℓ(q∗) which we denote by λ∗ to simplify the notation. That
is, we have

λ∗ = λ(p) + [ℓ(q∗)− λ(q∗)] .

As discussed in Remark 3.4, we can write Mλ∗ as a graph around x∗ (since λ∗(q∗) = ℓ(q∗)). The scalar
second fundamental form of Mλ∗ at λ∗(q∗) is then given by

hλ
∗

ij (x∗) =
1√∑n

i=1(s∗i )2 + (1−
∑n
i=1 s

∗
i )2

(
δkms

∗
k +

s∗ks
∗
m

1−
∑n
i=1 s

∗
i

)
. (3.8)

This readily implies that

[−δkm∂kf(x∗) + ∂kf(x∗)∂mf(x∗)] =
1(

1−
∑n−1
i=1 s

∗
i

)√∑n−1
j=1 (s∗j )2 +

(
1−

∑n−1
i=1 s

∗
i

)2
hλ

∗

ij (x∗).

Therefore, ℓ is η-mixable at q∗ if and only if we have that

[hℓij ](x∗)− η[hλ∗

ij ](x∗)

is semi-positive definite. Since q∗ was arbitrary the result follows.

Remark 3.7. The previous comparison of second fundamental forms is possible because properness forces the
induced metrics by ℓ and λ to coincide at ℓ(q∗) = λ∗(q∗), that is, [gℓij ](x∗) = [gλ∗

ij ](x∗) (see Appendix A and
Remark A.3). The conclusion of Theorem 3.6 does not necessarily hold if one takes a different coordinate
system.

In order to get a geometric interpretation (i.e., independent of coordinates) we note the following:

0 ≤ [hℓij ](x∗)− η[hλ∗

ij ](x∗)
= [hℓij ](x∗)[gℓij ]−1(x∗)[gℓij ](x∗)− η[hλ∗

ij ](x∗)[gλ
∗

ij ]−1(x∗)[gλ∗

ij ](x∗)

=
(
[hℓij ](x∗)[gℓij ]−1(x∗)− η[hλ∗

ij ](x∗)[gλ
∗

ij ]−1(x∗)
)
[gℓij ](x∗).

The matrices [hℓij ](x∗)[gℓ]−1(x∗) and [hλ∗

ij ](x∗)[gλ
∗ ]−1(x∗) are the local expression of the Weingarten map

(see (Lee, 2018) for its definition and properties) of ℓ and λ respectively. The eigenvalues of these matrices
are the principal curvatures of Mℓ and Mλ (and they are independent of coordinates), and the determinants
are their Gaussian curvatures. From here it also follows that

η

[
1
η
[hℓij ](x∗)[gℓij ]−1(x∗)− [hλ∗

ij ](x∗)[gλ
∗

ij ]−1(x∗)
]
[gℓij ](x∗)

=η
[
[hηℓij ](x

∗)[gηℓij ]
−1(x∗)− [hλ∗

ij ](x∗)[gλ
∗

ij ]−1(x∗)
]
[gℓij ](x∗),
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that is,

[W ηℓ
ij ]− [Wλ

ij ] ≥ 0, (3.9)

where W ℓ denotes the Weingarten map of the loss function ℓ. Then once a system of coordinates around
p ∈ ∆n is chosen the relation (3.9) holds. A priori, the relation obtained between the Weingarten maps of ℓ
and λ does not provide much information, but it does points to look at the loss function ηℓ. With this in
mind Lemma 3.6 does give a direct geometric interpretation as follows. Let ℓ : ∆n −→ Rn≥0 in L be a proper
loss. Given a point q ∈ ∆n we know that around ℓ(q), Mℓ can be parametrized with Φf (x) = (x, f(x)) for
some function f around the point Π(ℓ(q)). Let x∗ = Φ(ℓ(q)). Consider now the proper loss ϱ = ηℓ, for some
η > 0. We readily see that ϱ can be parametrized as Φg(y) = (y, g(y)) with

g(y) = ηf(η−1y),

with g defined around yq = ηx∗. Now we compute the second fundamental form of ϱ at yq. Notice that

∂ig(y)|y=ηx∗ = η∂if(η−1x)|y=ηx∗η−1 = ∂if(x∗),
∂ijg(y)|y=ηx∗ = ∂ijf(η−1x)|y=ηx∗η−1 = η−1∂ijf(x∗),

and hence,

hϱij(ηx
∗) = hηℓij (ηx

∗) = η−1hℓ(x∗).

