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ABSTRACT

This paper mathematically derives an analytic solution of the adversarial pertur-
bation on a ReLU network, and theoretically explains the difficulty of adversarial
training. Specifically, we formulate the dynamics of the adversarial perturbation
generated by the multi-step attack, which shows that the adversarial perturbation
tends to strengthen eigenvectors corresponding to a few top-ranked eigenvalues
of the Hessian matrix of the loss w.rt. the input. We also prove that adversarial
training tends to strengthen the influence of unconfident input samples with large
gradient norms in an exponential manner. Besides, we find that adversarial training
strengthens the influence of the Hessian matrix of the loss w.r.t. network parameters,
which makes the adversarial training more likely to oscillate along directions of a
few samples, and boosts the difficulty of adversarial training. Crucially, our proofs
provide a unified explanation for previous findings in understanding adversarial
training (Liu et al., |2020; |Kanai et al.,[2021; |Wu et al.l 2020} Yamada et al., 2021}
Athalye et al., [2018}; [Tsipras et al.,2019; [[lyas et al., 2019; Liu et al., 2021} |Chen
et al., [2020; Rice et al.| 2020).

1 INTRODUCTION

Although deep neural networks (DNNs) have shown promise in different tasks, the DNN was usually
fooled by specific imperceptible perturbations of the input data (Goodfellow et al.|[2014; LeCun et al.}
2015), which were termed adversarial examples. To defend against adversarial examples, the most
widely-used strategy is adversarial training (Kurakin et al., 2016; Madry et al2018). Despite the
effectiveness of adversarial training, extensive experiments have shown that adversarial training is
much more difficult to optimize than vanilla training. Previous studies explained this phenomenon
from different perspectives, such as the sharp loss landscape (Liu et al.,[2020; [Kanai et al.l 2021; Wu
et al.,|2020; 'Yamada et al., 202 1)), obfuscated gradients (Athalye et al.,|2018)), and inhomogeneous
data distribution (Sinha et al., | 2017; |Zhang & Wang, |2019b; Miyato et al.||[2018]).

Unlike previous research, this paper aims to derive an approximate analytic solution to adversarial
perturbations on a ReLU network, and further theoretically proves why adversarial training is difficult.
However, considering adversarial training is a complex algorithm with lots of tricks, we summarize
common settings in adversarial training into four assumptions (cf. A1-A4 in Section [2), so as to
simplify the proof. Particularly, we have also conducted experiments in Section[2]to verify that our
theorems can well explain adversarial training in real applications.

Then, based on the derived analytic solution to the adversarial perturbation of the multi-step attack, we
further explain their effects on adversarial training. Hence, we obtain the following three conclusions.

(1) The adversarial perturbation strengthens eigenvectors corresponding to a few top-ranked eigenval-
ues of the Hessian matrix of the loss w.r.z. the input.

(2) Adversarial training mainly focuses on a few unconfident input samples with large gradient norms.
Furthermore, we prove that the normalization/regularization of perturbations in /5 attacks and £,
attacks alleviate such an imbalance.

(3) Adversarial training strengthens the influence of the Hessian matrix of the loss w.r.z. network
parameters. Hence, adversarial training is more likely to make network parameters oscillate, which
explains the difficulty of adversarial training, as well.
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More crucially, our theoretical proof also provides a theoretical foundation, which may explain
various previous findings/understandings of adversarial training (Liu et al.}2020; Kanai et al.| 2021}
Wu et al., 2020; Yamada et al.| 2021} |Athalye et al., 2018} [T'sipras et al., ) 2019; [llyas et al., 2019; [Liu
et al.| 2021} |Chen et al.| [2020; Rice et al.| [2020).

Contributions of this paper are summarized as follows. (1) We derive an analytic solution that explains
the dynamics of the adversarial perturbation. (2) We prove that adversarial training strengthens the
influence of a few input samples, and increases the likelihood of the oscillation of network parameters,
which boosts the difficulty of adversarial training. (3) Our proofs can explain the benefit of the
normalization/regularization of perturbations in ¢ attacks and /¢, attacks, and can provide a unified
view to understand a total of ten previous studies in adversarial training.

2 EXPLAINING ADVERSARIAL PERTURBATIONS AND ADVERSARIAL TRAINING

Let us first revisit adversarial training. Given a DNN f, parametrized by 6 and an input sample
x € R™ with its true label y, the adversarial attack adds a human-imperceptible perturbation ¢ to fool
the DNN with the adversarial example = + 0, whose objective is usually formulated as follows.

max L(fo(z +0),y), st [Id]» < (1)

where fy(z + &) denotes the network output, and L(fp(z + §), y) represents the loss function. € is
the constraint of the £, norm of the adversarial perturbation. To defend against adversarial attacks,
adversarial training is often formulated as a min-max game (Madry et al., [2018)).

min By o) [max L(fo(z +0),9)], st |6, <e, )

2.1 ANALYSIS OF ADVERSARIAL PERTURBATIONS

To analyze the dynamics of adversarial perturbations, let us consider the multi-step attack as follows,
where 6 is referred to as the perturbation generated after attacking for ¢ steps; m represents the
total number of steps; a denotes the step size.

m m—1
D DINCE S 3)

To simplify the story, we first analyze the most straightforward solution to the multi-step adversarial
attack, g, , sy = 2 L(f(z +6),y). Then, we will extend the analysis to the widely-used ¢, attack
and the ¢, attack (Dong et al.l 2018}, |Goodfellow et al., 2014} Madry et al., 2018), where they
regularize or normalize the gradient as giej()s(t> = 9pr5 /1 9pps0 ], and gff;?t) = sign(g, 15 )-
Without loss of generality, let us consider a ReLU network f and an input sample z. z(z) denotes
the input feature of the top layer (e.g. a softmax layer f(z) = softmax(z(z)), or a sigmoid layer
f(z) = sigmoid(z(z))). The following equation formulates how the network uses the feature h of the
j-th linear layer to compute z(z).

2(x) = Wi (- S (W Ssh + b)) + b, “)

where h = W2’ + b; denotes the linear transformation in the j-th layer, subject to 2’ =
S (W (S (W e+ b1)...) + bj—1). W; and b; denote the weight and bias of the j-th linear
layer, respectively. The matrix ¥; = diag(c;1,02,...,0;p) € RP*D represents gating states of the
7-th gating layer (e.g. a ReLU layer, or a MaxPooling layer), 0,4 € {0,1}.

To simplify the proof for the analytic solution to adversarial perturbations, we summarize common
settings in adversarial training into the following assumptions, without hurting the trustworthiness.
(A1) We assume that the constraint of adversarial perturbations can be ignored. It is because there
exists a common fact in adversarial training that people usually learn a robust network on relatively
weak adversarial perturbations (Wong et al., |2020), which often have not reached the constraint
I6]], < e for perturbations 6. This has been widely considered as an effective trick to reduce the
optimization difficulty.

(A2) To simplify the proof, we assume that the adversarial perturbation is generated by the most
straightforward method, i.e., gradient ascent without regularization/normalization, although many
attacking methods (Dong et al., 2018}; |Goodfellow et al., 2014 Madry et al., 2018)) regularize or
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normalize the gradient as a trick to speed up the multi-step attack. Experimental results in Appendix|[C]
have shown that the normalized perturbation in Remark [I] can approximately explain the ¢ attack.
(A3) Because the change of gating states in multi-step attacks is usually chaotic and unpredictable
for analysis, it is difficult to theoretically model the unpredictable change of gating states during
attacking. Moreover, the chaotic change of gating states over numerous neurons may have mutually
offsetting effects on adversarial training, to some extent. Thus, we make the following assumption.

Assumption 1. We simplify our research into an idealized adversarial attack, whose adversarial per-

turbation does not significantly change gating states in gating layers. In this scenario, we approximate
the ReLU network f to a linear model, i.e., z(x) = (W)Tz 4+ b, WT = WIS_1 - SoWE S W

Before the later analysis of the /5 attack and the /., attack, we first focus on the original form of the
multi-step attack, i.e. perturbation generated via g, , s«) = 2 L(f(z + 5Oy ).

Theorem 1 (Dynamics of perturbations of the m-step attack, proven in Appendix[A). Let us assume
that the gradient g, 5 is a Lipschitz function with the Lipschitz constant K, g, s — gz <
K - ||6®||. Then, based on Assumption the adversarial perturbation 5™ can be approximated as
follows, where the overall adversarial strength 8 = am is a small constant, and m is a large integer.

m n 1+ OCAZ' -1 n m
s = Zi:l (+aod)7 -1 )\v) Vivi Py Gppstm) = Zi:l(l + aXi)"yivi. 5)

Here, \; and v; denote the i-th largest eigenvalue of the matrix H, = W H.(W)T and its correspond-
ing eigenvector, respectively, where H,, is used to approximatd'|the second derivative of the loss w.r.t.

the input sample x. The matrix H, = m m A HY is a weighted sum of the
t=1 z -
Hessian matrix H" = aj:zT L(f(z+6D),y), where Ax® = o - Juys(t—1) denotes the perturbation

updated at the t-th step. ~; = g vi € R represents the projection of the gradient g, = 2 L(f(z),y)
on the eigenvector v;. Particularly, if the step number m is large, then the residual term in the Taylor
expansion p € R" is ignorable, since each element p; € R is proven to be the order of O(1/m).

