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Abstract

Discrete state space diffusion models have shown significant advantages in applica-
tions involving discrete data, such as text and image generation. It has also been
observed that their performance is highly sensitive to the choice of rate matrices,
particularly between uniform and absorbing rate matrices. While empirical results
suggest that absorbing rate matrices often yield better generation quality compared
to uniform rate matrices, existing theoretical works have largely focused on the
uniform rate matrices case. Notably, convergence guarantees and error analyses
for absorbing diffusion models are still missing. In this work, we provide the first
finite-time error bounds and convergence rate analysis for discrete diffusion models
using absorbing rate matrices. We begin by deriving an upper bound on the KL
divergence of the forward process, introducing a surrogate initialization distribution
to address the challenge posed by the absorbing stationary distribution, which is
a singleton and causes the KL divergence to be ill-defined. We then establish the
first convergence guarantees for both the 7-leaping and uniformization samplers
under absorbing rate matrices, demonstrating improved rates over their counterparts
using uniform rate matrices. Furthermore, under suitable assumptions, we provide
convergence guarantees without early stopping. Our analysis introduces several
new technical tools to address challenges unique to absorbing rate matrices. These
include a Jensen-type argument for bounding forward process convergence, novel
techniques for bounding absorbing score functions, and a non-divergent upper
bound on the score near initialization that removes the need of early-stopping.

1 Introduction

The diffusion model is one of the key branches of generative models. Inspired by non-equilibrium
statistical physics, it was first introduced in [1]] and was subsequently refined and extended by [2].
In recent years, the diffusion model has achieved many breakthroughs in the generation tasks under
both continuous state spaces [3| 4] and discrete state spaces [5,16]. A growing body of work suggests
that for discrete data such as natural language and graphs, discrete diffusion models offer greater
advantages and more flexibility than their continuous counterparts [7, |8}, 9].

Diffusion models typically include a forward noising diffusion process and a backward denoising
process. Under the continuous-time formulation of discrete diffusion models, the forward process
can be characterized by continuous-time Markov chains (CTMCs), with some specially designed
rate matrix. Commonly used rate matrices include the uniform rate matrix, which leads to a uniform
stationary distribution; and the absorbing rate matrix, which results in a singleton (absorbing)
stationary distribution. The generation quality is typically highly sensitive to the choice of the CTMC
rate matrix. It was first reported by [S] that using the absorbing rate yields better performance
than using the uniform rate in terms of both perplexity and negative log-likelihood (NLL) for text
generation tasks. This empirical advantage was further confirmed subsequently by [9} [10} [1 1], where
consistent improvement was observed using the absorbing rate matrix. Moreover, [5] established
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Table 1: Comparison of convergence results in terms of number of steps. Here we list only
comparable references with the uniform rate (under the same algorithm and sample space). Note that
[15] assumes symmetric rate matrix, which does not include the absorbing rate matrix studied in this
paper. Here d is the data dimension, ¢ is the amount of perturbation due to early-stopping, ¢ is the
target accuracy in KL-divergence, and «y describes the minimum relative likelihood of the mask state
in the data distribution (see Assumption . Here Pois()\) refers to a Poisson random variable with
mean A. The sample space for all the results here is [S]%.

close relationships between the absorbing discrete diffusion models and other popular language
modeling approaches, including BERT [12] and the conditional masked language model (CMLM)
[13]].

The superior performance of discrete diffusion models has sparked considerable theoretical interest in
understanding their convergence properties. However, existing convergence guarantees have primarily
focused on the uniform rate matrix, with various sampling approaches analyzed in this setting. These
include the uniformization method [14} [15]], sampling via piecewise solutions of the Kolmogorov
equation at each discretized step [16}17]], and the T-leaping sampler [6}15]. Among those studies, the
uniform rate matrix is explicitly assumed in [14} 16} [17], and a symmetric rate matrix is considered
in [[15]. Notably, these studies do not address the setting involving an absorbing rate matrix.

In contrast, although discrete diffusion models with an absorbing rate matrix have demonstrated
superior empirical performance [5, 9], there has been no theoretical analysis to characterize their
convergence behavior to date. This gap in the literature motivates our present study.

1.1 Our Contributions

Our overall contribution in this paper is to provide the first theoretical convergence guarantee for
discrete diffusion models under the absorbing rate matrix. This is further described in the following
four parts:

1. Convergence of the forward process: To address the challenge of irregular KL-divergence
under the absorbing stationary distribution (i.e., a singleton), we design a smooth surrogate
distribution which is both close to this singleton and easy to sample from. We further
show that the data distribution in the forward process converges exponentially fast to this
surrogate distribution in terms of KL divergence. Different from previous approaches using
log-Sobolev inequalities, we employ a Jensen-based technique which is applicable when the
absorbing rate matrix is used. Our approach enables a well-controlled initialization error
and prepares for further convergence analysis for the reverse process.

2. Convergence guarantee under the absorbing rate matrix: For the 7-leaping sampler,
we establish an upper bound on the KL divergence between the generated and target

distributions, showing that ¢ KL-divergence accuracy can be achieved with O(d/¢) steps.
Notably, our convergence rate under the absorbing rate matrix is linear in the data dimension
d, which improves upon the quadratic dependency in d established for the uniform rate
matrix with 7-leaping in [15]]. This result implies that, for the same number of sampling
steps, the absorbing rate matrix yields smaller KL-divergence, which aligns well with
empirical results found in [9} (10, [11]. Moreover, for the uniformization sampler, we show
that ¢ KL-divergence accuracy is achievable in expected O(d(log log(d/s)+1og 1)) steps.



This also improves the expected O(d(log(d/e) + log 6 1)) steps previously required under
the uniform rate matrix, further showing advantages of absorbing discrete diffusion models.

3. Convergence guarantee without early-stopping: Furthermore, we provide an interesting
case which removes the need for early-stopping for both the 7-leaping and the uniformization
samplers. Intuitively speaking, this can be satisfied when the [MASK] token is selected
as one of the likely tokens in the given vocabulary. Compared to [14} [15], we show that
early-stopping might not be necessary even when using the uniformization sampler.

4. New techniques for bounding absorbing scores: One key component in our study is
to investigate the properties of the score function under the absorbing rate matrix. Upon
obtaining the exact expression of the score, we provide upper and lower bounds both with
and without early-stopping. We show that the absorbing score is more well-controlled than
for the uniform case for a large diffusion time, which enables smaller expected steps using
uniformization. We also show a non-diverging score upper bound for quite relaxed data
distributions, which removes the need of early-stopping. These score properties might have
independent interest for future studies on absorbing diffusion models.

1.2 Related Works on Absorbing Discrete Diffusion Models

The superiority of absorbing discrete diffusion models have been confirmed in many empirical
experiments, including on text [} 9} 110, [11} 18], image [5} [10]], music [[19], DNA sequence and
chemical molecule [18, 20]. Meanwhile, there have been many empirical studies investigating an
improved training objective particularly for absorbing discrete diffusion models. For example, [[11]]
reparameterized the concrete score training objective to achieve efficient training and sampling, [10]
investigated and improved the training objective as a weighted integral of cross-entropy loss, and [18]]
derived a Rao-Blackwellized objective to tighten the Evidence Lower-Bound (ELBO) and to reduce
training variances. Note that all of these works, while impressive, include only empirical results. A
theoretical understanding of the superiority of absorbing diffusion models is still lacking. We have
provided a more detailed literature review in Appendix [A]

2 Preliminaries of Discrete Diffusion Models
Discrete diffusion models consist of a forward and a reverse process over the discrete data space.
The forward process is commonly modeled as a continuous-time Markov chain (CTMC) over a

discrete state space [6]]. We consider the state space [S]¢, representing a d-dimensional token space
where each token is drawn from a vocabulary of size S. Accordingly, the training data zo € [S]¢

consists of d tokens, with an associated probability mass function denoted by ¢o. Let Q; € R® x5
be the rate matrix governing the forward process, where Q;(z, y) specifies the rate of transition from
state z to state y, for all z,y € [S]9. Then, given the previous state , the transition probability from
t — At to t is given by:

Geje-at(ylr) = Wy = o} + Qi(x, y) At + o(At).

Here, 1{y = z} is the indicator function which equals 1 if y = z and O otherwise. Clearly, the
non-diagonal entries Q+(x,y) > 0 for z # vy, and the diagonal entries Q(x,x) < 0. We further
have that Q¢(z,x) = —3_ ., Q:(z,y). Equivalently, the marginal distribution ¢, satisfies the
Kolmogorov forward equation as follows:

%qt(y) = Z Qu(z,y)a(r) = Qf g1

z€[S)d

Given a state x € [S]?, we denote z* € [9] as the i-th token of z. To simplify computation, it is often
assumed that each token propagates independently in the forward process [6} 9} [16]. This implies that

the forward conditional distribution can be factorized as ;o (z¢|x0) = [, a1 (t|2). We define
the rate matrix for each token as Q°F € RS*5 It is shown in [6] that under such a forward process,
tok(xt,y') ifonly a' # ',

otherwise.

Qi(x,y) = {O

We assume that Q; is time-homogeneous, and thus Q; = @ and Q!°* = Q*°F.



