
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

REASONING WITHOUT TRAINING:
YOUR BASE MODEL IS SMARTER THAN YOU THINK

Anonymous authors
Paper under double-blind review

ABSTRACT

Frontier reasoning models have exhibited incredible capabilities across a wide
array of disciplines, driven by posttraining large language models (LLMs) with
reinforcement learning (RL). However, despite the widespread success of this
paradigm, much of the literature has been devoted to disentangling truly novel be-
haviors that emerge during RL but are not present in the base models. In our work,
we approach this question from a different angle, instead asking whether compa-
rable reasoning capabilites can be elicited from base models at inference time,
without any additional training. Inspired by Markov chain Monte Carlo (MCMC)
techniques for sampling from sharpened distributions, we propose a simple it-
erative sampling algorithm leveraging the base models’ own likelihoods. Over
different base models, we show that our algorithm offers substantial boosts in rea-
soning that nearly match and can even outperform those from RL on a wide vari-
ety of single-shot tasks, including MATH500, HumanEval, and GPQA. Crucially,
our method does not require training, curated datasets, or a verifier, suggesting a
general applicability beyond easily verifiable domains.

1 INTRODUCTION

Reinforcement learning (RL) has become the dominant paradigm for enhancing the reasoning ca-
pabilities of large language models (LLMs) Guo et al. (2025); Hu et al. (2025). Equipped with a
reward signal that is typically automatically verifiable, popular RL techniques have been success-
fully applied to posttrain frontier models, leading to sizeable performance gains in domains like
math, coding, and science Hendrycks et al. (2021); Li et al. (2022); Rein et al. (2024).

Despite the widespread empirical success of RL for LLMs, a large body of literature has centered
around the following question: are the capabilities that emerge during RL posttraining fundamen-
tally novel behaviors that are not present in the base models? This is the question of distribution
sharpening He et al. (2025); Shao et al. (2025); Yue et al. (2025): that is, whether the posttrained
distribution is simply a “sharper” version of the base model distribution, instead of placing mass on
reasoning traces the base model is unlikely to generate.

Several works point towards the difficulty in learning new capabilities with RL posttraining. He et al.
(2025); Song et al. (2025) compare the pass@k scores of base models with posttrained models, find-
ing that for large k, base models actually outperform while the latter suffer from degraded generation
diversity. Yue et al. (2025) also notes that the reasoning traces post-RL have higher likelihoods un-
der the base model, seemingly drawing from existing high likelihood capabilities. Regardless, the
advantage of RL posttraining for single-shot reasoning has remained, as of yet, undeniable.

In this paper, we present a surprising result: sampling directly from the base model can achieve
single-shot reasoning capabilites on par with those from RL.

We propose a sampling algorithm for base models that leverages additional compute at inference
time, achieving single-shot performance that nearly matches RL posttraining on in-domain reason-
ing tasks and can even outperform on out-of-domain reasoning tasks. We benchmark specifically
against Group Relative Policy Optimization (GRPO), which is the standard RL algorithm for en-
hancing LLM reasoning Shao et al. (2024).

Crucially, our algorithm is training-free, dataset-free, and verifier-free, avoiding some of the inher-
ent weaknesses of RL methods including extensive hyperparameter sweeps to avoid training insta-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

MATH500 HumanEval GPQA
10

20

30

40

50

60

70

80

A
cc

ur
ac

y
(%

)

49.6

32.9

11.6

78.5

53.7

25.3

74.8

57.3

23.2

Reasoning

AlpacaEval2.0

0.5

1.0

1.5

2.0

2.5

3.0

Sc
or

e 1.61

2.38

2.88

General

Base (Qwen2.5-Math-7B) GRPO (RL) Ours (Training-free)

Figure 1: Our sampling algorithm can match and outperform RL posttraining. Left: we compare our sam-
pling algorithm (ours) against the base model (base) and RL posttraining (GRPO) on three verifiable reasoning
tasks (MATH500, HumanEval, GPQA). Right: we compare them on an unverifiable general task (AlpacaE-
val2.0). Our algorithm achieves comparable performance to GRPO within the posttraining domain (MATH500)
but can outperform on out-of-domain tasks such as HumanEval and AlpacaEval.

bilities, the need to curate a diverse and expansive posttraining dataset, and the lack of guaranteed
access to a ground truth verifier/reward signal Prabhudesai et al. (2025).

Our contributions can be summarized as follows:
i) We introduce the power distribution as a useful sampling target for reasoning tasks. Since it

can be explicitly specified with a base LLM, no additional training is required.
ii) We further introduce an approximate sampling algorithm for the power distribution using a

Markov chain Monte Carlo (MCMC) algorithm that iteratively resamples token subsequences
according to their base model likelihoods.

iii) We empirically demonstrate the effectiveness of our algorithm over a range of models
(Qwen2.5-Math-7B, Qwen2.5-7B, Phi-3.5-mini-instruct) and reasoning tasks (MATH500, Hu-
manEval, GPQA, AlpacaEval 2.0). Our results show that sampling directly from the base
model can achieve results on par with GRPO. In fact, for some out-of-domain tasks, our algo-
rithm consistently outperforms the RL baseline.

Our results collectively illustrate that existing base models are much more capable at single-shot
reasoning than current sampling methods reveal.

2 RELATED WORKS

Reinforcement learning for LLMs. RL has been instrumental in posttraining LLMs. Early on, RL
with human feedback (RLHF) Ouyang et al. (2022) was developed as a technique to align LLMs with
human preferences using a trained reward model. Recently, RL with verifiable rewards (RLVR) has
emerged as a powerful new posttraining technique, where many works Guo et al. (2025); Lambert
et al. (2024); Hu et al. (2025); Zeng et al. (2025) discovered that a simple, end-of-generation reward
given by an automated verifier could substantially enhance performance on difficult reasoning tasks
in mathematics and coding. The Group Relative Policy Optimization (GRPO) algorithm was at the
center of these advances Shao et al. (2024). Building off of this success, many subsequent works
have examined using reward signals derived from internal signals such as self-entropy Zhao et al.
(2025), confidence Prabhudesai et al. (2025), and even random rewards Shao et al. (2025). Similar
to these works, our paper examines base model likelihoods as a mechanism for improving reasoning
performance, but crucially, our technique is training-free.

