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ABSTRACT

While autoregressive models can achieve state-of-the-art performance in image
generation, their massive size poses significant challenges for deployment and
efficient model serving. Structural pruning has emerged as an effective method for
reducing model size and improving inference efficiency, yet existing approaches
need a recovery finetuning due to the sensitivity of image generation to missing
parameters. In this work, we propose a novel approach that leverages dynamic
pruning to identify and extract sparse experts within dense AR image models,
enabling their transformation into Sparse Mixture of Experts (MoE) architectures.
By applying top-1 expert routing to MLP layers, we establish a direct link between
differentiable dynamic pruning and MoE conversion. We convert various pretrained
dense models into MoEs, significantly reducing active parameters per inference
step while preserving performance. Experimental results show that our approach
outperforms traditional static pruning techniques by maintaining high-generation
quality without costly recovery fine-tuning.

1 INTRODUCTION

Recent advances in image generation have emerged from two primary directions. Diffusion mod-
els (Sohl-Dickstein et al., 2015; Ho et al., 2020) excel at producing high-quality images, while
there has been a resurgence of interest in AutoRegressive (AR) models (Van Den Oord et al., 2016;
Van den Oord et al., 2016). The latest AR architectures closely resemble those used in modern Large
Language Models (LLMs), such as Generative Pretrained Transformers (GPT) (Vaswani et al., 2017;
Touvron et al., 2023; Yang et al., 2024; Abdin et al., 2024). These AR models not only demonstrate
strong performance as standalone image generators (Sun et al., 2024b; Tian et al., 2025) but also
integrate seamlessly into large multi-modal models, providing a unified approach to understanding
and generating multi-modal content (Xie et al., 2024; Wang et al., 2024b; Chen et al., 2025).

Despite their immense capabilities, GPT models are extremely large, making deployment in resource-
constrained environments highly challenging. Significant research has focused on improving the
efficiency of LLMs (Frantar et al., 2022; Frantar & Alistarh, 2023; Dong et al., 2024), with structural
pruning emerging as one of the most promising approaches (Ashkboos et al., 2024; Ma et al.,
2023). Structural pruning removes parameters to reduce model size while achieving real wall-clock
speedups, and since these techniques are designed for transformers, they can also be readily applied
to transformer-based AR image generation models.

However, unlike text generation, where similar tokens could provide redundancy, image generation
is highly sensitive to missing parameters. In text, a mispredicted token may still result in coherent
output, but in image generation, a single incorrect token can severely degrade quality. As a result,
pruned models often fail to generate high-quality or even meaningful images, necessitating a recovery
fine-tuning phase to restore their generative capabilities (Ganjdanesh et al., 2024). This step is
particularly problematic, as fine-tuning requires enormous computational resources, significantly
more than text-based models, and obtaining high-quality image data is considerably more challenging.

One particular type of structural pruning, known as dynamic pruning (Gao et al., 2019), selects
a unique subnetwork for each input, in contrast to static pruning methods, which apply the same
sub-architecture to all images. Similar to dynamic pruning, Sparse Mixture of Experts (MoE)

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

models (Shazeer et al., 2017; Lepikhin et al., 2021) activate only a subset of parameters (the se-
lected expert) per input. Recent studies show that MoEs can match the performance of a dense
model with the same total parameters, while being far more efficient at inference (Dai et al., 2024).

Figure 1: Random samples from the LlamaGen-
3B model, pruned by 30% active parameters using
our proposed dynamic-to-MoE pruning method,
without any recovery fine-tuning. Despite the
significant reduction in active parameters, our ap-
proach maintains strong generative performance,
demonstrating that structured experts can be identi-
fied within dense AR image models without requir-
ing continued pretraining or additional fine-tuning.

However, training MoE architectures from
scratch is extremely computationally demand-
ing. Some approaches convert pretrained
dense models into MoEs through continual pre-
training (Zhu et al., 2024), reducing costs com-
pared to training from scratch. Nevertheless,
this continual pre-training process remains very
expensive, especially for image models.

In this work, we leverage the connection be-
tween differentiable dynamic pruning and MoEs
to convert a pretrained dense AR image gener-
ation model into an MoE architecture, maintain-
ing the same total parameters but with fewer ac-
tive parameters per inference step for improved
efficiency. In other words, we show that experts
inherently exist within dense AR image models
and can be identified through dynamic pruning.

We convert the MLP layers of a pretrained AR
model into MoE layers through top-1 expert
routing. The routing strategy learned for dy-
namic structural pruning can be directly repur-
posed as the routing module for MoE layers.
We show that unlike existing methods, our novel
pruning approach preserves performance close
to that of the original dense model without the
need for continued pre-training or recovery fine-tuning. A comparison of our method, static pruning,
and the original model is illustrated in Fig. 2. To summarize our contributions:

1. We introduce a novel dynamic pruning method that converts pretrained dense autoregressive
image generation models into sparse Mixture-of-Experts (MoE) architectures. This approach
reduces the number of active parameters per inference step while maintaining performance.

2. We show experts inherently exist within dense AR image models and can be identified
through dynamic structural pruning. The learned routing strategy for pruning is directly
repurposed as the routing module for the MoE layers. We extend our method to compress
the MLP layers via top-1 expert routing, thereby improving overall model efficiency.

3. Unlike previous methods that require continued pre-training or recovery fine-tuning to restore
performance, our approach significantly outperforms the existing baselins in preserving
high-quality image generation without the need for such computationally intensive steps.

4. Extensive experiments on state-of-the-art AR image generation models confirm that our
method not only achieves performance close to dense models but also significantly outper-
forms existing pruning baselines as the number of active parameters decreases.

2 RELATED WORK

2.1 IMAGE GENERATION

High-resolution image generation is currently dominated by diffusion models (Rombach et al., 2022;
Deng et al., 2009; Betker et al., 2023). While pixel-level Autoregressive (AR) image generation
has been explored for years (Van den Oord et al., 2016; Chen & He, 2020), there has been a recent
resurgence of interest in a new form of AR models inspired by advancements in language modeling.
These models generate images by sequentially predicting the next token (Esser et al., 2021; Yu et al.,
2022; Ramesh et al., 2021; Sun et al., 2024b). Typically, image tokens are derived from a pretrained
discrete tokenizer, with vector quantization (VQ)(Razavi et al., 2019) or without it (Li et al., 2025).
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(a) Dense Model (b) Static pruning. (c) Dynamic pruning for MoE.

Figure 2: (a): The dense model uses all parameters for every input. (b): The statically pruned method
uses the same sub-network for all tokens. (c) Our approach uses a different sub-network for each
token utilizing MoE to constrain the expected inference budget.

