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ABSTRACT

Frontier reasoning models have exhibited incredible capabilities across a wide
array of disciplines, driven by posttraining large language models (LLMs) with
reinforcement learning (RL). However, despite the widespread success of this
paradigm, much of the literature has been devoted to disentangling truly novel be-
haviors that emerge during RL but are not present in the base models. In our work,
we approach this question from a different angle, instead asking whether compa-
rable reasoning capabilites can be elicited from base models at inference time,
without any additional training. Inspired by Markov chain Monte Carlo (MCMC)
techniques for sampling from sharpened distributions, we propose a simple it-
erative sampling algorithm leveraging the base models’ own likelihoods. Over
different base models, we show that our algorithm offers substantial boosts in rea-
soning that nearly match and can even outperform those from RL on a wide vari-
ety of single-shot tasks, including MATH500, HumanEval, and GPQA. Crucially,
our method does not require training, curated datasets, or a verifier, suggesting a
general applicability beyond easily verifiable domains.

1 INTRODUCTION

Reinforcement learning (RL) has become the dominant paradigm for enhancing the reasoning ca-
pabilities of large language models (LLMs) Guo et al. (2025); Hu et al. (2025). Equipped with a
reward signal that is typically automatically verifiable, popular RL techniques have been success-
fully applied to posttrain frontier models, leading to sizeable performance gains in domains like
math, coding, and science Hendrycks et al. (2021); Li et al. (2022); Rein et al. (2024).

Despite the widespread empirical success of RL for LLMs, a large body of literature has centered
around the following question: are the capabilities that emerge during RL posttraining fundamen-
tally novel behaviors that are not present in the base models? This is the question of distribution
sharpening He et al. (2025); Shao et al. (2025); Yue et al. (2025): that is, whether the posttrained
distribution is simply a “sharper” version of the base model distribution, instead of placing mass on
reasoning traces the base model is unlikely to generate.

Several works point towards the difficulty in learning new capabilities with RL posttraining. He et al.
(2025); Song et al. (2025) compare the pass@Fk scores of base models with posttrained models, find-
ing that for large &, base models actually outperform while the latter suffer from degraded generation
diversity. Yue et al. (2025) also notes that the reasoning traces post-RL have higher likelihoods un-
der the base model, seemingly drawing from existing high likelihood capabilities. Regardless, the
advantage of RL posttraining for single-shot reasoning has remained, as of yet, undeniable.

In this paper, we present a surprising result: sampling directly from the base model can achieve
single-shot reasoning capabilites on par with those from RL.

We propose a sampling algorithm for base models that leverages additional compute at inference
time, achieving single-shot performance that nearly matches RL posttraining on in-domain reason-
ing tasks and can even outperform on out-of-domain reasoning tasks. We benchmark specifically
against Group Relative Policy Optimization (GRPO), which is the standard RL algorithm for en-
hancing LLM reasoning Shao et al. (2024).

Crucially, our algorithm is training-free, dataset-free, and verifier-free, avoiding some of the inher-
ent weaknesses of RL methods including extensive hyperparameter sweeps to avoid training insta-
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Figure 1: Our sampling algorithm can match and outperform RL posttraining. Left: we compare our sam-
pling algorithm (ours) against the base model (base) and RL posttraining (GRPO) on three verifiable reasoning
tasks (MATHS00, HumanEval, GPQA). Right: we compare them on an unverifiable general task (AlpacaE-
val2.0). Our algorithm achieves comparable performance to GRPO within the posttraining domain (MATHS500)
but can outperform on out-of-domain tasks such as HumanEval and AlpacaEval.

bilities, the need to curate a diverse and expansive posttraining dataset, and the lack of guaranteed
access to a ground truth verifier/reward signal Prabhudesai et al. (2025).

Our contributions can be summarized as follows:

i) We introduce the power distribution as a useful sampling target for reasoning tasks. Since it
can be explicitly specified with a base LLM, no additional training is required.

ii) We further introduce an approximate sampling algorithm for the power distribution using a
Markov chain Monte Carlo (MCMC) algorithm that iteratively resamples token subsequences
according to their base model likelihoods.

ili) We empirically demonstrate the effectiveness of our algorithm over a range of models
(Qwen2.5-Math-7B, Qwen2.5-7B, Phi-3.5-mini-instruct) and reasoning tasks (MATH500, Hu-
manEval, GPQA, AlpacaEval 2.0). Our results show that sampling directly from the base
model can achieve results on par with GRPO. In fact, for some out-of-domain tasks, our algo-
rithm consistently outperforms the RL baseline.