Autoregressive MCMC sampling with LLMs. Prior works have explored integrating classic
MCMC techniques with autoregressive sampling. Many settings including red-teaming, prompt-
engineering, and personalized generation can be framed as targeting sampling from the base LLM
distribution but tilted towards an external reward function. Zhao et al. (2024) proposes learning
intermediate value functions that are used in a Sequential Monte Carlo (SMC) framework Chopin
(2004), where multiple candidate sequences are maintained and updated according to their expected

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

future reward. Similarly, Faria et al. (2024) proposes a Metropolis-Hastings (MH) algorithm, which
instead of maintaining multiple candidates performs iterative resampling, again updating according
to expected reward. Methodologically, our sampling algorithm is most similar to this latter work,
but the crucial difference is that our target sampling distribution is completely specified by the base
LLM, avoiding the need for an external reward.

3 PRELIMINARIES

LetX be a finite vocabulary of tokens, and letX T denote the set of finite sequences of tokens x0:T =
(x0, x1, . . . , xT), where xi ∈ X for all i and T ∈ Z≥0 is some nonnegative integer. For convenience,
for a given t, let x<t = (x0, . . . , xt−1) and x>t = (xt+1, . . . , xT), with similar definitions for x≤t

and x≥t. In general, x refers to a token sequence x0:T , where T is implicitly given.

Then an LLM defines a distribution p over token sequences X T by autoregressively learning the
conditional token distributions p(xt|x<t) for all t, giving the joint distribution via the identity

p(x0:T) =

T∏
t=0

p(xt|x<t). (1)

To sample a sequence from p, we simply sample from the LLM token by token using the conditional
distributions, which by (1) directly samples from the joint distribution.

4 MCMC SAMPLING FOR POWER DISTRIBUTIONS

p

pα (α= 4.0)

Figure 2: A toy example of distribution
sharpening. Here p is a mixture of Gaus-
sians, which we plot against pα (α = 4.0).

In this section, we introduce our sampling algorithm for
base models. Our core intuition is derived from the notion
of distribution sharpening posed in Section 1. Sharpen-
ing a reference distribution refers to reweighting the dis-
tribution so that high likelihood regions are further up-
weighted while low likelihood regions are downweighted,
biasing samples heavily towards higher likelihoods under
the reference. Then if RL posttrained models really are
just sharpened versions of the base model, we should be
able to explicitly specify a target sampling distribution that
achieves the same effect.

We organize this section as follows. Section 4.1 presents
this target sharpened distribution and provides some math-
ematical motivation for why its samples are amenable for
reasoning tasks. Section 4.2 introduces a general class of Markov chain Monte Carlo (MCMC) al-
gorithms aimed at actually sampling from this target distribution, and finally, Section 4.3 details our
specific implementation for LLMs.

4.1 REASONING WITH POWER DISTRIBUTIONS

One natural way to sharpen a distribution p is to sample from the power distribution pα. Since

p(x) > p(x′) =⇒ p(x)α

p(x′)α
>

p(x)

p(x′)
(α ∈ [1,∞]), (2)

it follows that exponentiating p increases the relative weight on higher likelihood sequences (x)
while decreasing the relative weight on lower likelihood ones (x′) (see Figure 2 for a visualization).

A related but well-known sharpening strategy is low-temperature sampling Wang et al. (2020),
which exponentiates the conditional next-token distributions at each step:

ptemp(xt|x0 . . . xt−1) =
p(xt|xt−1 . . . x0)

α∑
x′
t∈X p(x′

t|xt−1 . . . x0)α
, (3)

where the temperature is τ = 1/α. A common misconception is that sampling with (3) over T
tokens is equivalent to sampling from pα; however, this is false in a subtle yet crucial way, as we
illuminate in the following.

Proposition 1. Low-temperature sampling does not sample from the power distribution pα.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Proof. We show that the associated conditional next-token distributions are distinct at each timestep
t. The conditional distribution on xt for pα is given by

ppow(xt|x0 . . . xt−1) =

∑
x>t

p(x0, . . . , xt, . . . , xT)
α∑

x≥t
p(x0, . . . , xt, . . . , xT)α

. (4)

Using Bayes rule

p(xt|xt−1 . . . x0) =
p(x0, . . . , xt)

p(x0, . . . , xt−1)
=

∑
x>t

p(x0, . . . , xt, . . . , xT)∑
x≥t

p(x0, . . . , xt, . . . , xT)
, (5)

we can rewrite the low-temperature marginal (3) as

ptemp(xt|x0 . . . xt−1) =

(∑
x>t

p(x0, . . . , xt, . . . , xT)
)α

∑
x′
t

(∑
x>t

p(x0, . . . , xt, . . . , xT)
)α . (6)

Ignoring normalizations for clarity, the relative weight on token xt for sampling from pα is given by
a sum of exponents

ppow(xt|x<t) ∝
∑
x>t

p(x0, . . . , xt, . . . , xT)
α. (7)

Meanwhile, the relative weight for low-temperature sampling is given by an exponent of sums

ptemp(xt|x<t) ∝

(∑
x>t

p(x0, . . . , xt, . . . , xT)

)α

. (8)

Since the relative weights for next-token prediction for each sampling strategy are distinct, a simple
expansion confirms that the distribution on sequences given by low-temperature sampling is not the
same as the one given by pα.

