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A B S T R A C T 

Classification is valuable and necessary in spectral analysis, especially for data-driven mining. Along with the rapid development 
of spectral surv e ys, a variety of classification techniques have been successfully applied to astronomical data processing. Ho we ver, 
it is difficult to select an appropriate classification method in practical scenarios due to the different algorithmic ideas and data 
characteristics. Here, we present the second work in the data mining series – a re vie w of spectral classification techniques. 
This work also consists of three parts: a systematic o v erview of current literature, experimental analyses of commonly used 

classification algorithms, and source codes used in this paper. First, we carefully investigate the current classification methods in 

astronomical literature and organize these methods into ten types based on their algorithmic ideas. For each type of algorithm, 
the analysis is organized from the following three perspectives. (1) their current applications and usage frequencies in spectral 
classification are summarized; (2) their basic ideas are introduced and preliminarily analysed; (3) the advantages and caveats 
of each type of algorithm are discussed. Secondly, the classification performance of different algorithms on the unified data 
sets is analysed. Experimental data are selected from the LAMOST surv e y and SDSS surv e y. Six groups of spectral data sets 
are designed from data characteristics, data qualities, and data volumes to examine the performance of these algorithms. Then 

the scores of nine basic algorithms are shown and discussed in the experimental analysis. Finally, nine basic algorithms source 
codes written in python and manuals for usage and impro v ement are provided. 

Key words: methods: data analysis – techniques: spectroscopic – software: data analysis. 

1  I N T RO D U C T I O N  

Classification of astronomical spectra is an essential part of astro- 
nomical research. It can provide valuable information about the 
formation and evolution of the Universe. With the implementation 
of sk y surv e y projects (Zhao et al. 2012 ; Liu, Zhao & Hou 2015a ), a 
large number of methods have been applied to automatically handle 
various astronomical classification tasks (Luo, Zhang & Zhao 2004 ; 
Luo et al. 2013 ; Baron 2019 ; Yang et al. 2020 , 2021 , 2022c , b ; 
Cai et al. 2022 ). Ho we ver, classification methods achieve different 
results on different data, so it is difficult to evaluate the classification 
performance and determine the application scenarios. 

In this paper, we investigate lots of classification methods on 
astronomical spectra data and organize them into ten types. Each type 
of them is displayed based on its usage frequencies in astronomical 
tasks. And we mainly discuss its application scenarios, main ideas, 
merits, and caveats. Then, we construct six collections of data sets 
to provide a unified measurement platform. For the astronomical 
classification tasks (A/F/G/K stars classification, star/galaxy/quasar 
classification, and rare object identification), we construct data sets 
from three criteria including data characteristics, signal-to-noise ratio 
(S/N), data volumes. Then we compare the performance of nine basic 
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classification methods on the aforementioned data sets and give an 
objective appraisal of the classification results. Besides, the source 
codes of each testing algorithm help researchers to study further 
and a brief manual about usage and revision tips of our program is 
provided in this work. 

The rest of this paper is organized as follows. In Section 2 , 
classification methods on astronomical spectra data are briefly 
introduced from application scenarios, main ideas, merits, and 
cav eats. In Section 3 , e xperiments on three tasks of A/F/G/K stars 
classification, star/galaxy/quasar classification, and rare object 
identification are carried out. Section 4 represents python source 
codes of the abo v e e xperiments and a manual about how to use and 
revise our codes. Finally, a discussion is drawn and our future work 
is discussed in Section 5 . 

2  I NVESTI GATI ON  O F  CLASSIFICATION  

M E T H O D S  O N  A S T RO N O M I C A L  SPECTRA  

DATA  

The commonly used classification methods on astronomical spectra 
are shown in Fig. 1 . Each type of methods has its own characteristics 
and applicable data sets. And some of them have been widely 
used for spectral classification, like template matching, K-nearest 
neighbour (KNN) based classification algorithms, and support vector 
machine (SVM) based classification algorithms, but some of them 
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Figure 1. Classification methods on astronomical spectra data. We pay more attention on main ideas, advantages, caveats, and application scenarios of these 
methods. 

Figure 2. Classification methods on astronomical spectra data. The size of circles means the usage frequencies of each type of algorithm in our paper. And the 
colour of circles is consistent with their sizes. That is, bigger and deeper circles mean that this type of algorithm is more frequently applied in astronomical tasks. 

are rarely used, like logistic regression (LR) based classification 
algorithms and collaborative representation based classifier (CRC) 
(Fig. 2 ). Here, for each type of investigated methods, we analyse 
its application scenarios on astronomical spectra and give some 
objective appraisals. Then we introduce the main ideas, advantages, 
and caveats of these methods. 

2.1 Template matching 

Template matching is a flexible and relative straightforward tech- 
nique. The classification process of template matching is to build a 
template data base for each class, then divide the unknown data into 
the most similar template data (Rosenfeld & Vanderbrug 1977 ). In 
astronomy, template matching matches spectral lines with templates 
and there is no training stage. So it has been widely applied in celestial 
object classification, redshift estimation, stellar parameters estima- 
tion, and other projects (Lupton et al. 2002 ; SubbaRao et al. 2002 ; 
Zhao et al. 2012 ; Liu et al. 2015a ; Westfall et al. 2019 ). Table 1 shows 
the main astronomical spectral investigations of template matching. 

Template matching is often used to classify stars, galaxies, and 
quasars and further analyse other properties of spectra. Duan et al. 
( 2009 ) used spectral line matching to identify the observed spectra 
class and achieved a high accuracy about 92.9 per cent, 97.9 per cent, 
and 98.8 per cent for stars, galaxies, and quasars, respectively. 
They also obtained a byproduct: high precision of redshift. Gray & 

Corbally ( 2014 ) used template matching for Morgan-Keenan (MK) 
classification and built an expert computer program imitating human 
classifiers. It was automatic and had comprehensible results. Wang 
et al. ( 2018 ) used the line intensity to classify spectra (Martins 2018 ; 
Wang 2019 ). 

Template matching is also used to find peculiar objects like 
supernovas, M dwarfs, B stars, and M giants, Double-peak emission 
line galaxies (Zhong et al. 2015b , a ; Sako et al. 2018 ; Maschmann 
et al. 2020 ; Ram ́ırez-Preciado et al. 2020 ). Zhong et al. ( 2015b ) 
applied a template-fit method to identify and classify late-type K and 
M dwarfs from LAMOST. 2612 late-K and M dwarfs were identified 
which can help researchers to investigate the chemokinematics of 
the local Galactic disc and halo. Maschmann et al. ( 2020 ) used 
two Gaussian functions to fit the emission lines to find double-peak 
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Table 1. Investigations of template matching on astronomical spectra data. 

Merits Caveats References 

Straightforward and simple Poor performance on low-quality spectra Rosenfeld & Vanderbrug ( 1977 ), Duan et al. ( 2009 ), 
Du et al. ( 2012 ), Ram ́ırez-Preciado et al. ( 2020 ), 
Wang ( 2019 ), Almeida et al. ( 2010 ), Martins ( 2018 ), 

Applied to stellar spectra, rare objects, etc 1 Spectra without templates cannot be classified well Wang et al. ( 2018 ), Li et al. ( 2016 ), Juvela ( 2016 ), 
Sako et al. ( 2018 ), Zhong et al. ( 2015a ), 

Fast because of without training stage Poor performance on unbalanced data Zhong et al. ( 2015b ), Bolton et al. ( 2012 ), 
Wei et al. ( 2014 ), Gray & Corbally ( 2014 ), 
Masters & Capak ( 2011 ), Khorrami et al. ( 2021 ), 
Kesseli et al. ( 2017 ), Cotar et al. ( 2019 ), 
Agnello ( 2017 ), Zhang et al. ( 2016 ), Saez et al. ( 2015 ), 
Karpo v, Malko v & Zhao ( 2021 ), Gao et al. ( 2019 ) 

Note . 1 Subtypes of O star, Subtypes of B star, galaxy/others, etc. 

Figure 3. Process of KNN. The middle triangle is the object needed to be 
predicted. Rectangles and circles are two types of known objects. The dashed 
circle needs to be enlarged to find k neighbours. K = 9: three circles and six 
rectangles are the triangle’s k neighbours. 

candidates and finally they found 5663 double-peak emission line 
galaxies at z < 0.34. Meanwhile, there is an important issue for 
rare object identification using template matching, that is, classifiers 
require sufficient high-quality spectral templates. In order to obtain 
ample qualified rare templates, researchers tried to construct new 

templates (Wei et al. 2014 ; Kesseli et al. 2017 ). 
Template matching has been widely used in lots of surv e ys. 

Ho we ver, some spectra are of low quality, template matching cannot 
obtain precise results on redshift estimation, stellar parameters 
estimation, and classification (Podorvanyuk, Chilingarian & Katkov 
2015 ). Hence, for the inferior quality spectra, other machine learning 
algorithms like SVM based classification algorithms and artificial 
neural network (ANN) based classification algorithms are employed 
to get robust results. The other defect of template matching is that, 
for rare objects, we do not have enough samples to get representative 
template spectra. So rare objects are often misclassified. 

2.2 K-Nearest neighbour based classification algorithms 

K-Nearest Neighbor (KNN) based classification algorithms assign 
labels to the target based on the majority labels of its K closest 
objects. More in depth explanations of KNN based classification 
algorithms can be found in Zhang & Zhou ( 2007 ), Deng et al. 
( 2016 ). The main ideas are shown in Fig. 3 . They are intelligible 
and their time complexity is linear to the data volume. Taking 
these into consideration, KNN based classification algorithms have 
been used to classify astronomical spectra and combined with 

other methods to impro v e classification accuracy. Table 2 displays 
the major astronomical applications of KNN based classification 
algorithms. 

