
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

PRUNING WITHOUT FINE-TUNING: DYNAMIC PRUN-
ING OF AUTOREGRESSIVE IMAGE GENERATION MOD-
ELS TO MIXTURES OF EXPERTS

Anonymous authors
Paper under double-blind review

ABSTRACT

While autoregressive models can achieve state-of-the-art performance in image
generation, their massive size poses significant challenges for deployment and
efficient model serving. Structural pruning has emerged as an effective method for
reducing model size and improving inference efficiency, yet existing approaches
need a recovery finetuning due to the sensitivity of image generation to missing
parameters. In this work, we propose a novel approach that leverages dynamic
pruning to identify and extract sparse experts within dense AR image models,
enabling their transformation into Sparse Mixture of Experts (MoE) architectures.
By applying top-1 expert routing to MLP layers, we establish a direct link between
differentiable dynamic pruning and MoE conversion. We convert various pretrained
dense models into MoEs, significantly reducing active parameters per inference
step while preserving performance. Experimental results show that our approach
outperforms traditional static pruning techniques by maintaining high-generation
quality without costly recovery fine-tuning.

1 INTRODUCTION

Recent advances in image generation have emerged from two primary directions. Diffusion mod-
els (Sohl-Dickstein et al., 2015; Ho et al., 2020) excel at producing high-quality images, while
there has been a resurgence of interest in AutoRegressive (AR) models (Van Den Oord et al., 2016;
Van den Oord et al., 2016). The latest AR architectures closely resemble those used in modern Large
Language Models (LLMs), such as Generative Pretrained Transformers (GPT) (Vaswani et al., 2017;
Touvron et al., 2023; Yang et al., 2024; Abdin et al., 2024). These AR models not only demonstrate
strong performance as standalone image generators (Sun et al., 2024b; Tian et al., 2025) but also
integrate seamlessly into large multi-modal models, providing a unified approach to understanding
and generating multi-modal content (Xie et al., 2024; Wang et al., 2024b; Chen et al., 2025).

Despite their immense capabilities, GPT models are extremely large, making deployment in resource-
constrained environments highly challenging. Significant research has focused on improving the
efficiency of LLMs (Frantar et al., 2022; Frantar & Alistarh, 2023; Dong et al., 2024), with structural
pruning emerging as one of the most promising approaches (Ashkboos et al., 2024; Ma et al.,
2023). Structural pruning removes parameters to reduce model size while achieving real wall-clock
speedups, and since these techniques are designed for transformers, they can also be readily applied
to transformer-based AR image generation models.

However, unlike text generation, where similar tokens could provide redundancy, image generation
is highly sensitive to missing parameters. In text, a mispredicted token may still result in coherent
output, but in image generation, a single incorrect token can severely degrade quality. As a result,
pruned models often fail to generate high-quality or even meaningful images, necessitating a recovery
fine-tuning phase to restore their generative capabilities (Ganjdanesh et al., 2024). This step is
particularly problematic, as fine-tuning requires enormous computational resources, significantly
more than text-based models, and obtaining high-quality image data is considerably more challenging.

One particular type of structural pruning, known as dynamic pruning (Gao et al., 2019), selects
a unique subnetwork for each input, in contrast to static pruning methods, which apply the same
sub-architecture to all images. Similar to dynamic pruning, Sparse Mixture of Experts (MoE)

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

models (Shazeer et al., 2017; Lepikhin et al., 2021) activate only a subset of parameters (the se-
lected expert) per input. Recent studies show that MoEs can match the performance of a dense
model with the same total parameters, while being far more efficient at inference (Dai et al., 2024).

Figure 1: Random samples from the LlamaGen-
3B model, pruned by 30% active parameters using
our proposed dynamic-to-MoE pruning method,
without any recovery fine-tuning. Despite the
significant reduction in active parameters, our ap-
proach maintains strong generative performance,
demonstrating that structured experts can be identi-
fied within dense AR image models without requir-
ing continued pretraining or additional fine-tuning.

However, training MoE architectures from
scratch is extremely computationally demand-
ing. Some approaches convert pretrained
dense models into MoEs through continual pre-
training (Zhu et al., 2024), reducing costs com-
pared to training from scratch. Nevertheless,
this continual pre-training process remains very
expensive, especially for image models.

In this work, we leverage the connection be-
tween differentiable dynamic pruning and MoEs
to convert a pretrained dense AR image gener-
ation model into an MoE architecture, maintain-
ing the same total parameters but with fewer ac-
tive parameters per inference step for improved
efficiency. In other words, we show that experts
inherently exist within dense AR image models
and can be identified through dynamic pruning.

We convert the MLP layers of a pretrained AR
model into MoE layers through top-1 expert
routing. The routing strategy learned for dy-
namic structural pruning can be directly repur-
posed as the routing module for MoE layers.
We show that unlike existing methods, our novel
pruning approach preserves performance close
to that of the original dense model without the
need for continued pre-training or recovery fine-tuning. A comparison of our method, static pruning,
and the original model is illustrated in Fig. 2. To summarize our contributions:

1. We introduce a novel dynamic pruning method that converts pretrained dense autoregressive
image generation models into sparse Mixture-of-Experts (MoE) architectures. This approach
reduces the number of active parameters per inference step while maintaining performance.

2. We show experts inherently exist within dense AR image models and can be identified
through dynamic structural pruning. The learned routing strategy for pruning is directly
repurposed as the routing module for the MoE layers. We extend our method to compress
the MLP layers via top-1 expert routing, thereby improving overall model efficiency.

3. Unlike previous methods that require continued pre-training or recovery fine-tuning to restore
performance, our approach significantly outperforms the existing baselins in preserving
high-quality image generation without the need for such computationally intensive steps.

4. Extensive experiments on state-of-the-art AR image generation models confirm that our
method not only achieves performance close to dense models but also significantly outper-
forms existing pruning baselines as the number of active parameters decreases.

2 RELATED WORK

2.1 IMAGE GENERATION

High-resolution image generation is currently dominated by diffusion models (Rombach et al., 2022;
Deng et al., 2009; Betker et al., 2023). While pixel-level Autoregressive (AR) image generation
has been explored for years (Van den Oord et al., 2016; Chen & He, 2020), there has been a recent
resurgence of interest in a new form of AR models inspired by advancements in language modeling.
These models generate images by sequentially predicting the next token (Esser et al., 2021; Yu et al.,
2022; Ramesh et al., 2021; Sun et al., 2024b). Typically, image tokens are derived from a pretrained
discrete tokenizer, with vector quantization (VQ)(Razavi et al., 2019) or without it (Li et al., 2025).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

(a) Dense Model (b) Static pruning. (c) Dynamic pruning for MoE.

Figure 2: (a): The dense model uses all parameters for every input. (b): The statically pruned method
uses the same sub-network for all tokens. (c) Our approach uses a different sub-network for each
token utilizing MoE to constrain the expected inference budget.

2.2 PRUNING

Structural pruning (Li et al., 2017) shrinks models by removing unnecessary parameters without
needing custom implementations. These techniques generally fall into two groups. Static prun-
ing (Anwar et al., 2017; Molchanov et al., 2019) uses input-agnostic metrics to eliminate non-critical
structures. In contrast, dynamic pruning (Gao et al., 2019; Chen et al., 2020b; Anagnostidis et al.,
2023) adapts weight removal based on each input, with early work in CNNs selectively activating
channels (Gao et al., 2019) and more recent efforts incorporating conditional computation in LLMs
by skipping layers per token (Wang et al., 2024a). Although originally developed for LLMs, existing
GPT pruning techniques (Ma et al., 2023; Frantar & Alistarh, 2023) extend naturally to language-
modeling-style (next token prediction) image generation. However, they face two key hurdles: first,
both static and dynamic methods degrade image generation quality to the point where prohibitive
recovery fine-tuning becomes necessary; second, dynamic pruning lacks a consistent computational
budget per input, which complicates batch parallelization. Our method addresses these issues by
converting a dense LLM into a sparse MoE model that enforces a fixed per-token budget. Our method
delivers performance close to the dense model without the need for recovery fine-tuning.

2.3 MIXTURE OF EXPERTS

Compared to standard structural pruning, Sparse Mixture-of-Experts (MoE) models preserve model
capacity without incurring extra computational overhead. For example, Sparsely-Gated MoE (Shazeer
et al., 2017) uses a learnable gating network to select a few experts per input, enabling efficient scaling
to thousands of experts (Lepikhin et al., 2021). Recent methods (Dai et al., 2024) further refine expert
specialization, achieving dense-model performance with a similar number of total parameters.

