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ABSTRACT

We introduce STEERINGSAFETY, a systematic framework for evaluating represen-
tation steering methods across nine safety perspectives including bias, harmfulness,
hallucination, social behaviors, reasoning, epistemic integrity, and normative judg-
ment, spanning 17 datasets. While prior work often highlights general capabilities
of representation steering, we find there are many unexplored, specific, and im-
portant safety side-effects, and are the first to explore them in a systematic way.
Our framework provides modularized building blocks for state of the art steer-
ing methods, enabling us to unify the implementation of a range of widely used
steering methods such as DIM, ACE, CAA, PCA, and LAT. Importantly, this
framework allows generalizing these existing steering methods with new enhance-
ments, like conditional steering. Our results on Qwen-2.5-7B, Llama-3.1-8B,
and Gemma-2-2B uncover that strong steering performance is dependent on the
specific combination of steering method, model, and safety perspective, and that
severe safety degradation can arise in poor combinations of these three. We find
difference-in-means a generally consistent choice for steering models and note
situations where slight increases in effectiveness trade off with severe entanglement,
highlighting the need for systematic evaluations in LLM safety. [1_-]

1 INTRODUCTION

Large language models (LLMs) have demonstrated impressive capabilities across a wide range of
natural language tasks (Brown et al.| 2020; [Touvron et al., |2023; |Ouyang et al.,|2022). However,
their growing fluency and generality have raised serious concerns about their safety (Bai et al., [2022;
Weidinger et al., [2021; [Mazeika et al., |2024), including tendencies to produce harmful content,
propagate social bias, and mislead users through hallucinated responses (Xu et al., |2024; |Gallegos
et al.,[2023)). These behaviors are often emergent and unpredictable, highlighting the difficulty of
governing high-capacity models.

A central objective in alignment research is to ensure that model behaviors remain safe, robust, and
consistent with human intent (Leike et al., 2018} |Bai et al.,|2022; (Ganguli et al., [2022). Techniques
such as supervised finetuning (SFT) (Ouyang et al.,|2022) and reinforcement learning from human
feedback (RLHF) (Bai et al.| 2022)) are commonly employed to improve alignment. However, prior
work shows that trying to improve performance on one behavior can inadvertently affect other
alignment behaviors. For example, SFT on non-safety data can unintentionally compromise toxicity
mitigation (Hawkins et al.}[2024)), fairness (Li et al.| 2024a), and overall safety (Qi et al.| |2024), and
may even cause multimodal models to fail at recognizing certain concepts (Mukhoti et al., [2024)).
Similarly, RLHF intended to improve alignment can also induce sycophancy (Malmqvist, [2024; |Min
et al., [2025} |Papadatos and Freedman, |2024)), amplify political biases (Perez et al., 2023), and reduce
truthfulness across several metrics (Li et al., 2024a). We define this phenomenon as behavioral
entanglement, which we view as a key challenge towards producing aligned models.

Besides SFT and RLHF, alignment can also be accomplished through representation steering, a
training-free method that intervenes on internal model activations to achieve a target objective (Zou
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et al., [2023} |[Panickssery et al.,[2023; L1 et al.} 2023} Turner et al., 2023; Wehner et al., 2025 Lee
et al.,2024a; Bartoszcze et al., 2025). These methods identify relevant directions in activation space
that correspond to behaviors like refusal (Arditi et al., 2024; Marshall et al.| 2024; Lee et al., 2024a;
Wollschléger et al.| 2025} [Panickssery et al.l [2023) or hallucination (Chen et al., 2024} [Zou et al.|
2023)), and apply simple vector operations, such as activation addition or ablation, to modulate model
behavior. Although representation steering methods are widely applicable, they are also known to
suffer from side effects, similar to SFT and RLHF, including reductions in fluency and instances
of overgeneralization. However, such representation steering methods have not been systematically
assessed for safety and entanglement at scale.

To address these challenges, we introduce STEERINGSAFETY, a systematic framework for eval-
uating steering alignment interventions across multiple safety perspectives and their interactions.
STEERINGSAFETY has two main contributions:

1) Comprehensive safety assessment across seven perspective axes: We enable standardized quan-
titative measurement of both steering effectiveness on three main perspective axes and unintended
effects on all other perspective axes. By aggregating many established safety perspectives, our
framework reveals how interventions targeting specific behaviors influence others, providing crucial
insights into behavioral entanglement. 2) Standardized steering evaluation: We provide a modular
code framework exploiting the taxonomy of training-free steering methods, allowing standardized
evaluation of five popular steering methods via a common library of interchangeable components.
By enabling comprehensive and systematic safety assessments, STEERINGSAFETY establishes a
foundation for rigorously comparing steering interventions, uncovering hidden entanglements, and
guiding the development of safer, more reliable alignment strategies.

2 DATASET

STEERINGSAFETY is designed to evaluate representation steering methods by testing whether
interventions can reliably steer a specific perspective while minimizing unintended effects on others.
Unlike prior work that focuses narrowly on individual alignment objectives, STEERINGSAFETY
supports comprehensive evaluation across a diverse set of axes, enabling controlled comparisons
and analysis of behavioral entanglement. To assess steering effectiveness as well as unintended
entanglements effects, the benchmark evaluates on three perspectives. Within these, we distinguish
between main perspectives, which are explicitly targeted by steering interventions, and additional
perspectives, which are not directly steered but may shift as side effects (Figure[I} This structure
allows researchers to assess whether steering a specific perspective-such as reducing hallucination-
induces undesirable changes in other perspectives like sycophancy or commonsense morality.

Each primary dataset follows a fixed 40/10/50 train/validation/test split and is stratified by subcategory
(if applicable) to ensure robust evaluation. To support contrastive direction generation, we also include
negative examples with an incorrect answer for all primary tasks, creating them if they do not exist. We
next describe the behavioral categories in the benchmark, starting with primary alignment objectives.

Harmfulness. We use SALADBench (Li et al., 2024b) as our main dataset for harmful generation,
using the 21K base QA set filtered using GPT-40 such that it only contains unmistakeably harmful
open-ended prompts. Negative examples are drawn from Alpaca (Taori et al., 2023)) for instruction-
only prompts. We exclude prompts tagged as “Hate Speech” or “Stereotyping” to remove overlap
with bias and stratify splits across the remaining labels, giving us 8.6K prompts. Harmfulness is a
generation task scored using LlamaGuard-4 (Metal 2025).

Bias. We evaluate bias through both implicit and explicit forms of discrimination. Implicit bias is
assessed using BBQ (Parrish et al.,2022), a multiple-choice benchmark probing stereotyping across
demographic attributes. The dataset consists of 10K prompts stratified by demographic. Explicit
bias is evaluated using ToxiGen (Hartvigsen et al.| 2022), a binary classification benchmark where
models are asked to agree/disagree with toxic statements linked to demographic identities. ToxiGen
includes 9K prompts, similarly stratified. Accuracy for BBQ and ToxiGen is measured using substring
matching over multiple-choice and boolean completions, respectively.

Hallucination. We adopt the taxonomy from HalluLens (Bang et al., 2025) to separate intrinsic hal-
lucination (contradictions with input context) from extrinsic hallucination (unsupported generation
absent from context or pretraining). For intrinsic hallucination, we use three FaithEval subsets (Ming
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Figure 1: The STEERINGSAFETY evaluation framework detailing dataset coverage across seven dis-
tinct perspectives. The table is structured by Perspective, Sub-perspective, Example Input, and Model
Output. We focus on steering the perspectives highlighted in bold and subsequently evaluate the
model on all other perspectives to measure any unintended consequences of the steering intervention.
Each perspective is further broken down into several sub-perspectives to enable detailed analysis.
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et al.|[2025): counterfactual, inconsistent, and unanswerable, totalling 2.4K prompts. Negative com-
pletions are generated using GPT-4.1-mini for the unanswerable set and randomly chosen where they
already exist in the other datasets. Extrinsic hallucination is evaluated using PreciseWikiQA (Bang
et al.}2025), a dataset of Wikipedia-sourced QA pairs stratified across 10 difficulty levels. We use
a fixed 10K dataset generated with LLaMA-3.1-70B-Instruct (Grattafiori et al., |2024) as done in
Bang et al.| (2025), and generate incorrect answers using GPT-4.1-mini. Completions are scored
using LLaMA-3.3-70B-Instruct (Grattafiori et al., [2024)) for factuality via hallucination rate using
LLaMA-3.1-70B-Instruct as done in Bang et al.| (2025). We report the percentage of prompts not
hallucinating, such that higher scores indicate better behavior.