(A4) Notice that different parameter settings of multi-step attacks (such as the step size or the step
number) may make slightly different influences on adversarial perturbations. Thus, to remove side
effects of such settings and simplify the story, in the following manuscript, we assume the adversarial
perturbation in adversarial training is generated via the infinite-step attack with the infinitesimal step
size. In this way, the m-step attack in Theorem [I] can be extended to a more idealized case of the
infinite-step attack as follows, which is further used to analyze adversarial training.

Theorem 2 (Perturbations of the infinite-step attack, proven in Appendix [B). 8 = am reflects
the overall adversarial strength of the infinite-step attack with the step number m — +oo and the
step size a = B/m — 0. Then, based on Assumption[l] this infinite-step adversarial perturbation
6 = limym 40 St ZL(f(z+ M), y) can be re-written as follows.

Q n  ex i) —1 . n
J = ZiZI %’ﬁvz + P gz+5 = Zi:1 eXp(/B)\z)%Uz (6)

Here, p € R™ denotes an ignorable residual term in the Taylor expansion, because each element
pi € R is proven to be the order of O(1/m).

Theorem [I] and Theorem [2] show the following two conclusions.

(C. 1) The adversarial perturbation strengthens gradient components in g, along eigenvectors corre-
sponding to a few top-ranked eigenvalues \; of the matrix H, exponentially. Furthermore, a larger
adversarial strength (3, such as attacking for more steps, is more likely to force the perturbation to
change along fewer top-ranked eigenvectors.

(C. 2) Both the gradient norm ||g,_ 5|| w.r:t. the adversarial perturbation, and the perturbation norm

[|6]| increase along with the overall adversarial strength 3 = am exponentially.

e  Experimental verification I of Theorem[Z] We have derived an analytic solution to the perturbation
in Theorem@ Hence, we conducted experiments to verify the trustworthiness of Theorem E], ie.,

!"Theoretically, it is very hard to derive the analytic solution to the adversarial perturbation & (™) without such
an approximation. Hence, we use the matrix H, to approximate the equivalent Hessian matrix, which allows
us to derive the first analytic solution to the adversarial perturbation of the multi-step attack. More crucially,
experimental results in Table[I] verified the trustworthiness of such an approximation, i.e., the error between the
real perturbation and the theoretically derived solution is at the level of 10™3—107°.
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Table 1: The error « between the derived analytic solution & in Theorem [2|and the real perturbation
generated on different ReLU networks. The small error  successfully verified Theorem 2]

3-layer 4-layer S-layer 3-layer 4-layer 5-layer 3-layer 4-layer S-layer
MLP MLP MLP CNN CNN CNN ResCNN ResCNN ResCNN
Error k| 1.5 x107° 3.5 x107% 6.6 x1077 | 3.4 x1077 5.1 x107% 47 x107% | 13 x107° 1.5 x107° 3.7 x107°
1 5 AlexNet ResNet-18
. og(l151) 47I5H VGG
/ 6 Moo 7.5 ”gﬂ(;m” Perturbations of
0 2 7// AlexNet 4 J / £,-attack
-1 _ 24 Perturbations of
—2 m 04 m ResNet-18 0 ._// Loo-attack
05 10 My, 0 05 1.0 my_._ S 00 05 m— 00 Macess
(a) (b) (d) (e)

Figure 1: Exponential increases of perturbation norms ||§|| and gradient norms g s || with the
overall adversarial strength 8 < m (because « was fixed here). Note that the instability of gating states
might bring in uncertainty and lead to an unclean phenomenon of an exponential increase. Whereas,
in subfigure (a), we controlled the gating states of each ReLLU layer in each step of the adversarial
attack, in order to remove side effects brought by the chaotic gating states. Hence, subfigure (a)
exhibited a more clearly exponential increase of ||8| w.x.t. m.

checkmg whether the solution § derived in Theorem I well fitted the real perturbation §* measured
in practice. Specifically, we calculated the metric x = E,[[|6* — §||]/E.[[|6*||] to evaluate the error
between the derived solution & and the real perturbation 6*. To this end, we generated adversarial
perturbations on different ReLU networks, where we followed settings in (Ren et al., [2022) to
construct various MLPs, CNNs, and CNNs with skip connections (namely ResCNNGs), respectively
Table [1] reports the error , which was small for each network, i.e., at the level of 1075—10~
Thus, the theoretically derived perturbation § on Assumption well fitted the real one, Wthh
successfully verified Theoreml Dl In other words, various assumptions' made ignorable impacts on the
trustworthiness of Theorem 2] i.e., the derived solution could reflect the real dynamics of adversarial
perturbations. Please see Appendix [J| for more results and experimental settings.

e Experimental verification 2 of Theorem[2] Theorem 2]indicates that both the gradient ||g, , 4]

on the adversarial example and the perturbation ||§|| had exponentially increasing norms w.rt. the
overall adversarial strength 8 o« m (« is fixed here). Here, we conducted experiments to verify this
conclusion. Specifically, we generated perturbations & in Theorembased on VGG-11 (Simonyan &
Zisserman, 2014)), AlexNet (Krizhevsky et al., 2012}, and ResNet-18 (He et al., [2016), which were
learned on the MNIST dataset (LeCun et al., {1998)), respectively. Then, the perturbation 5 was crafted
by the gradient g, , 5y = 2 L(f(z +6'),y). Besides, we also generated two baseline perturbations
via the /5 attack and the ¢, attack for comparison, i.e., applying g( 2)(0 ,and g o 5<t> defined under
Eq. (@). Please see Appendix [[] for more details of experimental settings. Considering different
samples were successfully attacked at different steps, we normalized the step number, m /msuccess, a$
the horizontal axis in Fig. [T} Here, the relative progress rate m,/msuccess Was used to align the progress
of the adversarial attacking on different samples. Fig. E] shows that both the gradient norm ||g__ 5|,

and the perturbation norm ||6|| increased exponentially with 3 o m (because o was fixed here), which
verified Theorem

Approximation for /, attacks and /., attacks. As two typical attacking methods, the ¢, attack
and the ¢, attack usually regularize/normalize the adversarial strength in each step by applying

gifjg(t) Gaps® /9prs || and gx.ffszo = sign(g, , 5( ), respectively. In fact, for the /, attack we

can roughly consider that only the gradient component o2 g f{;?t) o, disentangled from glfe o 5<t> along

2 L(f(z),y) is effective, where o, = 2 L(f(z),y)/l| 2 L(f(x),y)]|l is the unit vector in the direction
of 9 I.(f(x),y). However, it is quite complex to analyze the exact attacking behavior. Therefore, in
Remark [T} we just brutally normalize the perturbation in Theorem 2| to roughly approximate
the regularization/normalization of perturbations in ¢, attacks and /., attacks. Nevertheless, the
trustworthiness of the approximation in Remark [T| was experimentally verified. TableE]m Appendix [C]
shows that the matchlng error between §™™ and the real perturbation generated via /5 attack was at
the level of 107—10~*, which successfully verified the trustworthiness of Remark

Remark 1 (Normalized perturbation of the infinite-step attack). Based on Theorem[2} we ignore
residual terms p, where p; is proven to be the order of O(1/m). Then, the perturbation of the infinite-
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step U attack generated via g( 2)

(£oo)
gz+6(t

sty and the perturbation of the infinite-step Lo attack generated via

, can be approximated as follows.

S(norm, N N n >\z -1 n )\1 -1
5o ~ - §))18) = C - Zi:l (KI)(/[?,)%W/\/ZZ-_I(W%\,)%)a (7

(3

where C € R reflects the total adversarial strength of the (s attack or the (., attack.

(C.3) Remarkreveals that a weak adversarial strength 5 makes the normalized perturbation §norm)
approximately parallel to the gradient g,. Whereas, a large adversarial strength makes the normalized
perturbation 6™ approximately parallel to the eigenvector v; w.rt. the largest eigenvalue.

