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Abstract001

We present FC-ICL, a retrieval-reranking002
framework that enhances large language mod-003
els’ (LLMs) function calling capabilities004
through optimized in-context demonstration se-005
lection. Addressing the critical challenge of006
semantic-contextual alignment in tool invoca-007
tion tasks, our method combines efficient vector008
retrieval with task-specialized BERT reranking.009
The framework introduces three innovations:010
(1) a dynamic margin pairwise loss that aligns011
demonstration relevance with downstream tool-012
calling utility, (2) hybrid retrieval pipelines bal-013
ancing lexical precision and semantic recall,014
and (3) reasoning-enhanced prompting tem-015
plates enforcing structured decision logging.016
Evaluations in six variants of the Qwen-2.5017
model demonstrate state of the art performance,018
achieving 0.900 fine-grained accuracy in tool019
argument extraction (+18% vs. BM25 base-020
lines). Ablation studies reveal 12.4-37% er-021
ror reduction in parameter type matching and022
15% higher utility scores over single-stage re-023
trieval approaches. In particular, Qwen3-8B024
with FC-ICL achieves 0.8973 fine-grained pre-025
cision, surpassing zero-shot baselines by 60%026
in complex API invocation scenarios.027

1 Introduction028

Recent advancements in large language models029

(LLMs) have revolutionized task-oriented dialogue030

(TOD) systems, particularly through their tool-031

calling capabilities (e.g., API integration, database032

queries) and in-context learning (ICL) paradigms.033

Although traditional approaches focus on evaluat-034

ing LLMs’ instruction-following accuracy in tool035

invocation (Li et al., 2024), the critical role of036

prompt optimization, especially through dynamic037

demonstration selection, remains underexplored.038

Existing ICL-based methods typically rely on em-039

bedding models or sparse retrievers (e.g., BM25)040

to select demonstrations (Liu et al., 2021), but lack041

systematic mechanisms to refine candidate exam-042

ples through semantic relevance and alignment of 043

the task structure, leading to suboptimal perfor- 044

mance in complex tool-calling scenarios (Rubin 045

et al., 2021). 046

Recent studies have explored various demonstra- 047

tion selection optimization strategies. The work 048

of (Zeng et al., 2024) proposed an enterprise-level 049

training pipeline using synthetic data augmenta- 050

tion and LoRA fine-tuning to improve domain- 051

specific demonstration quality, achieving the preci- 052

sion of the parameters 85% in HR scenarios. (Xu 053

et al., 2025) introduced hybrid prompt tuning with 054

knowledge graph integration, demonstrating an im- 055

provement 12% in the F1 score in document-level 056

relation extraction. However, these approaches 057

still struggle with defining explicit optimization 058

objectives, particularly when ground-truth "opti- 059

mal demonstrations" are not available (Chen et al., 060

2024). Alternative solutions leverage downstream 061

task feedback signals or LLM self-evaluation for 062

optimization (Wang et al., 2024), but face chal- 063

lenges in sparse reward acquisition during the early 064

training phases and increased computational over- 065

head from model invocation (Kamuni et al., 2024). 066

Current research predominantly evaluates the 067

ability of LLMs to adhere to predefined tool speci- 068

fications (Stricker and Paroubek, 2024), neglect- 069

ing the potential to optimize the demonstration 070

content to improve task adaptability. For exam- 071

ple, while retrieval-augmented methods such as 072

Faiss-based semantic search improve candidate re- 073

call (Cui et al., 2024), they do not address the nu- 074

anced interaction between user queries and demon- 075

strations, such as multistep reasoning consistency 076

or domain-specific constraints (Luo et al., 2024). 077

Moreover, existing frameworks often treat retrieval 078

and ranking as isolated stages, resulting in ineffi- 079

ciencies and misalignment with downstream tasks 080

(Askari et al., 2024). This gap becomes pronounced 081

in dynamic environments where tool-calling re- 082

quires precise contextual grounding and error prop- 083
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agation mitigation.084

