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ABSTRACT

Frontier reasoning models have exhibited incredible capabilities across a wide
array of disciplines, driven by posttraining large language models (LLMs) with
reinforcement learning (RL). However, despite the widespread success of this
paradigm, much of the literature has been devoted to disentangling truly novel
behaviors that emerge during RL but are not present in the base models. In our
work, we approach this question from a different angle, instead asking whether
comparable reasoning capabilities can be elicited from base models at inference
time by pure sampling, without any additional training. Inspired by Markov chain
Monte Carlo (MCMC) techniques for sampling from sharpened distributions, we
propose a simple iterative sampling algorithm leveraging the base models’ own
likelihoods. Over different base models, we show that our algorithm offers sub-
stantial boosts in reasoning that nearly match and even outperform those from
RL on a wide variety of single-shot tasks, including MATH500, HumanEval,
and GPQA. Moreover, our sampler avoids the collapse in diversity over multi-
ple samples that is characteristic of RL-posttraining. Crucially, our method does
not require training, curated datasets, or a verifier, suggesting broad applicability
beyond easily verifiable domains.

1 INTRODUCTION

Reinforcement learning (RL) has become the dominant paradigm for enhancing the reasoning ca-
pabilities of large language models (LLMs) (Guo et al., 2025; Hu et al., 2025). Equipped with a
reward signal that is typically automatically verifiable, popular RL techniques have been success-
fully applied to posttrain frontier models, leading to sizeable performance gains in domains like
math, coding, and science (Hendrycks et al., 2021; Li et al., 2022; Rein et al., 2024).

Despite the widespread empirical success of RL for LLMs, a large body of literature has centered
around the following question: are the capabilities that emerge during RL-posttraining fundamen-
tally novel behaviors that are not present in the base models? This is the question of distribution
sharpening (He et al., 2025; Shao et al., 2025; Yue et al., 2025): that is, whether the posttrained
distribution is simply a “sharper” version of the base model distribution, instead of placing mass on
reasoning traces the base model is unlikely to generate.

Several works point towards the difficulty in learning new capabilities with RL-posttraining. He
et al. (2025); Song et al. (2025) compare the pass@k (multi-shot) scores of base models with post-
trained models, finding that for large k, base models actually outperform while the latter suffer from
degraded generation diversity. In such cases, RL appears to redistribute pass@k performance to
single-shot performance at the expense of multi-shot reasoning. Yue et al. (2025) also notes that
the reasoning traces post-RL are tightly concentrated at high likelihoods/confidences under the base
model, seemingly drawing from existing high-likelihood capabilities. We illustrate this point in our
own experiments in Figure 4. Regardless, the advantage of RL-posttraining for single-shot reasoning
has remained, as of yet, undeniable.

In this paper, we present a surprising result: sampling directly from the base model can achieve
single-shot reasoning capabilities on par with those from RL.

We propose a sampling algorithm for base models that leverages additional compute at inference
time, achieving single-shot performance that nearly matches RL-posttraining on in-domain reason-
ing tasks and can even outperform on out-of-domain reasoning tasks. Furthermore, we observe that
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Figure 1: Our sampling algorithm can match and outperform RL-posttraining. Left: we compare our sam-
pling algorithm (ours) against the base model (base) and RL-posttraining (GRPO) on three verifiable reasoning
tasks (MATH500, HumanEval, GPQA). Right: we compare them on an unverifiable general task (AlpacaE-
val2.0). Our algorithm achieves comparable performance to GRPO within the posttraining domain (MATH500)
but can outperform on out-of-domain tasks such as HumanEval and AlpacaEval.

generation diversity does not degrade with our sampler; in fact, our pass@k (multi-shot) perfor-
mance strongly outperforms RL. We benchmark specifically against Group Relative Policy Opti-
mization (GRPO), which is the standard RL algorithm for enhancing LLM reasoning (Shao et al.,
2024).

Crucially, our algorithm is training-free, dataset-free, and verifier-free, avoiding some of the inher-
ent weaknesses of RL methods including extensive hyperparameter sweeps to avoid training insta-
bilities, the need to curate a diverse and expansive posttraining dataset, and the lack of guaranteed
access to a ground truth verifier/reward signal (Prabhudesai et al., 2025).

Our contributions can be summarized as follows:

i) We introduce the power distribution as a useful sampling target for reasoning tasks. Since it can
be explicitly specified with a base LLM, no additional training is required.

ii) We further introduce an approximate sampling algorithm for the power distribution using a
Markov chain Monte Carlo (MCMC) algorithm that iteratively resamples token subsequences
according to their base model likelihoods.

iii) We empirically demonstrate the effectiveness of our algorithm over a range of models (Qwen2.5-
Math-7B, Qwen2.5-7B, Phi-3.5-mini-instruct) and reasoning tasks (MATH500, HumanEval,
GPQA, AlpacaEval 2.0). Our results show that sampling directly from the base model can achieve
results on par with GRPO. In fact, for some out-of-domain tasks, our algorithm consistently out-
performs the RL baseline. Moreover, over multiple samples, we avoid the collapse in diversity
afflicting RL-posttraining, achieving the best of both worlds in terms of single-to-few-shot rea-
soning capabilities as well as sample diversity.

Our results collectively illustrate that existing base models are much more capable at single-shot
reasoning than current sampling methods reveal.