2.2  EXPLAINING THE DIFFICULTY OF ADVERSARIAL TRAINING

In this subsection, we explain the effects of adversarial perturbations on weight optimization in
adversarial training. Without loss of generality, we analyze the learning dynamics of the j-th linear
layer of the ReLU network f. Specifically, if we use vanilla training to fine-tune the network on
the original input sample x for a single step, then the gradient of the loss w.x.t. the weight of the
j-thlayer W' = WIS,y SoW3 S1W{|is given as gw = 5% L(f(z),y). In comparison, if we
train the network on the adversarial example = + é for a single step, then we will get the gradient
g = 5% L(f(z + 3),y). In this way, Agw = g\ — gw denotes additional effects of adversarial
training on the gradient.

0 c 0
— ladv) _ Y _ v 8
Agw = gw" — 9w = g L(f(@+0),y) = 507 L(f(2),y). ®)
Similarly, Agii™ = g™ _ gy, represents additional effects on the gradient brought by adversarial

training, when we use the normalized perturbation 5™ in Remark (related to the ¢5 attack and the
{+ attack).
Agw™ = giy""™ — gw = O Lt + 5", y) — 2 L(f(a),y). ©)
ow ’ ow
Assumption 2 (proven in Appendix D). The analysis of binary classification based on a sigmoid
function, f(z) = m, z(z) € R, can also explain the multi-category classification with a

ezp(2])

3§ exp(2])’
categories. In this case, attacks on the multi-category classification can be approximated by attacks
on the binary classification between the best and the second-best categories, i.e., f(x) ~ m,
subject to z = 21 — 25 € R. 2} and 2}, are referred to as network outputs corresponding to the best
category and the second-best category, respectively.

Lemma 1 (proven in Appendix[E). Let us focus on the cross-entropy loss L(f(x),y). If the classifi-
cation is based on a softmax operation, then the Hessian matrix H, = %L( f(x),y) is positive
semi-definite. If the classification is based on a sigmoid operation, the scalar H, > g2 > 0, as long
as the attacking has not finished (still z(z) -y > 0,y € {—1,+1}). Here, g. = %L(f(m), y) € R.

softmax function, f(x) = 2" € RS, if the second-best category is much stronger than other

Theorems I and E]explain training effects of the perturbation 4 in Theoreml on adversarial training.

Theorem 3 (proven in Appendix [F). Based on Assumptions [I|and 2} let us focus on the bina
classification based on a sigmoid ﬁmcnon Then, the effect of the adversarial perturbation § in Eq.

on the change of the gradient g, = Bz(z is formulated as follows. Ag, = —mAgw gn, represents the
additional effects of adversarial tramlng on changzng Jsz, because adversarial training makes an
additional change —mAgw on WP In this way, G- Ag. measures the significance of such additional

changes along the direction of the gradient g,.

2 (15 112
~ ~(ori, 9= |9n
A g 1

9z Age = —n3; Agwin = (e e =), (10)
where g, = 6231”), = BH,|3:||> € R, and n denotes the learning rate to update the weight.
Considering the footnote®, NG = —ngw gn, measures the effects of vanilla training on changing §.

in the current back-propagation.

?For simplicity, we analyze the equivalent weight W for all the first j linear layers, but actually W has
similar behaviors as W, without hurting the generality of the analysis. Please see Appendix |H lfor discussion.

31t is because adversarial training changes W by — ng(adv) and vanilla training changes W by —ngw, n > 0.
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Table 2: Experimental verification of Theorem [3|on different adversarially trained ReLU networks.

The small error k verified Theorem 3l
3-layer 4-layer 5-layer 3-layer 4-layer S-layer 3-layer 4-layer S-layer
MLP MLP MLP CNN CNN CNN ResCNN ResCNN ResCNN

Error | 39 x107° 88 x107% 1.5 x107% | 8.5 x1077 13 x1077 12x1077 | 34x10~° 3.9 x107° 9.0x107°

Theorem 4 (proven in Appendix [G). Based on Assumptions [I|and 2] let us focus on the binary
classification based on a sigmoid function. Then, we derived the following equation w.r.t. adversarial
training based on perturbations & in Theorem |2| Considering the footnote®, Age” = —ngls g,
reflects effects of adversarial training on changing the gradient §. In this way, §X AG“" represents
the significance of such effects along the direction of the gradient g.

2/ 2A A
~ ~(adv, ~ adv) ~ ~ ~(ori z\€ —€ ~
GEAG = _ngT g, = eAgT A — 9= _—€7) 7 Jgnll®. (11)

A common understanding of adversarial training is to alleviate the current gradient g, i.e., having a
trend towards g2 Aj, < 0, so as to boost the adversarial robustness. In this scenario, Theorem and
Theorem [ reveal the following two conclusions.

(C. 4) Adversarial training usually has a potential of decreasing the significance of the current
gradient, i.e., pushing 57 Ag, and §Z Ag®™ towards negative values. It is because the second term in
Eq. and Eq. is non-positive, due to . > 0 in Lemmall] More crucially, if vanilla training
has already alleviated the current gradient g, (i.e., 2 Age™ < 0), then adversarial training will further
strengthen such an alleviation in an exponential manner.

(C. 5) Adversarial training exponentially strengthens the influence of a few unconfident input samples
with large values of H, € R and large gradient norms ||§,||. Such mechanisms make the adversarial
training more likely to oscillate in directions of a few samples (cf. Theorem[6]), which boosts the
difficulty of adversarial training, as well.

e  Experimental verification 1 of Theorem|[3] For verification, we conducted experiments to examine
whether the theoretical solution ¢ computed according to the right side of Eq. well fitted
the real values of ¢* = §Z Aj, measured in experiments. To this end, we calculated the metric
k= E.[]|¢* — &ll]/E[||¢*||] to evaluate the fitness between the theoretical derivation ¢ and the real
effect ¢, where ¢* was computed using real measurements of g., 7, g\, gw, and g, on a ReLU
network. In this way, we learned three types of ReLU networks on the MNIST dataset via adversarial
training, where we followed settings in (Ren et al.| 2022) to construct MLPs, CNNs, and ResCNNss,
respectively. Please see Appendix [K]for more details of experimental settings. Table 2] shows that
for each ReLLU network, the error « was small, which meant that the derived training effect ¢ well
matched the real effect ¢*. Thus, Theorem 3| was verified.

e Experimental verification 2 of Theorem 3] Based on Theorem [3| we obtained the conclusion
that adversarial training strengthened the influence of input samples with large H. values and large
gradient norms ||g..||. Here, we conducted experiments to verify this conclusion. Specifically, we
examined whether input samples with large H,, large H.||g.|*> values, and large A values had
large impacts |2 Ag.| and || Ag{™ |, i.e., whether adversarial training boosted the influence of such
samples. Note that in real applications, the A value changed in each step of the adversarial attack,
because the step-wise perturbation sometimes changed the matrix . and the gradient §,. Thus,

to be precise, we estimated the real .4 value in Theorem as A=Y" af.|g, 45w |I?, subject to

Jurs = 2z(x +6™). To this end, we learned AlexNet and VGG-11 on the MNIST dataset via
adversarial training on PGD, respectively. Please see Appendix [[]for more details of experimental
settings. Fig. [2|shows that input samples with larger values of H., H.||j. ||, and A usually yielded
larger ||gZ Ag.|l and |[Ag{i™| values, which indicated that adversarial training strengthened the

influence of these samples. Thus, the conclusion C. § was verified.

e  Experimental verification 3 of Theorem[3] We also obtained the conclusion from Theorem 3] that
the optimization direction of adversarial training was dominated by a few input samples with large
A = BH,||g.|* values. Here, we conducted experiments to verify this conclusion. Specifically, let
Agw = g — gw denote the additional effect of adversarial training on a specific sample x beyond
vanilla training. Then, based on the adversarially trained networks in experimental verification 2 of
Theorem 3] we measured the cosine similarity cos(Agw, Agy, ) between the training effect Agy on
a single adversarial example and the average effect Agy, = E__ ;[Agw] over different adversarial
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Figure 2: Impacts | Agw || and |§Z Ag.| of different input samples on adversarial training. Adversarial
training boosted the influence of input samples with large H., H.||j.||?, and A values.

VGG-11 AlexNet
0.5 Jcos(Agy, Ag, os cos(Agy, Agw) —— 100-step attack
0.0 ’ / 150-step attack
—05, ' ' 0.0 : ' : : 200-step attack
0 0.5 1.0 A 0 0.5 1.0 1.5 A

Figure 3: Average cosine similarity E; [cos(Agw |2, Agy,)] between Agy;, and each sample = with a
specific A value. Ag,,, was similar to the direction of Agw w.r.t. samples with large A values.

examples. Please see Appendix [M]and Appendix [[] for more results and experimental settings,
respectively. Fig. [3]shows that the direction of the average effect Agy, was similar to (dominated by)
training effects of a few input samples with large A values (the real A calculated in experiments),
which verified Theorem 3l

Effects of normalized perturbations. As aforementioned, the /5 attack and the /., attack can be
roughly considered as the regularization/normalization of adversarial perturbations. In this way, we
analyze the effects of the normalized perturbation §®°™ on adversarial training, which approximately
explains adversarial training based on perturbations of the ¢5 attack and the ¢, attack.