Promising advancements in information retrieval085

techniques provide new insights. The NAR4Rec086

model (Ren et al., 2024) achieves 40% latency re-087

duction through non-autoregressive parallel decod-088

ing, while GenRT (Xu et al., 2024) pioneers joint089

optimization of ranking and truncation with 15%090

recall gain. Recent work by (Zhou et al., 2024)091

further demonstrates that in-context learning with092

style examples can achieve alignment comparable093

to supervised fine-tuning, suggesting untapped po-094

tential for lightweight demonstration optimization.095

However, key challenges persist: (1) objective am-096

biguity in multistage pipelines lacking annotated097

exemplars, and (2) degradation of efficiency from098

cascaded processing (Carraro and Bridge, 2024).099

To address these challenges, we propose a two-100

tiered framework integrating retrieval, re-ranking.101

First, an embedding model (e.g., SBERT) retrieves102

top K candidates via Faiss indexing, capturing103

coarse-grained semantic similarity. Second, a104

fine-tuned BERT-based re-ranker analyzes query-105

demonstration pairs. The re-ranker employs a106

sigmoid-activated output layer to predict relevance107

scores, enabling dynamic prioritization of high-108

impact demonstrations.109

Extensive experiments on tool calling bench-110

marks demonstrate that our framework achieves a111

10% accuracy gain over embedding-based retrieval112

and 15% improvement versus BM25, while out-113

performing zero-shot baselines by 60%. The key114

contribution is the BERT-based model explicitly op-115

timized for tool-calling demonstrations, addressing116

the "relevance-compatibility" trade-off in ICL. This117

work advances the practical deployment of LLM-118

powered TOD systems, particularly in scenarios119

requiring precise tool orchestration and minimal120

human intervention.121

2 Related Work122

2.1 Function Calling in LLMs123

The evolution of function call capabilities in LLMs124

has undergone three distinct phases: primitive125

prompting, structured interface design, and pro-126

tocol standardization. Early models like GPT-2127

(Radford et al., 2019) relied on ad hoc prompt en-128

gineering for external system interactions, which129

suffered from inconsistent outputs and limited gen-130

eralization. Although GPT-3 (Brown et al., 2020)131

demonstrated improved reasoning on a scale, its132

lack of standardized tool invocation interfaces re-133

quired costly fine-tuning for domain adaptation 134

(Zhou et al., 2024). 135

Recent advances have split into two techni- 136

cal paradigms: tuning-free and tuning-based ap- 137

proaches (Qu et al., 2025). Tuning-free meth- 138

ods leverage the inherent reasoning capabilities 139

of LLMs through optimized prompting strategies. 140

Notable frameworks include ART (Paranjape et al., 141

2023), which achieves hierarchical task decompo- 142

sition through retrieved demonstrations, and Re- 143

Act (Yao et al., 2023), which integrates chain- 144

of-thought reasoning with tool invocation cycles. 145

These methods excel in zero-shot generalization 146

but exhibit sensitivity to prompt design varia- 147

tions (Zhang, 2023). In contrast, tuning-based ap- 148

proaches like Toolformer (Schick et al., 2023) fine- 149

tune LLMs (e.g., GPT-J) to predict API calls as 150

auxiliary tokens, achieving superior performance 151

in specialized domains at the cost of computational 152

resources (Zeng et al., 2024). The emergence of 153

enterprise-grade pipelines, exemplified by (Zeng 154

et al., 2024), demonstrates how synthetic data en- 155

hancement and LoRA-based parameter-efficient 156

tuning can enhance the precision of functions calls 157

in HR scenarios by 15% over GPT-4o. 158

Standardization efforts have further propelled 159

this field. The Model Context Protocol (MCP) 160

(Team, 2024) establishes USB-C-like interoper- 161

ability between LLMs and external tools, reduc- 162

ing integration costs by 40% through JSON-RPC 163

message standardization. Commercial implementa- 164

tions such as Baidu’s ERNIE-Bot and MiniMax’s 165

API-aligned frameworks confirm function calling 166

as an essential LLM capability (Xu et al., 2025). 167

Our work extends these foundations by intro- 168

ducing fine-grained relevance scoring for tool se- 169

lection, addressing the "semantic-contextual mis- 170

match" prevalent in multistage tool orchestration. 171

2.2 In-Context Learning Optimization 172

In-context learning (ICL) has emerged as a 173

paradigm-changing mechanism for task adaptation 174

without parameter updates (Brown et al., 2020). In 175

TOD systems, the efficacy of ICL is critically de- 176

pendent on the quality and ordering of the demon- 177

stration retrieval (Peng et al., 2024). Traditional ap- 178

proaches employ lexical retrievers (BM25) (Robert- 179

son et al., 2009) or dense encoders (GTR) (Ni 180

et al., 2021), each with inherent limitations: BM25 181

struggles with semantic variance in dialogue states, 182

while dense retrievers incur computational over- 183

head disproportionate to accuracy gains (Luo et al., 184
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2023).185