A key concern in representation steering is that selected directions may overfit to spurious noise, lead-
ing to inflated performance on held-out data. To mitigate this risk, and in light of the computational
cost of full-benchmark evaluation, we adopt a dynamic testing strategy: all primary behavior steering
and evaluations are conducted on a subset of our full benchmark (20% subset of each dataset). This
approach reduces the likelihood of overfitting to static evaluation sets and supports more robust,
generalizable assessments of steering effectiveness.

After steering one of the aforementioned behaviors, we evaluate the model on a wide variety of other
safety-critical perspectives to assess side effects of the target steering intervention. We group these
perspectives into four general functional groups.

Social Behaviors. To assess how models interact with users, we assess Brand Bias, Sycophancy,
Anthropomorphism, and User Retention, each evaluated using 110 prompts from DarkBench (Kran
et al., 2025). Brand Bias tests preference in product recommendations; Sycophancy measures
uncritical agreement with user input; Anthropomorphism tests whether models describe themselves
with human-like traits; and User Retention measures tendency to prolong interactions unnecessarily.
All responses are scored using GPT-40 as in|Kran et al.| (2025]). We report the percentage of prompts
not exhibiting the described behavior such that a higher score is better.

Reasoning. To test reasoning ability, we compile an Expert-Level Reasoning assessment using
GPQA’s (Rein et al., |2023) 448 MCQs, covering fields like law, physics, and biology. Simple
Reasoning uses 500 prompts from ARC-C (Clark et al., 2018)), requiring basic inference skill.
Accuracy is computed via substring matching.

Epistemic Integrity. These tasks test honesty and factuality. Factual Misconceptions are tested
using 791 binary-choice Truthful QA (Lin et al.l 2022)) prompts, where models choose between true
and plausible but false statements. Sneaking uses 110 adversarial DarkBench (Kran et al., [2025))
prompts to test if the model subtly shifts the original stance when reframing opinions. Following Kran
et al.| (2025)), GPT-40 judges Sneaking, while misconceptions are judged via substring matching. For
sneaking we again report the percentage of prompts not exhibiting sneaking behavior.

Normative Judgment. This category assesses how models navigate ethically and ideologically
sensitive scenarios. We test Commonsense Morality using 750 ethical dilemmas from Decod-
ingTrust (Wang et al.| 2024al), scored by whether the model chooses the correct and moral answer.
Political Views uses 750 prompts from TwinViews-13k (Fulay et al., 2024), which ask the model to
agree with either left or right-leaning opinions. We report the percentage of responses choosing the
left-leaning option since models are shown to often skew left (Fulay et al.| 2024; [Potter et al.| 2024).
Unlike other datasets where higher is better, this convention was chosen arbitrarily.

2.1 METRICS

The goal of STEERINGSAFETY is to benchmark current steering methods across key safety per-
spectives while investigating their out of distribution behavior. To facilitate this, we define two
aggregate metrics: EFFECTIVENESS (Eq.[I]), how performant a steering method is on steering the
target perspective, and ENTANGLEMENT (Eq. [2), the degree of unintended changes resulting from
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Besides this, we also present results for each steering method over all perspectives to allow for
observations of the specific tradeoffs faced for each combination of model, method, and perspective.

3 METHODOLOGY

We begin by identifying the core components underlying many training-free steering methods and
implementing them within our evaluation framework. Using these building blocks, we then construct
five steering methods selected for evaluation, expressing each method as a composition of these
standardized components.

3.1 STEERING COMPONENTS

Currently, we focus on steering accomplished during inference. We define such steering methodolo-
gies as a combination of components within three unique parts of the steering pipeline: direction
generation (how the direction is obtained from input prompts), direction selection (how to select the
best direction given a set of candidate directions), and direction application (how the forward pass is
adjusted with the direction during inference).

3.1.1 DIRECTION GENERATION

Direction generation references how directions are extracted from model activations when provided
training-split prompts to be used in steering. By default, we always extract a direction from the token
position (-1). In practice, for all of the methods tested in this benchmark we collect activations from
the input before each layer. When generating the direction, we always normalize it following |Wu
et al.[(2025). We currently include the following methods for generating candidate directions:

DiffInMeans: DiffInMeans represents the mean difference in activations between positive and
negative activations at the selected location.

PCA: PCA identifies the primary axis of variance among activation vectors as in (Lee et al.| [2024a;
Wu et al., [2025)), then checks this principle component to ensure it aligns with the positive direction
of the prompts.

LAT: LAT also uses principle component analysis, but instead of using the raw activations directly,
it randomly pairs activations (regardless of their positive/negative labels) and uses the difference
between them as inputs (Wu et al.| 2025} Zou et al., [2023)).

We also support different prompt formatting styles for direction generation: 1) default: using
the dataset’s original prompt format, 2) RepE: reformatting prompts using LAT-style stimulus tem-
plates (Zou et al., 2023)), and 3) CAA: converting all prompts to multiple-choice questions (Panickssery
et al.,[2023).”

3.1.2 DIRECTION SELECTION

Direction selection is how a single direction is chosen given a set of candidate directions. In our paper,
this is accomplished by using a validation split. The output of each direction selection procedure
is a layer (where the direction was generated from) and the values for any other applier-specific
parameters that we iterated over. For all methods, we search from the 25th to 80th quantile of
the layers with a step size of 2, as prior work has shown steering is more effective in the middle
layers (Arditi et al.} 2024). The set of applier-specific parameters is based on the steering method and
currently is either empty or consists of a coefficient (where we test integers from -3 to 3 inclusive).
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For each method, unless otherwise specified we include a KL divergence check on Alpaca (using
the same split as defined for the harmfulness perspective) as in |Arditi et al.| (2024)) to ensure the
intervention is reasonable, discarding the direction if it results in a KL divergence in logits of over
10%. We implement grid search to find the layer and application-specific parameters to extract the
direction, chosen by highest performance on the validation set.

3.1.3 DIRECTION APPLICATION

Direction application specifies how the direction modifies activations during inference. There are two
important aspects of direction application: 1) the mathematical formulation of the intervention, and
2) how that intervention is applied. We specify the mathematical formulations below, where in each
case activations are modified in-place and the forward pass is continued:

Activation Addition: Activation addition (Turner et al., [2023} [Panickssery et al., [2023)) modifies
activations of the form v/ = v’ + « * d, where d is the direction, v is the activation and « is the
steering coefficient.

Directional Ablation: Directional ablation (Arditi et al., 2024} Marshall et al., [2024) modifies

activations of the form v/ = v — projﬂl* (v), with an additional proj‘,l,* (d~*) added to the right hand
side in the case of an affine transformation as in [ Marshall et al.| (2024), with d—* representing the
mean of the negative activations from the direction generation step. Currently, we do not utilize a
steering coefficient for directional ablation experiments following the conventions of |Arditi et al.
(2024)); [Siu et al| (2025).

Successful steering requires not only the mathematical operations above, but also strategic decisions
about where and when to intervene. We implement flexible control over both aspects:

Intervention Locations: The location within the transformer and token position where the inter-
vention is applied must be specified for each method. The position of intervention can either be
ALL, OUTPUT_ONLY, or POST_INSTRUCTION. The location of intervention is defined based on
the layer and location within the transformer block where the intervention occurs.

Conditional Steering: We utilize conditional steering to let us decide when to apply the intervention
at inference time depending on the prompt, which should reduce entanglement. We implement this
based on CAST (Lee et al.| 2024a)), a conditional direction application method where steering only
occurs if the cosine similarity of the activations and a preselected condition vector is above some
threshold. This can be added on top of any other direction application method. More information on
these settings is in Appendix

3.2 STEERING METHODS

Though the above steering components can be freely combined, in practice we select five preset
steering methods from the literature that implement explicit combinations of the modular components,
detailed in Table[T] Where it isn’t clear, we make reasonable decisions about how to use the method
in our framework given the paper and/or codebase where that method was used.

Table 1: Overview of steering methods with their components. Direction selection uses
GridSearch across all methods.