2.2 PRUNING

Structural pruning (Li et al., 2017) shrinks models by removing unnecessary parameters without
needing custom implementations. These techniques generally fall into two groups. Static prun-
ing (Anwar et al., 2017; Molchanov et al., 2019) uses input-agnostic metrics to eliminate non-critical
structures. In contrast, dynamic pruning (Gao et al., 2019; Chen et al., 2020b; Anagnostidis et al.,
2023) adapts weight removal based on each input, with early work in CNNs selectively activating
channels (Gao et al., 2019) and more recent efforts incorporating conditional computation in LLMs
by skipping layers per token (Wang et al., 2024a). Although originally developed for LLMs, existing
GPT pruning techniques (Ma et al., 2023; Frantar & Alistarh, 2023) extend naturally to language-
modeling-style (next token prediction) image generation. However, they face two key hurdles: first,
both static and dynamic methods degrade image generation quality to the point where prohibitive
recovery fine-tuning becomes necessary; second, dynamic pruning lacks a consistent computational
budget per input, which complicates batch parallelization. Our method addresses these issues by
converting a dense LLM into a sparse MoE model that enforces a fixed per-token budget. Our method
delivers performance close to the dense model without the need for recovery fine-tuning.

2.3 MIXTURE OF EXPERTS

Compared to standard structural pruning, Sparse Mixture-of-Experts (MoE) models preserve model
capacity without incurring extra computational overhead. For example, Sparsely-Gated MoE (Shazeer
et al., 2017) uses a learnable gating network to select a few experts per input, enabling efficient scaling
to thousands of experts (Lepikhin et al., 2021). Recent methods (Dai et al., 2024) further refine expert
specialization, achieving dense-model performance with a similar number of total parameters.

2.4 POSITIONING

Prior dense-to-MoE conversions such as LLaMA-MoE (Zhu et al., 2024) and the concurrent To-
MoE (Gao et al., 2025) are designed for text LLMs and are ill-suited to AR image generation.
LLaMA-MoE partitions FFN layers into experts, but due to its rigid and manual construction, it
requires extensive continual pre-training to recover generation quality. This makes it prohibitive for
frozen AR decoders, where fine-tuning is both computationally costly and data-limited, and where
reckless parameter removal can drastically degrade output. ToMoE uses differentiable operations
to learn routing over MLPs and attention heads, but its design introduces substantial architectural
complexity and latency, and it fails to perform well on image generation. In contrast, our method
integrates expert construction directly into the pruning stage, automatically revealing sparse structure
without requiring recovery training or introducing unnecessary complexity. We specifically target
AR image models because: (1) visual generation is highly sensitive to pruning, with small errors
yielding visible artifacts; (2) Image models are expensive to adapt, so a post-hoc sparse conversion
has high practical value; and (3) the image token setting enables interpretable expert specialization
which cannot be probed in text-only models.

3 METHOD

The current models used to generate images are huge and computationally expensive. To reduce
computational burden, we turn this dense transformer into a mixture-of-experts (MoE) framework.
This involves converting the MLP block into an MoE layer with top-1 routing. Critically, unlike
existing dynamic pruning methods, our approach preserves a predictable, uniform cost per token,
making real-time model serving more efficient. Figure 2 provides an overview of our pruning method.
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3.1 PRELIMINARY

Figure 3: Overview of our pruning to MoE
method. Differentiable dynamic pruning is ap-
plied to identify input-dependent experts. MLP
layers are converted using top-1 expert routing.

Our approach builds upon decoder-only Trans-
former (Vaswani et al., 2017) architectures for im-
age generation, similar to those employed in recent
large-scale language models (Radford et al., 2018;
Touvron et al., 2023). In the visual domain, a VQ-
VAE (Razavi et al., 2019; Esser et al., 2021) is first
used to convert an input image I into a sequence of
discrete tokens:

t = VQ-VAE(I), t ∈ {1, . . . ,K}T , (1)
where K denotes the number of codes and T is the
token sequence length.

Once tokenized, the image is generated autoregres-
sively by the Transformer. For each position i in
the sequence, the model predicts the next token
based on all previous tokens:

t̂i = Transformer
(
t<i

)
, i = 1, . . . , T. (2)

3.1.1 NOTATION

Throughout this section, we denote T as the se-
quence length, d as the hidden dimension, dmid
as the intermediate dimension in the MLP layers.
We denote the input sequence of each layer by
X ∈ RT×d.

3.2 EXPERT EMBEDDINGS

In our framework, a hypernetwork (Ha et al., 2016) generates learnable embeddings that guide various
pruning decisions. Specifically, we sample a latent variable z from a fixed distribution and use it to
produce an embedding matrix Eall:

Eall = HN(z), (3)

where Eall = [E1, · · · ,El, · · · ,EL] contains embeddings for L layers. Each individual embedding
matrix El ∈ RN×de represents N experts, with each expert having an embedding dimension of
de. These embeddings produce the subnetwork configurations in MLP experts. By having a single
hypernetwork generate all embeddings, we promote knowledge sharing across layers, which enhances
optimization efficiency (Gao et al., 2024).

3.3 MLP EXPERTS

Within a single decoder block, the MLP is expressed as

f(X) = σ
(
XWG

)
⊙

(
XWU

)
WD, (4)

where WU ,WG ∈ Rd×dmid and WD ∈ Rdmid×d are the Up, Gate, and Down projection matrices,
respectively. Here, σ(·) denotes an activation function and ⊙ represents the element-wise product.

To improve efficiency and enable specialization, we split the MLP into N experts, each corresponding
to a pruned version of the intermediate dimension dmid. When a subset of tokens Xt are routed to
expert i, its function becomes

f i(Xt) = σ
(
Xt WG Si

)
⊙

(
Xt WU Si

)
S⊤
i WD, (5)

where Si = Diag(si) is a diagonal mask of dimension Rdmid×dmid . Each entry in si is either 0 or 1,
indicating whether a neuron is pruned or retained. We jointly learn the routing decisions and the
mask values through

s = ST−GS
(
ProjD

(
GE

))
,G = ST−G

(
Router(X)

)
. (6)
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Here, E (omitting layer indices for brevity) is an embedding from the hypernetwork, and ProjD :
Rde → Rdmid is a linear projection that maps this embedding into the MLP’s intermediate space. The
operators ST−GS and ST−G denote the straight-through Gumbel-Sigmoid and Gumbel-Softmax,
respectively (Jang et al., 2016), that enable differentiable routing among experts. Given a logit vector
x, we first draw noise from the standard Gumbel distribution g ∼ Gumbel(0, 1). We then form a
probability distribution via

p = softmax
(
x+ g

τ

)
, (7)

where τ is a temperature parameter that regulates the sharpness of the distribution. To allow discrete
expert selection during training while preserving gradient flow, we employ a straight-through estimator.
This is accomplished by replacing p with a one-hot vector corresponding to the maximum value:

ST−G(x) = one-hot
(
argmax

i

xi + gi
τ

)
. (8)

For binary decisions, we similarly use a sigmoid function in place of softmax. An additive bias b is
incorporated to ensure all experts are initially active:

ST−GS(x) = round(sigmoid(
x+ g + b

τ
)) (9)

3.4 EFFECTIVE MOE REGULARIZATION

3.4.1 UNION OF EXPERTS

To preserve the full expressiveness of the original dense model, we encourage the union of active
parameters from all experts to cover the complete set of neurons. Let

u =

N⋃
i=1

si =⇒ u = 1−
N∏
i=1

(
1− si

)
, (10)

so that an element of u is active if any expert retains that neuron. We then encourage the proportion∑
u

|u| to go toward 1:

RU =
1

L

L∑
l=1

f
(∑

ul

|ul| , 1
)
. (11)

f(x, y) = log
[
max(x, y)/min(x, y)

]
measures the divergence between the achieved and desired

activation levels. This ensures that, together, the experts maintain the full capacity of the dense model.