In this work, we focus on the absorbing rate matrix, which results in a singleton state towards
the end of the forward process. Specifically, we let [MASK] € [S] denote the mask state in the
vocabulary. Write m(z) (< d) for the number of [MASK] in vector z. We define the absorbing rate
matrix as

Q' = Lsefask) — Iss

where 1g is an all-1 vector of length S, and e; is a unit vector where only the ¢-th element is
1. In other words, there are only two cases where Q*°*(a,b) # 0. First, the diagonal elements
Q'*(a,a) = —1, Ya € [S] : a # [MASK], which corresponds to the case where no change occurs
when the token is not yet in the mask state. Second, for the column corresponding to [MASK],
Q"% (a,[MASK]) = 1, Va € [S] : a # [MASK]. This corresponds to the transition from a
non-mask to the mask state.

The reverse process can be designed to be the exact time-reversal process of the above forward
process with an initial distribution go = ¢ [6}[21]. In particular, [6] shows that the time-reversal
process {g; } is also a CTMC from ¢ = 0 to ¢ = T with the reverse rate matrix given by

ar—+(y)
qr—¢(7)
Then, the marginal distribution satisfies that §; = g7 _;. Similarly, for the diagonal elements in the
reverse matrix, Q¢(z,z) = — 2, ., Qi(2,y).

For continuous-space diffusion models, one generally defines the score function as V, log ¢:(z).
Unfortunately, this is not applicable for discrete-space diffusion models where the gradient is not

defined. Alternatively, the discrete score function is defined as s;(y, x) = %. In order to prevent
the score function from blowing up around ¢ = 0, one common approach is to employ early stopping
in the time-reversal process by setting the terminal time to be ¢t = 7' — § with a small constant 4.
Otherwise, if early-stopping is not applied, we simply set § = 0. To estimate the score function
st(y, ), we can parameterize it via a neural network and learn an approximation §; ~ s;. One

popular training loss is the score entropy Lsg [9], which is given by

@t(x,y) =Qr—¢(y,T) Va,y € [S]¢ such that  # y. (D

Lsg(5;) = Es,~aq Z Q:i(y, xt) <§t(y,$t) — s¢(y, x¢) — ey, x¢) log M) . 2

y£Ts St yaxt)

In practice, for tractable training, the denoising score entropy is usually used, which is a variant of
the score entropy [9].

In this work, we analyze two sampling methods commonly studied in the literature: the 7-leaping
method [6} 15 22]] and the uniformization method [14} 16} [23]]. To explain these two methods, since
it is hard to directly sample from a continuous-time reversal process, we divide the total time horizon
[0,T — 4] into N small intervals, such that to = 0 and ¢y = T' — 4. Given the estimated score $7_+, ,
we define the estimated reverse rate matrix as

th (z,y) = Qr—t, (¥, )71, (y, ).

In the 7-leaping sampling method [6} 22, for a given x;, , the next state is given by x4, , = x4, +
Zgl:l Zle (s— J:ik )Pl-seiwhere P, is a Poisson random variable with mean th_ (xey, xe, + (s —
xy, )e;)(tk1 — tr). Intuitively, this method can approximate the sampling process by simultaneously
applying all transitions in the time interval [ty,¢;+1). Equivalently, on each interval [ty,tg+1), 7-
leaping approximates the piecewise constant Q¢ (x, y) with a proxy Q¢ (z, y) such that Q;(zy,,y) =
Qu(1,,y) [6]-

The uniformization sampling method [23] has been proven to be able to exactly simulate the

time-inhomogeneous CTMC by constructing a Poisson process with piecewise constant inten-
sity {)\k}k:o,___7 p—1 (thus comes the name uniformization). Here it is required that A\ >

SUD g c[8]4, 1€ b, trsr) (=Q¢(z,x)). At each time interval [ty t1), the number of transition times
My, is first sampled from a Poisson random variable with mean \g (¢5+1 — tx). Then, each transition

'In practice, an additional clipping step is necessary to avoid boundary crossing behaviors. As shown in [13],
such a step does not affect the convergence rate given sufficiently small step-sizes (cf. [15, Remark A.13]).



time is drawn uniformly over [t, t;+1) which forms a set {o; };=1,... a, . Finally, for each of these
transition times o;, each dimension of the current state z is transitioned to s (# z*) with probability

A;légi (v,2 + (s — xt)e;).

3 Main Results

In this section, we provide the convergence results for discrete diffusion models with the absorbing
rate matrix.

3.1 Initialization through Surrogate Distribution

The initialization error of the sampling process closely depends on the convergence rate of the
forward process under the absorbing rate matrix. To this end, we first characterize the evolution of
the conditional and marginal distributions in the forward process in the following lemma. The proof
is deferred to Appendix

Proposition 1. Fix any time t > 0 and dimension i € [d]. Define the token transition probability
matrix ofqi‘o as Py ; such that P ,(a,b) = qilo(b|a) fora,b € [S]. Then,

Py, =(1- eft)lge[TMASK] +e ;.

Accordingly, if we similarly define the overall transition probability matrix of g as Po 1, then

®d
PO,t = {(1 — eit)]‘seE—MASK] + eitfs} s

where & represents the tensor product. Also, the marginal distribution q, satisfies

®d
q;r = qg [(1 — eit)lse?MASK] + 67t15:|

Intuitively, with the absorbing rate matrix, Proposition[T|shows that the probability for each non-mask
token to still remain in its original state at time ¢ is e~ !. If the state of the token changes, the only
possibility is to transition to [MASK] (i.e., with probability 1 — e~*). Once the token enters the mask
state, it stays there forever. Thus, with a sufficient large terminal time 7°, the marginal distribution g
converges to the stationary distribution, which is (6[M ASK])®d.

One main challenge in the analysis under the absorbing rate is that if we select the stationary
distribution (6[M ASK])®d for initialization, the initialization error will diverge in KL-divergence
because of the log 0 term introduced for any = &€ [S]d such that 3i : x? # emask] and that
gr(z) > 0. Such a problem does not exist for the previous studies of the uniform-rate case where the
stationary distribution is the uniform distribution over the state space. To address such an issue, we
design a surrogate initial distribution to avoid the singleton distribution:

®d

€
Pinit = | (1 — €e7)0pmask) + 5 - 1 >, 3
J#[MASK]

where ez > 0 is a small positive constant that vanishes as 7' — oo. Here, instead of the stationary
distribution, the above surrogate initialization distribution is asymptotically a singleton that is located
at (5[M ASK] )@ as T — 0o. For any finite e, a small mass is distributed equally across all non-mask
states on each dimension. With such an initialization, the KL-divergence is bounded away from
infinity as long as e is finite. We then characterize its initialization error in the following theorem.
The proof is given in Appendix

Theorem 1. Consider the surrogate initialization distribution in Equation , andletep = e T.
Then we have

KL(q7|pinit) < de” ™.

New analysis approach: Our analysis is different from the existing approaches using log-Sobolev
inequalities [[14}[15/|16]. Specifically, it has been shown that if the rate matrix of the CTMC satisfies
a modified log-Sobolev inequality [24, 25/, then the initialization error (i.e., the mixing time) can
be well controlled (i.e., having exponential decay). Verifying such modified log-Sobolev constant
typically requires that the rate matrix is symmetric. This is not the case, however, for the absorbing



rate matrix, which is highly asymmetric. Instead, we use a Jensen-based approach similar to the case
of continuous diffusion models in [26]. Specifically, the key is to decompose the KL divergence into
the difference of the (negative) entropy of the forward conditional distribution and the (negative)
cross-entropy between the conditional and the initialization distribution. Then, we immediately obtain
an upper bound for the initialization error given the analytical form of the conditional distribution
under the absorbing transition kernel (from Proposition[T). Notably, no extra assumption is required of
the rate matrix. Our approach is not only more direct but also can be more generally applied to a wider
class of rate matrices, including non-symmetric ones and those without known log-Sobolev constants.
Meanwhile, our result might have independent interest for investigating the mixing properties of
general CTMCs.

3.2 Convergence Guarantees with Early-Stopping

With the initialization distribution in (3), we are now ready to provide the convergence guarantees
for both the 7-leaping and uniformization methods. In this subsection, we focus on the setting with
early-stopping, and will study that without early-stopping in Section[3.3]

For the 7-leaping sampler, we adopt the following two assumptions, which have been commonly
taken in the previous analyses under the uniform rate matrix [[15, 16} 17].
Assumption 1 (Score Estimation Error). The estimated score function 57_¢, satisfies

N-1

Z (tk-+1 - tk)['SE(éT—tk) S Escore-

k=0
Assumption 2 (Bounded Score Estimate). There exists M > 0 such that Vz,y € [S]¢ with
Qr—t,(y,x) > 0, the estimated score §;, satisfies |logSr_¢, (y,x)| <log M,Vk=1,...,N.

Assumption [2]is commonly adopted in the previous studies for uniform-rate discrete diffusion models
(e.g., [15,116]). In practice, this can be satisfied with score-clipping during training [16]]. Indeed, the
convergence error bounds in our main results only at most depend on log M.

The following theorem characterizes the convergence rate of T-leaping under absorbing rate matrix.
Theorem 2. Suppose that py = pinit in @) and ti+1 — tp = cmin {1, T — ti }. Also suppose that

m(xo) < mo = O(1) almost surely. Then, underAssumptlonsIand I using the T-leaping sampler
yields, we have, as ¢, — 0,

(T +logd—1)?
N )
where TV (qo, qs) < db. Thus, KL(gs||pr—s) < € if we choose T = log(d/e) and N = O(d/e).