Our results collectively illustrate that existing base models are much more capable at single-shot
reasoning than current sampling methods reveal.

2 RELATED WORKS

Reinforcement learning for LLMs. RL has been instrumental in posttraining LLMs. Early on, RL
with human feedback (RLHF) Ouyang et al. (2022) was developed as a technique to align LLMs with
human preferences using a trained reward model. Recently, RL with verifiable rewards (RLVR) has
emerged as a powerful new posttraining technique, where many works Guo et al. (2025); Lambert
etal. (2024); Hu et al. (2025); Zeng et al. (2025) discovered that a simple, end-of-generation reward
given by an automated verifier could substantially enhance performance on difficult reasoning tasks
in mathematics and coding. The Group Relative Policy Optimization (GRPO) algorithm was at the
center of these advances Shao et al. (2024). Building off of this success, many subsequent works
have examined using reward signals derived from internal signals such as self-entropy Zhao et al.
(2025), confidence Prabhudesai et al. (2025), and even random rewards Shao et al. (2025). Similar
to these works, our paper examines base model likelihoods as a mechanism for improving reasoning
performance, but crucially, our technique is training-free.

Autoregressive MCMC sampling with LLMs. Prior works have explored integrating classic
MCMC techniques with autoregressive sampling. Many settings including red-teaming, prompt-
engineering, and personalized generation can be framed as targeting sampling from the base LLM
distribution but tilted towards an external reward function. Zhao et al. (2024) proposes learning
intermediate value functions that are used in a Sequential Monte Carlo (SMC) framework Chopin
(2004), where multiple candidate sequences are maintained and updated according to their expected
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future reward. Similarly, Faria et al. (2024) proposes a Metropolis-Hastings (MH) algorithm, which
instead of maintaining multiple candidates performs iterative resampling, again updating according
to expected reward. Methodologically, our sampling algorithm is most similar to this latter work,
but the crucial difference is that our target sampling distribution is completely specified by the base
LLM, avoiding the need for an external reward.

3 PRELIMINARIES

Let X be a finite vocabulary of tokens, and let X’ T denote the set of finite sequences of tokens zg.r =
(xo,x1,...,27), where z; € X foralliand T' € Z> is some nonnegative integer. For convenience,
for a given ¢, let z; = (xo,...,24—1) and x>y = (T441, ..., 27), with similar definitions for x<;
and x>¢. In general, x refers to a token sequence .7, where 1" is implicitly given.

Then an LLM defines a distribution p over token sequences X7 by autoregressively learning the
conditional token distributions p(x:|x <) for all ¢, giving the joint distribution via the identity

T
plaor) = [ [ plailwa). ()
t=0

To sample a sequence from p, we simply sample from the LLM token by token using the conditional
distributions, which by (1) directly samples from the joint distribution.

4 MCMC SAMPLING FOR POWER DISTRIBUTIONS

In this section, we introduce our sampling algorithm for
base models. Our core intuition is derived from the notion
of distribution sharpening posed in Section 1. Sharpen-
ing a reference distribution refers to reweighting the dis-
tribution so that high likelihood regions are further up-
weighted while low likelihood regions are downweighted,
biasing samples heavily towards higher likelihoods under
the reference. Then if RL posttrained models really are
just sharpened versions of the base model, we should be
able to explicitly specify a target sampling distribution that
achieves the same effect.

p* (@=4.0)

We organize this section as follows. Section 4.1 presents Figure 2: A toy example of distribution
this target sharpened distribution and provides some math- ~Sharpening. Here p is a miXt}llre of Gaus-
ematical motivation for why its samples are amenable for Sians. which we plot against p® (o = 4.0).
reasoning tasks. Section 4.2 introduces a general class of Markov chain Monte Carlo (MCMC) al-
gorithms aimed at actually sampling from this target distribution, and finally, Section 4.3 details our
specific implementation for LLMs.