Method Format Dir. Generation Dir. Application Application Position Application Location
DIM default DiffInMeans DirectionalAblation ALL Input (all), Output (attn, mlp)
ACE default DiffInMeans DirectionalAblation + Affine ALL Same as gen.

CAA CAA DiffInMeans ActAdd POST_INSTRUCTION Same as gen.

PCA default PCA ActAdd ALL Same as gen.

LAT RepE LAT ActAdd ALL Cumulative

We implement the following methods: Difference-in-Means (DIM) is based on |Arditi et al|(2024);
Siu et al.| (2025)), deviating only by using our standardized grid search for direction selection. E] Affine

2We note that Difference-in-Means often refers to a way of generating a direction from activations, not a full
steering method with a fixed way of selecting and applying directions. However, we follow [Wollschlager et al.
(2025)) by referring to |Arditi et al.|(2024)’s method of steering as DIM.
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Concept Editing (ACE) is based on[Marshall et al.| (2024)’s affine concept editing and is automated
and shown to be effective compared to DIM for refusal in (2023). Contrastive Activation
Addition (CAA) based on [Panickssery et al.|(2023)). Notably, we follow the convention of always
using multiple choice formatting for direction generation and applying the intervention at all post
instruction tokens. Principal Component Analysis (PCA) is based on [Zou et al.| (2023); |Wu et al.
(2025); [Liu et al.| (2024); [Lee et al.| (2024a)). Linear Artificial Tomography (LAT) is based on Zou|
let al.| (2023); Wu et al.| (2025). Different from AxBench, we use the RepE format as used in[Zou et al |
(2023), and apply directions cumulatively as suggested in the original paper as well (described in

Appendix [A3). A similar setting is also applied in|[Lee et al.| (2024a)) for PCA, but for more diversity
we chose not to use this cumulative setting for PCA as well.

4 EVALUATION

To assess the effectiveness and generalizability of representation steering, we evaluate a steered

version of Qwen-2.5-7B (Qwen et al.,[2024)), Llama-3.1-8B (Grattafiori et al,[2024), and Gemma-
2-2B 2024)) across all perspectives. Steering is conducted using STEERINGSAFETY’s
curated training and validation splits.

As STEERINGSAFETY is focused on benchmarking general steering effectiveness alongside entangle-
ment, we choose to steer on the three perspectives that align best with existing work in representation
steering, then evaluate entanglement on the rest: (1) increasing harmfulness (Marshall et al., 2024}
Arditi et al., 2024; [Siu et al.| 2025}, [Panickssery et al., 2023 [Wollschlager et al., 2025} [Lee et al.,
2024a}; Zou et al.| 2023)), (2) reducing intrinsic/extrinsic hallucinations (Xu et al.| [2024; Nguyen
et al., 2025} Qiu et al., 2024 [Ji et al., 2025} [Beaglehole et al., 2025} Zou et al., 2023} [Panickssery
et al.,[2023), and (3) reducing explicit/implicit bias (Nguyen et al., Qiu et al., 2024; Beaglehole
et al.| [2025}, [Siddique et al.} 2025}, 2024} [Liu et al., 2024} Zou et al.,[2023). As our focus is on

entanglement, for each steering method we evaluate on each three variants that explicitly change the
effectiveness/entanglement tradeoff: with KL divergence check (Standard), without KL divergence
check (No KL), and with CAST for conditional steering (Conditional). Additional experimental
details are in Appendix [D}

4.1 MAIN RESULTS
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Figure 2: Average effectiveness (higher is better) and entanglement (lower is better) on evaluated
steering methods for Qwen-2.5-7B, Llama-3.1-8B, and Gemma-2-2B. We find that while methods can
induce performance increases on the three perspectives they are steered on the relative effectiveness
and entanglement vary by model.

We present average effectiveness and entanglement by model in Figure[2] Instead of naively averaging
effectiveness over all datasets, we use min-max scaling over each primary dataset to ensure the
behaviors that are easier and harder to steer are treated equally in our analysis. More details are in
Appendix [D.I] We see that steering methods differ drastically for each model and that there is a
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wide range of tradeoffs possible. The highest effectiveness is achieved by DIM on all three models;
however, for Qwen-2.5-7B DIM also has the highest entanglement. This makes sense given DIM
intervenes at multiple spots in each layer. Across all methods, Llama-3.1-8B generally sees the most
entanglement, meaning its design could be more adverse to interventions. The worst methods for
effectiveness on Qwen-2.5-7B and Gemma-2-2B are CAA and PCA, seeing barely any performance
boosts but still non-zero entanglement. Overall, these results show that models are a key determinant
of steering performance and while there are promising methods, they come with tradeoffs: there is
no universal best method that maximizes effectiveness while minimizing entanglement across all
models.

4.2 RESULTS BY PERSPECTIVE

We present full evaluations of Qwen-2.5-7B, Llama-3.1-8B, and Gemma-2-2B in Figures[3] {] and[9]
with the No KL and Conditional variants in Figures[5] [6] [7} [8] [I0} and[TT] We focus on the three
main perspectives being steered, evaluating both 1) the effectiveness of the intervention on improving
that behavior, and 2) the entanglement resulting from that intervention on all other perspectives.
Additional results on Qwen-2.5-1.5B and Qwen-2.5-3B for the standard variant are in Appendix [E.2]

Harmfulness: Truthful QA is the only dataset previously used to study refusal entanglement (Arditi
et al.l [2024; |Wollschlager et al., 2025). Our results (Figure show, however, that nearly all
perspectives exhibit substantial entanglement, with GPQA as the sole exception-underscoring STEER-
INGSAFETY s contribution in revealing many more entangled behavior pairs. DIM and ACE are the
most effective for steering harmfulness, but this consistently entangles with sycophancy and user
retention, even under conditional steering. While topics such as explicit bias and commonsense
morality sometimes invoke objectionable content, their entanglement is inconsistent, ranging from
severe degradation in Llama-3.1-8B to no effect in Qwen-2.5-7B.

Hallucination: Extrinsic hallucination is distinctive: largely unsteerable in Gemma-2-2B and all
Qwen models, yet producing a 50% accuracy boost in Llama-3.1-8B. In Llama, it is favored by
both CAA and PCA, but only CAA entangles with Explicit Bias, for reasons that remain unclear.
Without KL divergence, CAA increases intrinsic hallucination rates, whereas PCA reduces them,
highlighting that effectiveness alone is insufficient-CAA offers slightly stronger gains but at significant
entanglement cost. Intrinsic hallucination is more steerable but inconsistent across models. For
example, PCA and LAT substantially reduce hallucinations in Qwen-2.5-1.5B (Figure[12)), while
ACE is more effective for Qwen-2.5-3B (Figure[I3). Successful steering generally shows minimal
entanglement: DIM reduces hallucinations by 9.1% in Qwen-2.5-7B (Figure [3) with negligible
side effects, and PCA in Llama-3.1-8B (Figure ) achieves strong reductions while even improving
behaviors like commonsense morality, user retention, and sycophancy.

Bias: Bias is less steerable than other perspectives, likely due to already high baseline scores. Still,
we observe counterintuitive effects. In Gemma-2-2b and Qwen-2.5-7B (Figures [0 3), bias steering
unpredictably alters hallucination rates. This persists under conditional steering of Qwen-2.5-7B,
where inconsistent FaithEval questions degrade sharply (Figure[6)). Future work on mitigating bias-
or studying it in less equitable models-may benefit from applying STEERINGSAFETY to analyze
entanglement under scenarios where steering is more impactful.

Social Behaviors: Behaviors like sycophancy are strongly affected by harmfulness steering, consis-
tent with findings in RL-based work (Malmqvist, 2024} |Min et al., 2025} |Papadatos and Freedman,
2024)). Safety interventions also shift less overtly harmful perspectives, such as brand bias and
anthropomorphism. Other entanglements are inconsistent, but hallucination and bias steering often
cause unpredictable changes, warranting deeper study to better control these behaviors.

Reasoning Capabilities: Reasoning capabilities remain standard benchmarks in safety work (Arditi
et al., 2024} [Siu et al.| [2025). Our results show entanglement is minimal compared to other per-
spectives, underscoring how STEERINGSAFETY supports more systematic evaluations of safety
interventions without over-penalizing reasoning ability.