Then assuming the hypothesis of Lemma 3.6, we obtain

hηℓij (ηx
∗)− hλij(x∗) = η−1hℓij(x∗)− hλij(x∗) = η−1 (hℓ(x∗)− ηhλij(x∗)

)
≥ 0. (3.10)

The supporting planes at ηℓ(p) and λ(p) of Mηℓ (or more precisely, of its translation to λ(p)) and Mλ,
respectively, coincide (since the normal vectors are the same), we denote it by Hp. By looking at Mηℓ and
Mλ locally as graphs over Hp, Lemma 3.6 gives the following comparison of graphs, which in turn can be
regarded as local embeddability in the sense of convex geometry (see Definition 4.16 below).
Theorem 3.8. ℓ ∈ Ln proper is η-mixable if and only if for all p ∈ int(∆n) the local graph of the translation
of ηℓ to λ(p) over the supporting plane to both Mℓp and Mλ at λ(p), Hp, lies above the graph of λ over Hp.
Remark 3.9. Observe the resemblance of Lemma 3.6 to Theorem 10 in (van Erven et al., 2012). To recover
the latter from our point of view we will first reinterpret Lemma 3.6 and Theorem 3.8 from a convex geometry
point of view which will lead to a nice bridge between Lemma 3.6 and (van Erven et al., 2012, Theorem 10).

4 Connections to convex geometry

In this section we reinterpret our results from the point of view of convex geometry. With this interpretation
we can relate Theorem 3.8 to results in (van Erven et al., 2012) and (Williamson & Cranko, 2022). We first
provide some background and state relevant results from convex geometry which are well-known and can be
found in (Schneider, 2014) and can be adapted to our setting.

Let K ⊂ Rn be a convex set, that is
λx+ (1− λ)y ∈ K

for all x, y ∈ K and λ ∈ [0, 1].

We define the recession cone of K as the set

rec(K) = {x ∈ Rn : K + x ⊂ K}.

The boundary of K is denoted by ∂K, as since we will assume that ∂K is a differentiable manifold we denote
the interior (as a manifold) of ∂K by int(∂K). As usual the scaling of K by η > 0 and the Minkowski sum of
K and L are defined as

ηK = {ηk ∈ Rn : k ∈ K}, (4.1)
K + L = {k + l ∈ Rn : k ∈ K, l ∈ L}. (4.2)
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Definition 4.1. Let K be a closed convex set in Rn. The support function of K, σ(K,u) : Rn −→ R, is
defined as

σ(K,u) = sup
x∈K

⟨x, u⟩.

We sometimes denote it as σK(u) := σ(K,u).

From the definition we know that

y ∈ K ⇐⇒ ⟨y, u⟩ ≤ σK(u) for all u ∈ Rn.

From (Schneider, 2014, Section 1.7) we have the following.
Lemma 4.2 (Properties of σ). Let L,K ⊂ Rn be closed convex sets.

1. σL ≤ σK if and only if L ⊂ K.

2. σ(K + t, u) = σ(K,u) + ⟨t, u⟩ for all t ∈ Rn.

3. σ(K + L, u) = σ(K,u) + σ(L, u).

Definition 4.3. A function f : D ⊂ Rn −→ R is convex if its extension to Rn given by

f̃(x) =
{
f(x), if x ∈ D

∞, if x /∈ D

is convex.

The following lemma is a well-known result (see (Schneider, 2014, Theorem 1.7.1) for example).
Lemma 4.4. Let f : Rn → R convex, closed and positively homogeneous, then f is the support function of
the convex, closed set

Kf = {x ∈ Rn | ⟨x, u⟩ ≤ f(u) for all u ∈ Rn}.

Definition 4.5. Let L,K ⊂ Rn and closed and convex. We say that L is a summand of K if there exists a
convex, closed set M ⊂ Rn such that K =M + L.

We will be mainly interested in sets K whose recession cone is Rn≥0, hence we denote by Kn∗ the set of closed,
convex sets whose recession cone is Rn≥0. In the following we extend some common results in convex geometry
which are usually stated for closed, compact convex sets in Rn (Schneider, 2014), however, some of them are
easily extended to Kn∗ (Shveidel, 2001).
Lemma 4.6 (Basic properties of sets in Kn∗ ). Let K,L ∈ Kn∗ and η > 0. Then, the following holds:

(1) ηK ∈ Kn∗ ,

(2) rec(K + L) = Rn≥0,

(3) K + L is closed, and

(4) K + L ∈ Kn∗ .

Proof. In order to show (1), we need to show that ηK is closed, convex and rec(ηK) = Rn≥0. Let x, y ∈ ηK
and λ ∈ [0, 1], then we have

λx+ (1− λ)y = η(λkx + (1− λ)ky)

where x = ηkx and y = ηky for some kx, ky ∈ K. Since K is convex, then λkx + (1− λ)ky ∈ K and hence
ηK is convex. Let xn ∈ K be a convergent sequence that converges to x. Then, there exists kxn ∈ K such
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that xn = ηkxn . Since η is a constant, {kxn} converges to kx∞ ∈ K (since K is closed). By the uniqueness of
the limit, x = ηx∞ ∈ ηK. Now, let x ∈ Rn≥0, we want to show that ηK + x ⊂ ηK. Take any k ∈ K,

ηk + x = η

(
k + 1

η
x

)
∈ ηK

since 1
ηx ∈ Rn≥0. Conversely, if x ∈ rec(ηK), then for any k1 ∈ K, we have

ηk1 + x ∈ ηK

then there exists k2 ∈ K, such that ηk1 + x = ηk2. Hence

k1 +
1
η
x = k2,

thus 1
ηx ∈ rec(K) = Rn≥0, thus x ∈ Rn≥0.