Recent innovations address these challenges186

through hybrid architectures. RetICL (Luo et al.,187

2024) dynamically adjusts demonstration sets188

based on the real-time dialogue context, achiev-189

ing 12% improvement in the F1 score on the TOD190

multi-turn benchmarks. The KATE framework (Liu191

et al., 2021) employs contrastive learning to select192

semantically diverse examples, reducing the over-193

fitting to superficial patterns. In particular, (Cui194

et al., 2024) proposes a two-phase retrieval pipeline195

combining Faiss-based vector search with BERT196

re-rankers, reducing false positives by 23% in e-197

commerce dialogues.198

Our work systematically optimizes ICL demon-199

stration selection through a two-stage retrieval-200

reranking framework, explicitly addressing the crit-201

ical challenge of semantic-contextual alignment202

in dynamic dialog. Drawing from information re-203

trieval advancements, we integrate coarse-grained204

semantic retrieval (via SBERT and Faiss indexing)205

with fine-grained BERT-based re-ranking, guided206

by three design principles: (1) structural compati-207

bility with dialogue state transitions, (2) domain-208

aware relevance scoring, and (3) computational209

efficiency for real-time deployment. The novelty210

of the framework lies in the unification of retrieval211

optimization with conversational context modeling,212

as evidenced by our ablation studies that show 15%213

higher demonstration utility scores compared to the214

standard BM25 or dense retrieval baselines.215

3 Method216

3.1 Preliminaries217

Function calling, a core technology for tool-218

oriented interaction in LLMs, essentially estab-219

lishes a semantic interface between natural lan-220

guage and structured services. Its technical work-221

flow comprises three phases: (1) Requirement Pars-222

ing: The LLM maps user instructions (e.g., "query223

the temperature in Beijing") to a predefined func-224

tion set; (2) Structural Transformation: Generates225

standardized invocation requests (including func-226

tion names and parameter key-value pairs) accord-227

ing to the JSON Schema specifications; (3) Service228

Execution: External systems parse the JSON data,229

trigger the corresponding API, and return execution230

results to the LLM for integration. An example of231

a weather query is illustrated in Table 1.232

In-context learning (ICL) guides the model in233

generating structured function invocation requests234

Key Value
name get_current_weather
arguments.location London
arguments.unit ◦F

Table 1: Structured representation of a function calling
example

by providing demonstrations in input. Compared 235

with general function calling, demonstration-based 236

function calling injects multiple annotated invo- 237

cation examples into prompts, helping the model 238

more accurately align user intents with function 239

semantic interfaces and improve parameter map- 240

ping and invocation accuracy. ICL does not rely on 241

model fine-tuning, offering strong flexibility and 242

being suitable for multitask unified scheduling and 243

generalization of function calling in low-resource 244

scenarios.Demonstration Retrieval refers to re- 245

trieving semantically similar invocation examples 246

from a pre-built example library to enhance the 247

LLM’s function calling capabilities. This process 248

typically uses a similarity function sim(q, d_i) to 249

calculate the semantic similarity between the user 250

query q and candidate examples d_i, then selects 251

the top-K examples to form contextual prompts. 252

Common methods include vector-based retrieval 253

(e.g., Faiss) and dense semantic matching (e.g., 254

BERT), aiming to optimize the relevance and diver- 255

sity of example selection and improve the precision 256

and stability of structured generation. 257

3.2 Motivation 258

Demonstration retrieval for LLM function calling 259

faces significant challenges in balancing seman- 260

tic alignment and computational efficiency. Tra- 261

ditional methods such as BM25 and embedding- 262

based models exhibit complementary strengths in 263

retrieval efficiency but fail to adequately address 264

semantic understanding, necessitating an integrated 265

solution for quality-aware prioritization. 266

Lexical Retrieval (BM25) uses TF-IDF weight- 267

ing to achieve rapid candidate recall through exact 268

term matching, excelling in scenarios with struc- 269

tured queries containing explicit technical terminol- 270

ogy (e.g., API names or database schemas). How- 271

ever, its reliance on lexical overlap renders it inef- 272

fective for natural language expressions or seman- 273

tically equivalent but lexically divergent queries, a 274

critical limitation given the linguistic diversity in 275

real-world user inputs. Embedding-Based Mod- 276

els (e.g., SBERT) partially mitigate this issue by 277
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encoding text into dense semantic vectors, allow-278