KNN can be used for stellar classification. Brice & Andonie 
( 2019b ) used KNN and random forest (RF) for MK classification 
of stellar spectra. Considering high dimensional spectra data, they 
extracted absorption lines of spectra to reduce the time complexity. 
The results showed that KNN had a shorter training time but a 
longer testing time than RF. KNN could obtain the same accuracy 
as RF when using hybrid methods or o v ersampling balancing 
techniques. But for O-type stars which are few in the data sets, 
KNN performed poorly. This is a common phenomenon in most 
classification applications, that is, it is hard to get good classification 
results in unbalanced data sets. 

F or comple x spectral classification tasks, it is not a good choice 
to only use the basic KNN based classification methods. Because 
from the comparison results of different classification methods, 
researchers found that good results were often produced by SVM 

or RF, rather than KNN (P ́erez-Ortiz et al. 2017 ; Arsioli & Dedin 
2020 ; Xiao-Qing & Jin-Meng 2021 ). To obtain better results, some 
impro v ements to KNN were also proposed, like KNN-DD to detect 
known outliers (Borne & Vedachalam 2012 ) and ML-KNN: a lazy 
learning approach to multilabel learning (Zhang & Zhou 2007 ). In 
addition, many researchers combined KNN with other methods to 
reduce the misclassification rate, like SVM + KNN to correct some 
prediction errors (Peng et al. 2013 ). And its classification accuracy 
of quasars reached 97.99 per cent. 

KNN based classification algorithms are arguably simple and 
efficient machine learning algorithms. And they have been demon- 
strated to be competitive methods because of the high accuracy 
under the premise of their simplicity and rapidness (Fushiki 2011 ; 
Guzm ́an et al. 2018 ; Sookmee et al. 2020 ). They use Euclidean 
distance to measure the similarity of data and perform better on low 

dimensional data. After pre-processing high dimensional spectra, 
KNN based classification algorithms can also be applied in as- 
tronomy, such as star/galaxy/quasar classification and classification 
of small radial velocity objects. Ho we ver , from the in vestigated 
researches, KNN based classification algorithms mainly suffer from 

three disadvantages: (1) the only hyperparameter K is difficult to 
determine. (2) KNN based classification algorithms are inef fecti ve 
for star classification because of the misclassification between 
adjacent classes. (3) Unbalanced data are another challenge for 
KNN based classification algorithms. Recently, some algorithms like 
Synthetic Minority Oversampling Technique (SMOTE) have been 
employed to adjust the data volume distributions to solve the third 
issue. 
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Table 2. Investigations of KNN based classification algorithms on astronomical spectra data. 

Merits Caveats References 

Accurate and fast on proper features 1 Generally, RF > SVM > KNN Brice & Andonie ( 2019b ), 
Arsioli & Dedin ( 2020 ), 

Combined with other methods 2 to impro v e accurac y limited to large redshift objects Peng, Zhang & Zhao ( 2013 ), 
Bu et al. ( 2019 ), 

Applied to stellar spectra and subtypes classification 3 Misclassification on F, G, K stars Akras et al. ( 2019 ), 
Xiao-Qing & Jin-Meng ( 2021 ), 
P ́erez-Ortiz et al. ( 2017 ), 
Sookmee et al. ( 2020 ) 

Notes . 1 Features extracted by CNN; astronomical specific information. 
2 SVM, CNN, Decision tree, etc. 
3 MK classification, star/galaxy/quasar classification, Hot subdwarfs, symbiotic stars, Be stars, LSP/HSP, etc. 

Table 3. Investigations of SVM based classification algorithms on astronomical spectra data. 

Merits Caveats References 

Accurate and fast on proper features 1 Stellar loci is better than SVM on MK classification Liu et al. ( 2015b ), Guzm ́an et al. ( 2018 ), 
Arsioli & Dedin ( 2020 ), Qu et al. ( 2020 ), 
Liu et al. ( 2019 ), Govada, Gauri & Sahay 
( 2015 ), 

Optimizations of SVM to impro v e accurac y 2 1D SCNN is better than SVM on stellar classification Fuqiang et al. ( 2014 ), Barrientos, Solar & 

Mendoza ( 2020 ), 
Solarz et al. ( 2012 ), Tsalmantza et al. ( 2012 ), 

Applied to unbalanced and large-scale data sets Limited to large redshift objects Kou, Chen & Liu ( 2020 ), Liu ( 2021 ), 
Małek et al. ( 2013 ), Peng et al. ( 2013 ), 

Applied to stellar spectra and subtypes classification 3 Need sufficient valid samples Solarz et al. ( 2017 ), Liu & Zhao ( 2017 ), 
Yude et al. ( 2013 ), Xiao-Qing & Jin-Meng 
( 2021 ), 
Dong & Pan ( 2020 ), Kong et al. ( 2018 ), 
Bu et al. ( 2019 ), Liu, Song & Zhao ( 2016 ) 

Notes . 1 Multifrequency, colour space, spectral lines, etc. 
2 Within-Class Scatter and Between-Class Scatter (WBS-SVM), OCSVM, Twin Support Vector Machine (TWSVM). 
3 MK classification, LSP/HSP, K/F/G stars, Type IIP/IIL Supernovae, etc. 

2.3 Support vector machine based classification algorithms 

Support vector machine (SVM) based classification algorithms are 
binary classifiers that learn a boundary from the training data to 
classify two types of data. And multiple binary SVM classifiers can 
be integrated into a multilabel classifier. Generally, the classification 
precision and robustness of SVM based classification algorithms 
are relatively superior to other single classifiers (non-ensemble 
algorithms). Table 3 shows the main astronomical researches of SVM 

based classification algorithms. 
Spectral classification is a common astronomical task for SVM 

based classification algorithms (Liu et al. 2015b , 2018 ; Guzm ́an 
et al. 2018 ; Tao et al. 2018 ; Brice & Andonie 2019a ; Barrientos et al. 
2020 ; Liu 2021 ). Solarz et al. ( 2012 ) used the infrared information 
to separate galaxies from stars and the accuracy reached 90 per cent 
for galaxies and 98 per cent for stars. Małek et al. ( 2013 ) trained an 
SVM classifier to classify stars, active galactic nucleus (AGN) and 
galaxies using spectroscopically confirmed sources from the VIPERS 

and VVDS surv e ys. In the stellar spectral classification, A stars and 
G stars can be identified easily, while it was hard to identify O, B, 
and K stars. Because the differences in the spectral features between 
late B type and early A type stars or between late G and early K type 
stars were very weak (Liu et al. 2015b ). Dong & Pan ( 2020 ) used 
SVM and cascaded dimensionality reduction techniques to classify 
spectra, which is better than principal component analysis (PCA) or 
t-distributed stochastic neighbour embedding (T-SNE). 

In addition to classification, SVM based classification algorithms 
can also be used for peculiar spectra identification (Qu et al. 2020 ). 
More depth details of rare objects such as carbon stars and variable 
objects can be found in Gigoyan et al. ( 2012 ), Green ( 2013 ), Baran 
et al. ( 2021 ), Maravelias et al. ( 2022 ), Kong et al. ( 2018 ), Kou et al. 
( 2020 ), Solarz et al. ( 2017 ), Qu et al. ( 2020 ). Solarz et al. ( 2020 ) 
detected anomalous in the mid-infrared data using one-class SVM. 
Among the 36 identified anomalous, 53 per cent of them were low 

redshift galaxies, 33 per cent were particular quasi-stellar objects 
(QSOs), 3 per cent were galactic objects in dusty phases of their 
evolution, and 11 per cent were unknown objects. The main problem 

in this task is that the number of some types of rare samples is 
far smaller than normal samples. So the classification model cannot 
identify the rare classes well. There are also many approaches to 
solve this problem, like data augmentation, o v ersampling, etc. Liu & 

Zhao ( 2017 ) proposed an entropy based methods for unbalanced 
spectral classification. And the performance was better than using 
KNN and SVM directly. 

SVM based classification algorithms are binary classifiers with 
rigorous mathematical theory. They try to find the optimal sepa- 
rating hyperplane to divide data into two categories (Fig. 4 ). For 
multilabel classification, One-VS-One (OVO), One-VS-All (OVA), 
and Directed Acyclic Graph (D A G) are the main tactics to train 
different classifiers. There are two important tricks of SVM based 
classification algorithms. One is soft margin which uses a robust 
partition boundary to separate two types of data and tolerates the 
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Figure 4. Process of SVM. The black circles and white circles are two types 
of unknown groups. The solid line is the hyperplane to separate groups. 
The proper gap between paralleled dashed lines and solid lines can a v oid 
o v erfitting and underfitting. 

Figure 5. Main idea of decision tree. ID3, C4.5, and CART are three common 
decision trees, the principle of them are similar except for the different node- 
split tactics (Information Gain, Information Gain Ratio, and Gini Index). 
Ellipses represent the split nodes for classification, and rectangles represent 
the final multiple classification results. 

misclassification of some abnormal data. The other one is kernel 
function which can map linearly inseparable data into a linearly sep- 
arable high-dimensional space. Ho we ver, SVM based classification 
algorithms adopt kernel matrix to measure the similarity of samples. 
So the computation time and space are two vital issues for classifiers 
on large amounts of data. 

SVM based classification algorithms are promising classification 
methods that have a convincing theory and robust results. They have 
attracted a good deal of attention due to their high accuracy in mul- 
tidimensional space and already have been applied to astronomical 
spectral classification, such as star/galaxy/quasar classification, stel- 
lar spectral classification, and no v elty detection. Ho we ver, the time 
complexity of SVM based classification algorithms is exponentially 
related to the training size. So, it is indispensable to pre-process 
astronomical spectra to reduce the training time. 