3.4.2 PARAMETER BUDGET

We further enforce an upper bound on the total number of active parameters. For each layer l in the
MLP, we define the maximum expert width as

d∗l = max(s 1dmid), (12)
where dmid is the expanded width of the MLP layer, and aggregate these widths into

dMoE = [d∗1, . . . , d
∗
L]. (13)

We then compare the total active parameters, T(dMoE), with the full model’s total Ttotal scaled by a
target ratio p ∈ (0, 1]:

RP = f
(
T(dMoE), pTtotal

)
. (14)

This constraint controls the overall model size, ensuring parameter efficiency.

3.4.3 LOAD BALANCING

To avoid overloading a few experts while underutilizing others, we adopt a load balancing loss similar
to that of the Switch Transformer (Fedus et al., 2022). Let Fi denote the fraction of tokens routed
to expert i and Pi the average softmax probability (prior to straight-through sampling) for expert i.
Then, the load balancing loss is given by

RL = N

N∑
i=1

Fi Pi. (15)

This term encourages an even distribution of tokens among the experts, promoting balanced utilization.
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3.5 TRAINING THE MOE CONSTRUCTION

To learn our MoE, we freeze the original decoder weights and train only the router, hypernetwork,
and projection parameters. The final model thus retains the knowledge of the dense precursor while
gaining MoE capabilities (Figure 3).

We define the training objective:

min
θ

L
(
f ′(X;Eall

)︸ ︷︷ ︸
MoE model

, f(X)︸ ︷︷ ︸
dense model

)
+ αRP + βRU + γRL, (16)

where θ = [θHN, θRouter, θProjD ], and L is the sum of distillation loss (Hinton et al., 2015) between
the dense model f and the MoE model f ′ and language modeling loss. We employ in-place knowledge
distillation to guide the sparse model without additional memory cost (Muralidharan et al., 2024).

At the end of training, each MLP layer is replaced with N experts sharing weights. We also support
switching back to a pseudo-MoE version, which may simplify distributed training. In summary,
our approach provides a flexible means of transforming a dense autoregressive image decoder into
a sparse mixture-of-experts model, greatly reducing computational load while retaining the dense
model’s capability. See Appendix B for more details of our method.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Models: We evaluate our method on the class-conditional autoregressive models LlamaGen-XXL
and LlamaGen-3B (Sun et al., 2024b), both trained on ImageNet (Deng et al., 2009). Additionally,
we consider Janus-Pro-7B (Chen et al., 2025), an autoregressive multi-modal model capable of both
image understanding and generation.

Baselines: We compare our approach against state-of-the-art static and dynamic structural pruning
methods, including LLM-Pruner (Ma et al., 2023), SliceGPT (Ashkboos et al., 2024), SLEB (Song
et al., 2024), and DISP-LLM (Gao et al., 2024), all of which have official implementations available.

Datasets: For training our hypernetwork, we use ImageNet (Russakovsky et al., 2015) for LlamaGen
models and the COCO (Lin et al., 2014) 2017 training set for Janus-Pro. If a baseline requires a
dataset for pruning or gradient calculations, we use the same datasets.

Model/Speed ImageNet (256×256) Quality
Method Params (B) Latency (s/it) IS ↑ FID ↓ Precision ↑

No Pruning
LlamaGen-XXL 1.411 17.20 207.89 15.58 0.7992

Sparsity = 0.2
LLM-Pruner 1.145 13.24 49.15 42.86 0.4530
SLEB 1.156 12.00 75.28 32.60 0.5904
Slice-GPT 1.140 12.96 10.41 104.62 0.2450
DISP-LLM 1.138 18.97 148.58 17.88 0.7310
Ours (MoE) 1.131A / 1.399T 12.06 159.10 17.31 0.7500

Sparsity = 0.3
LLM-Pruner 0.994 12.21 23.24 65.77 0.2674
SLEB 1.014 10.59 17.33 91.17 0.2734
Slice-GPT 0.983 11.58 7.80 122.36 0.1940
DISP-LLM 1.004 18.88 90.40 23.58 0.6636
Ours (MoE) 0.989A / 1.231T 11.37 135.33 18.56 0.7276

Table 1: Comparison for LlamaGen-XXL on Im-
ageNet (5k val, 256×256): model size, latency,
and quality metrics across pruning ratios, without
recovery finetuning. Full Table in Appendix C.3.

Evaluation: For evaluating class-conditional
models, we report FID (Heusel et al.,
2017), Inception Score (Salimans et al.,
2016), sFID (Nash et al., 2021), and Preci-
sion/Recall (Kynkäänniemi et al., 2019) on 5000
samples from the ImageNet 2012 validation set.
Following LlamaGen (Sun et al., 2024b), We
generate the images at 384 × 384 and resize
them to 256×256 for evaluation. We do not use
top-k decoding unless specified otherwise, and
the CFG (Ho & Salimans, 2022) scale is set to
1.5 for all models as it is the default value in the
released Llamagen codebase.

Implementation Details: We prune LlamaGen-
XXL (Sun et al., 2024b) using our method and
the baselines at two sparsity levels: 0.2 and 0.3.
LlamaGen-3B (Sun et al., 2024b) and Janus-
Pro-7B (Chen et al., 2025) are pruned at three levels: 0.3, 0.4, and 0.5. We set the loss weighting
parameters to α, β, γ = (16.0, 2.0, 1.0) (Eq. 16). The model weights remain frozen while we train
our hypernetwork for 10,000 iterations. We then convert the model to a MoE using the hypernetwork
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and evaluate it. No recovery fine-tuning is performed on either the baselines or our method. For all
experimental details see Appendix C.

4.2 RESULTS

4.2.1 CLASS-CONDITIONAL RESULTS

First, we evaluate the effectiveness of our method on the moderately sized LlamaGen-XXL (Sun
et al., 2024b) model, which has 1.4B parameters. Table 1 presents the results. Notably, the gap
between our method with no recovery finetuning and the dense model is minimal across key metrics,
including FID, sFID, Precision, and Recall.

Another important observation is the sensitivity of image generation models to pruning. All baseline
methods, except for DISP-LLM (Gao et al., 2024), perform poorly, failing to generate coherent
images, as reflected in their IS and FID scores, as well as class-wise precision and recall. This
further supports our argument that image generation models are more sensitive to parameter removal
compared to text generation models and need a recovery finetuning. Interestingly, these same
baselines perform reasonably well in the context of LLM pruning.