Theorem 2] provides the first convergence guarantee for absorbing discrete diffusion models using
the 7-leaping algorithm. Here, the target distribution g5 is slightly perturbed from the true data

distribution gy due to early- stoppmgl Theoremlmdlcates that O(d /) steps are sufficient to reach
this slightly-perturbed target distribution gs within an e-error in KL-divergence. Compared with the
state-of-the-art result of O(d?) under the uniform rate in [15]], our Theoreml 2| shows an improved
dependency in d by a factor of O(d) under the absorbing rate matrix. Indeed, such an improvement
is consistent with the empirical studies in [15,|9, [1 1], which shows an improved generation quality
under the absorbing rate matrix compared to the uniform one. The complete proof is provided in

Appendix

The key difference between our analysis and that under the uniform rate is on how to obtain upper
and lower bounds for the score functions. As an example, if one naively applies the same technique
in the uniform rate case, one would only obtain an upper bound for s;(y, x) that is exponential in
t. Our key insight here is that instead of a uniform upper bound over all possible = # ¥ such that
a7 # 37 (cf. [16, Lemma 2] and [15, Assumption 4.4]), we only need an upper bound over those
and y such that Q(y, z) > 0, which, given the particular design of the absorbing rate matrix, is small
for all ¢ > 0. We have provided more details about the novelty of our approach in Section 4]

KL(gs|lpr—s) S de™™ + eacore + d(T + log(M5™1))

Next, we conduct the convergence analysis for the uniformization sampler. We adopt the following
slightly modified estimation assumption, which is typically required in the previous analysis of the
uniformization sampler [[14} [15]].

’Indeed, as shown in Lemma the score function must blow up for certain cases when ¢ — 0. For these
cases, a small perturbation around ¢ = 0 is necessary.



Assumption 3 (Uniform Score Estimation Error). The estimated score function Sp_, satisfies

T—6
/ £SE(ST t)dt < 6score
0

Theorem 3. Suppose that $p_.(y,x) < sp—_(y,x) when Qr_(y,z) > 0, txy1 — tp = c and
Ao S SUPe[s]4 tety,trsn) (— Qi (x, x)). Then, underAssumption as c,d — 0, we have

KL(Q5||pT—5) 5 de—T + 8iscore’

where TV (qo,qs) < do. Thus, KL(gs||pr—s) < € by choosing T = log(d/e), for which case
E[N] = O(d(loglog(d/e) + log §~1)).

Theorem [3]is the first convergence guarantee for absorbing discrete diffusion models under the
uniformization sampler. For small enough J, in order to reach e-level KL-divergence accuracy,
Theoreml 3| shows that the expected number of steps grows as O(logloge~1). This improves that
under the uniform rate, where O(loge~1) steps on average is required [14} [15]. The underlying
reason lies in the score function s; when ¢ becomes large. For uniform CTMC, since the stationary
distribution is uniform, s; is close to a constant for which a constant-level uniformization intensity
is required. In comparison, for absorbing CTMC, since the stationary distribution is a singleton, sy
decays as t ! for large t’s (see Lemmal(l)), which enables a much lower uniformization intensity and
reduces the total expected number of steps. The proof of Theorem [3]is given in Appendix [F}

3.3 Convergence Guarantees without Early-Stopping

While the early-stopping technique ensures theoretical guarantees, it comes at a cost of degraded
sample quality. Indeed, even a small perturbation around ¢ = 0 might introduce a large difference
in the overall log-likelihood. In the following, we show that the early-stopping can be avoided for
absorbing discrete diffusion models with the following assumption.

Assumption 4. Suppose that for all i € [d] and 277 € [S]¢71,

g5 (MASK]|z ™)

mMaXgic[9]:ai #£[MASK] g (atlz=?)

> >0.

Here, Assumption [4]is made only on the initial data. This assumption can be justified as nearly
necessary for the validity of the diffusion algorithm, as follows. By the second part of Lemma [2}
if Assumption [4]is not satisfied, the score function will (nearly) diverge around ¢ = 0. Since the
algorithm relies on the score function to make progress at each step, such divergence at ¢ = 0 would
render the algorithm itself invalid in that regime. To satisfy Assumptlon@ a sufficient condition is
that go has full support over [S]? (albeit without an explicit 7), i.e., when [MASK] corresponds to
one of the existing tokens in the training data. Also note that AssumptlonE]can be satisfied with a
larger v when this chosen token becomes more likely.

Comparison with other assumptions in the literature: We compare Assumption ] with two other
assumptions in the existing literature under which the early stopping can be removed. Particularly,
[16, Assumption 2] assumes that g has full support and that the score so(y, ) can be upper-bounded
by a uniform constant for all x and y where only one component differs, and [[15) Assumption 4.5]
assumes some Lipschitz continuity condition for the score function when ¢ ~ 0. Our Assumption 4]
relaxes [[16/ Assumption 2] and only requires that go to have full support. While Assumption 4] does
not have a direct comparison with [15, Assumption 4.5], as justified above, it is (nearly) necessary to
ensure the validity of the diffusion algorithm.

In the following, we provide the convergence guarantee for 7-leaping sampler without early stopping.
Theorem 4. Take § = 0. Suppose that Assumptions and{d|hold. Also suppose that m(xq) <
mo = O(1) almost surely. Then, choosing ti11 — ti, = ¢, we have

T2
KL(QOHPT) 5 de_T + Escore + 7_1d(T + log(M’y_l))F'
Thus, KL(qo||pr) < € by choosing T = log(d/e) and N = 9] (dy=t/e).

Therefore, when Assumption E] is satisfied, Theorem E] shows that we can exactly recover the data
distribution without early-stopping, by taking constant step-sizes for O(d/¢) steps. Also note that



the number of required steps decreases as y increases. Intuitively speaking, the generation becomes
faster when the chosen [MASK] token already occurs likely in the original data.

Novel analysis approach: The proof is given in Appendix[G} One key component in the proof is to
provide a non-diverging upper-bound on the score when ¢ ~ 0. To this end, we first invoke the exact
expression of s; (see (21])). Then, our key insight is that given an initial mask state, it will stay there
for any ¢ > 0, which guarantees that the denominator of s;(y, x) (which corresponds to g;(x) with at
least one mask state in x) does not vanish for small ¢ (Lemma @) Indeed, to strengthen this, we also
show an almosﬂ converse result to this: Suppose that [MASK] does not occur at all in the initial data,
the score function must blow up when ¢ =~ 0 (see second part of Lemma 2)).

For the uniformization sampler, we also establish the convergence guarantee without early-stopping,
whose proof is give in Appendix
Theorem 5. Take § = 0. Suppose that Assumptions and hold. Then, choosing §p_4(y,x) =<
sT—t(y, x) when Qr—i(y,z) > 0, ty1 — t = cand N\, S SUDge(8)4 te(ty t,)(— @t (T, 7)), and
letting ¢ — 0, we have

KL(q()| ‘pT) g de—T + E':i‘;core‘

Thus, KL(qo||pr) < € by choosing T = log(d/e) and E[N] = O (d(loglog(d/e) +~71)).

Theorem [3]is the first non-early-stopping result for the uniformization sampler. Note that for uniform
CTMC, early-stopping is typically required to use the uniformization algorithm [14}[15]. The proof
of Theorem [3]is straightforward by combining elements from Theorems [3|and [4]

4 Overview of Key Proof Techniques

In this section, we highlight the major novel elements in our proofs. We first focus on the case with
early-stopping, and we identify any differences towards the end of this section. Given § > 0, the
TV distance under absorbing rate matrix has an upper bound similar to the uniform-rate case (see
Lemma E]) Thus, as follows, we focus on deriving the KL error bound for both the uniformization
and the 7-leaping samplers.

Following [15, Corollary 3.4], the error in the KL-divergence can be decomposed as

KL(Gr—sllpr—s) < KL(Gol|po) + fOTﬂS Lsp(37—¢)dt.

For the uniformization method, if we assume uniform score estimation error as in Assumption
and since we can sample exactly from the time-inhomogeneous process induced by §; using the
uniformization method, then KL(gs||pr—5) < KL(gr|[po) + €core- Meanwhile, the total number
of steps is a Poisson r.v., whose mean satisfies that

B— A
E[N] 5 Zk:()l Supl‘E[S]d,tG[tk,tk+1) (Zyy;ﬁz ST—t (y7 x)Q(y’ .13)) (tk"rl - tk) (4)

For the case with 7-leaping, an error corresponding to time-discretization will be introduced. Under
Assumption T]and following straight-forward error decomposition, the total error has an upper bound
given by (where we have combined Equations (I4) to (16))

P - — t
KL(QT—JHPT—J) 5 KL(QOHPO) + €score + Zifv:ol t:+1

st—y, (y,x
S 57—t (Y, 1)

log -
o (v, z)

|5T—t(ya xtk.) — 874, (ZJ, 'Ttk)| Q(yv L39:&;9)(175~ (5)

Thus, for both the uniformization method and the 7-leaping algorithm, the results in Theorem 2}
Theorem [5can be established as long as (i) we have an exponentially-decaying upper bound for the
initialization error under the absorbing rate matrix, and (ii) the score functions s;(y, ) have nice
upper and lower bounds for ¢ € [0, T'|. Here a lower bound is necessary because of the log operator.
As follows, we provide the details of all these missing pieces.