2.4 POSITIONING

Prior dense-to-MoE conversions such as LLaMA-MoE (Zhu et al., 2024) and the concurrent To-
MoE (Gao et al., 2025) are designed for text LLMs and are ill-suited to AR image generation.
LLaMA-MoE partitions FFN layers into experts, but due to its rigid and manual construction, it
requires extensive continual pre-training to recover generation quality. This makes it prohibitive for
frozen AR decoders, where fine-tuning is both computationally costly and data-limited, and where
reckless parameter removal can drastically degrade output. ToMoE uses differentiable operations
to learn routing over MLPs and attention heads, but its design introduces substantial architectural
complexity and latency, and it fails to perform well on image generation. In contrast, our method
integrates expert construction directly into the pruning stage, automatically revealing sparse structure
without requiring recovery training or introducing unnecessary complexity. We specifically target
AR image models because: (1) visual generation is highly sensitive to pruning, with small errors
yielding visible artifacts; (2) Image models are expensive to adapt, so a post-hoc sparse conversion
has high practical value; and (3) the image token setting enables interpretable expert specialization
which cannot be probed in text-only models.

3 METHOD

The current models used to generate images are huge and computationally expensive. To reduce
computational burden, we turn this dense transformer into a mixture-of-experts (MoE) framework.
This involves converting the MLP block into an MoE layer with top-1 routing. Critically, unlike
existing dynamic pruning methods, our approach preserves a predictable, uniform cost per token,
making real-time model serving more efficient. Figure 2 provides an overview of our pruning method.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3.1 PRELIMINARY

Figure 3: Overview of our pruning to MoE
method. Differentiable dynamic pruning is ap-
plied to identify input-dependent experts. MLP
layers are converted using top-1 expert routing.

Our approach builds upon decoder-only Trans-
former (Vaswani et al., 2017) architectures for im-
age generation, similar to those employed in recent
large-scale language models (Radford et al., 2018;
Touvron et al., 2023). In the visual domain, a VQ-
VAE (Razavi et al., 2019; Esser et al., 2021) is first
used to convert an input image I into a sequence of
discrete tokens:

t = VQ-VAE(I), t ∈ {1, . . . ,K}T , (1)
where K denotes the number of codes and T is the
token sequence length.

Once tokenized, the image is generated autoregres-
sively by the Transformer. For each position i in
the sequence, the model predicts the next token
based on all previous tokens:

t̂i = Transformer
(
t<i

)
, i = 1, . . . , T. (2)

3.1.1 NOTATION

Throughout this section, we denote T as the se-
quence length, d as the hidden dimension, dmid
as the intermediate dimension in the MLP layers.
We denote the input sequence of each layer by
X ∈ RT×d.

3.2 EXPERT EMBEDDINGS

In our framework, a hypernetwork (Ha et al., 2016) generates learnable embeddings that guide various
pruning decisions. Specifically, we sample a latent variable z from a fixed distribution and use it to
produce an embedding matrix Eall:

Eall = HN(z), (3)

where Eall = [E1, · · · ,El, · · · ,EL] contains embeddings for L layers. Each individual embedding
matrix El ∈ RN×de represents N experts, with each expert having an embedding dimension of
de. These embeddings produce the subnetwork configurations in MLP experts. By having a single
hypernetwork generate all embeddings, we promote knowledge sharing across layers, which enhances
optimization efficiency (Gao et al., 2024).

3.3 MLP EXPERTS

Within a single decoder block, the MLP is expressed as

f(X) = σ
(
XWG

)
⊙

(
XWU

)
WD, (4)

where WU ,WG ∈ Rd×dmid and WD ∈ Rdmid×d are the Up, Gate, and Down projection matrices,
respectively. Here, σ(·) denotes an activation function and ⊙ represents the element-wise product.

To improve efficiency and enable specialization, we split the MLP into N experts, each corresponding
to a pruned version of the intermediate dimension dmid. When a subset of tokens Xt are routed to
expert i, its function becomes

f i(Xt) = σ
(
Xt WG Si

)
⊙

(
Xt WU Si

)
S⊤
i WD, (5)

where Si = Diag(si) is a diagonal mask of dimension Rdmid×dmid . Each entry in si is either 0 or 1,
indicating whether a neuron is pruned or retained. We jointly learn the routing decisions and the
mask values through

s = ST−GS
(
ProjD

(
GE

))
,G = ST−G

(
Router(X)

)
. (6)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Here, E (omitting layer indices for brevity) is an embedding from the hypernetwork, and ProjD :
Rde → Rdmid is a linear projection that maps this embedding into the MLP’s intermediate space. The
operators ST−GS and ST−G denote the straight-through Gumbel-Sigmoid and Gumbel-Softmax,
respectively (Jang et al., 2016), that enable differentiable routing among experts. Given a logit vector
x, we first draw noise from the standard Gumbel distribution g ∼ Gumbel(0, 1). We then form a
probability distribution via

p = softmax
(
x+ g

τ

)
, (7)

where τ is a temperature parameter that regulates the sharpness of the distribution. To allow discrete
expert selection during training while preserving gradient flow, we employ a straight-through estimator.
This is accomplished by replacing p with a one-hot vector corresponding to the maximum value:

ST−G(x) = one-hot
(
argmax

i

xi + gi
τ

)
. (8)

For binary decisions, we similarly use a sigmoid function in place of softmax. An additive bias b is
incorporated to ensure all experts are initially active:

ST−GS(x) = round(sigmoid(
x+ g + b

τ
)) (9)

3.4 EFFECTIVE MOE REGULARIZATION

3.4.1 UNION OF EXPERTS

To preserve the full expressiveness of the original dense model, we encourage the union of active
parameters from all experts to cover the complete set of neurons. Let

u =

N⋃
i=1

si =⇒ u = 1−
N∏
i=1

(
1− si

)
, (10)

so that an element of u is active if any expert retains that neuron. We then encourage the proportion∑
u

|u| to go toward 1:

RU =
1

L

L∑
l=1

f
(∑

ul

|ul| , 1
)
. (11)

f(x, y) = log
[
max(x, y)/min(x, y)

]
measures the divergence between the achieved and desired

activation levels. This ensures that, together, the experts maintain the full capacity of the dense model.

3.4.2 PARAMETER BUDGET

We further enforce an upper bound on the total number of active parameters. For each layer l in the
MLP, we define the maximum expert width as

d∗l = max(s 1dmid), (12)
where dmid is the expanded width of the MLP layer, and aggregate these widths into

dMoE = [d∗1, . . . , d
∗
L]. (13)

We then compare the total active parameters, T(dMoE), with the full model’s total Ttotal scaled by a
target ratio p ∈ (0, 1]:

RP = f
(
T(dMoE), pTtotal

)
. (14)

This constraint controls the overall model size, ensuring parameter efficiency.

3.4.3 LOAD BALANCING

To avoid overloading a few experts while underutilizing others, we adopt a load balancing loss similar
to that of the Switch Transformer (Fedus et al., 2022). Let Fi denote the fraction of tokens routed
to expert i and Pi the average softmax probability (prior to straight-through sampling) for expert i.
Then, the load balancing loss is given by

RL = N

N∑
i=1

Fi Pi. (15)

This term encourages an even distribution of tokens among the experts, promoting balanced utilization.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

3.5 TRAINING THE MOE CONSTRUCTION

To learn our MoE, we freeze the original decoder weights and train only the router, hypernetwork,
and projection parameters. The final model thus retains the knowledge of the dense precursor while
gaining MoE capabilities (Figure 3).

We define the training objective:

min
θ

L
(
f ′(X;Eall

)︸ ︷︷ ︸
MoE model

, f(X)︸ ︷︷ ︸
dense model

)
+ αRP + βRU + γRL, (16)

where θ = [θHN, θRouter, θProjD], and L is the sum of distillation loss (Hinton et al., 2015) between
the dense model f and the MoE model f ′ and language modeling loss. We employ in-place knowledge
distillation to guide the sparse model without additional memory cost (Muralidharan et al., 2024).

At the end of training, each MLP layer is replaced with N experts sharing weights. We also support
switching back to a pseudo-MoE version, which may simplify distributed training. In summary,
our approach provides a flexible means of transforming a dense autoregressive image decoder into
a sparse mixture-of-experts model, greatly reducing computational load while retaining the dense
model’s capability. See Appendix B for more details of our method.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Models: We evaluate our method on the class-conditional autoregressive models LlamaGen-XXL
and LlamaGen-3B (Sun et al., 2024b), both trained on ImageNet (Deng et al., 2009). Additionally,
we consider Janus-Pro-7B (Chen et al., 2025), an autoregressive multi-modal model capable of both
image understanding and generation.

Baselines: We compare our approach against state-of-the-art static and dynamic structural pruning
methods, including LLM-Pruner (Ma et al., 2023), SliceGPT (Ashkboos et al., 2024), SLEB (Song
et al., 2024), and DISP-LLM (Gao et al., 2024), all of which have official implementations available.

Datasets: For training our hypernetwork, we use ImageNet (Russakovsky et al., 2015) for LlamaGen
models and the COCO (Lin et al., 2014) 2017 training set for Janus-Pro. If a baseline requires a
dataset for pruning or gradient calculations, we use the same datasets.