Furthermore, at the same active parameter ratio, our method consistently outperforms all baselines
across all metrics by a significant margin. With a pruning rate of 30%, our method surpasses LLM-
Pruner (Ma et al., 2023), SliceGPT (Ashkboos et al., 2024), and SLEB (Song et al., 2024), even when
these baselines retain more active parameters (with only a 20% pruning rate). While our method and
DISP-LLM (Gao et al., 2024) show comparable performance at the 20% pruning level, our advantage
becomes more pronounced as the number of active parameters decreases. Specifically, at 70% active
parameters, our method achieves a 50% higher IS and approximately 20% lower FID, demonstrating
its superior robustness to pruning.

Model/Speed ImageNet (256×256) Quality
Method Params (B) Latency (s/it) IS ↑ FID ↓ Precision ↑

No Pruning
LlamaGen-3B 3.097 13.75 240.33 16.05 0.8232

Sparsity = 0.3
LLM-Pruner 2.174 10.81 22.49 71.46 0.2984
SLEB 2.225 9.81 26.04 66.91 0.3268
Slice-GPT 2.178 10.87 13.74 90.54 0.3624
DISP-LLM 2.198 12.77 101.89 22.76 0.7022
Ours (MoE) 2.167A / 2.998T 10.32 172.19 16.37 0.7800

Sparsity = 0.4
LLM-Pruner 1.867 10.30 11.14 103.38 0.1482
SLEB 1.976 9.72 8.27 130.30 0.1830
Slice-GPT 1.855 10.51 10.27 111.41 0.2686
DISP-LLM 1.901 12.70 32.84 42.94 0.5420
Ours (MoE) 1.858A / 2.820T 10.21 122.23 20.06 0.7096

Sparsity = 0.5
LLM-Pruner 1.559 9.95 8.89 120.67 0.1048
SLEB 1.602 9.24 4.77 171.31 0.1218
Slice-GPT 1.531 10.07 6.78 135.21 0.2076
DISP-LLM 1.604 12.46 19.08 62.63 0.4448
Ours (MoE) 1.548A / 2.239T 9.98 49.11 37.59 0.5652

Table 2: Comparison for LlamaGen-3B on Ima-
geNet (5k val, 256×256): model size, latency, and
quality metrics across pruning ratios, without re-
covery finetuning. Full Table in Appendix C.3.

Next, we evaluate our method and the baselines
on the larger LlamaGen-3B (Sun et al., 2024b)
model, as shown in Table 2. Again, our method
performs very close to the dense model at a 30%
sparsity rate and achieves higher recall at 70%
and 60% active parameters, demonstrating that
its effectiveness is not limited to smaller models
and performs just as well, if not better, on larger
models.

The performance gap between our method and
the best baseline, i.e. DISP-LLM (Gao et al.,
2024), is even larger than in the LlamaGen-XXL
case, particularly at lower pruning ratios. Our
method achieves 70% higher IS and 28% lower
FID. This gap widens significantly as the num-
ber of active parameters decreases: at 60% ac-
tive parameters, we outperform the best baseline
by 272% in IS and 53% in FID, and at 50% ac-
tive parameters, by 158% in IS and 40% in FID.
Meanwhile, we again observe the generation ca-
pabilities of the other baselines degrade severely
without fine-tuning.

4.2.2 TEXT-CONDITIONAL RESULTS

We also apply our method and the baselines to the Janus-Pro-7B (Chen et al., 2025) model to evaluate
their effectiveness on a much larger, text-conditional model. The results are presented in Table 9. For
evaluating the model, we report FID (Heusel et al., 2017) and CLIP Score (Hessel et al., 2021) on
5000 samples from the COCO 2017 validation set, also resized to 256× 256. Additionally, we report
PickScore (Kirstain et al., 2023) on the PartiPrompts (Yu et al., 2022) as a proxy for human preference.
We do not use top-k decoding and set the CFG weight to 5.0 (the default in Janus codebase).
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Model/Speed Quality
Method Params (B) Latency (s/it) FID ↓ CLIP Score ↑ PickScore ↑

No Pruning
Janus-Pro-7B 6.910 10.66 58.69 28.25 19.5637

Sparsity = 0.3
LLM-Pruner 4.868 9.92 129.67 21.57 18.2333
SLEB 5.089 7.46 278.56 19.45 18.1239
Slice-GPT 4.920 10.05 194.36 20.42 18.2444
DISP-LLM 5.101 11.02 122.61 22.09 18.7462
Ours (MoE) 4.845A / 6.688T 9.86 71.55 26.31 19.4181

Sparsity = 0.4
LLM-Pruner 4.154 9.28 179.33 19.74 17.9993
SLEB 4.481 6.51 284.52 19.36 18.1144
Slice-GPT 4.162 9.21 213.36 20.32 17.9082
DISP-LLM 4.492 10.95 151.83 21.65 18.2357
Ours (MoE) 4.146A / 5.964T 9.32 104.56 24.99 18.6615

Sparsity = 0.5
LLM-Pruner 3.501 9.15 184.36 19.06 17.8421
SLEB 3.874 6.36 300.47 19.31 18.0559
Slice-GPT 3.496 8.53 339.87 19.25 17.7116
DISP-LLM 3.885 10.88 188.14 20.62 17.8908
Ours (MoE) 3.485A / 4.416T 8.99 126.41 22.83 18.1969

Table 3: Comparison on Janus-Pro-7B for text-
conditional generation: COCO-2017 (256×256)
FID and CLIP score, and PickScore on Par-
tiPrompts, without recovery finetuning.

First, we observe that the dense model strug-
gles with image generation, as evidenced by its
high FID score of 58.69. Even in this setting,
our method remains competitive with the dense
model at a lower pruning ratio of 30% and sig-
nificantly outperforms the baselines. Janus uses
the VQ-VAE from LlamaGen (Sun et al., 2024b)
as its tokenizer for image generation, but both
text and image tokens are processed by the same
transformer backbone. Consequently, the hyper-
network and router modules for the MLP experts
in our method must be trained on both token
types. Given the relatively short nature of the
COCO captions, we hypothesize that the COCO
training set may be too small to fully support
the router module’s demands. We believe that a
larger dataset would enable our method to per-
form even better in this scenario. Furthermore,
based on prior findings in (He et al., 2024), we
suspect that converting the model into two dis-
tinct MLP mixtures-of-experts (one for text and one for images) could further enhance our method’s
effectiveness. This represents an intriguing direction for future work.