To show (2), let x ∈ Rn≥0. We want to show that K + L+ x ⊂ K + L. Let k ∈ K and l ∈ L, then

k + l + x ∈ K + L,

since l + x ∈ L. Thus Rn≥0 ⊂ rec(K + L). Now, suppose that there is x ∈ rec(K + L) such that x /∈ Rn≥0.
Since rec(K + L) is a cone, for all λ > 0, we have λx ∈ rec(K + L). Let k ∈ K and l ∈ L. Then

k + l + λx ∈ K + L ⊂ K.

Thus ℓ+λx ∈ rec(K) = Rn≥0 for all λ > 0, but notice that this is a contradiction since by picking λ sufficiently
large, l + λx /∈ Rn≥0. Thus rec(K + L) = Rn≥0.

For (3), see (Rockafellar, 1970, Theorem 8.2) and (Shveidel, 2001, Theorem 3.1). Finally, (4) is simply the
combination of (2) and (3) (and the fact that K + L is convex).

We now specialize the discussion to a particular type of sets K ∈ Kn∗ . First, suppose that the boundary ∂K is
of class C2, then at each point x ∈ int(∂K) there is an outward pointing normal vector uK(x). Thus, clearly,
we can define a map uK : int(∂K) −→ Sn−1 assigning uK(x) to x ∈ int(∂K). We define

Rn≤0 = {x ∈ Rn : x = (x1, ..., xn), with xi ≤ 0 for i = 1, ..., n},

so that

int(Rn≤0) = {x ∈ Rn : x = (x1, ..., xn), with xi < 0 for i = 1, ..., n} = Rn<0.

Definition 4.7. Define C2
+(Kn∗ ) as the collection of sets K ∈ Kn∗ with boundary ∂K of class C2, and such

that the map uK is a C1-diffeomorphism from int(∂K) to Sn−1
− := Sn−1 ∩ Rn<0.

We now specialize some properties of the support function to C2
+(Kn∗ ).

Lemma 4.8. If K ∈ C2
+(Kn∗ ), then dom(σK) = int(Rn≤0) ∪ {0}.

Proof. Take u ̸= 0 in dom(σK), then it must be an outward normal vector to int(∂K), hence it is in Sn−1
− .

Then dom(σK) ⊂ int(Rn≤0) ∪ {0}. Now, for u ∈ Rn<0, normalize it to make it unitary by letting v = u/|u|,
then v ∈ Sn−1

− and thus it must be a normal vector form some x ∈ int(∂K), hence the support function
evaluated at v is finite, and in consequence σK(u) is finite too.

Remark 4.9. Following Schneider (2014, Section 2.5) the condition K ∈ C2
+(Kn∗ ) is equivalent to assuming

the principal curvatures of ∂K to be non-zero. It also follows that

σK(u)|Sn−1
−

= ⟨u−1
K (u), u⟩,

and moreover, σK is of class C2.

33



Published in Transactions on Machine Learning Research (09/2023)

Remark 4.10. Let ℓ ∈ Ln be a proper loss function. By definition we see that Remark 4.9 implies
spr(ℓ) ∈ C2

+(Kn∗ ) (since Mℓ = ∂(spr(ℓ))).
Definition 4.11. Let K,L ∈ C2

+(Kn∗ ). We say that L slides freely inside K if to each boundary point x of
K, there exists a translation vector t ∈ Rn, such that x ∈ L+ t ⊂ K.
Theorem 4.12. Let K,L ∈ C2

+(Kn∗ ). L is a summand of K, then L slides freely inside K.

Proof. Suppose that there exists M ∈ C2
+(Kn∗ ) such that K = L+M . Let x ∈ ∂K. Then there are l ∈ L

and m ∈M such that

x = l +m.

Thus, x ∈ L+m ⊂ L+M = K.

Remark 4.13. For a general convex set L, if L is a summand of K ∈ C2
+(Kn∗ ) we see that the previous proof

holds an we conclude that L slides freely inside K; note however that this imposes restrictions on possible sets
L. One of this consequences is that the principal curvatures of ∂L must be positive as can be seen from a
second fundamental form comparison and Theorem 3.8.
Lemma 4.14. Let K,L ∈ C2

+(Kn∗ ) and suppose that f(·) = σK(·)− σL(·) is convex. Then the set

M = {x ∈ Rn | ⟨x, u⟩ ≤ f(u) for all u ∈ Rn},

is in C2
+(Kn∗ ), and it is such that K =M + L, that is, L and M are summands of K.

