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ABSTRACT

Classification is valuable and necessary in spectral analysis, especially for data-driven mining. Along with the rapid development
of spectral surveys, a variety of classification techniques have been successfully applied to astronomical data processing. However,
it is difficult to select an appropriate classification method in practical scenarios due to the different algorithmic ideas and data
characteristics. Here, we present the second work in the data mining series — a review of spectral classification techniques.
This work also consists of three parts: a systematic overview of current literature, experimental analyses of commonly used
classification algorithms, and source codes used in this paper. First, we carefully investigate the current classification methods in
astronomical literature and organize these methods into ten types based on their algorithmic ideas. For each type of algorithm,
the analysis is organized from the following three perspectives. (1) their current applications and usage frequencies in spectral
classification are summarized; (2) their basic ideas are introduced and preliminarily analysed; (3) the advantages and caveats
of each type of algorithm are discussed. Secondly, the classification performance of different algorithms on the unified data
sets is analysed. Experimental data are selected from the LAMOST survey and SDSS survey. Six groups of spectral data sets
are designed from data characteristics, data qualities, and data volumes to examine the performance of these algorithms. Then
the scores of nine basic algorithms are shown and discussed in the experimental analysis. Finally, nine basic algorithms source

codes written in python and manuals for usage and improvement are provided.

Key words: methods: data analysis — techniques: spectroscopic —software: data analysis.

1 INTRODUCTION

Classification of astronomical spectra is an essential part of astro-
nomical research. It can provide valuable information about the
formation and evolution of the Universe. With the implementation
of sky survey projects (Zhao et al. 2012; Liu, Zhao & Hou 2015a), a
large number of methods have been applied to automatically handle
various astronomical classification tasks (Luo, Zhang & Zhao 2004;
Luo et al. 2013; Baron 2019; Yang et al. 2020, 2021, 2022c, b;
Cai et al. 2022). However, classification methods achieve different
results on different data, so it is difficult to evaluate the classification
performance and determine the application scenarios.

In this paper, we investigate lots of classification methods on
astronomical spectra data and organize them into ten types. Each type
of them is displayed based on its usage frequencies in astronomical
tasks. And we mainly discuss its application scenarios, main ideas,
merits, and caveats. Then, we construct six collections of data sets
to provide a unified measurement platform. For the astronomical
classification tasks (A/F/G/K stars classification, star/galaxy/quasar
classification, and rare object identification), we construct data sets
from three criteria including data characteristics, signal-to-noise ratio
(S/N), data volumes. Then we compare the performance of nine basic
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classification methods on the aforementioned data sets and give an
objective appraisal of the classification results. Besides, the source
codes of each testing algorithm help researchers to study further
and a brief manual about usage and revision tips of our program is
provided in this work.

The rest of this paper is organized as follows. In Section 2,
classification methods on astronomical spectra data are briefly
introduced from application scenarios, main ideas, merits, and
caveats. In Section 3, experiments on three tasks of A/F/G/K stars
classification, star/galaxy/quasar classification, and rare object
identification are carried out. Section 4 represents python source
codes of the above experiments and a manual about how to use and
revise our codes. Finally, a discussion is drawn and our future work
is discussed in Section 5.

2 INVESTIGATION OF CLASSIFICATION
METHODS ON ASTRONOMICAL SPECTRA
DATA

The commonly used classification methods on astronomical spectra
are shown in Fig. 1. Each type of methods has its own characteristics
and applicable data sets. And some of them have been widely
used for spectral classification, like template matching, K-nearest
neighbour (KNN) based classification algorithms, and support vector
machine (SVM) based classification algorithms, but some of them
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Figure 1. Classification methods on astronomical spectra data. We pay more attention on main ideas, advantages, caveats, and application scenarios of these

methods.
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Figure 2. Classification methods on astronomical spectra data. The size of circles means the usage frequencies of each type of algorithm in our paper. And the
colour of circles is consistent with their sizes. That is, bigger and deeper circles mean that this type of algorithm is more frequently applied in astronomical tasks.

are rarely used, like logistic regression (LR) based classification
algorithms and collaborative representation based classifier (CRC)
(Fig. 2). Here, for each type of investigated methods, we analyse
its application scenarios on astronomical spectra and give some
objective appraisals. Then we introduce the main ideas, advantages,
and caveats of these methods.

2.1 Template matching

Template matching is a flexible and relative straightforward tech-
nique. The classification process of template matching is to build a
template data base for each class, then divide the unknown data into
the most similar template data (Rosenfeld & Vanderbrug 1977). In
astronomy, template matching matches spectral lines with templates
and there is no training stage. So it has been widely applied in celestial
object classification, redshift estimation, stellar parameters estima-
tion, and other projects (Lupton et al. 2002; SubbaRao et al. 2002;
Zhao et al. 2012; Liu et al. 2015a; Westfall et al. 2019). Table 1 shows
the main astronomical spectral investigations of template matching.

Template matching is often used to classify stars, galaxies, and
quasars and further analyse other properties of spectra. Duan et al.
(2009) used spectral line matching to identify the observed spectra
class and achieved a high accuracy about 92.9 per cent, 97.9 per cent,
and 98.8 percent for stars, galaxies, and quasars, respectively.
They also obtained a byproduct: high precision of redshift. Gray &
Corbally (2014) used template matching for Morgan-Keenan (MK)
classification and built an expert computer program imitating human
classifiers. It was automatic and had comprehensible results. Wang
et al. (2018) used the line intensity to classify spectra (Martins 2018;
Wang 2019).

Template matching is also used to find peculiar objects like
supernovas, M dwarfs, B stars, and M giants, Double-peak emission
line galaxies (Zhong et al. 2015b, a; Sako et al. 2018; Maschmann
et al. 2020; Ramirez-Preciado et al. 2020). Zhong et al. (2015b)
applied a template-fit method to identify and classify late-type K and
M dwarfs from LAMOST. 2612 late-K and M dwarfs were identified
which can help researchers to investigate the chemokinematics of
the local Galactic disc and halo. Maschmann et al. (2020) used
two Gaussian functions to fit the emission lines to find double-peak
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Table 1. Investigations of template matching on astronomical spectra data.

Merits Caveats

References

Straightforward and simple

Applied to stellar spectra, rare objects, etc!

Fast because of without training stage

Poor performance on low-quality spectra

Spectra without templates cannot be classified well

Poor performance on unbalanced data

Rosenfeld & Vanderbrug (1977), Duan et al. (2009),
Du et al. (2012), Ramirez-Preciado et al. (2020),
Wang (2019), Almeida et al. (2010), Martins (2018),
Wang et al. (2018), Li et al. (2016), Juvela (2016),
Sako et al. (2018), Zhong et al. (2015a),

Zhong et al. (2015b), Bolton et al. (2012),

Wei et al. (2014), Gray & Corbally (2014),

Masters & Capak (2011), Khorrami et al. (2021),
Kesseli et al. (2017), Cotar et al. (2019),

Agnello (2017), Zhang et al. (2016), Saez et al. (2015),
Karpov, Malkov & Zhao (2021), Gao et al. (2019)

Note. ! Subtypes of O star, Subtypes of B star, galaxy/others, etc.

=9

Figure 3. Process of KNN. The middle triangle is the object needed to be
predicted. Rectangles and circles are two types of known objects. The dashed
circle needs to be enlarged to find k neighbours. K = 9: three circles and six
rectangles are the triangle’s k neighbours.

candidates and finally they found 5663 double-peak emission line
galaxies at z < 0.34. Meanwhile, there is an important issue for
rare object identification using template matching, that is, classifiers
require sufficient high-quality spectral templates. In order to obtain
ample qualified rare templates, researchers tried to construct new
templates (Wei et al. 2014; Kesseli et al. 2017).

Template matching has been widely used in lots of surveys.
However, some spectra are of low quality, template matching cannot
obtain precise results on redshift estimation, stellar parameters
estimation, and classification (Podorvanyuk, Chilingarian & Katkov
2015). Hence, for the inferior quality spectra, other machine learning
algorithms like SVM based classification algorithms and artificial
neural network (ANN) based classification algorithms are employed
to get robust results. The other defect of template matching is that,
for rare objects, we do not have enough samples to get representative
template spectra. So rare objects are often misclassified.