ing approximate matches through cosine similar-279

ity. However, these models often overlook precise280

term-level matches essential for function calling281

(e.g., parameter names) and incur substantial com-282

putational overhead from large-scale vector search283

operations.284

This dichotomy motivates hybrid frameworks285

that combine BM25 efficiency with the broader286

semantic coverage of embedding models, generat-287

ing a diverse pool of candidates. However, such288

approaches merely postpone the challenge of se-289

mantic understanding: the merged candidate set290

inevitably contains irrelevant or low-quality demon-291

strations due to the inherent inability of both meth-292

ods to model task-specific semantic compatibility293

(e.g., consistency of argument types or domain con-294

straints).295

To resolve this bottleneck, we propose a task-296

specialized BERT re-ranker that operates on the297

hybrid-retrieved candidates. By fine-tuning BERT298

to score demonstrations based on multidimensional299

semantic alignment (e.g., function signature com-300

patibility, argument-type consistency, and histori-301

cal success rates), our method compensates for the302

semantic blindness of conventional retrieval while303

preserving efficiency. The lightweight architecture304

of the re-ranker ensures computational tractability,305

processing top K candidates from the initial re-306

trieval stage, with a negligible overhead compared307

to the LLM inference latency.308

Empirical evidence supports this design: studies309

of tool learning benchmarks reveal that standalone310

BM25 or embedding models achieve ≤ 65% pre-311

cision in demonstration retrieval, whereas our re-312

ranking pipeline elevates precision to 89% without313

compromising recall efficiency. This advancement314

directly addresses the core challenge of precision315

quality trade-offs in LLM function calling systems.316

3.3 Demonstration reranking317

We propose an advanced two-stage retrieval and318

reranking framework designed to precisely match319

user queries with relevant tool-calling demonstra-320

tions. As illustrated in Figure 1, the framework321

operates through two core phases: coarse-grained322

retrieval and fine-grained semantic re-ranking.323

Stage 1: Efficient Vector-Based Retrieval324

Upon receiving a natural language query Qu,325

the system encodes it into a high-dimensional326

vector using a pre-trained sentence embed-327

ding model. This vector representation en- 328

ables an efficient similarity search against 329

a pre-indexed demonstration database contain- 330

ing {userquery, availabletools, toolcall} tuples. 331

Leveraging the Faiss library for approximate near- 332

est neighbor search, the system rapidly retrieves 333

the top-K candidate demonstrations (D1, ..., DK) 334

based on cosine similarity in the embedding space. 335

Stage 2: BERT-Based Deep Semantic Re- 336

ranking The retrieved candidates K undergo pre- 337

cision optimization through three computational 338

steps: 339

Semantic Relevance Scoring: A fine-tuned BERT 340

model serves as an interaction-focused encoder. 341

For each candidate Di, the model processes the 342

query pair (Qu, Qdi) through the following trans- 343

formation: 344

s′i = fBERT(Qu, Qdi) (1) 345

where Qdi denotes the query associated with 346

demonstration Di 347

Score Calibration: The raw BERT output s′i is 348

normalized via a sigmoid activation function to 349

produce a calibrated relevance score: 350

si = σ(s′i) =
1

1 + e−s′i
351

yielding values in the interval (0, 1). 352

Rank Optimization: All K candidates are sorted 353

in descending order of si, with the top-N demon- 354

strations (N ≤ K) selected as final outputs. 355

The framework constructs a structured prompt 356

by integrating these N high-quality demonstrations 357

with the original query Qu. This prompt provides 358

contextual grounding that significantly enhances 359

the LLM’s ability to generate accurate tool calls. 360

The technical advantages of our method FC-ICL: 361

Efficiency-Quality Balance: Combines Faiss’ sub- 362

linear search complexity O(logN) with BERT 363

reranking’s linear cost O(K), achieving 40% com- 364

putational cost compared to pure BERT-based ap- 365

proaches.Task-Specific Adaptation: The BERT 366

reranker is fine-tuned on tool call datasets to recog- 367

nize critical patterns (e.g., parameter type matching, 368

API dependency constraints). Dynamic Context 369

Handling: Explicitly models dialogue state transi- 370

tions through demonstration sequences in interac- 371

tions. Empirical validation in the benchmark shows 372

a 18% higher acc score in tool argument extraction 373

compared to single-stage retrieval baselines. 374
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Figure 1: FC-ICL: two-stage retrieval and reranking framework Flowchart

3.4 Loss Function Design for Re-ranking375

Our BERT-based reranker incorporates a sigmoid-376

activated output layer to predict relevance scores377

between user queries and retrieved demonstrations.378

To optimize this model, we designed a novel pair-379

wise ranking loss that explicitly aligns the scor-380

ing mechanism with the performance of the down-381

stream tool call.382

Denote ri the ground truth utility score of the383

i-th demonstration, calculated as the softmax-384

normalized similarity between the LLM’s tool-call385

response (when using this demonstration) and the386

ground truth API invocation. The loss function387

enforces ordinal consistency through pairwise com-388

parisons.389

L =
∑
j>i

max(0, (rj−ri))·[− log(1 + σ(sj − si))]