4.1 REASONING WITH POWER DISTRIBUTIONS

One natural way to sharpen a distribution p is to sample from the power distribution p®. Since
p(x)* _ p(x)
p(x')* ~ p(x')
it follows that exponentiating p increases the relative weight on higher likelihood sequences (x)
while decreasing the relative weight on lower likelihood ones (x”) (see Figure 2 for a visualization).

p(x) > p(x') = (o € [1,00]), 2)

A related but well-known sharpening strategy is low-temperature sampling Wang et al. (2020),
which exponentiates the conditional next-token distributions at each step:

px|xe—1 ... x0)"
wex (T Te1 - 30)*
where the temperature is T = 1/c. A common misconception is that sampling with (3) over T

tokens is equivalent to sampling from p®; however, this is false in a subtle yet crucial way, as we
illuminate in the following.

ptemp(zt‘IO o xt—l) = Z 5 (3)

Proposition 1. Low-temperature sampling does not sample from the power distribution p®.
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Proof. We show that the associated conditional next-token distributions are distinct at each timestep
t. The conditional distribution on z; for p® is given by

Zx>tp(x0,...,:ct,...,xq~)

Dpow (Te|To - .- T—1) = . 4
po Zw>tp( 0 .-,Z't,-..,J?T)a
Using Bayes rule
p(ZTo,...,T Z p(x07"'7$ta"'axT)
p(@i|i-1 ... x0) = ( ) _ Lo : (5)
p(zo, ..., Tr—1) Zthp(xo,‘..,:ct,.‘.,xT)
we can rewrite the low-temperature marginal (3) as
«
(wa p(xo, .. Ty :vT))
ptemp(xt|$0 cee xt—l) = 6)

Zx; (Zl’>t p($07 ey LTy ,.’ET))

Ignoring normalizations for clarity, the relative weight on token x; for sampling from p® is given by
a sum of exponents

ppow $t|.’17<t Zp LOs vy Lty T)Ol' (7)

T>t
Meanwhile, the relative weight for low-temperature sampling is given by an exponent of sums

«
Premp(e| 1) o (pro,... T>>. ®)

>t
Since the relative weights for next-token prediction for each sampling strategy are distinct, a simple
expansion confirms that the distribution on sequences given by low-temperature sampling is not the
same as the one given by p“. O

One intuitive way to understand this difference is that low-temperature sampling does not account
for how exponentiation sharpens the likelihoods of “future paths” at time step ¢, instead “greedily”
averaging all these future likelihoods (exponent of sums (8)). On the other hand, sampling from p®
inherently accounts for future completions as it exponentiates all future paths (sum of exponents (7))
before computing the weights for next-token prediction. This has the following consequence:

Observation 1. The power distribution upweights tokens with few but high likelihood future paths,
while low-temperature sampling upweights tokens with several but low likelihood completions.

Example 1. We can observe this phenomenon with a simple example. Let us consider the token
vocabulary X = {a, b} and restrict our attention to two-token sequences (zo, z1): aa, ab, ba, bb. Let
p(aa) = 0.00, p(ab) = 0.40, p(ba) = 0.25, p(bb) = 0.25,

so that
p(zo = a) = 0.40, p(zo = b) = 0.50.
Let a = 2.0. Under p®, we have
Ppow (70 = a) o 0.00> + 0.40% = 0.160,  ppow(zo = b) o< 0.25% + 0.25% = 0.125,
so p™ prefers sampling a over b. Under low-temperature sampling,
Premp(T0 = @) o< (0.00 + 0.40)? = 0.160, Premp (0 = b) o (0.25 + 0.25)% = 0.250,

preferring sampling b over a. If p® samples (o = a, there is only one future path with likelihood
0.40. If pemp samples xo = b, there are two future paths ba, bb, but either choice has likelihood 0.25.

In other words, even though a has lower conditional likelihood under both p and piemp, p™ upweights
a and samples the highest likelihood two-token sequence. b has many future paths contributing to
a higher likelihood under p and piemp, but leads to low likelihood sequences. We provide a stronger
formalization of this phenomenon in Appendix A.1.

Thus, sampling from p® encourages sampling tokens which have fewer but higher likelihood “future
paths”, as opposed to tokens with several lower likelihood completions. This type of behavior is
immensely valuable for reasoning tasks, as embedded within this target distribution is an implicit
bias towards planning for high likelihood future tokens.
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Figure 3: Illustrating Metropolis-Hastings with random resampling. A random index ¢ is selected and a new
candidate is generated by resampling. Based on the relative likelihoods, the candidate is accepted or rejected,
and the process repeats.

4.2 THE METROPOLIS-HASTINGS ALGORITHM

Now that we have seen how sampling from p® can in theory assist the underlying LLM’s ability
to reason, our aim now turns towards proposing an algorithm to accurately sample from it. Given
an LLM p, we have access to the values p® over any sequence length; however, these values are
unnormalized. Direct sampling from the true probabilities requires normalizing over all sequences
(%0, ...,z7) € XT, which is computationally intractable.