2.2 K-Nearest neighbour based classification algorithms

K-Nearest Neighbor (KNN) based classification algorithms assign
labels to the target based on the majority labels of its K closest
objects. More in depth explanations of KNN based classification
algorithms can be found in Zhang & Zhou (2007), Deng et al.
(2016). The main ideas are shown in Fig. 3. They are intelligible
and their time complexity is linear to the data volume. Taking
these into consideration, KNN based classification algorithms have
been used to classify astronomical spectra and combined with
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other methods to improve classification accuracy. Table 2 displays
the major astronomical applications of KNN based classification
algorithms.

KNN can be used for stellar classification. Brice & Andonie
(2019b) used KNN and random forest (RF) for MK classification
of stellar spectra. Considering high dimensional spectra data, they
extracted absorption lines of spectra to reduce the time complexity.
The results showed that KNN had a shorter training time but a
longer testing time than RF. KNN could obtain the same accuracy
as RF when using hybrid methods or oversampling balancing
techniques. But for O-type stars which are few in the data sets,
KNN performed poorly. This is a common phenomenon in most
classification applications, that is, it is hard to get good classification
results in unbalanced data sets.

For complex spectral classification tasks, it is not a good choice
to only use the basic KNN based classification methods. Because
from the comparison results of different classification methods,
researchers found that good results were often produced by SVM
or RF, rather than KNN (Pérez-Ortiz et al. 2017; Arsioli & Dedin
2020; Xiao-Qing & Jin-Meng 2021). To obtain better results, some
improvements to KNN were also proposed, like KNN-DD to detect
known outliers (Borne & Vedachalam 2012) and ML-KNN: a lazy
learning approach to multilabel learning (Zhang & Zhou 2007). In
addition, many researchers combined KNN with other methods to
reduce the misclassification rate, like SVM + KNN to correct some
prediction errors (Peng et al. 2013). And its classification accuracy
of quasars reached 97.99 per cent.

KNN based classification algorithms are arguably simple and
efficient machine learning algorithms. And they have been demon-
strated to be competitive methods because of the high accuracy
under the premise of their simplicity and rapidness (Fushiki 2011;
Guzmién et al. 2018; Sookmee et al. 2020). They use Euclidean
distance to measure the similarity of data and perform better on low
dimensional data. After pre-processing high dimensional spectra,
KNN based classification algorithms can also be applied in as-
tronomy, such as star/galaxy/quasar classification and classification
of small radial velocity objects. However, from the investigated
researches, KNN based classification algorithms mainly suffer from
three disadvantages: (1) the only hyperparameter K is difficult to
determine. (2) KNN based classification algorithms are ineffective
for star classification because of the misclassification between
adjacent classes. (3) Unbalanced data are another challenge for
KNN based classification algorithms. Recently, some algorithms like
Synthetic Minority Oversampling Technique (SMOTE) have been
employed to adjust the data volume distributions to solve the third
issue.
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Table 2. Investigations of KNN based classification algorithms on astronomical spectra data.

Merits Caveats References
Accurate and fast on proper features! Generally, RF>SVM>KNN Brice & Andonie (2019b),
Arsioli & Dedin (2020),

Combined with other methods? to improve accuracy

Applied to stellar spectra and subtypes classification®

limited to large redshift objects

Misclassification on F, G, K stars

Peng, Zhang & Zhao (2013),
Buet al. (2019),

Akras et al. (2019),

Xiao-Qing & Jin-Meng (2021),
Pérez-Ortiz et al. (2017),
Sookmee et al. (2020)

Notes. ! Features extracted by CNN; astronomical specific information.
2 SVM, CNN, Decision tree, etc.

3 MK classification, star/galaxy/quasar classification, Hot subdwarfs, symbiotic stars, Be stars, LSP/HSP, etc.

Table 3. Investigations of SVM based classification algorithms on astronomical spectra data.

Merits

Caveats

References

Accurate and fast on proper features'

Optimizations of SVM to improve accuracy?

Applied to unbalanced and large-scale data sets

Applied to stellar spectra and subtypes classification

Stellar loci is better than SVM on MK classification

Limited to large redshift objects

Need sufficient valid samples

Liu et al. (2015b), Guzman et al. (2018),
Arsioli & Dedin (2020), Qu et al. (2020),
Liu et al. (2019), Govada, Gauri & Sahay
(2015),

1D SCNN is better than SVM on stellar classification Fugiang et al. (2014), Barrientos, Solar &

Mendoza (2020),

Solarz et al. (2012), Tsalmantza et al. (2012),
Kou, Chen & Liu (2020), Liu (2021),

Malek et al. (2013), Peng et al. (2013),
Solarz et al. (2017), Liu & Zhao (2017),
Yude et al. (2013), Xiao-Qing & Jin-Meng
(2021),

Dong & Pan (2020), Kong et al. (2018),

Bu et al. (2019), Liu, Song & Zhao (2016)

Notes. ' Multifrequency, colour space, spectral lines, etc.

2 Within-Class Scatter and Between-Class Scatter (WBS-SVM), OCSVM, Twin Support Vector Machine (TWSVM).

3 MK classification, LSP/HSP, K/F/G stars, Type IIP/IIL Supernovae, etc.

2.3 Support vector machine based classification algorithms

Support vector machine (SVM) based classification algorithms are
binary classifiers that learn a boundary from the training data to
classify two types of data. And multiple binary SVM classifiers can
be integrated into a multilabel classifier. Generally, the classification
precision and robustness of SVM based classification algorithms
are relatively superior to other single classifiers (non-ensemble
algorithms). Table 3 shows the main astronomical researches of SVM
based classification algorithms.

Spectral classification is a common astronomical task for SVM
based classification algorithms (Liu et al. 2015b, 2018; Guzman
et al. 2018; Tao et al. 2018; Brice & Andonie 2019a; Barrientos et al.
2020; Liu 2021). Solarz et al. (2012) used the infrared information
to separate galaxies from stars and the accuracy reached 90 per cent
for galaxies and 98 per cent for stars. Malek et al. (2013) trained an
SVM classifier to classify stars, active galactic nucleus (AGN) and
galaxies using spectroscopically confirmed sources from the VIPERS
and VVDS surveys. In the stellar spectral classification, A stars and
G stars can be identified easily, while it was hard to identify O, B,
and K stars. Because the differences in the spectral features between
late B type and early A type stars or between late G and early K type
stars were very weak (Liu et al. 2015b). Dong & Pan (2020) used
SVM and cascaded dimensionality reduction techniques to classify
spectra, which is better than principal component analysis (PCA) or
t-distributed stochastic neighbour embedding (T-SNE).

In addition to classification, SVM based classification algorithms
can also be used for peculiar spectra identification (Qu et al. 2020).
More depth details of rare objects such as carbon stars and variable
objects can be found in Gigoyan et al. (2012), Green (2013), Baran
et al. (2021), Maravelias et al. (2022), Kong et al. (2018), Kou et al.
(2020), Solarz et al. (2017), Qu et al. (2020). Solarz et al. (2020)
detected anomalous in the mid-infrared data using one-class SVM.
Among the 36 identified anomalous, 53 per cent of them were low
redshift galaxies, 33 percent were particular quasi-stellar objects
(QSO0s), 3 percent were galactic objects in dusty phases of their
evolution, and 11 per cent were unknown objects. The main problem
in this task is that the number of some types of rare samples is
far smaller than normal samples. So the classification model cannot
identify the rare classes well. There are also many approaches to
solve this problem, like data augmentation, oversampling, etc. Liu &
Zhao (2017) proposed an entropy based methods for unbalanced
spectral classification. And the performance was better than using
KNN and SVM directly.

SVM based classification algorithms are binary classifiers with
rigorous mathematical theory. They try to find the optimal sepa-
rating hyperplane to divide data into two categories (Fig. 4). For
multilabel classification, One-VS-One (OVO), One-VS-All (OVA),
and Directed Acyclic Graph (DAG) are the main tactics to train
different classifiers. There are two important tricks of SVM based
classification algorithms. One is soft margin which uses a robust
partition boundary to separate two types of data and tolerates the
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Figure 4. Process of SVM. The black circles and white circles are two types
of unknown groups. The solid line is the hyperplane to separate groups.
The proper gap between paralleled dashed lines and solid lines can avoid
overfitting and underfitting.