2 RELATED WORKS

Reinforcement learning for LLMs. RL has been instrumental in posttraining LLMs. Early on, RL
with human feedback (RLHF) (Ouyang et al., 2022) was developed as a technique to align LLMs
with human preferences using a trained reward model. Recently, RL with verifiable rewards (RLVR)
has emerged as a powerful new posttraining technique, where many works (Guo et al., 2025; Lam-
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bert et al., 2024; Hu et al., 2025; Zeng et al., 2025) discovered that a simple, end-of-generation
reward given by an automated verifier could substantially enhance performance on difficult reason-
ing tasks in mathematics and coding. The Group Relative Policy Optimization (GRPO) algorithm
was at the center of these advances (Shao et al., 2024). Building off of this success, many subsequent
works have examined using reward signals derived from internal signals such as self-entropy (Zhao
et al., 2025), confidence (Prabhudesai et al., 2025), and even random rewards (Shao et al., 2025).
Similar to these works, our paper examines base model likelihoods as a mechanism for improving
reasoning performance, but crucially, our technique is training-free.

Autoregressive MCMC sampling with LLMs. Prior works have explored integrating classic
MCMC techniques with autoregressive sampling. Many settings including red-teaming, prompt-
engineering, and personalized generation can be framed as targeting sampling from the base LLM
distribution but tilted towards an external reward function. Zhao et al. (2024) proposes learning
intermediate value functions that are used in a Sequential Monte Carlo (SMC) framework (Chopin,
2004), where multiple candidate sequences are maintained and updated according to their expected
future reward. Similarly, Faria et al. (2024) proposes a Metropolis-Hastings (MH) algorithm, which
instead of maintaining multiple candidates performs iterative resampling, again updating according
to expected reward. Methodologically, our sampling algorithm is most similar to this latter work,
but the crucial difference is that our target sampling distribution is completely specified by the base
LLM, avoiding the need for an external reward.

3 PRELIMINARIES

LetX be a finite vocabulary of tokens, and letX T denote the set of finite sequences of tokens x0:T =
(x0, x1, . . . , xT ), where xi ∈ X for all i and T ∈ Z≥0 is some nonnegative integer. For convenience,
for a given t, let x<t = (x0, . . . , xt−1) and x>t = (xt+1, . . . , xT ), with similar definitions for x≤t

and x≥t. In general, x refers to a token sequence x0:T , where T is implicitly given.

Then an LLM defines a distribution p over token sequences X T by autoregressively learning the
conditional token distributions p(xt|x<t) for all t, giving the joint distribution via the identity

p(x0:T ) =

T∏
t=0

p(xt|x<t). (1)

To sample a sequence from p, we simply sample from the LLM token by token using the conditional
distributions, which by (1) directly samples from the joint distribution.

4 MCMC SAMPLING FOR POWER DISTRIBUTIONS

p

pα (α= 4.0)

Figure 2: A toy example of distribution
sharpening. Here p is a mixture of Gaus-
sians, which we plot against pα (α = 4.0).

In this section, we introduce our sampling algorithm for
base models. Our core intuition is derived from the notion
of distribution sharpening posed in Section 1. Sharpen-
ing a reference distribution refers to reweighting the dis-
tribution so that high likelihood regions are further up-
weighted while low likelihood regions are downweighted,
biasing samples heavily towards higher likelihoods under
the reference. Then if RL posttrained models really are
just sharpened versions of the base model, we should be
able to explicitly specify a target sampling distribution that
achieves the same effect.

We organize this section as follows. Section 4.1 presents
this target sharpened distribution and provides some math-
ematical motivation for why its samples are amenable for
reasoning tasks. Section 4.2 introduces a general class of Markov chain Monte Carlo (MCMC) al-
gorithms aimed at actually sampling from this target distribution, and finally, Section 4.3 details our
specific implementation for LLMs.
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4.1 REASONING WITH POWER DISTRIBUTIONS

One natural way to sharpen a distribution p is to sample from the power distribution pα. Since

p(x) > p(x′) =⇒ p(x)α

p(x′)α
>

p(x)

p(x′)
(α ∈ [1,∞]), (2)

it follows that exponentiating p increases the relative weight on higher likelihood sequences (x)
while decreasing the relative weight on lower likelihood ones (x′) (see Figure 2 for a visualization).

A related but well-known sharpening strategy is low-temperature sampling (Wang et al., 2020),
which exponentiates the conditional next-token distributions at each step:

ptemp(xt|x0 . . . xt−1) =
p(xt|xt−1 . . . x0)

α∑
x′
t∈X p(x′

t|xt−1 . . . x0)α
, (3)

where the temperature is τ = 1/α. A common misconception is that sampling with (3) over T
tokens is equivalent to sampling from pα; however, this is false in a subtle yet crucial way, as we
illuminate in the following.

Proposition 1. Low-temperature sampling does not sample from the power distribution pα.

Proof. We show that the associated conditional next-token distributions are distinct at each timestep
t. The conditional distribution on xt for pα is given by

ppow(xt|x0 . . . xt−1) =

∑
x>t

p(x0, . . . , xt, . . . , xT )
α∑

x≥t
p(x0, . . . , xt, . . . , xT )α

. (4)

Using Bayes rule

p(xt|xt−1 . . . x0) =
p(x0, . . . , xt)

p(x0, . . . , xt−1)
=

∑
x>t

p(x0, . . . , xt, . . . , xT )∑
x≥t

p(x0, . . . , xt, . . . , xT )
, (5)

we can rewrite the low-temperature marginal (3) as

ptemp(xt|x0 . . . xt−1) =

(∑
x>t

p(x0, . . . , xt, . . . , xT )
)α

∑
x′
t

(∑
x>t

p(x0, . . . , xt, . . . , xT )
)α . (6)

Ignoring normalizations for clarity, the relative weight on token xt for sampling from pα is given by
a sum of exponents

ppow(xt|x<t) ∝
∑
x>t

p(x0, . . . , xt, . . . , xT )
α. (7)

Meanwhile, the relative weight for low-temperature sampling is given by an exponent of sums

ptemp(xt|x<t) ∝

(∑
x>t

p(x0, . . . , xt, . . . , xT )

)α

. (8)

Since the relative weights of next-token prediction are distinct for each sampling strategy, it fol-
lows that the joint distribution over seqeunces must also be distinct for each sampler. Hence, the
distribution on sequences given by low-temperature sampling is not the same as the one given by
pα.