2.4 Decision tree based classification algorithms 

Decision tree (DT) based classification algorithms (Quinlan 1996 ) 
are essential in machine learning algorithms. Their leaves represent 
classification results and internal nodes of branches are regarded as 
criteria for distinguishing objects. The graphical representation of 
decision tree is shown in Fig. 5 . Decision tree and its variants have 
been applied in astronomy and many other fields (Li 2005 ; Zhao & 

Zhang 2008 ; Bae 2014 ; Czajkowski, Grze ́s & Kretowski 2014 ). 
Table 4 shows the main astronomical investigations of decision tree 
based classification algorithms. 

Decision tree based classification algorithms have been widely 
used for astronomical classification due to their good interpretability 
of classification results. Here are some examples of decision tree for 

astronomical classification. Morice-Atkinson et al. ( 2018 ) explored 
the classification boundaries of star and galaxy through decision 
tree. This visualized the classification process of the star–galaxy 
and helped astronomers understand the decision rules of celestial 
classification. Franco-Arce ga, Flores-Flores & Gabbaso v ( 2013 ) 
used parallel decision trees to classify different types of objects 
and e v aluated the performance of classification results. Vasconcellos 
et al. ( 2011 ) applied 13 different decision tree algorithms to analyse 
the classification performance of star/galaxy, and the functional tree 
algorithm yielded the best results. 

According to the astronomical researches using decision tree 
based classification algorithms, there are three tips to impro v e the 
classification performance. First, ef fecti v ely pre-processing the ra w 

observational spectra will assist and speed up the classification, 
such as noise reduction and data compression. Secondly, extracting 
valid features is also important. Most familiar approaches normalize 
and standard spectra data by pre v alent methods without additional 
operations (Vasconcellos et al. 2011 ; Pichara et al. 2016 ), yet 
these simple approaches will have high computational costs and 
could not impro v e classification accurac y ef fecti vely. So other v alid 
features may be better to impro v e classification performance, such 
as line indices and astronomical specific features. Thirdly, searching 
for appropriate methods is another vital approach to improving 
classification performance. Compared with other typical methods, 
RF performed best both on accuracy and time consuming in Xiao- 
Qing & Jin-Meng ( 2021 ), Brice & Andonie ( 2019b ), Flores et al. 
( 2021 ), etc. Alternatively, integration of decision tree and other 
conventional classification methods can enhance the superiority 
of feature selection and results interpretation, respectively (Ivanov 
et al. 2021 ). Ho we ver, heterogeneous data, large redshift objects, 
other stellar parameters regression, and misclassification are still 
challenges for decision tree in astronomical research. These need to 
be solved in the future. 

Iterative Dichotomiser 3 (ID3), C4.5, and Classification and 
Regression Trees (CART) are three widespread methods based 
on decision tree. ID3 adopts Information Gain (IG) as the node 
selection criterion for classification. While C4.5 chooses Information 
Gain Ratio (IGR) to alleviate the flaws of ID3 (IG: discrete data, 
incomplete attribution, o v erfitting, etc). Another upgraded method 
is CART which can be used for both classification and regression. 
It employs the Gini Index as a node selection standard instead of 
Information Entropy. The main advantage of decision tree based 
classification algorithms is interpretability of results, which is very 
helpful for astronomers to analyse the features of astronomical 
objects. And the disadvantage is that we often obtain a complex 
model which will be o v erfitting on the training data. So pruning 
parameters is al w ays required to reduce o v erfitting. 

2.5 Ensemble learning classification algorithms 

Ensemble learning (Freund & Mason 1999 ) combines multiple 
weak classifiers into a strong classifier to solve a task together. 
Generally, ensemble learning methods are sorted into bagging 
methods decreasing variance, boosting methods reducing deviation, 
and stacking methods increasing prediction accuracy. Compared 
with the single decision tree, ensemble learning methods are more 
often used in astronomy. 

Bagging usually trains different models with various training sets 
respectively and chooses one strategy to unify consequences. The 
principle of bagging is shown in Fig. 6 . Random Forest is the most 
notable bagging method which consists of several unrelated decision 
trees. Fig. 7 describes the principle of Random Forest. RF can be 
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Table 4. Investigations of DT based classification algorithms and ensemble learning on astronomical spectra data. 

Merits Caveats References 

Results interpretability and predicted probability Limited to large redshift objects Pichara, Protopapas & Le ́on ( 2016 ), Akras et al. ( 2019 ), 
Flores, Corral & Fierro-Santill ́an ( 2021 ), Xiao-Qing & Jin-Meng 
( 2021 ), Vasconcellos et al. ( 2011 ), Morice-Atkinson, Hoyle & 

Bacon ( 2018 ), Clarke et al. ( 2020 ), 
High accuracy on stellar and subtypes 1 Misclassification on G,F,K stars Pattnaik et al. ( 2021 ), Li, Lin & Qiu ( 2019 ), Bai et al. ( 2019 ), 

Arsioli & Dedin ( 2020 ), Liu et al. ( 2019 ), Yi et al. ( 2014 ), 
Extract feature well for stellar and subtypes 2 Adjust parameters manually Hosenie et al. ( 2020 ), Li et al. ( 2019 ), Baqui et al. ( 2021 ), 

Reis et al. ( 2018 ), Brice & Andonie ( 2019b ), 
Classify spectra with missing values and noise Poor performance on unbalanced 

data 
P ́erez-Ortiz et al. ( 2017 ), Ivanov et al. ( 2021 ), Tao et al. ( 2018 ), 
Kyritsis et al. ( 2022 ), Guo et al. ( 2022 ), Brice & Andonie ( 2019a ), 
Maravelias et al. ( 2022 ), Hou et al. ( 2020 ), Hu et al. ( 2021 ), 
Zhang, Zhao & Wu ( 2021 ), Yue et al. ( 2021 ), Sookmee et al. ( 2020 ) 

Notes . 1 Star/galaxy/quasar classification, MK classification, LSP/HSP, M star/others, etc. 
2 MK classification, stellar subtypes, M subtypes, etc. 

Figure 6. Main idea of bagging. The left cylinders are training sets to train 
different base classifiers using learning algorithms. The upper cylinder is 
the new testing set to test the combined classifier which is made up of a 
collection of base classifiers. And the strong classifier is generated by voting 
for classifier i ( i = 1, 2, 3 in Fig. 6 ). 

Figure 7. Main idea of random forest. Tree i ( i = 1, 2,......, n ) are decision 
trees trained by certain strategies. The black circles are the basis nodes of 
classification. The voting methods adopt the majority or average results of 
tree i ( i = 1, 2,......, n ) as the final results. 

applied to classification, clustering, regression, and outlier detection 
due to its high accuracy and adaptability of high dimensional data 
sets. 

RF is a robust classifier for spectral classification (Yi et al. 2014 ; 
Biau & Scornet 2016 ; Morice-Atkinson et al. 2018 ; Bai et al. 2019 ; 
Brice & Andonie 2019a , b ; Liu et al. 2019 ; Li et al. 2019 ; Hosenie 
et al. 2020 ; Baqui et al. 2021 ). Clarke et al. ( 2020 ) trained an RF 

classifier on 3.1 million labelled sources from Sloan Digital Sky 
Surv e y (SDSS) and applied this model on 111 million unlabelled 

Figure 8. Main idea of boosting. The left data set is regarded as input to 
train classifier 1 (Training Classifier 1 in Fig. 8 ). Data set 1: a new data set 
from training classifier 1 after updating its weights. Train the classifier and 
update the weights until the classification results converge. 

sources. The result showed that the classification probabilities of 
stars were greater than 0.9 (about 0.99). Besides, RF performed 
well in the process of searching for rare objects (Hou et al. 2020 ; 
Kyritsis et al. 2022 ). Pattnaik et al. ( 2021 ) trained a random forest 
classifier to determine whether a black hole or a neutron star is 
hosted by a Low Mass X-ray binaries (LMXBs). It is difficult to 
accurately classify variable stars into their respective subtypes, hence 
P ́erez-Ortiz et al. ( 2017 ) proposed new robust feature sets and used 
RF to e v aluate the classification performance. Akras et al. ( 2019 ) 
used classification tree for identifying symbiotic stars (SySts) from 

other H α emitters in photometric surv e ys. Guo et al. ( 2022 ) used 
random forest to identify white dwarfs in LAMOST DR5. Reis et al. 
( 2018 ) used an unsupervised random forest to detect outliers on APO 

Galactic Evolution Experiment (APOGEE) stars. In addition, RF is 
often compared with other algorithms on classification tasks, and 
generally, it tends to be better than others (P ́erez-Ortiz et al. 2017 ; 
Liu et al. 2019 ; Arsioli & Dedin 2020 ). 

Boosting trains models with adjusted data, that is, the weights of 
misclassified objects are augmented based on the former models. 
Fig. 8 is the principle of boosting. Gradient Boosting Decision Tree 
(GBDT), Adaptive boosting (Adaboost), extreme gradient boosting 
(XGBoost), and Light Gradient Boosting Machine (LightGBM) 
are pre v alent boosting methods. Adaboost is a prominent boosting 
method that chooses single-layer decision trees as weak classifiers. 
In each iteration, it trains one weak classifier based on data weights 
generated in the last iteration. So Adaboost pays more attention on 
misclassified data. The other essential parameters are weights of 
each classifier. They are computed based on classification accuracy 
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Figure 9. Main idea of adaptive boosting (Adaboost). The left cylinder is 
input data used to train classifier i ( i = 1, 2,......, n ). ω i ( i = 1, 2,......, n ) are 
the weights of data. αi ( i = 1, 2,......, n ) are the weights of classifiers. 

