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Abstract

We present FC-ICL, a retrieval-reranking
framework that enhances large language mod-
els’ (LLMs) function calling capabilities
through optimized in-context demonstration se-
lection. Addressing the critical challenge of
semantic-contextual alignment in tool invoca-
tion tasks, our method combines efficient vector
retrieval with task-specialized BERT reranking.
The framework introduces three innovations:
(1) a dynamic margin pairwise loss that aligns
demonstration relevance with downstream tool-
calling utility, (2) hybrid retrieval pipelines bal-
ancing lexical precision and semantic recall,
and (3) reasoning-enhanced prompting tem-
plates enforcing structured decision logging.
Evaluations in six variants of the Qwen-2.5
model demonstrate state of the art performance,
achieving 0.900 fine-grained accuracy in tool
argument extraction (+18% vs. BM25 base-
lines). Ablation studies reveal 12.4-37% er-
ror reduction in parameter type matching and
15% higher utility scores over single-stage re-
trieval approaches. In particular, Qwen3-8B
with FC-ICL achieves 0.8973 fine-grained pre-
cision, surpassing zero-shot baselines by 60%
in complex API invocation scenarios.

1 Introduction

Recent advancements in large language models
(LLMs) have revolutionized task-oriented dialogue
(TOD) systems, particularly through their tool-
calling capabilities (e.g., API integration, database
queries) and in-context learning (ICL) paradigms.
Although traditional approaches focus on evaluat-
ing LLMs’ instruction-following accuracy in tool
invocation (Li et al., 2024), the critical role of
prompt optimization, especially through dynamic
demonstration selection, remains underexplored.
Existing ICL-based methods typically rely on em-
bedding models or sparse retrievers (e.g., BM25)
to select demonstrations (Liu et al., 2021), but lack
systematic mechanisms to refine candidate exam-

ples through semantic relevance and alignment of
the task structure, leading to suboptimal perfor-
mance in complex tool-calling scenarios (Rubin
et al., 2021).

Recent studies have explored various demonstra-
tion selection optimization strategies. The work
of (Zeng et al., 2024) proposed an enterprise-level
training pipeline using synthetic data augmenta-
tion and LoRA fine-tuning to improve domain-
specific demonstration quality, achieving the preci-
sion of the parameters 85% in HR scenarios. (Xu
et al., 2025) introduced hybrid prompt tuning with
knowledge graph integration, demonstrating an im-
provement 12% in the F1 score in document-level
relation extraction. However, these approaches
still struggle with defining explicit optimization
objectives, particularly when ground-truth "opti-
mal demonstrations" are not available (Chen et al.,
2024). Alternative solutions leverage downstream
task feedback signals or LLM self-evaluation for
optimization (Wang et al., 2024), but face chal-
lenges in sparse reward acquisition during the early
training phases and increased computational over-
head from model invocation (Kamuni et al., 2024).

Current research predominantly evaluates the
ability of LLMs to adhere to predefined tool speci-
fications (Stricker and Paroubek, 2024), neglect-
ing the potential to optimize the demonstration
content to improve task adaptability. For exam-
ple, while retrieval-augmented methods such as
Faiss-based semantic search improve candidate re-
call (Cui et al., 2024), they do not address the nu-
anced interaction between user queries and demon-
strations, such as multistep reasoning consistency
or domain-specific constraints (Luo et al., 2024).
Moreover, existing frameworks often treat retrieval
and ranking as isolated stages, resulting in ineffi-
ciencies and misalignment with downstream tasks
(Askari et al., 2024). This gap becomes pronounced
in dynamic environments where tool-calling re-
quires precise contextual grounding and error prop-



agation mitigation.

Promising advancements in information retrieval
techniques provide new insights. The NAR4Rec
model (Ren et al., 2024) achieves 40% latency re-
duction through non-autoregressive parallel decod-
ing, while GenRT (Xu et al., 2024) pioneers joint
optimization of ranking and truncation with 15%
recall gain. Recent work by (Zhou et al., 2024)
further demonstrates that in-context learning with
style examples can achieve alignment comparable
to supervised fine-tuning, suggesting untapped po-
tential for lightweight demonstration optimization.
However, key challenges persist: (1) objective am-
biguity in multistage pipelines lacking annotated
exemplars, and (2) degradation of efficiency from
cascaded processing (Carraro and Bridge, 2024).

To address these challenges, we propose a two-
tiered framework integrating retrieval, re-ranking.
First, an embedding model (e.g., SBERT) retrieves
top K candidates via Faiss indexing, capturing
coarse-grained semantic similarity. Second, a
fine-tuned BERT-based re-ranker analyzes query-
demonstration pairs. The re-ranker employs a
sigmoid-activated output layer to predict relevance
scores, enabling dynamic prioritization of high-
impact demonstrations.

Extensive experiments on tool calling bench-
marks demonstrate that our framework achieves a
10% accuracy gain over embedding-based retrieval
and 15% improvement versus BM25, while out-
performing zero-shot baselines by 60%. The key
contribution is the BERT-based model explicitly op-
timized for tool-calling demonstrations, addressing
the "relevance-compatibility” trade-off in ICL. This
work advances the practical deployment of LLM-
powered TOD systems, particularly in scenarios
requiring precise tool orchestration and minimal
human intervention.

2 Related Work

2.1 Function Calling in LLMs

The evolution of function call capabilities in LLMs
has undergone three distinct phases: primitive
prompting, structured interface design, and pro-
tocol standardization. Early models like GPT-2
(Radford et al., 2019) relied on ad hoc prompt en-
gineering for external system interactions, which
suffered from inconsistent outputs and limited gen-
eralization. Although GPT-3 (Brown et al., 2020)
demonstrated improved reasoning on a scale, its
lack of standardized tool invocation interfaces re-

quired costly fine-tuning for domain adaptation
(Zhou et al., 2024).