Theorem 5 (proven in Appendix [H). Based on Assumptions[Ijand 2] let us focus on the binary
classification based on a sigmoid function. Then, we derived the following equation w.r.t. adversarial
training based on normalized perturbations "™ in Remark Considering the footnote®, Aglom™ =

—nAGR™ g —n(g(vcxl/m rem) gw) Jn represents additional effects of adversarial training on changing
Go- In this way, GEAG™ = —ngE Agle™ gy, reflects the significance of such additional effects along

the direction of the gradient G,.

A 21~ 112 A A

~T A ~(norm) € 1 ~T A ~(ori) N9z thH € 1 ¢ 1 2

aragem = o (S - Lygrager — o el el L ooeo L) gy
ol ol H: ol llsll ol ol

It is because Theorem [2] shows that an extremely weak adversarial strength 3 — 0 usually yields
6] = |lg ||, and a relatively strong adversarial strength /3 usually makes ||§| — exp([3’||§$||2 2)/|lgz |l
with an exponentlal strength. In this way, given a relatively strong attack, we can ignore the term
1/||6]| = 0in Eq. (12), and prove that the strength of the tra1n1ng effect g7 Ag"™ is mainly determined
by the term exp(.A )/|\6|| ~ ||gz|| - exp(B|3=||*(H. — g2)). Please see Appendleor the proof.
Besides, according to Lemmal|l} as long as the attack has not succeeded yet, we have H, — g2 > 0,
but for too confident samples z( ) — oo or too unconfident samples z(z) = 0, we get H, — g2 = 0.
Hence, we obtain the following two conclusions.

(C. 6) Adversarial training on the normalized perturbations strengthens the influence of a few input
samples with large gradient norms ||g.||, which are neither too confident nor too unconfident.

(C.7) Compared to Theorems [3{and 4] the normalized perturbation 6™™ in Eq. (7) alleviates the
imbalance between different samples, which proves the benefits of /5 attacks and /. attacks.

Oscillation of network parameters. Above proofs can explain that adversarial training makes
network parameters oscillate in very few directions, which is considered as a common phenomenon
in adversarial training. Such an explanation is based on a typical claim in optimization (Cohen et al.,
20215 Wu et al., 2018) that if the largest eigenvalue of the Hessian matrix of the loss w.r.¢ network
parameters is large enough, network parameters will oscillate along the eigenvector corresponding to
the largest eigenvalue.

Here, although we do not directly prove that adversarial training can boost the largest eigenvalue
of the Hessian matrix of the loss w.r.¢ network parameters, Theorems |I| and |2| show that training
on adversarial examples is somewhat equivalent to boosting the influence of the Hessian matrix.
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Figure 4: Influence of weight changes on gradients of the loss function w.r.t. network parameters
(weights). The weight change in adversarial training made more significant impacts A on gradients
than that in vanilla training A©", which verified Theorem [6]

Specifically, given a ReL.U network f and an adversarial example = + § for adversarial training, let

us temporarily consider the Hessian matrix Hp, o %L( f(z),y) w.r.t the output h of the j-th linear

layer. Then, the loss function on adversarial examples L(f(z + 8),) can be represented as follows.

Theorem 6. Let Ah = W7T§ € RP*! denote the change of the intermediate-layer feature h caused
by the perturbation 6, and Loss(h + Ah) = L(f(z + b),y) represents the loss function on the
adversarial example x + 5. Then, we use the second-order Taylor expansion to decompose the
loss, i.e., Loss(h + Ah) = Loss(h) + gf Ah + LARTH,Ah + Ry(Ah) = Loss(h) + gF(wTé) +
(WP Hy(WT3) + Ra(Ah), where gn = OL(f(x),y)/0h represents the gradient of the loss
Sfunction L(f(x),y) w.r.t. the intermediate-layer feature h, and R>(Ah) indicates terms higher than
the second order. In this way, if we focus on the i-th dimension of 6, 6; € R, the loss can be re-written
as follows, where w; denotes a row vector corresponding to the i-th row of the weight matrix W, and
T is a constant w.r.t the change of w;.

Loss(h + AR) = 7 + [8 gF Juw? + wi[%&th]wiT. (13)

(C. 8) Theorem [f]reveals that adversarial training can be roughly considered to boost the influence of
the Hessian matrix w.rz. network parameters w;, i.e., proportional to 62 Hy,, because the perturbation )
increases exponentially along with the overall adversarial strength 3 = am, according to Theorems|T]
and[2] Adversarial training is more likely to make network parameters oscillate than vanilla training.

e Experimental verification of Theorem [6] Theorem [6] shows that adversarial training boosted
the influence of Hessian matrix w.r.¢. the network parameters. Here, we conducted experiments to
verify this conclusion. Specifically, we learned AlexNet and VGG-11 on the MNIST dataset, and
measured effects of adversarial examples on the optimization of network parameters. To this end,
we used an original input sample x and its corresponding adversarial example x + § to update the
weight W; € R”*? in each layer by the length ||ATW;|| and ||AWJ.(adV) ||, respectively. Thus, vanilla
training’s influence and adversarial training’s influence of such weight changes on the gradient could
be estimated as AV = m NOL(f(x|W; + AW;),y)/OW;) — (OL(f(x|W;),y)/OW;)||, and
AW = e OL( @+ 8IW; + AW, y)/0W,) = (DL(f (x + 6]W;),9)/0W,)| respec-
tively. Here, f‘7(3:|Wj + AW;) denotes the output of the ReLU network f, when the weight of the
j-th linear layer was updated to W; + AW;. Please see Appendix [[] for more details of experimental
settings. Fig. ] compares the influence of weight changes on gradients w.r.t. network parameters. We
discovered that compared to vanilla training, the weight change with a fixed strength in adversarial
training usually affected the gradient much more significantly. Such a phenomenon demonstrated
that adversarial training boosted the influence of Hessian matrix w.r.t. the network parameters, which
verified Theorem

3 RELATED WORK: A UNIFIED ANALYSIS OF PREVIOUS FINDINGS IN
ADVERSARIAL TRAINING

In this section, we use our theorems to theoretically explain or provide a new perspective to understand
previous findings in adversarial training. In fact, some studies are not directly related to our theorems,
and we put the discussions on them in Appendix

* Many previous studies (Liu et al.}|2020; Kanai et al., 2021;|Wu et al.,2020; [Yamada et al., [2021)
considered that the difficulty of adversarial training was caused by the sharp loss landscape w.r.¢
network parameters. To this end, Theorem [§] verifies such an explanation. Specifically, we have
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proven that adversarial training can be considered to strengthen the influence of the Hessian matrix of
the loss w.r.t. network parameters, which is equivalent to sharpening the loss landscape.

«Athalye et al.| (2018) discovered that obfuscated gradients led to a false sense of security in defenses
against adversarial examples, which hindered adversarial training (Zhang & Wang|,2019a)). To this
end, Theorem [3] and Theorem [] explain the third type of obfuscated gradients in (Athalye et al,
2018), i.e., vanishing gradients. Specifically, we have proven that adversarial training significantly
strengthens the influence of a few unconfident samples, and neglects the influence of many confident
samples, which makes the training process more likely to oscillate in directions of a few unconfident
samples. Such oscillation along optimization directions of a few hard samples usually significantly
increases norms of weights along such directions, and causes over-confident predictions on some
easy samples. These over-confident predictions on easy samples may lead to vanishing gradients.

* Tsipras et al.|(2019) clarified that compared to vanilla training, adversarial training mainly relied on
robust features and did not use non-robust features for inference, which caused inferior classification
performance. To this end, Theorems [3|and 4] verify such a finding. Specifically, we have proven that
adversarial training is mainly dominated by a few samples, which easily makes network parameters
oscillate in very few directions. In other words, the training of non-robust features, or more precisely,
training on samples with significant .A values that are easily attacked, is hard to converge.

¢ Ilyas et al.|(2019) demonstrated that adversarial examples were attributed to the presence of highly
predictive but non-robust features. To this end, Theorems[T|and [2] verify such a finding, which reveals
that in the multi-category classification, the direction of the largest eigenvalue of the Hessian matrix
H, suppresses features related to the target category, and promotes features related to the second-best
category. Here, the eigenvector w.r¢. the largest eigenvalue corresponds to non-robust features.

e|Liu et al.| (2021)) considered that the robust overfitting was caused by the fitting of hard samples,
under the assumption that all training samples followed a Gaussian mixture distribution in a logistic
regression problem. To this end, Theorem |3| and Theorem {4| explain such a finding in a more
generic classification task without assuming the data distribution. Specifically, we have proven that
compared to vanilla training, the adversarially trained network is more likely to be over-fitted to a
few unconfident samples, which correspond to hard samples in adversarial training.