Proof. From Lemma 4.8, the domain of f is Rn<0 ∪ {0}, i.e., f : Rn<0 ∪ {0} −→ R is convex. Thus it is the
support function of M (by Lemma 4.4). That is, f(·) = σM (·).

Therefore we have σM = σK − σL, and hence K = M + L. Note that M is a summand of K, then using
Theorem 4.12 we know that M slides freely inside K, and since ∂K has positive principal curvatures then
∂M does too (Remark 4.13). Since σM is of class C2, then M has to be in C2

+(Kn∗ ).

Theorem 4.15. [(Schneider, 2014, Theorem 1.5.2)] Let D ⊂ Rn convex and let f : D −→ R be a continuous
function. Suppose that for each point x0 ∈ D there are an affine function g on Rn and a neighborhood U of
x0 such that f(x0) = g(x0) and f ≥ g in U ∩D. Then f is convex.
Definition 4.16. We say that L is locally embeddable in K if for all x ∈ ∂K, there is a y ∈ L and a
neighborhood U of y, such that (L ∩ U) + x− y ⊂ K.
Theorem 4.17. Let K,L ∈ C2

+(Kn∗ ) and L strictly convex. If L is locally embeddable in K, then L is a
summand of K.

Proof. Let u0 ∈ Sn−1
− and x0 ∈ ∂K be a point such that u(x0) = u0. Since L is locally embeddable in K there

are y0 ∈ L and a neighborhood U0 of y0 such that (L∩U0)+x0−y0 ⊂ K. Since u−1
L : Sn−1

− −→ ∂L is continuous,
there exists a neighborhood V0 of u0 such that u−1

K (V0) ⊂ U0. Then it follows that σ(L+x0−y0, u0) = σ(K,u0)
and σ(L+ x0 − y0, u) ≤ σ(K,u) for all u ∈ V0 by Lemma 4.2.

Let f(·) = σ(K, ·)− σ(L, ·) (this is defined on Rn≤0 ∪ {0} and is positively homogeneous), and g(·) = ⟨x− y, ·⟩.
Then, clearly, we have

(i) f(u0) = g(u0), since

f(u0) = σ(K,u0)− σ(L, u0)
= σ(K,u0)− σ(L+ x0 − y0, u0) + ⟨x0 − y0, u0⟩
= g(u0).

(ii) f ≥ g on V0,

f(u) = σ(K,u)− σ(L, u)
= σ(K,u)− σ(L+ x0 − y0, u) + ⟨x0 − y0, u⟩
≥ g(u).
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It follows by Theorem 4.15 that f is convex, and by Lemma 4.14 we conclude that L is a summand of K.

The following lemma is a direct consequence of the characterization of mixability in Theorem 3.8 and
Definition 4.16.
Lemma 4.18. Let ℓ ∈ Ln be a proper loss. For η > 0, if ℓ is η-mixable then spr(ηℓ) is locally embeddable in
spr(λ).
Lemma 4.19. If ℓ is η-mixable then spr(ηℓ) slides freely inside spr(λ).

Proof. Let ℓ be η-mixable, then Lemma 4.18 implies spr(ηℓ) it is locally embeddable in spr(λ). Then
Theorem 4.17 implies it is a summand and Theorem 4.12 implies it slides freely inside spr(λ).

Corollary 4.20. Let ℓ be a η-mixable proper loss. Then spr(ηℓ) ∈ C2
+(Kn∗ ) and it slides freely inside spr(λ)

(λ is the log loss). Additionally, there exists M ∈ C2
+(Kn∗ ) such that

spr(λ) = spr(ηℓ) +M.

Moreover, ∂M can be regarded as ϱ(∆n) for a 1-mixable proper loss ϱ.

Proof. Since ℓ is an η-mixable proper loss function, ηℓ is also a proper loss function and hence spr(ηℓ) ∈ C2
+(Kn∗ )

(Remark 4.10). Theorem 3.8 implies that spr(ηℓ) is locally embeddable in spr(λ). From Theorem 4.17 we
know that spr(ηℓ) is a summand of spr(λ), which proves the existence of M . As a consequence, M is a
convex set with recession cone Rn≥0 (Lemma 4.14). By applying (Williamson & Cranko, 2022, Proposition 21)
we can regard ∂M as the image of a proper loss function ϱ, which since spr(ϱ) is a summand of spr(λ) it is
1-mixable (Lemma 4.14).