Recent advances have split into two techni-
cal paradigms: tuning-free and tuning-based ap-
proaches (Qu et al., 2025). Tuning-free meth-
ods leverage the inherent reasoning capabilities
of LLMs through optimized prompting strategies.
Notable frameworks include ART (Paranjape et al.,
2023), which achieves hierarchical task decompo-
sition through retrieved demonstrations, and Re-
Act (Yao et al., 2023), which integrates chain-
of-thought reasoning with tool invocation cycles.
These methods excel in zero-shot generalization
but exhibit sensitivity to prompt design varia-
tions (Zhang, 2023). In contrast, tuning-based ap-
proaches like Toolformer (Schick et al., 2023) fine-
tune LLMs (e.g., GPT-J) to predict API calls as
auxiliary tokens, achieving superior performance
in specialized domains at the cost of computational
resources (Zeng et al., 2024). The emergence of
enterprise-grade pipelines, exemplified by (Zeng
et al., 2024), demonstrates how synthetic data en-
hancement and LoRA-based parameter-efficient
tuning can enhance the precision of functions calls
in HR scenarios by 15% over GPT-4o.

Standardization efforts have further propelled
this field. The Model Context Protocol (MCP)
(Team, 2024) establishes USB-C-like interoper-
ability between LLMs and external tools, reduc-
ing integration costs by 40% through JSON-RPC
message standardization. Commercial implementa-
tions such as Baidu’s ERNIE-Bot and MiniMax’s
API-aligned frameworks confirm function calling
as an essential LLM capability (Xu et al., 2025).

Our work extends these foundations by intro-
ducing fine-grained relevance scoring for tool se-
lection, addressing the "semantic-contextual mis-
match" prevalent in multistage tool orchestration.

2.2 In-Context Learning Optimization

In-context learning (ICL) has emerged as a
paradigm-changing mechanism for task adaptation
without parameter updates (Brown et al., 2020). In
TOD systems, the efficacy of ICL is critically de-
pendent on the quality and ordering of the demon-
stration retrieval (Peng et al., 2024). Traditional ap-
proaches employ lexical retrievers (BM25) (Robert-
son et al., 2009) or dense encoders (GTR) (Ni
et al., 2021), each with inherent limitations: BM25
struggles with semantic variance in dialogue states,
while dense retrievers incur computational over-
head disproportionate to accuracy gains (Luo et al.,



2023).

Recent innovations address these challenges
through hybrid architectures. RetICL (Luo et al.,
2024) dynamically adjusts demonstration sets
based on the real-time dialogue context, achiev-
ing 12% improvement in the F1 score on the TOD
multi-turn benchmarks. The KATE framework (Liu
et al., 2021) employs contrastive learning to select
semantically diverse examples, reducing the over-
fitting to superficial patterns. In particular, (Cui
et al., 2024) proposes a two-phase retrieval pipeline
combining Faiss-based vector search with BERT
re-rankers, reducing false positives by 23% in e-
commerce dialogues.

Our work systematically optimizes ICL demon-
stration selection through a two-stage retrieval-
reranking framework, explicitly addressing the crit-
ical challenge of semantic-contextual alignment
in dynamic dialog. Drawing from information re-
trieval advancements, we integrate coarse-grained
semantic retrieval (via SBERT and Faiss indexing)
with fine-grained BERT-based re-ranking, guided
by three design principles: (1) structural compati-
bility with dialogue state transitions, (2) domain-
aware relevance scoring, and (3) computational
efficiency for real-time deployment. The novelty
of the framework lies in the unification of retrieval
optimization with conversational context modeling,
as evidenced by our ablation studies that show 15%
higher demonstration utility scores compared to the
standard BM25 or dense retrieval baselines.

3 Method

3.1 Preliminaries

Function calling, a core technology for tool-
oriented interaction in LLMs, essentially estab-
lishes a semantic interface between natural lan-
guage and structured services. Its technical work-
flow comprises three phases: (1) Requirement Pars-
ing: The LLM maps user instructions (e.g., "query
the temperature in Beijing") to a predefined func-
tion set; (2) Structural Transformation: Generates
standardized invocation requests (including func-
tion names and parameter key-value pairs) accord-
ing to the JSON Schema specifications; (3) Service
Execution: External systems parse the JSON data,
trigger the corresponding API, and return execution
results to the LLM for integration. An example of
a weather query is illustrated in Table 1.

In-context learning (ICL) guides the model in
generating structured function invocation requests

Key Value
name get_current_weather
arguments.location London
arguments.unit °F

Table 1: Structured representation of a function calling
example

by providing demonstrations in input. Compared
with general function calling, demonstration-based
function calling injects multiple annotated invo-
cation examples into prompts, helping the model
more accurately align user intents with function
semantic interfaces and improve parameter map-
ping and invocation accuracy. ICL does not rely on
model fine-tuning, offering strong flexibility and
being suitable for multitask unified scheduling and
generalization of function calling in low-resource
scenarios.Demonstration Retrieval refers to re-
trieving semantically similar invocation examples
from a pre-built example library to enhance the
LLM’s function calling capabilities. This process
typically uses a similarity function sim(g, d_i) to
calculate the semantic similarity between the user
query ¢ and candidate examples d_z, then selects
the top-K examples to form contextual prompts.
Common methods include vector-based retrieval
(e.g., Faiss) and dense semantic matching (e.g.,
BERT), aiming to optimize the relevance and diver-
sity of example selection and improve the precision
and stability of structured generation.