To get around this, we invoke a Markov Chain Monte Carlo (MCMC) algorithm known as
Metropolis-Hastings (MH) Metropolis et al. (1953), which targets exactly what we want: approx-
imate sampling from an unnormalized probability distribution. The MH algorithm constructs a

Markov chain of sample sequences (x°,x*, ..., x™) using an arbitrary proposal distribution q(x|x")
to select the next candidate x**!. With probability
(e . %
A(x,x") = min {1, PX)@X X (X) 4(x |X) } , 9)
p*(x') - q(x|x?)

candidate x is accepted as x'*!; otherwise, MH sets x'*! = x?!. This algorithm is especially
convenient as it only requires the relative weights given by p® (as the normalization weights in A
cancel) and works with any generic but tractable sampler ¢ with minimal restrictions. Remarkably,
for large enough n, this process converges to sampling from the targer distribution p™ under quite
minimal conditions on the proposal distribution Neal (1993).

Consider the following family of random resampling proposal distributions (see Figure 3). Let
Dprop bE a proposal LLM. With uniform probability %, select a random ¢ € [1,7T] and resample
the sequence starting at index ¢ using pprop. Then the transition likelihood g(x|x") is simply the
likelihood of the resampling. Moreover, q(x|x) is easy to calculate by symmetry, since we can treat
x" as a resampled version of x.

With the flexibility endowed by Metropolis-Hastings, we can choose the proposal LLM pyp to be
any LLM with any sampling strategy (e.g., low-temperature sampling).

4.3 POWER SAMPLING WITH AUTOREGRESSIVE MCMC

A direct implementation of Metropolis-Hastings for LLMs would involve initializing with a sampled
token sequence of length 7', subsequently generating new candidates of length 7" with (9) over
many, many iterations. This process is computationally expensive, however, due to the repeated, full
sequence inference calls to the LLM.

In fact, the main downside to MCMC algorithms in practice is the potential for an exponential mixing
time Gheissari et al. (2017), where a poor choice of initialization or proposal distribution can result
in an exponentially large number of samples required before convergence to the target distribution.
This problem is exacerbated if the sample space has high dimensionality Bandeira et al. (2022);
Schmidler & Woodard (2013), which is precisely exhibited by the sequence space of tokens X7,
especially for long sequences/large values of T'.

To remedy this, we propose an algorithm that leverages the sequential structure of autoregressive
sampling. We define a series of intermediate distributions which we progressively sample from, until
converging to the target distribution p®. In particular, samples from one intermediate distribution
initiate a Metropolis-Hastings process for the next, helping avoid pathological initializations.
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Algorithm 1: Power Sampling for Autoregressive Models

Input : base p; proposal pp.op; power a; length T°

Hyperparams: block size B; MCMC steps Nyviomc

Output t(zo,...,xp) ~ p®

Notation: Define the unnormalized intermediate target
me(TokB) X p(Tokn)®

fork < Oto[L] —1do

Given prefix x(., 5, we wish to sample from 7 ;. Construct initialization x° by extending
autoregressively with pyrop:

:U,EO) ~ ppmp(mt | x<t), forkB+1<t<(k+1)B.
Set the current state x < x°.

for n < 1 to Nycyvic do
Sample an index m € {1,..., (k + 1) B} uniformly.

Construct proposal sequence x’ with prefix xg.,,—1 and resampled completion:
Ty ~ Pprop (T4 | <t), form <t<(k+1)B.
Compute acceptance ratio (9)

Ax',x) « min{l 1 (X') | Pprop(X | X') }

Tk (X) Pprop (X/ ‘ X)

Draw u ~ Uniform(0, 1);
if u < A(x’,x) then accept and set x < x’
end
Set wg.(x+1)B < X to fix the new prefix sequence for the next stage.

end
return xg.7

Fix block size B and proposal LLM ppp, and consider the sequence of (unnormalized) distributions

0 — p(zo,...,25)* — p(xoy...,228)" — -+ — p(xo,...,27)%, (10)

where p(xo, ..., z,p) denotes the joint distribution over token sequences of length kB, for any k.
For convenience, let 7y, denote the distribution given by

Tk (zo:kB) X p(To:kB)" (an

Suppose we have a sample from 7. To obtain a sample from 74, we initialize a Metropolis-
Hastings process by sampling the next B tokens x g4 1:(k+1)B With pprop. We subsequently run the
MCMC sampling procedure for Nyvicmce steps, using the random resampling proposal distribution g
from the previous section. The full details are presented in Algorithm 1.