One intuitive way to understand this difference is that low-temperature sampling does not account
for how exponentiation sharpens the likelihoods of “future paths” at time step t, instead “greedily”
averaging all these future likelihoods (exponent of sums (8)). On the other hand, sampling from pα

inherently accounts for future completions as it exponentiates all future paths (sum of exponents (7))
before computing the weights for next-token prediction. This has the following consequence:

Observation 1. The power distribution upweights tokens with few but high likelihood future paths,
while low-temperature sampling upweights tokens with several but low likelihood completions.

Example 1. We can observe this phenomenon with a simple example. Let us consider the token
vocabulary X = {a, b} and restrict our attention to two-token sequences (x0, x1): aa, ab, ba, bb. Let

p(aa) = 0.00, p(ab) = 0.40, p(ba) = 0.25, p(bb) = 0.25,

4
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Figure 3: Illustrating Metropolis-Hastings with random resampling. A random index t is selected and a new
candidate is generated by resampling. Based on the relative likelihoods, the candidate is accepted or rejected,
and the process repeats.

so that
p(x0 = a) = 0.40, p(x0 = b) = 0.50.

Let α = 2.0. Under pα, we have
ppow(x0 = a) ∝ 0.002 + 0.402 = 0.160, ppow(x0 = b) ∝ 0.252 + 0.252 = 0.125,

so pα prefers sampling a over b. Under low-temperature sampling,
ptemp(x0 = a) ∝ (0.00 + 0.40)2 = 0.160, ptemp(x0 = b) ∝ (0.25 + 0.25)2 = 0.250,

preferring sampling b over a. If pα samples x0 = a, there is only one future path with likelihood
0.40. If ptemp samples x0 = b, there are two future paths ba, bb, but either choice has likelihood 0.25.

In other words, even though a has lower conditional likelihood under both p and ptemp, pα upweights
a and samples the highest likelihood two-token sequence. b has many future paths contributing to
a higher likelihood under p and ptemp, but leads to low likelihood sequences. We provide a stronger
formalization of this phenomenon in Appendix A.2.

Thus, sampling from pα encourages sampling tokens which have fewer but higher likelihood “future
paths”, as opposed to tokens with several lower likelihood completions. This type of behavior is
immensely valuable for reasoning tasks. For example, choosing “wrong” tokens that have high
average likelihoods but trap outputs in low likelihood individual futures are examples of critical
windows or pivotal tokens (Li et al., 2025; Abdin et al., 2024), a phenomenon where a few tokens
are highly influential in the correctness of language model outputs. In fact, sharp critical windows
have been shown to correlate strongly with reasoning failures (Li et al., 2025). Instead, embedded in
sampling from the power distribution is an implicit bias towards planning for future high likelihood
tokens.

4.2 THE METROPOLIS-HASTINGS ALGORITHM

Now that we have seen how sampling from pα can in theory assist the underlying LLM’s ability
to reason, our aim now turns towards proposing an algorithm to accurately sample from it. Given
an LLM p, we have access to the values pα over any sequence length; however, these values are
unnormalized. Direct sampling from the true probabilities requires normalizing over all sequences
(x0, . . . , xT ) ∈ X T , which is computationally intractable.

To get around this, we invoke a Markov Chain Monte Carlo (MCMC) algorithm known as
Metropolis-Hastings (MH) (Metropolis et al., 1953), which targets exactly what we want: approx-
imate sampling from an unnormalized probability distribution. The MH algorithm constructs a
Markov chain of sample sequences (x0,x1, . . . ,xn) using an arbitrary proposal distribution q(x|xi)
to select the next candidate xi+1. With probability

A(x,xi) = min
{
1,

pα(x) · q(xi|x)
pα(xi) · q(x|xi)

}
, (9)

candidate x is accepted as xi+1; otherwise, MH sets xi+1 = xi. This algorithm is especially
convenient as it only requires the relative weights given by pα (as the normalization weights in A
cancel) and works with any generic but tractable sampler q with minimal restrictions. Remarkably,
for large enough n, this process converges to sampling from the target distribution pα under the
following (quite minimal) conditions on the proposal distribution (Neal, 1993):

5
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Definition 1. The proposal distribution q is irreducible if for any set X with nonzero mass under
the target distribution pα, q has nonzero probability of eventually sampling from X . The proposal
is aperiodic if the induced chain of samples does not return to the same sample after a fixed interval
number of steps.

Thus, we must simply ensure that our proposal distribution satisfies irreducibility and aperiodicity,
and Metropolis-Hastings takes care of the rest. On a practical level, we would also like both q(x|xi)
and its reverse q(xi|x) to be easily computable.

Consider the following family of random resampling proposal distributions (see Figure 3). Let pprop

be a proposal LLM. With uniform probability 1
T , select a random t ∈ [1, T ] and resample the se-

quence starting at index t using pprop. Then the transition likelihood q(x|xi) is simply the likelihood
of the resampling. Note that at each candidate selection step, we have a nonzero probability of
transitioning between any two sequences x,x′ ∈ X , since with some probability we can always re-
sample as early as the beginning of x. This ensures our proposal distribution is both irreducible and
aperiodic. Moreover, q(xi|x) is easy to calculate by symmetry, since we can treat xi as a resampled
version of x.