Figure 10. Main idea of gradient boosting decision trees (GBDT). The 
residual of model i-1 is the input of model i ( i = 1,2,......, n ). The goal of 
GBDT is to make residual as small as possible. 

of every classifier. And the final results are obtained after inputting 
the sum of each weak classifier into a sign function. Fig. 9 is the 
main principle of Adaboost. GBDT (P ́erez-Ortiz et al. 2017 ; Morice- 
Atkinson et al. 2018 ), another typical boosting algorithm, can also 
be regarded as an optimized version of Adaboost. GBDT chooses 
the residual from the previous iteration as input to train the next 
classifier till the residual is close to zero. Besides, GBDT can take 
more objective functions and train models using ne gativ e gradient, 
whereas Adaboost only sets data weights automatically. Fig. 10 
shows the main principle of GBDT. XGBoost optimized GBDT by 
supporting different meta classifiers, adding regularization to limit 
model complexity, adapting to different data samplings and so on. 
Fig. 11 shows the main principle of XGBoost. 

GBDT and XGBoost are two powerful ensemble classifiers 
(Friedman 2001 ; Chen & Guestrin 2016 ) and have been applied 
to spectral classification and rare object identification. Chao, Wen- 
hui & Ji-ming ( 2019 ) used XGBoost to classify star and galaxy 
on dark sources of SDSS photometric data sets and the results 
showed that XGBoost outperformed other methods. Hu et al. ( 2021 ) 
searched for Cataclysmic Variables (CVs) in LAMOST-DR7 using 
LightGBM which is based on the ensemble tree model. They found 
225 CV candidates including four new CV candidates which were 
verified by SIMBAD and published in catalogues. Yue et al. ( 2021 ) 
also identified M sub-dwarfs using XGBoost. In order to get better 
classification results, many new ensemble algorithms have been 

Figure 11. Main idea of XGBoost. ω i ( i = 1, 2,......, n ) are the scores of 
leaves. R1 and R2 are the predicted labels which are the sum of ω i . The 
black circles represent data. They are classified as R1 and the white circles 
are classified as R2. Bigger score between R1 and R2 is the final result. 

Figure 12. Main idea of stacking. The left cylinders are training sets and test 
sets. Meta feature 1 and meta feature 2 are the results of model i ( i = 1,2,....., n ) 
on training sets and test sets, respectively. Model 0 is trained by meta feature 
1 and meta feature 2. Then meta feature 2 is input into model 0 to predict 
results. 

proposed in recent years (Chao et al. 2020 ; Chi, Li & Zhao 2022 ; 
Zhao, Wei & Jiang 2022 ). 

Stacking uses a new model to fit meta features which are obtained 
by multipredictors on training sets and testing sets. And this new 

model will be validated with the following meta features. Fig. 12 
introduces the principle of stacking. 

Ensemble learning has obtained desirable results in astronomical 
spectral analysis. And random forest is the most frequently used 
ensemble method in astronomy. Because it has good generalization 
performance on large scale high-dimensional data sets. It is good 
at probabilistic prediction and is insensitive to noise. Ho we ver, 
multi v alue attribute still troubles RF. In addition, ensemble learning 
methods are also limited to heterogeneous data, unbalanced data, and 
optimal parameters (the number of decision tree, weak classifiers). 

2.6 Neural network based classification algorithms 

Artificial neural network, also known as Multi-Layer Perception 
(MLP), is a machine learning method that imitates the signal trans- 
mission mechanism in the brain. It consists of an input layer, multiple 
hidden layers, and an output layer. The neural unit in each hidden 
layer tackles input data and sends results to the next fully connected 
layer. The output layer generates the final consequences. Fig. 13 is 
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Figure 13. Main idea of neural unit. x i ( i = 1, 2,......, n ) is input data. ω i 

( i = 1, 2,......, n ): weights of x i . b: (biases) is also the input of neural units. 
The big circle in the middle contains a linear combination of input and an 
acti v ation function f. 

Figure 14. Main idea of artificial neural network. ANN contains multiple 
fully connected neural units. ω i ( i = 1, 2,......, n ) and b i ( i = 1, 2,......, n ) are 
updated during iterations. f is the acti v ation function. y i ( i = 1, 2,......, n ) is 
the final result. 

the principle of a neural unit. And Fig. 14 is the main principle of 
ANN. P articularly, Pseudo-Inv erse Learning (PIL) is a classic neural 
network. It can get globally optimal results and is faster than Back- 
propagation (BP) algorithm. Besides, it does not require manual 
tuning of parameters. So it has been used for some simple tasks. 
Ho we ver, for complicated tasks, optimal versions of neural network 
are necessary. Deep learning (DL) is an essential extension of ANN, 
and it contains more hidden layers and complex network structures 
(Bergen et al. 2019 ). Convolutional Neural Network (CNN), Auto 
Decoder (AE), and Deep Belief Networks (DBN) are three chief 
methods of DL. Moreo v er, other variant versions of neural network 
have been proposed to adapt to different data formats, like Visual 
Geometry Group (VGG), Residual Networks (ResNet), Recurrent 
Neural Network (RNN), Generativ e Adv ersarial Networks (GAN), 
and others. Moreo v er, pre-trained models, attention blocks, transfer 
learning, and many other tricks have been used to improve the deep 
learning performance ef fecti vely. 

Convolutional Neural Network (CNN) consists of convolutional 
layers that extract image features, pooling layers that reduce di- 
mensionality and fully connected layers that generate results. CNN 

automatically extracts features without destroying them. So it can 
get better accuracy and cope with high dimensional data. But its 
vanishing gradient problem and local optimal phenomenon still 
annoyed us. Fig. 15 shows the main principle of CNN. 

Auto Decoder (AE) is a neural network whose input equals its 
output and its main idea is sparse code. It restructures the input using 
an encoder and a decoder. And it has been widely used for noise and 
dimensionality reduction to visualize data. Fig. 16 is the principle of 
AE. 

Figure 15. Main idea of convolutional neural network. Convolutional layers 
are used to learn features from different layers. MaxPooling layer can reduce 
dimensionality. The role of the fully connected layer is equi v alent to the 
classifier. The output layer is designed to represent the classification results 
according to the concrete classification task. 

Figure 16. Main idea of auto encoder. Compressed representation of orig- 
inal input is achieved by encoder model. Another vital model is decoder 
transforming compressed representation into the restructured input. 

DBN is a probabilistic generative model. Its generative model 
builds a joint distribution between observations and labels. DBNs 
consist of multiple layers of Restricted Boltzmann Machines which 
is a probabilistic graphical model with stochastic neural network. 
The output states of each neural unit are acti v ation and deacti v ation. 

Different examples of astrophysical research projects exploiting 
neural network are listed in Table 5 and summarized in the next parts. 

Astronomical spectral classification is a typical task for neural 
network. Cabayol et al. ( 2019 ) used CNN to classify star and 
galaxy on low-resolution spectra from narrow-band photometry 
with accurac y o v er 98 per cent. Jingyi et al. ( 2018 ), Astsatryan 
et al. ( 2021 ) used deep CNN to classify quasar and galaxy. Many 
new impro v ements of neural network emerged in recent years 
have been proven to be ef fecti ve, like residual structures and 
attention mechanisms (Zou & el al. 2020 ). A multitask residual 
neural netw ork w as applied to classify M-type star spectra. It 
reduced the number of parameters in spectral classification and 
impro v ed the model efficiency (Lu et al. 2020 ). Compared to other 
methods, neural network always worked best on the complex data 
(Aghanim et al. 2015 ; Guo & Martini 2019 ; Sharma et al. 2020 ; 
Vilavicencio-Arcadia et al. 2020 ; Chen 2021 ; Kerby et al. 2021 ). 

Rare object identification is another vital task of neural network 
(Luo et al. 2008 ; Guo et al. 2019 ; Muthukrishna, Parkinson & 

Tucker 2019 ; Zou et al. 2019 ; Jiang et al. 2020 ; Kou et al. 2020 ; 
Margalef-Bentabol et al. 2020 ; Skoda et al. 2020 ; Zheng et al. 2020 ; 
Tan et al. 2022 ; Zhang et al. 2022 ). Shi et al. ( 2014 ) searched for 
metal-poor galaxy (MPG) in large surv e ys and achiev ed an MPGs 
acquisition rate about 96 per cent. Zheng & Qiu ( 2020 ) used 1D 

CNN to search for O stars. Muthukrishna et al. ( 2019 ), Fremling 
et al. ( 2021 ), Davison et al. ( 2022 ) proposed a software package 
that used deep learning models to classify the type, age, redshift, and 
host galaxy of supernova spectra. Qu et al. ( 2020 ) identified spectrum 

J152238.11 + 333136.1 from LAMOST DR5 and discussed the rare 
features of P-Cygni profiles. 

Neural network based classification algorithms can be used to 
extract spectral features by different layers (i.e. hidden layers in 
Fig. 14 , convolutional layers in Fig. 15 ). These layers can auto- 
matically learn rich and complex relationships between data. So 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/518/4/5904/6825503 by O
U

P site access,   on 14 D
ecem

ber 2022

art/stac3292_f13.eps
art/stac3292_f14.eps
art/stac3292_f15.eps
art/stac3292_f16.eps


5912 H. Yang et al. 

MNRAS 518, 5904–5928 (2023) 

Table 5. Investigations of neural network based classification algorithms on astronomical spectra data. 