Convergence of Forward Process (Theorem [I)): In establishing the exponentially-decaying ini-
tialization error bound, we cannot directly invoke the log-Sobolev inequalities for the mixing time

3This becomes an exact converse when we further assume homogeneity in the data across each dimension,
i.e., when ¢} (a) = ¢ (a) forall i € [d] and a € [S].



of a Markov chain (as in [[14, [15 [16]) because the absorbing rate matrix does not have a known
log-Sobolev constant. Instead, we decompose the KL-divergence as (Equations (7), (8) and (TT)):

d
L(qT ‘ |pinit) < Z EIBN%EI}N(]}'O(@B) |:10g q%\O(x’lTIxZ)) - Ingzm‘t (x%)]} )
i=1

where the last line follows from Jensen’s inequality since f(u) = ulogw is convex and the fact that
the forward process is conditionally independent across the dimensions. Also, since we have the
analytical form of qzlo from Proposition cf Equation (9))) and the initialization distribution from
Equation (3), the result is straight-forward. In particular, the exponential decay in 7" is due to the fact
that qt‘o([MASK] |z8) = e~ for all 2}, # [MASK]. Note that our approach is also applicable to the
case with uniform rate matrix or more generally to any CTMC with conditionally independent rate.
This highlights the generality of our approach.

General Score Upper Bound (Lemma : The upper bound on s;(y,x) is essential to further
providing an upper bound for the number of steps using uniformization (see Equation (4)) and that
for the discretization error using the 7-leaping sampler (see Equation (5)). To this end, if we simply
follow the technique for uniform rate (cf. [[16, Lemma 2]), we would get (cf. Equation )

AN CHE))
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$t(Y, ) = Eagmgop, (-|2) [ } < 1= forall z and y s.t. only 27 # y7.

This is problematic because the bound is exponential in T for t € [§, T]. Our key insight in the
analysis is that instead of a uniform upper bound over all possible 2 # y such that 27 # 3/, from
Equations (E]) and (3] . we only need an upper bound over those x and y such that Q(y, z) > 0. Given
the absorbing rate matrix, this is equivalent to the case where 29 = [MASK] while y/ # [MASK].
Now, given that Q(y, z) > 0, the upper bound for s;(y, ) can be significantly improved as

st(y, ) = T5= ~qé‘t(yj|x) <t=1, forall z and y s.t. Q(y,x) > 0.

Note that this upper bound decays as ¢t ~! for large ¢, which is much faster than under the uniform
rate matrix (where the score is asymptotically a constant). This enables us to design a much lower
intensity for the uniformization algorithm for large ¢’s, thus significantly reducing the total expected
number of steps. Also, for T-leaping, this score upper bound is also essential to control the rate of
change in the score and thus the term |sr—¢(y, z¢, ) — $7—¢, (y, 21, )| in @) (see Lemma|3).

General Score Lower Bound (Lemma 2): The upper bound by itself is not sufficient for the analysis
using 7-leaping because of the log operator in Equation (5). For this reason, we also need to provide
a score lower bound when Q(y, x) > 0, especially for the region where s; is small. From the

expression of s;, one key element is qé‘ +(y7]x), which by Bayes’ rule is equal to

(i) = Cu—icpsya—1 90w y)-quo(@™N @M @I juI y7) ©)
QoI ) = > e e psya—1 G0(w=7.a3) e o (@1 20 M i [u=3 a7

Here we explicitly decompose x into three different parts: (i) 2V, which is the unmasked compo-

nents in z, (ii) ™\, which is the masked components except at the j-th one, and (iii) 27, which
is equal to [MASK] since Q(y,z) > 0. Here, for each fixed zo = (u7,a’), only the conditional
probability at the j-th element would differ for different a/, which 1ndlcates that the lower bound is in-
dependent of d. Also, intuitively, in terms of ¢, this lower bound should decay no faster than the worst
rate of the conditional probability, which is e ~*. Interestingly, for the case where x}) # [MASK] a.s.
for all ¢ € [d], our approach would result in an improved lower bound, which diverges as ¢t — 0
at a rate that matches that of the upper bound (i.e., t—1). This not only highlights the tightness of
our bounds but also contributes to the general understanding of the score function, which might
potentially be useful during training.

Non-diverging Score Upper Bound (Lemma6): Now we consider the case where early-stopping
can be removed. For both analyses using the uniformization and the 7-leaping algorithms, the goal is
to provide a non-diverging upper bound on s;(y, z) when Q(y,z) > 0 (see Equations (4) and (5))).
Now, from the exact expression of qo|;(y’|x) in (6), suppose that Assumption E holds, then the
qo(u~9, [MASK]) terms in the denominator would introduce a constant lower bound independent of
t when ¢ is small. This would result in an upper bound of s;(y, ), which also does not depend on ¢.



5 Conclusion

In this paper, we have provided the first convergence rate analysis for discrete diffusion models
under the absorbing rate matrix. We have first introduced a surrogate initialization distribution
to address the challenge due to the ill-defined KL divergence. We have then established the first
convergence guarantees for both the 7-leaping and uniformization samplers, demonstrating improved
rates over their counterparts using uniform rate matrices. Furthermore, under suitable assumptions,
we have provided convergence guarantees without early-stopping. One future direction is to provide
guarantees for the conditional generation of discrete diffusion models, where the absorbing rates
would depend on the particular form of conditioning.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We indicate our contributions and scope in the abstract, and we have dedicated
subsections in the introduction that separately discuss our contributions and other related
works.

Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We clearly state each assumption in the main results, discuss their applicability,
and further compare them with assumptions from related work.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We provide our assumptions in Assumptions|I|to[]and a complete proof in
the appendix.

Guidelines:
* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]
Justification: This paper does not include experimental results.
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.
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(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]
Justification: This paper does not include experiments.
Guidelines:
* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]
Justification: This paper does not include experiments.
Guidelines:
* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.
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* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]
Justification: This paper does not include experiments.
Guidelines:
* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]
Justification: This paper does not include experiments.
Guidelines:
* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
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Answer: [Yes]

Justification: The research conducted in this paper conforms with the NeurIPS Code of
Ethics.

Guidelines:
¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper focuses on the theoretical analysis of the diffusion model and does
not involve any societal impacts.

Guidelines:
* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper does not pose any risk related to data or models.
Guidelines:

* The answer NA means that the paper poses no such risks.
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* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: This paper does not use existing assets.
Guidelines:
* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:
* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
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15.

16.

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: LLM is only used for paper editing.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Related Works

Discrete diffusion model

There have been plenty of empirical works on discrete diffusion models. [1]] first proposed the
concepts of the diffusion model with a non-equilibrium statistical physics framework, laying the
theoretical foundations of the diffusion model. In addition to the continuous space diffusion, they also
discussed the modeling and denoising of a binomial discrete diffusion process. Later, [27] proposed
the Multinomial Diffusion model defined on categorical variables through a uniform transition kernel,
pioneering the structure of directly modeling the discrete data. [5] introduced the Discrete Denoising
Diffusion Probabilistic Model (D3PM) with the structured transition matrices to generalize the
Multinomial Diffusion. It is also [5] that first proposed the absorbing discrete diffusion models.
[[6] embedded the discrete diffusion model into the Continuous-Time Markov Chain framework,
modeling the forward and reverse processes as CTMCs and naturally deriving the continuous-time
ELBO. They also adopted the 7-leaping algorithm instead of the exact simulation to sample the
reverse process, which reduced the computational cost in the high-dimensional setting. To learn the
discrete diffusion model, [15] and [6] directly approximated the reverse kernel. [28]] and [29] proposed
ratio matching and concrete score matching, respectively. Subsequently, [9] constructed the Score
Entropy Discrete Diffusion models (SEDDs) by introducing the score entropy as a score matching
counterpart to continuous diffusion, to extend the score matching to the discrete field.

Discrete diffusion models have demonstrated comparable or better performance than continuous
diffusion models. D3PM [5]] outperformed continuous DDPM on the CIFAR-10 dataset regarding log-
likelihood. SEDD [9]] achieved lower perplexity than existing diffusion models in language modeling.
Moreover, extensive empirical studies demonstrated the advantages of the discrete diffusion model
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in tasks such as genomic sequence and protein design [30L 31} 132], image [6, [10} 33]], music [6} 33,
NLP [104134} 135, [18]], and finite symmetric groups [36].

Absorbing discrete diffusion model

Beyond general discrete diffusion models, there have been several empirical studies that are partic-
ularly focused on the absorbing discrete diffusion models. [[10] simplified the variational training
objective as a weighted integral of cross-entropy. They also proposed a state-dependent masking
schedule, which allows rate adjustment dynamically with states for better generation quality. [[11]]
reparameterized the concrete score as the product of a time-dependent scalar and a time-independent
conditional distribution. Through this reparameterization, they built a Reparameterized Absorbing
Discrete Diffusion (RADD) model without time ¢ to achieve efficient training and sampling. Similar
to [LO], [[18] parameterized the reverse posterior based on the structures of the absorbing state and
derived a tighter continuous-time ELBO through Rao-Blackwellization. They also proposed a semi-
autoregressive decoding method that allows sampling sequences of arbitrary length. [37] proposed an
informed corrector for the absorbing diffusion models, for which they showed better performance
than using the regular (uninformed) predictor-corrector scheme for masked models. Building upon
[LO, 18], [38]] investigated the problem of fine-tuning an absorbing diffusion model by casting it as a
Bayesian posterior sampling problem. They introduced the Discrete Denoising Posterior Prediction
(DDPP) objective for efficient training and sampling from fine-tuned models. More recently, [39]
further validated the better scalability of absorbing diffusion models than traditional autogressive
models in language understanding tasks.

Convergence analyses on discrete diffusion model

[14] applied the sampling algorithm based on uniformization in the state space {0, 1}d. Under the
assumptions of score-entropy error and bounded score, they achieved a nearly linear dependence of
the expected number of iterations on the dimension d. [16] performed analysis of a discrete-time
sampling scheme in the state space [S ]d via the Girsanov theorem. The work of [[14] and [16] are
focused on the uniform discrete diffusion models. Under the assumption of the symmetric rate matrix,
[L5] introduced a stochastic integral framework and first provided the error bound of KL divergence
for the 7-leaping algorithm. Note that all of the works above are not applicable to the absorbing
discrete diffusion model, which is the main focus in this paper.