Epistemic Integrity: As prior work shows, Truthful QA entangles with refusal (Arditi et al.l 2024).
While definitions of Truthful QA vary-sometimes framed as factuality, other times as hallucination
(Bang et al.l 2025)-we find little evidence of systematic entanglement between hallucination steering
and factuality. Sneaking, however, shows inconsistent relationships: in both Qwen-2.5-7B and
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Llama-3.1-8B (Figures 3] ), DIM jailbreaking actually reduces sneaking, showing this perspective’s
distinct interactions despite being sourced from the same dataset as social behaviors.

Normative Judgment: Normative judgments are generally stable under steering, with common-
sense morality shifting only under extreme behavioral change. Evaluation is limited, however, by
frequent refusals or non-answers on TwinViews (Appendix [E.I). Expanding normative judgment
benchmarks would enable more consistent and fine-grained assessment of model normativity under
safety interventions.

These results underscore that broad behavioral evaluation enabled by STEERINGSAFETY is essential
for understanding both intended and emergent effects of representation-level alignment.

5 RELATED WORK

Our work builds on research in LLM alignment, activation steering, and mechanistic interpretability,
with a focus on intervening in and evaluating internal representations to control behaviors such as
harmfulness, demographic bias, and hallucination.

Mechanistic interpretability provides the theoretical foundation for much of activation-level steering.
Numerous studies demonstrate that abstract properties—truthfulness, bias, refusal—are encoded as
linearly decodable directions in residual space (Park et al.| [2024; Nanda et al., 2023 Bolukbasi et al.,
2016} Mikolov et al.| 2013). This supports the linear representation hypothesis and the superposition
principle, whereby many semantic features are superimposed within the same activation subspace
(Elhage et al., 2022)). At the same time, other work posits refusal behaviors as affine functions or
multi-dimensional subspaces (Marshall et al.,[2024; Wollschlager et al., 2025). A growing body of
steering work builds on this interpretability foundation by directly manipulating model activations.
Refusal, toxicity, and helpfulness have been shown to correspond to linear directions in residual space
(Arditi et al.| |2024; Marshall et al.l 2024} [Weidinger et al.,|2021), though interventions increasingly
recognize that behaviors may span richer subspaces. Methods such as Representation Engineering
(Zou et al.,|2023) and Spectral Editing (Q1u et al., [2024)) operate by injecting or removing learned
directions to elicit or suppress targeted behaviors. These directions are often derived from contrastive
data pairs (Burns et al.,|2023; |Arditi et al.| 2024), embedding differences (Panickssery et al.| 2023)),
or activation clustering (Wu et al.| [2025). Concept removal approaches such as Contrastive Activation
Addition (Turner et al.| 2023} [Panickssery et al.,2023)) and linear concept nullification (Belrose et al.|
2023}; [Ravfogel et al., 2020) aim to suppress targeted features while preserving fluency and task
performance, while Wang and Shu|(2023) identify key intervention layers using cosine similarity to
unsafe activation patterns. Fine-grained steering has also been explored, splitting general behaviors
into specific categories such as types of harmfulness or political beliefs (Bhattacharjee et al., [2024;
Lee et al.| |[2024a; |Hu et al., 2025).

Yet benchmarks reveal challenges: steering for one objective (e.g., reducing toxicity) can inadvertently
degrade other capabilities like informativeness or truthfulness (Lee et al., 2024b; Q1u et al.,|2024)).
Entanglement across behaviors remains a critical obstacle for reliable steering. Existing benchmarks
and frameworks, such as AxBench (Wu et al.| [2025), EasyEdit2 (Xu et al., 2025)), and [Im and Li
(2023)), provide structured evaluation but vary in scope. STEERINGSAFETY extends this line of work
by systematizing the evaluation of cross-behavior interference. It differs in its focus on entanglement
and its broad, modular coverage of training-free steering methods, including natural safety-relevant
behaviors. In doing so, STEERINGSAFETY implements a standardized pipeline for activation-level
steering aligned with the taxonomy proposed by Wehner et al|(2025)), enabling more consistent
comparisons and tradeoff analyses across settings.

6 CONCLUSION

STEERINGSAFETY provides a unified framework for evaluating representation steering in large lan-
guage models, revealing how interventions affect both primary alignment targets-harmful generation,
hallucination, and bias-and a wide range of secondary behaviors. By highlighting unintended side
effects and entanglement across perspectives, it encourages more careful, reproducible, and reliable
development of steering methods for safer language models.
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7 ETHICS STATEMENT

STEERINGSAFETY offers better holistic evaluations for greater control of intervention methodologies,
which advances the evaluation frontier for practitioners to ensure their techniques safely perform
their intended purposes in a wider variety of settings. The general goal is to use STEERINGSAFETY
to improve safety - jailbreaking refusal is included as a target, which could be dangerous as its goal is
for models to respond to harmful queries, but does not exceed risk already posed by prior work (Siu
et al.l2025). STEERINGSAFETY allows people interested in safety interventions to view both how
steering can improve and adversely affect safety in LLMs, enabling the development of methods with
finer control to ultimately further the frontier of safety in large language models.

8 REPRODUCIBILITY STATEMENT

To support the reproducibility of our work, we have provided an anonymous ver-
sion of our code, linked here: https://anonymous.4open.science/r/
389289893898888Anon—18CF/.

We also provide our dataset hosted anonymously here:
65c3£75641b22925¢c737¢ca6570126cd68c39e42334/ICLR
7330813ebd924444£f8d91£fced14891d391e946836dfb9d1£fb86136101bd49318.

Running the provided code on the provided dataset exactly replicates the process used to generate our
results, ensuring full reproducibility.
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A  METHODOLOGY DETAILS

A.1 DIRECTION GENERATION

We allow the collection of activations from the input and output of each layer, as well as of each
attention and MLP module.

A.2 DIRECTION SELECTION

COSMIC For completeness, we also implement COSMIC (Siu et al.| 2025) as an alternative to grid
search, which uses the internals during a forward pass on the validation set instead of generating an
entire answer and testing the outputs. We support COSMIC on all methods but note it was designed
for DIM and ACE.

A.3 DIRECTION APPLICATION

Intervention Locations Most often, the direction is applied at the same place in the residual stream
as where it was generated, though it can also be applied in specific places, e.g., the input and output
of the attention and MLP blocks in all layers in the residual stream. We also allow cumulative
interventions, which we define as when directions from previous layers are used to intervene on
their respective previous layers in addition to the selected direction, starting from the first layer we
collect directions from (at 25% through the model). E.g., if we intervene at layer 10 and the 25%
layer is layer 6, we intervene at layers 6, 8, and 10 with the same direction application method using
directions from those respective layers.

Conditional Steering Though the original paper proposes a full steering methodology using PCA,
we instead separate the conditional application portion of the method and refer to that as CAST,
since it can be used with any of the stated direction application mathematical formulations, direction
generation, or direction selection combinations. This method is explicitly built to reduce entanglement
since it only steers when it detects in-distribution behavior. As such, in practice when we use CAST
we do not include a KL divergence check in the direction generation stage. CAST can be used with
any mathematical formulation and location of intervention. CAST uses the same split of Alpaca as
defined in the harmful generation validation set to select the condition vector, which for simplicity
we set to one of the candidate vectors from direction generation.

B ADDITIONAL RELATED WORK

Mechanistic interpretability tools have built a shared foundation that steering builds upon. Tools
like sparse autoencoders (Bricken et al., 2023} [Huben et al., 2024} Templeton et al.,|2024), weight
attribution methods (Pearce et al., |2024), and circuit-level analyses (Elhage et al., 2021 Lieberum
et al., |2023) offer complementary ways of tracing causal pathways for behavioral features and
identifying where interventions should occur. Representations have also been used to probe concepts
(Wu et al., 2025} [Lee et al., 2024a) and to conditionally intervene at inference time (Lee et al.,[2024a;
L1 et al., 2023} Wang et al.l 2024b). As steering techniques increasingly operate at the activation
level, interpretability research provides essential methods for characterizing both the geometry of
encoded features and their intervention points.