We have also reported parameter counts and average latency measurements over 5 generated images
for all our experiments. For the reported latency values, our memory usage correlates with the total
params and remains lower than that of the base model. Even at a sparsity rate of 50%, our method
outperforms all baselines across all sparsity rates (except for Disp-LLM at 30%). Notably, at 50%
sparsity, our method achieves similar total parameter counts and latency to the baselines at 30%, but
with significantly better performance. Our approach outperforms Disp-LLM at comparable sparsity
rates while being much faster as Disp-LLM incurs additional overhead due to index selection and
addition operations. We control for compute by matching budgets across models (Appendix C.3.1).

4.2.3 QUALITATIVE COMPARISONS

Figure 1 shows some image generations from the LlamaGen-3B (Sun et al., 2024b) model, pruned to
a MoE with 70% active parameters using our method, without any recovery fine-tuning. Our model
is able to generate high-quality images without the need for a fine-tuning phase. We provide more
generated samples of our method and a qualitative comparison with the baselines in Appendix C.4.1.

4.2.4 EXPERT ASSIGNMENT RESULTS

(a) Lakeside (b) Layer 0 (c) Layer 11

Figure 4: Token routing for two layers of
the LlamaGen-3B-MoE.

To better understand how the LlamaGen-3B (Sun et al.,
2024b) MoE model with 70% active parameters pro-
cesses information, we analyze token routing across dif-
ferent experts to gain insights into expert specialization,
class-wise token distribution, and spatial token assign-
ments within input image tokens. As shown in Figure 4,
expert selection in the first layer (Figure 4b) appears
balanced, with no clear spatial pattern in token routing.
However, by layer 11 (Figure 4c), a spatial pattern seems
to emerge.

Figure 5: Spatial token assignments
across experts of LlamaGen-3B-MoE (Top:
Layer 11, Bottom: Layer 19). Darker red
indicates more routed tokens.

To gain higher-level insights into potential spatial rela-
tionships in expert routing, we generate 1,000 images
from the model and analyze which tokens, correspond-
ing to different parts of the image, are processed by each
expert at different layers. Figure 5 presents the results
for layers 11 and 19. This figure clearly shows that
certain experts exhibit spatial specialization, tending to
process specific regions of the image. We believe this
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finding aligns with previous observations in MoE LLMs(Jiang et al., 2024), where experts are found
to specialize in syntax of text rather than semantics.

Figure 6: Class-wise distribution of token
routing across experts in LlamaGen-3B-
MoE (Left: Layer 13, Right: Layer 19).

Figure 6 illustrates how token distribution varies across
different ImageNet classes. Certain experts are predom-
inantly activated for specific categories, indicating that
the model learns some class-specialized expert assign-
ments.

4.3 COMPARISON
TO OTHER DENSE-TO-MOE METHODS

Table 4 compares our method to LLaMA-MoE Zhu et al.
(2024) and ToMoE Gao et al. (2025) when converting
LlamaGen-3B to 60% active parameters.

Method Params(B) Latency ↓ FID ↓
Llama-MoE 1.760A / 3.097T 12.09 136.21
Llama-MoE (Tuned) 1.760A / 3.097T 12.09 48.53
ToMoE 1.863A / 2.907T 13.61 39.71
Ours 1.858A / 2.820T 10.21 20.06

Table 4: Comparison of our method with
dense to moe baselines on LLmagen-3B.

LLaMA-MoE and ToMoE both suffer from higher la-
tency due to added architectural complexity and less
efficient routing. LLaMA-MoE requires substantial con-
tinued pre-training to restore performance, so we report
results under two conditions: zero-shot (no retraining
similar to our method) and with 3k steps of full fine-
tuning. For ToMoE, we replicate its 10k-step calibration
phase. In contrast, our method requires no continued
pre-training, keeps the dense backbone entirely frozen, is less complex, and still achieves lower
latency and superior FID compared to both baselines. These results highlight that integrating expert
construction directly into the pruning phase yields a sparse MoE that is both deployment-friendly and
robust, even in the brittle setting of autoregressive image generation.

4.4 ABLATION STUDY

Method IS ↑ FID ↓ Prec. ↑
HN + Union Loss (Eq. 11) 140.88 18.59 0.7290
+ Load Balance Loss (Eq. 15) 154.85 18.03 0.7476
+ Distillation Loss 174.73 16.35 0.7792
+ Language Modeling Loss 172.19 16.37 0.7800

Table 5: Ablations on 5k ImageNet valida-
tion set.

We conduct an additional experiment to study the impact
of the various components of our method when pruning
LlamaGen-3B (Sun et al., 2024b) to 70% active param-
eters. We begin with a simple hypernetwork regularized
using only the parameter and union regularization losses
(Eq. 11 and Eq. 14). We then incrementally add the other
components.

Table 5 presents the results. We observe that incorporating the load balance loss (Eq. 15) improves the
results by ensuring that all experts are assigned an adequate number of tokens. Furthermore, adding
the distillation loss further enhances performance. While the inclusion of the language modeling
loss (where the hypernetwork is supervised with actual image tokens rather than the outputs of the
teacher networks) slightly impacts the generation quality, it notably increases precision and recall, as
expected when training with real images. Consequently, we report our results using a combination of
both distillation and language modeling losses in Table 1, Table 2, and Table 3 and despite observing
slightly poorer FID and IS values. Overall, Table 5 highlights the importance of each component of
our method. See Appendix C.4 for more ablations.

5 CONCLUSION

We introduced a dynamic pruning approach that transforms dense autoregressive image generation
models into efficient Sparse Mixture of Experts architectures. By leveraging top-1 expert routing, our
method extracts specialized experts, significantly reducing active parameters per inference step while
preserving high image quality without the need for recovery fine-tuning. Our evaluations show that
this strategy outperforms conventional pruning techniques and maintains robust performance even at
high sparsity levels. Furthermore, analysis of expert routing reveals inherent spatial and class-specific
specialization. Overall, our work provides a scalable solution for efficient deployment of large AR
models in resource-constrained environments.
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A RELATED WORK

A.1 IMAGE GENERATION

High-resolution image generation is currently dominated by diffusion models (Rombach et al., 2022;
Deng et al., 2009; Ramesh et al., 2022; Betker et al., 2023). While pixel-level Autoregressive (AR)
image generation has been explored for years (Gregor et al., 2014; Van Den Oord et al., 2016;
Van den Oord et al., 2016; Chen et al., 2020a; Parmar et al., 2018), there has been a recent resurgence
of interest in a new form of AR models inspired by advancements in language modeling. These
models generate images by sequentially predicting the next token (Esser et al., 2021; Yu et al., 2022;
Ramesh et al., 2021; Sun et al., 2024b; Ramesh et al., 2022; Ding et al., 2022; Lu et al., 2022) or the
next token map (Tian et al., 2025). Typically, image tokens are derived from a pretrained discrete
tokenizer, where a finite vocabulary is obtained via vector quantization (VQ)(Razavi et al., 2019).
However, some approaches have explored autoregressive image generation without relying on vector
quantization (Li et al., 2025)