Merits Caveats References 

High accuracy on stellar spectra and specific spectra 1 Limited to unbalanced data sets Cabayol et al. ( 2019 ), Shi et al. ( 2014 ), 
Zou & el al. ( 2020 ), Farr, Font-Ribera & Pontzen ( 2020 ), 
Wang, Guo & Luo ( 2017 ), Liu et al. ( 2019 ), 

Better than other methods 2 Results are affected by noise Davison, Parkinson & Tucker ( 2022 ), Bu et al. ( 2019 ), 
Aghanim et al. ( 2015 ), Fuqiang et al. ( 2014 ), 

Generate synthetic data Poor performance on large redshift objects Arsioli & Dedin ( 2020 ), Guo et al. ( 2019 ), 
Rastegarnia et al. ( 2022 ), Sharma et al. ( 2020 ), 

Redshift estimation for quasar, SNe Ia/others Bad performance on weak features Guo & Martini ( 2019 ), Fremling et al. ( 2021 ), 
Chen ( 2021 ), Flores et al. ( 2021 ), Zou, Zhu & Xu ( 2019 ), 

Tackle different types of input data sets 3 Overfitting Zheng & Qiu ( 2020 ), Tan et al. ( 2022 ), 
Lu, Pan & Yi ( 2020 ), Astsatryan et al. ( 2021 ), 

Need less additional information Misclassification on K/F stars Jingyi et al. ( 2018 ), Jiang et al. ( 2021 ), 
Jing-Min et al. ( 2020 ), Jiang et al. ( 2020 ), 

Provide vital supplements to categories 4 High computation time Skoda, Podsztavek & Tvrd ́ık ( 2020 ), Kerby et al. ( 2021 ), 
Luo et al. ( 2008 ), Zheng et al. ( 2020 ), 
Vilavicencio-Arcadia et al. ( 2020 ) 

Notes . 1 M stars/others, BAL quasars/others, Pulsars/blazars, etc. 
2 RF, template matching, KNN, etc. 
3 Spectra, image, photometric data, etc. 
4 Quasar , star , double-lined spectroscopic binaries, etc. 

neural network based algorithms can obtain high accuracy (Moraes, 
Valiati & Gavi ̃ ao Neto 2013 ; Fuqiang et al. 2014 ; Wang et al. 2017 ; 
Guo et al. 2019 ; Liu et al. 2019 ; Jing-Min et al. 2020 ; Portillo et al. 
2020 ; Zou & el al. 2020 ; Jiang et al. 2021 ). Furthermore, neural 
network could also handle input features well even without colour 
or morphological information (Bu et al. 2019 ; Cabayol et al. 2019 ) 
which greatly expanded the size and formats of input data sets. 

In short, neural network can learn deep features of data, which 
will provide subtle differences for classification. More importantly, 
with the introduction of tricks (i.e. residuals and attention blocks), 
ANN pays more attention on the valid features. In addition, ANN 

increases its depth to handle complex and high dimensional data. 
So it has been widely used in astronomy, such as star/galaxy/quasar 
classification, MPGs/MRGs classification, rare object identification 
and spectral feature selection, etc (Rastegarnia et al. 2022 ). Although 
neural network model can produce good results, it is a black box 
that is difficult to interpret results. Compared with decision tree, the 
results of neural network are difficult for astronomers to analyse the 
characteristics of celestial objects. 

2.7 Gaussian nai v e Bay es based classification algorithms 

Assuming that features are independent, Gaussian naive Bayes 
based classification algorithms simplify the Bayesian algorithm. 
They prefer to deal with features in a Gaussian distribution and 
the maximum posterior probability is the final results. Equation ( 1 ) 
is the objective of Gaussian Naive Bayes based classification algo- 
rithms and equation ( 2 ) is Gaussian probabilities. Table 6 represents 
astronomical studies of Gaussian naive Bayes based classification 
algorithms. 

y = argmax 
c k 

P ( Y = c k ) 
∏ 

j 

P 

(
X j = x j | Y = c k 

)
, (1) 

where 

P ( x i | y ) = 

1 √ 

2 πσ 2 
y 

exp 

( 

−
(
x i − μy 

)2 

2 σ 2 
y 

) 

(2) 

δy is variance of x i ( i = 1, 2,......, n ) and μy is average of x i in 
equation ( 2 ). 

Gaussian Naive Bayes based classification algorithms are good 
at dealing with continuous small data generated from Gaussian 
distribution. Under the assumption of reliable and sufficient prior 
spectral information, they could identify rare objects from a large 
number of spectra data, such as carbon stars (Wallerstein & Knapp 
1998 ; Lloyd Evans 2010 ; Hoyle et al. 2015 ; Pruzhinskaya et al. 
2019 ; Arsioli & Dedin 2020 ). And they were good at reducing noise 
of stellar spectra, which increased classification accuracy (Kang et al. 
2021 ). 

2.8 Logistic r egr ession based classification algorithms 

Bayesian Logistic Regression (LR) based classification algorithms 
obtain posterior probability distributions from linear regression 
models. And we can get classification results through the sigmoid 
function. The main researches of LR based classification algorithms 
are shown in Table 6 . Fig. 17 is the principle of Bayesian Logistic 
Regression based classification algorithms. 

LR based classification algorithms can be used for quick regres- 
sion. Ho we v er, the y cannot get desirable accuracy due to underfitting, 
bipartition data, and linear data in small feature spaces. In astron- 
omy, logistic regression based classification algorithms were often 
combined with other techniques to predict physical parameters and 
classify celestial objects (Luo et al. 2008 ; Tao et al. 2018 ; P ́erez- 
Galarce et al. 2021 ). 

2.9 Collaborati v e r epr esentation based classifier and partial 
least-squares discriminant analysis 

Partial least-squares discriminant analysis (PLS-DA) belongs to the 
discriminant analysis of multi v ariance data analysis techniques and 
can be used for classification and discrimination. It handles data 
in the same cluster rather than data in different clusters. Data in 
the same group varies widely. And data volumes between groups 
differ a lot. It extracts principle components of the independent 
variable X and the controlled variable Y, and finds the relationship 
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Table 6. Investigations of statistics and ranking on astronomical spectra data. 

Merits Caveats References 

Ranking methods can identify rare objects efficiently CRC-WPLS is not a pre v alent method Wallerstein & Knapp ( 1998 ), Lloyd Evans ( 2010 ), 
Si et al. ( 2015 ), Li et al. ( 2018 ), 
Hoyle et al. ( 2015 ), Kang, He & Zhang ( 2021 ), 

CRC-WPLS are used on non-linear unbalanced data Ranking methods also require ample data Du et al. ( 2016 ), Daniel et al. ( 2011 ), 
Song et al. ( 2018 ), P ́erez-Galarce et al. ( 2021 ), 
Tao et al. ( 2018 ), Arsioli & Dedin ( 2020 ), 
Pruzhinskaya et al. ( 2019 ), Luo et al. ( 2008 ) 

Figure 17. Main idea of Bayesian logistic regression. p i ( i = 1, 2,......, n ) 
are probabilities of x i ( i = 1, 2,......, n ) and are generated by Bayes model. 
Sigmoid function acti v ates p i ( i = 1, 2,......, n ) into value between 0 and 1. 
Sign function transforms probabilities into label 0 or 1. 

between principle components in a two high-dimensional space. 
Table 6 displays the main astronomical researches of CRC-PLS based 
classification algorithms. 

CRC is a no v el machine learning algorithm that represents a query 
by a linear integral of training samples. And CRC classifies the above 
queries based on the representation (Daniel et al. 2011 ). It has the 
ability to handle unbalanced, non-linear, and multilabel data. 

CRC-PLS reaps the merits of PLS regression and CRC. So it can 
classify the high-dimensional spectra data (Song et al. 2018 ). 

2.10 Ranking based classification algorithms 

Ranking based positive-unlabelled (PU) learning algorithms have 
been frequently used in astrophysical object retrie v al. Graph based 
ranking methods successfully identify carbon stars from massive 
astronomical spectra data, such as manifold algorithm and efficient 
manifold algorithm (Si et al. 2015 ), Locally linear embedding. 
The bipartite ranking is another typical method to impro v e ranking 
performance and it has been introduced to search for carbon stars 
(Du et al. 2016 ). Alternatively, bagging is a popular method to obtain 
better performance by integrating different classifiers. The idea of 
bagging has been well applied in rare object retrie v al wonderfully 
(Du et al. 2016 ; Li et al. 2018 ). 

The core idea of ranking based classification methods is to learn 
a ranking based model which usually ranks data sets by pre-defined 
e v aluation methods. The y hav e two goals: (1) positiv e samples are 
ranked ahead of ne gativ e samples. (2) the scores of related samples 
tend to be similar. Many optimal ranking methods have emerged to 
impro v e classification performance and reduce time consumption, 
such as efficient manifold algorithms and bagging TopPush. And 
these methods have already discovered carbon stars from extensive 
spectra data which is a significant supplement to the catalogues of 
carbon stars (Table 6 ). 

3  EXPERI MENT  ANALYSI S  

Recently, lots of basic or impro v ed classification algorithms have 
been successfully applied to various astronomical data analyses. 
Ho we ver, due to the diversity of classification tasks and classification 
data, it is difficult to assess the advantages and disadvantages of these 
methods from the current literature. So, in this section, we construct 
unified experimental spectral data sets from LAMOST survey and 
SDSS surv e y to e v aluate the commonly used methods. 

3.1 Experimental data introduction 

In the experimental design, we construct several groups of data sets 
using the spectra data from LAMOST (Luo et al. 2015 ) and SDSS. 