Model/Speed ImageNet (256×256) Quality
Method Params (B) Latency (s/it) IS ↑ FID ↓ Precision ↑

No Pruning
LlamaGen-XXL 1.411 17.20 207.89 15.58 0.7992

Sparsity = 0.2
LLM-Pruner 1.145 13.24 49.15 42.86 0.4530
SLEB 1.156 12.00 75.28 32.60 0.5904
Slice-GPT 1.140 12.96 10.41 104.62 0.2450
DISP-LLM 1.138 18.97 148.58 17.88 0.7310
Ours (MoE) 1.131A / 1.399T 12.06 159.10 17.31 0.7500

Sparsity = 0.3
LLM-Pruner 0.994 12.21 23.24 65.77 0.2674
SLEB 1.014 10.59 17.33 91.17 0.2734
Slice-GPT 0.983 11.58 7.80 122.36 0.1940
DISP-LLM 1.004 18.88 90.40 23.58 0.6636
Ours (MoE) 0.989A / 1.231T 11.37 135.33 18.56 0.7276

Table 1: Comparison for LlamaGen-XXL on Im-
ageNet (5k val, 256×256): model size, latency,
and quality metrics across pruning ratios, without
recovery finetuning. Full Table in Appendix C.3.

Evaluation: For evaluating class-conditional
models, we report FID (Heusel et al.,
2017), Inception Score (Salimans et al.,
2016), sFID (Nash et al., 2021), and Preci-
sion/Recall (Kynkäänniemi et al., 2019) on 5000
samples from the ImageNet 2012 validation set.
Following LlamaGen (Sun et al., 2024b), We
generate the images at 384 × 384 and resize
them to 256×256 for evaluation. We do not use
top-k decoding unless specified otherwise, and
the CFG (Ho & Salimans, 2022) scale is set to
1.5 for all models as it is the default value in the
released Llamagen codebase.

Implementation Details: We prune LlamaGen-
XXL (Sun et al., 2024b) using our method and
the baselines at two sparsity levels: 0.2 and 0.3.
LlamaGen-3B (Sun et al., 2024b) and Janus-
Pro-7B (Chen et al., 2025) are pruned at three levels: 0.3, 0.4, and 0.5. We set the loss weighting
parameters to α, β, γ = (16.0, 2.0, 1.0) (Eq. 16). The model weights remain frozen while we train
our hypernetwork for 10,000 iterations. We then convert the model to a MoE using the hypernetwork

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

and evaluate it. No recovery fine-tuning is performed on either the baselines or our method. For all
experimental details see Appendix C.

4.2 RESULTS

4.2.1 CLASS-CONDITIONAL RESULTS

First, we evaluate the effectiveness of our method on the moderately sized LlamaGen-XXL (Sun
et al., 2024b) model, which has 1.4B parameters. Table 1 presents the results. Notably, the gap
between our method with no recovery finetuning and the dense model is minimal across key metrics,
including FID, sFID, Precision, and Recall.

Another important observation is the sensitivity of image generation models to pruning. All baseline
methods, except for DISP-LLM (Gao et al., 2024), perform poorly, failing to generate coherent
images, as reflected in their IS and FID scores, as well as class-wise precision and recall. This
further supports our argument that image generation models are more sensitive to parameter removal
compared to text generation models and need a recovery finetuning. Interestingly, these same
baselines perform reasonably well in the context of LLM pruning.

Furthermore, at the same active parameter ratio, our method consistently outperforms all baselines
across all metrics by a significant margin. With a pruning rate of 30%, our method surpasses LLM-
Pruner (Ma et al., 2023), SliceGPT (Ashkboos et al., 2024), and SLEB (Song et al., 2024), even when
these baselines retain more active parameters (with only a 20% pruning rate). While our method and
DISP-LLM (Gao et al., 2024) show comparable performance at the 20% pruning level, our advantage
becomes more pronounced as the number of active parameters decreases. Specifically, at 70% active
parameters, our method achieves a 50% higher IS and approximately 20% lower FID, demonstrating
its superior robustness to pruning.

Model/Speed ImageNet (256×256) Quality
Method Params (B) Latency (s/it) IS ↑ FID ↓ Precision ↑

No Pruning
LlamaGen-3B 3.097 13.75 240.33 16.05 0.8232

Sparsity = 0.3
LLM-Pruner 2.174 10.81 22.49 71.46 0.2984
SLEB 2.225 9.81 26.04 66.91 0.3268
Slice-GPT 2.178 10.87 13.74 90.54 0.3624
DISP-LLM 2.198 12.77 101.89 22.76 0.7022
Ours (MoE) 2.167A / 2.998T 10.32 172.19 16.37 0.7800

Sparsity = 0.4
LLM-Pruner 1.867 10.30 11.14 103.38 0.1482
SLEB 1.976 9.72 8.27 130.30 0.1830
Slice-GPT 1.855 10.51 10.27 111.41 0.2686
DISP-LLM 1.901 12.70 32.84 42.94 0.5420
Ours (MoE) 1.858A / 2.820T 10.21 122.23 20.06 0.7096

Sparsity = 0.5
LLM-Pruner 1.559 9.95 8.89 120.67 0.1048
SLEB 1.602 9.24 4.77 171.31 0.1218
Slice-GPT 1.531 10.07 6.78 135.21 0.2076
DISP-LLM 1.604 12.46 19.08 62.63 0.4448
Ours (MoE) 1.548A / 2.239T 9.98 49.11 37.59 0.5652

Table 2: Comparison for LlamaGen-3B on Ima-
geNet (5k val, 256×256): model size, latency, and
quality metrics across pruning ratios, without re-
covery finetuning. Full Table in Appendix C.3.

Next, we evaluate our method and the baselines
on the larger LlamaGen-3B (Sun et al., 2024b)
model, as shown in Table 2. Again, our method
performs very close to the dense model at a 30%
sparsity rate and achieves higher recall at 70%
and 60% active parameters, demonstrating that
its effectiveness is not limited to smaller models
and performs just as well, if not better, on larger
models.

The performance gap between our method and
the best baseline, i.e. DISP-LLM (Gao et al.,
2024), is even larger than in the LlamaGen-XXL
case, particularly at lower pruning ratios. Our
method achieves 70% higher IS and 28% lower
FID. This gap widens significantly as the num-
ber of active parameters decreases: at 60% ac-
tive parameters, we outperform the best baseline
by 272% in IS and 53% in FID, and at 50% ac-
tive parameters, by 158% in IS and 40% in FID.
Meanwhile, we again observe the generation ca-
pabilities of the other baselines degrade severely
without fine-tuning.

4.2.2 TEXT-CONDITIONAL RESULTS

We also apply our method and the baselines to the Janus-Pro-7B (Chen et al., 2025) model to evaluate
their effectiveness on a much larger, text-conditional model. The results are presented in Table 9. For
evaluating the model, we report FID (Heusel et al., 2017) and CLIP Score (Hessel et al., 2021) on
5000 samples from the COCO 2017 validation set, also resized to 256× 256. Additionally, we report
PickScore (Kirstain et al., 2023) on the PartiPrompts (Yu et al., 2022) as a proxy for human preference.
We do not use top-k decoding and set the CFG weight to 5.0 (the default in Janus codebase).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Model/Speed Quality
Method Params (B) Latency (s/it) FID ↓ CLIP Score ↑ PickScore ↑

No Pruning
Janus-Pro-7B 6.910 10.66 58.69 28.25 19.5637

Sparsity = 0.3
LLM-Pruner 4.868 9.92 129.67 21.57 18.2333
SLEB 5.089 7.46 278.56 19.45 18.1239
Slice-GPT 4.920 10.05 194.36 20.42 18.2444
DISP-LLM 5.101 11.02 122.61 22.09 18.7462
Ours (MoE) 4.845A / 6.688T 9.86 71.55 26.31 19.4181

Sparsity = 0.4
LLM-Pruner 4.154 9.28 179.33 19.74 17.9993
SLEB 4.481 6.51 284.52 19.36 18.1144
Slice-GPT 4.162 9.21 213.36 20.32 17.9082
DISP-LLM 4.492 10.95 151.83 21.65 18.2357
Ours (MoE) 4.146A / 5.964T 9.32 104.56 24.99 18.6615

Sparsity = 0.5
LLM-Pruner 3.501 9.15 184.36 19.06 17.8421
SLEB 3.874 6.36 300.47 19.31 18.0559
Slice-GPT 3.496 8.53 339.87 19.25 17.7116
DISP-LLM 3.885 10.88 188.14 20.62 17.8908
Ours (MoE) 3.485A / 4.416T 8.99 126.41 22.83 18.1969

Table 3: Comparison on Janus-Pro-7B for text-
conditional generation: COCO-2017 (256×256)
FID and CLIP score, and PickScore on Par-
tiPrompts, without recovery finetuning.