We now state (Schneider, 2014, Theorem 2.5.4) adapted to our setting which will be helpful to relate our
work to (van Erven et al., 2012).
Theorem 4.21. Let K,L ∈ C2

+(Kn∗ ). Let hM (x) denote the second fundamental form of M at x with respect
to u (see (A.2)). The following are equivalent:

(i) h∂L(x) ≥ h∂K(y) for all pairs of points x and y at which u(x) = u(y).

(ii) σK − σL is a support function.

Since ∆n is an affine manifold, the geodesics in ∆n are simply straight lines. This allows to define convexity
of functions defined on ∆n in the usual way we do for functions on Rn. The following theorem connects and
reconciles our results to those in (van Erven et al., 2012). More precisely, we create a bridge between our
results and (van Erven et al., 2012, Theorem 10).
Theorem 4.22. Let ℓ ∈ Ln be proper loss. Let η > 0, then ℓ is η-mixable if and only if ηLℓ(·)− Lλ(·) is
convex on int(∆n), where Lϱ(·) denotes the Bayes risk of the loss function ϱ (Definition 1.3) and λ denotes
the log loss.

Proof. Suppose that ℓ is a proper loss in Ln which is η-mixable. By Lemma 4.19 spr(ηℓ) slides freely inside
spr(λ) and in particular hηℓ(ℓ(p)) ≥ hλ(λ(p)). By Theorem 4.21 it follows that σspr(λ) − σspr(ηℓ) is a support
function with domain Rn<0 ∪{0}, in particular it is convex on its interior. Let u ∈ Rn<0, such that the outward
normal vector of ℓ(∆n) and λ(∆n) at ℓ(p) and λ(p), respectively, is u. Then we have for x = −p ∈ ∆n,

σspr(λ)(x)− σspr(ηℓ)(x) = |x|(σspr(λ)(x/|x|)− σspr(ηℓ)(x/|x|))
= |x|(⟨λ(p), x/|x|⟩ − ⟨ηℓ(p), x/|x|⟩)
= |p|(⟨λ(p),−p/|p|⟩ − ⟨ηℓ(p),−p/|p|⟩)
= ⟨λ(p),−p⟩ − ⟨ηℓ(p),−p⟩
= −⟨λ(p), p⟩+ ⟨ηℓ(p), p⟩
= −Lλ(p) + ηLℓ(p),

which proves the claim.
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Suppose now that for given ℓ ∈ Ln proper, there exists a η > 0 such that spr(ηℓ) slides freely inside spr(λ).
Note that in particular this implies that spr(ηℓ) is locally embeddable in spr(λ), and hence for each p ∈ int(∆n)
we have

hηℓ(ηℓ(p))− hλ(λ(p)) ≥ 0,

which by (3.10) and Lemma 3.6 implies that ℓ is η-mixable. Thus combining this with Lemma 4.19 we obtain
the following characterization of mixability of proper (sufficiently differentiable) loss functions.
Theorem 4.23. Let ℓ ∈ Ln be proper. ℓ is η-mixable if and only if spr(ηℓ) slides freely inside spr(λ), where
λ denotes the log loss.

In general, the set L provides a family of loss functions with appealing properties. Arguably, one of the most
important properties is that given ℓ ∈ L, if we assume that ℓ is proper then we know its principal curvatures
are strictly positive. This is a strong and useful geometric feature. For example, in (Williamson & Cranko,
2022) the notion of a “inverse loss” called the anti-polar loss was investigated. Given ℓ a proper loss (in the
sense of (Williamson & Cranko, 2022), which are not necessarily smooth), they consider the 0-homogeneous
extension of ℓ (see Remark 26 in (Williamson & Cranko, 2022)), defined on Rn>0 and given by

ℓext(p) := ℓ

(
p

∥p∥1

)
,

where ∥p∥1 = p1 + ...+ pn. For the following we simply denote ℓext by ℓ. In (Williamson & Cranko, 2022,
Proposition 29) it is shown that there exists a map ℓ⋄ : R>0 −→ Rn≥0 such that

ℓ(p) = (ℓ ◦ ℓ⋄ ◦ ℓ)(p)
ℓ⋄(x) = (ℓ⋄ ◦ ℓ ◦ ℓ⋄)(x),

for all x, p ∈ Rn>0. The map ℓ⋄ is called the anti-polar loss of ℓ. For the family of admissible loss function
L considered in this work, we exploit the differentiability conditions to obtain in a straightforward way an
inverse loss defined on ℓ(int(∆n)). To see this, suppose that ℓ ∈ L is proper. Since this is equivalent to saying
that spr(ℓ) is in C2

+(Kn∗ ), meaning that the map uspr(ℓ) is C1 diffeomorphism. Then we can define the map
ℓ−1 : ℓ(int(∆n)) −→ int(∆n) by

ℓ−1(x) :=
u∂spr(ℓ)(x)
∥uspr(ℓ)(x)∥1

,

which is the inverse of the map ℓ : int(∆n) −→ ℓ(int(∆n)). Recall that u∂spr(ℓ)(x) is nothing else than the
unit normal vector (pointing towards Rn≥0) at x ∈ ℓ(int(∆n)).