B List of Notations

We write 1{z = y} as a function of = and y which equals 1 only if z = y. Fori = 1,...,d, we
write e; is a vector where only the i-th element is 1 and other elements are 0’s, and we write §; as the
distribution of a singleton whose p.m.f. is e;. For a positive integer S, [S] := {1,...,S}. Write 15

as a vector of length S that contains all 1’s, and Is as an identity matrix of size S x S. Write m(x)
to denote the number of [MASK] states in the vector .

C Proof of Proposition ]|

Recall that we have Q*°F = 1 Se[TM ASK] Is. Without loss of generality assume [MASK] = S, i.e.,

the last token in the vocabulary. First, we perform the eigen-decomposition of Q%% as

Qtok:PApfl

10 0 1 10 0 -1
0 1 0 1 0 1 0 -1

=1 boo| diag(=1,---,—1,0) |1
0 0 11 0 0 1 -1
0 0 0 1 0 0 0 -1

Note that
exp [—t] 0 0
0 exp [—t] 0
exp [At] = .
0 0 1
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Thus, solving the Kolmogorov forward equation, the transition probability matrix of the i-th token z°
can be expressed as

¢
Pgﬁt = exp [/ QtOkds} = Pexp [At] P71
0

exp [—1] 0 e 0 1 —exp[—t]
0 exp[—t] --- 0 1 —exp[—t]
0 0 e exp-[—t} 1-— e);p [—t]
0 0 - 0 1 s

= (1 — 67t)15€EMASK] + eitfs.

Since each token propagates independently in each dimension, then g;jo(2¢|z0) = Hle qzl o(@i]xh),
and
Por = [P oz,t]
®d
= {(1 — e_t)lse[TMASK] + e_tls}
Hence, the marginal distribution ¢, at time ¢ is
@ =q |(1—eM1ge] +e ' =
t 0 SCMASK] S

D Proof of Theorem 1]

The proof idea is adapted from that for the continuous diffusion model first in [26]]. To start, we have

x
KL(gr|[pimit) = ) QT(mT)IOgM
sre[8]d Pinit(TT)
= Y ar(@r)loggr(zr)— > qr(zr)logpimi(zr). @)
zre[S]d zrelS]d
Termy Termso

We first focus on the first term in (7). Since

qr(zr) = Eeongo [QT\0($T|$0)] )
we have
Term; = Z Eaonqo [ari0(@r|T0)] 10g Bagmagy [ar)0(@r|20)]
zr€[S]4
(4)
< Z Euongo [ar10(@T|20) 108 470 (27 |20)]
ITG[S]d

=Ezongo Z ario(x7|70) log grio(27|T0)

QJTE[S]d
d
(@) i i i Q|
= ZEngqg Z qT\o($T|$o) 1quT|O($T‘xO) ®)
=1 zh.€[9]

where (¢) follows by Jensen’s inequality since f(u) = ulogw is convex, and (i7) follows because the
negative entropy can be decomposed into a sum across each dimension when the transition kernel is
independent. To proceed, we need to express the analytical solution for qz‘o. From Proposition

q§|0(z|a) =[(1- e_t)lse[TMASK] + e 'Is)(a, 2)
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et ifa = z # [MASK]

1—et ifa# 2= |MASK] ©)
1 ifa=2z=[MASK]"

0 otherwise

Thus, using the convention that 0log 0 = 0, we have

e Tloge T ifa =z # [MASK]
Giolz]a) log gy (=]a) = { (1 — e~T)log (1 — eT) ifa # = = [MASK] .
0 otherwise

Then, when z{, = a # [MASK], the negative entropy is

> drolerla) log grpo(v'r|a)
zi.€lS]

= Y dro(zla)loggr(zla) + g (MASK]|a) log gy ([MASK]|a)
z:2#A[MASK]

(iid) i i i

= qrplala)log grio(ala) + g7y (MASK]|a) log g7 ([MASK]|a)

e Tloge ™ + (1 —e T)log(l—e™ 7).

Here (iii) follows because of the absorbing rate matrix. Otherwise, when z{, = [MASK],

Y dpp(e|[MASK]) log gijo (27| [MASK])

x4 €[S]
= ¢rjo([MASK]|[MASK]) log g7 o ([MASK]|[MASK])
=0.
This yields that
d
Term; < Z]Ezéwé [1{zf # [MASK]} (e "loge " + (1 —e T)log(1l —e™ ™))
i=1

M=

o
_ <

where (iv) follows, by Taylor expansion, that (1 — z)log(1l — ) = —z + O(x?) when z is small.

(1= qé([MASM))) (e"(=T)—e T +0(?))

1

S
Il

M=

(1— qg([MASK]))> e T(=T —1) + O(de?T), (10)

Now, let us turn to the second term in (]Z]) As follows we write € = e for which we omit the T’
dependency. Note that the specified p;,;+ has independent components, and

i) = 1—¢, ifz'=[MASK]
Pinat i) = g5, if o' # [MASK]~

Here, §; denotes a point mass distribution centered at state 7. Thus,

Terms = Z gr(zr)log pinit(TT)
QZTE[S]d

= > | Y arpl@r|zo)qo(xo) | log pimit(r)

zr€[S]? | zoE[S]?

()
= Er()Nqo]EszqT|0(~\zo) [log pznzt(xT)]
d

(ve) i i
= Z Ezo~go EmiquiT‘OQ |zo) [log pinit (7]
i=1
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(mz) 9 i
Z Ew b~ad mTNqT\O( |xé)[10gpinit(xT)]

Xil: 8{IL{J;@#[MASK]}((1—6_T)log(1—e)+6_Tlog< < ))}

S—1

+ZE$ g [1{z = [MASK]}] log(1 — ¢)

(viti) ;Exwé [ﬂ{xé # [MASK]} ((eT ~LJetelog ( : >>]

S—1
d .
- Z g6 ([MASK])e + O(de?)
d
= <Z(1 - qé([MASK]))> {(eT ~1)eteTlog <s i 1)}
d
+ (Z(l qé([MASK]))) € — de + O(de?) an

where (v) follows by changing the order of summation, (vi) follows because p;,;; is independent
across the dimensions, (vii) follows because the forward process is conditionally independent, and
(viii) follows because by Taylor expansion, log(1 — x) = —x + O(2?) when z is small.

Now, combining (T0) and (TT) together, we have

d
KL(qr||pinit) < de+ <Z(1 - Q6([MASK]))> :

i=1

(eT(—T— 1) — (e T —1)e—eTlog (Si1> —e>
< de+de” " <(T1)elog(si1)>

Now, we can choose € = e~ L. Thus,

-7
KL(q7||pinit) S de™ " +de” ™ ((—T —1)—e T —log ( c ))

S—1
<de T

E Proof of Theorem
First, using the Girsanov change-of-measure technique similar to [[15, Corollary 3.4], we get

KL(g7r—s||lpr—s) < KL(Go.1—5]|po:7—5)
= KL(Go||po)+

T-5
A sT—t(y,x
Brormivrs || O (sT_t@, 20) = s7—o(y 20) + s7—o(y, 20) log T(y)) Qy, )it
0 ey S7—¢(y, 1)
= KL(qo||po)+
N-1 itgys T
/ By~ Z <5T te (Ys ) — s—e(y, T¢) + 57— t(y,xt)IOgATt(y,t)> Qy, )| dt
k=0 Y#T ST tk(y’mt)
= KL(qo|[po)+
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N—-1 tht1
Z / ﬂitN(It Z (§T—tk (yv th) + G(ST—t(y7 xt); §T—tk (ya .Tft))) Q(ya .73,5) dt
=0 Y#£Tt
where we have defined that "
G(z;y) := xlog s T. (12)

Note that Q7_; = @ due to homogeneity. From Theorem [I] the initialization error term has an upper

bound as
Linit == KL(Go||po) S de™ "

Also note that the estimation error satisfies

N-1
Lest =Y (s —ty):
k=0
Emtk NE% Z (<§T7t;C (ya xtk) + G(STftk (y7 xtk); §T7tk (y» xtk))) Q(y7 xtk) S Escore- (13)
YFTy,

Thus, we can find the discretization error to be

tk+1
Liise 1= Z / Eg ~g, (§T—tk (Y, ) + G(sT—t (Y, 20); 37—1, (Y, 1)) Q(y, z¢) | At — Loy

YF£TL
(i) N— /tk+1

E TG Z G(ST—t(y7 th); éT—t;c (y7 xt))Q(ya xt) - G(ST—tk (yv Lty )7 §T—tk (y7 Tty ))Q(lﬁ xtk)

Tt~y yta,

_ Z /tk+1

(E ItNQt Z G ST t(y,l‘t) ST— tr (y’xt))Q(yth) - Z G(ST—t(y7xtk);§T_tk (y’xtk))Q(y7xtk)

ey, At yta, Y#T 1y,

+ Eztk’\‘(?tk Z (G(ST*t (y7 xtk); STt (y7 xtk)) - G(ST*tk (yv xtk); STty (yv xtk))) Q(:% xtk)) :
y;éwtk
(14)
Here, for (i), we note that S7_;, (y, x¢)Q(y, x¢) = S7—4, (y, x1,, )Q(y, z,, ) for the T-leaping algo-
rithm.