C LIMITATIONS

While STEERINGSAFETY represents a significant advance in standardized, multi-perspective evalua-
tion of alignment steering, it has several limitations. The benchmark focuses on English-language
datasets and instruction-tuned models, limiting its applicability to multilingual or non-instructional
contexts (Wang et al.| |2024c)), where behavioral entanglement may surface differently. Steering
is implemented as static vectors applied at fixed model locations, enabling fair comparisons but
overlooking more adaptive or gradient-based methods like ReFT (Wu et al., 2024). Future work
should expand our current framework of steering components to incorporate methods with weight
modifications and other diverse elements of representation engineering, such as those defined in the
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taxonomy in|Wehner et al.|(2025)). Results are reported in aggregate form, which can obscure nuanced
shifts within behavioral subtypes such as specific demographic biases or on specific political issues,
or have certain methods dominate due to high performance on a single behavior (e.g., refusal). Also,
we only steer on the three perspectives, only measuring entanglement for the additional perspectives.
Moreover, the use of a uniform grid-search methodology across all behaviors simplifies direction
selection but may underperform compared to behavior-specific techniques, particularly in harmfulness
tasks (Arditi et al.| |2024). Also, for generating directions, we randomly choose an incorrect answer
for each instance where there are many (e.g., for BBQ), but this choice can differ across templates like
default vs RepE, possibly accounting for minor variance. We only use 64 tokens for generation
tasks, which could obscure the intentions of the models if continued. We also do not allow thinking
before generation, requiring the answer to be generated immediately. Future work should investigate
reasoning models and how they differ. Prior work also suggests that steering using directions from
tokens other than the final post-instruction tokens may yield more effective control (Arditi et al.,[2024;
Siu et al., [2025)) that can differ by behavior (Zhao et al.|[2025)), which our setup does not currently
exploit.

D EXPERIMENTAL DETAILS

To select a direction, for each combination of hyperparameters (layer, coefficient), we apply the
direction at inference time and evaluate model behavior on a fixed validation set. The configuration
yielding the highest mean performance across all primary metrics is selected for final evaluation.

For all datasets that are multiple choice, we generate one new token. For all other datasets, we generate
up to 64 new tokens. We use substring matching for all multiple choice datasets. To ensure the format
is not driving differences in performance, we standardize all multiple choice datasets to use single
capital letters for the choices and answers. For all multiple choice datasets except those testing hallu-
cination and political leaning, since we use substring matching we prepend a short string encouraging
responses to be as concise as possible: Please provide only the correct answer in
its simplest form, without any additional text or explanation.

For context, whenever we reference post instruction tokens, we refer to all tokens after the initial
user prompt. For Qwen2.5, when we supply a prompt to the LLM we do it in the following format
(we highlight the content corresponding to post-instruction tokens in blue): <|im_start |>user
instruction<|im.end|><|im_start|>assistant. Note throughout direction selection,
we use the prompt with the post-instruction tokens (including the empty assistant prompt) if we are
collecting or comparing activations.

D.1 METRIC CALCULATIONS

For presenting an aggregate measure of EFFECTIVENESS, we use min-max scaling. Since sometimes
the steering method causes the model performance to decrease, we treat all such instances as 0%
effectiveness. Additionally, for using DIM with Gemma-2-2B on refusal, the KL divergence check
fails for all directions, so we ignore refusal performance when calculating average effectiveness for
DIM on this model.

E RESULTS

E.1 MAIN PER-MODEL RESULTS

The per-model results across all behaviors and methods are in Figures [3| and @] for no variants,
Figures [5|and [7] with no KL divergence check, and Figures[6]and [§| with conditional steering.

We note that Llama-3.1-8B does not often give answers corresponding to the possible multiple choice
answers in TwinViews and sees large fluctuations with applying steering methods, meaning the
performance differentials are not due to changes in political views but moreso in how the answer is
formulated. For this reason, we do not include TwinViews results when calculating entanglement or
in our main results figures for Llama-3.1-8B.

21



Under review as a conference paper at ICLR 2026

. ]
N ol < o X
WO el P L4 NG
o> o o o . o° O P ]
« Qs o © N & 2 ! N 2 3
o W @00 @ @ ™ pe (8 o e o 0T e o o
P @ T T T 0T g0 e T T @O T (o @ o o

,Quen2® 13 11.0 67.0 49.7 55.8 80.4 79.6 66.1 90.0 882 40.0 33.3 88.4 72.8 56.4 89.7 92.4

Target Behavior: Harmful Generation (Refusal)

DIM 10 35 -09 (66 -0.2 ¥Rl 09 04 -38 -4.1
ACE -1.0 -30 28 -11 -64 -7.3 -7.3 Bt 00 04 -09 -09 -03 0.5
CAA 00 07 00 03 -03 -46 -09 1.8 27 00 00 00 00 00 00
PCA 1.0 49 22 -18 -1.0 -09 -36 -45 GEE] 09 02 -14 45 -04 -03
LAT 00 -07 26 -25 -21 -45 PEWY -1.1 -0.4 0.0 -45 -39

Target Behavior: Hallucination Extrinsic

pmMm -01(0.7¢| 20 -28 26 -07 06 28 -09 36 64 02 -06 -04 45 -04 -03
ACE 01 |19*f(-10 14 -1.7 -21 -14 -18 -18 -73 -64 -18 00 -14 -36 -05 2.0
CAA 00 |0.2*| 00 -07 04 07 -01 00 -09 09 00 -02 00 00 00 -01 01
PCA 00 |03*| 00 -07 09 06 14 -28 -45 -09 45 -02 02 -04 00 -01 03
LAT -05(13*) 00 |91 17 17 -14 -46 09 09 91 04 00 10 -45 00 0.0

Target Behavior: Hallucination Intrinsic

DIM 00 -0.8|-2.0%#[42*|13*| 15 -38 00 -09 27 64 11 02 -01 55 -11 -0.7
ACE 0.2 0.0 |[-1.0¥[2.1*]|35*]-19 -07 -28 00 18 36 -18 00 01 09 -04 -04
CAA 00 -0.1 |-1.0¢|{0.7¢*]09*|-01 07 -18 -18 00 -18 02 00 0.0 -18 -03 0.0
PCA 07 0.2 |00*|[07¢]17*]-10 12 -3.7 -36 09 -18 -07 00 04 -36 -11 09
LAT -0.2 04 |-2.0%|35%|6.1*|-42 -03 18 -2.7 45 g8 -1.8 -04 24 18 -0.1 -13
Target Behavior: Explicit Bias

DIM 04 08 -10 -0.7 -09]|34*| 06 -28 -1.8 00 -18 02 02 -14 -45 -05 0.8
ACE 02 03 -10 -14 13 |-03*] 07 -46 -55 09 18 02 02 -04 -18 -0.7 04
CAA 05 03 00 -07 04 |-02*-03 -28 -18 18 18 -02 00 0.0 -2.7 -0.1 -01
PCA 01 08 00 63 22 |39%*|-14 -37 00 36 64 11 06 -24 -18 -20 0.8
LAT 01 05 -10 14 -13]|44*| 17 -18 -36 -27 -55 -09 -02 -24 36 00 0.0
Target Behavior: Implicit Bias

DIM 06 07 -20 -35 1.7 00 [3.4%]-37 -27 09 -18 -07 1.0 -0.8 01 15
ACE 1.3 15 -10 -49 -09 -1.3]3.5* iV -6.4 -64 -25 -0.2 52 -04 13
CAA 05 01 00 07 04 -01]|02*(-64 -36 18 -18 00 00 01 -36 -0.7 0.0
PCA 00 01 00 -07 00 02 ]01*f(-18 -09 00 -18 -04 00 00 -36 -01 0.1
LAT 07 07 00 -14 09 04 |12*|(-09 -227 09 00 09 02 -04 -09 01 0.0

-20 -10 0 10 20
Absolute % Change

Figure 3: The changes in performance on all datasets when steering with five methods with 5
objectives on Qwen-2.5-7B-Instruct. The results of the unsteered model are displayed at the top,
and all reported steering values are expressed as the difference relative to the unsteered model’s
performance. Higher scores generally indicate safer performance (e.g lower dark behaviors or
hallucination rates) except for SALADBench ASR (left-most), where higher scores indicate higher
jailbreaking, and Political Views (right-most), where higher score indicates higher proportion of
left-leaning opinions. Dataset pertaining to the target behavior in each setting are bordered in black
and annotated with an asterisk (*).