One intuitive way to understand this difference is that low-temperature sampling does not account
for how exponentiation sharpens the likelihoods of “future paths” at time step t, instead “greedily”
averaging all these future likelihoods (exponent of sums (8)). On the other hand, sampling from pα

inherently accounts for future completions as it exponentiates all future paths (sum of exponents (7))
before computing the weights for next-token prediction. This has the following consequence:

Observation 1. The power distribution upweights tokens with few but high likelihood future paths,
while low-temperature sampling upweights tokens with several but low likelihood completions.

Example 1. We can observe this phenomenon with a simple example. Let us consider the token
vocabulary X = {a, b} and restrict our attention to two-token sequences (x0, x1): aa, ab, ba, bb. Let

p(aa) = 0.00, p(ab) = 0.40, p(ba) = 0.25, p(bb) = 0.25,

so that
p(x0 = a) = 0.40, p(x0 = b) = 0.50.

Let α = 2.0. Under pα, we have
ppow(x0 = a) ∝ 0.002 + 0.402 = 0.160, ppow(x0 = b) ∝ 0.252 + 0.252 = 0.125,

so pα prefers sampling a over b. Under low-temperature sampling,
ptemp(x0 = a) ∝ (0.00 + 0.40)2 = 0.160, ptemp(x0 = b) ∝ (0.25 + 0.25)2 = 0.250,

preferring sampling b over a. If pα samples x0 = a, there is only one future path with likelihood
0.40. If ptemp samples x0 = b, there are two future paths ba, bb, but either choice has likelihood 0.25.

In other words, even though a has lower conditional likelihood under both p and ptemp, pα upweights
a and samples the highest likelihood two-token sequence. b has many future paths contributing to
a higher likelihood under p and ptemp, but leads to low likelihood sequences. We provide a stronger
formalization of this phenomenon in Appendix A.1.

Thus, sampling from pα encourages sampling tokens which have fewer but higher likelihood “future
paths”, as opposed to tokens with several lower likelihood completions. This type of behavior is
immensely valuable for reasoning tasks, as embedded within this target distribution is an implicit
bias towards planning for high likelihood future tokens.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 3: Illustrating Metropolis-Hastings with random resampling. A random index t is selected and a new
candidate is generated by resampling. Based on the relative likelihoods, the candidate is accepted or rejected,
and the process repeats.

4.2 THE METROPOLIS-HASTINGS ALGORITHM

Now that we have seen how sampling from pα can in theory assist the underlying LLM’s ability
to reason, our aim now turns towards proposing an algorithm to accurately sample from it. Given
an LLM p, we have access to the values pα over any sequence length; however, these values are
unnormalized. Direct sampling from the true probabilities requires normalizing over all sequences
(x0, . . . , xT) ∈ X T , which is computationally intractable.

To get around this, we invoke a Markov Chain Monte Carlo (MCMC) algorithm known as
Metropolis-Hastings (MH) Metropolis et al. (1953), which targets exactly what we want: approx-
imate sampling from an unnormalized probability distribution. The MH algorithm constructs a
Markov chain of sample sequences (x0,x1, . . . ,xn) using an arbitrary proposal distribution q(x|xi)
to select the next candidate xi+1. With probability

A(x,xi) = min
{
1,

pα(x) · q(xi|x)
pα(xi) · q(x|xi)

}
, (9)

candidate x is accepted as xi+1; otherwise, MH sets xi+1 = xi. This algorithm is especially
convenient as it only requires the relative weights given by pα (as the normalization weights in A
cancel) and works with any generic but tractable sampler q with minimal restrictions. Remarkably,
for large enough n, this process converges to sampling from the target distribution pα under quite
minimal conditions on the proposal distribution Neal (1993).

Consider the following family of random resampling proposal distributions (see Figure 3). Let
pprop be a proposal LLM. With uniform probability 1

T , select a random t ∈ [1, T] and resample
the sequence starting at index t using pprop. Then the transition likelihood q(x|xi) is simply the
likelihood of the resampling. Moreover, q(xi|x) is easy to calculate by symmetry, since we can treat
xi as a resampled version of x.

With the flexibility endowed by Metropolis-Hastings, we can choose the proposal LLM pprop to be
any LLM with any sampling strategy (e.g., low-temperature sampling).

4.3 POWER SAMPLING WITH AUTOREGRESSIVE MCMC

A direct implementation of Metropolis-Hastings for LLMs would involve initializing with a sampled
token sequence of length T , subsequently generating new candidates of length T with (9) over
many, many iterations. This process is computationally expensive, however, due to the repeated, full
sequence inference calls to the LLM.

In fact, the main downside to MCMC algorithms in practice is the potential for an exponential mixing
time Gheissari et al. (2017), where a poor choice of initialization or proposal distribution can result
in an exponentially large number of samples required before convergence to the target distribution.
This problem is exacerbated if the sample space has high dimensionality Bandeira et al. (2022);
Schmidler & Woodard (2013), which is precisely exhibited by the sequence space of tokens X T ,
especially for long sequences/large values of T .

To remedy this, we propose an algorithm that leverages the sequential structure of autoregressive
sampling. We define a series of intermediate distributions which we progressively sample from, until
converging to the target distribution pα. In particular, samples from one intermediate distribution
initiate a Metropolis-Hastings process for the next, helping avoid pathological initializations.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1: Power Sampling for Autoregressive Models
Input : base p; proposal pprop; power α; length T

Hyperparams: block size B; MCMC steps NMCMC

Output : (x0, . . . , xT) ∼ pα

1 Notation: Define the unnormalized intermediate target
πk(x0:kB) ∝ p(x0:kB)

α.

2 for k ← 0 to ⌈ TB ⌉ − 1 do
3 Given prefix x0:kB , we wish to sample from πk+1. Construct initialization x0 by extending

autoregressively with pprop:

x
(0)
t ∼ pprop

(
xt | x<t

)
, for kB + 1 ≤ t ≤ (k + 1)B.

Set the current state x← x0.