‘We first focus on the first term in the discretization error, which is

N—-1 tht1
Z / dtE o,~q, [ Z G(sT—t(Ys 1) 81—1, (¥, ) Q(y, 1)
k=0 71t Ty~ Y#£T
- Z G(STt(y;xtk);gTtk(yvxtk))Q(yuxtk)}
y;éxtk
—1 tk+1
=3 [ R | ¥ G Q)
=0 b Y#Tt
> ar—vr—i@nle) Y Glsr—i(y we); S1o1, (v, 20,))Q(y, w1,
z¢, €[S]? YFETe,
(@) N-1 oty
< - Z / dt (t — ti)Eg, g, Z Q(xe, x),) Z G(sr—t(y, 21); ST—1, (Y, 2¢))Q(y, 71)
k=0 7tk 4, €[S5]¢ y#T,
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(i) V=1

tht1
5 Z / dt (t - tk)d : Ewtk’\“atk Z G(ST—t(y7 xtk)v §T—tk (y7 ztk))Q(y7 :Etk.)

k=0 "t y#Te,
(iii) N=1 N1 oty
S D (g —tn)?dLes +d Y / dt(t — tg)-
k=0 k=0 1tk
El’tk ~qy, Z (G(ST—t(y7 xtk); §T—tk (y’ Ly, )) - G(ST—tk (ya Ty, ); §T—tk (y, Lty ))) Q(y, xtk)
Y#Te,
(2) 0("@ . (Escore + ‘Cdisc)) (15)

where (i) follows because by definition of CTMC g;p—a¢(y]2) S 6y, + Q(,y)At, (i7) follows
because there are O(d) non-zero terms in Q (¢, x+, ) and because §;(x) /g, (x) = 1 + O(t — ty,) for
each = € [S]4, (iii) follows because of (13) and that 7, (y, 71, )Q(y, ¥4, ) > 0 when y # x4, ,
and (iv) follows as long as

Eﬂﬁtk ~qty, Z (G(ST—t(yv xtk); STt (ya xtk)) - G(ST—tk (ya xtk); 571, (ya 'rtk))) ’

Zﬁéﬂtk
Qy, 1) = O(t — ty).

Hence, this term does not contribute to the overall upper bound in (T4). Thus, it remains to upper-
bound the second term in (T4) for all ¢ € [t), tx+1), in which the key is to upper-bound its integrand
given by

Eﬂftk ~Gty Z (G(ST*t(yv xtk); S7—1, (y7 Lty )) - G(ST*tk (yv Lty )3 STt (y7 Lty ))) Q(% xtk)

YAy,
sT (y,x
5 Ewt/\zat Z tk : tk) |5T—t(y7xtk) - ST—tk (yvgjtk” Q(yaxtk) (16)
A s ST tx (U, Tt,)
k

where the inequality comes from the fact that G (z; y) is continuous and %G (xz;y) =log .

To proceed, we need to investigate s; under the absorbing rate. The following lemmas investigate
some properties of s;. Their proofs are in Appendix [I}
Lemma 1 (Score Upper Bound). Fix t > 0 and x # y such that Q(y,z) > 0. Let j be the only
index such that 7 # y. Then, xJ = [MASK], and we have

e i -1

se(y,x) = 1ot q0|t(y z) <t

—e
Lemma 2 (Score Lower Bound). Fixt > 0 and x,y € [S]%. Given that Q(y,z) > 0 and that
qt(y) > 0, we have

St (y7 .1‘) Z e_t

Further, suppose that ¢ ([MASK]) = 0 for all i € [d), then a tighter lower bound can be applied:

Here note that s;(y, x) diverges at the same rate as does the upper bound as t — 0.
Lemma 3 (Score Derivative Upper Bound). Suppose that the number of masks in the data satisfies

m(zg) < my = 0(1) almost surely. Given that Q(y, x) > 0, we have

<72,

0
_ < -
‘8t8t(y7$) ~ (et . 1)2

Let us now continue to upper-bound the second term in (T4). With the score upper and lower bounds
in Lemmas|T]and 2] a direct implication is that, when Q(y, z) > 0 and ¢ (y) > 0,

[log s (y, )| < max{|logt*1f , |log(e*t) —log S}} < T +logé ' +logsS. (17)
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Without loss of generality assume that g7, (y) > 0E| Now, continuing (T6)), note that
G(sr—i(y,2); Sr—1, (¥, @) — G(s7-1,, (¥, 2); $7—1, (¥, @)

sT—1, (Y, )
< |log ==t/ | _ — _
~ Og §T7tk (y,x) |ST t(y7x) ST tk (y7x)|
S (T +1logd™! +1og M) [sr—i(y, ) — s7—1, (y, )| (18)

where the last line follows from (I7) and because [log $7_(y, z)| < log M when Q(y, z) > 0 from
Assumption 2]

Recall that ¢ € [t, t+1). Thus, an upper bound for the second term in (T4) is

Ertk ~Gty Z (G(ST*t(yv xtk); S7—1, (97 Lty )) - G(ST*tk- (y7 Ly, )5 STt (yv Ly, ))) Q(yv xtk)

YF£Ty,

(i)
S (T +1ogd™" +1og M)Ey, ng, Y lsr—e(y20,) — 57—, (, 24,)| Q. 71,
y;émtk

S (t—t) (T +1log st + log M)E;, ~g., Z sup

t'e(T—t T—t
y;ﬁztk €( k+1, &)

St/(y7 xtk) Q(y, ztk)

9
at’

(i1)

< (t—t)(T +log 6~ +log M) (T — tjy1)%d
where (i) follows from (T8), and (i) follows from Lemma/3]

Combining all results for the discretization error, we arrive at

tk+1
LdLSC ~ Z /

El’tk ~qt Z (G(ST*T/ (y7 Lty ); ‘§T*tk (y’ Lty, )) - G(ST*tk (y’ Ly, ); §T*tk (y7 Ly, ))) Q(?/v xtk)
y?éﬂftk

N-1
< (T +log ! +log M) dz trop1 — te)? max {1, (T — typ1) "2} .
k=0

Finally, to determine the parameter dependency in the summation, we can directly employ [26|
Lemma 18] and get that when t;11 — ¢, < cmin{1,T — t;}, we have
(T +logd—1)2

N .

Furthermore, taking ¢ 11 — t;, = cmin {1, T — t}, the number of steps satisfies that N < ¢~ (T +
log 6~ 1). With this, we arrive that

Laise S (T 41ogd™* +log M)d

(T +1logd—1)2

KL(&T—5‘|pT—5) 5 de_T + Escore + d(T + IOg(M(S_l)) N
as desired.

Finally, the following lemma, whose proof is in Appendix [I} provides an upper bound in TV distance
between gg and ¢s. The proof is similar to the uniform-rate case as in [[14, Theorem 6].
Lemma 4. Under the absorbing rate function, we have

TV(qo,q5) S dd, asd— 0.

The proof of Theorem [2]is now complete.

*Indeed, if g+ () > 0, then by the absorbing rate property, we have g;(y) > 0 for all t > s. This implies that
if gr—¢, (y) = 0, then gr—+(y) = O for all t € (tx,tr+1]. For this case, trivially we have G(sr—¢(y,x);-) =0
forall ¢ € [t,tx+1], where the difference is simply 0.
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F Proof of Theorem

It is shown in [[15]] that uniformization can exactly simulate the reverse process without discretization
error. Thus, from [[15, Corollary 3.4], we have

KL(Gr-sllpr—s) < KL(qo|[po)

T-96
+ Ecor_s~ior—s / Z
0

R T
<sT_t(y,xt) sT—t(y, x¢) + s7—¢(y, 1) log (yt)) Q(y, x,)dt
yFTy

t(ya xt)

-T /
g de + 85007“67

where the last line follows from Theorem I]and Assumption [3] Similarly to the proof of Theorem 2]
note that we still have TV (g, gs) < dd due to the early-stopping.

It now remains to determine the number of steps, which is usually a Poisson random variable due
to simulating the CTMC process. Now, for each interval [t, tx+1), uniformization requires that
Ak = SUDLe[8]4 €ty trir) Qt(x x). As follows, we first provide an upper bound for )y, using the
following lemma.

Lemma 5. Fix t > 0 and x such that [MASK] € z. Recall that m(z) (< d) is the number of
[MASK] in x. Then,

eft

= <m(x)t
—e

Z St(yv'r)Q(yvx) < m(x)

YYFT
Thus, under the assumption that $7_+(y, ) < sp—_+(y, ) when Qr_+(y, z) > 0, we have

—Qi(w, ) = > Qulw,y) = D Qruly,w)dr iy, 2) S AT —t)~"

yyF£ yiyF£
Note that different from the case under uniform rate, this upper bound is vanishing for large (7' — t)’s.

Thus, since the sum of independent Pois(\x) r.v.s is distributed as Pois(}_, Ax), the expectation of
the total number of steps is given by

B-1
N] = Z Ak (trr1 — t)
S Z d(T — tgq1) " (tegr — tr).

Now, since we choose constant step-sizes as tx4+1 — t = ¢,

1
NI S dz m(tkﬂ — 1K)

—dz T —tp) = (T = try1))

- tk+1

<d/ —dt

=d(logT +logd™").
Plugging in T = log(d/e) completes the proof.
G Proof of Theorem 4

In order to provide convergence guarantees without-early stopping, we need to provide a tighter upper
bound for the score function s;(y, ) (given Q(y, x) > 0), which does not diverge for small ¢’s. Thus,
the following lemmas provide improved upper-bounds when Assumption @ holds. The proof is in
Appendix
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Lemma 6. Suppose that Assumptionholds. Fixt > 0 and x # y such that Q(y, x) > 0. We have
the following improved upper bound for s;:

—t
e

St(yax) S min { 1— e_tvvl} S 771'
In particular, this bound does not diverge as t — 0.
Lemma 7. Suppose that Assumptiond|holds. Suppose that the number of masks in the data satisfies

m(zg) < mo = O(1) almost surely. Given that Q(y, z) > 0, we have
< i et -1l -1
~ min ma Y =7

Also, note that the general lower bound in Lemma [2]still holds regardless of Assumption 4]

0
‘mst(yax)

The rest of the proof is similar as Theorem 2] for which we provide an outline below. Now from
Lemmal6] we have
log se(y,2)| ST +logy™", Vvt e€[0,T].