¢ Chen et al.|(2020) discovered that the overfitting in adversarial training was because the network
overfitted to adversarial examples generated in the early stage of adversarial training, and failed to
generalize to adversarial examples generated in the late stage. To this end, we provide a deeper
insight into such a phenomenon. Specifically, according to Theorem [3|and Theorem[4] only a few
unconfident samples with large gradient norms ||g. || influence the adversarial training. In fact, the
imbalance of the sample influence can easily make unconfident samples with large A, values and
large gradient norms ||g.|| in the early stage of adversarial training significantly different from those
in the late stage. Such mechanisms lead to the overfitting in adversarial training.

¢ Rice et al.[(2020) demonstrated that early stopping could effectively reduce overfitting in adversarial
training. To this end, Theorem [3|and Theorem @] also explain the effectiveness of the early stopping.
Specifically, during adversarial training process, the network becomes robust, and the number of
unconfident samples decreases. Because adversarially trained networks mainly focus on unconfident
samples, the decreasing number of unconfident samples boosts the significance of overfitting. In this
way, early stopping can effectively reduce overfitting.

4 CONCLUSION AND DISCUSSION

This paper theoretically analyzes the dynamics of adversarial perturbations via an analytic solution.
We also prove that adversarial training strengthens the influence of a few input samples, which
boosts the difficulty of adversarial training. Crucially, our proofs provide a theoretical explanation
for previous studies in understanding adversarial training. Note that our analysis is all based on the
assumption that adversarial perturbations cannot significantly change the gating states of the ReLU
network. Despite this, experimental results show that our analysis can still explain most adversarial
perturbations generated in real cases, when gating states change. Besides, in this paper, we use the
normalized perturbations to approximate adversarial perturbations of the ¢ attack and the /., attack,
instead of deriving an exact formulation for these perturbations. Nevertheless, experimental results
show that our analysis can well explain the ¢ attack and the /., attack, to some extent.
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A PROOF OF THEOREM [I]

In this section, we prove Theorem I]in Section of the main paper, which analyzes the dynamics
of perturbations of the m-step attack.

Let us focus on the most straightforward solution to the multi-step adversarial attack. In this scenario,
given a ReLLU network f and an input sample z € R", the perturbation generated after attacking for
m steps is formulated as follows.

m—1
o = gayso, (14)

where g, sy = 2= L(f(z + 6®), y) represents the gradient of the loss w.zz. the input sample x, and
m denotes the step size. Furthermore, we define the update of the perturbation at each step t as
follows.

Az L og s, (15)
In this way, the perturbation 6™ generated after the m-step attack can be re-written as
5m) = Az 4+ Az® ... Aglm), (16)

Then, in order to derive the analytic solution to the adversarial perturbation 6™ in Eq. , we
use the quadratic Taylor approximation (LeCun et al., 2012;|Cohen et al.,|2021) to re-write the loss
function as follows.

L(f(x+6%),y) = L(f(z + 6"V + Az®),y)
= L(f(z +3"),y) + (Az) g, se-1) + %(Awm)THS—”(Ax“)) + Ra(Az™),

)
where g, s¢-1) = (%L(f(x + 61=Y), y) represents the gradient of the loss function w.r.t. the
adversarial example z 4+ 6¢~1. H{'™" = az%zzT L(f(z + 6%~1), y) represents the Hessian matrix of

the loss function w.rz. the adversarial example z + 6¢~. Ro(Az™) is referred to as terms of higher
than the second order in the Taylor series w.zf the perturbation Az(®).

Note that the order of Az is O(1/m). Hence, if the step number m is large enough, the
perturbation Az is ignorable. Moreover, each dimension R(Az)) of the residual term
Ry(Az®) € R™ in Eq. is proven to be the order of O(1/m?). Hence, the residual term
Ro(AzW) in Eq. is also ignorable without hurting the subsequent proofs, if the step number
m is large enough. Please see Section[A.2]for the detailed analysis.

In this way, based on Eq. , the gradient of the loss function w.rt the adversarial example z + ¢
can be represented as

0
Gupst) = %L(f(w +35y,y)
9 (t-1) 0)
==L A
5y Lf(z+38 +Azt),y)
0 _ 1 _
= oo (LU +697) ) + (82') g, s + 5 (Ae)THETD (M) + Ro(Ax)

// According to Eq. (T7)
- 0
= Gpist-1) + Hggt DAz + %RQ(Af(t)).
(18)

Lemma 2 (in Appendix). Based on Assumption|l] the update of the perturbation with the multi-step
attack at step t can be represented as Az'" = o(I + aH,)" " g, + ", where g, = Z L(f(z),y).
H, = WH.(W)T is used to approximateﬂ the second derivative of the loss w.r.t. the input sample

“Theoretically, it is very hard to derive the analytic solution to the adversarial perturbation & (™) without such
an approximation. Hence, we use the matrix H, to approximate the equivalent Hessian matrix, which allows
us to derive the first analytic solution to the adversarial perturbation of the multi-step attack. More crucially,
experimental results in Table[I] verified the trustworthiness of such an approximation, i.e., the error between the
real perturbation and the theoretically derived solution is at the level of 10™3—107°.
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x, where WT = WIS, 1. SoWISiW{. The matrix H, = YAz HY isa

1 m—
it 1as®) 2z

weighted sum of the Hessian matrix H" = az%iT L(f(x+6®),y). v € R™ denotes an ignorable

residual term, because each dimension wgt) is the order of O(1/m?), if the step number m is sufficiently
large.

Proof. If the step ¢ = 1, according to Eq. (15), we have Az(") = ag,.

For Vt > 1, the perturbation of the ¢-th step attack is defined as Az = « - Gpys(t—1) 1N Eq. .
Based on Eq. (18}, the perturbation Az(*) can be re-written as

_ _ 0] _ .
Geqst-1) = upst-2) + HE DALY 4 %Rg(Aaz(t DY // According to Eq. ()
_ _ 9] _ _ _ 9] _
= gypse—m + HI A 4 —ng(Aa:(t D)+ HED ALY 4 %Rg(m“ D)y

t—1
t—1 ’_ ’ 8 ’
=gty HI' VA Y —asz(Ax(t )

t'=1

t—1 ~ ’ ~ ’ t—1 O ’
_ (t'=1) T A1) - ") ;
=gs + Zt/:l WH, W) Az’ + Zt’:l p Ry(Az'’) // According to Eq. 20)
N t—1 -~ _ - 7 ") t—1 ﬂ %)
~get 3 WL A + 37 L Ry(aa))

t—1 _ ’ t—1 ~ ’
=gety , HA 43 Ra(Ac)).
(19)

Here, we use H, = WH.(W)T to approximateE] the second derivative of the loss w.r.z. the input
sample x, where W7 = WT%;_;--- S, WS W based on Assumption |1l The matrix H, =

m— . . . . 2
m St Az HE is a weighted sum of the Hessian matrix H” = 52 L(f(x +
§®),y). For simplicity, let Ro(Az*)) = 2 Ry(Az®)).
Based on Assumption |1} we have
AL(f(z+6M) y) dz(x)\T
o _ PLU@+80)y) T an 5T
I 0x0xT 0xT
a+61))
G oL 0 | ouw) o AT
R 0z(x) oxT oxT (20)

_ (2:a) r L+ 5).y) 05(2)
ozT 0z(x)0z(x) oxT

=WHP(W)T. // According to Assumption[I]in the main paper.

Note that the order of Az is O(1/m). If the step number m is large enough, the perturba-
tion Az(*) is ignorable. Moreover, each dimension > !, ", Ri(Az*)) € R of the residual term

51 Ry(Az™)) € R™ in Eq. (19) is proven to be the order of O(1/m). Hence, such a residual
term 37!, R-(Az*") is small enough to be ignored without hurting the trustworthiness of
further analysis, if the step number m is large. Please see Section for the detailed analysis.
Substituting Eq. back to Eq. , the perturbation Az® can be re-written as

Az =a- g 5(t—1)

t—1 B , t—1 B , (21)
Rageta-y HADY) fa- Y Ry(Az)),
t/'=1 t'=1

Theoretically, it is very hard to derive the analytic solution to the adversarial perturbation & (™) without such
an approximation. Hence, we use the matrix H, to approximate the equivalent Hessian matrix, which allows
us to derive the first analytic solution to the adversarial perturbation of the multi-step attack. More crucially,
experimental results in Table[I] verified the trustworthiness of such an approximation, i.e., the error between the
real perturbation and the theoretically derived solution is at the level of 10™3—107°.
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In this way, we apply the mathematical induction to prove Lemma [2]in Appendix, i.e., V1 < t <
m, Az® = o(I + aH,) " 'g. + ¢, where v = o 325 (I + af,) ' Ry(Az™)).