LAMOST (The Large Sky Area Multi-Object Fiber Spectroscopic 
Telescope, also known as Guo Shou Jing Telescope) is a special 
reflective Schmidt telescope with an ef fecti ve aperture of 3.6–4.9 
m and a field of view of 5 ◦. It is equipped with 4000 fibres, a 
spectra resolution of R ≈ 1800, and a wavelength ranging from 3800 
to 9000 Å ( ht tp://www.lamost .org/public/?locale = en ). Its scientific 
goal is to make a 20 000 de g 2 spectroscopic surv e y (DEC: −10 ◦ ∼
+ 90 ◦). After seven years of surv e ying, LAMOST has observed tens 
of millions of low-resolution spectra data, providing important data 
for astronomical statistical research. 

The Sloan Digital Sky Survey (SDSS) is an international collab- 
oration of scientists to build the most detailed 3D imagery of the 
Universe. It uses a wide-field telescope with a diameter of 2.5 m 

and a field of view of 3 ◦. The photometric system is matched with 
five filters in u , g , r , i , and z bands to photograph celestial objects. 
It co v ers 7500 de g 2 of the sk y around the South Galactic Pole and 
records data on nearly 2 million celestial objects. 

Experimental data are selected from LAMOST DR8 and SDSS 

DR16. The LAMOST DR8 data sets include a total of 17.23 million 
released spectra. The number of high-quality spectra of DR8 (that is, 
the S/N > 10) reaches 13.28 million and DR8 includes a catalogue 
of about 7.75 million groups of stellar spectral parameters. The 
SDSS DR16 co v ers more than one-third of the sky and contains 
about 5789 200 total spectra and 4846 156 useful spectra. And DR16 
contains new optical and infrared spectra, including the first infrared 
spectra observed by Las Campanas Observatory in Chile. 

We select and pre-process the spectra from four aspects. These are 
shown in Table 7 . 

(1) Data release. We select spectra from LAMOST DR8 and SDSS 

DR16. 
(2) Extinction problem. In order to decrease the influence of 

reddening on classification performance, 1D spectra in data sets are 
selected from LAMOST (45 ◦< l) (Yang et al. 2022a ). 

(3) Flux calibration. LAMOST uses relative flux calibration. We 
cut off the o v erlapping re gion (5700 Å<λ < 5900 Å) known to have 
calibration issues to minimize their effect on our classification. 
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Table 7. Data preprocessing. 

Data selection and preprocessing 

Data release LAMOST DR8, SDSS DR16 
Extinction 1D spectra from LAMOST( l > 45 ◦) 
Redshift Rest wavelength frame spectra for star/galaxy/quasar 
Flux calibration Relative flux calibration: cut off 5700 Å–5900 Å

(4) Redshift. For star/galaxy/quasar classification, we convert 
original spectra into the rest-frame wavelengths by applying the 
redshift values from LAMOST and compare the performance of 
classification on the rest wavelength frame spectra and original 
spectra. Because the radial velocity of stellar spectra are small under 
the current resolution of LAMOST, which has little influence on 
classification results. Spectra for stellar classification are left in the 
observed frame wavelengths. 

We determine three classification tasks among multiple as- 
tronomical researches, including A/F/G/K stars classification, 
star/galaxy/quasar classification, and rare object identification. Rare 
objects includes carbon stars (Wallerstein & Knapp 1998 ; Lloyd 
Evans 2010 ; Gigoyan et al. 2012 ), double stars, artefacts: bad 
merging of red and blue segments (A common phenomenon that 
occurs in the spectra of LAMOST). 

We design six groups of data sets for the abo v e tasks. Data sets 
1–data sets 3 are constructed for A/F/G/K stars classifications. They 
are divided by data characteristics, S/Ns and data volumes, and each 
data set contains three or four sub-data sets. Datasets 4 are used 
to e v aluate the classification performance of star/galaxy/quasar on 
original spectra and rest wavelength frame spectra. Data set 5 is 
used to identify rare objects: carbon stars, double stars, and artefacts. 
And the classifier is trained on 200 rare objects and 19 900 other 
non-rare objects. Non-rare objects include 10 000 normal stars, 6500 
galaxies, and 3400 quasars. We analyse the results of rare object 
identification by accuracy, precision, recall, and F1 score. Spectra of 
the first five groups of data sets are selected from LAMOST. Because 
the sources of LAMOST have considerable overlaps with SDSS, we 
construct the matching data sets (data sets 6 in Table 8 ) from SDSS 

and LAMOST to compare the classification performances on them. 
The analyses of experimental results on data sets 6 are elucidated in 
Section 3.2.1 . 

The composition of testing sets in all data sets is the same as their 
training sets. The ratio of training sets and testing sets for data sets 
1, data sets 2, data sets 3, data sets 4, and data sets 6 is 8:2 and the 
ratio of training sets and testing sets for data set 5 is 1:1. Details of 
data sets are shown in Table 8 . 

3.2 Result analysis 

In this section, nine basic methods including K-Nearest Neighbour, 
Support Vector Machine, Decision Tree, Random Forest, Gradient 
Boosting Decision Tree, Logistic Regression, Pseudo Inverse Learn- 
ing, and Convolutional Neural Network are tested on astronomical 
spectra data and we fairly e v aluate the classification performance. 

Our experiments use grid search (Syarif; Pr ̈ugel-Bennett & Wills 
2016 ) to identify the optimal parameters of each algorithm. And we 
take the av erage accurac y of 5-fold cross validation (Fushiki 2011 ) 
as the final accuracy to a v oid the influence of sample selection. 

3.2.1 Performance analysis on 1D spectra, PCA, and line indices 

Fig. 18 represents the accuracy of nine basic algorithms on three data 
characteristics (1D spectra, PCA, line indices). 

In the classification on 1D spectra, CNN achieves the highest 
accuracy. Because it can extract complex features through different 
layers. Ho we ver, CNN still suf fers from two una v oidable drawbacks. 
One is that it has to spend a long time to obtain the optimal model. 
The other is o v erfitting which cannot be easily eliminated even by 
L2 regularization or dropout method. In order to reduce the training 
time, we can extract features by PCA and classify the pre-processed 
spectra. Because accuracy on PCA features is equal to that on 1D 

spectra and the training time is shorter. 
In Fig. 19 , A stars and K stars can be distinguished admirably 

whereas F stars and G stars have disappointing accuracy. Because F 

stars and G stars are more similar than A stars and K stars in the global 
shape of 1D spectra. Stellar rotation might become another reason 
for the misclassification because it broadens spectral lines and might 
cause the global shape of 1D spectra if lines are blended because 
of insufficient spectral resolution. So it is necessary to alleviate the 
influence of stellar rotation on classification. Moreo v er, researchers 
can use other spectra characteristics to a v oid the ca veats of 1D 

spectra. Results also show that LR, Pseudo Inverse Learning (PIL), 

Table 8. Data sets of spectral classification. 

Data sets introduction 1 Data components 2 S/N Characteristics 

Data sets 1 A/F/G/K stars classifications A : F : G : K Stars = 5000 : 5000 : 5000 : 5000 > 10 1D Spectra 
on four characteristics A : F : G : K Stars = 5000 : 5000 : 5000 : 5000 > 10 PCA (100 dimensions) 

A : F : G : K Stars = 5000 : 5000 : 5000 : 5000 > 10 Line Indices 
Data sets 2 A/F/G/K stars classifications A : F : G : K Stars = 5000 : 5000 : 5000 : 5000 < 10 1D Spectra 

on three S/Ns A : F : G : K Stars = 5000 : 5000 : 5000 : 5000 10-30 1D Spectra 
A : F : G : K Stars = 5000 : 5000 : 5000 : 5000 > 30 1D Spectra 

Data sets 3 A/F/G/K stars classifications A : F : G : K Stars = 2000 : 2000 : 2000 : 2000 > 10 1D Spectra 
on four volumes A : F : G : K Stars = 5000 : 5000 : 5000 : 5000 > 10 1D Spectra 

A : F : G : K Stars = 10000 : 10000 : 10000 : 10000 > 10 1D Spectra 
A : F : G : K Stars = 20000 : 20000 : 20000 : 20000 > 10 1D Spectra 

Data sets 4 Star/galaxy/quasar classifications star : galaxy : quasar = 5000 : 5000 : 5000 stars: > 10, Original Spectra 
star : galaxy : quasar = 1000 : 1000 : 1000 galaxies, quasars: all Rest Wavelength Frame Spectra 

Data set 5 Search for rare objects 3 rare objects : normal stars : galaxies : quasars normal stars : > 10, 1D Spectra 
= 200 : 10000 : 6500 : 3400 galaxies, quasars : all 

Data sets 6 A/F/G/K stars classifications A : F : G : K = 5824 : 5380 : 4151 : 6240(LAMOST) > 10 1D Spectra 
on LAMOST and SDSS A : F : G : K = 5797 : 5355 : 4144 : 6229(SDSS) 

Notes . 1 Spectra of data sets 1–data set 5 are selected from LAMOST. Spectra of data sets 6 are selected from LAMOST and SDSS. 
2 The values of the data components in this table are the actual data volume. 
3 Rare objects: carbon stars, double stars, artefacts : bad merging of red, and blue segments. 
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Figure 18. Accuracy of algorithms on different data characteristics. Three different types of bars stand for various data characteristics. 

Figure 19. Accuracy of algorithms on 1D spectra of A/F/G/K stars. X-axis represents predicted labels conducted by experiments. Y-axis represents true labels 
of spectra. Figures in the grids are the consistent probabilities between predicted labels and true labels. Algorithm names are presented on the abo v e of each 
confusion matrix. 