4 for n← 1 to NMCMC do
5 Sample an index m ∈ {1, . . . , (k + 1)B} uniformly.

6 Construct proposal sequence x′ with prefix x0:m−1 and resampled completion:
x′
t ∼ pprop

(
xt | x<t

)
, for m ≤ t ≤ (k + 1)B.

7 Compute acceptance ratio (9)

A(x′,x) ← min

{
1,

πk(x
′)

πk(x)
·
pprop(x | x′)

pprop(x′ | x)

}
.

Draw u ∼ Uniform(0, 1);
8 if u ≤ A(x′,x) then accept and set x← x′

9 end
10 Set x0:(k+1)B ← x to fix the new prefix sequence for the next stage.
11 end
12 return x0:T

Fix block size B and proposal LLM pprop, and consider the sequence of (unnormalized) distributions
∅ −→ p(x0, . . . , xB)

α −→ p(x0, . . . , x2B)
α −→ · · · −→ p(x0, . . . , xT)

α, (10)
where p(x0, . . . , xkB) denotes the joint distribution over token sequences of length kB, for any k.
For convenience, let πk denote the distribution given by

πk(x0:kB) ∝ p(x0:kB)
α. (11)

Suppose we have a sample from πk. To obtain a sample from πk+1, we initialize a Metropolis-
Hastings process by sampling the next B tokens xkB+1:(k+1)B with pprop. We subsequently run the
MCMC sampling procedure for NMCMC steps, using the random resampling proposal distribution q
from the previous section. The full details are presented in Algorithm 1.

Note that Algorithm 1 is single-shot: even though multiple inference calls are made, the decision to
accept vs. reject new tokens is made purely by base model likelihoods to simulate sampling a single
sequence from pα. We can interpret this as a new axis for inference-time scaling, as we expend
additional compute during sampling to obtain a higher quality/likelihood sample.

To quantify the scaling, we can estimate the average number of tokens generated by Algorithm 1.
Note that each candidate generation step when sampling from πk(x0:kB resamples an average of kB

2
tokens, NMCMC times. Summing over all k, the expected number of tokens generated is

Etokens = NMCMC

⌈T/B⌉∑
k=1

kB

2
≈ NMCMCT

2

4B
. (12)

The key tradeoff here is between the block size B and number of MCMC steps NMCMC. A larger B
requires larger “jumps” between intermediate distributions, requiring a larger NMCMC to adequately
transition. In Section 5, we find an empirical value for B that makes Algorithm 1 performant for
relatively small values of NMCMC.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

MATH500 HumanEval GPQA AlpacaEval2.0

Qwen2.5-Math-7B
Base 0.496 0.329 0.116 1.61
Low-temperature 0.690 0.512 0.207 2.09
Power Sampling (ours) 0.748 0.573 0.232 2.88

GRPO (MATH) 0.785 0.537 0.253 2.38

Qwen2.5-7B
Base 0.498 0.329 0.217 7.05
Low-temperature 0.628 0.524 0.253 5.29
Power Sampling (ours) 0.706 0.622 0.283 8.59

GRPO (MATH) 0.740 0.561 0.328 7.62

Phi-3.5-mini-instruct
Base 0.400 0.213 0.177 14.82
Low-temperature 0.478 0.128 0.162 18.15
Power Sampling (ours) 0.508 0.732 0.263 17.65

GRPO (MATH) 0.406 0.134 0.202 16.74

Table 1: Power sampling (ours) matches and even outperforms GRPO across model families and tasks.
We benchmark the performance of our sampling algorithm on MATH500, HumanEval, GPQA, and AlpacaEval
2.0. We bold the scores of both our method and GRPO, along with the maximum score per column. Across
models, we see that power sampling is comparable to GRPO on in-domain reasoning (MATH500), and can
outperform GRPO on out-of-domain tasks.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Evaluation. We use a standard suite of reasoning benchmarks ranging across mathematics, coding,
and STEM (MATH500, HumanEval, GPQA), along with a non-verifiable benchmark (AlpacaEval
2.0) evaluating general helpfulness. We evaluate all of our methods and baselines single-shot; i.e.,
on one final response string.

• MATH500: The MATH dataset Lightman et al. (2024) consists of competition math problems
spanning seven categories including geometry, number theory, and precalculus. There are 12500
problems total, with 7500 training problems and 5000 test problems. MATH500 is a specific
randomly chosen subset of the test set standardized by OpenAI.

• HumanEval: HumanEval is a set of 164 handwritten programming problems covering algorihtms,
reasoning, mathematics, and language comprehension Chen et al. (2021). Each problem has an
average of 7.7 associated unit tests, where solving the problem corresponds to passing all unit
tests.

• GPQA: GPQA Rein et al. (2024) is a dataset of multiple-choice science questions (physics, chem-
istry, and biology) which require advanced reasoning skills to solve. We use subset GPQA Dia-
mond for evaluation, which consists of 198 questions which represent the highest quality subset
of the GPQA dataset.

• AlpacaEval 2.0: The AlpacaEval dataset is a collection of 805 prompts Dubois et al. (2024) that
gauge general helpfulness with questions asking e.g., for movie reviews, recommendations, and
reading emails. The model responses are graded by an automated LLM judge (GPT-4-turbo),
which determines a preference for the model responses over those from a baseline (also GPT-4-
turbo). The resulting score is a win rate of model responses normalized for the length of the model
response.

Models. To demonstrate the efficacy of our sampling algorithm, we use the base models Qwen2.5-
Math-7B, Qwen2.5-7B, and Phi-3.5-mini-instruct. For our RL baselines, we use the implementation
of GRPO in Shao et al. (2025), which posttrains these models on the MATH training split. For both
the Qwen2.5 models, we use the default hyperparameters used to benchmark their performance in
Shao et al. (2025). For the Phi-3.5 model, we use a set of hyperparameters selected from Abdin et al.
(2024) that avoids training instabilities and converges to improvement over the base model over a
large number of epochs.