Also, from Lemma[7} we have

[se(y,2) = ss(y,2)| STt —5), Vs <.

Thus,
Extk ~Gy, Z (G(ST—t(ya xtk:); §T—tk (ya Lty )) - G(ST—tk (ya Ly, ); §T—tk (yv Lty, ))) Q(y’ xtk)
?Héxtk
ST +1og(My )y, gy Y ls7-1(y,7) = $7-4, (. 2)| Q(y, 71,

y7£1’tk
< (£ — 1)(T + log(M~~1))dy .
Continuing from (T4), we further have

N-1
‘Cdisc S Z (

[ - tk)dt> (T + log(M~y~))dy !
k=0

tr

2

=AM (T +log(M~y™Y) Y (tker — t)*.
0

~
Il

Now, given ;41 — tr = ¢ (or equivalently, ¢ = %), we can derive that the total error is given by,
without early-stopping,

2

T
KL(qollpr) < de T + eocore + ’y_ld(T + log(My_l))W.

H Proof of Theorem

The proof is straightforward by applying the modified score upper bound in Lemmal6]to the proof of
Theorem 3] First, the upper bound for the total error is the same as in Theorem [3] From Lemma 6]
when Assumptionholds, we have s;(y, z) <y~ 1, and thus

—Qt(ﬂf,l’) = Z Qt(xvy) = Z QT—t(y,x)éT—t(yﬂE) Sdmin{(T_t)717771}'
Yiy#£T yy#£T
Therefore, the expectation of the number of steps satisfies that

N-1 N-1
E[N] = Z Mot (trr — ) S Z dmin{(T —tp11) "7 D terr — tr)
k=0 k=0
< Z (T - tkH)_l(tkH —tr) + Z dW_l(tkH —tx)
k=t >1 kT —t), <1

<d(logT +~71h).
Plugging in T' = log(d/¢) yields the desired result.
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I Proofs of Supporting Lemmas

L1 Proof of Lemmal[i]
Following a similar analysis as the proof of [16, Lemma 2] (and note that ¢ > 0), we have

ng(yj|xf))‘|

: — (19)
¢} o (@)

St(fU, Z‘) = Ewow%\t("w) [

Let us now focus on this likelihood ratio. Recall the analytical expression for qi\o in (9). In light of the

expectation operator in (T9), as follows we only consider those o and x’s such that go|;(xo|x) > 0.
Then,

a7 |2})

oL — if 72 = 27 # [MASK
o 10) @ ) g 1ed) ; ?é [ ]
@ @) | et ifah# a7 = [MASK]
e ao(y’|z5) if ) = 27 = [MASK]

e’ if ) = a7 # [MASK] and 4/ = [MASK]
= el ifyl = ) # 27 = [MASK] . (20)

1—e—t
0 otherwise

—
<
S

=

Here in (i) we only have three cases because if 27 # [MASK] and 2, # 27 (whether or not
is [MASK] itself), we have qjo(z[z0) = 0 == qop(zolz) = 0. Also for (i) in order that

qflo(yj |27) > 0, we must have either 4/ = ) or y/ = [MASK]. Meanwhile, we need to ensure that
y # .
Now, note that if we naively provide an upper bound (indeed, as with the uniform rate), we would get

si(y,x) < el —1 < eT — 1. This is problematic and is due to the highly asymmetric design in the
rate matrix.

Instead, let us now consider the condition that Q(y, =) > 0. By definition of the absorbing rate, since
Q:(y,r) = Q"%(y7,27) > 0, 2/ must be [MASK]. Thus, it is impossible to have 27 # [MASK]
yet y/ = [MASK] (since by definition the state will stay at [MASK] after reaching there, making
such Q(y,x) = 0). This implies that only the second non-zero case in (20) is applicable when
Q(y,z) > 0. Plugging back into (I9), we have, when Q(y, z) > 0,

_q(y) e’

= = e h that 27 = [MASK].
st(y, x) (@) =% (¥ [7), suchthata? = ]

Therefore, we have
si(y,x) < ¢ = <t %
BDT =g et T et —1

1.2 Proof of Lemmal[2]

From Lemmal[1] when Q(y, z) > 0, we have
—t

e , .
1ot ~q3\t(y1|x)~

St(yvx) = 1

Here j is the only index such that 37 # z7.

As follows we explicitly express qgl t(yj |). To this end, we use the following notations. Given x, we

write M and UM for the masked and unmasked tokens in z, respectively. Since 7 = [MASK]
(from Lemma , denote the masked tokens except 27 as 2" \7. For an arbitrary vector u € [S]?, write
u™7 € [S]?1 as its j-th element excluded. Also write u™, uUM, and u™\J as the tokens in u that
corresponding respectively to ™, UM and 2\, Also, denote the number of masked tokens in =
as m(x), and m(x) € [1,d]. We also slightly abuse the notation and write g¢|o(y'|x) = qz‘o(yl\x).

Using Bayes’ rule, we have

qt.0(, yj) _ q,0(

o[t @ (z) g (zM | ZUM)
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- Zu—je[s]d—l QO(Ufja yJ) ! qt\O(IMa ‘TUJW‘uijv yj)

ZajE[S] Zu*fE[S]d*1 QQ(U_j, a’j> : qt\o(x]wva]M'u_j?aj)

= Yo a@MV,yl aUM)em I (1 — ey (@M [tV /
uM\ig[S]m(z)—1

( 2 S oMV, al UM )e @) (1 - et gy (M VMV )4
a’:al #MASK] uM\ig[S]m(z)—1

Z qo(u™N | [MASK], 2VM)e=Hd=m=) g, o (M uM\j)> .

uM\ig[g)m(z)—1

Here the last line follows by the definition of the forward absorbing-rate process, which is con-
ditionally independent and using the absorbing-rate probabilities. Note that y7 # [MASK] and
27 = [MASK]. Thus, using Lemma we have an analytical expression for the score:

si(y, )

- T oMV, g, gUM e tdm@) =t g (M| M) /
uM\ig[S]m(x)—1

( 2 > go(uMN, a7, VM) em Mm@ (1 — €71 gy (2N [uMV )+
aj:aj;é[MASK] ulu\je[s]m(x)—1

> gV, [MASK], 2UM)e @ g, o (MY uM\j)) : 1)

uM\i g[§]m(z)—1

We first provide a general lower bound. Observe that in both the numerator and the denominator
above, the time-dependent components and the a’-varying components can be separated. Also, those
time-dependent components are the same as long as a’ # [MASK]. Thus, continuing from (2T)) and
noting that 1 — e~% < 1, we have

si(y, )

> et Z qo(uM\j’yj’xUM)e—t(d—m(ac))qtlo(xM\j|uM\j) /
,U‘M\je[s]'m(a;)fl

> > qo(uMV, a? UM ) et dmm@) g, o (M |y M)
ai €[S] uM\ig[§]m(x)—1

Set| S gV g e g (M M) /

uM\i g[§]m (=) -1

Somax Y go(uMV,ad, gUM et d=mla) g, (M|, M\)
al€[S] uM\ig[§]m(=)—1
> S8 temt
The last line is explained as follows. Note that the numerator is strictly positive because g;(y) > 0

and thus s;(y, ) > 0. Then, for a set of non-negative numbers, any positive ¢, satisfies —%— =

maxpg Ck
min{1, mine,, .c,, >c, C%} > 0. This yields the first result in the statement.

Next, we show an improved lower bound when g/, ([MASK]) = 0 for all i € [d]. Then, an implication
is that

qo(u™V, [MASK], ™) =0, Vj € [d].
Thus, from (Z1)), following a similar analysis,

si(y, )
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eit . . - . ) )
SR Z qo(uM\I 7| UM )e=td=m(e)) g (M\T |, M\ /
ujw\je[s]m(m)—l

2 Yo qoV el @ M)em @) gy (M M)

ad:ad #AMASK] uM\ig[S]m(x)-1

eit . . - (x . )
1o et Z QO(“M\vaj,ﬂﬁUM)e Hd=m( ))Qtlo(osM\”uM\]) /
uNI\jG[S]m'(f”)—l
[MASK]gu\
Z Z qo(uV a7 gUM) e dmm @) g, o (M |y M)

ad:ad AMASK] o, M\i ¢ [S]m(m)—l
[IMASK]¢gu™\

et
>5—17
~ 1—e"

as claimed.

L3 Proof of Lemma[3]

Throughout we employ the same set of notations as in Lemma Given z, we write 2 and x
the masked and unmasked tokens in z, respectively. Since 27 = [MASK] (from Lemma' denote
the masked tokens except 7 as =™\, For an arbitrary vector u € [S]%, write u=7 € [S]?~! as
its j-th element excluded. Also write u™, uY™ and u™\J as the tokens in « that corresponding

respectively to 2™, 2UM and M\, Also, denote the number of masked tokens in  as m(z), and
m(x) € [1,d].