A.2 PRUNING

Structural pruning (Li et al., 2017; Kurtic et al., 2022; Ma et al., 2023) offers a practical way to
shrink models by removing unnecessary parameters without needing custom implementations. These
techniques generally fall into two groups. Static pruning (Anwar et al., 2017; Molchanov et al., 2019;
Fang et al., 2023) uses input-agnostic metrics to eliminate non-critical structures. In contrast, dynamic
pruning (Gao et al., 2019; Chen et al., 2020b; Anagnostidis et al., 2023; Dong et al., 2024) adapts
weight removal based on each input, with early work in CNNs selectively activating channels (Gao
et al., 2019; Chen et al., 2020b) and more recent efforts incorporating conditional computation in
LLMs by skipping layers per token (Wang et al., 2024a). Although originally developed for LLMs,
existing GPT pruning techniques (Ma et al., 2023; Ashkboos et al., 2024; Song et al., 2024; van der
Ouderaa et al., 2024; Gao et al., 2024; Lin et al., 2024; Men et al., 2024; Frantar & Alistarh, 2023; Sun
et al., 2024a) extend naturally to language-modeling-style (next token prediction) image generation.
However, they face two key hurdles: first, both static and dynamic methods degrade image generation
quality to the point where prohibitive recovery fine-tuning becomes necessary; second, dynamic
pruning lacks a consistent computational budget per input, which complicates batch parallelization.
Our method addresses these issues by converting a dense LLM into a sparse MoE model that enforces
a fixed per-token budget. Our method delivers performance close to the dense model without the
need for recovery fine-tuning.

A.3 MIXTURE OF EXPERTS

Compared to standard structural pruning, Sparse Mixture-of-Experts (MoE) models preserve model
capacity without incurring extra computational overhead. For example, Sparsely-Gated MoE (Shazeer
et al., 2017) uses a learnable gating network to select a few experts per input, enabling efficient scaling
to thousands of experts (Lepikhin et al., 2021). Recent methods (Dai et al., 2024) further refine expert
specialization, achieving dense-model performance with a similar number of total parameters.

B METHOD

B.1 MODULE ARCHITECTURE

Tab. 6 summarizes our design. In our approach, each MLP layer is equipped with its own adapter and
router modules. After training, only the router module is retained.

B.1.1 EMBEDDING GENERATION

The hypernetwork receives a fixed random vector z ∈ RN×32, sampled from a normal distribution,
and produces an embedding. In parallel, the token features are mapped into a 128-dimensional space
via the MLP Adapter (θProjD ). For a network with L MLP layers, each layer is equipped with its own
MLP Adapter and Expert Router. During training of the hypernetwork, we use Eq. 5 and 6 to find
the expert embeddings and routing decision. After training, we prune the MLP layers to N experts
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Component Removed? Config
Hypernetwork Yes Random vector z → BiGRU(32, 64)
MLP Adapter Yes LayerNorm(128) → GeLU → Linear(128, de)
Expert Router No Linear(d, N )

Table 6: Configurations of the trainable components. Components marked for removal are pruned
after training while their outputs are preserved for expert generation.

using the hypernetwork output expert embeddings. The we remove the hypernetwork and the adapter
module and use the router module as the MoE router.

C EXPERIMENTS

C.1 DETAILED EXPERIMENTAL SETTINGS

We prune LlamaGen-XXL Sun et al. (2024b) using our method and baseline approaches at sparsity
levels of 0.2 and 0.3. LlamaGen-3B Sun et al. (2024b) and Janus-Pro-7B Chen et al. (2025) are
pruned at sparsity levels of 0.3, 0.4, and 0.5. The loss weighting parameters are set to α, β, γ =
(16.0, 2.0, 1.0)(Eq. 16) and the distillation and language modeling losses are weighted equally at 1.0.
We set τ = 0.4 in Eq. 8 and 9 and b = 3.0 in Eq. 8 and 9. The model weights remain frozen while the
hypernetwork is trained for 10,000 iterations. Afterward, we convert the model to a MoE using the
trained hypernetwork and evaluate it without any recovery fine-tuning applied to either the baselines
or our method. We use the AdamW optimizer with a constant learning rate of 0.0004, weight decay of
0.05, and Adam parameters (β1, β2) = (0.9, 0.999). The batch size is set to 1. For the LlamaGen Sun
et al. (2024b) models, we use a single NVIDIA A6000 GPU, while for Janus-Pro-7B Chen et al.
(2025), we use a single Nvidia H100 GPU.

C.2 MORE RESULTS

C.3 CLASS CONDITIONAL RESULTS

First, we evaluate the effectiveness of our method on the moderately sized LlamaGen-XXL (Sun
et al., 2024b) model, which has 1.4B parameters. Table 7 presents the results. Notably, the gap
between our method with no recovery finetuning and the dense model is minimal across key metrics,
including FID, sFID, Precision, and Recall.

Another important observation is the sensitivity of image generation models to pruning. All baseline
methods, except for DISP-LLM (Gao et al., 2024), perform poorly, failing to generate coherent
images, as reflected in their IS and FID scores, as well as class-wise precision and recall. This
further supports our argument that image generation models are more sensitive to parameter removal
compared to text generation models and need a recovery finetuning. Interestingly, these same
baselines perform reasonably well in the context of LLM pruning.

Furthermore, at the same active parameter ratio, our method consistently outperforms all baselines
across all metrics by a significant margin. With a pruning rate of 30%, our method surpasses LLM-
Pruner (Ma et al., 2023), SliceGPT (Ashkboos et al., 2024), and SLEB (Song et al., 2024), even when
these baselines retain more active parameters (with only a 20% pruning rate). While our method and
DISP-LLM (Gao et al., 2024) show comparable performance at the 20% pruning level, our advantage
becomes more pronounced as the number of active parameters decreases. Specifically, at 70% active
parameters, our method achieves a 50% higher IS and approximately 20% lower FID, demonstrating
its superior robustness to pruning.

Next, we evaluate our method and the baselines on the larger LlamaGen-3B (Sun et al., 2024b) model,
as shown in Table 8. Again, our method performs very close to the dense model at a 30% sparsity rate
and achieves higher recall at 70% and 60% active parameters, demonstrating that its effectiveness is
not limited to smaller models and performs just as well, if not better, on larger models.