It is of interest of finding parametrizations (or links) that simplify the expression of a given proper loss ℓ.
At a theoretical level there are potentially many ways to to this. Notably we have at hand the notion of
canonical link in (Williamson et al., 2016) (or see Section 2.7 above for n = 2). As an example of other ways
to obtain nice links we have Lemma 3.3 above, which gives a nice expression in coordinates (as the form of a
graph) of ℓ. Unfortunately, to obtain that results one makes uses of the inverse function theorem which does
not provide an explicit inverse but rather its existence.

5 Conclusions

We summarize the main messages of this work.

• Since mixable loss functions are of great importance in prediction games, it is desirable to understand
them from different perspectives. Inspired by the work of Vovk (2015), in Section 2 we studied binary
loss functions from the point of view of differential geometry, hence restricting to loss functions in
L (Definition 2.1). To do this, we re-interpret properness as a geometric property, namely, a loss
function ℓ ∈ L is proper if and only if
– the normal vector (belonging to R2

≥0) to Mℓ = ℓ(int(∆2)) at ℓ(p) is p
|p| , for any p ∈ int(∆2), and
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– the loss curve ℓ(int(∆2)) has positive curvature (with respect to p
|p| ).

Having this framework at hand, we characterized mixability and fundamentality of a proper loss
ℓ ∈ L, as a curvature comparison to the log loss ℓlog (cf. (Vovk, 2015)).

• In Section 3, we extended the geometric characterization of proper loss functions to higher dimensions,
and obtained the corresponding interpretation of mixability as a geometric comparison (now in terms
of the principal curvatures of the “loss surface”). This comparison is done by using the second
fundamental forms of the “loss surfaces”.

• The main goal of Section 4 is to re-interpret the geometric results in Section 3 from the point of view
of convex geometry. The main result in this part is a new characterization of η-mixability of a proper
loss function ℓ ∈ L, as spr(ηℓ) sliding freely inside spr(ℓlog) (in general dimension). This provides an
intuitive and geometric way to interpret mixability.

• Since the results obtained in this work are in terms of curvature, it was necessary to re-interpret well
known properties of loss functions in the language of differential geometry. Although slightly tedious,
this allowed the reconciliation of the results obtained by Vovk (2015) for n = 2 and by van Erven
et al. (2012) for n ≥ 2.

• Theorem 4.22 connects our results to (van Erven et al., 2012, Theorem 10) as follows. In (van Erven
et al., 2012, Theorem 10) the following statements are proven to be equivalent:
(i) a proper loss ℓ ∈ L is η-mixable,
(ii) ηHL̃(t)−HL̃log(t) is positive semi-definite for all t ∈ Φ−1

std(int(∆n)), where HF (t) denotes the
Hessian of F at t,

(iii) ηL(p)− Llog(p) is convex on int(∆n), and
(iv) ηL̃(p)− L̃log(p) is convex on Φ−1

std(int(∆n)).
There, they first proved the equivalence of (i) and (ii), which is the result of a long direct computation
done very carefully. The equivalence between (iii) and (iv) is straightforward. To connect these
two sets of equivalences, standard convex geometry is used to prove the equivalence of (ii) and
(iii). Note that the statements (ii) and (iv) make reference to a precise choice of parametrization
of ∆n (i.e., the standard parametrization Φstd), therefore, the work presented here is naturally not
related to these statements but rather to (i) and (iii), whose equivalence can be considered to be the
content of Sections 3 and 4. Determining whether this new approach provides a simplification of the
computations in (van Erven et al., 2012) or not, strongly depends on the differential geometry and
convex geometry background of the reader. This work should be considered as complementing the
understanding of mixable loss functions and providing a new geometric insight into them.
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A Differential Geometry

In this part we provide a brief summary of the concepts of differential geometry that are used in this work (we
assume the reader has some familiarity with the topic although we try to put emphasis on the intuition). We
do not intend to give a comprehensive introduction to the topic. Most of the material can be found in almost
any differential geometry book, however, we recommend (and when possible use the notation of) (do Carmo,
2016) and (Lee, 2018).

A.1 Curvature of Curves

A parametrized curve is a differentiable map α : (a, b) → Rn, (a < b). We are interested in studying the
geometry of parametrized curves. For this it would be useful to restrict our discussions to curves with a well
defined tangent line at every point α(t) for t ∈ (a, b) (i.e., with non-vanishing α′(t)). These curves are called
regular. Let ϕ : (a, b) → (c, d) be a diffeomorphism, the curve β = α(ϕ(s)) is a reparametrization of α. Note
that in this case α((a, b)) = β((c, d)). The image M = α((a, b)) is a 1-dimensional differentiable manifold in
Rn (for this it is essential to restrict to regular curves). The study of curves is of particular importance since
some aspects are carried to the study of the geometry of general hypersurfaces in Rn.