Sampling Algorithm. For our implementation of power sampling (Algorithm 1), we set the max-
imum T to be Tmax = 3072 (termination can happen earlier with an EOS token) and block size

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Filter an input list of strings only for ones that start with a given prefix. (Phi-3.5-mini-instruct: HumanEval)

Method Response Passed

Ours return [s for s in strings
if s.startswith(prefix)] true

GRPO return [string for string in strings if
string.startswith(f’{prefix}’*2)]

false

Table 2: Sample responses on HumanEval: Phi-3.5-mini-instruct. We present an example where our method
solves a simple coding question, but GRPO does not.

B = 16. Empirically, we find α = 4.0 coupled with a proposal LLM pprop chosen as the base model
with sampling temperature 1/α to be most performant for reasoning tasks. For AlpacaEval 2.0, we
find that having a proposal distribution of higher temperature (τ = 0.5) improves performance.

5.2 RESULTS

Main results. We display our main results in Table 1. Across base models of different families,
our sampling algorithm achieves massive, near-universal boosts in single-shot accuracies and scores
over different reasoning and evaluation tasks that reach, e.g., up to +51.9% on HumanEval with
Phi-3.5-mini and +25.2% on MATH500 with Qwen2.5-Math. In particular, on MATH500, which
is in-domain for RL posttraining, power sampling achieves accuracies that are on par with those
obtained by GRPO. Furthermore, on out-of-domain reasoning, our algorithm again matches GRPO
on GPQA and actually outperforms on HumanEval by up to +59.8%. Similarly, power sampling
consistently outperforms on the non-verifiable AlpacaEval 2.0, suggesting a generalizability of our
boosts to domains beyond verifiability.

The surprising success of this fundamentally simple yet training-free sampling algorithm under-
scores the latent reasoning capabilities of existing base models.
5.3 ANALYSIS

Qualitative attributes of reasoning. We analyze how the reasoning characteristics of power sam-
pling relate to those of GRPO. We present an example in Table 2, with further examples in Appendix
A.2. These samples collectively illustrate that our sampling algorithm is able to find distinct reason-
ing traces from GRPO.

At the same time, there are some striking similarities. By design, power sampling targets sampling
higher likelihood sequences from the base model. In Figure 4, the left graph plots a histogram of
the log likelihoods (normalized by length) of base model, power sampling, and GRPO responses on
MATH500, where likelihoods are taken relative to the Qwen2.5-Math-7B base model. Our method
samples from higher likelihood regions of the base model, as intended, but still maintains noticeable
spread. Meanwhile, GRPO samples are heavily concentrated at the highest likelihood peak. This
aligns with the observation that RL posttraining strongly sharpens the base model distribution at the
expense of diversity Song et al. (2025). While Section 4.1 only heuristically relates better reasoning
performance to higher likelihood sampling, Figure 4 illustrates empirically that correct reasoning
traces fall in higher likelihood regions of the base model distribution.

We also plot the base model confidence of MATH500 responses, defined to be the negative entropy
(uncertainty) of the token sequence. The right plot of Figure 4 demonstrates that our method’s and
GRPO responses sample from similarly high confidence regions from the base model, which again
correspond to regions of higher likelihood and correct reasoning.

Finally, another defining characteristic of RL-posttraining is long-form reasoning Guo et al. (2025),
where samples tend to exhibit longer responses. On MATH500, Qwen2.5-Math-7B averages a
response length of 600 tokens, while GRPO averages 671 tokens. Surprisingly, power sampling
achieves a similar average length of 679 tokens, without explicitly being encouraged to favor longer
generations. This emerges naturally from the sampling procedure.

The effect of power distributions. The two most important hyperparameters for power sampling
are the choice of α and the number of MCMC (resampling) steps during sequence generation
NMCMC. At the extremes, choosing α = 1.0 samples from the base model directly, while taking
α → ∞ has the effect of deterministically accepting any resampled sequence that strictly increases
the likelihood. Of course, even though higher base model likelihoods correlate with better reasoning

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 4: Base model (Qwen2.5-Math-7B) likelihoods and confidences for MATH500 responses. Left:
We plot the log likelihoods (relative to the base model) of original, power sampling, and GRPO responses
over MATH500. Right: We do the same but for confidences relative to the base model. We observe that GRPO
samples from the highest likelihood and confidence regions with power sampling close behind, which correlates
with higher empirical accuracy.

Figure 5: Effect of hyperparameters on power sampling. Left: We plot MATH500 accuracy across model
families for various values of α. Right: We plot the increase in accuracy of power sampling on Qwen models
as the number of MCMC steps increases.

(Figure 4), directly optimizing for likelihood is not necessarily optimal for reasoning, suggesting an
ideal intermediate value of α.

In Figure 5, we display MATH500 accuracies across various values of α and find that an intermediate
α = 4.0 outperforms other values, as expected. Noticeably, the accuracies of power sampling remain
relatively stable beyond α ≥ 2.0, suggesting that power sampling in practice is relatively robust to
the choice of α.

Test-time scaling with MCMC steps. On the other hand, NMCMC toggles the inference-time com-
pute expended by our algorithm, providing a natural axis for test-time scaling. In Section 4.3 we
raised the notion of a mixing time, or the number of MCMC steps required before adequately sam-
pling from the target distribution. In our case, we expect that the fewer MCMC steps we take, the
further our algorithm samples from the target pα.

We plot performance dependence on NMCMC in Figure 5 and notice a steady increase in accuracy un-
til NMCMC = 10, beyond which accuracy stabilizes, as expected. The accuracy difference from using
fewer MCMC steps is noticeable but no more than 3-4% between NMCMC = 2 and NMCMC = 10.
However, the jump in accuracy by using at least two steps as opposed to none is substantial (3-4%).