Note that Algorithm 1 is single-shot: even though multiple inference calls are made, the decision to
accept vs. reject new tokens is made purely by base model likelihoods to simulate sampling a single
sequence from p®. We can interpret this as a new axis for inference-time scaling, as we expend
additional compute during sampling to obtain a higher quality/likelihood sample.

To quantify the scaling, we can estimate the average number of tokens generated by Algorithm 1.
Note that each candidate generation step when sampling from 7 (x. g resamples an average of kTB
tokens, Nyvcmc times. Summing over all k&, the expected number of tokens generated is

LB _ NuemcT?

Euokens = Nucme >, ——
— 2 4B

The key tradeoff here is between the block size B and number of MCMC steps Nyvcmc. A larger B
requires larger “jumps” between intermediate distributions, requiring a larger Nyicmc to adequately
transition. In Section 5, we find an empirical value for B that makes Algorithm | performant for
relatively small values of Nyiemc.-

(12)
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MATH500 HumanEval GPQA  AlpacaEval2.0

Qwen2.5-Math-7B

Base 0.496 0.329 0.116 1.61
Low-temperature 0.690 0.512 0.207 2.09
Power Sampling (ours) 0.748 0.573 0.232 2.88
GRPO (MATH) 0.785 0.537 0.253 2.38
Qwen2.5-7B
Base 0.498 0.329 0.217 7.05
Low-temperature 0.628 0.524 0.253 5.29
Power Sampling (ours) 0.706 0.622 0.283 8.59
GRPO (MATH) 0.740 0.561 0.328 7.62
Phi-3.5-mini-instruct
Base 0.400 0.213 0.177 14.82
Low-temperature 0.478 0.128 0.162 18.15
Power Sampling (ours) 0.508 0.732 0.263 17.65
GRPO (MATH) 0.406 0.134 0.202 16.74

Table 1: Power sampling (ours) matches and even outperforms GRPO across model families and tasks.
‘We benchmark the performance of our sampling algorithm on MATH500, HumanEval, GPQA, and AlpacaEval
2.0. We bold the scores of both our method and GRPO, along with the maximum score per column. Across
models, we see that power sampling is comparable to GRPO on in-domain reasoning (MATH500), and can
outperform GRPO on out-of-domain tasks.

5 EXPERIMENTS
5.1 EXPERIMENTAL SETUP

Evaluation. We use a standard suite of reasoning benchmarks ranging across mathematics, coding,
and STEM (MATHS500, HumanEval, GPQA), along with a non-verifiable benchmark (AlpacaEval
2.0) evaluating general helpfulness. We evaluate all of our methods and baselines single-shot; i.e.,
on one final response string.

* MATHS00: The MATH dataset Lightman et al. (2024) consists of competition math problems
spanning seven categories including geometry, number theory, and precalculus. There are 12500
problems total, with 7500 training problems and 5000 test problems. MATHS500 is a specific
randomly chosen subset of the test set standardized by OpenAl.

* HumanEval: HumanEval is a set of 164 handwritten programming problems covering algorihtms,
reasoning, mathematics, and language comprehension Chen et al. (2021). Each problem has an
average of 7.7 associated unit tests, where solving the problem corresponds to passing all unit
tests.

* GPQA: GPQA Rein et al. (2024) is a dataset of multiple-choice science questions (physics, chem-
istry, and biology) which require advanced reasoning skills to solve. We use subset GPQA Dia-
mond for evaluation, which consists of 198 questions which represent the highest quality subset
of the GPQA dataset.

» AlpacaEval 2.0: The AlpacaEval dataset is a collection of 805 prompts Dubois et al. (2024) that
gauge general helpfulness with questions asking e.g., for movie reviews, recommendations, and
reading emails. The model responses are graded by an automated LLM judge (GPT-4-turbo),
which determines a preference for the model responses over those from a baseline (also GPT-4-
turbo). The resulting score is a win rate of model responses normalized for the length of the model
response.