With the flexibility endowed by Metropolis-Hastings, we can choose the proposal LLM pprop to be
any LLM with any sampling strategy (e.g., low-temperature sampling).

4.3 POWER SAMPLING WITH AUTOREGRESSIVE MCMC

A direct implementation of Metropolis-Hastings for LLMs would involve initializing with a sampled
token sequence of length T , subsequently generating new candidates of length T with (9) over
many, many iterations. This process is computationally expensive, however, due to the repeated, full
sequence inference calls to the LLM.

In fact, the main downside to MCMC algorithms in practice is the potential for an exponential mixing
time (Gheissari et al., 2017), where a poor choice of initialization or proposal distribution can result
in an exponentially large number of samples required before convergence to the target distribution.
This problem is exacerbated if the sample space has high dimensionality (Bandeira et al., 2022;
Schmidler & Woodard, 2013), which is precisely exhibited by the sequence space of tokens X T ,
especially for long sequences/large values of T .

To remedy this, we propose an algorithm that leverages the sequential structure of autoregressive
sampling. We define a series of intermediate distributions which we progressively sample from, until
converging to the target distribution pα. In particular, samples from one intermediate distribution
initiate a Metropolis-Hastings process for the next, helping avoid pathological initializations.

Fix block size B and proposal LLM pprop, and consider the sequence of (unnormalized) distributions
∅ −→ p(x0, . . . , xB)

α −→ p(x0, . . . , x2B)
α −→ · · · −→ p(x0, . . . , xT )

α, (10)
where p(x0, . . . , xkB) denotes the joint distribution over token sequences of length kB, for any k.
For convenience, let πk denote the distribution given by

πk(x0:kB) ∝ p(x0:kB)
α. (11)

Suppose we have a sample from πk. To obtain a sample from πk+1, we initialize a Metropolis-
Hastings process by sampling the next B tokens xkB+1:(k+1)B with pprop. We subsequently run the
MCMC sampling procedure for NMCMC steps, using the random resampling proposal distribution q
from the previous section. The full details are presented in Algorithm 1.

Note that Algorithm 1 is single-shot: even though multiple inference calls are made, the decision to
accept vs. reject new tokens is made purely by base model likelihoods to simulate sampling a single
sequence from pα. We can interpret this as a new axis for inference-time scaling, as we expend
additional compute during sampling to obtain a higher quality/likelihood sample.

To quantify the scaling, we can estimate the average number of tokens generated by Algorithm 1.
Note that each candidate generation step when sampling from πk(x0:kB resamples an average of kB

2
tokens, NMCMC times. Summing over all k, the expected number of tokens generated is

Etokens = NMCMC

⌈T/B⌉∑
k=1

kB

2
≈ NMCMCT

2

4B
. (12)

6
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Algorithm 1: Power Sampling for Autoregressive Models
Input : base p; proposal pprop; power α; length T

Hyperparams: block size B; MCMC steps NMCMC

Output : (x0, . . . , xT ) ∼ pα

1 Notation: Define the unnormalized intermediate target
πk(x0:kB) ∝ p(x0:kB)

α.

2 for k ← 0 to ⌈ TB ⌉ − 1 do
3 Given prefix x0:kB , we wish to sample from πk+1. Construct initialization x0 by extending

autoregressively with pprop:

x
(0)
t ∼ pprop

(
xt | x<t

)
, for kB + 1 ≤ t ≤ (k + 1)B.

Set the current state x← x0.

4 for n← 1 to NMCMC do
5 Sample an index m ∈ {1, . . . , (k + 1)B} uniformly.

6 Construct proposal sequence x′ with prefix x0:m−1 and resampled completion:
x′
t ∼ pprop

(
xt | x<t

)
, for m ≤ t ≤ (k + 1)B.

7 Compute acceptance ratio (9)

A(x′,x) ← min

{
1,

πk(x
′)

πk(x)
·
pprop(x | x′)

pprop(x′ | x)

}
.

Draw u ∼ Uniform(0, 1);
8 if u ≤ A(x′,x) then accept and set x← x′

9 end
10 Set x0:(k+1)B ← x to fix the new prefix sequence for the next stage.
11 end
12 return x0:T

The key tradeoff here is between the block size B and number of MCMC steps NMCMC. A larger B
requires larger “jumps” between intermediate distributions, requiring a larger NMCMC to adequately
transition. In Section 5, we empirically find a value for B that makes Algorithm 1 performant for
relatively small values of NMCMC.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Evaluation. We use a standard suite of reasoning benchmarks ranging across mathematics, coding,
and STEM (MATH500, HumanEval, GPQA), along with a non-verifiable benchmark (AlpacaEval
2.0) evaluating general helpfulness. We evaluate all of our methods and baselines single-shot; i.e.,
on one final response string.

• MATH500: The MATH dataset (Lightman et al., 2024) consists of competition math problems
spanning seven categories including geometry, number theory, and precalculus. There are 12500
problems total, with 7500 training problems and 5000 test problems. MATH500 is a specific
randomly chosen subset of the test set standardized by OpenAI.

• HumanEval: HumanEval is a set of 164 handwritten programming problems covering algorithms,
reasoning, mathematics, and language comprehension (Chen et al., 2021). Each problem has an
average of 7.7 associated unit tests, where solving the problem corresponds to passing all unit
tests.

• GPQA: GPQA (Rein et al., 2024) is a dataset of multiple-choice science questions (physics, chem-
istry, and biology) which require advanced reasoning skills to solve. We use subset GPQA Dia-
mond for evaluation, which consists of 198 questions which represent the highest quality subset
of the GPQA dataset.