DT cannot get desirable results on F stars and G stars due to the weak 
spectral shapes. While strong classifiers (CNN, ensemble methods, 
SVM) show superiority. 

PCA is a useful dimensionality reduction tool in many fields. 
Technically, it extracts principle components of spectra. And the 
principle components preserve the main information of spectra as 
much as possible. So accuracy shows little difference with 1D spectra 
(Figs 18 –20 ). Ho we ver, the consistent results cannot be explained 
well because linear PCA may be misleading to tackle the non- 
linear spectral lines. This phenomenon has also confused researchers 
(Tao et al. 2018 ). And spectra pre-processed by PCA are a linear 
sum of different dimensional characteristics from 1D spectra which 
lacks concrete (astro)physical meaning. These problems need to be 
explored in the future. The main merit of PCA is that the spectra 
pre-processed by PCA can reduce the number of features and the 
computation time. So it has been widely used in astronomical tasks. 

Line indices are vital features for spectral analysis. They refer 
to the relative intensity of absorption or emission lines produced 
by certain elements. And stellar absorption lines can be used to 
distinguish stars. Fig. 18 illustrates the results of nine basic algo- 
rithms on line indices. Overall, nine basic classification algorithms 
performed similarly. Compared with the results on 1D spectra, simple 
KNN is superior to CNN in the low dimensional space of line 
indices. Because the powerful feature selection of CNN tends to 
sho w adv antages in high dimensional space. Fig. 21 show more 
misclassifications between A stars and F stars. Misclassification 
between F stars and G stars has decreased a little. And we can 
clearly see that F stars can be distinguished better than other stars. 

Comparative results analysis of LAMOST and SDSS. As can be 
seen from Fig. 22 , the classification algorithms perform better on 
SDSS instead of LAMOST. The reason may be that the calibration 
quality of LAMOST will be influenced by fibre-to-fibre sensitivity 
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Figure 20. Accuracy of algorithms on PCA of A/F/G/K stars. X-axis represents predicted labels conducted by experiments. Y-axis represents true labels of 
spectra. Figures in the grids are the consistent probabilities between predicted labels and true labels. Algorithm names are presented on the abo v e of each 
confusion matrix. 

Figure 21. Accuracy of algorithms on line indices of A/F/G/K stars. X-axis represents predicted labels conducted by experiments. Y-axis represents true labels 
of spectra. Figures in the grids are the consistent probabilities between predicted labels and true labels. Algorithm names are presented on the abo v e of each 
confusion matrix. 
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Figure 22. Accuracy of algorithms on A/F/G/K stars of LAMOST and SDSS. Two different bars represent the spectra from LAMOST and SDSS. 

Figure 23. Confusion matrices of algorithms on A/F/G/K stars of LAMOST. X-axis represents predicted labels conducted by experiments. Y-axis represents 
true labels of spectra. Figures in the grids are the consistent probabilities between predicted labels and true labels. Algorithm names are presented on the abo v e 
of each confusion matrix. 

variations, further causing the slight differences on classification 
results. As shown in Fig. 23 , all classification algorithms perform 

best on K-type stars from LAMOST. But they perform poorly 
on F-type stars from LAMOST. Similarly, the performance of 
classification algorithms on F-type stars from SDSS is bad (Fig. 24 ). 
And it can be clearly seen that the performance of classification 
algorithms on A, G, K stars from SDSS is similar, but slight better 
than that from LAMOST. 

3.2.2 Performance analysis on spectra qualities 

On the whole, the accuracy is in direct proportion to S/N (Fig. 25 ). 
Paying more attention on S/N > 30, we can draw a conclusion that 
SVM, ensemble methods, and CNN can achieve better results than 
KNN. And, the classification performance of PIL is better than that of 

LR. Because PIL can extract complicated features through a simple 
three-layer neural network while LR fails in high-dimensional space. 

The accuracy of classification on S/N: 10–30 drops completely 
because spectral data on S/N: 10–30 are al w ays mixed with noise. 
CNN continues to remain top of the nine basic algorithms because it 
has added regularization and dropout methods to alleviate o v erfitting. 

It is difficult to mine information from spectra on S/N < 10 which 
are often regarded as unqualified spectra. As a result, it is pre v alent to 
obtain low accuracy on spectra with S/N < 10. We divide algorithms 
into three parts according to their classification accurac y. Ob viously, 
SVM, CNN, ensemble methods, and LR are the leading echelons 
followed by PIL. SVM shows robustness on S/N < 10. Because the 
soft margin of SVM guarantees that most spectra are classified 
correctly even for some misclassified samples. Likewise, CNN gains 
70 per cent accuracy depending on the strong ability of feature 
selection. GBDT and XGBoost adopt gradient boosting methods to 
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Figure 24. Confusion matrices of algorithms on A/F/G/K stars of SDSS. X-axis represents predicted labels conducted by experiments. Y-axis represents true 
labels of spectra. Figures in the grids are the consistent probabilities between predicted labels and true labels. Algorithm names are presented on the abo v e of 
each confusion matrix. 

Figure 25. Accuracy of algorithms on different S/Ns. Different colour bars stand for different S/Ns. 

reduce errors and attain higher accuracy than RF which only merges 
different decision trees. KNN and decision tree cannot satisfy us. 
They perform worst. Because KNN uses Euclidean distance as a 
distance metric. So it is susceptible to noise. Likewise, decision tree 
cannot find proper splitting features because of noise. We can find 
misclassification of spectra on S/N < 10 from Figs 26 , 27 and 28 , such 
as the poor performance of PIL and decision tree methods on F stars. 

3.2.3 Performance analysis on different data volumes 

Figs 29 and 30 show the performance of nine basic classification 
algorithms on the four different data volumes. 

There is a slight impro v ement in the accuracy with the increase of 
data volumes. Because the large number of spectral data will provide 
more information to obtain better classifiers. 

Fig. 31 shows the computation time of nine basic classification 
algorithms on four different data volumes. Compared with other 
algorithms, SVM and CNN spend more time on classification. 
Besides, the computation time of SVM, CNN, and LR increases 
rapidly as the data volumes increase. 

There is little difference in the confusion matrices of different data 
volumes. And the main misclassification exists between F stars and 
G stars in Figs 32 –35 . 

3.2.4 Performance analysis of star, galaxy, and quasar 
classification 

As can be seen from Fig. 36 , most classification algorithms perform 

better on the rest wavelength frame spectra than on the original 
spectra. Because redshift causes feature shift problems, o v erlapping 
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Figure 26. Accuracy of algorithms on S/N < 10 of A/F/G/K stars. X-axis represents predicted labels conducted by experiments. Y-axis represents true labels 
of spectra. Figures in the grids are the consistent probabilities between predicted labels and true labels. Algorithm names are presented on the abo v e of each 
confusion matrix. 

Figure 27. Accuracy of algorithms on S/N: 10–30 of A/F/G/K stars. X-axis represents predicted labels conducted by experiments. Y-axis represents true labels 
of spectra. Figures in the grids are the consistent probabilities between predicted labels and true labels. Algorithm names are presented on the abo v e of each 
confusion matrix. 
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Figure 28. Accuracy of algorithms on S/N > 30 of A/F/G/K stars. X-axis represents predicted labels conducted by experiments. Y-axis represents true labels 
of spectra. Figures in the grids are the consistent probabilities between predicted labels and true labels. Algorithm names are presented on the abo v e of each 
confusion matrix. 

Figure 29. Accuracy of algorithms on different data volumes. Four different bars stand for four types of data volumes. 

phenomena between nearby galaxies and high-velocity stars. These 
problems affect the performance of classification algorithms on 
original spectra. We also found that LR, PIL, and CNN algorithms 
perform better on original spectra. Because LR fits more complex 
polynomials to classify spectra and the other two methods learn 
deep features for better classification. So the abo v e issues caused 
by redshift make little influence on the classification performance 
of these methods. In addition, the dimensionality of rest wavelength 
frame spectra is reduced and some information will be lost, which 
will also lead to poor classification performances of LR, PIL, and 
CNN. 

Pay more attention on the classification algorithms in Fig. 36 , they 
can be divided into three parts: CNN, SVM, RF, GBDT, XGBoost; 
DT, LR, PIL; KNN. CNN performed better than others for its 
powerful ability of feature selection. The classical classifier SVM can 
also find a suitable hyperplane to separate the rest wavelength frame 

spectra. Methods such as RF, GBDT, XGBoost can classify rest wave- 
length frame spectra well due to their integration. Decision tree and 
random forest cannot choose the split nodes well because of the in- 
consistent features. KNN cannot classify galaxy and quasar well. Be- 
cause the feature lines are inconsistent on spectra shape and position 
due to redshift. Misclassification can also be found in Figs 37 and 38 . 

3.2.5 Performance analysis on rare targets 

Compared with the classifications performance of A/F/G/K stars 
classification on 1D spectra, the classification algorithms perform 

bad when searching for carbon stars, double stars, and identifying 
artefacts (Figs 39 –41 ). Because the imbalanced data sets have a bad 
impact on the classification performance. 

Due to the obvious characteristics of carbon stars, classification 
performance of carbon stars is better than that of double stars and 
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Figure 30. Accuracy of algorithms on different data volumes. Different 
shapes in lines represent different classification algorithms. 

Figure 31. Time of algorithms on different data volumes. Different line 
colours mean various algorithms. Time between 0 and 1000 is clearly shown 
in the middle rectangle. 

artefacts. As can be seen from Fig. 39 , the classic binary classi- 
fier SVM and ensemble learning methods (RF, GBDT, XGBoost) 
perform better than other algorithms. 