Base case: Whent = 1, we have Az = - g, = o~ (I + o H,) 9.

Inductive step:
Fort > 1, assuming Az"Y = (I + af,)" 2g, + a .52 (I + af,)' 27" Ry(Az(*)), we have

t'=1

t) _ ) _ t—1 (tl) t—1 ~ (t’) .
Az =« (gz + H, Zt’:l Az' + Z Ry(Az"’)) // According to Eq. ZI)
_ t—2 ’ t—2 ~ ’ — ~
. (t") ") . (t—1) . (t—1)
=« {gz + H, Zt’:l Ax'/ + Zt’:l Ry(Ax )} +a-H, Az +a- Ry(Ax )

=Az"V 4o H, Az Y 4o Ry(Az""Y)  //  According to Eq. 1)
=T+ a -H)Az"™ + o Ry(Az D)

t—2
=(+a H)a- [(I +ally) " Vg + Y (I + o) 7 Ro(Ax"))| + o Ro(AzY)
t'=1
t—1 , ,
=a-(I+af,) g +ad (I+al) " Ry(Az"))
t'=1
=a-(I+ osz)tflgz + w(t)’
) 22)
where Ry (Az*™Y) = 2 Ry(Az*~Y), and Ra(Az*~Y) is referred to as the term of the perturbation
Az~ higher than the second order.

Conclusion: Since both the base case and the inductive step have been proven to be true, we have
Az® = o(I + af,) g, +®, where ) = o 334571 (I + aH,) ™' Ro(Az™)).

Here, ") ¢ R" denotes an ignorable residual term, because each dimension " is the order
of O(1/m?), if the step number m is sufficiently large. Please see Section [A.2] for the detailed
analysis.

Thus, Lemma[2]in Appendix is proven. O

A.1 PROOF OF THEOREMIII

Theorem 1 (Dynamics of perturbations of the m-step attack). Let us assume that the gradient g, , 5+
is a Lipschitz function with the Lipschitz constant K, ||g, st — gzl < K - 16®||. Then, based on

Assumption the adversarial perturbation 6™ can be approximated as follows, where the overall
adversarial strength 8 = am is a small constant, and the step number m is a large integer.

n n

m 14+aX)™ -1 m

5 =3 ( Ai) YO+ By Gapsom = (L + @) . (23)
i=1 i=1

Here, \; and v; denote the i-th largest eigenvalue of the matrix H, = WH.(W)" and its correspond-

ing eigenvector, respectively, where H, is used to approximatef] the second derivative of the loss w.r.t.

the input sample x. The matrix H, = m ! 1Az (| HY is a weighted sum of the
t=1 x
Hessian matrix HY = Bz%iT L(f(z+06"),y), where Az = o+ g, 51y denotes the perturbation

updated at the t-th step. v; = gXv; € R represents the projection of the gradient g, = 6%L(f(x), y)
on the eigenvector v;. If the step number m is large, then the residual term in the Taylor expansion
p € R" is ignorable, since each element p; € R is proven to be the order of O(1/m).

STheoretically, it is very hard to derive the analytic solution to the adversarial perturbation & (™) without such
an approximation. Hence, we use the matrix H, to approximate the equivalent Hessian matrix, which allows
us to derive the first analytic solution to the adversarial perturbation of the multi-step attack. More crucially,
experimental results in Table[I] verified the trustworthiness of such an approximation, i.e., the error between the
real perturbation and the theoretically derived solution is at the level of 10™3—107°.

15



Under review as a conference paper at ICLR 2023

Proof. According to Eq. and Lemma in Appendix, the perturbation 6™ generated after the
m-step attack can be re-written as

8 = Az 4 Ax® 4o Azt

5 =~ n 24
:a[1+(l+aHﬂ7)+"'+(I+O(Hz)m_1}gz—|—21/;(t). (24)

Because each Hessian matrix H{" in matrix f, laz® | HY is a real-valued

TEET ||Ax<t> [ 2
symmetric matrix, this matrix H, is also a real-valued symmetric matrix. In this way, we can use

the eigenvalue decomposition to decompose H, as H, = VAV ™', Here, A = diag[A1, X2, -+, \p)]
is a diagonal matrix, whose diagonal elements are the corresponding eigenvalues, A;; = \;. The
square matrix V = [v1,v9, -+ ,v,] € R™ ™ contains n linearly independent eigenvectors v;, ie.,

Vi # k,vf vy = 0, where v; is the eigenvector corresponding to the eigenvalue \;. Without loss
generahty, we normalize these n eigenvectors v;, thereby VTV = I. In this scenario, the Hessian
matrix H, can be decomposed as H, = VAV”, and the perturbation 6™ can be represented as

5 = o[l + (T +aVAVE) 4+ (I + aVAVT) .+ Z ™

alVVT + (VVT +aVAVT) 4+ (VVT 4+ aVAVT) " ge + 5 9
t=1
=alVIVT + V(I +aM)VT + -+ V(I + aM)VT]" g + >y
(25)

=aVIVT + VU +aMN)VVT 4+ 4 V(I +aN)™ 'V +Z¢<f)
=aV[[+(I+ah)+ -+ T +ah)" Vg, +Zw“>

=aVDV7T g, +> 4.

t=1

For simplicity, let D = a(I + (I + @A) + --- + (I + aA)™™ "), which is a diagonal matrix, since I,
I+ aA, ..., (I +aA)™ ! are all diagonal matrices. In this way, let us focus on the k-th diagonal
element Dy, € R.

Dy = a(l —+ (1 + a)\k> 4+ (1 + a/\k>m—1)
1- (]- + Oé)\k)m

B e ey s v (26)
N (1 + Oé)\k)m -1
- (Lrod o1

Then, combining Eq. (25) and Eq. (26)), the perturbation 6™ can be written as follows. Here,
considering that n eigenvectors of the Hessian matrix form a set of unit orthogonal basis, the gradient
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g. can be represented as g. = Y ., v:v:, Where ~; is referred to as the projection length of g, on v;.

m

80m = vDVTg, + 3 p®

t=1

= VDVT(Z Yivi) + Z Pp®
=1 =1
= Zn: Djviv] z": Yk + zm: ) 27
i=1 k=1 =1

m t—1

,Z 1—|—a)\ 'ylvl—l-azz (I+aH,) ' YRy (Az®))

t=1t'=1

_Z 1+a)\ ’szi“‘Py

where we use p € R" to denote the residual term ;" (. In Lemma [3|in Appendix, we have
proven that each dimension p; € R of the residual term p is the order of O(1/m). Thus, this
residual term p can be ignored, without hurting the trustworthiness of the analysis of the
adversarial perturbation, if the step number m is large.

Based on Eq. lb the gradient g, 5¢ny Of the loss w.r.t. the adversarial example = + 5™ can be
re-written as follows. Here, Ro(Az(™)) denotes terms of the perturbation Az(™ higher than the
second order.

Gorstns = 0o+ 3 Hatal® + Z Ra(Az)

t=1

m (28)
=go + H, 0™ +> " Ro(Ax?).
t=1
Substituting Eq. back to Eq. @) the gradient g, ;=) can be written as
Gpto(m) = Gz + H, ( Z %%w + P) i Am(t)
= i Yivi + Ha Z %%w + Hup + ; RQ(AZE(t))
- Z o+ 3 %mﬁm CHp+ Y Ra(aa®) (29)

t=1

—Z%vlJrZ 1+a)\ ~Yi( A v1)+Hzp+ZR2 (Az™).

t=1

~ Z (14 aXi)™ vivi.
i

We have proven in Section (A that each dimension of the residual term H,p + 37" | Ro(Az™)
in Eq. @ is the order of O(1 /m). Then, when the step number m is large enough, the residual
term H,p + 37", Ro(Az") is small enough to be ignored, without hurting the trustworthiness
of the analysis of the gradient. Please see Section[A 2] for the detailed analysis.

Hence, Theorem [I]is proven. O

A.2 REASON FOR IGNORING THE RESIDUAL TERM IN THEOREMI]

In this subsection, we clarify the reason why the residual term for the perturbation §™) in Theorem
and the residual term for the gradient g, | s(m) in Theorem [I] can be ignored.

Lemma 3 (in Appendix). Each dimension p; € R of the residual term p = 3" ) € R™ is the order
of O(1/m), where m represents the total number of steps. ¥ = a5 (I + aH,) 1" Ro(Az™)),

17
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and each dimension of ¥*) is the order of O(1/m?). Ro(Az™)) = 2 Ry(Az®)), and Ra(Ax™))
denotes terms of Az®) higher than the second order in Taylor expansion.