• AlpacaEval 2.0: The AlpacaEval dataset is a collection of 805 prompts (Dubois et al., 2024)
that gauge general helpfulness with questions asking e.g., for movie reviews, recommendations,

7
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MATH500 HumanEval GPQA AlpacaEval2.0

Qwen2.5-Math-7B
Base 0.496 0.329 0.278 1.61
Low-temperature 0.690 0.512 0.353 2.09
Power Sampling (ours) 0.748 0.573 0.389 2.88

GRPO (MATH) 0.785 0.537 0.399 2.38

Qwen2.5-7B
Base 0.498 0.329 0.278 7.05
Low-temperature 0.628 0.524 0.303 5.29
Power Sampling (ours) 0.706 0.622 0.318 8.59

GRPO (MATH) 0.740 0.561 0.354 7.62

Phi-3.5-mini-instruct
Base 0.400 0.213 0.273 14.82
Low-temperature 0.478 0.585 0.293 18.15
Power Sampling (ours) 0.508 0.732 0.364 17.65

GRPO (MATH) 0.406 0.134 0.359 16.74

Table 1: Power sampling (ours) matches and even outperforms GRPO across model families and tasks.
We benchmark the performance of our sampling algorithm on MATH500, HumanEval, GPQA, and AlpacaEval
2.0. We bold the scores of both our method and GRPO, and underline whenever our method outperforms GRPO.
Across models, we see that power sampling is comparable to GRPO on in-domain reasoning (MATH500), and
can outperform GRPO on out-of-domain tasks.

and reading emails. The model responses are graded by an automated LLM judge (GPT-4-turbo),
which determines a preference for the model responses over those from a baseline (also GPT-4-
turbo). The resulting score is a win rate of model responses normalized for the length of the model
response.

Models. To demonstrate the efficacy of our sampling algorithm, we use the base models Qwen2.5-
Math-7B, Qwen2.5-7B, and Phi-3.5-mini-instruct. For our RL baselines, we use the implementation
of GRPO in Shao et al. (2025), which posttrains these models on the MATH training split. For both
the Qwen2.5 models, we use the default hyperparameters used to benchmark their performance in
Shao et al. (2025). For the Phi-3.5 model, we use a set of hyperparameters selected from Abdin et al.
(2024) that avoids training instabilities and converges to improvement over the base model over a
large number of epochs.

Sampling Algorithm. For our implementation of power sampling (Algorithm 1), we set the max-
imum T to be Tmax = 3072 (termination can happen earlier with an EOS token) and block size
B = 3072/16 = 192. Empirically, we find α = 4.0 coupled with a proposal LLM pprop chosen as
the base model with sampling temperature 1/α to be most performant for reasoning tasks. For Al-
pacaEval 2.0, we find that having a proposal distribution of higher temperature (τ = 0.5) improves
performance.

5.2 RESULTS

Main results. We display our main results in Table 1. Across base models of different families,
our sampling algorithm achieves massive, near-universal boosts in single-shot accuracies and scores
over different reasoning and evaluation tasks that reach, e.g., up to +51.9% on HumanEval with
Phi-3.5-mini and +25.2% on MATH500 with Qwen2.5-Math. In particular, on MATH500, which
is in-domain for RL-posttraining, power sampling achieves accuracies that are on par with those
obtained by GRPO. Furthermore, on out-of-domain reasoning, our algorithm again matches GRPO
on GPQA and actually outperforms on HumanEval by up to +59.8%. Similarly, power sampling
consistently outperforms on the non-verifiable AlpacaEval 2.0, suggesting a generalizability of our
boosts to domains beyond verifiability.

The surprising success of this fundamentally simple yet training-free sampling algorithm under-
scores the latent reasoning capabilities of existing base models.

8
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Filter an input list of strings only for ones that start with a given prefix. (Phi-3.5-mini-instruct: HumanEval)

Method Response Passed

Ours return [s for s in strings
if s.startswith(prefix)] true

GRPO return [string for string in strings if
string.startswith(f’{prefix}’*2)]

false

Table 2: Sample responses on HumanEval: Phi-3.5-mini-instruct. We present an example where our method
solves a simple coding question, but GRPO does not.
5.3 ANALYSIS

We analyze how the reasoning characteristics of power sampling relate to those of GRPO. We
present an example in Table 2, with further examples in Appendix A.5.

Reasoning trace likelihoods and confidences. By design, power sampling targets sampling higher
likelihood sequences from the base model. In Figure 4, the left graph plots a histogram of the out-
put sequence log-likelihoods (averaged by length) of the base model, power sampling, and GRPO
responses on MATH500, where likelihoods are taken relative to the Qwen2.5-Math-7B base model.
Our method samples from higher likelihood regions of the base model, as intended, but still main-
tains noticeable spread. Meanwhile, GRPO samples are heavily concentrated at the highest likeli-
hood peak.

Figure 4: Base model (Qwen2.5-Math-7B) likelihoods and confidences for MATH500 responses. Left:
We plot the log-likelihoods (relative to the base model) of original, power sampling, and GRPO responses
over MATH500. Right: We do the same but for confidences relative to the base model. We observe that GRPO
samples from the highest likelihood and confidence regions with power sampling close behind, which correlates
with higher empirical accuracy.