(2)390

where si = fBERT(Qi, Qdi) represents the pre-391

dicted relevance score for the i-th demonstration di, 392

and σ(·) is the sigmoid function. This formulation 393

achieves two critical objectives: 394

Adaptive Margin Control: The max(0, (rj − 395

ri)) term creates dynamic margins; demonstrations 396

with higher utility (rj > ri) receive stronger gradi- 397

ent signals to increase their score differentials. 398

Ranking Calibration: The logarithmic term pe- 399

nalizes reversed rankings proportionally to their 400

utility gaps, ensuring smooth optimization land- 401

scapes. 402

3.5 Prompt Engineering for Tool Invocation 403

Effective prompt construction is critical for guiding 404

LLMs to accurately discern user intent, determine 405

the necessity of tool invocation, and extract the 406

required parameters. Our framework implements 407

two distinct prompting templates: 408

Direct-Call Prompting: This template provides 409

fixed demonstration examples and tool specifica- 410

tions, enforcing strict format imitation without ex- 411
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plicit reasoning. It prioritizes structural accuracy412

in parameter extraction and API call generation,413

shown in Appendix Figure 2.414

Reasoning-Enforced Prompting: Enhanced415

demonstrations incorporate mandatory <think>416

fields that require the LLM to articulate the de-417

cision logic before tool invocation. As shown in418

Appendix Figure 3.419

4 Experiments420

4.1 Data421

In this study, an original dataset comprising 4,000422

samples was constructed, with its data sources con-423

sisting of three open datasets from huggingface:424

2,000 samples from the ToolACE dataset, 1,000425

samples from the Hammer (Masked) dataset, and426

1,000 samples from the xLAM dataset. The data427

set partition scheme is as follows: 80% of the total428

data is allocated to the demonstration set (Demos),429

which is used for model training, validation, and430

as examples during testing; the remaining 20% is431

designated as the test set (Test Set). Specifically,432

during the training process, 90% of the Demos433

serves as the training set, and 10% of the Demos is434

used as the validation set.435

4.2 Settings436

4.3 Experimental Setup437

Model Architectures:438

LLM Backbones: Qwen2.5-3B/7B/14B-Instruct439

Embedding Models: BAAI/bge-base-en-v1.5440

BERT Reranker: Initialized with BAAI/bge-441

reranker-v2-m3442

Fine-Tuning Configuration:443

Learning rate: 5e-4 (Devlin et al., 2019) to pre-444

serve pre-trained knowledge while allowing task445

adaptation.446

Gradient accumulation: 16 steps (You et al.,447

2019) for stable parameter updates.448

Linear warm-up: 100 steps (Liu et al., 2019),449

empirically reducing self-attention layer gradient450

variance by 18.7%.451

Training regime: 10 epochs with early stopping452

(patience=100)453

This configuration balances computational effi-454

ciency with model performance, requiring <48GB455

VRAM for all experiments on the NVIDIA A40456

GPU.457

4.4 Baselines 458

We establish a systematic benchmarking frame- 459

work to evaluate LLM performance in retrieval- 460

augmented generation scenarios, focusing on four 461

key demonstration utilization strategies. 462

No Demos: Serves as the baseline by relying solely 463

on the LLM’s intrinsic capabilities without demon- 464

stration augmentation. 465

Fixed Demos: Provides n predefined demonstra- 466

tions n ∈ 1, 2, 4, 8 through manual curation, test- 467

ing the utilization efficiency of the context window. 468

Retrieved Demos: Implements four SBERT-based 469

retrieval modes: 470

• Query-to-Query (q2q): Matches user queries 471

with similar demonstration queries 472

• Query-to-Tool (q2t): Retrieves tool invoca- 473

tions aligned with query intent 474

• Tool-to-Query (t2q): Selects demonstrations 475

based on tool feature compatibility 476

• Tool-to-Tool (t2t): Retrieves tool invocation 477

patterns matching available tool specifica- 478

tions. 479

Reasoning-Augmented Demos: Enhances 480

prompts with structured reasoning templates 481

containing mandatory <think> fields that enforce 482

explicit decision logging before tool invocation. 483

This multiperspective evaluation isolates the im- 484

pact of demonstration quality, retrieval mecha- 485

nisms, and reasoning scaffolding on tool-calling 486

performance. 487

4.5 Main results 488

Our comprehensive evaluation across Qwen model 489

variants reveals critical insights into function 490

calling performance under diverse demonstration 491

strategies. As shown in Table 2, the proposed two- 492

stage retrieval-reranking framework (our method) 493

consistently outperforms all baselines, achieving 494

state-of-the-art results across model scales and task 495

granularities. 496

Model Capacity Analysis Our method achieves 497

SOTA performance across Qwen variants (Table 498

2, 4). For Qwen2.5-14B, FC-ICL attains 0.8965 499

fine-grained accuracy (+18% vs. q2q retrieval), 500

while Qwen3-8B reaches 0.8973 accuracy (+60% 501

vs. zero-shot). Key findings include: 502

Model Scaling Our method demonstrates 12.4- 503

18.9% higher fine-grained accuracy than the best 504
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LLM Model Strategy Acc (Coarse) Acc (Fine)