6 CONCLUSION

In this work, we present an algorithm that samples directly from a base model without any addi-
tional training or access to an external signal, achieving a single-shot reasoning performance that
is on par with, and sometimes even better than, that of a state-of-the-art RL posttraining algorithm.
Our results suggest that base model capabilities are underutilized at sampling time and point towards
a close relationship between high likelihood regions of the base model and strong reasoning capabil-
ities. Employing additional compute at sampling-time with a stronger understanding of base model
capabilites offers a promising direction for expanding the scope of reasoning beyond verifiability.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Marah Abdin, Jyoti Aneja, Harkirat Behl, Sébastien Bubeck, Ronen Eldan, Suriya Gunasekar,
Michael Harrison, Russell J. Hewett, Mojan Javaheripi, Piero Kauffmann, James R. Lee, Yin Tat
Lee, Yuanzhi Li, Weishung Liu, Caio C. T. Mendes, Anh Nguyen, Eric Price, Gustavo de Rosa,
Olli Saarikivi, Adil Salim, Shital Shah, Xin Wang, Rachel Ward, Yue Wu, Dingli Yu, Cyril
Zhang, and Yi Zhang. Phi-4 technical report. arXiv preprint arXiv:2412.08905, 2024. URL
https://arxiv.org/abs/2412.08905. 7

Afonso S. Bandeira, Antoine Maillard, Richard Nickl, and Sven Wang. On free energy barriers in
gaussian priors and failure of cold start mcmc for high-dimensional unimodal distributions. arXiv
preprint arXiv:2209.02001, 2022. URL https://arxiv.org/abs/2209.02001. 5

M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. de Oliveira Pinto, J. Kaplan, H. Edwards, Y. Burda,
N. Joseph, G. Brockman, A. Ray, R. Puri, G. Krueger, M. Petrov, H. Khlaaf, G. Sastry, P. Mishkin,
B. Chan, S. Gray, N. Ryder, M. Pavlov, A. Power, L. Kaiser, M. Bavarian, C. Winter, P. Tillet,
F. P. Such, D. Cummings, M. Plappert, F. Chantzis, E. Barnes, A. Herbert-Voss, W. H. Guss,
A. Nichol, A. Paino, N. Tezak, J. Tang, I. Babuschkin, S. Balaji, S. Jain, W. Saunders, C. Hesse,
A. N. Carr, J. Leike, J. Achiam, V. Misra, E. Morikawa, A. Radford, M. Knight, M. Brundage,
M. Murati, K. Mayer, P. Welinder, B. McGrew, D. Amodei, S. McCandlish, I. Sutskever, and
W. Zaremba. Evaluating large language models trained on code. CoRR, abs/2107.03374, 2021.
URL https://arxiv.org/abs/2107.03374. 7

Nicolas Chopin. Central limit theorem for sequential monte carlo methods and
its application to bayesian inference. The Annals of Statistics, 32(6):2385–2411,
2004. doi: 10.1214/009053604000000615. URL https://projecteuclid.
org/journals/annals-of-statistics/volume-32/issue-6/
Central-limit-theorem-for-sequential-Monte-Carlo-methods-and-its/
10.1214/009053604000000698.full. 2

Yann Dubois, Balázs Galambosi, Percy Liang, and Tatsunori B. Hashimoto. Length-controlled
alpacaeval: A simple way to debias automatic evaluators. arXiv preprint arXiv:2404.04475, 2024.
URL https://arxiv.org/abs/2404.04475. 7

Gonçalo R. A. Faria, Sweta Agrawal, António Farinhas, Ricardo Rei, José G. C. de Souza, and André
F. T. Martins. Quest: Quality-aware metropolis-hastings sampling for machine translation. In
NeurIPS, 2024. URL https://proceedings.neurips.cc/paper_files/paper/
2024/file/a221d22ff6a33599142c8299c7ed06bb-Paper-Conference.pdf.
3

Reza Gheissari, Eyal Lubetzky, and Yuval Peres. Exponentially slow mixing in the mean-field
swendsen–wang dynamics. arXiv preprint arXiv:1702.05797, 2017. 5

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in
LLMs via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025. 1, 2, 8

Andre He, Daniel Fried, and Sean Welleck. Rewarding the unlikely: Lifting GRPO beyond distri-
bution sharpening. arXiv preprint arXiv:2506.02355, 2025. 1

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the MATH dataset. arXiv
preprint arXiv:2103.03874, 2021. 1

Jingcheng Hu, Yinmin Zhang, Qi Han, Daxin Jiang, Xiangyu Zhang, and Heung-Yeung Shum.
Open-reasoner-zero: An open source approach to scaling up reinforcement learning on the base
model. arXiv preprint arXiv:2503.24290, 2025. 1, 2

Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brah-
man, Lester James V Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, et al. Tülu 3: Pushing frontiers
in open language model post-training. arXiv preprint arXiv:2411.15124, 2024. 2

10

https://arxiv.org/abs/2412.08905
https://arxiv.org/abs/2209.02001
https://arxiv.org/abs/2107.03374
https://projecteuclid.org/journals/annals-of-statistics/volume-32/issue-6/Central-limit-theorem-for-sequential-Monte-Carlo-methods-and-its/10.1214/009053604000000698.full
https://projecteuclid.org/journals/annals-of-statistics/volume-32/issue-6/Central-limit-theorem-for-sequential-Monte-Carlo-methods-and-its/10.1214/009053604000000698.full
https://projecteuclid.org/journals/annals-of-statistics/volume-32/issue-6/Central-limit-theorem-for-sequential-Monte-Carlo-methods-and-its/10.1214/009053604000000698.full
https://projecteuclid.org/journals/annals-of-statistics/volume-32/issue-6/Central-limit-theorem-for-sequential-Monte-Carlo-methods-and-its/10.1214/009053604000000698.full
https://arxiv.org/abs/2404.04475
https://proceedings.neurips.cc/paper_files/paper/2024/file/a221d22ff6a33599142c8299c7ed06bb-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/a221d22ff6a33599142c8299c7ed06bb-Paper-Conference.pdf