Figure 5. Mainidea of decision tree. ID3, C4.5, and CART are three common
decision trees, the principle of them are similar except for the different node-
split tactics (Information Gain, Information Gain Ratio, and Gini Index).
Ellipses represent the split nodes for classification, and rectangles represent
the final multiple classification results.

misclassification of some abnormal data. The other one is kernel
function which can map linearly inseparable data into a linearly sep-
arable high-dimensional space. However, SVM based classification
algorithms adopt kernel matrix to measure the similarity of samples.
So the computation time and space are two vital issues for classifiers
on large amounts of data.

SVM based classification algorithms are promising classification
methods that have a convincing theory and robust results. They have
attracted a good deal of attention due to their high accuracy in mul-
tidimensional space and already have been applied to astronomical
spectral classification, such as star/galaxy/quasar classification, stel-
lar spectral classification, and novelty detection. However, the time
complexity of SVM based classification algorithms is exponentially
related to the training size. So, it is indispensable to pre-process
astronomical spectra to reduce the training time.

2.4 Decision tree based classification algorithms

Decision tree (DT) based classification algorithms (Quinlan 1996)
are essential in machine learning algorithms. Their leaves represent
classification results and internal nodes of branches are regarded as
criteria for distinguishing objects. The graphical representation of
decision tree is shown in Fig. 5. Decision tree and its variants have
been applied in astronomy and many other fields (Li 2005; Zhao &
Zhang 2008; Bae 2014; Czajkowski, Grze§ & Kretowski 2014).
Table 4 shows the main astronomical investigations of decision tree
based classification algorithms.

Decision tree based classification algorithms have been widely
used for astronomical classification due to their good interpretability
of classification results. Here are some examples of decision tree for
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astronomical classification. Morice-Atkinson et al. (2018) explored
the classification boundaries of star and galaxy through decision
tree. This visualized the classification process of the star—galaxy
and helped astronomers understand the decision rules of celestial
classification. Franco-Arcega, Flores-Flores & Gabbasov (2013)
used parallel decision trees to classify different types of objects
and evaluated the performance of classification results. Vasconcellos
et al. (2011) applied 13 different decision tree algorithms to analyse
the classification performance of star/galaxy, and the functional tree
algorithm yielded the best results.

According to the astronomical researches using decision tree
based classification algorithms, there are three tips to improve the
classification performance. First, effectively pre-processing the raw
observational spectra will assist and speed up the classification,
such as noise reduction and data compression. Secondly, extracting
valid features is also important. Most familiar approaches normalize
and standard spectra data by prevalent methods without additional
operations (Vasconcellos et al. 2011; Pichara et al. 2016), yet
these simple approaches will have high computational costs and
could not improve classification accuracy effectively. So other valid
features may be better to improve classification performance, such
as line indices and astronomical specific features. Thirdly, searching
for appropriate methods is another vital approach to improving
classification performance. Compared with other typical methods,
RF performed best both on accuracy and time consuming in Xiao-
Qing & Jin-Meng (2021), Brice & Andonie (2019b), Flores et al.
(2021), etc. Alternatively, integration of decision tree and other
conventional classification methods can enhance the superiority
of feature selection and results interpretation, respectively (Ivanov
et al. 2021). However, heterogeneous data, large redshift objects,
other stellar parameters regression, and misclassification are still
challenges for decision tree in astronomical research. These need to
be solved in the future.

Iterative Dichotomiser 3 (ID3), C4.5, and Classification and
Regression Trees (CART) are three widespread methods based
on decision tree. ID3 adopts Information Gain (IG) as the node
selection criterion for classification. While C4.5 chooses Information
Gain Ratio (IGR) to alleviate the flaws of ID3 (IG: discrete data,
incomplete attribution, overfitting, etc). Another upgraded method
is CART which can be used for both classification and regression.
It employs the Gini Index as a node selection standard instead of
Information Entropy. The main advantage of decision tree based
classification algorithms is interpretability of results, which is very
helpful for astronomers to analyse the features of astronomical
objects. And the disadvantage is that we often obtain a complex
model which will be overfitting on the training data. So pruning
parameters is always required to reduce overfitting.

2.5 Ensemble learning classification algorithms

Ensemble learning (Freund & Mason 1999) combines multiple
weak classifiers into a strong classifier to solve a task together.
Generally, ensemble learning methods are sorted into bagging
methods decreasing variance, boosting methods reducing deviation,
and stacking methods increasing prediction accuracy. Compared
with the single decision tree, ensemble learning methods are more
often used in astronomy.

Bagging usually trains different models with various training sets
respectively and chooses one strategy to unify consequences. The
principle of bagging is shown in Fig. 6. Random Forest is the most
notable bagging method which consists of several unrelated decision
trees. Fig. 7 describes the principle of Random Forest. RF can be
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Table 4. Investigations of DT based classification algorithms and ensemble learning on astronomical spectra data.

Merits Caveats

References

Results interpretability and predicted probability

High accuracy on stellar and subtypes'
Extract feature well for stellar and subtypes

Classify spectra with missing values and noise
data

Limited to large redshift objects

Misclassification on G,FK stars
Adjust parameters manually

Poor performance on unbalanced

Pichara, Protopapas & Le6n (2016), Akras et al. (2019),

Flores, Corral & Fierro-Santillan (2021), Xiao-Qing & Jin-Meng
(2021), Vasconcellos et al. (2011), Morice-Atkinson, Hoyle &
Bacon (2018), Clarke et al. (2020),

Pattnaik et al. (2021), Li, Lin & Qiu (2019), Bai et al. (2019),
Arsioli & Dedin (2020), Liu et al. (2019), Yi et al. (2014),
Hosenie et al. (2020), Li et al. (2019), Baqui et al. (2021),

Reis et al. (2018), Brice & Andonie (2019b),

Pérez-Ortiz et al. (2017), Ivanov et al. (2021), Tao et al. (2018),
Kiyritsis et al. (2022), Guo et al. (2022), Brice & Andonie (2019a),
Maravelias et al. (2022), Hou et al. (2020), Hu et al. (2021),
Zhang, Zhao & Wu (2021), Yue et al. (2021), Sookmee et al. (2020)

Notes. ! Star/galaxy/quasar classification, MK classification, LSP/HSP, M star/others, etc.

2 MK classification, stellar subtypes, M subtypes, etc.
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Figure 6. Main idea of bagging. The left cylinders are training sets to train
different base classifiers using learning algorithms. The upper cylinder is
the new testing set to test the combined classifier which is made up of a
collection of base classifiers. And the strong classifier is generated by voting
for classifier i (i = 1, 2, 3 in Fig. 6).
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Figure 7. Main idea of random forest. Tree i (i = 1, 2,......, n) are decision
trees trained by certain strategies. The black circles are the basis nodes of
classification. The voting methods adopt the majority or average results of
tree i (i = 1, 2,......, n) as the final results.

Combined
Classifier

Training
Sets

i
Classifier 3 ‘

applied to classification, clustering, regression, and outlier detection
due to its high accuracy and adaptability of high dimensional data
sets.

RF is a robust classifier for spectral classification (Yi et al. 2014;
Biau & Scornet 2016; Morice-Atkinson et al. 2018; Bai et al. 2019;
Brice & Andonie 2019a, b; Liu et al. 2019; Li et al. 2019; Hosenie
et al. 2020; Baqui et al. 2021). Clarke et al. (2020) trained an RF
classifier on 3.1 million labelled sources from Sloan Digital Sky
Survey (SDSS) and applied this model on 111 million unlabelled

Training
)| Classifier 2

Training
Classifier n

Training
/| Classifier 1

= {
o3 f
o Weights !