The performance gap between our method and the best baseline, i.e. DISP-LLM (Gao et al., 2024),
is even larger than in the LlamaGen-XXL case, particularly at lower pruning ratios. Our method
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Model/Speed ImageNet (256×256) Quality
Method Params (B) Latency (s/it) IS ↑ FID ↓ sFID ↓ Precision ↑ Recall ↑

No Pruning
LlamaGen-XXL (1.4B) 1.411 17.20 207.89 15.58 73.80 0.7992 0.7484

Sparsity = 0.2
LLM-Pruner 1.145 13.24 49.15 42.86 77.72 0.4530 0.7298
SLEB 1.156 12.00 75.28 32.60 80.13 0.5904 0.7302
Slice-GPT 1.140 12.96 10.41 104.62 91.27 0.2450 0.3672
DISP-LLM 1.138 18.97 148.58 17.88 75.50 0.7310 0.7358
Ours (MoE) 1.131 / 1.399 12.06 159.10 17.31 75.14 0.7500 0.7524

Sparsity = 0.3
LLM-Pruner 0.994 12.21 23.24 65.77 82.06 0.2674 0.6608
SLEB 1.014 10.59 17.33 91.17 97.67 0.2734 0.5492
Slice-GPT 0.983 11.58 7.80 122.36 98.08 0.1940 0.3146
DISP-LLM 1.004 18.88 90.40 23.58 77.98 0.6636 0.7312
Ours (MoE) 0.989 / 1.231 11.37 135.33 18.56 75.92 0.7276 0.7460

Table 7: Comparison for LlamaGen-XXL on ImageNet (5k val, 256×256): model size, latency, and
quality metrics across pruning ratios, without recovery finetuning.

achieves 70% higher IS and 28% lower FID. This gap widens significantly as the number of active
parameters decreases: at 60% active parameters, we outperform the best baseline by 272% in IS and
53% in FID, and at 50% active parameters, by 158% in IS and 40% in FID. Meanwhile, we again
observe the generation capabilities of the other baselines degrade severely without fine-tuning. See
Appendix C.3.2 for results on Janus Pro.

We have also reported parameter counts and average latency measurements over 5 generated images
for all our experiments. For the reported latency values, our memory usage correlates with the total
params and remains lower than that of the base model. Even at a sparsity rate of 50%, our method
outperforms all baselines across all sparsity rates (except for Disp-LLM at 30%). Notably, at 50%
sparsity, our method achieves similar total parameter counts and latency to the baselines at 30%, but
with significantly better performance. Our approach outperforms Disp-LLM at comparable sparsity
rates while being much faster as Disp-LLM incurs additional overhead due to index selection and
addition operations.

C.3.1 COMPUTE DISCUSSION

As emphasized throughout the paper, fine-tuning the base model after pruning is often prohibitively
expensive in terms of memory, compute, and data requirements, especially for large-scale models.
A core assumption in our work is that such post-pruning fine-tuning is infeasible in many practical
scenarios, and our method is explicitly designed to avoid this costly step. Our approach only optimizes
a tiny router (See Table 10) on frozen model weights, which can be efficiently trained for models as
large as 11B on a consumer 24GB GPU. Other baselines also require calibration phases and we have
accounted to have just about the same compute when feasible: The strongest baseline DISP-LLM
also trains a hypernetwork for 10k iterations. This is why we use 10k iterations with a batch size
of 1. SLEB and SliceGPT perform multiple forward passes to decide which blocks or weights to
prune, e.g. at 0.5 sparsity on Janus, we allocate 8,280 base model forward passes for SLEB and 8,192
iterations for SliceGPT. This is practical as long as no gradients of the base model are required. But
LLM-Pruner requires computing gradients for all model parameters. Notably, we could not apply
LLM-Pruner to Janus-7B on the RTX6000-48GB GPUs used in our other experiments and had to
resort to H100-80GB GPUs, illustrating that when you have to compute gradients (for calibration or
FT), GPU memory demands are significantly higher.

C.3.2 TEXT-CONDITIONAL RESULTS

We also apply our method and the baselines to the recently released Janus-Pro-7B (Chen et al.,
2025) model to evaluate their effectiveness on a much larger, text-conditional model. The results
are presented in Table 9. For evaluating the model, we report FID (Heusel et al., 2017) and CLIP
Score (Hessel et al., 2021) on 5000 samples from the COCO 2017 validation set, also resized to
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Model/Speed ImageNet (256×256) Quality
Method Params (B) Latency (s/it) IS ↑ FID ↓ sFID ↓ Precision ↑ Recall ↑

No Pruning
LlamaGen-3B 3.097 13.75 240.33 16.05 73.23 0.8232 0.7300

Sparsity = 0.3
LLM-Pruner 2.174 10.81 22.49 71.46 87.67 0.2984 0.6134
SLEB 2.225 9.81 26.04 66.91 82.03 0.3268 0.6604
Slice-GPT 2.178 10.87 13.74 90.54 98.35 0.3624 0.3958
DISP-LLM 2.198 12.77 101.89 22.76 80.49 0.7022 0.7052
Ours (MoE) 2.167 / 2.998 10.32 172.19 16.37 76.64 0.7800 0.7464

Sparsity = 0.4
LLM-Pruner 1.867 10.30 11.14 103.38 96.60 0.1482 0.4784
SLEB 1.976 9.72 8.27 130.30 103.04 0.1830 0.3548
Slice-GPT 1.855 10.51 10.27 111.41 105.48 0.2686 0.3460
DISP-LLM 1.901 12.70 32.84 42.94 82.18 0.5420 0.6238
Ours (MoE) 1.858 / 2.820 10.21 122.23 20.06 77.50 0.7096 0.7434

Sparsity = 0.5
LLM-Pruner 1.559 9.95 8.89 120.67 109.84 0.1048 0.2944
SLEB 1.602 9.24 4.77 171.31 119.86 0.1218 0.0220
Slice-GPT 1.531 10.07 6.78 135.21 112.87 0.2076 0.3080
DISP-LLM 1.604 12.46 19.08 62.63 87.61 0.4448 0.5314
Ours (MoE) 1.548 / 2.239 9.98 49.11 37.59 82.45 0.5652 0.6750

Table 8: Comparison for LlamaGen-3B on ImageNet (5k val, 256×256): params, latency, and quality
metrics across pruning ratios, without recovery finetuning.
256× 256. Additionally, we report PickScore (Kirstain et al., 2023) on the PartiPrompts (Yu et al.,
2022) as a proxy for human preference. We do not use top-k decoding and set the CFG weight to
5.0 (the default in Janus codebase).

First, we observe that the dense model struggles with image generation, as evidenced by its high
FID score of 58.69. Even in this setting, our method remains competitive with the dense model at
a lower pruning ratio of 30% and significantly outperforms the baselines. Janus uses the VQ-VAE
from LlamaGen (Sun et al., 2024b) as its tokenizer for image generation, but both text and image
tokens are processed by the same transformer backbone. Consequently, the hypernetwork and router
modules for the MLP experts in our method must be trained on both token types. Given the relatively
short nature of the COCO captions, we hypothesize that the COCO training set may be too small to
fully support the router module’s demands. We believe that a larger dataset would enable our method
to perform even better in this scenario. Furthermore, based on prior findings in (He et al., 2024),
we suspect that converting the model into two distinct MLP mixtures-of-experts—one for text and
one for images—could further enhance our method’s effectiveness. This represents an intriguing
direction for future work.