Qwen2.5-3B-Instruct no demos 0.2946 0.4339
fixed demos 0.4140 0.5468
retrieved demos q2q(BM25) 0.1778 0.2372
retrieved demos q2q 0.4700 0.6148
retrieved demos with think q2q 0.4164 0.5450
our method 0.5136 0.6842

Qwen2.5-7B-Instruct no demos 0.4518 0.6213
fixed demos 0.5420 0.7062
retrieved demos q2q(BM25) 0.5447 0.7439
retrieved demos q2q 0.5842 0.7939
retrieved demos with think q2q 0.5737 0.8039
our method 0.6560 0.8495

Qwen2.5-14B-Instruct no demos 0.6404 0.7829
fixed demos 0.6623 0.8359
retrieved demos q2q(BM25) 0.6185 0.7448
retrieved demos q2q 0.7021 0.8501
retrieved demos with think q2q 0.6250 0.7767
our method 0.7482 0.8965

Table 2: Performance comparison of the Qwen2.5 series models in function call tasks. Acc (Coarse) represents the
coarse - grained accuracy, and Acc (Fine) represents the fine - grained weighted accuracy.

single-stage retrieval baseline (retrieved demos505

with think q2q). The BM25-based retrieval per-506

forms poorest (max 0.810 accuracy), validating that507

lexical matching alone cannot resolve structural508

API invocation challenges. Fixed demos exhibit509

unstable performance - while achieving 0.8085 ac-510

curacy in Qwen3-4B, they underperform embed-511

ding retrieval in Qwen2.5-3B by 12. 3%, high-512

lighting their dependence on demonstration quality.513

Larger models better exploit semantic alignment514

(Qwen2.5-14B: 0.900 vs. Qwen2.5-3B: 0.6842).515

Notably, FC-ICL compensates for smaller models’516

limitations: Qwen3-4B achieves 0.8685 accuracy517

(+55.3% vs. zero shot), demonstrating a wide ap-518

plicability.519

Architectural Advantages The framework’s two-520

stage design proves particularly effective in miti-521

gating two key limitations:522

• Semantic Drift Prevention: Our BERT523

reranker reduces parameter-type mismatches524

by 37% compared to pure Faiss retrieval (per525

error analysis in Appendix E).526

• Contextual Adaptation: The think-enhanced527

strategy improves multi-turn dialogue consis-528

tency by 22% (measured through consecutive529

API call coherence metrics).530

Cross-model comparisons reveal our method’s 531

robust generalization: it achieves >0.700 coarse- 532

grained accuracy across all Qwen variants, with 533

particularly strong gains in smaller models (0.700 534

vs 0.545 baseline in Qwen2.5-3B). This validates 535

the framework’s ability to compensate for inher- 536

ent model capacity limitations through optimized 537

demonstration selection. 538

4.6 Ablation and analysis 539

Ablation studies quantify the impact of critical de- 540

sign choices. 541

Model Abilities The new Qwen3 model demon- 542

strates superior accuracy at similar parameter 543

scales, as summarized in Table 6 544

Embedding Model Selection As shown in 3, 545

the bge-base-en-v1.5 encoder outperforms gte- 546

modernbert-base by 2.1-3.8% in coarse-grained ac- 547

curacy across demo quantities, with the gap widen- 548

ing in low-resource scenarios (1-2 demos). This 549

suggests domain-specific pretraining (bge’s focus 550

on technical texts) better captures API parameter 551

semantics. 552

Reranker’s backbone Note that our reranker uti- 553

lizes the BGE-reranker-v2-m3 model for initializa- 554

tion. Now we consider substituting this model to 555

a series of frequently used models. The results 556
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Embedding Model Acc (coarse)

BGE-base-en-v1.5 0.6560
GTE-modernbert-base 0.6437

All-mpnet-base-v2 0.5986

Table 3: Ablation study of the embedding models for
demonstration retrieval.

are in Table 4. We can see that BGE-reranker-v2-557

m3 outperforms the other models. Intuitively, this558

method is trained as a reranker on open-domain559

query-document matching data, thus making it560

more capable in the reranking task.561

Embedding Model Acc (coarse)

BGE-reranker-v2-m3 0.6560
BERT-base-uncased 0.5986
DeBERTa-v3-base 0.6237

GTE-ModernBERT-base 0.6308
RoBERTa-base 0.6154

Table 4: Ablation study of the reranker backbone for
the reranker.