Input Dataset

Dataset 1 Dataset 2 Results

Figure 8. Main idea of boosting. The left data set is regarded as input to
train classifier 1 (Training Classifier 1 in Fig. 8). Data set 1: a new data set
from training classifier 1 after updating its weights. Train the classifier and
update the weights until the classification results converge.

sources. The result showed that the classification probabilities of
stars were greater than 0.9 (about 0.99). Besides, RF performed
well in the process of searching for rare objects (Hou et al. 2020;
Kiyritsis et al. 2022). Pattnaik et al. (2021) trained a random forest
classifier to determine whether a black hole or a neutron star is
hosted by a Low Mass X-ray binaries (LMXBs). It is difficult to
accurately classify variable stars into their respective subtypes, hence
Pérez-Ortiz et al. (2017) proposed new robust feature sets and used
RF to evaluate the classification performance. Akras et al. (2019)
used classification tree for identifying symbiotic stars (SySts) from
other Ho emitters in photometric surveys. Guo et al. (2022) used
random forest to identify white dwarfs in LAMOST DRS. Reis et al.
(2018) used an unsupervised random forest to detect outliers on APO
Galactic Evolution Experiment (APOGEE) stars. In addition, RF is
often compared with other algorithms on classification tasks, and
generally, it tends to be better than others (Pérez-Ortiz et al. 2017;
Liu et al. 2019; Arsioli & Dedin 2020).

Boosting trains models with adjusted data, that is, the weights of
misclassified objects are augmented based on the former models.
Fig. 8 is the principle of boosting. Gradient Boosting Decision Tree
(GBDT), Adaptive boosting (Adaboost), extreme gradient boosting
(XGBoost), and Light Gradient Boosting Machine (LightGBM)
are prevalent boosting methods. Adaboost is a prominent boosting
method that chooses single-layer decision trees as weak classifiers.
In each iteration, it trains one weak classifier based on data weights
generated in the last iteration. So Adaboost pays more attention on
misclassified data. The other essential parameters are weights of
each classifier. They are computed based on classification accuracy
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Figure 9. Main idea of adaptive boosting (Adaboost). The left cylinder is

input data used to train classifier i (i = 1, 2,......, n). ; (i = 1, 2,......,n) are
the weights of data. ; (i = 1, 2,......,n) are the weights of classifiers.
e
1 4
| residual
Model 2

Model n

Prediction

Testing Set

Figure 10. Main idea of gradient boosting decision trees (GBDT). The
residual of model i-1 is the input of model i (i = 1,2,......,n). The goal of
GBDT is to make residual as small as possible.

of every classifier. And the final results are obtained after inputting
the sum of each weak classifier into a sign function. Fig. 9 is the
main principle of Adaboost. GBDT (Pérez-Ortiz et al. 2017; Morice-
Atkinson et al. 2018), another typical boosting algorithm, can also
be regarded as an optimized version of Adaboost. GBDT chooses
the residual from the previous iteration as input to train the next
classifier till the residual is close to zero. Besides, GBDT can take
more objective functions and train models using negative gradient,
whereas Adaboost only sets data weights automatically. Fig. 10
shows the main principle of GBDT. XGBoost optimized GBDT by
supporting different meta classifiers, adding regularization to limit
model complexity, adapting to different data samplings and so on.
Fig. 11 shows the main principle of XGBoost.

GBDT and XGBoost are two powerful ensemble classifiers
(Friedman 2001; Chen & Guestrin 2016) and have been applied
to spectral classification and rare object identification. Chao, Wen-
hui & Ji-ming (2019) used XGBoost to classify star and galaxy
on dark sources of SDSS photometric data sets and the results
showed that XGBoost outperformed other methods. Hu et al. (2021)
searched for Cataclysmic Variables (CVs) in LAMOST-DR7 using
LightGBM which is based on the ensemble tree model. They found
225 CV candidates including four new CV candidates which were
verified by SIMBAD and published in catalogues. Yue et al. (2021)
also identified M sub-dwarfs using XGBoost. In order to get better
classification results, many new ensemble algorithms have been
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Figure 11. Main idea of XGBoost. w; (i = 1, 2,......, n) are the scores of
leaves. R1 and R2 are the predicted labels which are the sum of w;. The
black circles represent data. They are classified as R1 and the white circles
are classified as R2. Bigger score between R1 and R2 is the final result.
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Figure 12. Main idea of stacking. The left cylinders are training sets and test
sets. Meta feature 1 and meta feature 2 are the results of model i (i = 1,2,.....,n)
on training sets and test sets, respectively. Model O is trained by meta feature
1 and meta feature 2. Then meta feature 2 is input into model 0 to predict
results.

proposed in recent years (Chao et al. 2020; Chi, Li & Zhao 2022;
Zhao, Wei & Jiang 2022).

Stacking uses a new model to fit meta features which are obtained
by multipredictors on training sets and testing sets. And this new
model will be validated with the following meta features. Fig. 12
introduces the principle of stacking.

Ensemble learning has obtained desirable results in astronomical
spectral analysis. And random forest is the most frequently used
ensemble method in astronomy. Because it has good generalization
performance on large scale high-dimensional data sets. It is good
at probabilistic prediction and is insensitive to noise. However,
multivalue attribute still troubles RF. In addition, ensemble learning
methods are also limited to heterogeneous data, unbalanced data, and
optimal parameters (the number of decision tree, weak classifiers).

2.6 Neural network based classification algorithms

Artificial neural network, also known as Multi-Layer Perception
(MLP), is a machine learning method that imitates the signal trans-
mission mechanism in the brain. It consists of an input layer, multiple
hidden layers, and an output layer. The neural unit in each hidden
layer tackles input data and sends results to the next fully connected
layer. The output layer generates the final consequences. Fig. 13 is
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Figure 13. Main idea of neural unit. x; (i = 1, 2,......, n) is input data. ;
(i =1, 2,......, n): weights of x;. b: (biases) is also the input of neural units.
The big circle in the middle contains a linear combination of input and an
activation function f.

Hidden Layer 2

Input Layer Hidden Layer 1 Output Layer
Figure 14. Main idea of artificial neural network. ANN contains multiple
fully connected neural units. w; (i =1, 2,......,n) and b; (i = 1, 2,......, n) are
updated during iterations. f is the activation function. y; (i = 1, 2,......, n) is
the final result.

the principle of a neural unit. And Fig. 14 is the main principle of
ANN. Particularly, Pseudo-Inverse Learning (PIL) is a classic neural
network. It can get globally optimal results and is faster than Back-
propagation (BP) algorithm. Besides, it does not require manual
tuning of parameters. So it has been used for some simple tasks.
However, for complicated tasks, optimal versions of neural network
are necessary. Deep learning (DL) is an essential extension of ANN,
and it contains more hidden layers and complex network structures
(Bergen et al. 2019). Convolutional Neural Network (CNN), Auto
Decoder (AE), and Deep Belief Networks (DBN) are three chief
methods of DL. Moreover, other variant versions of neural network
have been proposed to adapt to different data formats, like Visual
Geometry Group (VGG), Residual Networks (ResNet), Recurrent
Neural Network (RNN), Generative Adversarial Networks (GAN),
and others. Moreover, pre-trained models, attention blocks, transfer
learning, and many other tricks have been used to improve the deep
learning performance effectively.

Convolutional Neural Network (CNN) consists of convolutional
layers that extract image features, pooling layers that reduce di-
mensionality and fully connected layers that generate results. CNN
automatically extracts features without destroying them. So it can
get better accuracy and cope with high dimensional data. But its
vanishing gradient problem and local optimal phenomenon still
annoyed us. Fig. 15 shows the main principle of CNN.

Auto Decoder (AE) is a neural network whose input equals its
output and its main idea is sparse code. It restructures the input using
an encoder and a decoder. And it has been widely used for noise and
dimensionality reduction to visualize data. Fig. 16 is the principle of
AE.
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Figure 15. Main idea of convolutional neural network. Convolutional layers
are used to learn features from different layers. MaxPooling layer can reduce
dimensionality. The role of the fully connected layer is equivalent to the
classifier. The output layer is designed to represent the classification results
according to the concrete classification task.
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Compressed

Original Input
a B Representation
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Figure 16. Main idea of auto encoder. Compressed representation of orig-
inal input is achieved by encoder model. Another vital model is decoder
transforming compressed representation into the restructured input.

DBN is a probabilistic generative model. Its generative model
builds a joint distribution between observations and labels. DBNs
consist of multiple layers of Restricted Boltzmann Machines which
is a probabilistic graphical model with stochastic neural network.
The output states of each neural unit are activation and deactivation.

Different examples of astrophysical research projects exploiting
neural network are listed in Table 5 and summarized in the next parts.