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy, Cyprien
de Masson d’Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl, Sven
Gowal, Alexey Cherepanov, James Molloy, Daniel Mankowitz, Esme Sutherland Robson, Push-
meet Kohli, Nando de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. Competition-level code
generation with AlphaCode. arXiv preprint arXiv:2203.07814, 2022. 1

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=v8L0pN6EOi. 7

Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H. Teller, and Ed-
ward Teller. Equation of state calculations by fast computing machines. Journal of Chemical
Physics, 21(6):1087–1092, 1953. doi: 10.1063/1.1699114. 5

Radford M Neal. Probabilistic inference using markov chain monte carlo methods. Department of
Computer Science, University of Toronto (review paper / technical report), 1993. 5

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to
follow instructions with human feedback. In NeurIPS, volume 35, pp. 27730–27744, 2022. 2

Mihir Prabhudesai, Lili Chen, Alex Ippoliti, Katerina Fragkiadaki, Hao Liu, and Deepak Pathak.
Maximizing confidence alone improves reasoning. arXiv preprint arXiv:2505.22660, 2025. URL
https://arxiv.org/abs/2505.22660. 2

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien
Dirani, Julian Michael, and Samuel R Bowman. GPQA: A graduate-level google-proof q&a
benchmark. In First Conference on Language Modeling, 2024. 1, 7

Scott C. Schmidler and Dawn B. Woodard. Lower bounds on the convergence rates of adaptive
mcmc methods. Technical report, Duke University / Cornell University, 2013. URL https:
//www2.stat.duke.edu/˜scs/Papers/AdaptiveLowerBounds_AS.pdf. 5

Rulin Shao, Shuyue Stella Li, Rui Xin, Scott Geng, Yiping Wang, Sewoong Oh, Simon Shaolei Du,
Nathan Lambert, Sewon Min, Ranjay Krishna, Yulia Tsvetkov, Hannaneh Hajishirzi, Pang Wei
Koh, and Luke Zettlemoyer. Spurious rewards: Rethinking training signals in RLVR. arXiv
preprint arXiv:2506.10947, 2025. 1, 2, 7

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseek-math: Advancing mathematical
reasoning through step-by-step exploration. arXiv preprint arXiv:2404.01140, 2024. 1, 2

Yuda Song, Julia Kempe, and Rémi Munos. Outcome-based exploration for LLM reasoning. arXiv
preprint arXiv:2509.06941, 2025. URL https://arxiv.org/abs/2509.06941. 1, 8

Pei-Hsin Wang, Sheng-Iou Hsieh, Shih-Chieh Chang, Yu-Ting Chen, Jia-Yu Pan, Wei Wei, and Da-
Chang Juan. Contextual temperature for language modeling. arXiv preprint arXiv:2012.13575,
2020. URL https://arxiv.org/abs/2012.13575. 3

Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Shiji Song, and Gao Huang. Does re-
inforcement learning really incentivize reasoning capacity in llms beyond the base model? arXiv
preprint arXiv:2504.13837, 2025. URL https://arxiv.org/abs/2504.13837. 1

Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Keqing He, Zejun Ma, and Junxian He. Sim-
plerlzoo: Investigating and taming zero reinforcement learning for open base models in the wild.
arXiv preprint arXiv:2503.18892, 2025. URL https://arxiv.org/abs/2503.18892. 2

Stephen Zhao, Rob Brekelmans, Alireza Makhzani, and Roger Grosse. Probabilistic inference in
language models via twisted sequential monte carlo. arXiv preprint arXiv:2404.17546, 2024.
URL https://arxiv.org/abs/2404.17546. 2

Xuandong Zhao, Zhewei Kang, Aosong Feng, Sergey Levine, and Dawn Song. Learning to reason
without external rewards. arXiv preprint arXiv:2505.19590, 2025. URL https://arxiv.
org/abs/2505.19590. 2

11

https://openreview.net/forum?id=v8L0pN6EOi
https://openreview.net/forum?id=v8L0pN6EOi
https://arxiv.org/abs/2505.22660
https://www2.stat.duke.edu/~scs/Papers/AdaptiveLowerBounds_AS.pdf
https://www2.stat.duke.edu/~scs/Papers/AdaptiveLowerBounds_AS.pdf
https://arxiv.org/abs/2509.06941
https://arxiv.org/abs/2012.13575
https://arxiv.org/abs/2504.13837
https://arxiv.org/abs/2503.18892
https://arxiv.org/abs/2404.17546
https://arxiv.org/abs/2505.19590
https://arxiv.org/abs/2505.19590

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 ADDITIONAL THEORETICAL DISCUSSION

Proposition 2. Power sampling upweights tokens with small support but high likelihood comple-
tions, while low-temperature sampling upweights tokens with large support but low likelihood com-
pletions.

Proof. Suppose we have sampled x0:t−1, and consider two choices of next-token xt and x′
t. Suppose

that the likelihood of sampling (x0, . . . , xt) under p is ε but has singular support; i.e., for only one
choice of x>t is p(x0, . . . , xt, . . . , xT) nonzero, so that p(x0, . . . , xt, . . . , xT) = ε. On the other
hand, suppose the likelihood of (x0, . . . , x

′
t) under p has mass ε′ uniformly distributed across a

support of size N ; i.e., there exist N completions x>t such that p(x0, . . . , x
′
t, . . . , xT) is nonzero

and has mass ε′

N .

If ε < ε′, then under the naı̈ve sampler, the relative marginal weights on xt and x′
t are εα and ε′α, so

the probability of choosing xt is downweighted relative to x′
t. However, for the power distribution,

the relative marginal weights are ppow(xt|x<t) = εα and ppow(x
′
t|x<t) =

ε′α

Nα−1 . Then, as long as
εα > ε′α

Nα−1 ⇐⇒ ε > ε′

N1−1/α , token xt will be upweighted relative to token x′
t. In particular,

since α ≥ 1, we have the inequalities ε′

N < ε′

N1−1/α < ε < ε′.