Proof. Without loss of generality, let us focus on the i-th dimension of the residual term p =
S ®. For convenience, we use p; € R, %" € R, and Ry(Az*") € R to denote the i-th
dimension of p, %, and Ry(Az*"), respectively. Then, the i-th dimension of the residual term p
can be re-written as

m

pi = Z P

o~
-
o~
|
-

((I+aH,)' "), Ri(A2™)) (30)

Il
ot

’

o
Il
-
«
Il
=

o~
[

(1+ a)\i)t_l_tl I%(Ax(t/)). // According to Eq. 23)

NgE

=«

t ’

Il
=
«
Il
—

In the following manuscript, we will prove that each dimension p; of the residual term p is the order
of O(1/m?) step by step.

+ Each dimension of the perturbation Az(™ is the order of O(1/m). Specifically, according to
Lemma [2]in Appendix, the perturbation Az(™ can be represented as

A:z:(m) =0 gpism-1)
~a(l + O‘Hx)milgx 3D
=aV(I+aN) " 'VTg,. // According to Eq. Z3)

(m)

Then, each dimension Az"™ of the perturbation Az™ can be represented as

Axgm) =a(l +aX)™ My, (32)
We notice that there exists a limit formula limg, 4 (1 + %)“ = exp(l). Then based on this
limit formula, the above equation can be further re-written as follows, when the step number m is
sufficiently large.
lim A.Z‘Em) = lim a(l +aX)™ 'y

m——+o0 m——+o00

lim a1l + aX;)"viv;

m——+o0

N

lim a1+ %Ai)mw (33)

m——+o0
= aexp(am;)v;v;
aexp(BA;)vivi
=A-B-C.
Here, A = a = 8/m is the order of O(1/m), since S is a small constant, and m is a large enough
constant. Besides, B = exp(8)\;) is a constant, and C' = +;v; is also a constant. Hence, the order of

A - B-(C,i.e. each dimension Axﬁ"” of the perturbation Az™, is O(1/m), when the step number m
is large enough.

+ Each dimension R} (Az®) of the term R2(Az™®) in the residual term p is the order of O(1/m?).
Because R (Az®) denotes terms of Az(® higher than the second order in Taylor expansion, each
dimension R%(Az™®) of the term R2(Az®) is the order of O(1/m?) + O(1/m*) + O(1/m®) + - --.
Note that, when the step number m is large enough, O(1/m?®) + O(1/m*) + --- < mO(1/m?), which
is the order of O(1/m?). Hence, each dimension Rj(Az®) of the term Ry(Az™®) is the order of
O(1/m?).

+ Each dimension R} (Az®) of the term R2(Az™®) in the residual term p is the order of O(1/m?).
Considering the assumption in Theoremthat the gradient g, , 51y = 2 L(f(z+6 (®)),y) is a Lipschitz
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function with the Lipschitz constant K, ||g, sy — g=|| < K - [|§”]], and the perturbation Az") is
small, each dimension R5(Az") = 2 R5(Az(") of the term Ra(Az") is also the order of O(1/m?).

+ Each dimension v of the term ") in the residual term p is the order of O(1/m?). Note
that the term (1 + a\;)*"'~* in Eq. is bounded by 0 < (14 aX)" 1" < (1 +aX)™ <
limp, 400 (1 4+ @Xs)™ = exp(a - m - A;) = exp(BA;). In this way, 1/’1@ can be bounded as follows,
where 8 = am is a small constant.

t—1
P =a > (1+an) " Ri(A™)) <a-m- (14 ad)™ Ri(Az™))

t'=1
<o m-exp(Bh) Ry(Ax") (34)
< B-exp(BN) O(- )

:O(L).

m2

* Each dimension p; of the residual term p is the order of O(1/m).

pi = i P
t=1

§m0(%) //  According to Eq. (34) 35)
1
O

Reason for ignoring the residual term p for the perturbation (™) in Theorem According to
Lemma 3|in Appendix, p; is the order of O(1/m). When the step number m is large enough, the
residual term p is small enough to be ignored, without hurting the trustworthiness of the analysis of
adversarial perturbations and adversarial training in Theorems [3| [} [5| and [§]

Moreover, we have conducted experiments to verify that the residual term p made an ignorable
influence on the adversarial perturbation, i.e., checking whether the theoretically derived solution B)
well fitted the real perturbation in practice. Table @ shows that for each network, the solution & well
fitted the real one. Such a phenomenon successfully verified that the residual term could be ignored,
without hurting the trustworthiness of analyzing the adversarial perturbation. Please see Section [J| for
details.

Reason for ignoring the residual term H,p + >/ | Ro(Az") for the gradient g, 5(») in Theo-
rem (I} According to Lemma[3|in Appendix, each dimension in the term H, p is the order of O(1/m).
Moreover, 37, Ri(Az™®) is the order of m - O(1/m?) = O(1/m). Hence, each dimension in the
residual term Hop + 327", Ro(Ax®) for the gradient g, , 5om) in Theoremis the order of O(1/m).
Then, when the step number m is large enough, the residual term H,p + 7", Ra(Az™) is small
enough to be ignored, without hurting the trustworthiness of the analysis of the gradient.
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B PROOF OF THEOREM

In this section, we prove Theorem [2]in Section [2.1]of the main paper, which analyzes the adversarial
perturbation of the infinite-step attack.

B.1 PROOF OF THEOREM[Z]

Theorem 2 (Perturbations of the infinite-step attack). 3 = am reflects the overall adversarial strength
of the infinite-step attack with the step number m — +oo and the step size a = 3/m — 0. Then, based
on Assumption this infinite-step adversarial perturbation § = lim,, 4 oo ZZ":_Ol %L(f(qud(t) ), Y)
can be re-written as follows.

n

N ) —1 . =
o=> %%W P, Guys =D exp(BNi)yivi. (36)

=1 =1
Here, p € R™ denotes an ignorable residual term in the Taylor expansion, because p; € R is proven
to be the order of O(1/m).
Proof. According to Eq. (T6) and Lemma [2]in Appendix, when the step number m — +oo, the

infinite-step adversarial perturbation ¢ can be represented as

6= lim Az® 4+ Az® 4. 4 Az

m—-+o00
_ _ ™ (37)
= lim o[l+(+aH,)+ -+ +aH,)" g+ lim .
m——+oo m——+o0o

Because the Hessian matrix A, is a real-valued symmetric matrix, we can use the eigenvalue
decomposition to decompose H, as H, = VAV ™' = VAV, In this scenario, the perturbation ¢ can
be further simplified as

b= lim a[l+ I +alH,)+ -+ I +aH,)" Yg. + lim Pp®
m——+oo m——+oo =

m

: T Tym—1 : (t)
Jim eI+ (1 +aVAVT) 4+ (I +aVAVT) ]gm+m131+1002¢

t=1

(38)

lim oV[I+(I+ah)+ -+ (I +ah)" Vg + lim Y y®

m——+o0 m——+oo =1

~ T ~ (t)
i AVDVge t lim D v,

where we use D = a(I + (I +aA) + - + (I + aA)™ 1) for simplicity. Then, when the step number
m — +oo, the k-th diagonal element lim,,_,+~ Dgx can be written as

lim Dy, = ’ml—i>r-I|-100 [a(1 4 (1+aXg) + -+ (1 +arp)™ )]

m—+00
im0 (14 @Xg)™ — 1
= T

Hmy g0 (1 4 2228 )™ — ]

= "

exp(amAg) — 1

Ak
exp(BAr) — 1
Ak '

(39)
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Then, combining Eq. and Eq. , the perturbation § can be written as

s _ : ()
b= 1lim vDVT go + mgrfmzw

m——+oo
t=1

lim VDVT(Z%vi)Jr lim Zw“)

m—+oo

(40)

n m t—1

ngToo D“vlvl Zykvk+ hm azz I+aH =1t R (Am(t/))
—1

t=1¢'=1
exp(BAi)
_E p/B '71'Ul+p

Here, we use p € R" to denote the residual term lim, 40 >, %Y. In Lemma [3, we have
proven that each dimension p; € R of the residual term p is the order of O(1/m). Thus, this
residual term p can be ignored, without hurting the trustworthiness of the analysis of the
adversarial perturbation, since the step number m is infinite. Please see Section for the
detailed discussion.