3.2 Motivation

Demonstration retrieval for LLM function calling
faces significant challenges in balancing seman-
tic alignment and computational efficiency. Tra-
ditional methods such as BM25 and embedding-
based models exhibit complementary strengths in
retrieval efficiency but fail to adequately address
semantic understanding, necessitating an integrated
solution for quality-aware prioritization.

Lexical Retrieval (BM25) uses TF-IDF weight-
ing to achieve rapid candidate recall through exact
term matching, excelling in scenarios with struc-
tured queries containing explicit technical terminol-
ogy (e.g., API names or database schemas). How-
ever, its reliance on lexical overlap renders it inef-
fective for natural language expressions or seman-
tically equivalent but lexically divergent queries, a
critical limitation given the linguistic diversity in
real-world user inputs. Embedding-Based Mod-
els (e.g., SBERT) partially mitigate this issue by



encoding text into dense semantic vectors, allow-
ing approximate matches through cosine similar-
ity. However, these models often overlook precise
term-level matches essential for function calling
(e.g., parameter names) and incur substantial com-
putational overhead from large-scale vector search
operations.

This dichotomy motivates hybrid frameworks
that combine BM25 efficiency with the broader
semantic coverage of embedding models, generat-
ing a diverse pool of candidates. However, such
approaches merely postpone the challenge of se-
mantic understanding: the merged candidate set
inevitably contains irrelevant or low-quality demon-
strations due to the inherent inability of both meth-
ods to model task-specific semantic compatibility
(e.g., consistency of argument types or domain con-
straints).

To resolve this bottleneck, we propose a task-
specialized BERT re-ranker that operates on the
hybrid-retrieved candidates. By fine-tuning BERT
to score demonstrations based on multidimensional
semantic alignment (e.g., function signature com-
patibility, argument-type consistency, and histori-
cal success rates), our method compensates for the
semantic blindness of conventional retrieval while
preserving efficiency. The lightweight architecture
of the re-ranker ensures computational tractability,
processing top K candidates from the initial re-
trieval stage, with a negligible overhead compared
to the LLM inference latency.

Empirical evidence supports this design: studies
of tool learning benchmarks reveal that standalone
BM25 or embedding models achieve < 65% pre-
cision in demonstration retrieval, whereas our re-
ranking pipeline elevates precision to 89% without
compromising recall efficiency. This advancement
directly addresses the core challenge of precision
quality trade-offs in LLM function calling systems.

3.3 Demonstration reranking

We propose an advanced two-stage retrieval and
reranking framework designed to precisely match
user queries with relevant tool-calling demonstra-
tions. As illustrated in Figure 1, the framework
operates through two core phases: coarse-grained
retrieval and fine-grained semantic re-ranking.

Stage 1: Efficient Vector-Based Retrieval
Upon receiving a natural language query @,
the system encodes it into a high-dimensional
vector using a pre-trained sentence embed-

ding model. This vector representation en-
ables an efficient similarity search against
a pre-indexed demonstration database contain-
ing {userquery, availabletools, toolcall} tuples.
Leveraging the Faiss library for approximate near-
est neighbor search, the system rapidly retrieves
the top-K candidate demonstrations (D1, ..., D)
based on cosine similarity in the embedding space.

Stage 2: BERT-Based Deep Semantic Re-
ranking The retrieved candidates K undergo pre-
cision optimization through three computational
steps:

Semantic Relevance Scoring: A fine-tuned BERT
model serves as an interaction-focused encoder.
For each candidate D;, the model processes the
query pair (Q,, Qq,) through the following trans-
formation:

i = feErT(Qus Qu;) (D

where ()4, denotes the query associated with
demonstration D;

Score Calibration: The raw BERT output s is
normalized via a sigmoid activation function to
produce a calibrated relevance score:

1
— I —
si=ols) = 14 e %

yielding values in the interval (0, 1).

Rank Optimization: All K candidates are sorted
in descending order of s;, with the top-/N demon-
strations (N < K) selected as final outputs.

The framework constructs a structured prompt
by integrating these /V high-quality demonstrations
with the original query ),,. This prompt provides
contextual grounding that significantly enhances
the LLM’s ability to generate accurate tool calls.

The technical advantages of our method FC-ICL:
Efficiency-Quality Balance: Combines Faiss’ sub-
linear search complexity O(log/N) with BERT
reranking’s linear cost O(K'), achieving 40% com-
putational cost compared to pure BERT-based ap-
proaches.Task-Specific Adaptation: The BERT
reranker is fine-tuned on tool call datasets to recog-
nize critical patterns (e.g., parameter type matching,
API dependency constraints). Dynamic Context
Handling: Explicitly models dialogue state transi-
tions through demonstration sequences in interac-
tions. Empirical validation in the benchmark shows
a 18% higher acc score in tool argument extraction
compared to single-stage retrieval baselines.
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Figure 1: FC-ICL: two-stage retrieval and reranking framework Flowchart

3.4 Loss Function Design for Re-ranking

Our BERT-based reranker incorporates a sigmoid-
activated output layer to predict relevance scores
between user queries and retrieved demonstrations.
To optimize this model, we designed a novel pair-
wise ranking loss that explicitly aligns the scor-
ing mechanism with the performance of the down-
stream tool call.

Denote r; the ground truth utility score of the
i-th demonstration, calculated as the softmax-
normalized similarity between the LLM’s tool-call
response (when using this demonstration) and the
ground truth API invocation. The loss function
enforces ordinal consistency through pairwise com-
parisons.