Typically, curvature is defined for curves parametrized by arc-length meaning that |β′(s)| = 1 for all s ∈ (c, d)
(and a regular curve can always be parametrized this way). For these types of curves, the curvature of β at
β(s) is defined as the length of β′′(s), which measures “how much” a curve “curves”. However, this notion
does not give information about the direction on which a curve is “curving”. We start looking at the case
n = 2. We define the signed curvature of a general curve α(t) = (x1(t), x2(t)) by (cf. (1.5))

κα(t) :=
x′1(t)x′′2(t)− x′′1(t)x2(t)
(x′1(t)2 + x′2(t)2)

3/2 .

It can be checked that |κ(t)| coincides with the curvature of α when parametrized by arc-length (at the
corresponding point), the signed curvature is well defined up to a sign (the sign will change if we consider
a reparametrization that reverses the order of (a, b), for example a curve defined on (−b,−a) given by
β(s) = α(−s)), which motivates the discussion in Section 1.5.

For example, suppose that a planar curve is defined by a function f : (a, b) −→ R is the following way:

α(t) = (t, f(t)),

for t ∈ (a, b). A quick computation gives

κα(t) =
f ′′(t)

(1 + f ′(t)2)3/2
. (A.1)

Given a regular curve α : (a, b) −→ R3 as above and a real number η ̸= 0, it is straightforward to see that the
curve β(t) = ηα(t) is also a regular curve and its signed curvature is given by

κβ(t) =
η2x′1(t)x′′2(t)− η2x′′1(t)x2(t)
(η2x′1(t)2 + η2x′2(t)2)

3/2 = 1
η
κα(t).

The notion of signed curvature can be extended to curves in manifolds sitting inside Rn (see for example (Lee,
2018, Chapter 8)). For α(−ε, ε) −→ Rn parametrized by arc-length, the signed curvature (with respect to n)
κ+α of α at p = α(0) is given by κ+α (0) = ⟨n, α′′(0)⟩. It can be shown that this definition agrees with the one
we gave for n = 2.
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A.2 Geometry of hypersurfaces in Rn

Let M be a differentiable hypersurface inside Rn of class Ck (i.e., a n− 1-dimensional Ck manifold). By this
we mean that for each p ∈M there is an open set U ⊂ Rn−1 and a Ck injective map Φ: U −→M (called a
parametrization of M around p). For each x ∈ U , {∂1Φ(x), ..., ∂n−1Φ(x)} forms a basis for the tangent space
TqM (q = Φ(x)) to M at q. Since Φ(U) ⊂ Rn we can consider the induced metric on M by the Euclidean
metric in Rn (denoted by ⟨·, ·⟩). This is a Riemannian metric on M given on the coordinates given by Φ by
the matrix

gij(x) = ⟨∂iΦ(x), ∂jΦ(x)⟩,

for x ∈ U . The metric g allows us to define the length of a curves in M .

In general, if a manifold M of dimension n− 1 is sitting inside an n-dimensional Riemannian manifold M
(and M is endowed with the induced metric from M) the second fundamental form carries the information
on how M is “curved” inside M . Let g be the metric on M and g the induced metric on M by g. Let ∇
denote the Levi–Civita connection of g. Let n be a smooth unit normal vector field to M (that is n(p) is
perpendicular to TpM for each p ∈M). The scalar second fundamental form of M with respect to n is the
covariant 2-tensor h on M defined as

h(X,Y ) = ⟨n,∇XY ⟩ = −⟨∇Xn, Y ⟩. (A.2)

for X,Y tangent vectors to M . Note that for a hypersurface, at each point we have exactly to unit normal
vectors to M at p, thus the scalar second fundamental form is well-defined up to a sign. Fixing a point p ∈M
and an orthonormal basis {E1, ..., En−1} for the tangent space at p TpM , the eigenvalues of the matrix given
by hij = h(Ei, Ej) for i, j = 1, ..., n− 1 are called the principal curvatures of M at p and the corresponding
eigenspaces are called the principal directions. For details of the above see Chapter 8 in (Lee, 2018).

When M = Rn and M is parametrized by Φ: U ⊂ Rn−1 −→ M ⊂ Rn, with respect to the local frame
{∂1Φ, ..., ∂n−1Φ} of Φ(U), the scalar second fundamental form with respect to a normal unit vector field n is
given by ((Lee, 2018, Proposition 8.23))

hij = h(∂iΦ, ∂jΦ) = ⟨∂ijΦ,n⟩, (A.3)

for i, j = 1, ..., n− 1.