Astronomical spectral classification is a typical task for neural
network. Cabayol et al. (2019) used CNN to classify star and
galaxy on low-resolution spectra from narrow-band photometry
with accuracy over 98 percent. Jingyi et al. (2018), Astsatryan
et al. (2021) used deep CNN to classify quasar and galaxy. Many
new improvements of neural network emerged in recent years
have been proven to be effective, like residual structures and
attention mechanisms (Zou & el al. 2020). A multitask residual
neural network was applied to classify M-type star spectra. It
reduced the number of parameters in spectral classification and
improved the model efficiency (Lu et al. 2020). Compared to other
methods, neural network always worked best on the complex data
(Aghanim et al. 2015; Guo & Martini 2019; Sharma et al. 2020;
Vilavicencio-Arcadia et al. 2020; Chen 2021; Kerby et al. 2021).

Rare object identification is another vital task of neural network
(Luo et al. 2008; Guo et al. 2019; Muthukrishna, Parkinson &
Tucker 2019; Zou et al. 2019; Jiang et al. 2020; Kou et al. 2020;
Margalef-Bentabol et al. 2020; Skoda et al. 2020; Zheng et al. 2020;
Tan et al. 2022; Zhang et al. 2022). Shi et al. (2014) searched for
metal-poor galaxy (MPG) in large surveys and achieved an MPGs
acquisition rate about 96 percent. Zheng & Qiu (2020) used 1D
CNN to search for O stars. Muthukrishna et al. (2019), Fremling
et al. (2021), Davison et al. (2022) proposed a software package
that used deep learning models to classify the type, age, redshift, and
host galaxy of supernova spectra. Qu et al. (2020) identified spectrum
J152238.114-333136.1 from LAMOST DRS5 and discussed the rare
features of P-Cygni profiles.

Neural network based classification algorithms can be used to
extract spectral features by different layers (i.e. hidden layers in
Fig. 14, convolutional layers in Fig. 15). These layers can auto-
matically learn rich and complex relationships between data. So
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Table 5. Investigations of neural network based classification algorithms on astronomical spectra data.

Merits Caveats

References

High accuracy on stellar spectra and specific spectra’ Limited to unbalanced data sets

Better than other methods?

Generate synthetic data

Redshift estimation for quasar, SNe Ia/others
Tackle different types of input data sets> Overfitting
Need less additional information

Provide vital supplements to categories”

Results are affected by noise

Bad performance on weak features

Misclassification on K/F stars

High computation time

Cabayol et al. (2019), Shi et al. (2014),

Zou & el al. (2020), Farr, Font-Ribera & Pontzen (2020),
Wang, Guo & Luo (2017), Liu et al. (2019),

Davison, Parkinson & Tucker (2022), Bu et al. (2019),
Aghanim et al. (2015), Fuqiang et al. (2014),

Poor performance on large redshift objects  Arsioli & Dedin (2020), Guo et al. (2019),

Rastegarnia et al. (2022), Sharma et al. (2020),

Guo & Martini (2019), Fremling et al. (2021),

Chen (2021), Flores et al. (2021), Zou, Zhu & Xu (2019),
Zheng & Qiu (2020), Tan et al. (2022),

Lu, Pan & Yi (2020), Astsatryan et al. (2021),

Jingyi et al. (2018), Jiang et al. (2021),

Jing-Min et al. (2020), Jiang et al. (2020),

Skoda, Podsztavek & Tvrdik (2020), Kerby et al. (2021),
Luo et al. (2008), Zheng et al. (2020),
Vilavicencio-Arcadia et al. (2020)

Notes. ! M stars/others, BAL quasars/others, Pulsars/blazars, etc.
2 RF, template matching, KNN, etc.

3 Spectra, image, photometric data, etc.

4 Quasar, star, double-lined spectroscopic binaries, etc.

neural network based algorithms can obtain high accuracy (Moraes,
Valiati & Gavido Neto 2013; Fuqiang et al. 2014; Wang et al. 2017;
Guo et al. 2019; Liu et al. 2019; Jing-Min et al. 2020; Portillo et al.
2020; Zou & el al. 2020; Jiang et al. 2021). Furthermore, neural
network could also handle input features well even without colour
or morphological information (Bu et al. 2019; Cabayol et al. 2019)
which greatly expanded the size and formats of input data sets.

In short, neural network can learn deep features of data, which
will provide subtle differences for classification. More importantly,
with the introduction of tricks (i.e. residuals and attention blocks),
ANN pays more attention on the valid features. In addition, ANN
increases its depth to handle complex and high dimensional data.
So it has been widely used in astronomy, such as star/galaxy/quasar
classification, MPGs/MRGs classification, rare object identification
and spectral feature selection, etc (Rastegarnia et al. 2022). Although
neural network model can produce good results, it is a black box
that is difficult to interpret results. Compared with decision tree, the
results of neural network are difficult for astronomers to analyse the
characteristics of celestial objects.

2.7 Gaussian naive Bayes based classification algorithms

Assuming that features are independent, Gaussian naive Bayes
based classification algorithms simplify the Bayesian algorithm.
They prefer to deal with features in a Gaussian distribution and
the maximum posterior probability is the final results. Equation (1)
is the objective of Gaussian Naive Bayes based classification algo-
rithms and equation (2) is Gaussian probabilities. Table 6 represents
astronomical studies of Gaussian naive Bayes based classification
algorithms.

y:argmaxP(Y:ck)HP(Xj:xj|Y:Ck), 1)
Ck ;
J

where

P (x| y)= @)

2
1 (xi = 1y)
exp [ — >
\/2mo? 207
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8y is variance of x; (i = 1, 2,......, n) and K, is average of x; in
equation (2).

Gaussian Naive Bayes based classification algorithms are good
at dealing with continuous small data generated from Gaussian
distribution. Under the assumption of reliable and sufficient prior
spectral information, they could identify rare objects from a large
number of spectra data, such as carbon stars (Wallerstein & Knapp
1998; Lloyd Evans 2010; Hoyle et al. 2015; Pruzhinskaya et al.
2019; Arsioli & Dedin 2020). And they were good at reducing noise
of stellar spectra, which increased classification accuracy (Kang et al.
2021).

2.8 Logistic regression based classification algorithms

Bayesian Logistic Regression (LR) based classification algorithms
obtain posterior probability distributions from linear regression
models. And we can get classification results through the sigmoid
function. The main researches of LR based classification algorithms
are shown in Table 6. Fig. 17 is the principle of Bayesian Logistic
Regression based classification algorithms.

LR based classification algorithms can be used for quick regres-
sion. However, they cannot get desirable accuracy due to underfitting,
bipartition data, and linear data in small feature spaces. In astron-
omy, logistic regression based classification algorithms were often
combined with other techniques to predict physical parameters and
classify celestial objects (Luo et al. 2008; Tao et al. 2018; Pérez-
Galarce et al. 2021).

2.9 Collaborative representation based classifier and partial
least-squares discriminant analysis

Partial least-squares discriminant analysis (PLS-DA) belongs to the
discriminant analysis of multivariance data analysis techniques and
can be used for classification and discrimination. It handles data
in the same cluster rather than data in different clusters. Data in
the same group varies widely. And data volumes between groups
differ a lot. It extracts principle components of the independent
variable X and the controlled variable Y, and finds the relationship
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Table 6. Investigations of statistics and ranking on astronomical spectra data.
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Merits

Caveats

References

Ranking methods can identify rare objects efficiently CRC-WPLS is not a prevalent method

CRC-WPLS are used on non-linear unbalanced data

Ranking methods also require ample data

Wallerstein & Knapp (1998), Lloyd Evans (2010),
Si et al. (2015), Li et al. (2018),

Hoyle et al. (2015), Kang, He & Zhang (2021),
Du et al. (2016), Daniel et al. (2011),

Song et al. (2018), Pérez-Galarce et al. (2021),
Tao et al. (2018), Arsioli & Dedin (2020),
Pruzhinskaya et al. (2019), Luo et al. (2008)

X P
Xy ) o q
Bayes - : | Er;; * - o or
5 Model ' 0.2 sign 1
xﬂ' !)J'l
g
Inputs Frobabilities [0,1] Prediction
Figure 17. Main idea of Bayesian logistic regression. p; (i = 1, 2,......, n)
are probabilities of x; (i =1, 2,......, n) and are generated by Bayes model.
Sigmoid function activates p; (i = 1, 2,......, n) into value between 0 and 1.