L= Zmax(O, (rj—r;))-[—log(l1 4+ o(sj — s4))]
(2)

where s; = fperr(Qi, Qq;) represents the pre-

dicted relevance score for the ¢-th demonstration d;,
and o (-) is the sigmoid function. This formulation
achieves two critical objectives:

Adaptive Margin Control: The max (0, (r; —
r;)) term creates dynamic margins; demonstrations
with higher utility (r; > ;) receive stronger gradi-
ent signals to increase their score differentials.

Ranking Calibration: The logarithmic term pe-
nalizes reversed rankings proportionally to their
utility gaps, ensuring smooth optimization land-
scapes.

3.5 Prompt Engineering for Tool Invocation

Effective prompt construction is critical for guiding
LLMs to accurately discern user intent, determine
the necessity of tool invocation, and extract the
required parameters. Our framework implements
two distinct prompting templates:

Direct-Call Prompting: This template provides
fixed demonstration examples and tool specifica-
tions, enforcing strict format imitation without ex-



plicit reasoning. It prioritizes structural accuracy
in parameter extraction and API call generation,
shown in Appendix Figure 2.
Reasoning-Enforced Prompting: Enhanced
demonstrations incorporate mandatory <think>
fields that require the LLM to articulate the de-
cision logic before tool invocation. As shown in
Appendix Figure 3.

4 Experiments

4.1 Data

In this study, an original dataset comprising 4,000
samples was constructed, with its data sources con-
sisting of three open datasets from huggingface:
2,000 samples from the ToolACE dataset, 1,000
samples from the Hammer (Masked) dataset, and
1,000 samples from the XLAM dataset. The data
set partition scheme is as follows: 80% of the total
data is allocated to the demonstration set (Demos),
which is used for model training, validation, and
as examples during testing; the remaining 20% is
designated as the test set (Test Set). Specifically,
during the training process, 90% of the Demos
serves as the training set, and 10% of the Demos is
used as the validation set.

4.2 Settings
4.3 Experimental Setup

Model Architectures:

LLM Backbones: Qwen2.5-3B/7B/14B-Instruct

Embedding Models: BAAI/bge-base-en-v1.5

BERT Reranker: Initialized with BAAI/bge-
reranker-v2-m3
Fine-Tuning Configuration:

Learning rate: Se-4 (Devlin et al., 2019) to pre-
serve pre-trained knowledge while allowing task
adaptation.

Gradient accumulation: 16 steps (You et al.,
2019) for stable parameter updates.

Linear warm-up: 100 steps (Liu et al., 2019),
empirically reducing self-attention layer gradient
variance by 18.7%.

Training regime: 10 epochs with early stopping
(patience=100)

This configuration balances computational effi-
ciency with model performance, requiring <48GB
VRAM for all experiments on the NVIDIA A40
GPU.

4.4 Baselines

We establish a systematic benchmarking frame-
work to evaluate LLM performance in retrieval-
augmented generation scenarios, focusing on four
key demonstration utilization strategies.

No Demos: Serves as the baseline by relying solely
on the LLM’s intrinsic capabilities without demon-
stration augmentation.

Fixed Demos: Provides n predefined demonstra-
tions n € 1,2, 4,8 through manual curation, test-
ing the utilization efficiency of the context window.
Retrieved Demos: Implements four SBERT-based
retrieval modes:

* Query-to-Query (q2q): Matches user queries
with similar demonstration queries

* Query-to-Tool (q2t): Retrieves tool invoca-
tions aligned with query intent

* Tool-to-Query (t2q): Selects demonstrations
based on tool feature compatibility

» Tool-to-Tool (t2t): Retrieves tool invocation
patterns matching available tool specifica-
tions.

Reasoning-Augmented Demos: Enhances
prompts with structured reasoning templates
containing mandatory <think> fields that enforce
explicit decision logging before tool invocation.

This multiperspective evaluation isolates the im-
pact of demonstration quality, retrieval mecha-
nisms, and reasoning scaffolding on tool-calling
performance.

4.5 Main results

Our comprehensive evaluation across Qwen model
variants reveals critical insights into function
calling performance under diverse demonstration
strategies. As shown in Table 2, the proposed two-
stage retrieval-reranking framework (our method)
consistently outperforms all baselines, achieving
state-of-the-art results across model scales and task
granularities.

Model Capacity Analysis Our method achieves
SOTA performance across Qwen variants (Table
2, 4). For Qwen2.5-14B, FC-ICL attains 0.8965
fine-grained accuracy (+18% vs. q2q retrieval),
while Qwen3-8B reaches 0.8973 accuracy (+60%
vs. zero-shot). Key findings include:

Model Scaling Our method demonstrates 12.4-
18.9% higher fine-grained accuracy than the best



LLM Model Strategy Acc (Coarse) Acc (Fine)
Qwen2.5-3B-Instruct  no demos 0.2946 0.4339
fixed demos 0.4140 0.5468
retrieved demos q2q(BM25) 0.1778 0.2372
retrieved demos q2q 0.4700 0.6148
retrieved demos with think q2q 0.4164 0.5450
our method 0.5136 0.6842
Qwen2.5-7B-Instruct  no demos 0.4518 0.6213
fixed demos 0.5420 0.7062
retrieved demos q2q(BM25) 0.5447 0.7439
retrieved demos q2q 0.5842 0.7939
retrieved demos with think q2q 0.5737 0.8039
our method 0.6560 0.8495
Qwen2.5-14B-Instruct no demos 0.6404 0.7829
fixed demos 0.6623 0.8359
retrieved demos q2q(BM25) 0.6185 0.7448
retrieved demos q2q 0.7021 0.8501
retrieved demos with think q2q 0.6250 0.7767
our method 0.7482 0.8965