We consider the following two cases. First, suppose that zj # [MASK] almost surely for all i € [d].
From [[11, Theorem 1], we have

UM for

—t

e
si(y, ) = ﬁ% Y |9’3UM

Here note that qg is a time-independent “clean-data” distribution. Thus, the time-derivative of the
score function is equal to

9 _|92 e’ Jog | € UM
‘até‘t(y,l’)’— 8t<1et> o |=7 ) —W (y |z,

which implies that

sup
t'E€[s,t]

0
%St’ (yv‘r) <

Next, we consider the case where [MASK] is possibly in the data. We first recall the analytical
expression of s;(y, z) in CI):

St(yv {E)

_ Z qo(ujw\jvyj7l,UJV[)(eft)dfm(x) et (1— eft)m(:r)flfm(uM\j) /

uM\ig[§]m (@) —1

< 2 o @@Vl 2V (e ) (L - e (1 - eyt

a’:ad #MASK] uM\ig[§]m(x)—1

S g0V, [MASK], VM) (e ) (1 et)m@“m(“w))

uM\ig[§]m(=)—1

32



uM\ig[§]m(z)—1

( ) S @MV, ad UMY (1 et (1 - et

ad:ad #MASK] uM\ig[S]m(x)=1
> oV, [MASK], 2" M)(1 - et>’"(“M\j)>'
WM\ g[S (@) —1

By assumption, here go(u™\, [MASK], zV™) > 0 for some u™\. Also, m(u™\7) < mg = O(1).
Observe that s;(y, x) is continuous in ¢. Taking the derivative of this ratio, we get %st(y, x) =
Ty — Ts, where

vy m(utV) + et —1 /

e[ F wp et ety me)

uM\i g[§]m(a)—1

( 2 > @V a2 et — e T4
a’:ad #MASK] uM\ig[§]m(z)—1

Z do (uM\j, [MASK], xUM)(l _ e—t)—m(uM\j)> ’
uM\i g[§]m(e)—1

T2 = Z qO(uM\jayj7xUM) : e_t ' (1 — e_t)_m(uM\j)
uM\ig[§]m(=)—1

( > S a0V ad M) () — et (1 — et e

a’:ad ZMASK] uM\ig[S]m(z)—1

. M\j)eft iy
MG (VASK], UM Tty mm)
M\j e%m,(m)—l QO(U 7 [ ]7 v ) 1—et ( € )

(= S e a1 e (1 - et e

a’:ad #MASK] uM\ig[S]m ()1
) 2
S L MASK] UM (1 - ey )
wM\i g[S]m(e)—1

Note the similarities in-between and with the expression of s;(y, ). Since m(u™\) < mg, we have

mo+et —1
IT1| < ﬁst(yafﬂ)
(mo —1)e™? et
R
Since mo = O(1) by assumption, using Lemma we obtain that
0 et
— < —— <t72
atst(:%x) ~ (et — 1)2 =

Note that this bound is independent of d. The proof is now complete.

1.4 Proof of Lemmal

Write TI(qo, gs) is the set of all joint probability measures with marginal distributions gg and g;.
Then,

TV(q,q5) = Eg(l(ilnqs)]Ezo,z(srww]l{x& # o}
™ 05
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< Eogmao (510 ({25 # 20} |20)]

(1) . . ) )
<3 By [aho ({05 # wb} I2b)]

1€[d)

WSS Giah)a (IMASK]|ah)
i€[d] z} #[MASK]

<d (1 — e_‘s)

= do

where (7) follows from the union bound, and (%¢) follows from the conditional probabilities under the
absorbing rate.

L5 Proof of Lemma[3]
From Lemmal[T] when Q(y, z) > 0, we have

e_t j ;
)

where j is the only index such that y/ # 2/ = [MASK]. Thus,

Y oswn)Qur) = Y. sy 2)Qy,x)
¥:Q(y,x)>0

Yiy#£T
2 ¥ Y s

i =[MASK] yJ :yd #[MASK]

LR =D > @)

i =[MASK] yJ :yI #[MASK]

St(y’ .Z‘) =

<7{- 6ﬂfm(ars).

Here (i) follows because the only positive entry in Q(y, x) is 1, which corresponds to the case where
Ham (y,z) = 1,3’ # [MASK], and 27 = [MASK], and (ii) follows by Lemma[l] The claim is
thus established.

1.6 Proof of Lemmal6l

From Lemma we already have an upper bound for s;(y, ) when ¢ is bounded away from 0, which
is
st(yv .’L‘) § til-

In the following, we focus on the case where ¢ becomes small.
We start from the exact analytical expression for s;(y, z) in Equation given that Q(y,z) > 0,
which is

St(yv l‘)

_ T oMV, UM et ot g (M M) /

ukl\je[s]nz(z)fl

( Z Z qo(uMV @ VM) emtd=m @) (1 — e g, 0 (2N [uMN) 4
a’:ad A[MASK] uM\i g[S]m(=)-1

40(u™V, [MASK], xUM>e“dm<x>>qt|o<xM\j|uM\j>>
uM\j g[§]m(x)—1

< T oMYy UM et (M M) /
uM\s g[S]m(®)—1
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( QO(uM\j’ [MASK], g;UM)e*t(d*m(z))qtlo(xM\j |uM\j)

uM\je[ ]m(z)—l

9]

- T T R o Y
uM\ig[S]m(z)—1

@ (IMASK][u\ | 2UM) o (uMNI | gUM )e=td=ml)) g, o (Mo M)
uM\ig[§]m(=)—1

INS

go (37 [N go (uMNF | UM )= td=m(D g, (M |y M V) /
uM\ig[g]m(x)—1

v _ Z ai ;aagél[%/)[(ASK] qo(a’ \UN[\jQO (UM\j, xUM)e*t(d*m(x)) G0
uM\ig[§]m(=)—1
S (22)

where (i) follows by Assumption Note that this bound is uniform in ¢.
1.7 Proof of Lemmal7]

When ¢ is not so small, we can invoke Lemmaand get |%st(y, x)| < ﬁ < 1. Thus, it suffices
to get a non-diverging upper bound when ¢ becomes small.

(Z‘M\J|uM\J)

Recall the proof of Lemma in which we defined T and 75 such that %st(y, x) =Ty — Ts. For
small #’s, we have (1 — e~ %) < t and e~* < 1. Also note that m(zo) < mg. Thus, for all such #’s,
we can further simplify both terms as

i=- > qMV iy aUMet (1 ety
uM\ig[§]m(=)—1

( > S oMV, VM1 — e (1 — et

a?:al £[MASK] uM\i g[S]m(z)—1

et — 1

M\j)m(uM\j) +et—1 /

go(u™", [MASK], 27 (1 — et)’”(“M\j))

uM\je[S]m(m)—l

== X @My et (1 ety
uM\je[S]m(m)—l

( > QO(UM\j,[MASKLxUM)(l_et)m(uM\j)>

uM\je[S]m(z)—l

MGy m(uM\Z) +et—1 /
et —1

X
I

S st ot e o)
ei

uM\i:m (uM\i)=m,
(% e hask a0 o)
uM\i:m (uM\I)=m,

_ _Mot el -1 ) ZuM\j:m(uM\j):mo qo(uM\I |y 2UM)
et =1 ZuM\j;m(uM\j):mO qo(uM\j7 [MASK], zUM) )

and

Y - —t\—m(uM\I
2=- S gyl UMy et (1 - e )T
uM\i g[S]m(=)—1
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( Z Z qo(uM\j’ ajaxUM)(m(uM\j) - 1)€_t(1 — e_t)_m(uM\j)—‘r

ad:ad £[MASK] uM\J g[§]m (@) ~1

, M\j)p—t .
3 qo(uM\J,[MASK],xUM)M(lfe*t)*m(“ ' >>/

. 1—¢
uM\Je[S]m(m)—l

( 2 ST oMV, a1 e (1 - ety ey

ad:ad ZMASK] uM\i g[g]m(=)—1

Z QO(UM\j, [MASK], zV*)(1 — et)m(uM\j)>

uM\ig[§]m(=)—1

2

a ST oMV @UM) et (1 et T
uM\ig[S]m(=)-1

j M\jye—t _
qo(uMN, [MASK],xUM)m(lui)fO _ e—t)—m(uM\J)>/

— e
uM\Ji g[S]m(=)—1

. 2
( Z qo(uM\j’ [MASK], xUM)(l _ e_t)_m(uM\J)>

uM\ig[s]m(e)—1

= — Z qo(uM\j, yj’xUM) et (1— et)y=mo

wM\i:m (uM\J )=mg

et
qo(u™V, [MASK],xUM)mO e,t (1- et)m0>/

(
uM\i:m( ]M\] —mg
; 2
( qo(uM\J7 [MASK],xUM)(l _ e—t)—m0>
uMN\I :m ( uM\J =myg
mo Zuhf\j:m(uM\j):mo q0 (UM\j, yj’ ;EUM)
et =1 ZuM\j;m(uZVI\j):mo qo(uM\i | [MASK], zUM)’

Therefore, when ¢ is small,

= [Ty — T3]

M\j’yj7xUM)

~

( mo mo + et — 1) ZuM\j:m(ulu\j):mo qo(u
>

et — 1 B et —1 wM\3 i (uM\i ) =mg qo (uM\j7 [MASK]’ xUM)

M\j ,j UM
\vajvl. )

. ZuM\j;m(uM\j):mU qo(u
ZuM\j:m(uM\j)zmo qo(uM\ja [MASK]a xUM)
<yt

where the last inequality follows similarly as in (22) when Assumption @ holds. The proof is now
complete.
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