Sign function transforms probabilities into label O or 1.

between principle components in a two high-dimensional space.
Table 6 displays the main astronomical researches of CRC-PLS based
classification algorithms.

CRC is a novel machine learning algorithm that represents a query
by a linear integral of training samples. And CRC classifies the above
queries based on the representation (Daniel et al. 2011). It has the
ability to handle unbalanced, non-linear, and multilabel data.

CRC-PLS reaps the merits of PLS regression and CRC. So it can
classify the high-dimensional spectra data (Song et al. 2018).

2.10 Ranking based classification algorithms

Ranking based positive-unlabelled (PU) learning algorithms have
been frequently used in astrophysical object retrieval. Graph based
ranking methods successfully identify carbon stars from massive
astronomical spectra data, such as manifold algorithm and efficient
manifold algorithm (Si et al. 2015), Locally linear embedding.
The bipartite ranking is another typical method to improve ranking
performance and it has been introduced to search for carbon stars
(Du et al. 2016). Alternatively, bagging is a popular method to obtain
better performance by integrating different classifiers. The idea of
bagging has been well applied in rare object retrieval wonderfully
(Du et al. 2016; Li et al. 2018).

The core idea of ranking based classification methods is to learn
a ranking based model which usually ranks data sets by pre-defined
evaluation methods. They have two goals: (1) positive samples are
ranked ahead of negative samples. (2) the scores of related samples
tend to be similar. Many optimal ranking methods have emerged to
improve classification performance and reduce time consumption,
such as efficient manifold algorithms and bagging TopPush. And
these methods have already discovered carbon stars from extensive
spectra data which is a significant supplement to the catalogues of
carbon stars (Table 6).

3 EXPERIMENT ANALYSIS

Recently, lots of basic or improved classification algorithms have
been successfully applied to various astronomical data analyses.
However, due to the diversity of classification tasks and classification
data, it is difficult to assess the advantages and disadvantages of these
methods from the current literature. So, in this section, we construct
unified experimental spectral data sets from LAMOST survey and
SDSS survey to evaluate the commonly used methods.

3.1 Experimental data introduction

In the experimental design, we construct several groups of data sets
using the spectra data from LAMOST (Luo et al. 2015) and SDSS.

LAMOST (The Large Sky Area Multi-Object Fiber Spectroscopic
Telescope, also known as Guo Shou Jing Telescope) is a special
reflective Schmidt telescope with an effective aperture of 3.6-4.9
m and a field of view of 5°. It is equipped with 4000 fibres, a
spectra resolution of R &~ 1800, and a wavelength ranging from 3800
to 9000 A (http://www.lamost.org/public/?locale = en). Its scientific
goal is to make a 20 000 deg? spectroscopic survey (DEC: —10° ~
+90°). After seven years of surveying, LAMOST has observed tens
of millions of low-resolution spectra data, providing important data
for astronomical statistical research.

The Sloan Digital Sky Survey (SDSS) is an international collab-
oration of scientists to build the most detailed 3D imagery of the
Universe. It uses a wide-field telescope with a diameter of 2.5 m
and a field of view of 3°. The photometric system is matched with
five filters in u, g, r, i, and z bands to photograph celestial objects.
It covers 7500 deg” of the sky around the South Galactic Pole and
records data on nearly 2 million celestial objects.

Experimental data are selected from LAMOST DR8 and SDSS
DR16. The LAMOST DRS data sets include a total of 17.23 million
released spectra. The number of high-quality spectra of DR8 (that is,
the S/N > 10) reaches 13.28 million and DRS includes a catalogue
of about 7.75 million groups of stellar spectral parameters. The
SDSS DR16 covers more than one-third of the sky and contains
about 5789 200 total spectra and 4846 156 useful spectra. And DR16
contains new optical and infrared spectra, including the first infrared
spectra observed by Las Campanas Observatory in Chile.

We select and pre-process the spectra from four aspects. These are
shown in Table 7.

(1) Datarelease. We select spectra from LAMOST DRS8 and SDSS
DRI16.

(2) Extinction problem. In order to decrease the influence of
reddening on classification performance, 1D spectra in data sets are
selected from LAMOST (45° < 1) (Yang et al. 2022a).

(3) Flux calibration. LAMOST uses relative flux calibration. We
cut off the overlapping region (5700 A< < 5900 A) known to have
calibration issues to minimize their effect on our classification.
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Table 7. Data preprocessing.

Data selection and preprocessing

LAMOST DR8, SDSS DR16

1D spectra from LAMOST(/ > 45°)

Rest wavelength frame spectra for star/galaxy/quasar
Relative flux calibration: cut off 5700 A-5900 A

Data release
Extinction
Redshift

Flux calibration

(4) Redshift. For star/galaxy/quasar classification, we convert
original spectra into the rest-frame wavelengths by applying the
redshift values from LAMOST and compare the performance of
classification on the rest wavelength frame spectra and original
spectra. Because the radial velocity of stellar spectra are small under
the current resolution of LAMOST, which has little influence on
classification results. Spectra for stellar classification are left in the
observed frame wavelengths.

We determine three classification tasks among multiple as-
tronomical researches, including A/F/G/K stars classification,
star/galaxy/quasar classification, and rare object identification. Rare
objects includes carbon stars (Wallerstein & Knapp 1998; Lloyd
Evans 2010; Gigoyan et al. 2012), double stars, artefacts: bad
merging of red and blue segments (A common phenomenon that
occurs in the spectra of LAMOST).

We design six groups of data sets for the above tasks. Data sets
1—data sets 3 are constructed for A/F/G/K stars classifications. They
are divided by data characteristics, S/Ns and data volumes, and each
data set contains three or four sub-data sets. Datasets 4 are used
to evaluate the classification performance of star/galaxy/quasar on
original spectra and rest wavelength frame spectra. Data set 5 is
used to identify rare objects: carbon stars, double stars, and artefacts.
And the classifier is trained on 200 rare objects and 19900 other
non-rare objects. Non-rare objects include 10 000 normal stars, 6500
galaxies, and 3400 quasars. We analyse the results of rare object
identification by accuracy, precision, recall, and F1 score. Spectra of
the first five groups of data sets are selected from LAMOST. Because
the sources of LAMOST have considerable overlaps with SDSS, we
construct the matching data sets (data sets 6 in Table 8) from SDSS
and LAMOST to compare the classification performances on them.
The analyses of experimental results on data sets 6 are elucidated in
Section 3.2.1.

Table 8. Data sets of spectral classification.

The composition of testing sets in all data sets is the same as their
training sets. The ratio of training sets and testing sets for data sets
1, data sets 2, data sets 3, data sets 4, and data sets 6 is 8:2 and the
ratio of training sets and testing sets for data set 5 is 1:1. Details of
data sets are shown in Table 8.

3.2 Result analysis

In this section, nine basic methods including K-Nearest Neighbour,
Support Vector Machine, Decision Tree, Random Forest, Gradient
Boosting Decision Tree, Logistic Regression, Pseudo Inverse Learn-
ing, and Convolutional Neural Network are tested on astronomical
spectra data and we fairly evaluate the classification performance.

Our experiments use grid search (Syarif; Priigel-Bennett & Wills
2016) to identify the optimal parameters of each algorithm. And we
take the average accuracy of 5-fold cross validation (Fushiki 2011)
as the final accuracy to avoid the influence of sample selection.

3.2.1 Performance analysis on 1D spectra, PCA, and line indices

Fig. 18 represents the accuracy of nine basic algorithms on three data
characteristics (1D spectra, PCA, line indices).

In the classification on 1D spectra, CNN achieves the highest
accuracy. Because it can extract complex features through different
layers. However, CNN still suffers from two unavoidable drawbacks.
One is that it has to spend a long time to obtain the optimal model.
The other is overfitting which cannot be easily eliminated even by
L2 regularization or dropout method. In order to reduce the training
time, we can extract features by PCA and classify the pre-processed
spectra. Because accuracy on PCA features is equal to that on 1D
spectra and the training time is shorter.