Table 2: Performance comparison of the Qwen2.5 series models in function call tasks. Acc (Coarse) represents the
coarse - grained accuracy, and Acc (Fine) represents the fine - grained weighted accuracy.

single-stage retrieval baseline (retrieved demos
with think q2q). The BM25-based retrieval per-
forms poorest (max 0.810 accuracy), validating that
lexical matching alone cannot resolve structural
API invocation challenges. Fixed demos exhibit
unstable performance - while achieving 0.8085 ac-
curacy in Qwen3-4B, they underperform embed-
ding retrieval in Qwen2.5-3B by 12. 3%, high-
lighting their dependence on demonstration quality.
Larger models better exploit semantic alignment
(Qwen2.5-14B: 0.900 vs. Qwen2.5-3B: 0.6842).
Notably, FC-ICL compensates for smaller models’
limitations: Qwen3-4B achieves 0.8685 accuracy
(+55.3% vs. zero shot), demonstrating a wide ap-
plicability.

Architectural Advantages The framework’s two-
stage design proves particularly effective in miti-
gating two key limitations:

e Semantic Drift Prevention: Our BERT
reranker reduces parameter-type mismatches
by 37% compared to pure Faiss retrieval (per
error analysis in Appendix E).

* Contextual Adaptation: The think-enhanced
strategy improves multi-turn dialogue consis-
tency by 22% (measured through consecutive
API call coherence metrics).

Cross-model comparisons reveal our method’s
robust generalization: it achieves >0.700 coarse-
grained accuracy across all Qwen variants, with
particularly strong gains in smaller models (0.700
vs 0.545 baseline in Qwen2.5-3B). This validates
the framework’s ability to compensate for inher-
ent model capacity limitations through optimized
demonstration selection.

4.6 Ablation and analysis

Ablation studies quantify the impact of critical de-
sign choices.

Model Abilities The new Qwen3 model demon-
strates superior accuracy at similar parameter
scales, as summarized in Table 6

Embedding Model Selection As shown in 3,
the bge-base-en-v1.5 encoder outperforms gte-
modernbert-base by 2.1-3.8% in coarse-grained ac-
curacy across demo quantities, with the gap widen-
ing in low-resource scenarios (1-2 demos). This
suggests domain-specific pretraining (bge’s focus
on technical texts) better captures API parameter
semantics.

Reranker’s backbone Note that our reranker uti-
lizes the BGE-reranker-v2-m3 model for initializa-
tion. Now we consider substituting this model to
a series of frequently used models. The results



Embedding Model Acc (coarse)

BGE-base-en-v1.5 0.6560
GTE-modernbert-base 0.6437

All-mpnet-base-v2 0.5986

Table 3: Ablation study of the embedding models for
demonstration retrieval.

are in Table 4. We can see that BGE-reranker-v2-
m3 outperforms the other models. Intuitively, this
method is trained as a reranker on open-domain
query-document matching data, thus making it
more capable in the reranking task.

Embedding Model Acc (coarse)
BGE-reranker-v2-m3 0.6560
BERT-base-uncased 0.5986
DeBERTa-v3-base 0.6237
GTE-ModernBERT-base 0.6308
RoBERTa-base 0.6154

Table 4: Ablation study of the reranker backbone for
the reranker.

Loss Function design Note that our loss function
employs the loglp form combined with a weight
coefficient. Now we consider other versions of
loss functions: (a) LF-v1 uses the square function
as the loss function form. (b) LF-v2 considers
the RankSVM'’s loss function. (c) LF-v3 discards
the weight term. (d) LF-v4 rewrites the weight to
(rj — 7;)%. We perform ablation studies with the
Qwen2.5 7B Instruct model.

According to Table 5, our default loss function
design is valid, as it outperforms all its variants. In
addition, the results show that the weight coeffi-
cient is beneficial.

Loss function for reranker Acc (Coarse)

Our default loss 0.6560
LF-vl 0.6124
LF-v2 0.6347
LF-v3 0.6241
LF-v4 0.6435

Table 5: Ablation study of the loss function for the
reranker. The LLM is Qwen2.5-7B-Instruct.

Demonstration Quantity Accuracy scales loga-
rithmically with demo count, reaching 90% of max-
imum performance at N=4 demonstrations. The

think-enhanced strategy shows earlier saturation
(N =4 vs N = 8 for the baseline), indicating its
superior utilization of the information density.

5 Conclusion

This work establishes a new paradigm for LLM
function calling through demonstration retrieval
optimization. Our key contributions include

* A two-stage retrieval-reranking framework
that improves coarse / fine-grained accuracy
by 15. 6%/18. 9% over SOTA baselines.

* Quantified design principles for demonstra-
tion selection in tool-oriented contexts

* Open-source implementation and comprehen-
sive benchmark suite

The method’s computational efficiency (40% cost
reduction vs. pure BERT approaches) and robust
cross-model performance enable practical deploy-
ment in production dialogue systems. Future work
will explore multimodal tool invocation and feder-
ated demonstration databases.

Limitations

Although FC-ICL demonstrates significant im-
provements in function calling accuracy, three lim-
itations merit consideration:

* Domain Generalization: Current evaluation
focuses on API invocation tasks - performance
on low-resource domains (e.g., biomedical
toolkits) requires further validation.