First, we observe that the dense model strug-
gles with image generation, as evidenced by its
high FID score of 58.69. Even in this setting,
our method remains competitive with the dense
model at a lower pruning ratio of 30% and sig-
nificantly outperforms the baselines. Janus uses
the VQ-VAE from LlamaGen (Sun et al., 2024b)
as its tokenizer for image generation, but both
text and image tokens are processed by the same
transformer backbone. Consequently, the hyper-
network and router modules for the MLP experts
in our method must be trained on both token
types. Given the relatively short nature of the
COCO captions, we hypothesize that the COCO
training set may be too small to fully support
the router module’s demands. We believe that a
larger dataset would enable our method to per-
form even better in this scenario. Furthermore,
based on prior findings in (He et al., 2024), we
suspect that converting the model into two dis-
tinct MLP mixtures-of-experts (one for text and one for images) could further enhance our method’s
effectiveness. This represents an intriguing direction for future work.

We have also reported parameter counts and average latency measurements over 5 generated images
for all our experiments. For the reported latency values, our memory usage correlates with the total
params and remains lower than that of the base model. Even at a sparsity rate of 50%, our method
outperforms all baselines across all sparsity rates (except for Disp-LLM at 30%). Notably, at 50%
sparsity, our method achieves similar total parameter counts and latency to the baselines at 30%, but
with significantly better performance. Our approach outperforms Disp-LLM at comparable sparsity
rates while being much faster as Disp-LLM incurs additional overhead due to index selection and
addition operations. We control for compute by matching budgets across models (Appendix C.3.1).

4.2.3 QUALITATIVE COMPARISONS

Figure 1 shows some image generations from the LlamaGen-3B (Sun et al., 2024b) model, pruned to
a MoE with 70% active parameters using our method, without any recovery fine-tuning. Our model
is able to generate high-quality images without the need for a fine-tuning phase. We provide more
generated samples of our method and a qualitative comparison with the baselines in Appendix C.4.1.

4.2.4 EXPERT ASSIGNMENT RESULTS

(a) Lakeside (b) Layer 0 (c) Layer 11

Figure 4: Token routing for two layers of
the LlamaGen-3B-MoE.

To better understand how the LlamaGen-3B (Sun et al.,
2024b) MoE model with 70% active parameters pro-
cesses information, we analyze token routing across dif-
ferent experts to gain insights into expert specialization,
class-wise token distribution, and spatial token assign-
ments within input image tokens. As shown in Figure 4,
expert selection in the first layer (Figure 4b) appears
balanced, with no clear spatial pattern in token routing.
However, by layer 11 (Figure 4c), a spatial pattern seems
to emerge.

Figure 5: Spatial token assignments
across experts of LlamaGen-3B-MoE (Top:
Layer 11, Bottom: Layer 19). Darker red
indicates more routed tokens.

To gain higher-level insights into potential spatial rela-
tionships in expert routing, we generate 1,000 images
from the model and analyze which tokens, correspond-
ing to different parts of the image, are processed by each
expert at different layers. Figure 5 presents the results
for layers 11 and 19. This figure clearly shows that
certain experts exhibit spatial specialization, tending to
process specific regions of the image. We believe this

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

finding aligns with previous observations in MoE LLMs(Jiang et al., 2024), where experts are found
to specialize in syntax of text rather than semantics.

Figure 6: Class-wise distribution of token
routing across experts in LlamaGen-3B-
MoE (Left: Layer 13, Right: Layer 19).

Figure 6 illustrates how token distribution varies across
different ImageNet classes. Certain experts are predom-
inantly activated for specific categories, indicating that
the model learns some class-specialized expert assign-
ments.

4.3 COMPARISON
TO OTHER DENSE-TO-MOE METHODS

Table 4 compares our method to LLaMA-MoE Zhu et al.
(2024) and ToMoE Gao et al. (2025) when converting
LlamaGen-3B to 60% active parameters.

Method Params(B) Latency ↓ FID ↓
Llama-MoE 1.760A / 3.097T 12.09 136.21
Llama-MoE (Tuned) 1.760A / 3.097T 12.09 48.53
ToMoE 1.863A / 2.907T 13.61 39.71
Ours 1.858A / 2.820T 10.21 20.06

Table 4: Comparison of our method with
dense to moe baselines on LLmagen-3B.

LLaMA-MoE and ToMoE both suffer from higher la-
tency due to added architectural complexity and less
efficient routing. LLaMA-MoE requires substantial con-
tinued pre-training to restore performance, so we report
results under two conditions: zero-shot (no retraining
similar to our method) and with 3k steps of full fine-
tuning. For ToMoE, we replicate its 10k-step calibration
phase. In contrast, our method requires no continued
pre-training, keeps the dense backbone entirely frozen, is less complex, and still achieves lower
latency and superior FID compared to both baselines. These results highlight that integrating expert
construction directly into the pruning phase yields a sparse MoE that is both deployment-friendly and
robust, even in the brittle setting of autoregressive image generation.

4.4 ABLATION STUDY

Method IS ↑ FID ↓ Prec. ↑
HN + Union Loss (Eq. 11) 140.88 18.59 0.7290
+ Load Balance Loss (Eq. 15) 154.85 18.03 0.7476
+ Distillation Loss 174.73 16.35 0.7792
+ Language Modeling Loss 172.19 16.37 0.7800

Table 5: Ablations on 5k ImageNet valida-
tion set.

We conduct an additional experiment to study the impact
of the various components of our method when pruning
LlamaGen-3B (Sun et al., 2024b) to 70% active param-
eters. We begin with a simple hypernetwork regularized
using only the parameter and union regularization losses
(Eq. 11 and Eq. 14). We then incrementally add the other
components.

Table 5 presents the results. We observe that incorporating the load balance loss (Eq. 15) improves the
results by ensuring that all experts are assigned an adequate number of tokens. Furthermore, adding
the distillation loss further enhances performance. While the inclusion of the language modeling
loss (where the hypernetwork is supervised with actual image tokens rather than the outputs of the
teacher networks) slightly impacts the generation quality, it notably increases precision and recall, as
expected when training with real images. Consequently, we report our results using a combination of
both distillation and language modeling losses in Table 1, Table 2, and Table 3 and despite observing
slightly poorer FID and IS values. Overall, Table 5 highlights the importance of each component of
our method. See Appendix C.4 for more ablations.

5 CONCLUSION

We introduced a dynamic pruning approach that transforms dense autoregressive image generation
models into efficient Sparse Mixture of Experts architectures. By leveraging top-1 expert routing, our
method extracts specialized experts, significantly reducing active parameters per inference step while
preserving high image quality without the need for recovery fine-tuning. Our evaluations show that
this strategy outperforms conventional pruning techniques and maintains robust performance even at
high sparsity levels. Furthermore, analysis of expert routing reveals inherent spatial and class-specific
specialization. Overall, our work provides a scalable solution for efficient deployment of large AR
models in resource-constrained environments.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Marah Abdin, Sam Ade Jacobs, Ammar Ahmad Awan, Jyoti Aneja, Ahmed Awadallah, Hany
Awadalla, Nguyen Bach, Amit Bahree, Arash Bakhtiari, Harkirat Behl, et al. Phi-3 technical report:
A highly capable language model locally on your phone. arXiv preprint arXiv:2404.14219, 2024.

Sotiris Anagnostidis, Dario Pavllo, Luca Biggio, Lorenzo Noci, Aurélien Lucchi, and Thomas
Hofmann. Dynamic context pruning for efficient and interpretable autoregressive transformers.
In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine
(eds.), Advances in Neural Information Processing Systems 36: Annual Conference on Neural
Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 -
16, 2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
cdaac2a02c4fdcae77ba083b110efcc3-Abstract-Conference.html.

Sajid Anwar, Kyuyeon Hwang, and Wonyong Sung. Structured pruning of deep convolutional neural
networks. ACM J. Emerg. Technol. Comput. Syst., 13(3):32:1–32:18, 2017. doi: 10.1145/3005348.
URL https://doi.org/10.1145/3005348.

Saleh Ashkboos, Maximilian L Croci, Marcelo Gennari do Nascimento, Torsten Hoefler, and James
Hensman. Slicegpt: Compress large language models by deleting rows and columns. In The
Twelfth International Conference on Learning Representations, 2024.

James Betker, Gabriel Goh, Li Jing, Tim Brooks, Jianfeng Wang, Linjie Li, Long Ouyang, Juntang
Zhuang, Joyce Lee, Yufei Guo, et al. Improving image generation with better captions. Computer
Science. https://cdn. openai. com/papers/dall-e-3. pdf, 2(3):8, 2023.

Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, and Ilya Sutskever.
Generative pretraining from pixels. In ICML, 2020a.

Xiaokang Chen, Zhiyu Wu, Xingchao Liu, Zizheng Pan, Wen Liu, Zhenda Xie, Xingkai Yu, and
Chong Ruan. Janus-pro: Unified multimodal understanding and generation with data and model
scaling. arXiv preprint arXiv:2501.17811, 2025.

Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. arXiv preprint
arXiv:2011.10566, 2020.

Yinpeng Chen, Xiyang Dai, Mengchen Liu, Dongdong Chen, Lu Yuan, and Zicheng Liu. Dynamic
convolution: Attention over convolution kernels. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 11030–11039, 2020b.

Damai Dai, Chengqi Deng, Chenggang Zhao, RX Xu, Huazuo Gao, Deli Chen, Jiashi Li, Wangding
Zeng, Xingkai Yu, Y Wu, et al. Deepseekmoe: Towards ultimate expert specialization in mixture-
of-experts language models. arXiv preprint arXiv:2401.06066, 2024.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-scale
hierarchical image database. In CVPR, 2009.

Ming Ding, Wendi Zheng, Wenyi Hong, and Jie Tang. Cogview2: Faster and better text-to-image
generation via hierarchical transformers. Advances in Neural Information Processing Systems, 35:
16890–16902, 2022.

Harry Dong, Xinyu Yang, Zhenyu Zhang, Zhangyang Wang, Yuejie Chi, and Beidi Chen. Get
more with LESS: synthesizing recurrence with KV cache compression for efficient LLM infer-
ence. In Forty-first International Conference on Machine Learning, ICML 2024, Vienna, Austria,
July 21-27, 2024. OpenReview.net, 2024. URL https://openreview.net/forum?id=
uhHDhVKFMW.

Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming Transformers for high-resolution image
synthesis. In CVPR, 2021.

Gongfan Fang, Xinyin Ma, Mingli Song, Michael Bi Mi, and Xinchao Wang. Depgraph: Towards
any structural pruning. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 16091–16101, 2023.

10

http://papers.nips.cc/paper_files/paper/2023/hash/cdaac2a02c4fdcae77ba083b110efcc3-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/cdaac2a02c4fdcae77ba083b110efcc3-Abstract-Conference.html
https://doi.org/10.1145/3005348
https://openreview.net/forum?id=uhHDhVKFMW
https://openreview.net/forum?id=uhHDhVKFMW

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. Journal of Machine Learning Research, 23(120):1–39,
2022.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in
one-shot. In International Conference on Machine Learning, pp. 10323–10337. PMLR, 2023.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022.

Alireza Ganjdanesh, Reza Shirkavand, Shangqian Gao, and Heng Huang. Not all prompts are made
equal: Prompt-based pruning of text-to-image diffusion models. arXiv preprint arXiv:2406.12042,
2024.

Shangqian Gao, Chi-Heng Lin, Ting Hua, Zheng Tang, Yilin Shen, Hongxia Jin, and Yen-Chang
Hsu. Disp-llm: Dimension-independent structural pruning for large language models. In The
Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024.

Shangqian Gao, Ting Hua, Reza Shirkavand, Chi-Heng Lin, Zhen Tang, Zhengao Li, Longge Yuan,
Fangyi Li, Zeyu Zhang, Alireza Ganjdanesh, Lou Qian, Xu Jie, and Yen-Chang Hsu. Tomoe:
Converting dense large language models to mixture-of-experts through dynamic structural pruning,
2025. URL https://arxiv.org/abs/2501.15316.

Xitong Gao, Yiren Zhao, Łukasz Dudziak, Robert Mullins, and Cheng zhong Xu. Dynamic channel
pruning: Feature boosting and suppression. In International Conference on Learning Representa-
tions, 2019. URL https://openreview.net/forum?id=BJxh2j0qYm.

Karol Gregor, Ivo Danihelka, Andriy Mnih, Charles Blundell, and Daan Wierstra. Deep autoregressive
networks. In International Conference on Machine Learning, pp. 1242–1250. PMLR, 2014.

David Ha, Andrew Dai, and Quoc V Le. Hypernetworks. arXiv preprint arXiv:1609.09106, 2016.

Wanggui He, Siming Fu, Mushui Liu, Xierui Wang, Wenyi Xiao, Fangxun Shu, Yi Wang, Lei
Zhang, Zhelun Yu, Haoyuan Li, et al. Mars: Mixture of auto-regressive models for fine-grained
text-to-image synthesis. arXiv preprint arXiv:2407.07614, 2024.

Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. Clipscore: A reference-
free evaluation metric for image captioning. arXiv preprint arXiv:2104.08718, 2021.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
trained by a two time-scale update rule converge to a local nash equilibrium. Advances in neural
information processing systems, 30, 2017.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network, 2015.
URL https://arxiv.org/abs/1503.02531.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. CoRR, abs/2207.12598, 2022.
doi: 10.48550/ARXIV.2207.12598. URL https://doi.org/10.48550/arXiv.2207.
12598.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. arXiv
preprint arXiv:1611.01144, 2016.

Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al.
Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024.

11

https://arxiv.org/abs/2501.15316
https://openreview.net/forum?id=BJxh2j0qYm
https://arxiv.org/abs/1503.02531
https://doi.org/10.48550/arXiv.2207.12598
https://doi.org/10.48550/arXiv.2207.12598

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yuval Kirstain, Adam Polyak, Uriel Singer, Shahbuland Matiana, Joe Penna, and Omer Levy.
Pick-a-pic: An open dataset of user preferences for text-to-image generation. In Alice Oh,
Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.),
Advances in Neural Information Processing Systems 36: Annual Conference on Neural In-
formation Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 -
16, 2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
73aacd8b3b05b4b503d58310b523553c-Abstract-Conference.html.

Eldar Kurtic, Daniel Campos, Tuan Nguyen, Elias Frantar, Mark Kurtz, Benjamin Fineran, Michael
Goin, and Dan Alistarh. The optimal BERT surgeon: Scalable and accurate second-order prun-
ing for large language models. In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (eds.),
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing,
EMNLP 2022, Abu Dhabi, United Arab Emirates, December 7-11, 2022, pp. 4163–4181. Associ-
ation for Computational Linguistics, 2022. doi: 10.18653/V1/2022.EMNLP-MAIN.279. URL
https://doi.org/10.18653/v1/2022.emnlp-main.279.

Tuomas Kynkäänniemi, Tero Karras, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Improved
precision and recall metric for assessing generative models. Advances in neural information
processing systems, 32, 2019.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models with conditional
computation and automatic sharding. In International Conference on Learning Representations,
2021.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. In International Conference on Learning Representations, 2017. URL https:
//openreview.net/forum?id=rJqFGTslg.

Tianhong Li, Yonglong Tian, He Li, Mingyang Deng, and Kaiming He. Autoregressive image
generation without vector quantization. Advances in Neural Information Processing Systems, 37:
56424–56445, 2025.

Chi-Heng Lin, Shangqian Gao, James Seale Smith, Abhishek Patel, Shikhar Tuli, Yilin Shen, Hongxia
Jin, and Yen-Chang Hsu. Modegpt: Modular decomposition for large language model compression.
arXiv preprint arXiv:2408.09632, 2024.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer Vision–
ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings,
Part V 13, pp. 740–755. Springer, 2014.

Jiasen Lu, Christopher Clark, Rowan Zellers, Roozbeh Mottaghi, and Aniruddha Kembhavi. Unified-
io: A unified model for vision, language, and multi-modal tasks. arXiv preprint arXiv:2206.08916,
2022.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
language models. Advances in neural information processing systems, 36:21702–21720, 2023.

Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang, Hongyu Lin, Yaojie Lu, Xianpei Han, and
Weipeng Chen. Shortgpt: Layers in large language models are more redundant than you expect.
arXiv preprint arXiv:2403.03853, 2024.

Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio, and Jan Kautz. Importance estimation
for neural network pruning. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 11264–11272, 2019.

Saurav Muralidharan, Sharath Turuvekere Sreenivas, Raviraj Bhuminand Joshi, Marcin Chochowski,
Mostofa Patwary, Mohammad Shoeybi, Bryan Catanzaro, Jan Kautz, and Pavlo Molchanov.
Compact language models via pruning and knowledge distillation. In The Thirty-eighth Annual
Conference on Neural Information Processing Systems, 2024.

12

http://papers.nips.cc/paper_files/paper/2023/hash/73aacd8b3b05b4b503d58310b523553c-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/73aacd8b3b05b4b503d58310b523553c-Abstract-Conference.html
https://doi.org/10.18653/v1/2022.emnlp-main.279
https://openreview.net/forum?id=rJqFGTslg
https://openreview.net/forum?id=rJqFGTslg

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Charlie Nash, Jacob Menick, Sander Dieleman, and Peter W Battaglia. Generating images with
sparse representations. arXiv preprint arXiv:2103.03841, 2021.

Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Lukasz Kaiser, Noam Shazeer, Alexander Ku, and
Dustin Tran. Image Transformer. In ICML, 2018.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving
language understanding by generative pre-training. Technical report, OpenAI, 2018.
URL https://cdn.openai.com/research-covers/language-unsupervised/
language_understanding_paper.pdf.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
and Ilya Sutskever. Zero-shot text-to-image generation. In ICML, 2021.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
conditional image generation with clip latents. arXiv preprint arXiv:2204.06125, 1(2):3, 2022.

Ali Razavi, Aaron Van den Oord, and Oriol Vinyals. Generating diverse high-fidelity images with
vq-vae-2. Advances in neural information processing systems, 32, 2019.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition
challenge. International journal of computer vision, 115(3):211–252, 2015.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training GANs. In NeurIPS, 2016.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and
Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. In
International Conference on Learning Representations, 2017.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learning,
pp. 2256–2265. PMLR, 2015.

Jiwon Song, Kyungseok Oh, Taesu Kim, Hyungjun Kim, Yulhwa Kim, et al. Sleb: Streamlining llms
through redundancy verification and elimination of transformer blocks. In Forty-first International
Conference on Machine Learning, 2024.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning approach
for large language models. In The Twelfth International Conference on Learning Representations,
2024a. URL https://openreview.net/forum?id=PxoFut3dWW.

Peize Sun, Yi Jiang, Shoufa Chen, Shilong Zhang, Bingyue Peng, Ping Luo, and Zehuan Yuan.
Autoregressive model beats diffusion: Llama for scalable image generation. arXiv preprint
arXiv:2406.06525, 2024b.

Keyu Tian, Yi Jiang, Zehuan Yuan, Bingyue Peng, and Liwei Wang. Visual autoregressive modeling:
Scalable image generation via next-scale prediction. Advances in neural information processing
systems, 37:84839–84865, 2025.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Aaron Van den Oord, Nal Kalchbrenner, Lasse Espeholt, Oriol Vinyals, Alex Graves, et al. Conditional
image generation with pixelcnn decoders. Advances in neural information processing systems, 29,
2016.

13

https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://openreview.net/forum?id=PxoFut3dWW

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Aäron Van Den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recurrent neural networks.
In International conference on machine learning, pp. 1747–1756. PMLR, 2016.

Tycho FA van der Ouderaa, Markus Nagel, Mart Van Baalen, and Tijmen Blankevoort. The llm
surgeon. In The Twelfth International Conference on Learning Representations, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Huanyu Wang, Lei Xie, Hanbin Zhao, Chao Zhang, Hui Qian, John CS Lui, et al. D-llm: A token
adaptive computing resource allocation strategy for large language models. In The Thirty-eighth
Annual Conference on Neural Information Processing Systems, 2024a.

Xinlong Wang, Xiaosong Zhang, Zhengxiong Luo, Quan Sun, Yufeng Cui, Jinsheng Wang, Fan
Zhang, Yueze Wang, Zhen Li, Qiying Yu, et al. Emu3: Next-token prediction is all you need.
arXiv preprint arXiv:2409.18869, 2024b.

Jinheng Xie, Weijia Mao, Zechen Bai, David Junhao Zhang, Weihao Wang, Kevin Qinghong Lin,
Yuchao Gu, Zhijie Chen, Zhenheng Yang, and Mike Zheng Shou. Show-o: One single transformer
to unify multimodal understanding and generation. arXiv preprint arXiv:2408.12528, 2024.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

Jiahui Yu, Yuanzhong Xu, Jing Yu Koh, Thang Luong, Gunjan Baid, Zirui Wang, Vijay Vasudevan,
Alexander Ku, et al. Scaling autoregressive models for content-rich text-to-image generation.
arXiv preprint arXiv:2206.10789, 2022.

Tong Zhu, Xiaoye Qu, Daize Dong, Jiacheng Ruan, Jingqi Tong, Conghui He, and Yu Cheng. Llama-
moe: Building mixture-of-experts from llama with continual pre-training. In Proceedings of the
2024 Conference on Empirical Methods in Natural Language Processing, pp. 15913–15923, 2024.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A RELATED WORK

A.1 IMAGE GENERATION

High-resolution image generation is currently dominated by diffusion models (Rombach et al., 2022;
Deng et al., 2009; Ramesh et al., 2022; Betker et al., 2023). While pixel-level Autoregressive (AR)
image generation has been explored for years (Gregor et al., 2014; Van Den Oord et al., 2016;
Van den Oord et al., 2016; Chen et al., 2020a; Parmar et al., 2018), there has been a recent resurgence
of interest in a new form of AR models inspired by advancements in language modeling. These
models generate images by sequentially predicting the next token (Esser et al., 2021; Yu et al., 2022;
Ramesh et al., 2021; Sun et al., 2024b; Ramesh et al., 2022; Ding et al., 2022; Lu et al., 2022) or the
next token map (Tian et al., 2025). Typically, image tokens are derived from a pretrained discrete
tokenizer, where a finite vocabulary is obtained via vector quantization (VQ)(Razavi et al., 2019).
However, some approaches have explored autoregressive image generation without relying on vector
quantization (Li et al., 2025)

A.2 PRUNING

Structural pruning (Li et al., 2017; Kurtic et al., 2022; Ma et al., 2023) offers a practical way to
shrink models by removing unnecessary parameters without needing custom implementations. These
techniques generally fall into two groups. Static pruning (Anwar et al., 2017; Molchanov et al., 2019;
Fang et al., 2023) uses input-agnostic metrics to eliminate non-critical structures. In contrast, dynamic
pruning (Gao et al., 2019; Chen et al., 2020b; Anagnostidis et al., 2023; Dong et al., 2024) adapts
weight removal based on each input, with early work in CNNs selectively activating channels (Gao
et al., 2019; Chen et al., 2020b) and more recent efforts incorporating conditional computation in
LLMs by skipping layers per token (Wang et al., 2024a). Although originally developed for LLMs,
existing GPT pruning techniques (Ma et al., 2023; Ashkboos et al., 2024; Song et al., 2024; van der
Ouderaa et al., 2024; Gao et al., 2024; Lin et al., 2024; Men et al., 2024; Frantar & Alistarh, 2023; Sun
et al., 2024a) extend naturally to language-modeling-style (next token prediction) image generation.
However, they face two key hurdles: first, both static and dynamic methods degrade image generation
quality to the point where prohibitive recovery fine-tuning becomes necessary; second, dynamic
pruning lacks a consistent computational budget per input, which complicates batch parallelization.
Our method addresses these issues by converting a dense LLM into a sparse MoE model that enforces
a fixed per-token budget. Our method delivers performance close to the dense model without the
need for recovery fine-tuning.

A.3 MIXTURE OF EXPERTS

Compared to standard structural pruning, Sparse Mixture-of-Experts (MoE) models preserve model
capacity without incurring extra computational overhead. For example, Sparsely-Gated MoE (Shazeer
et al., 2017) uses a learnable gating network to select a few experts per input, enabling efficient scaling
to thousands of experts (Lepikhin et al., 2021). Recent methods (Dai et al., 2024) further refine expert
specialization, achieving dense-model performance with a similar number of total parameters.

B METHOD

B.1 MODULE ARCHITECTURE

Tab. 6 summarizes our design. In our approach, each MLP layer is equipped with its own adapter and
router modules. After training, only the router module is retained.

B.1.1 EMBEDDING GENERATION

The hypernetwork receives a fixed random vector z ∈ RN×32, sampled from a normal distribution,
and produces an embedding. In parallel, the token features are mapped into a 128-dimensional space
via the MLP Adapter (θProjD). For a network with L MLP layers, each layer is equipped with its own
MLP Adapter and Expert Router. During training of the hypernetwork, we use Eq. 5 and 6 to find
the expert embeddings and routing decision. After training, we prune the MLP layers to N experts

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Component Removed? Config
Hypernetwork Yes Random vector z → BiGRU(32, 64)
MLP Adapter Yes LayerNorm(128) → GeLU → Linear(128, de)
Expert Router No Linear(d, N)

Table 6: Configurations of the trainable components. Components marked for removal are pruned
after training while their outputs are preserved for expert generation.

using the hypernetwork output expert embeddings. The we remove the hypernetwork and the adapter
module and use the router module as the MoE router.

C EXPERIMENTS

C.1 DETAILED EXPERIMENTAL SETTINGS

We prune LlamaGen-XXL Sun et al. (2024b) using our method and baseline approaches at sparsity
levels of 0.2 and 0.3. LlamaGen-3B Sun et al. (2024b) and Janus-Pro-7B Chen et al. (2025) are
pruned at sparsity levels of 0.3, 0.4, and 0.5. The loss weighting parameters are set to α, β, γ =
(16.0, 2.0, 1.0)(Eq. 16) and the distillation and language modeling losses are weighted equally at 1.0.
We set τ = 0.4 in Eq. 8 and 9 and b = 3.0 in Eq. 8 and 9. The model weights remain frozen while the
hypernetwork is trained for 10,000 iterations. Afterward, we convert the model to a MoE using the
trained hypernetwork and evaluate it without any recovery fine-tuning applied to either the baselines
or our method. We use the AdamW optimizer with a constant learning rate of 0.0004, weight decay of
0.05, and Adam parameters (β1, β2) = (0.9, 0.999). The batch size is set to 1. For the LlamaGen Sun
et al. (2024b) models, we use a single NVIDIA A6000 GPU, while for Janus-Pro-7B Chen et al.
(2025), we use a single Nvidia H100 GPU.