In Fig. 19, A stars and K stars can be distinguished admirably
whereas F stars and G stars have disappointing accuracy. Because F
stars and G stars are more similar than A stars and K stars in the global
shape of 1D spectra. Stellar rotation might become another reason
for the misclassification because it broadens spectral lines and might
cause the global shape of 1D spectra if lines are blended because
of insufficient spectral resolution. So it is necessary to alleviate the
influence of stellar rotation on classification. Moreover, researchers
can use other spectra characteristics to avoid the caveats of 1D
spectra. Results also show that LR, Pseudo Inverse Learning (PIL),

Data sets introduction' Data components? S/N Characteristics
Data sets 1~ A/F/G/K stars classifications A:F:G: K Stars = 5000 : 5000 : 5000 : 5000 >10 1D Spectra
on four characteristics A:F:G: K Stars = 5000 : 5000 : 5000 : 5000 >10 PCA (100 dimensions)
A:F:G:K Stars = 5000 : 5000 : 5000 : 5000 >10 Line Indices
Data sets 2 A/F/G/K stars classifications A :F:G:KStars = 5000 : 5000 : 5000 : 5000 <10 1D Spectra
on three S/Ns A:F:G: K Stars = 5000 : 5000 : 5000 : 5000 10-30 1D Spectra
A:F:G: K Stars = 5000 : 5000 : 5000 : 5000 >30 1D Spectra
Data sets 3 A/F/G/K stars classifications A:F:G: K Stars = 2000 : 2000 : 2000 : 2000 >10 1D Spectra
on four volumes A :F:G: K Stars = 5000 : 5000 : 5000 : 5000 >10 1D Spectra
A :F:G:KStars = 10000 : 10000 : 10000 : 10000 >10 1D Spectra
A :F:G: K Stars = 20000 : 20000 : 20000 : 20000 >10 1D Spectra
Data sets 4 Star/galaxy/quasar classifications  star : galaxy : quasar = 5000 : 5000 : 5000 stars: > 10, Original Spectra
star : galaxy : quasar = 1000 : 1000 : 1000 galaxies, quasars: all Rest Wavelength Frame Spectra
Dataset5  Search for rare objects rare objects : normal stars : galaxies : quasars normal stars : > 10, 1D Spectra
=200 : 10000 : 6500 : 3400 galaxies, quasars : all
Data sets 6 A/F/G/K stars classifications A:F:G:K =5824:5380:4151 : 6240(LAMOST) >10 1D Spectra

on LAMOST and SDSS

A:F:G:K =5797:5355: 4144 : 6229(SDSS)

Notes. ' Spectra of data sets 1-data set 5 are selected from LAMOST. Spectra of data sets 6 are selected from LAMOST and SDSS.

2 The values of the data components in this table are the actual data volume.

3 Rare objects: carbon stars, double stars, artefacts : bad merging of red, and blue segments.
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confusion matrix.

DT cannot get desirable results on F stars and G stars due to the weak
spectral shapes. While strong classifiers (CNN, ensemble methods,
SVM) show superiority.

PCA is a useful dimensionality reduction tool in many fields.
Technically, it extracts principle components of spectra. And the
principle components preserve the main information of spectra as
much as possible. So accuracy shows little difference with 1D spectra
(Figs 18-20). However, the consistent results cannot be explained
well because linear PCA may be misleading to tackle the non-
linear spectral lines. This phenomenon has also confused researchers
(Tao et al. 2018). And spectra pre-processed by PCA are a linear
sum of different dimensional characteristics from 1D spectra which
lacks concrete (astro)physical meaning. These problems need to be
explored in the future. The main merit of PCA is that the spectra
pre-processed by PCA can reduce the number of features and the
computation time. So it has been widely used in astronomical tasks.

Line indices are vital features for spectral analysis. They refer
to the relative intensity of absorption or emission lines produced
by certain elements. And stellar absorption lines can be used to
distinguish stars. Fig. 18 illustrates the results of nine basic algo-
rithms on line indices. Overall, nine basic classification algorithms
performed similarly. Compared with the results on 1D spectra, simple
KNN is superior to CNN in the low dimensional space of line
indices. Because the powerful feature selection of CNN tends to
show advantages in high dimensional space. Fig. 21 show more
misclassifications between A stars and F stars. Misclassification
between F stars and G stars has decreased a little. And we can
clearly see that F stars can be distinguished better than other stars.

Comparative results analysis of LAMOST and SDSS. As can be
seen from Fig. 22, the classification algorithms perform better on
SDSS instead of LAMOST. The reason may be that the calibration
quality of LAMOST will be influenced by fibre-to-fibre sensitivity
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Figure 23. Confusion matrices of algorithms on A/F/G/K stars of LAMOST. X-axis represents predicted labels conducted by experiments. Y-axis represents
true labels of spectra. Figures in the grids are the consistent probabilities between predicted labels and true labels. Algorithm names are presented on the above

of each confusion matrix.

variations, further causing the slight differences on classification
results. As shown in Fig. 23, all classification algorithms perform
best on K-type stars from LAMOST. But they perform poorly
on F-type stars from LAMOST. Similarly, the performance of
classification algorithms on F-type stars from SDSS is bad (Fig. 24).
And it can be clearly seen that the performance of classification
algorithms on A, G, K stars from SDSS is similar, but slight better
than that from LAMOST.

3.2.2 Performance analysis on spectra qualities

On the whole, the accuracy is in direct proportion to S/N (Fig. 25).
Paying more attention on S/N>30, we can draw a conclusion that
SVM, ensemble methods, and CNN can achieve better results than
KNN. And, the classification performance of PIL is better than that of

LR. Because PIL can extract complicated features through a simple
three-layer neural network while LR fails in high-dimensional space.

The accuracy of classification on S/N: 10-30 drops completely
because spectral data on S/N: 10-30 are always mixed with noise.
CNN continues to remain top of the nine basic algorithms because it
has added regularization and dropout methods to alleviate overfitting.

It is difficult to mine information from spectra on S/N<10 which
are often regarded as unqualified spectra. As aresult, it is prevalent to
obtain low accuracy on spectra with S/N<10. We divide algorithms
into three parts according to their classification accuracy. Obviously,
SVM, CNN, ensemble methods, and LR are the leading echelons
followed by PIL. SVM shows robustness on S/N<10. Because the
soft margin of SVM guarantees that most spectra are classified
correctly even for some misclassified samples. Likewise, CNN gains
70 percent accuracy depending on the strong ability of feature
selection. GBDT and XGBoost adopt gradient boosting methods to
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reduce errors and attain higher accuracy than RF which only merges
different decision trees. KNN and decision tree cannot satisty us.
They perform worst. Because KNN uses Euclidean distance as a
distance metric. So it is susceptible to noise. Likewise, decision tree
cannot find proper splitting features because of noise. We can find
misclassification of spectra on S/N<10 from Figs 26, 27 and 28, such
as the poor performance of PIL and decision tree methods on F stars.

3.2.3 Performance analysis on different data volumes

Figs 29 and 30 show the performance of nine basic classification
algorithms on the four different data volumes.

There is a slight improvement in the accuracy with the increase of
data volumes. Because the large number of spectral data will provide
more information to obtain better classifiers.

MNRAS 518, 5904-5928 (2023)

Fig. 31 shows the computation time of nine basic classification
algorithms on four different data volumes. Compared with other
algorithms, SVM and CNN spend more time on classification.
Besides, the computation time of SVM, CNN, and LR increases
rapidly as the data volumes increase.

There is little difference in the confusion matrices of different data
volumes. And the main misclassification exists between F stars and
G stars in Figs 32-35.

3.2.4 Performance analysis of star, galaxy, and quasar
classification

As can be seen from Fig. 36, most classification algorithms perform
better on the rest wavelength frame spectra than on the original
spectra. Because redshift causes feature shift problems, overlapping
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phenomena between nearby galaxies and high-velocity stars. These
problems affect the performance of classification algorithms on
original spectra. We also found that LR, PIL, and CNN algorithms
perform better on original spectra. Because LR fits more complex
polynomials to classify spectra and the other two methods learn
deep features for better classification. So the above issues caused
by redshift make little influence on the classification performance
of these methods. In addition, the dimensionality of rest wavelength
frame spectra is reduced and some information will be lost, which
will also lead to poor classification performances of LR, PIL, and
CNN.