E.2 ADDITIONAL PER-MODEL RESULTS

Besides the main results, we also steer all five using our standard variant on Qwen-2.5-1.5B and
Qwen-2.5-3B in Figures[12]and[T3] respectively.
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Figure 4: The changes in performance on all datasets when steering with five methods with five
objectives on Llama-3.1-8B-Instruct. The results of the unsteered model are displayed at the top,
and all reported steering values are expressed as the difference relative to the unsteered model’s
performance, similarly to the Qwen results in FigureEl
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Figure 5: The changes in performance on all datasets when steering with five methods with five
objectives on Qwen-2.5-7B when no KL divergence check was used in direction generation. The
results of the unsteered model are displayed at the top, and all reported steering values are expressed
as the difference relative to the unsteered model’s performance, similarly to the Qwen results in

Figure[3]
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Figure 6: The changes in performance on all datasets when steering with five methods with five
objectives on Qwen-2.5-7B when using conditional steering. The results of the unsteered model are
displayed at the top, and all reported steering values are expressed as the difference relative to the
unsteered model’s performance, similarly to the Qwen results in FigureEl
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Figure 7: The changes in performance on all datasets when steering with five methods with five
objectives on Llama-3.1-8B when no KL divergence check was used in direction generation. The
results of the unsteered model are displayed at the top, and all reported steering values are expressed
as the difference relative to the unsteered model’s performance, similarly to the Qwen results in

Figure 3|
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bama:31 98 102 9.0 19.6 31.2 835 89.3 743 782 964 40.0 283 796 66.7 209 713

8B-Instruct
Target Behavior: Harmful Generation (Refusal)
DIMt 0.0 0.0 0.0 0.0 0.0 -7.3 EEEKJ 0.0 0.0 00 0.0
ACE! 0.0 0.0 0.0 0.0 00 -46 gysey 00 -73 00 00 0.0
CAA! 0.0 0.0 0.0 02 -18 36 -09 -64 00 00 0.0
PCA! 0.0 0.0 0.0 0.0 -11 9 K] 0.0 0.0 00 0.0
LAT! 0.0 0.0 1.3 -0.2 -3.6 -2.7 0.0 00 0.0
Target Behavuor Hallucmatlon Extrmsnc
DIM? 20 -42  -74 01 0.4 09 18 00 09 00 -06  -70 82 -28
ACE! 00 -28 -3.0 -3.8 01 1.8 27 00 09 -02 0.2 01 -2.7 04
CAAT 0.0 0.0  -35 -18 46 -18 00 -36 00 00 -48 -1.8 -03

PCA? b 0.0 21 2.2 00 -02 -83 18 09 -36 00 00 00 -18 0.1
LAT! 2.6 | 2.8% | -5.0 =98 23 |55 00 -18 00 00 ' -50 00 00 O0.0
Target Behavior: Hallucination Intrinsic

DIM* 0.2 0.1 | 0.0%x|42*¥[0.0*] 01 -02 09 00 00 -55 00 -1.2 -05
ACE! 0.2 0.1 | 1.0 |-0.7¢[ 0.4* | -0.6 -0.1 0.9 1.8 00 09 04 -20 -35
CAA! 0.2 0.4 | 0.0 | 56*[3.0¢] 25 -1.7 0.0 3.6 73 00 -0.6 -1.0
PCA! 0.0 0.2 [0.0f]0.0] 0.0¢]| -0.8 0.0 1.8 0.0 09 00 00 0.0
LAT! 0.1 | 0.0 | 5.6* piRkaEPIPl 0.2 -09 0.0 -2.7 00 00 0.0 0.0
Target Behavior: Explicit Bias

DIM? 00 0.1 0.0 0.0 0.0 00|00 -09 09 00 27 00 00 00 -36 0.0
ACE! 00 0.1 0.0 0.0 0.0 |00 00 09 27 00 -09 00 00 00 -36 0.0
CAA! 01 -01 -10 -0.7 -09 |-1.2*]| -03 46 2.7 09 -09 00 -3.0 -08 -0.9 6N
PCA' 02 -07 -10 -35 26 [1.8%]| 07 28 | 73 36 09 00 00 04 27 0.9
LAT! 0.1 0.3 0.0 -1.3 [-04*] 66 00 00 -18 00 00 -24 00 00 0.0
Target Behavior: Implicit Bias

DIMt 00 00 0.0 00 00 00 [(0.0*|-28 09 -09 -09 00 00 0.0 1.8 0.0
ACE! 00 0.2 0.0 0.0 00 0.0 [0.0#] 09 18 00 09 00 00 00 09 0.0
CAA' 00 00 0.0 00 00 00 (00*|O09 36 -09 -09 00 00 00 09 0.0
PCA? 00 0.1 0.0 00 00 00 (00*|O0O0O 27 -09 -1.8 00 00 00 45 0.0
LAT* 05 -01 3.0 -14 -09 0.0 [-05%] 3.7 0.0 27 1.8 00 -10 00 09 0.0

| . , .
T With CAST for Conditional Application -20 -10 0 10 20

Absolute % Change

Figure 8: The changes in performance on all datasets when steering with five methods with five
objectives on Llama-3.1-8B when using conditional steering. The results of the unsteered model are
displayed at the top, and all reported steering values are expressed as the difference relative to the
unsteered model’s performance, similarly to the Qwen results in Figure@
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soemma? 21 109 77.0 63 49.8 765 752 927 845 94.5 655 292 71.6 58.6 155 73.1 30.9

Target Behavior: Harmful Generation (Refusal)

S I - - o -
ACE 02 -1.0 -35 -3.0 28 -5.5 -22 -06 49 18 |55
CAA |0.0*|] 01 00 00 00 02 -02 -18 18 -2.7 -27 -02 -02 00 09 -03 -04
PCA |-0.4*| 04 00 -07 -22 01 04 28 -27 -27 -18 -04 04 -06 09 00 -28
LAT [-1.1*{ 03 00 -07 09 01 01 -18 -27 -27 18 -13 -04 09 09 08 -24
Target Behavior: Hallucination Extrinsic
DIM -05 [-1.0¥] 1.0 -21 -43 06 -1.7 0.0 [=82] 0.0 FEECN -1.1 -3.6 -2.9 JoIy 23 11
ACE 00 (03*| 00 -14 -04 22 -05 09 27 -18 -55 -18 -1.0 00 09 25 09
CAA -0.2|0.1*|-10 00 00 10 -11 -37 -09 -36 -09 -04 -02 00 09 20 -04
PCA -0.2 |-0.1*|-10 0O -09 08 -07 -09 18 -36 00 -09 02 -05 09 05 08
LAT -06[0.6*|-30 -14 -30 00 09 -09 -36 -36 -36 -18 02 -06 27 -05 -3.6
Target Behavior: Hallucination Intrinsic
DIM -1.1 -0.2 [-2.0%|-2.1*|-2.6%| 4.8 -0.9 55 -36 -25 -14 28 -64 09 -4.0
ACE -1.2 -1.2 (-4.0%#[-0.7¢[0.0*| 20 -64 09 36 -2.7 64 -04 -24 38 -18 -48
CAA -0.2 -03(0.0*[0.0%*[0.0*| 01 01 00 09 -36 00 00 00 01 -27 09 03
PCA -0.1 -0.2 |-1.0*]| 0.0%[-1.3*| 0.7 -0.2 -3.7 00 -27 -36 -1.1 -04 04 27 05 3.7
LAT -0.7 0.0 (-3.0%[-1.4*|43*| 43 23 -18 18 -36 18 -18 -04 14 09 36 27
Target Behavior: Explicit Bias
pimM - 05 04 -30 -14 -09](30*|12 00 09 -36 -27 -1.1 -04 -11 09 27 3.6
ACE 04 -03 -20 -14 -09(0.0*] 17 -18 -45 -18 -64 -18 08 -0.6 82 -01 -31
CAA 01 02 00 00 o00}{0.0*|-02 -1.8 09 -27 00 00 00 -01 -27 0.7 03
PCA 01 00 00 00 0.0 fO6*f01 -09 00 -09 -27 -07 -04 -03 00 05 -01
LAT -01 -02 00 00 00 ]|0.1*]-02 00 09 -09 18 -02 -02 -01 09 12 0.7
Target Behavior: Implicit Bias
piM -05 -05 00 -21 -0.4 -2.8(5.2* ] -1.8 -1.8 N 02 -0.8 -03 -36 -1.1 -6.3
ACE -07 03 00 -07 09 06 [22¢| 00 00 -2.7 -1.8 -07 00 -19 36 -21 41
CAA 00 -03 00 00 00 00 [-0.2¥]-28 09 -18 09 00 -02 00 00 -01 0.0
PCA -02 -02 00 00 04 -01(02*|-28 00 -27 -09 -04 02 01 00 00 0.1
LAT -01 -03 00 -14 09 08|32 09 00 -36 -18 -16 -04 -03 09 -05 -03