The classification algorithms have the worst performance in iden- 
tifying double stars due to the mutual interference of the o v erlapping 
parts in double stars. This problem will affect the classification 
performance on carbon stars. Precision in Fig. 40 shows that the 
ensemble learning (RF, GBDT, XGBoost) can identify some double 
stars accurately. But the recall in Fig. 40 shows that a large number 
of double stars will be missed. 

It can be seen from Fig. 41 that classification performance of 
identifying artefacts is between the carbon stars and double stars. 
Several ensemble algorithms can also find these rare stars accurately. 
Compared with the double stars, the recall rate of artefacts is 
relativ ely impro v ed. It means that sev eral inte gration algorithms and 
KNN can identify more artefacts. But it is inevitable that many 
artefacts will be missed. 

4  S O U R C E  C O D E  A N D  M A N UA L  

Source codes used in this paper are provided on https://github.com 

/shichenhui/SpectraClassification . Algorithms in the code category 
are shown in Table 9 . Because the parameters of algorithms have 
a significant impact on the classification results, we also provide 

the parameters of algorithms on each data set and the parame- 
ters are optimized by grid-search method provided by SKLEARN 

package. 
The codes are written in python which is widely used for machine 

learning and data analysis. Dependent packages of our codes include 
NUMPY (Harris et al. 2020 ), SKLEARN , MATPLOTLIB (Hunter 2007 ), 
PANDAS , SCIPY . Each algorithm is organized by the following steps: 
(1) load training data sets and testing data sets; (2) configure the 
parameters of classification models; (3) train models on the training 
data sets; (4) classify the testing data sets by training models; (5) 
e v aluate the performance of training models. To a v oid the influence 
of sample selection on the training data sets, we use 5-fold cross- 
validation to split data sets and evaluate models. But this is not 
necessary for practical applications. 

These codes load data from ∗.csv files which store tabular data 
in the form of text. And a row of data is a spectrum. You need 
to convert your spectra data into this format or modify the data 
loading mode. Some basic algorithms are directly implemented from 

SKLEARN packages. 
The parameter K of KNN is not a fixed value (default value in 

SKLEARN is 5). Generally, a smaller value is often selected according 
to the sample distributions. And an appropriate K value can be 
selected by cross-validation. Besides, it adopts Euclidean distance 
as distance metrics to get good results in low dimensional space. 
Other distance metrics can also be applied in KNN to a v oid the 
disadvantage of Euclidean distance. 

SVM needs to select kernel functions. There are many kernel 
functions: linear kernel function, polygon kernel function, RBF ker- 
nel function, sigmoid kernel function, etc. The current impro v ement 
of SVM is combined with other methods to classify the large-scale 
data sets. 

Feature selection criteria and feature splitting criteria are two 
important parameters of decision tree. Different feature selection 
methods (information entropy, information gain, Gini index) corre- 
spond to different decision trees. Features splitting parameters can 
be ‘best’ or ‘random’. The former is to find the optimal division point 
from all division points of the features, the latter is to find the local 
optimal division point from the randomly selected division points. 
Generally, ‘best’ is often used for the small number of samples and 
‘random’ for the large number of samples. Other parameters like tree 
depth and the number of trees are also needed to be determined. 

Ensemble learning algorithms (i.e. random forest, GBDT, and 
XGBoost) are integrated by decision trees. We need to choose the 
number of integrated trees. Methods in SKLEARN use 100 decision 
trees by default. But GBDT cannot be parallel, we need to reduce the 
number of decision tree appropriately. Other parameters in decision 
tree can be set up according to the introduction in the previous 
paragraph. 

Logistics regression is a binary classifier. It integrates multiple 
LR classifiers for multiclassification tasks. The integration strategy 
is al w ays ‘OVR’. And it uses ‘L1’ and ‘L2’ regularization to reduce 
o v erfitting. ‘L2’ is more commonly used. But for high dimensional 
data, ‘L1’ penalty can help you reduce the impact of unimportant 
features. 

The good design of neural network structures is important for ANN 

based methods. We find that 1D convolutional structure can extract 
spectral features well. So for spectral classification, the performance 
of CNN is better than that of fully connected neural network. There 
are many layers in computer vision. But for data in the format of 
vector, we do not need to stack too many layers in the neural network 
structures. Likewise, ‘L1’ and ‘L2’ regularization can be used to 
reduce o v erfitting. 
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Figure 32. Accuracy of algorithms on data volume of 8000 for A/F/G/K stars. X-axis represents predicted labels conducted by experiments. Y-axis represents 
true labels of spectra. Figures in the grids are the consistent probabilities between predicted labels and true labels. Algorithm names are presented on the abo v e 
of each confusion matrix. 

Figure 33. Accuracy of algorithms on data volume of 20 000 for A/F/G/K stars. X-axis represents predicted labels conducted by experiments. Y-axis represents 
true labels of spectra. Figures in the grids are the consistent probabilities between predicted labels and true labels. Algorithm names are presented on the abo v e 
of each confusion matrix. 
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Figure 34. Accuracy of algorithms on data volume of 40 000 for A/F/G/K stars. X-axis represents predicted labels conducted by experiments. Y-axis represents 
true labels of spectra. Figures in the grids are the consistent probabilities between predicted labels and true labels. Algorithm names are presented on the abo v e 
of each confusion matrix. 

Figure 35. Accuracy of algorithms on data volume of 80 000 for A/F/G/K stars. X-axis represents predicted labels conducted by experiments. Y-axis represents 
true labels of spectra. Figures in the grids are the consistent probabilities between predicted labels and true labels. Algorithm names are presented on the abo v e 
of each confusion matrix. 
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Figure 36. Accuracy of algorithms on star/galaxy/quasar on original spectra and rest wavelength frame spectra. Two bars represent two spectra characteristics. 

Figure 37. Accuracy of algorithms on star/galaxy/quasar on original spectra. X-axis represents predicted labels conducted by experiments. Y-axis represents 
true labels of spectra. Figures in the grids are the consistent probabilities between predicted labels and true labels. Algorithm names are presented on the abo v e 
of each confusion matrix. 

5  DISCUSSION  

In this paper, we investigate the classification methods used for 
astronomical spectra data. We introduce the main ideas, advantages, 
caveats, and applications of classification methods. And data sets are 
designed by data characteristics, data qualities, and data volumes. 
Besides, we experiment with nine basic algorithms (KNN, SVM, LR, 
PIL, CNN, DT, RF, GBDT, XGBoost) on A/F/G/K stars classifica- 
tion, star/galaxy/quasar classification, and rare object identification. 
Experiments on data characteristics also include the comparative 
experiments on the matching sources from the LAMOST survey and 
SDSS surv e y. 

For A/F/G/K stars classification, the accuracy on 1D spectra and 
PCA sho ws little dif ference while PCA spends less time in the 
training stage. Because it reduces the spectra dimensionality. So 
PCA is often used to classify large-scale and high dimensional data 
sets. Among nine basic methods, CNN performs best on 1D spectra 
and PCA, due to its powerful ability for feature selection. For the 
classification on line indices, KNN shows superiority among other 

methods. The performance of classification on SDSS is better than 
that on LAMOST. Because the calibration quality of LAMOST is 
undesirable, which is affected by many factors (i.e. fibre-to-fibre 
sensiti vity v ariations). In addition, high-quality spectra and a large 
number of samples help us to train models. But with the growth of 
data volumes, the training time of some models will also increase 
greatly. So it is necessary to impro v e the classification speed on 
large-scale data sets. 

As for star/galaxy/quasar classification, most performance of 
classification on rest wavelength frame spectra is better than that 
on original spectra. Because redshift causes feature mo v ement on 
original spectra. But for some algorithms (PIL, LR, CNN), the 
performance of classification on the original spectra is better than 
that on the rest wavelength frame spectra. Because original spectra 
have much information. These methods can extract feature well and 
are less influenced by redshift. For this task, SVM which is good 
at binary classification and CNN with powerful ability for feature 
selection perform better than other methods. 
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Figure 38. Accuracy of algorithms on star/galaxy/quasar on rest wavelength frame spectra. X-axis represents predicted labels conducted by experiments. Y-axis 
represents true labels of spectra. Figures in the grids are the consistent probabilities between predicted labels and true labels. Algorithm names are presented on 
the abo v e of each confusion matrix. 

Figure 39. Results of algorithms on carbon stars. Four bars are four e v aluation criteria of classification results. 

Figure 40. Results of algorithms on double stars. Four bars are four e v aluation criteria of classification results. 

It is difficult to identify carbon stars, double stars, and artefacts due 
to the unbalanced data distributions. Among these three rare objects, 
the performance of identifying carbon stars is better than others due 
to their obvious characteristics. The performance of searching for 

double stars is the worst. In short, researchers need to find other 
methods for rare object identification. 

In this paper, we only e v aluate the classification performance 
of nine basic algorithms on astronomical spectra. Other ef fecti ve 
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Figure 41. Results of algorithms on identifying artefacts. Four bars are four e v aluation criteria of classification results. 

Table 9. Source codes notes of classification algorithms. 

Algorithms KNN SVM LR DT RF GBDT XGBoost CNN PIL 

Source files KNN.py SVM.py LR.py DT.py RF.py GBDT.py XGBoost.py CNN.py PIL.py 
Python version python 3.8 
Dependent packages NUMPY ; PANDAS ; SKLEARN ; SCIPY ; PYTORCH 

methods still need to be analysed in the future. And experimental 
results in this paper can only provide a reference to researchers. In 
practical application scenarios, researchers need to choose appropri- 
ate methods according to their data characteristics. 
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