C.2 MORE RESULTS

C.3 CLASS CONDITIONAL RESULTS

First, we evaluate the effectiveness of our method on the moderately sized LlamaGen-XXL (Sun
et al., 2024b) model, which has 1.4B parameters. Table 7 presents the results. Notably, the gap
between our method with no recovery finetuning and the dense model is minimal across key metrics,
including FID, sFID, Precision, and Recall.

Another important observation is the sensitivity of image generation models to pruning. All baseline
methods, except for DISP-LLM (Gao et al., 2024), perform poorly, failing to generate coherent
images, as reflected in their IS and FID scores, as well as class-wise precision and recall. This
further supports our argument that image generation models are more sensitive to parameter removal
compared to text generation models and need a recovery finetuning. Interestingly, these same
baselines perform reasonably well in the context of LLM pruning.

Furthermore, at the same active parameter ratio, our method consistently outperforms all baselines
across all metrics by a significant margin. With a pruning rate of 30%, our method surpasses LLM-
Pruner (Ma et al., 2023), SliceGPT (Ashkboos et al., 2024), and SLEB (Song et al., 2024), even when
these baselines retain more active parameters (with only a 20% pruning rate). While our method and
DISP-LLM (Gao et al., 2024) show comparable performance at the 20% pruning level, our advantage
becomes more pronounced as the number of active parameters decreases. Specifically, at 70% active
parameters, our method achieves a 50% higher IS and approximately 20% lower FID, demonstrating
its superior robustness to pruning.

Next, we evaluate our method and the baselines on the larger LlamaGen-3B (Sun et al., 2024b) model,
as shown in Table 8. Again, our method performs very close to the dense model at a 30% sparsity rate
and achieves higher recall at 70% and 60% active parameters, demonstrating that its effectiveness is
not limited to smaller models and performs just as well, if not better, on larger models.

The performance gap between our method and the best baseline, i.e. DISP-LLM (Gao et al., 2024),
is even larger than in the LlamaGen-XXL case, particularly at lower pruning ratios. Our method

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Model/Speed ImageNet (256×256) Quality
Method Params (B) Latency (s/it) IS ↑ FID ↓ sFID ↓ Precision ↑ Recall ↑

No Pruning
LlamaGen-XXL (1.4B) 1.411 17.20 207.89 15.58 73.80 0.7992 0.7484

Sparsity = 0.2
LLM-Pruner 1.145 13.24 49.15 42.86 77.72 0.4530 0.7298
SLEB 1.156 12.00 75.28 32.60 80.13 0.5904 0.7302
Slice-GPT 1.140 12.96 10.41 104.62 91.27 0.2450 0.3672
DISP-LLM 1.138 18.97 148.58 17.88 75.50 0.7310 0.7358
Ours (MoE) 1.131 / 1.399 12.06 159.10 17.31 75.14 0.7500 0.7524

Sparsity = 0.3
LLM-Pruner 0.994 12.21 23.24 65.77 82.06 0.2674 0.6608
SLEB 1.014 10.59 17.33 91.17 97.67 0.2734 0.5492
Slice-GPT 0.983 11.58 7.80 122.36 98.08 0.1940 0.3146
DISP-LLM 1.004 18.88 90.40 23.58 77.98 0.6636 0.7312
Ours (MoE) 0.989 / 1.231 11.37 135.33 18.56 75.92 0.7276 0.7460

Table 7: Comparison for LlamaGen-XXL on ImageNet (5k val, 256×256): model size, latency, and
quality metrics across pruning ratios, without recovery finetuning.

achieves 70% higher IS and 28% lower FID. This gap widens significantly as the number of active
parameters decreases: at 60% active parameters, we outperform the best baseline by 272% in IS and
53% in FID, and at 50% active parameters, by 158% in IS and 40% in FID. Meanwhile, we again
observe the generation capabilities of the other baselines degrade severely without fine-tuning. See
Appendix C.3.2 for results on Janus Pro.

We have also reported parameter counts and average latency measurements over 5 generated images
for all our experiments. For the reported latency values, our memory usage correlates with the total
params and remains lower than that of the base model. Even at a sparsity rate of 50%, our method
outperforms all baselines across all sparsity rates (except for Disp-LLM at 30%). Notably, at 50%
sparsity, our method achieves similar total parameter counts and latency to the baselines at 30%, but
with significantly better performance. Our approach outperforms Disp-LLM at comparable sparsity
rates while being much faster as Disp-LLM incurs additional overhead due to index selection and
addition operations.

C.3.1 COMPUTE DISCUSSION

As emphasized throughout the paper, fine-tuning the base model after pruning is often prohibitively
expensive in terms of memory, compute, and data requirements, especially for large-scale models.
A core assumption in our work is that such post-pruning fine-tuning is infeasible in many practical
scenarios, and our method is explicitly designed to avoid this costly step. Our approach only optimizes
a tiny router (See Table 10) on frozen model weights, which can be efficiently trained for models as
large as 11B on a consumer 24GB GPU. Other baselines also require calibration phases and we have
accounted to have just about the same compute when feasible: The strongest baseline DISP-LLM
also trains a hypernetwork for 10k iterations. This is why we use 10k iterations with a batch size
of 1. SLEB and SliceGPT perform multiple forward passes to decide which blocks or weights to
prune, e.g. at 0.5 sparsity on Janus, we allocate 8,280 base model forward passes for SLEB and 8,192
iterations for SliceGPT. This is practical as long as no gradients of the base model are required. But
LLM-Pruner requires computing gradients for all model parameters. Notably, we could not apply
LLM-Pruner to Janus-7B on the RTX6000-48GB GPUs used in our other experiments and had to
resort to H100-80GB GPUs, illustrating that when you have to compute gradients (for calibration or
FT), GPU memory demands are significantly higher.

C.3.2 TEXT-CONDITIONAL RESULTS

We also apply our method and the baselines to the recently released Janus-Pro-7B (Chen et al.,
2025) model to evaluate their effectiveness on a much larger, text-conditional model. The results
are presented in Table 9. For evaluating the model, we report FID (Heusel et al., 2017) and CLIP
Score (Hessel et al., 2021) on 5000 samples from the COCO 2017 validation set, also resized to

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Model/Speed ImageNet (256×256) Quality
Method Params (B) Latency (s/it) IS ↑ FID ↓ sFID ↓ Precision ↑ Recall ↑

No Pruning
LlamaGen-3B 3.097 13.75 240.33 16.05 73.23 0.8232 0.7300

Sparsity = 0.3
LLM-Pruner 2.174 10.81 22.49 71.46 87.67 0.2984 0.6134
SLEB 2.225 9.81 26.04 66.91 82.03 0.3268 0.6604
Slice-GPT 2.178 10.87 13.74 90.54 98.35 0.3624 0.3958
DISP-LLM 2.198 12.77 101.89 22.76 80.49 0.7022 0.7052
Ours (MoE) 2.167 / 2.998 10.32 172.19 16.37 76.64 0.7800 0.7464

Sparsity = 0.4
LLM-Pruner 1.867 10.30 11.14 103.38 96.60 0.1482 0.4784
SLEB 1.976 9.72 8.27 130.30 103.04 0.1830 0.3548
Slice-GPT 1.855 10.51 10.27 111.41 105.48 0.2686 0.3460
DISP-LLM 1.901 12.70 32.84 42.94 82.18 0.5420 0.6238
Ours (MoE) 1.858 / 2.820 10.21 122.23 20.06 77.50 0.7096 0.7434

Sparsity = 0.5
LLM-Pruner 1.559 9.95 8.89 120.67 109.84 0.1048 0.2944
SLEB 1.602 9.24 4.77 171.31 119.86 0.1218 0.0220
Slice-GPT 1.531 10.07 6.78 135.21 112.87 0.2076 0.3080
DISP-LLM 1.604 12.46 19.08 62.63 87.61 0.4448 0.5314
Ours (MoE) 1.548 / 2.239 9.98 49.11 37.59 82.45 0.5652 0.6750

Table 8: Comparison for LlamaGen-3B on ImageNet (5k val, 256×256): params, latency, and quality
metrics across pruning ratios, without recovery finetuning.
256× 256. Additionally, we report PickScore (Kirstain et al., 2023) on the PartiPrompts (Yu et al.,
2022) as a proxy for human preference. We do not use top-k decoding and set the CFG weight to
5.0 (the default in Janus codebase).