We also plot the base model confidence of MATH500 responses, defined to be the average negative
entropy (uncertainty) of the next-token distributions (Prabhudesai et al., 2025):

Conf(x0:T ) =
1

T + 1

T∑
t=0

∑
x∈X

p(x|x<t) log p(x|x<t). (13)

The right plot of Figure 4 demonstrates that our method’s and GRPO responses sample from sim-
ilarly high confidence regions from the base model, which again correspond to regions of higher
likelihood and correct reasoning.

Reasoning trace lengths. Another defining characteristic of RL-posttraining is long-form reasoning
(Guo et al., 2025), where samples tend to exhibit longer responses. On MATH500, Qwen2.5-Math-
7B averages a response length of 600 tokens, while GRPO averages 671 tokens. Surprisingly, power
sampling achieves a similar average length of 679 tokens, without explicitly being encouraged to
favor longer generations. This emerges naturally from the sampling procedure.

Diversity and pass@k performance. Again, notice the peaked and highly concentrated likelihood-
s/confidences of GRPO relative to the distributional spread of power sampling in Figure 4. This
suggests GRPO exhibits a collapse in diversity while our sampler does not, aligning with the obser-
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vation that RL-posttraining strongly sharpens the base model distribution at the expense of diversity
(Song et al., 2025). To quantify the comparative diversity of power sampling relative to GRPO, we
can plot the pass@k accuracy rate, where a question is solved if at least one of k samples is accu-
rate. Figure 5 shows exactly this: unlike GRPO, whose pass@k performance tapers off for large
k, power sampling strongly outperforms for k > 1. Moreover, our performance curve supersedes
that of the base model until finally converging in performance. In particular, we are able to achieve
GRPO-level single-shot performance without compromising multi-shot performance (see Appendix
A.4 for other domains), addressing a long-standing downside to RL-posttraining.
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Figure 5: Pass@k performance on MATH500. We plot the pass@k accuracy (correct if at least one of k
samples is accurate) of power sampling (ours) and RL (GRPO) relative to the base model (Qwen2.5-Math-
7B). Our performance curve is strictly better than both GRPO and the base model, and our pass rate at high k
matches the base model, demonstrating sustained generation diversity.

6 CONCLUSION

In this work, we present an algorithm that samples directly from a base model without any additional
training or access to an external signal, achieving a single-shot reasoning performance that is on par
with, and sometimes even better than, that of a state-of-the-art RL-posttraining algorithm. We use the
discussion of RL distribution sharpening to motivate defining the power distribution as a valuable
target distribution for reasoning. Although exact power distribution sampling is intractable, we
employ classic MCMC techniques alongside the sequential structure of autoregressive generation to
define our power sampling algorithm, which demonstrates strong empirical performance.

Our results suggest that base model capabilities are underutilized at sampling time and point towards
a close relationship between high likelihood regions of the base model and strong reasoning capabil-
ities. Employing additional compute at sampling-time with a stronger understanding of base model
capabilities offers a promising direction for expanding the scope of reasoning beyond verifiability.
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in open language model post-training. arXiv preprint arXiv:2411.15124, 2024. 2
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A APPENDIX

A.1 MORE RELATED WORKS

Annealed sampling for diffusion. In the statistical physics and Monte Carlo literature, sampling
from pα is known as sampling from an annealed, or tempered, distribution (Neal, 1998) and has
inspired a new wave of interest within the diffusion community. Indeed, in traditional MCMC
sampling, annealing is used as a way to avoid mode-collapse during sampling and more accurately
sample from complex multimodal distributions (Łatuszyński et al., 2025). This has re-emerged as
inference-time sampling methods for diffusion that aim to steer a pretrained model towards “tilted
distributions” (Du et al., 2023; Kim et al., 2025; Karan et al., 2025; Wang et al., 2025; Kong et al.,
2025; Zhang et al., 2025). Where traditional RL techniques exhibit mode collapse, applications in
the physical sciences (Sambridge, 2014) require multimodal sampling. To this end, works such as
Du et al. (2023); Wang et al. (2025); Kim et al. (2025) construct sequences of annealed distributions
to ease the transition from base diffusion distribution to tilted distribution. Other works (Skreta et al.,
2025; Xu et al., 2025) intentionally target sampling from pα for α > 1 as a means of generating
higher quality samples from the base diffusion model, which is particularly popular for generating
more designable proteins (Geffner et al., 2025).

A.2 ADDITIONAL THEORETICAL DISCUSSION

In this section, we provide a stronger formalization of the phenomenon that power sampling down-
weights tokens that trap outputs in low-likelihood futures while low-temperature sampling does not.
Proposition 2 (Informal). Power sampling upweights tokens with small support but high likelihood
completions, while low-temperature sampling upweights tokens with large support but low likeli-
hood completions.
Definition 2. For the rest of this section, fix a prefix x0:t−1. We say that xt has marginal weight ε
under the conditional next-token distribution if

∑
x>t p(x0, . . . , xt, . . . xT ) = ε.

We consider a simplified model of the “critical window” or “pivotal token” phenomenon (Li et al.,
2025; Abdin et al., 2024), which refers to intermediate tokens that strongly influence the quality of
the final generation. We differentiate between pivotal tokens that lead to high-likelihood futures vs.
low-likelihood ones.
Definition 3. At one extreme, a pivotal token maximally induces a high-likelihood completion if it
places its entire marginal weight ε on one future (singular support); i.e., for only one choice of x > t
is p(x0, . . . , xt, . . . , xT ) nonzero. We call such a token a positive pivotal token.
Definition 4. At the other extreme, a pivotal token minimizes the likelihood of any future if its entire
marginal weight ε is uniformly distributed across N future completions. In other words, there exist
N completions x > t such that p(x0, . . . , xt, . . . , xT ) are all nonzero with likelihood ε

N . We call
such a token a negative pivotal token.