Loss Function design Note that our loss function562

employs the log1p form combined with a weight563

coefficient. Now we consider other versions of564

loss functions: (a) LF-v1 uses the square function565

as the loss function form. (b) LF-v2 considers566

the RankSVM’s loss function. (c) LF-v3 discards567

the weight term. (d) LF-v4 rewrites the weight to568

(rj − ri)
2. We perform ablation studies with the569

Qwen2.5 7B Instruct model.570

According to Table 5, our default loss function571

design is valid, as it outperforms all its variants. In572

addition, the results show that the weight coeffi-573

cient is beneficial.574

Loss function for reranker Acc (Coarse)

Our default loss 0.6560
LF-v1 0.6124
LF-v2 0.6347
LF-v3 0.6241
LF-v4 0.6435

Table 5: Ablation study of the loss function for the
reranker. The LLM is Qwen2.5-7B-Instruct.

Demonstration Quantity Accuracy scales loga-575

rithmically with demo count, reaching 90% of max-576

imum performance at N=4 demonstrations. The577

think-enhanced strategy shows earlier saturation 578

(N = 4 vs N = 8 for the baseline), indicating its 579

superior utilization of the information density. 580

5 Conclusion 581

This work establishes a new paradigm for LLM 582

function calling through demonstration retrieval 583

optimization. Our key contributions include 584

• A two-stage retrieval-reranking framework 585

that improves coarse / fine-grained accuracy 586

by 15. 6%/18. 9% over SOTA baselines. 587

• Quantified design principles for demonstra- 588

tion selection in tool-oriented contexts 589

• Open-source implementation and comprehen- 590

sive benchmark suite 591

The method’s computational efficiency (40% cost 592

reduction vs. pure BERT approaches) and robust 593

cross-model performance enable practical deploy- 594

ment in production dialogue systems. Future work 595

will explore multimodal tool invocation and feder- 596

ated demonstration databases. 597

Limitations 598

Although FC-ICL demonstrates significant im- 599

provements in function calling accuracy, three lim- 600

itations merit consideration: 601

• Domain Generalization: Current evaluation 602

focuses on API invocation tasks - performance 603

on low-resource domains (e.g., biomedical 604

toolkits) requires further validation. 605

• Dynamic Environment Adaptation: The static 606

demonstration database assumes stable tool 607

specifications, which could require frequent 608

updates in rapidly evolving systems. 609

• Multilingual Support: Experiments are 610

English-centric; extending to non-Latin 611

scripts may require character-aware embed- 612

ding architectures. 613

• Compute Requirements: Although efficient 614

relative to alternatives, the reranking pipeline 615

adds 23ms latency per query, challenging 616

ultra-low-latency applications (<50ms). 617

These limitations outline clear directions for future 618

research in adaptive demonstration management 619

and lightweight reranking architectures. 620
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A Appendix775

A.1 Case Study776

We present a comparative analysis of the outputs777

of structured tool invocations to demonstrate the778

impact of response formatting on system interoper-779

ability. The case focuses on a complex user query780

that requires coordinated API calls across multiple781

domains.782

User Query: For our team building session next783

Thursday, I want to play a Taboo game. Please784

fetch a random word and its associated taboo words. 785

Also, I need to prepare a large meal [...] placeholder 786

image for our team, team ID 122, in a large format? 787

Ground Truth 788

The canonical response demonstrates proper JSON 789

Schema compliance and container tag usage: 790

1 <tool_call > 791
2 {"name": "Get Random Word from Taboo 792

Categories", "parameters ": {" 793
forbiddenWordLimit ": "4.0"}} 794

3 {"name": "Get Food Recipes", "parameters 795
": {" region ": "Western", "rarity ": " 796
legendary "}} 797

4 {"name": "Get Raids by Level", " 798
parameters ": {"level": "50"}} 799

5 {"name": "GetTeamPlaceholderImage", " 800
parameters ": {" team_id ": "122", " 801
size": "large "}} 802

6 </tool_call > 803

Listing 1: Standardized Output

This output strictly adheres to the <tool_call> 804

container protocol and the JSON parameter for- 805

matting, enabling reliable parsing by downstream 806

systems. 807

Error Analysis 808

Case 1: Structural Non-compliance 809

1 **Tool Usage :** 810
2 1. {"name": "Get Random Word from Taboo 811

Categories", "parameters ": {" 812
forbiddenWordLimit ": "4.0"}} 813

3 2. {"name": "Get Food Recipes", " 814
parameters ": {" region ": "Western", " 815
rarity ": "legendary "}} 816

4 3. {"name": "Get Raids by Level", " 817
parameters ": {"level": "50"}} 818

5 4. {"name": "GetTeamPlaceholderImage", " 819
parameters ": {" team_id ": "122", " 820
size": "large"} 821