C.3.3 PARAMETER COUNT AND LATENCY

Base model finetuning is substantially more memory, compute and data intensive and often infeasible
for large models. In contrast, our approach only optimizes a tiny router (See Tab. 10) on frozen
model weights, which can be efficiently trained for models as large as 11B on a consumer 24GB
GPU. Other baselines also require calibration phases and we have accounted to have just about
the same compute when feasible: The strongest baseline DISP-LLM also trains a hypernetwork
for 10k iterations. This is why we use 10k iterations with a batch size of 1. SLEB and SliceGPT
perform multiple forward passes to decide which blocks or weights to prune, e.g. at 0.5 sparsity on
Janus, we allocate 8,280 base model forward passes for SLEB and 8,192 iterations for SliceGPT.
This is practical as long as no gradients of the base model are required. But LLM-Pruner requires
computing gradients for all model parameters. Notably, we could not apply LLM-Pruner to Janus-7B
on the RTX6000-48GB GPUs used in our other experiments and had to resort to H100-80GB GPUs,
illustrating that when you have to compute gradients (for calibration or FT), GPU memory demands
are significantly higher.
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Model/Speed Quality
Method Params (B) Latency (s/it) COCO FID ↓ CLIP Score ↑ PickScore ↑

No Pruning
Dense (Janus-Pro-7B) 6.910 10.66 58.69 28.25 19.5637

Sparsity = 0.3
LLM-Pruner 4.868 9.92 129.67 21.57 18.2333
SLEB 5.089 7.46 278.56 19.45 18.1239
Slice-GPT 4.920 10.05 194.36 20.42 18.2444
DISP-LLM 5.101 11.02 122.61 22.09 18.7462
Ours (MoE) 4.845 / 6.688 9.86 71.55 26.31 19.4181

Sparsity = 0.4
LLM-Pruner 4.154 9.28 179.33 19.74 17.9993
SLEB 4.481 6.51 284.52 19.36 18.1144
Slice-GPT 4.162 9.21 213.36 20.32 17.9082
DISP-LLM 4.492 10.95 151.83 21.65 18.2357
Ours (MoE) 4.146 / 5.964 9.32 104.56 24.99 18.6615

Sparsity = 0.5
LLM-Pruner 3.501 9.15 184.36 19.06 17.8421
SLEB 3.874 6.36 300.47 19.31 18.0559
Slice-GPT 3.496 8.53 339.87 19.25 17.7116
DISP-LLM 3.885 10.88 188.14 20.62 17.8908
Ours (MoE) 3.485 / 4.416 8.99 126.41 22.83 18.1969

Table 9: Comparison on Janus-Pro-7B for text-conditional generation: COCO-2017 (256×256) FID
and CLIP score, and PickScore on PartiPrompts, without recovery finetuning.

Model Base Size (B) HN Size (B) Pct (%)
LG-XXL 1.41 0.02 1.8%
LG-3B 3.10 0.03 0.9%
Janus-7B 6.91 0.04 0.6%

Table 10: Router vs Base Model size.

C.4 MORE ABLATIONS

Table 11 shows the full ablation results. In another ablation experiment, we investigate how the
number of experts affects generation results. Figure 7b illustrates a uncorrelated relationship between
IS and FID, where improvements in one do not necessarily lead to improvements in the other. Overall,
increasing the number of experts from 8 to 12 improves generation quality in terms of FID; however,
the improvements are minor and may not justify the added complexity. Moreover, further increasing
the number of experts from 12 to 16 results in poorer quality, possibly because the hypernetwork and
router module cannot be sufficiently trained with so many experts.

Finally, we visualize the expert width and the union of experts width across all layers of the model
in Figure 7a. We can see that there is a trend and latter layers have higher width compared to initial
layers. Also our method does a good job of forcing the union of experts to be close to the dense
model (Eq. 11).

Method IS ↑ FID ↓ sFID ↓ Prec. ↑ Rec. ↑
HN + Union Loss (Eq. 11) 140.88 18.59 76.99 0.7290 0.7452
+ Load Balance Loss (Eq. 15) 154.85 18.03 77.50 0.7476 0.7420
+ Distillation Loss 174.73 16.35 76.05 0.7792 0.7392
+ Language Modeling Loss 172.19 16.37 76.64 0.7800 0.7464

Table 11: Ablations on 5k ImageNet validation set.
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(a) Normalized expert width and union of experts across LlamaGen-3B MLP
layers.

(b) Effect of number of experts on generation results of LlamaGen-3B-MoE
with 70% active parameters.

Figure 7: LlamaGen-3B MoE analysis: (a) expert width/union across MLP layers; (b) impact of
number of experts at 70% active parameters.

C.4.1 MORE GENERATIONS

In this section we present more visual results of our method as well some MoE expert analysis
results. Figure 8 compares our dynamic-to-MoE pruning method with baseline approaches on the
LlamaGen-3B(Sun et al., 2024b) model, pruned to 70% active parameters. Our method not only
surpasses all baselines by a large margin in visual fidelity but, in some cases (second and fifth images),
even produces better images than the dense model. Both Figure 1 and Figure 8 were generated using
a CFG scale of 1.5 and a top-k value of 200. Fig. 9 depicts more randomly sampled generations of
the LlamaGen-3B Sun et al. (2024b) model pruned to 70% active parameters using our method.

Fig. 10 illustrates how token distribution varies across different ImageNet classes. Certain experts are
predominantly activated for specific categories, indicating that the model learns some class-specialized
expert assignments. This pattern is not visible in all layers.

To gain higher-level insights into potential spatial relationships in expert routing, we generate 1,000
images from the model and analyze which tokens, corresponding to different parts of the image, are
processed by each expert at different layers. Fig. 11 and 12 present the results for all layers. This
figure clearly shows that certain experts exhibit spatial specialization, tending to process specific
regions of the image. We believe this finding aligns with previous observations in MoE LLMsJiang
et al. (2024), where experts are found to specialize in syntax of text rather than semantics.
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Figure 8: Samples from the LlamaGen-3B model, pruned by 30% of active parameters using our
proposed method, compared to baseline methods without recovery fine-tuning. Our approach
significantly outperforms the baselines in visual fidelity.
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Figure 9: Random samples from the LlamaGen-3B model, pruned by 30% active parameters using
our proposed dynamic-to-MoE pruning method, without any recovery fine-tuning. Despite the
significant reduction in active parameters, our approach maintains strong generative performance,
demonstrating that structured experts can be identified within dense AR image models without
requiring continued pretraining or additional fine-tuning.
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Figure 10: Class-wise distribution of token routing across experts in LlamaGen-3B-MoE, showing
class specialized expert assignment. Each bar represents the proportion of tokens assigned to
different experts for a given class, showing that certain experts are preferentially activated for specific
categories. Layers 0–23 are displayed from the top-left to the bottom-right.
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Figure 11: Spatial token assignments across experts of LlamaGen-3B-MoE. Darker red indicates a
higher number of routed tokens. Layers 0–11 are displayed from top to bottom.
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Figure 12: Spatial token assignments across experts of LlamaGen-3B-MoE. Darker red indicates a
higher number of routed tokens. Layers 12–23 are displayed from top to bottom.
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