Pay more attention on the classification algorithms in Fig. 36, they
can be divided into three parts: CNN, SVM, RF, GBDT, XGBoost;
DT, LR, PIL; KNN. CNN performed better than others for its
powerful ability of feature selection. The classical classifier SVM can
also find a suitable hyperplane to separate the rest wavelength frame

MNRAS 518, 5904-5928 (2023)

spectra. Methods such as RF, GBDT, XGBoost can classify rest wave-
length frame spectra well due to their integration. Decision tree and
random forest cannot choose the split nodes well because of the in-
consistent features. KNN cannot classify galaxy and quasar well. Be-
cause the feature lines are inconsistent on spectra shape and position
due to redshift. Misclassification can also be found in Figs 37 and 38.

3.2.5 Performance analysis on rare targets

Compared with the classifications performance of A/F/G/K stars
classification on 1D spectra, the classification algorithms perform
bad when searching for carbon stars, double stars, and identifying
artefacts (Figs 39—41). Because the imbalanced data sets have a bad
impact on the classification performance.

Due to the obvious characteristics of carbon stars, classification
performance of carbon stars is better than that of double stars and
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artefacts. As can be seen from Fig. 39, the classic binary classi-
fier SVM and ensemble learning methods (RF, GBDT, XGBoost)
perform better than other algorithms.

The classification algorithms have the worst performance in iden-
tifying double stars due to the mutual interference of the overlapping
parts in double stars. This problem will affect the classification
performance on carbon stars. Precision in Fig. 40 shows that the
ensemble learning (RF, GBDT, XGBoost) can identify some double
stars accurately. But the recall in Fig. 40 shows that a large number
of double stars will be missed.

It can be seen from Fig. 41 that classification performance of
identifying artefacts is between the carbon stars and double stars.
Several ensemble algorithms can also find these rare stars accurately.
Compared with the double stars, the recall rate of artefacts is
relatively improved. It means that several integration algorithms and
KNN can identify more artefacts. But it is inevitable that many
artefacts will be missed.

4 SOURCE CODE AND MANUAL

Source codes used in this paper are provided on https://github.com
/shichenhui/SpectraClassification. Algorithms in the code category
are shown in Table 9. Because the parameters of algorithms have
a significant impact on the classification results, we also provide
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the parameters of algorithms on each data set and the parame-
ters are optimized by grid-search method provided by SKLEARN
package.

The codes are written in python which is widely used for machine
learning and data analysis. Dependent packages of our codes include
NUMPY (Harris et al. 2020), SKLEARN, MATPLOTLIB (Hunter 2007),
PANDAS, SCIPY. Each algorithm is organized by the following steps:
(1) load training data sets and testing data sets; (2) configure the
parameters of classification models; (3) train models on the training
data sets; (4) classify the testing data sets by training models; (5)
evaluate the performance of training models. To avoid the influence
of sample selection on the training data sets, we use 5-fold cross-
validation to split data sets and evaluate models. But this is not
necessary for practical applications.

These codes load data from x.csv files which store tabular data
in the form of text. And a row of data is a spectrum. You need
to convert your spectra data into this format or modify the data
loading mode. Some basic algorithms are directly implemented from
SKLEARN packages.

The parameter K of KNN is not a fixed value (default value in
SKLEARN is 5). Generally, a smaller value is often selected according
to the sample distributions. And an appropriate K value can be
selected by cross-validation. Besides, it adopts Euclidean distance
as distance metrics to get good results in low dimensional space.
Other distance metrics can also be applied in KNN to avoid the
disadvantage of Euclidean distance.

SVM needs to select kernel functions. There are many kernel
functions: linear kernel function, polygon kernel function, RBF ker-
nel function, sigmoid kernel function, etc. The current improvement
of SVM is combined with other methods to classify the large-scale
data sets.

Feature selection criteria and feature splitting criteria are two
important parameters of decision tree. Different feature selection
methods (information entropy, information gain, Gini index) corre-
spond to different decision trees. Features splitting parameters can
be ‘best’ or ‘random’. The former is to find the optimal division point
from all division points of the features, the latter is to find the local
optimal division point from the randomly selected division points.
Generally, ‘best’ is often used for the small number of samples and
‘random’ for the large number of samples. Other parameters like tree
depth and the number of trees are also needed to be determined.

Ensemble learning algorithms (i.e. random forest, GBDT, and
XGBoost) are integrated by decision trees. We need to choose the
number of integrated trees. Methods in SKLEARN use 100 decision
trees by default. But GBDT cannot be parallel, we need to reduce the
number of decision tree appropriately. Other parameters in decision
tree can be set up according to the introduction in the previous
paragraph.

Logistics regression is a binary classifier. It integrates multiple
LR classifiers for multiclassification tasks. The integration strategy
is always ‘OVR’. And it uses ‘L1’ and ‘L2’ regularization to reduce
overfitting. ‘L2’ is more commonly used. But for high dimensional
data, ‘L1" penalty can help you reduce the impact of unimportant
features.

The good design of neural network structures is important for ANN
based methods. We find that 1D convolutional structure can extract
spectral features well. So for spectral classification, the performance
of CNN is better than that of fully connected neural network. There
are many layers in computer vision. But for data in the format of
vector, we do not need to stack too many layers in the neural network
structures. Likewise, ‘L1’ and ‘L2’ regularization can be used to
reduce overfitting.
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Figure 33. Accuracy of algorithms on data volume of 20 000 for A/F/G/K stars. X-axis represents predicted labels conducted by experiments. Y-axis represents
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of each confusion matrix.
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Figure 34. Accuracy of algorithms on data volume of 40 000 for A/F/G/K stars. X-axis represents predicted labels conducted by experiments. Y-axis represents
true labels of spectra. Figures in the grids are the consistent probabilities between predicted labels and true labels. Algorithm names are presented on the above

of each confusion matrix.
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5 DISCUSSION

In this paper, we investigate the classification methods used for
astronomical spectra data. We introduce the main ideas, advantages,
caveats, and applications of classification methods. And data sets are
designed by data characteristics, data qualities, and data volumes.
Besides, we experiment with nine basic algorithms (KNN, SVM, LR,
PIL, CNN, DT, RF, GBDT, XGBoost) on A/F/G/K stars classifica-
tion, star/galaxy/quasar classification, and rare object identification.
Experiments on data characteristics also include the comparative
experiments on the matching sources from the LAMOST survey and
SDSS survey.

For A/F/G/K stars classification, the accuracy on 1D spectra and
PCA shows little difference while PCA spends less time in the
training stage. Because it reduces the spectra dimensionality. So
PCA is often used to classify large-scale and high dimensional data
sets. Among nine basic methods, CNN performs best on 1D spectra
and PCA, due to its powerful ability for feature selection. For the
classification on line indices, KNN shows superiority among other

MNRAS 518, 5904-5928 (2023)

methods. The performance of classification on SDSS is better than
that on LAMOST. Because the calibration quality of LAMOST is
undesirable, which is affected by many factors (i.e. fibre-to-fibre
sensitivity variations). In addition, high-quality spectra and a large
number of samples help us to train models. But with the growth of
data volumes, the training time of some models will also increase
greatly. So it is necessary to improve the classification speed on
large-scale data sets.

As for star/galaxy/quasar classification, most performance of
classification on rest wavelength frame spectra is better than that
on original spectra. Because redshift causes feature movement on
original spectra. But for some algorithms (PIL, LR, CNN), the
performance of classification on the original spectra is better than
that on the rest wavelength frame spectra. Because original spectra
have much information. These methods can extract feature well and
are less influenced by redshift. For this task, SVM which is good
at binary classification and CNN with powerful ability for feature
selection perform better than other methods.
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Itis difficult to identify carbon stars, double stars, and artefacts due double stars is the worst. In short, researchers need to find other
to the unbalanced data distributions. Among these three rare objects, methods for rare object identification.
the performance of identifying carbon stars is better than others due In this paper, we only evaluate the classification performance
to their obvious characteristics. The performance of searching for of nine basic algorithms on astronomical spectra. Other effective
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Table 9. Source codes notes of classification algorithms.

Algorithms KNN SVM LR

RF GBDT XGBoost CNN PIL

Source files
Python version
Dependent packages

KNN.py

SVM.py LR.py DT.py

RFEpy  GBDT.py
python3.8

XGBoost.py CNN.py PIL.py

NUMPY; PANDAS; SKLEARN; SCIPY; PYTORCH

methods still need to be analysed in the future. And experimental
results in this paper can only provide a reference to researchers. In
practical application scenarios, researchers need to choose appropri-
ate methods according to their data characteristics.
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