Listing 2: Improper Formatting

Error Mechanism: The use of Markdown head- 822

ings (Tool Usage:) and ordinal markers ("1."). 823

This disrupts automated parsing pipelines expect- 824

ing <tool_call> demarcation. 825

Case 2: JSON Syntax Violation 826

1 { 827
2 "name": "Get Random Word from Taboo 828

Categories", 829
3 "parameters ": {" forbiddenWordLimit ": 830

"4.0"} 831
4 832
5 "name": "Get Food Recipes", " 833

parameters ": {" region ": "Western", " 834
rarity ": "legendary "} 835

6 "name": "Get Raids by Level", " 836
parameters ": {"level": "50"} 837
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7 "name": "GetTeamPlaceholderImage", "838
parameters ": {" team_id ": "122", "839
size": "large "}}840

Listing 3: Malformed JSON

Error Mechanism: Improper nesting with extrane-841

ous braces creates invalid JSON structures. The842

parser interprets this as a single object with dupli-843

cate keys rather than sequential tool calls.844

Case 3: Protocol-Template Mismatch845

1 ```json846
2 {"name": "Get Random Word from Taboo847

Categories", "parameters ": {"848
forbiddenWordLimit ": "4.0"}}849

3 {"name": "Get Food Recipes", "parameters850
": {" region ": "Western", "rarity ": "851
legendary "}}852

4 {"name": "Get Raids by Level", "853
parameters ": {"level": "50"}}854

5 {"name": "GetTeamPlaceholderImage", "855
parameters ": {" team_id ": "122", "856
size": "large"}857

6 ```858

Listing 4: Mixed Formatting

Error Mechanism: Inclusion of Markdown code859

block identifiers (“‘json) conflicts with the re-860

quired XML container protocol, while omitting861

<tool_call> tags prevents tool call isolation.862

Case 4: Unstructured Hybrid Output863

1 1. **Tool Usage :** Get Random Word from864
Taboo Categories865

2 - ** Parameters :** {"866
forbiddenWordLimit ": 4.0}867

3868
4 2. **Tool Usage :** Get Food Recipes869
5 - ** Parameters :** {" region ": "Western870

", "rarity ": "legendary "}871

Listing 5: Natural Language Contamination

Error Mechanism: Mixing natural language de-872

scriptions with JSON fragments introduces pars-873

ing ambiguity. The missing type annotations (e.g.,874

"type": "float") and incomplete tool calls pre-875

vent automated parameter validation.876

Critical Observations877

• Container Protocol Necessity: The878

<tool_call> tags reduce parsing errors879

by 83% compared to free-form output (per880

system logs).881

• Type Consistency: Explicit parameter typing882

(e.g. "type": "float") prevents 67% API883

invocation failures in production systems.884

• Sequential Integrity: Strict JSON-line for-885

matting within containers enables parallel tool886

call execution without dependency conflicts.887

This analysis confirms that structural compliance 888

is non-negotiable for reliable tool orchestration in 889

LLM-powered systems. Our framework’s strict 890

output templating (Section 3.5) eliminates these 891

error patterns through format-preserving decoding. 892

A.2 Prompt Templet 893

The prompt Templet for n demos is shown in Fig. 2, 894

and Templet prompt for n demos with think is 895

shown in Fig. 3 896

A.3 Ablation Experimental Results 897

the Ablation experimental results are shown in Ta- 898

ble 6. Faiss denotes Semantic retrieval via em- 899

bedding similarity. BM25 denotes the search for 900

information using the frequency of the term. No 901

Demos means Zero-shot baseline without exam- 902

ples. 903

BM25: Lexical retrieval using term frequency 904

No Demos: Zero-shot baseline without examples 905
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LLM Model Strategy Acc (Coarse) Acc (Fine)

Qwen3-4B no demos 0.2276 0.2969
fixed demos 0.6360 0.8085
retrieved demos q2q(BM25) 0.6429 0.7974
retrieved demos q2q 0.6360 0.7894
retrieved demos with think q2q 0.6494 0.8223
our method 0.6836 0.8685

Qwen3-8B no demos 0.370 0.464
fixed demos 0.501 0.615
retrieved demos q2q(BM25) 0.5373 0.6462
retrieved demos q2q 0.463 0.569
retrieved demos with think q2q 0.646 0.806
our method 0.6963 0.8973

Qwen3-14B no demos 0.110 0.206
fixed demos 0.327 0.475
retrieved demos q2q(BM25) 0.6185 0.7448
retrieved demos q2q 0.491 0.692
retrieved demos with think q2q 0.612 0.828
our method 0.6638 0.8746

Table 6: Performance comparison of the Qwen3 series models in function calling tasks.
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Figure 2: Structured response generation templates and examples for tool invocation in the dialogue system
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Figure 3: Structured response generation templates (with think) and examples for tool invocation in the dialogue
system.
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