In other words, the likelihood mass on (x0, . . . , xt) can be less than the mass on (x0, . . . , x
′
t) under

p, but the sparse support implies that the completion for xt is of higher likelihood under than any
individual completion for x′

t, so the power distribution favors sampling xt over x′
t.

A.2 MORE QUALITATIVE EXAMPLES

Can you solve the following math problem? Write 3
20 as a decimal. Please reason step by step,

and put your final answer within \boxed{{}}. Correct answer: 0.15

System Answer

Ours

To convert the fraction 3
20

to a decimal, we can follow these steps:
1. Identify the numerator and the denominator of the fraction. In this case, the numerator
is 3 and the denominator is 20. 2. Divide the numerator by the denominator. In this case,
we divide 3 by 20. 3. Perform the division. The result is 0.15.
Therefore, the fraction 3

20
as a decimal is 0.15 .

GRPO

To convert the fraction 3
20

to a decimal, we can follow these steps:
1. Understand the fraction: The fraction 3

20
means 3 divided by 20.

2. Perform the division: We need to divide 3 by 20. Since 3 is less than 20, we will add a
decimal point and zeros to 3 to make the division possible.
3. Set up the division: Write 3 as 3.000 (adding three zeros for precision).
4. Divide: - 20 goes into 30 once (since 20 × 1 = 20). - Subtract 20 from 30 to get a
remainder of 10. - Bring down the next 0 to make it 100. - 20 goes into 100 five times
(since 20× 5 = 100). - Subtract 100 from 100 to get a remainder of 0.
5. Combine the results: The quotient from the division is 0.15.
Therefore, the decimal representation of 3

20
is 0.15 .

Table 3: Comparison on MATH500: Qwen2.5-Math-7B. We present an example where our method and GRPO
are correct.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

The Fib4 number sequence is a sequence similar to the Fibonacci sequence defined as: fib4(0)=0,
fib4(1)=0, fib4(2)=2, fib4(3)=0, and for n ≥ 4, fib4(n) = fib4(n-1) + fib4(n-2) + fib4(n-3) +
fib4(n-4). Write a function to efficiently compute the n-th element without recursion.

System Completion Passed

Ours

Base cases
if n == 0:

return 0
elif n == 1:

return 0
elif n == 2:

return 2
elif n == 3:

return 0

Initialize the first four elements
fib4_values = [0, 0, 2, 0]

Compute the rest of the sequence iteratively
for i in range(4, n+1):

next_value = (fib4_values[i-1] + fib4_values[i
-2] +

fib4_values[i-3] + fib4_values[i
-4])
fib4_values.append(next_value)

Return the n-th element
return fib4_values[n]

true

GRPO
a, b, c, d = 0, 0, 2, 0
for _ in range(n):

a, b, c, d = b, c, d, a + b + c + d
return d

false

Table 4: HumanEval comparison between our .

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Can you solve the following math problem? What integer n satisfies 0 ≤ n < 18 and
n ≡ −11213141 (mod 18) ?

Please reason step by step, and put your final answer within \boxed{{}}. Correct answer: 13

Method Answer

Ours

First, we perform the division of 11213141 by 18:
11213141÷ 18 ≈ 622952.277777 . . .

The integer part of the quotient is 622952. Now, we multiply 622952 by 18 to find the
product:

622952× 18 = 11213136

Next, we subtract this product from 11213141 to find the remainder:
11213141− 11213136 = 5

So, the remainder when 11213141 is divided by 18 is 5. This means:
11213141 ≡ 5 (mod 18)

Therefore:
−11213141 ≡ −5 (mod 18)

Since we need a non-negative remainder, we convert −5 to a positive equivalent by adding
18:

−5 + 18 = 13

Thus:
−11213141 ≡ 13 (mod 18)

The integer n that satisfies 0 ≤ n < 18 and n ≡ −11213141 (mod 18) is: 13 .

GRPO

Step 1: Find the remainder when 11213141 is divided by 18. We can use the property of
modular arithmetic that states a ≡ b (mod m) if and only if a mod m = b mod m.
So, we need to compute 11213141 mod 18.
To simplify this, we can use the fact that the remainder of a number when divided by 18 is
the same as the remainder of the sum of its digits when divided by 18 (although this is not
always the most efficient method, it can be used here for simplicity).
First, let’s sum the digits of 11213141:

1 + 1 + 2 + 1 + 3 + 1 + 4 + 1 = 14.

Now, we need to find the remainder when 14 is divided by 18. Since 14 is less than 18, the
remainder is simply 14. Therefore,

11213141 ≡ 14 (mod 18).

Step 2: Find the remainder when −11213141 is divided by 18. Since 11213141 ≡ 14
(mod 18), it follows that

−11213141 ≡ −14 (mod 18).

We need to convert −14 to a positive remainder between 0 and 17. To do this, we add 18
to −14:

−14 + 18 = 4.

Therefore,
−11213141 ≡ 4 (mod 18).

The integer n that satisfies 0 ≤ n < 18 and n ≡ −11213141 (mod 18) is 4 .

Table 5: MATH500 comparison between our sampling algorithm and GRPO for Qwen2.5-Math-7B. Here is an
example where GRPO gets an incorrect answer, while our sampling algorithm succeeds. Our sample answer
uses a distinct method altogether.

14

	Introduction
	Related Works
	Preliminaries
	MCMC Sampling for Power Distributions
	Reasoning with Power Distributions
	The Metropolis-Hastings Algorithm
	Power Sampling with Autoregressive MCMC

	Experiments
	Experimental Setup
	Results
	Analysis

	Conclusion
	Appendix
	Additional Theoretical discussion
	More Qualitative Examples