* Dynamic Environment Adaptation: The static
demonstration database assumes stable tool
specifications, which could require frequent
updates in rapidly evolving systems.

e Multilingual Support:  Experiments are
English-centric; extending to non-Latin
scripts may require character-aware embed-
ding architectures.

* Compute Requirements: Although efficient
relative to alternatives, the reranking pipeline
adds 23ms latency per query, challenging
ultra-low-latency applications (<50ms).

These limitations outline clear directions for future

research in adaptive demonstration management
and lightweight reranking architectures.
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A Appendix
A.1 Case Study

We present a comparative analysis of the outputs
of structured tool invocations to demonstrate the
impact of response formatting on system interoper-
ability. The case focuses on a complex user query
that requires coordinated API calls across multiple
domains.

User Query: For our team building session next
Thursday, I want to play a Taboo game. Please

IS}

n

fetch a random word and its associated taboo words.
Also, I need to prepare a large meal [...] placeholder
image for our team, team ID 122, in a large format?

Ground Truth

The canonical response demonstrates proper JSON
Schema compliance and container tag usage:

<tool_call>

{"name": "Get Random Word from Taboo
Categories”, "parameters”: {"
forbiddenWordLimit"”: "4.0"}}

3 {"name"”: "Get Food Recipes”, "parameters
": {"region": "Western"”, "rarity": "
legendary”}}

{"name": "Get Raids by Level”, "
parameters”: {"level”: "50"}}

{"name": "GetTeamPlaceholderImage”, "
parameters”: {"team_id": "122", "
size”: "large"}}
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</tool_call>

Listing 1: Standardized Output

This output strictly adheres to the <tool_call>
container protocol and the JSON parameter for-
matting, enabling reliable parsing by downstream
systems.

Error Analysis
Case 1: Structural Non-compliance

*xTool Usage:x*x

1. {"name"”: "Get Random Word from Taboo
Categories"”, "parameters": {"
forbiddenWordLimit"”: "4.0"}}
{"name": "Get Food Recipes”,
parameters”: {"region": "Western",
rarity”: "legendary"}}

{"name"”: "Get Raids by Level"”, "
parameters”: {"level”: "50"}}
{"name"”: "GetTeamPlaceholderImage”,
parameters”: {"team_id": "122", "
size": "large"}

”

n

”

Listing 2: Improper Formatting

Error Mechanism: The use of Markdown head-
ings (Tool Usage:) and ordinal markers ("1.").
This disrupts automated parsing pipelines expect-
ing <tool_call> demarcation.

Case 2: JSON Syntax Violation

"name"”: "Get Random Word from Taboo
Categories”,

"parameters”: {"forbiddenWordLimit":

714'0"}

"name": "Get Food Recipes”, "
parameters”: {"region”: "Western"”, "
rarity”: "legendary"}

"name”: "Get Raids by Level”, "

parameters”: {"level”: "50"}



W

o

n

"name": "GetTeamPlaceholderImage",
parameters”: {"team_id": "122", "
size": "large"}}

Listing 3: Malformed JSON

Error Mechanism: Improper nesting with extrane-
ous braces creates invalid JSON structures. The
parser interprets this as a single object with dupli-
cate keys rather than sequential tool calls.

Case 3: Protocol-Template Mismatch

“Jjson

{"name": "Get Random Word from Taboo
Categories”, "parameters”: {"
forbiddenWordLimit"”: "4.0"3}}

{"name"”: "Get Food Recipes”, "parameters
": {"region": "Western”, "rarity": "
legendary”"}}

{"name": "Get Raids by Level”, "
parameters”: {"level”: "50"}}

{"name": "GetTeamPlaceholderImage", "
parameters”: {"team_id": "122", "
size": "large"}

Listing 4: Mixed Formatting

Error Mechanism: Inclusion of Markdown code

block identifiers (“¢json) conflicts with the re-

quired XML container protocol, while omitting

<tool_call> tags prevents tool call isolation.
Case 4: Unstructured Hybrid Output

1. x*Tool Usage:** Get Random Word from
Taboo Categories
- *xParameters:x*x {"

forbiddenWordLimit"”: 4.0}

2. x*xTool Usage:**x Get Food Recipes
- *xParameters:*x {"region"”: "Western
", "rarity": "legendary"}

Listing 5: Natural Language Contamination

Error Mechanism: Mixing natural language de-
scriptions with JSON fragments introduces pars-
ing ambiguity. The missing type annotations (e.g.,
"type"”: "float") and incomplete tool calls pre-
vent automated parameter validation.

Critical Observations

e Container Protocol Necessity: The
<tool_call> tags reduce parsing errors
by 83% compared to free-form output (per
system logs).

* Type Consistency: Explicit parameter typing
(e.g. "type"”: "float") prevents 67% API
invocation failures in production systems.

* Sequential Integrity: Strict JSON-line for-
matting within containers enables parallel tool
call execution without dependency conflicts.
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This analysis confirms that structural compliance
is non-negotiable for reliable tool orchestration in
LLM-powered systems. Our framework’s strict
output templating (Section 3.5) eliminates these
error patterns through format-preserving decoding.

A.2 Prompt Templet

The prompt Templet for n demos is shown in Fig. 2,
and Templet prompt for n demos with think is
shown in Fig. 3

A.3 Ablation Experimental Results

the Ablation experimental results are shown in Ta-
ble 6. Faiss denotes Semantic retrieval via em-
bedding similarity. BM25 denotes the search for
information using the frequency of the term. No
Demos means Zero-shot baseline without exam-
ples.