° KL divergence check failed on all runs —I20 —'.II.O (I) 1I0 2IO

Absolute % Change

Figure 9: The changes in performance on all datasets when steering with five methods with five
objectives on Gemma-2-2B with the standard variant. The results of the unsteered model are displayed
at the top, and all reported steering values are expressed as the difference relative to the unsteered
model’s performance, similarly to the Qwen results in FigureEl
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Target Behavior: Harmful Generation (Refusal)
DIM*® - - - - - - - - - - - - - - - -
ACE EEEE] 02 -10 -35 3.0 28 5.5 22 -0.6 [-49 18 |55
CAA |0.0*| 01 00 00 00 02 -02 -18 18 -2.7 -27 -02 -02 00 09 -03 -04
PCA |-0.4*| 04 00 -07 -22 01 04 28 -27 -27 -18 -04 04 -06 09 00 -28
LAT [-1.1*( 03 00 -07 09 01 01 -18 -27 -27 18 -13 -04 09 09 08 -24
Target Behavior: Hallucination Extrinsic
DIM -05 |-1.0%¥|] 1.0 -21 -43 06 -1.7 0.0 |- 0.0 -1.1 -3.6 -29 BoEN -23 11
ACE 00 [(03*|00 -14 -04 22 -05 09 27 -18 -55 -18 -1.0 00 09 25 09
CAA -0.2|0.1*|-10 00 00 10 -11 -3.7 -09 -36 -09 -04 -02 00 09 20 -04
PCA -0.2 |-0.1*|-10 00O -09 08 -07 -09 18 -36 00 -09 02 -05 09 05 0.8
LAT -06(0.6*|-30 -14 -30 00 09 -09 -36 -36 -36 -18 02 -06 27 -05 -3.6
Target Behavior: Hallucination Intrinsic
DIM -1.1 -0.2 [-2.0%[-2.1%[-2.6%| 4.8 -09 | 55 -36 -25 -14 28 -64 09 -4.0
ACE -1.2 -1.2 [-4.0%[-0.7¢[0.0*| 20 -64 09 36 -2.7 64 -04 -24 38 -18 -48
CAA -0.2 -03([0.0*f[0.0*[0.0*| 01 01 00 09 -36 00 00 00 01 -27 09 03
PCA -0.1 -0.2 [-1.0*]0.0*[-1.3*| 0.7 -0.2 -3.7 00 -27 -36 -1.1 -04 04 27 05 37
LAT -0.7 0.0 (-3.0%|-14*|43*| 43 23 -18 18 -36 18 -18 -04 14 09 36 27
Target Behavior: Explicit Bias
DIM -05 04 -3.0 -14 -09([3.0%| 1.2 b -36 -27 -11 -04 -11 09 27 36
ACE 04 -03 -20 -14 -09(0.0*| 17 -18 -45 -18 -64 -18 08 -0.6 82 -01 -31
CAA 01 02 00 00 o00}{0.0*|-02 -1.8 09 -27 00 00 00 -01 -27 0.7 03
PCA 01 00 00 00 00 {0O6*f01 -09 00 -09 -27 -07 -04 -03 00 05 -01
LAT -01 -02 00 00 00 ]|0.1*]|-02 00 09 -09 18 -02 -02 -01 09 12 0.7
Target Behavior: Implicit Bias
piM -05 -05 00 -21 -0.4 -2.8(5.2* ) -1.8 -1.8 -0.2 -08 -03 -36 -1.1  -6.3
ACE -07 03 00 -07 09 06 |22*] 00 00 -2.7 -18 -07 00 -19 36 -21 41
CAA 00 -03 00 00 00 0.0 (-0.2¢¥|]-28 09 -18 09 00 -02 00 00 -01 0.0
PCA 02 -02 00 00 04 -01(02*|-28 00 -27 -09 -04 02 01 00 00 0.1
LAT -01 -03 00 -14 09 08|32 09 00 -36 -18 -16 -04 -03 09 -05 -03
KL divergence check failed on all runs —20 -10 0 10 20

Figure 10: The changes in performance on all da

Absolute % Change

tasets when steering with five methods with five

objectives on Gemma-2-2B when no KL divergence check was used in direction generation. The

results of the unsteered model are displayed at the

top, and all reported steering values are expressed

as the difference relative to the unsteered model’s performance, similarly to the Qwen results in

Figure 3]
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soemma? 21 109 77.0 63 49.8 765 752 927 845 94.5 655 292 71.6 58.6 155 73.1 30.9

Target Behavior: Harmful Generation (Refusal)

S I - - o -
ACE 02 -1.0 -35 -3.0 28 -5.5 -22 -06 49 18 |55
CAA |0.0*|] 01 00 00 00 02 -02 -18 18 -2.7 -27 -02 -02 00 09 -03 -04
PCA |-0.4*| 04 00 -07 -22 01 04 28 -27 -27 -18 -04 04 -06 09 00 -28
LAT [-1.1*{ 03 00 -07 09 01 01 -18 -27 -27 18 -13 -04 09 09 08 -24
Target Behavior: Hallucination Extrinsic
DIM -05 [-1.0¥] 1.0 -21 -43 06 -1.7 0.0 [=82] 0.0 FEECN -1.1 -3.6 -2.9 JoIy 23 11
ACE 00 (03*| 00 -14 -04 22 -05 09 27 -18 -55 -18 -1.0 00 09 25 09
CAA -0.2|0.1*|-10 00 00 10 -11 -37 -09 -36 -09 -04 -02 00 09 20 -04
PCA -0.2 |-0.1*|-10 0O -09 08 -07 -09 18 -36 00 -09 02 -05 09 05 08
LAT -06[0.6*|-30 -14 -30 00 09 -09 -36 -36 -36 -18 02 -06 27 -05 -3.6
Target Behavior: Hallucination Intrinsic
DIM -1.1 -0.2 [-2.0%|-2.1*|-2.6%| 4.8 -0.9 55 -36 -25 -14 28 -64 09 -4.0
ACE -1.2 -1.2 (-4.0%#[-0.7¢[0.0*| 20 -64 09 36 -2.7 64 -04 -24 38 -18 -48
CAA -0.2 -03(0.0*[0.0%*[0.0*| 01 01 00 09 -36 00 00 00 01 -27 09 03
PCA -0.1 -0.2 |-1.0*]| 0.0%[-1.3*| 0.7 -0.2 -3.7 00 -27 -36 -1.1 -04 04 27 05 3.7
LAT -0.7 0.0 (-3.0%[-1.4*|43*| 43 23 -18 18 -36 18 -18 -04 14 09 36 27
Target Behavior: Explicit Bias
pimM - 05 04 -30 -14 -09](30*|12 00 09 -36 -27 -1.1 -04 -11 09 27 3.6
ACE 04 -03 -20 -14 -09(0.0*] 17 -18 -45 -18 -64 -18 08 -0.6 82 -01 -31
CAA 01 02 00 00 o00}{0.0*|-02 -1.8 09 -27 00 00 00 -01 -27 0.7 03
PCA 01 00 00 00 0.0 fO6*f01 -09 00 -09 -27 -07 -04 -03 00 05 -01
LAT -01 -02 00 00 00 ]|0.1*]-02 00 09 -09 18 -02 -02 -01 09 12 0.7
Target Behavior: Implicit Bias
piM -05 -05 00 -21 -0.4 -2.8(5.2* ] -1.8 -1.8 N 02 -0.8 -03 -36 -1.1 -6.3
ACE -07 03 00 -07 09 06 [22¢| 00 00 -2.7 -1.8 -07 00 -19 36 -21 41
CAA 00 -03 00 00 00 00 [-0.2¥]-28 09 -18 09 00 -02 00 00 -01 0.0
PCA -02 -02 00 00 04 -01(02*|-28 00 -27 -09 -04 02 01 00 00 0.1
LAT -01 -03 00 -14 09 08|32 09 00 -36 -18 -16 -04 -03 09 -05 -03