Models. To demonstrate the efficacy of our sampling algorithm, we use the base models Qwen?2.5-
Math-7B, Qwen2.5-7B, and Phi-3.5-mini-instruct. For our RL baselines, we use the implementation
of GRPO in Shao et al. (2025), which posttrains these models on the MATH training split. For both
the Qwen2.5 models, we use the default hyperparameters used to benchmark their performance in
Shao et al. (2025). For the Phi-3.5 model, we use a set of hyperparameters selected from Abdin et al.
(2024) that avoids training instabilities and converges to improvement over the base model over a
large number of epochs.

Sampling Algorithm. For our implementation of power sampling (Algorithm 1), we set the max-
imum 7" to be T,.x = 3072 (termination can happen earlier with an EOS token) and block size
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Filter an input list of strings only for ones that start with a given prefix. (Phi-3.5-mini-instruct: HumanEval)

Method Response Passed

return [s for s in strings

Ours if s.startswith (prefix) ]

true

return [string for string in strings if
GRPO e 7 J

string.startswith (£’ {prefix}’*2)] false

Table 2: Sample responses on HumanEval: Phi-3.5-mini-instruct. We present an example where our method
solves a simple coding question, but GRPO does not.

B = 16. Empirically, we find o = 4.0 coupled with a proposal LLM pyp;, chosen as the base model
with sampling temperature 1/« to be most performant for reasoning tasks. For AlpacaEval 2.0, we
find that having a proposal distribution of higher temperature (7 = 0.5) improves performance.

5.2 RESULTS

Main results. We display our main results in Table 1. Across base models of different families,
our sampling algorithm achieves massive, near-universal boosts in single-shot accuracies and scores
over different reasoning and evaluation tasks that reach, e.g., up to +51.9% on HumanEval with
Phi-3.5-mini and +25.2% on MATH500 with Qwen2.5-Math. In particular, on MATH500, which
is in-domain for RL posttraining, power sampling achieves accuracies that are on par with those
obtained by GRPO. Furthermore, on out-of-domain reasoning, our algorithm again matches GRPO
on GPQA and actually outperforms on HumanEval by up to +59.8%. Similarly, power sampling
consistently outperforms on the non-verifiable AlpacaEval 2.0, suggesting a generalizability of our
boosts to domains beyond verifiability.

The surprising success of this fundamentally simple yet training-free sampling algorithm under-
scores the latent reasoning capabilities of existing base models.

5.3 ANALYSIS

Qualitative attributes of reasoning. We analyze how the reasoning characteristics of power sam-
pling relate to those of GRPO. We present an example in Table 2, with further examples in Appendix
A.2. These samples collectively illustrate that our sampling algorithm is able to find distinct reason-
ing traces from GRPO.

At the same time, there are some striking similarities. By design, power sampling targets sampling
higher likelihood sequences from the base model. In Figure 4, the left graph plots a histogram of
the log likelihoods (normalized by length) of base model, power sampling, and GRPO responses on
MATHS500, where likelihoods are taken relative to the Qwen2.5-Math-7B base model. Our method
samples from higher likelihood regions of the base model, as intended, but still maintains noticeable
spread. Meanwhile, GRPO samples are heavily concentrated at the highest likelihood peak. This
aligns with the observation that RL posttraining strongly sharpens the base model distribution at the
expense of diversity Song et al. (2025). While Section 4.1 only heuristically relates better reasoning
performance to higher likelihood sampling, Figure 4 illustrates empirically that correct reasoning
traces fall in higher likelihood regions of the base model distribution.

We also plot the base model confidence of MATHS500 responses, defined to be the negative entropy
(uncertainty) of the token sequence. The right plot of Figure 4 demonstrates that our method’s and
GRPO responses sample from similarly high confidence regions from the base model, which again
correspond to regions of higher likelihood and correct reasoning.

Finally, another defining characteristic of RL-posttraining is long-form reasoning Guo et al. (2025),
where samples tend to exhibit longer responses. On MATHS500, Qwen2.5-Math-7B averages a
response length of 600 tokens, while GRPO averages 671 tokens. Surprisingly, power sampling
achieves a similar average length of 679 tokens, without explicitly being encouraged to favor longer
generations. This emerges naturally from the sampling procedure.