BM25: Lexical retrieval using term frequency

No Demos: Zero-shot baseline without examples



LLM Model Strategy Acc (Coarse) Acc (Fine)

Qwen3-4B no demos 0.2276 0.2969
fixed demos 0.6360 0.8085
retrieved demos q2q(BM25) 0.6429 0.7974
retrieved demos q2q 0.6360 0.7894
retrieved demos with think q2q 0.6494 0.8223
our method 0.6836 0.8685
Qwen3-8B no demos 0.370 0.464
fixed demos 0.501 0.615
retrieved demos q2q(BM25) 0.5373 0.6462
retrieved demos q2q 0.463 0.569
retrieved demos with think q2q 0.646 0.806
our method 0.6963 0.8973
Qwen3-14B  no demos 0.110 0.206
fixed demos 0.327 0.475
retrieved demos q2q(BM25) 0.6185 0.7448
retrieved demos q2q 0.491 0.692
retrieved demos with think q2q 0.612 0.828
our method 0.6638 0.8746

Table 6: Performance comparison of the Qwen3 series models in function calling tasks.
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[ Prompt Templet for 2 Demos }

{role”: 'system’. ‘content”: You are a helpful dialogue assistant capable of leveraging tool calls to solve user tasks and provide structured chat responses. ).
{role" ‘user’, ‘content’:"

<dernonstrations=

=Available Tools~=*

In your response, you can use the following tools:

1. Name: get_ip |ocation\nDescription: Retrieves the latitude and longitude coordinates of a given IP address using the ip-api.com APlL\nParameters: {"ip:
{"description”: "The IP address to locate.”, "type™ “str”, “default’: "}

2. Mame: simulate_guery database\nDescription: Simulates querying a database based on certain conditions.\nParameters: {"table™: {"description™: “Mame of
the table to query.”, "type™ “str”, "default”: "}, "conditions™: {"description”: "Conditions for the query, each condition is a dictionary”, “type™ "list". "default”:
B

3. Name: rgserve_hotel roominDescription: Reserves a hotel room with the specified details.\nParameters: {"room_type™ {"description™: "The type of room
to reserve.”, “type”: “str”, "default™ ™}, "nightly_rate”: {"description”: “The nightly rate for the room.”, "type”: “float”, “default”: "}, “checkin, date”:
{"description”: "The check-in date in the format \YYYY-MM-DDV ", "type™: "str”. "default™ ™}, "checkour_date™: {"description”: "The check-out date in the
format VYYYY-MM-DOV., “type”: "str”, "default™ "}, "quest id"- {"description™ “The unigue identifier for the guest.”, "type™ “str", "default™ "}, "

<user= | need to find the location of an IP address VB.BBEY. </user>

=tool call>

{"name": "get_ip_location”, “parameters”: {'ip™: "8.8.8.87Y} demol
=/1ool call> S

=+Available Tools*

In your response, you can use the following tools:

1. Mame: Reverse Geocode\nDescription: This AP| performs reverse geocoding in Uganda by providing query parameters for latitude and longitude. and it
returns the name of the city where the location is located \nParameters: {"lon’: {"description™ “The longitude of the location.”, "type™ “string”. “default”: "},
“lat™: {"description”: "The latitude of the location.”, "type™ “string”, "default™ "}

2_Mame: Geo Ping Global IP Lookup'nDescription: Retrieves the location and response time of global servers for a given domain name ar IP

address. \nParameters: {"domain™ {"description™: “The domain name or |P address to lookup”™, “type”: "sting”, “"default”: "1}

3. Mame: getCountries\inDescription: Retrieves a list of all countries in the world, along with their respective 150 codes and flags.\nParameters: {}

4. Mame: Get All Divisions\nDescription: Retrieve a list of all divisions of Bangladesh in English and Bangla \nParameters: {}

<user= Can vou tell me the location of the IP address 8 8.8.87 </user>

=<tool call>

{"name": "Geo Ping Global IP Lookup™. “parameters™: {"domain’: "8 88871} demo?
</togl.call> o
Instruction: Mow solve the following user task.

++Steps for outputs+

your output should be organized as follows:

++Tool Usage:** specify the tool (by selecting from the available tooks) and its parameters.
=QUtput Format=*

<too] call>

{"name": "Tool name". "parameters”: {"Parameter name": "Parameter content”. . " " .}

</to0l call>

*+|mportant Noteg*
Refer to the <demonstrations=>_ Mimick the format and reasoning steps of the <demaonstrations=. and generate your response praperly.

=+Available Tools*

In your response. you can use the following tools:

1 Mame: IP Lockup

Description: This API performs an IP addrass lockup and retums associated data such as geclocation. network infermation. and other relevant details.
Parameters: {"address”: {"description”: "The IP address to look up™, “type™ “string”. "default™: "]}

2_Mame: Get Canadian Postal Codes\nDescription: Retrieve a list of all postal codes in Canada

Parameters: {}

3. Mame: Get Restaurant Ratings\nDescription: Retrieve a food hygiene rating for a specific restaurant

Parameters: {"restaurant™: {"description”: "The name of the restaurant™, “type’: "string”. “default”: "}

4_Mame: Get IP Location\nDescription: Retrieve the geographic location information associated with a given IP addrass.
Parameters: {"ig {"description™: “The IP address to retrieve location information for”, “type”: "string”, “default™: "}

| <user> Can you find the location information for the IP address 123.45.67 897 </user>7} User Query |

Response From LLM

<100l call>
{'name™: "Get IP Location™. "parameters”: {"ip’: "123.45.67 881}

Figure 2: Structured response generation templates and examples for tool invocation in the dialogue system