° KL divergence check failed on all runs —I20 —'.II.O (I) 1I0 2IO

Absolute % Change

Figure 11: The changes in performance on all datasets when steering with five methods with five
objectives on Gemma-2-2B when using conditional steering. The results of the unsteered model are
displayed at the top, and all reported steering values are expressed as the difference relative to the
unsteered model’s performance, similarly to the Qwen results in FigureEl
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Qwen-2.5
1.5B-Instruct 06 43 70.0 42 381 733 851 725 80.0 99.1 71.8 32.1 73.4 56.7 71.8 57.7 87.9

Target Behavior: Harmful Generation (Refusal)

DIM 0.0 49 7.8 0.1 -o 2 -o 9 -37.3 -4 5 -45.5 o 4 02 -15 -36 15 -2.0
ACE 1.0 07 -26 22 -23 6 -40.0 0.6 23 00 27 21
CAA 00 00 26 01 -o 3 -o 9 -0 9 -5.5 00 -03 09 11 00
PCA 00 -14 -43 -06 01 -37 -1.8 SR -10.9 0.2 14 00 -45 23 09
LAT 4.0 43 17 -05 7.3 33 -16 08 36 39 05

Target Behavior: Hallucination Extrinsic

DIM -0.1(0.2*] 40 35 52 15 -13 45 09 [91 -02 -20 -04 27 -23 07
ACE 00 (0.8*]-10 00 26 -04 -04 18 00 -09 -09 02 00 05 18 21 -09
CAA -01|06*| 00 -07 -30 10 02 00 55 -18 -1.8 -04 -02 -01 18 0.0 0.1
PCA 0.1 [04*| 1.0 -0.7 27 -01 -28 -36 00 64 -13 -04 -09 00 09 09
LAT 11 |1.4%]|-20 0.0 pkpy 3.7 -2.5 45 09 -27 -11 -16 -14 -36 59 -25
Target Behavior: Hallucination Intrinsic

DIM 0.4 0.0 | 2.0%[0.7* F!q 24 -24 64 64 09 36 -09 -06 08 09 11 05
ACE 02 08 |00*|[1.4*|65%| 17 -01 00 73 09 18 -22 -02 04 09 00 038
CAA 0.2 -0.3 2.8* -39 01 00 0.0 09 6 4 04 -06 00 -27 13 0.0
PCA -04 -0.2 -26 -0.6 55 73 0.0 -09 00 44 36 -29 -31
LAT 1.3 0.2 51 -21 18 [-82 -09 -09 -12 -04 -64 53 04

Target Behavior: Explicit Blas
DIM 0.2 -03 -20 0.0 S-1.6%| 3.1 46 45 -18 18 -09 -16 03 -09 -65 -1.2

ACE -05 -0.8 -20 -0.7 87 [1.0*]|-22 3.7 09 [ 82 -13 -04 52 -09 -11 -45
CAA 00 -02 00 00 00 ]O00O*f OO 37 45 -09 -1.8 02 00 00 -09 01 01
PCA 00 00 -10 00 -1.7|13*|-05 46 18 -09 -27 -04 00 01 -36 05 0.7
LAT 00 -02 10 -28 -1.7|36%|( 03 37 [ 82 09 27 -02 -10 -1.1 09 49 -17
Target Behavior: Implicit Bias

DIM 0.0 -1.2 0.0 BENAWPZRE 24 (-3.5*| 92 36 09 82 07 -18 -09 -09 -19 16
ACE -04 -0.7 1.0 -0.3 [-0.9* NSl 0.0 =y 02 -10 09 -09 -16 0.1
CAA 01 04 00 00 09 -04(-0.1*]37 36 -09 00 00 -04 00 18 -04 0.0
PCA 01 -01/-30 0.7 -3.0 -1.3|0.6*] 2.8 558 -09 18 -0.7 -10 06 -09 19 03
LAT 00 01 10 07 -22 31 (05*|37 45 -09 36 02 -06 -04 36 11 -04

-20 -10 0 10 20
Absolute % Change

Figure 12: The changes in performance on all datasets when steering with five methods with the
standard variant with five objectives on Qwen-2.5-1.5B in direction generation. The results of
the unsteered model are displayed at the top, and all reported steering values are expressed as the
difference relative to the unsteered model’s performance, similarly to the Qwen results in FigureEl
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Target Behavior: Harmful Generation (Refusal)
DIM [EKdl 2.0 3.0 49 04 -0.2 2.8 -5.5 GVAEvAREEI®Y 02 00 -32 -09 3.7 -09
ACE [JXid 09 10 -63 -48 -12 12 EECIGECIEVAEIRPINY 04 04 27 27 20 15
CAA (-0.2*] 01 10 -21 43 -04 -03 46 64 27 09 07 04 03 27 -19 04
PCA |04 01 00 28 04 11 05 00 -18 -09 -55 0.7 -02 -06 05 -05
LAT (0.0*( 03 10 -56 -1.3 07 -01 -46 45 -55 00 13 -04 15 03 05
Target Behavior: Hallucination Extrinsic
pm 01 (0.1*)10 -56 09 -11 09 09 36 -73 -09 04 02 -1.0 -0.7 2.9
ACE -06 (-0.1*|-10 -21 -65 -11 -04 28 45 18 09 13 06 13 00 12 -03
CAA -04|0.1*])00 -28 -09 -15 06 -18 45 36 27 00 -02 -03 27 -23 -12
PCA -05(-0.4*| 00 -35 26 08 03 18 27 18 18 0.7 04 08 27 -15 -19
LAT -0.2 (-0.4*| 00 -42 -17 03 -05 55 00 36 09 11 -06 03 82 -15 -19
Target Behavior: Hallucination Intrinsic
bpiMm -0.5 -0.2 |-3.0%|-5.6*%[-0.4*| -35 -23 00 64 18 55 04 02 -03 27 -20 -09
ACE -0.1 0.1 [0.0¢0]|7.7%]|-0.4*|-06 -14 09 27 00 18 02 08 10 -18 -1.2 -0.7
CAA 00 -01]0.0*|[14*[04*]-01 01 -18 45 45 -36 00 -02 01 09 00 -01
PCA 0.1 -03|0.0+|35*%[30*( 04 -02 -37 27 18 18 00 -04 04 27 01 03
LAT -04 -0.3[2.0*|-2.1*|56*]|-02 -10 -09 55 73 27 -02 -1.0 0.0 43 3.1
Target Behavior: Explicit Bias
pimM -11 02 00 -84 -13(0.1*|-06 18 09 18 36 02 06 -11 -1.1 | -6.5
ACE -02 -19 -10 35 35 |15*|-11 37 45 36 09 02 18 27 -19 0.1
CAA 01 02 00 -63 -52)|08*|06 -64 36 -27 -73 00 00 04 27 4.0
PCA -02 -05 00 -42 -30(06*|00 00 -09 -09-82 02 00 11 32 038
LAT -0.2 -02 10 56 00 (0.1*]-01 18 64 18 00 -04 -02 1.1 -0.1 -0.7
Target Behavior: Implicit Bias
pimM -05 00 00 -14 13 -02|05*|09 -09 18 | 82 -09 -04 -25 6.4 -01 48
ACE 01 -03 10 -0.7 13 0.0 |-1.0¥[-28 36 00 09 00 04 09 18 -04 05
CAA 06 -01 00 -84 -52 04|12 46 36 64 -27 04 00 -09 55 05 24
PCA -04 -02 00 35 17 -03|03*|18 00 45 18 -07 06 11 55 -01 -1.7
LAT 07 00 -10 -70 -09 10 |34*|-55 18 -36 -7.3 -40 -04 -24 -82 6.8 48
-20 -10 0 10 20

Absolute % Change

Figure 13: The changes in performance on all datasets when steering with five methods with the
standard variant with five objectives on Qwen-2.5-3B in direction generation. The results of the
unsteered model are displayed at the top, and all reported steering values are expressed as the
difference relative to the unsteered model’s performance, similarly to the Qwen results in FigureEl
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