Our simplified model of high and low-likelihood futures examines when positive pivotal tokens are
favored over negative pivotal tokens under a given sampling distribution. In particular, we show that
power sampling can upweight a positive pivotal token over a negative one even if the latter has a
higher marginal weight, whereas low-temperature sampling always upweights the negative pivotal
token in such a scenario.

Of course, whenever a positive pivotal token has higher marginal weight, both power sampling and
low-temperature sampling will upweight it.
Proposition 3. Let xt be a positive pivotal token with marginal weight ε, and let x′

t be a negative
pivotal token with marginal weight ε′ and support N . Then if

ε′

N1−1/α
< ε < ε′, (14)

the future likelihood of xt is higher than any future likelihood of x′
t. Moreover, power sampling

upweights xt over x′
t while low-temperature sampling upweights x′

t over xt.

Proof. Since α ≥ 1, it follows that
ε′

N1−1/α
>

ε′

N
(15)
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and thus ε > ε′

N , establishing that the future completion likelihood of xt is greater than that of x′
t

(i.e. the assignment of positive and negative pivotal tokens is consistent).

Now, if ε < ε′, then under the low-temperature distribution, the relative marginal weights on xt and
x′
t are εα and ε′α, so the probability of choosing xt is downweighted relative to x′

t. However, for the
power distribution, the relative marginal weights are ppow(xt|x<t) = εα and ppow(x

′
t|x<t) =

ε′α

Nα−1 .
Then, as long as εα > ε′α

Nα−1 ⇐⇒ ε > ε′

N1−1/α , token xt will be upweighted relative to token x′
t.

In other words, the marginal weight on xt can be less than the mass on x′
t under p, but if the

completion for xt has higher likelihood than any individual completion for x′
t, power sampling

favors xt over x′
t.

A.3 HYPERPARAMETERS FOR POWER SAMPLING

Figure 6: Effect of hyperparameters on power sampling. Left: We plot MATH500 accuracy across model
families for various values of α. Right: We plot the increase in accuracy of power sampling on Qwen models
as the number of MCMC steps increases.

The effect of power distributions. The two most important hyperparameters for power sampling
are the choice of α and the number of MCMC (resampling) steps during sequence generation
NMCMC. At the extremes, choosing α = 1.0 samples from the base model directly, while taking
α → ∞ has the effect of deterministically accepting any resampled sequence that strictly increases
the likelihood. Of course, even though higher base model likelihoods correlate with better reasoning
(Figure 4), directly optimizing for likelihood is not necessarily optimal for reasoning, suggesting an
ideal intermediate value of α.

In Figure 6, we display MATH500 accuracies across various values of α and find that an intermediate
α = 4.0 outperforms other values, as expected. Noticeably, the accuracies of power sampling remain
relatively stable beyond α ≥ 2.0, suggesting that power sampling in practice is relatively robust to
the choice of α.

Test-time scaling with MCMC steps. On the other hand, NMCMC toggles the inference-time com-
pute expended by our algorithm, providing a natural axis for test-time scaling. In Section 4.3 we
raised the notion of a mixing time, or the number of MCMC steps required before adequately sam-
pling from the target distribution. In our case, we expect that the fewer MCMC steps we take, the
further our algorithm samples from the target pα.

We plot performance dependence on NMCMC in Figure 6 and notice a steady increase in accuracy
until NMCMC = 10, beyond which accuracy remains roughly stable (not plotted). The accuracy
difference from using fewer MCMC steps is noticeable but no more than 3-4% between NMCMC = 2
and NMCMC = 10. However, the jump in accuracy by using at least two steps as opposed to none is
substantial (3-4%).

We can even compute the total amount of tokens generated by our method relative to running GRPO.
From (12), our sampler generates 1

4B ·NMCMCT times as many tokens as standard inference to gen-
erate a sequence of length T . Plugging in our experimental parameters NMCMC = 10, T = 679 (our

15
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average output length for MATH500) and B = 192, running inference with power sampling incurs
a multiplier of 8.84× the number of tokens as running standard inference. Since GRPO generates
multiple rollouts per example during training, our method incurs roughly the same inference cost as
one epoch of GRPO training, assuming 8 rollouts per sample with identical dataset sizes. Typically
though, one GRPO epoch is still more expensive as it uses 16 rollouts and a training set that is larger
than MATH500.

A.4 PASS@K ACCURACIES OVER MULTIPLE DOMAINS

In this section, we plot the pass@k performance of power sampling, GRPO, and the base model
(Qwen2.5-Math-7B) over MATH500, GPQA, and HumanEval to demonstrate that our sampling
algorithm is highly performant at both single-shot and multi-shot reasoning while maintaining re-
sponse diversity. Power sampling is plotted with α = 4.0 for MATH500 and GPQA and α = 1.67
for HumanEval (this temperature exhibits slightly better results at earlier k). In all cases, both in-
domain and out-of-domain for GRPO, power sampling has near universally better performance than
both GRPO and the base model in pass@k for k > 1 and matches, if not exceeds, the base model
upper bound at large k.
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Figure 7: Pass@k performance on MATH500 (Qwen2.5-Math-7B).

One thing to note about these plots is that the loss in diversity varies noticeably from benchmark
to benchmark. MATH500 and GPQA clearly show that GRPO has a significantly lower pass@k
performance and diversity even for smaller k, while on HumanEval GRPO exhibits better pass@k
than the base model until k = 16. We speculate this might be due to the fact that while MATH500
and GPQA are graded on a “singular” answer, HumanEval is based on completing code where
multiple solutions might be accepted, indicating a reduction in diversity may emerge but at much
higher k. This of course varies model-to-model; in fact, from Table 1, GRPO leads to a reduction in
performance on HumanEval relative to the base model Phi 3.5 mini. We noticed that a majority of
failures are at least due to formatting issues of the base model being sustained: 76.05% of failures
for GRPO are marked for failing to adhere to unindents, compared to 81.40% for the base model.
Such errors do not constitute failures of power sampling however.