First, we observe that the dense model struggles with image generation, as evidenced by its high
FID score of 58.69. Even in this setting, our method remains competitive with the dense model at
a lower pruning ratio of 30% and significantly outperforms the baselines. Janus uses the VQ-VAE
from LlamaGen (Sun et al., 2024b) as its tokenizer for image generation, but both text and image
tokens are processed by the same transformer backbone. Consequently, the hypernetwork and router
modules for the MLP experts in our method must be trained on both token types. Given the relatively
short nature of the COCO captions, we hypothesize that the COCO training set may be too small to
fully support the router module’s demands. We believe that a larger dataset would enable our method
to perform even better in this scenario. Furthermore, based on prior findings in (He et al., 2024),
we suspect that converting the model into two distinct MLP mixtures-of-experts—one for text and
one for images—could further enhance our method’s effectiveness. This represents an intriguing
direction for future work.

C.3.3 PARAMETER COUNT AND LATENCY

Base model finetuning is substantially more memory, compute and data intensive and often infeasible
for large models. In contrast, our approach only optimizes a tiny router (See Tab. 10) on frozen
model weights, which can be efficiently trained for models as large as 11B on a consumer 24GB
GPU. Other baselines also require calibration phases and we have accounted to have just about
the same compute when feasible: The strongest baseline DISP-LLM also trains a hypernetwork
for 10k iterations. This is why we use 10k iterations with a batch size of 1. SLEB and SliceGPT
perform multiple forward passes to decide which blocks or weights to prune, e.g. at 0.5 sparsity on
Janus, we allocate 8,280 base model forward passes for SLEB and 8,192 iterations for SliceGPT.
This is practical as long as no gradients of the base model are required. But LLM-Pruner requires
computing gradients for all model parameters. Notably, we could not apply LLM-Pruner to Janus-7B
on the RTX6000-48GB GPUs used in our other experiments and had to resort to H100-80GB GPUs,
illustrating that when you have to compute gradients (for calibration or FT), GPU memory demands
are significantly higher.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Model/Speed Quality
Method Params (B) Latency (s/it) COCO FID ↓ CLIP Score ↑ PickScore ↑

No Pruning
Dense (Janus-Pro-7B) 6.910 10.66 58.69 28.25 19.5637

Sparsity = 0.3
LLM-Pruner 4.868 9.92 129.67 21.57 18.2333
SLEB 5.089 7.46 278.56 19.45 18.1239
Slice-GPT 4.920 10.05 194.36 20.42 18.2444
DISP-LLM 5.101 11.02 122.61 22.09 18.7462
Ours (MoE) 4.845 / 6.688 9.86 71.55 26.31 19.4181

Sparsity = 0.4
LLM-Pruner 4.154 9.28 179.33 19.74 17.9993
SLEB 4.481 6.51 284.52 19.36 18.1144
Slice-GPT 4.162 9.21 213.36 20.32 17.9082
DISP-LLM 4.492 10.95 151.83 21.65 18.2357
Ours (MoE) 4.146 / 5.964 9.32 104.56 24.99 18.6615

Sparsity = 0.5
LLM-Pruner 3.501 9.15 184.36 19.06 17.8421
SLEB 3.874 6.36 300.47 19.31 18.0559
Slice-GPT 3.496 8.53 339.87 19.25 17.7116
DISP-LLM 3.885 10.88 188.14 20.62 17.8908
Ours (MoE) 3.485 / 4.416 8.99 126.41 22.83 18.1969

Table 9: Comparison on Janus-Pro-7B for text-conditional generation: COCO-2017 (256×256) FID
and CLIP score, and PickScore on PartiPrompts, without recovery finetuning.

Model Base Size (B) HN Size (B) Pct (%)
LG-XXL 1.41 0.02 1.8%
LG-3B 3.10 0.03 0.9%
Janus-7B 6.91 0.04 0.6%

Table 10: Router vs Base Model size.

C.4 MORE ABLATIONS

Table 11 shows the full ablation results. In another ablation experiment, we investigate how the
number of experts affects generation results. Figure 7b illustrates a uncorrelated relationship between
IS and FID, where improvements in one do not necessarily lead to improvements in the other. Overall,
increasing the number of experts from 8 to 12 improves generation quality in terms of FID; however,
the improvements are minor and may not justify the added complexity. Moreover, further increasing
the number of experts from 12 to 16 results in poorer quality, possibly because the hypernetwork and
router module cannot be sufficiently trained with so many experts.

Finally, we visualize the expert width and the union of experts width across all layers of the model
in Figure 7a. We can see that there is a trend and latter layers have higher width compared to initial
layers. Also our method does a good job of forcing the union of experts to be close to the dense
model (Eq. 11).

Method IS ↑ FID ↓ sFID ↓ Prec. ↑ Rec. ↑
HN + Union Loss (Eq. 11) 140.88 18.59 76.99 0.7290 0.7452
+ Load Balance Loss (Eq. 15) 154.85 18.03 77.50 0.7476 0.7420
+ Distillation Loss 174.73 16.35 76.05 0.7792 0.7392
+ Language Modeling Loss 172.19 16.37 76.64 0.7800 0.7464

Table 11: Ablations on 5k ImageNet validation set.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

(a) Normalized expert width and union of experts across LlamaGen-3B MLP
layers.

(b) Effect of number of experts on generation results of LlamaGen-3B-MoE
with 70% active parameters.

Figure 7: LlamaGen-3B MoE analysis: (a) expert width/union across MLP layers; (b) impact of
number of experts at 70% active parameters.

C.4.1 MORE GENERATIONS

In this section we present more visual results of our method as well some MoE expert analysis
results. Figure 8 compares our dynamic-to-MoE pruning method with baseline approaches on the
LlamaGen-3B(Sun et al., 2024b) model, pruned to 70% active parameters. Our method not only
surpasses all baselines by a large margin in visual fidelity but, in some cases (second and fifth images),
even produces better images than the dense model. Both Figure 1 and Figure 8 were generated using
a CFG scale of 1.5 and a top-k value of 200. Fig. 9 depicts more randomly sampled generations of
the LlamaGen-3B Sun et al. (2024b) model pruned to 70% active parameters using our method.

Fig. 10 illustrates how token distribution varies across different ImageNet classes. Certain experts are
predominantly activated for specific categories, indicating that the model learns some class-specialized
expert assignments. This pattern is not visible in all layers.

To gain higher-level insights into potential spatial relationships in expert routing, we generate 1,000
images from the model and analyze which tokens, corresponding to different parts of the image, are
processed by each expert at different layers. Fig. 11 and 12 present the results for all layers. This
figure clearly shows that certain experts exhibit spatial specialization, tending to process specific
regions of the image. We believe this finding aligns with previous observations in MoE LLMsJiang
et al. (2024), where experts are found to specialize in syntax of text rather than semantics.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Figure 8: Samples from the LlamaGen-3B model, pruned by 30% of active parameters using our
proposed method, compared to baseline methods without recovery fine-tuning. Our approach
significantly outperforms the baselines in visual fidelity.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Figure 9: Random samples from the LlamaGen-3B model, pruned by 30% active parameters using
our proposed dynamic-to-MoE pruning method, without any recovery fine-tuning. Despite the
significant reduction in active parameters, our approach maintains strong generative performance,
demonstrating that structured experts can be identified within dense AR image models without
requiring continued pretraining or additional fine-tuning.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Figure 10: Class-wise distribution of token routing across experts in LlamaGen-3B-MoE, showing
class specialized expert assignment. Each bar represents the proportion of tokens assigned to
different experts for a given class, showing that certain experts are preferentially activated for specific
categories. Layers 0–23 are displayed from the top-left to the bottom-right.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Figure 11: Spatial token assignments across experts of LlamaGen-3B-MoE. Darker red indicates a
higher number of routed tokens. Layers 0–11 are displayed from top to bottom.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Figure 12: Spatial token assignments across experts of LlamaGen-3B-MoE. Darker red indicates a
higher number of routed tokens. Layers 12–23 are displayed from top to bottom.

25

	Introduction
	Related Work
	Image Generation
	Pruning
	Mixture of Experts
	Positioning

	Method
	Preliminary
	Notation

	Expert Embeddings
	MLP Experts
	Effective MoE Regularization
	Union of Experts
	Parameter Budget
	Load Balancing

	Training the MoE Construction

	Experiments
	Experimental Settings
	Results
	Class-Conditional Results
	Text-Conditional Results
	Qualitative Comparisons
	Expert Assignment Results

	Comparison to other Dense-to-Moe Methods
	Ablation Study

	Conclusion
	Related Work
	Image Generation
	Pruning
	Mixture of Experts

	Method
	Module Architecture
	Embedding Generation

	Experiments
	Detailed Experimental Settings
	More results
	Class Conditional Results
	Compute Discussion
	Text-Conditional Results
	Parameter Count and Latency

	More Ablations
	More Generations