Given any p ∈M and v ∈ TpM , there a geodesic γV : (a, b) −→M of M passing through p with velocity v at
p. Let M1 and M2 be two hypersurfaces in Rn+1 tangent at a point p ∈M1 ∩M2. Choose a normal vector n
and suppose that M1 lies above M2 (with respect to n). We have the following lemma from (Lee, 2018).

With the previous lemma we can obtain a comparison result for manifolds with positive principal curvatures.
Lemma A.1. Suppose that M1 and M2 are tangent at p ∈M1 ∩M2 and fix a normal vector n at p. Suppose
that M1 and M2 have positive principal curvatures at p. Then h1(v, v) ≥ h2(v, v) for all v ∈ TpM if and only
if M1 lies above M2 (with respect to n) locally around p.

Proof. First we make the following observation. Suppose that M is a smooth hypersurface in Rn and we have
a regular curve α : (−ε, ε) −→ M such that α(0) = p and α′(0) = v for some p ∈ M and v ∈ TpM . Then,
letting h denote the second fundamental form of M from (A.2) we have

h(v, v) = −⟨∇vn, v⟩

= −⟨d(n ◦ α)
dt

(t), α′(t)⟩
∣∣∣∣
t=0

= ⟨(n ◦ α)(t), α′′(t)⟩
∣∣∣∣
t=0

= ⟨n, α′′(0)⟩.

Thus, if α is parametrized by arc-length, h(v, v) = ⟨n, α′′(0)⟩ = κ+α (0).
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Suppose M1 lies above M2 are tangent at p and let v ∈ TpM1 = TpM2 with |v| = 1. Then we can intersect
M1 and M2 with the plane generated by v and n. Then we obtain two curves α1 and α2 on M1 and M2,
respectively, such that αi(0) = p and α′(0) = v for i = 1, 2. Moreover, we can assume that these curves are
parametrized by arc-length so its Euclidean curvature is given by ⟨α′′

i (0),n⟩. Since we can regard these curves
as planar curves, there are functions f1 and f2 such that the curves α1 and α2 are represented in the plane
⟨v,n⟩ by the curves

γ1(x) = (x, f1(x))
γ2(x) = (x, f2(x)),

with fi = (0), f ′i(0) = v, f ′′i (0) > 0 (since M1 and M2 have positive principal curvatures at p) for i = 1, 2. By
construction κ+γ1(0) = f ′′i (0) and by definition κ+γi(0) = ⟨α′′

i (0),n⟩, for i = 1, 2.

If M1 lies above M2 at p, then f ′′1 (0) > f ′′2 (0) and hence κ+γ1(0) ≥ κ+γ2(0), which is equivalent to h1(v, v) ≥
h2(v, v) for any v ∈ TpM with |v| = 1. Let w ̸= 0 ∈ TpM be arbitrary, then

h1(w,w) = |w|2h1
(
w

|w|
,
w

|w|

)
≥ |w|2h2

(
w

|w|
,
w

|w|

)
= h2(w,w), (A.4)

as claimed.

Conversely if (A.4) holds, then we see that in particular holds for unitary v, which ultimately means that
f ′′1 (0) ≥ f ′′2 (0) for all unitary v ∈ TpM . This implies that M1 lies above M2.

We present the following instructive example.
Example A.2. Consider the differentiable function fκ(x, y) = κ(x2 + y2) with κ > 0, and let Mκ =
{(x, y, fκ(x, y)) | (x, y) ∈ B1(0)}. We choose the parametrization Φκ(x) = (x, fκ(x)) of Mκ and compute the
scalar second fundamental form of Mκ at p = (0, 0, 0) in these coordinates. We have

∂xΦ(x, y) = (1, 0, 2κx),
∂yΦ(x, y) = (0, 1, 2κy),
∂xxΦ(x, y) = (0, 0, 2κ),
∂xyΦ(x, y) = (0, 0, 0),
∂yyΦ(x, y) = (0, 0, 2),

thus from (A.3) at the point Φκ(0, 0) = (0, 0, 0), the scalar second fundamental form of Mκ with respect to
n = (0, 0, 1) is given by

[hfκ ](p) =
(
2κ 0
0 2κ

)
,

and in particular for κ = 1 we have

[hf1 ](p) =
(
2 0
0 2

)
.

Thus, clearly we have

[hfκ ](0)− [hf1 ](0) =
(
2κ− 2 0

0 2κ− 2

)
(A.5)

which is positive definite if and only if κ > 1 (when Mκ lies inside M1 and are tangent at p).
Remark A.3. We stress a technical observation. The comparison (A.5) in Example A.2 is valid since
regardless of the value of κ, ∂xΦκ(0, 0) and ∂yΦκ(0, 0) are the same, meaning that we can identify the tangent
spaces to Mκ and M1 at p for all κ, and the basis for them is given by {∂xΦ1(0, 0), ∂yΦκ(0, 0)}. In general this
is not necessarily the case so one should perform a change of basis before comparing the second fundamental
forms.
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