A.5 MORE QUALITATIVE EXAMPLES

16
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Figure 8: Pass@k performance on HumanEval (Qwen2.5-Math-7B).
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Figure 9: Pass@k performance on GPQA (Qwen2.5-Math-7B).
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Can you solve the following math problem? Write 3
20 as a decimal. Please reason step by step,

and put your final answer within \boxed{{}}. Correct answer: 0.15

System Answer

Ours

To convert the fraction 3
20

to a decimal, we can follow these steps:
1. Identify the numerator and the denominator of the fraction. In this case, the numerator
is 3 and the denominator is 20. 2. Divide the numerator by the denominator. In this case,
we divide 3 by 20. 3. Perform the division. The result is 0.15.
Therefore, the fraction 3

20
as a decimal is 0.15 .

GRPO

To convert the fraction 3
20

to a decimal, we can follow these steps:
1. Understand the fraction: The fraction 3

20
means 3 divided by 20.

2. Perform the division: We need to divide 3 by 20. Since 3 is less than 20, we will add a
decimal point and zeros to 3 to make the division possible.
3. Set up the division: Write 3 as 3.000 (adding three zeros for precision).
4. Divide: - 20 goes into 30 once (since 20 × 1 = 20). - Subtract 20 from 30 to get a
remainder of 10. - Bring down the next 0 to make it 100. - 20 goes into 100 five times
(since 20× 5 = 100). - Subtract 100 from 100 to get a remainder of 0.
5. Combine the results: The quotient from the division is 0.15.
Therefore, the decimal representation of 3

20
is 0.15 .

Table 3: Comparison on MATH500: Qwen2.5-Math-7B. We present an example where our method and GRPO
are correct.

The Fib4 number sequence is a sequence similar to the Fibonacci sequence defined as: fib4(0)=0,
fib4(1)=0, fib4(2)=2, fib4(3)=0, and for n ≥ 4, fib4(n) = fib4(n-1) + fib4(n-2) + fib4(n-3) +
fib4(n-4). Write a function to efficiently compute the n-th element without recursion.

System Completion Passed

Ours

# Base cases
if n == 0:

return 0
elif n == 1:

return 0
elif n == 2:

return 2
elif n == 3:

return 0

# Initialize the first four elements
fib4_values = [0, 0, 2, 0]

# Compute the rest of the sequence iteratively
for i in range(4, n+1):

next_value = (fib4_values[i-1] + fib4_values[i
-2] +

fib4_values[i-3] + fib4_values[i
-4])
fib4_values.append(next_value)

# Return the n-th element
return fib4_values[n]

true

GRPO
a, b, c, d = 0, 0, 2, 0
for _ in range(n):

a, b, c, d = b, c, d, a + b + c + d
return d

false

Table 4: HumanEval comparison on Phi-3.5-mini-instruct.
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Can you solve the following math problem? What integer n satisfies 0 ≤ n < 18 and
n ≡ −11213141 (mod 18) ?

Please reason step by step, and put your final answer within \boxed{{}}. Correct answer: 13

Method Answer

Ours

First, we perform the division of 11213141 by 18:
11213141÷ 18 ≈ 622952.277777 . . .

The integer part of the quotient is 622952. Now, we multiply 622952 by 18 to find the
product:

622952× 18 = 11213136

Next, we subtract this product from 11213141 to find the remainder:
11213141− 11213136 = 5

So, the remainder when 11213141 is divided by 18 is 5. This means:
11213141 ≡ 5 (mod 18)

Therefore:
−11213141 ≡ −5 (mod 18)

Since we need a non-negative remainder, we convert −5 to a positive equivalent by adding
18:

−5 + 18 = 13

Thus:
−11213141 ≡ 13 (mod 18)

The integer n that satisfies 0 ≤ n < 18 and n ≡ −11213141 (mod 18) is: 13 .

GRPO

Step 1: Find the remainder when 11213141 is divided by 18. We can use the property of
modular arithmetic that states a ≡ b (mod m) if and only if a mod m = b mod m.
So, we need to compute 11213141 mod 18.
To simplify this, we can use the fact that the remainder of a number when divided by 18 is
the same as the remainder of the sum of its digits when divided by 18 (although this is not
always the most efficient method, it can be used here for simplicity).
First, let’s sum the digits of 11213141:

1 + 1 + 2 + 1 + 3 + 1 + 4 + 1 = 14.

Now, we need to find the remainder when 14 is divided by 18. Since 14 is less than 18, the
remainder is simply 14. Therefore,

11213141 ≡ 14 (mod 18).

Step 2: Find the remainder when −11213141 is divided by 18. Since 11213141 ≡ 14
(mod 18), it follows that

−11213141 ≡ −14 (mod 18).

We need to convert −14 to a positive remainder between 0 and 17. To do this, we add 18
to −14:

−14 + 18 = 4.

Therefore,
−11213141 ≡ 4 (mod 18).

The integer n that satisfies 0 ≤ n < 18 and n ≡ −11213141 (mod 18) is 4 .

Table 5: MATH500 comparison between our sampling algorithm and GRPO for Qwen2.5-Math-7B. Here is an
example where GRPO gets an incorrect answer, while our sampling algorithm succeeds. Our sample answer
uses a distinct method altogether.
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