The effect of power distributions. The two most important hyperparameters for power sampling
are the choice of o and the number of MCMC (resampling) steps during sequence generation
Nmemce. At the extremes, choosing o« = 1.0 samples from the base model directly, while taking
a — oo has the effect of deterministically accepting any resampled sequence that strictly increases
the likelihood. Of course, even though higher base model likelihoods correlate with better reasoning
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Figure 4: Base model (Qwen2.5-Math-7B) likelihoods and confidences for MATHS00 responses. Left:
We plot the log likelihoods (relative to the base model) of original, power sampling, and GRPO responses
over MATHS500. Right: We do the same but for confidences relative to the base model. We observe that GRPO
samples from the highest likelihood and confidence regions with power sampling close behind, which correlates
with higher empirical accuracy.

a=1.0 EEE =100 —e— Qwen2.5-Math-7B
W a=20 W o= —=— Qwen2.5-7B
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MATHS00 Accuracy (%)
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0l
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Figure 5: Effect of hyperparameters on power sampling. Left: We plot MATHS500 accuracy across model
families for various values of a.. Right: We plot the increase in accuracy of power sampling on Qwen models
as the number of MCMC steps increases.

(Figure 4), directly optimizing for likelihood is not necessarily optimal for reasoning, suggesting an
ideal intermediate value of a.

In Figure 5, we display MATHS500 accuracies across various values of o and find that an intermediate
a = 4.0 outperforms other values, as expected. Noticeably, the accuracies of power sampling remain
relatively stable beyond o > 2.0, suggesting that power sampling in practice is relatively robust to
the choice of a.

Test-time scaling with MCMC steps. On the other hand, Nyicmce toggles the inference-time com-
pute expended by our algorithm, providing a natural axis for test-time scaling. In Section 4.3 we
raised the notion of a mixing time, or the number of MCMC steps required before adequately sam-
pling from the target distribution. In our case, we expect that the fewer MCMC steps we take, the
further our algorithm samples from the target p©.

We plot performance dependence on Nycmc in Figure 5 and notice a steady increase in accuracy un-
til Nmeme = 10, beyond which accuracy stabilizes, as expected. The accuracy difference from using
fewer MCMC steps is noticeable but no more than 3-4% between Nycme = 2 and Nyieme = 10.
However, the jump in accuracy by using at least two steps as opposed to none is substantial (3-4%).

6 CONCLUSION

In this work, we present an algorithm that samples directly from a base model without any addi-
tional training or access to an external signal, achieving a single-shot reasoning performance that
is on par with, and sometimes even better than, that of a state-of-the-art RL posttraining algorithm.
Our results suggest that base model capabilities are underutilized at sampling time and point towards
a close relationship between high likelihood regions of the base model and strong reasoning capabil-
ities. Employing additional compute at sampling-time with a stronger understanding of base model
capabilites offers a promising direction for expanding the scope of reasoning beyond verifiability.
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A APPENDIX

A.1 ADDITIONAL THEORETICAL DISCUSSION

Proposition 2. Power sampling upweights tokens with small support but high likelihood comple-
tions, while low-temperature sampling upweights tokens with large support but low likelihood com-
pletions.

Proof. Suppose we have sampled x¢.;—1, and consider two choices of next-token z; and x}. Suppose
that the likelihood of sampling (zo, .. ., z;) under p is £ but has singular support; i.e., for only one
choice of z~; is p(xo, ..., Zt, ..., o) nonzero, so that p(zog,...,&t,...,27) = £. On the other
hand, suppose the likelihood of (zg,...,z}) under p has mass ¢’ uniformly distributed across a
support of size N i.e., there exist N completions z~; such that p(zo,...,},...,2r) is nonzero

and has mass EN/

If £ < &, then under the naive sampler, the relative marginal weights on z; and } are e* and €', so
the probability of choosing x; is downweighted relative to x;. However, for the power distribution,
the relative marginal weights are ppow (z¢|2<¢) = € and ppow (@}|T<t) = NET: Then, as long as
e > % = > lei,l/a, token z; will be upweighted relative to token x}. In particular,
since o > 1, we have the inequalities 5 < ﬁ <e<eég.

In other words, the likelihood mass on (o, . .., 2:) can be less than the mass on (zo, . . ., }) under
p, but the sparse support implies that the completion for x; is of higher likelihood under than any
individual completion for z}, so the power distribution favors sampling z; over ;. O

A.2 MORE QUALITATIVE EXAMPLES

Can you solve the following math problem? Write % as a decimal. Please reason step by step,

and put your final answer within \boxed{{}}. Correct answer:

System Answer

To convert the fraction % to a decimal, we can follow these steps:

1. Identify the numerator and the denominator of the fraction. In this case, the numerator
Ours is 3 and the denominator is 20. 2. Divide the numerator by the denominator. In this case,

we divide 3 by 20. 3. Perform the division. The result is 0.15.