13




[ Prompt Templet for 2 demos with Think ]

{'role": 'system’. ‘content: 'You are a helpful dialogue assistant capable of leveraging tool calls to solve user tasks and provide structured chat responses.},
{'role’: ‘user’, ‘content”:

<dernonstrations™

*+Available Tools~+

In your response, you can use the following tools:

1 Mame: get_io_|ocation'nDescription: Retrieves the latitude and longitude coordinates of a given P address using the ip-apicom APl \nParameters: {"in’™
{"description”: "The IP address to locate”, "type™ “str”, “default”: "]}

2. Mame: m@@g@@nmsmmon: Simulates querying a database based on certain conditions.\nParameters: {"table™ ["description™: "Mame of
the table to query.”, "type™ “str”, "default”: "}, “conditions": {"description”: "Conditions for the query, each condition is a dictionary.”, “type™: "list”. “default”:
"

3. Name: reserve_hotel roominDescription: Reserves a hotel room with the specified details. \nParameters {"room, type - {"description™ “The type of room
“type”: "str, "default™ ™}, “nightly_rate: {"description™ "The n|ghtly rate for the room.”, "type": “float”, “defau “checkin, date”:

{ descrlptlon "The check-in date in the format Wy -Mki-DDY.", “type™: "default™ ™7}, gbg,glggyg”glggg {"description”: The check- out date in the
format VYYYY-MM-DOV ., “type”: st "default™: ", "guest id™ {"d%cription": “The unigue identifier for the guest.”, "type™ “str”, “default™ "}, "prome. cods™
{"description”: "A promational code for a discount. Defaults to None™, "type’: "str, optional”, "default™ ™}

<user= | need to find the location of an P address V8.8.88Y. </user>

< >

{'name": "get ip location”, "parameters”: {ip: "8.8887)} demol
</togl call> aemc

=+Available Tools*

In your response. you can use the following tools:

1 Mame: Reverse Geocode'nDescription: This API performs reverse geocoding in Uganda by providing query parameters for latitude and longitude. and it
returns the name of the city where the location is located \nParameters: {"lon’: {"description”: “The longitude of the location.”, “type™ “string”. “default”™: ")
“lat™: {"description”: "The latitude of the location.”, "type™ “string”, “default™ "}

2_Mame: Geo Ping Global IP Lookup'\nDescription: Retrieves the location and response time of global servers for a given domain name or IP

address \nParameters: {"domain™ {"description™ "The domain name or IP address to lookup™, “type”™: "string”, “default™: ")}

3. Mame: getCountriss\nDescription: Retrieves a list of all countries in the world. along with their respective 150 codes and flags \nParameters: {}

4. Mame: Get All Divisions\nDescription: Retrieve a list of all divisions of Bangladesh in English and Bangla \nParameters: {}

<user> Can you tell me the location of the IP address 8.8.8.87 </user>

< e

{"name": "Gea Ping Global IP Lookup™, “parameters”: {"domain”: "8.8.8.87)} demo?
<fiool @l R
Instruction: Mow solve the following user task.

++Steps for outputs+

your output should be organized as follows:

1_*+Think=++ Recall relevant context and analyze the current user goal.

2_++Decide on Tool Usage=+ If atool is needed, specify the tool (by selecting from the available took) and its parameters.
3_++*Respond Appropriately:* If a response is needed, generate ane while maintaining consistency across User queries.

=QUtput Format=*
<think> Your thoughts and reasoning =/think=
-

"Tool name", "para meters

“Parameter name”: "Parameter content™. " 7L L1
"parameters™: {7 b T e B e

=/100l call>
<response> Al's final response </response=

+=|mportant Noteg**

1. You must always include the “<think>" field to outline your reasoning. Mimick the thinking steps shown in the <demonstrations=.

Provide at least one of "<1ggl_call>" or "<response>". Decide whether to use “<1ogl call>" (possibly muliple times), "<response>", or both.
2.You can invoke multiple tool calls simultansously in the “<togl call=" fields. Each tool call should be 5 JSOM object with a "name” field and an
"parameters” field containing a dictionary of paramesters. If no parameters are needed, leave the "parameters” field an empty dictionary.
3.Refer to the <demenstrations=. Mimick the format and reasening steps of the <demonstrations™=, and generate your response properly.

=+Available Tools*

In your response, you can use the following tools:

1 _Mame: IP Lookup

Description: This API performs an IP address lockup and retumns associated data such as ge Iocatlon network information. and other relevant details.
Parameters: {"address": {"description”: "The IP address to look up”, “type™ “string”. “default™:
2_Mame: Get Canadian Postal Codes\nDescription: Retrigve a list of all postal codes in Canada

Parameters: {}

3. Mame: Get Restaurant Ratings\nDescription: Retrieve a food hygiene rating for a specific restaurant

Parameters: {"restaurant”™: {"description”: "The name of the restaurant”, "type": "string”. “default: "}

4_Mame: Get IP Location\nDescription: Retrieve the geographic location information associated with a given |P address.
Parameters: {"io™: {"description”™: “The IP address to retrieve location information for”. “type™: “string”. “default”: "}

| <user=> Can you find the location information for the P address 123 45 67 837 </user='} User Q uery |

[ Response from LLM ]

<think= The user wants to know the location infermation for the IP address 123.45.67 82, | will use the Get IP Location tool to retrieve this information. </think=

<tool call>
{'name": "Get IP Location”, "parameters™ {"ip’: "1234587 88"}
=/10ol zall>

Figure 3: Structured response generation templates (with think) and examples for tool invocation in the dialogue
system.
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