Therefore, the fraction % as a decimal is .

To convert the fraction % to a decimal, we can follow these steps:

1. Understand the fraction: The fraction % means 3 divided by 20.

2. Perform the division: We need to divide 3 by 20. Since 3 is less than 20, we will add a
decimal point and zeros to 3 to make the division possible.

3. Set up the division: Write 3 as 3.000 (adding three zeros for precision).

4. Divide: - 20 goes into 30 once (since 20 x 1 = 20). - Subtract 20 from 30 to get a
remainder of 10. - Bring down the next 0 to make it 100. - 20 goes into 100 five times
(since 20 x 5 = 100). - Subtract 100 from 100 to get a remainder of 0.

5. Combine the results: The quotient from the division is 0.15.

Therefore, the decimal representation of 2"—0 is .

GRPO

Table 3: Comparison on MATH500: Qwen2.5-Math-7B. We present an example where our method and GRPO
are correct.
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The Fib4 number sequence is a sequence similar to the Fibonacci sequence defined as: fib4(0)=0,
fib4(1)=0, fib4(2)=2, fib4(3)=0, and for n > 4, fib4(n) = fib4(n-1) + fib4(n-2) + fib4(n-3) +
fib4(n-4). Write a function to efficiently compute the n-th element without recursion.

System Completion Passed

# Base cases
if n == 0:
return 0
elif n ==
return 0
elif n == 2:
return 2
elif n ==
return 0

# Initialize the first four elements
Ours fib4_values = [0, 0, 2, 0] true

# Compute the rest of the sequence iteratively
for i in range (4, n+l):
next_value = (fib4_values[i-1] + fib4_values|[i
-2] +
fib4_values([i-3] + fib4_values([i
-41)
fib4_values.append (next_value)

# Return the n-th element
return fib4_values|[n]

a, b, ¢, d=20, 0, 2, 0

for _ in range(n):
GRPO a, b, c, d=Db, ¢, d, a+b+c+d false

return d

Table 4: HumanEval comparison between our .
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Can you solve the following math problem? What integer n satisfies 0 < n < 18 and
n=-—11213141 (mod 18)?

Please reason step by step, and put your final answer within \boxed{{}}. Correct answer:

Method Answer

First, we perform the division of 11213141 by 18:
11213141 + 18 ~ 622952.277777 . ..

The integer part of the quotient is 622952. Now, we multiply 622952 by 18 to find the
product:

622952 x 18 = 11213136
Next, we subtract this product from 11213141 to find the remainder:
11213141 — 11213136 =5
So, the remainder when 11213141 is divided by 18 is 5. This means:
Ours 11213141 =5 (mod 18)
Therefore:
—11213141 = -5 (mod 18)
Since we need a non-negative remainder, we convert —5 to a positive equivalent by adding
18:
-5+18=13
Thus:
—11213141 = 13 (mod 18)

The integer n that satisfies 0 < n < 18 and n = —11213141 (mod 18) is: .

Step 1: Find the remainder when 11213141 is divided by 18. We can use the property of
modular arithmetic that states « = b (mod m) if and only if @ mod m = b mod m.
So, we need to compute 11213141 mod 18.

To simplify this, we can use the fact that the remainder of a number when divided by 18 is
the same as the remainder of the sum of its digits when divided by 18 (although this is not
always the most efficient method, it can be used here for simplicity).

First, let’s sum the digits of 11213141:

1+1+24+1+3+14+4+1=14.
Now, we need to find the remainder when 14 is divided by 18. Since 14 is less than 18, the
remainder is simply 14. Therefore,

GRPO 11213141 = 14 (mod 18).

Step 2: Find the remainder when —11213141 is divided by 18. Since 11213141 = 14
(mod 18), it follows that

—11213141 = —14 (mod 18).
We need to convert —14 to a positive remainder between 0 and 17. To do this, we add 18
to —14:
—14+18 =4.
Therefore,
—11213141 =4 (mod 18).

The integer n that satisfies 0 < n < 18 and n = —11213141 (mod 18) is .

Table 5: MATHS00 comparison between our sampling algorithm and GRPO for Qwen2.5-Math-7B. Here is an
example where GRPO gets an incorrect answer, while our sampling algorithm succeeds. Our sample answer
uses a distinct method altogether.
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