Based on Eq. , the gradient g, ; of the loss w.x.t. the adversarial example z + 4 can be re-written
as follows. Here, Ro(Az™)) denotes terms of the perturbation Az(™ higher than the second order.

m

R , o
9ois =9o+ lim HIA:r(t> + lim %RQ(AJ]@))

m——4oo " m——+oo "

=1 = 1)

m

m——+o0
Substituting Eq. (#0) back to Eq. (1), the gradient g, , ; can be written as

. A) -1 3
Gois = o +HZ(Z %wz - p) +mgr£wZR2(A$<t>)

7

m— 400

= ywi+He Y eXp(B;i) — i + Hyp+  lim Z Ro(Ax)

m—+4o00

=3 e+ 3 PPy  Hapt i ZRQ (Az®) (42)

- A) — 1 o i
= Z Vivi + Z %’W()\ﬂ}i) + H.p+ EI-E Z Ro(Az™)
i=1 i i meoTee it

~ Z exp(BAi) ivi.

Based on Lemma [3|in Appendix, we have proven that each dimension of the residual term
Hop +limp, 00 St Ro(Az™) in Eq. is the order of O(1/m). Then, considering the step
number m is infinite, the residual term H,p + limy 400 > i, Ro(Az") is small enough to
be ignored, without hurting the trustworthiness of the analysis of the gradient. Please see
Section [B.2] for the detailed analysis.

Hence, Theorem [2]is proven. O
B.2 REASON FOR IGNORING THE RESIDUAL TERM IN THEOREM 2]

In this subsection, we clarify the reason why the residual term for the perturbation 6 in Theorem
and the residual term for the gradient g, 5 in Theoreml?] can be ignored.

Reason for ignoring the residual term p for the perturbation 4 in Theorem According to
Lemma [3]in Appendix, p; is the order of O(1/m). Since the step number m is infinite, the residual
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term p is small enough to be ignored, without hurting the trustworthiness of the analysis of adversarial
perturbations and adversarial training in Theorems [3 {4} [ and [6]

Moreover, we have conducted experiments to verify that the residual term p made an ignorable
influence on the adversarial perturbation, i.e., checking whether the theoretically derived solution §

well fitted the real perturbation in practice. Table @ shows that for each network, the solution & well
fitted the real one. Such a phenomenon successfully verified that the residual term could be ignored,
without hurting the trustworthiness of analyzing the adversarial perturbation. Please see Section [J| for
details.

Reason for ignoring the residual term H, 6 + limo, 00 >/, R2(Az'")) for the gradient g, _ 5 in
Theorem 2} According to Lemma[3]in Appendix, each dimension in the term H,p is the order of
O(1/m). Moreover, >.7* | R3(Az™) is the order of m-O(1/m?) = O(1/m). Hence, each dimension in
the residual term Hyp+1imp— 400 3o Ro(Ax?) for the gradient g, 5(m) in Theoremis the order
of O(1/m). Since the step number m is infinite, the residual term H, 4 + limp, o0 > opr ) Ro(Az™)
is small enough to be ignored, without hurting the trustworthiness of the analysis of the gradient.
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C DETAILED EXPLANATION FOR REMARK [I]

In this section, we consider ¢y attacks and /., attacks. As two typical attacking methods, the
{5 attack and the l~, attack usually regularize/normalize the adversarial strength in each step
by applying ¢\"2),, = ZL(f(z +69),y)/|ZL(f(z + 6©),y)|, and ¢\, = sign(ZL(f(= +

6®),y)), respectively. In fact, for the /., attack, We can roughly consider that only the gra-
T (£oo)

dient component o; g o) 0o disentangled from g( ‘TW) along 2 L(f(x),y) is effective, where
00 = ZL(f(x),y)/IIZL(f(z),y)| is the unit vector in the direction of Z L(f(z),y). However,

it is qulte complex to analyze the exact attacking behavior. Therefore, in Remark [T} we just nor-
malize the perturbation in Theorem [2]to roughly approximate the regularization/normalization of
perturbations in {5 attacks and /., attacks.

Remark 1 (Normalized perturbation of the infinite-step attack). Based on Theorem 2] we ignore
residual terms p, where p; is proven to be the order of O(1/m). Then, the perturbation of the infinite-

step U attack generated via g( 23;“), and the perturbation of the infinite-step £, attack generated via
(£oo)

9,5 can be approximated as follows.

S(norm, N ex ex -1
5~ ¢ 57|18 = Z p(f 7”/\/2 . p(8 AP = )2, (43)

where C € R reflects the total adversarial strength of the (s attack or the (. attack.

o Experimental verification 1 of Remark E] Although Remark [T]is a brutal approximation of the
{4 attack and /., attack, we conducted experlments to verify the trustworthiness of Remark 1] i.e.,
checking whether the approximate perturbation § jorm) iy Remarkl 1{well matched the real perturbation
5(¢2) generated via the /5 attack. To this end, we calculated the cosine similarity cos(6™™, §(2)) to
evaluate the error between the theoretical perturbation Sorm) jp Remark and the real perturbation
6(2) measured in practice.

Specifically, we learned three types of ReLU networks, including MLPs, CNNs, and MLPs with skip
connections (namely ResMLP), on the MNIST dataset. The specific architectures of these three types
of ReLU networks were introduced in Section[]l

Then, based on each network, we followed the setting in (Wu et al.| [2020) to generate the adversarial
perturbation § (%2) via the ¢4 attack, and set the ¢3-norm constraint of the adversarial perturbation as
€ = 128/255 for fair comparison.

Table I reports the cosine similarity cos(§™™, §*2)) for each network, which was averaged over
40 randomly-selected training samples. We discovered that the cosine similarity cos(6™™, §(¢2)
approximated to 1, which indicated that the theoretically derived perturbations norm) iy Remark
well matched the real perturbation §(2) of the /5 attack. Such a phenomenon successfully verified
trustworthiness of Remark [T}

Table 3: Cosine similarity cos(3™™, 5(2)) between the approximate perturbation 6™ in Remark
and the real perturbation §(*2) of the /, attack. The cosine similarity cos(5"™, §2)) approximated
to 1, which successfully verified trustworthiness of Remarkm

1-layer 3-layer 3-layer
MLP MLP CNN

cos(8m™, §(%2)) | 0.999285  0.999995 | 0.999908 | 0.999999

3-layer
ResMLP
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D PROOF OF ASSUMPTION [2]IN MAIN PAPER

In this section, we prove Assumption 2]in Section 2.2 of the main paper.

Assumption 2 in main paper. The analysis of binary classification based on a sigmoid function,
flz) = m, z(z) € R, can also explain the multi-category classification with a softmax

/
function, f(z) = %, 2’ € RS if the second-best category is much stronger than other
categories. In this case, attacks on the multi-category classification can be approximated by attacks
on the binary classification between the best and the second-best categories, i.e., f(x) ~ m,
subject to z = 21 — zy € R. 21 and 2}, are referred to as network outputs corresponding to the best

category and the second-best category, respectively.

Proof. Given an input sample = and a ReLLU network f trained for multi-category classification
based on a softmax function, let z; € R, 1 < i < ¢ denote the network output of the i-th confident
category, i.e., 2z > z5 > --- > z.. Then, the probability for the most confident category is given as
follows.
exp(2])
M ()
1

T S (e - )
When the second-best category is much stronger than other categories, we have Vi > 2, exp(z} —
z]) < exp(zh — #1) < exp(z] — z{) = 1. In this way, Eq. can be re-written as
1 1 1
Y ep( =) ep(-A) +1 1+ exp(—(5 - %)

(44)

p1= 45)

Let z = 2] — 25 € R, and we have f(z) = p1 =~ m. In this way, attacks on the multi-category
classification can be approximated by attacks on the binary classification between the best and the
second-best categories.

Hence, Assumption [2|is proven. [
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E PROOF OF LEMMA [Il IN MAIN PAPER

In this section, we prove Lemma([I]in Section [2.2] of the main paper.

Lemma 1 in main paper. Let us focus on the cross-entropy loss L(f(z),y). If the classification is
based on a softmax operation, then the Hessian matrix H, = azaaﬁL( f(z),y) is positive semi-definite.

If the classification is based on a sigmoid operation, the scalar H, > g2 > 0, as long as the attacking
has not finished (still z(z) -y > 0,y € {—1,+1}). Here, g. = %L(f(x),y) eR.

Proof. Let us first consider the classification based on a softmax operation. Given an input sample
x and a ReLU network f, the output of the network can be written as z(z) = f(z) € R€. In this
case, let p; = exp(z:)/ >_;_, exp (zx) denote the probability that the network f classifies the input
sample x as the i-th category, where z; € R is referred to as the network output of the ¢-th category.
Then, the cross-entropy loss can be represented as L(f(z),y) = — > ;_, y: log(p:), where y; € {0,1}
denotes the label. Here, let ¢ denote the ground-truth label for the input sample z, i.e., y; = 1, and
Yk # i,y, = 0. In this way, the gradient of the loss L(f(x),y) w.r.t the network output z(z) € R is

given as
_OLU@y) oy O 1 Opi
= 0xx) T i 0xm)  pi 02(z) o

Let us first focus on the network output z; w.x.t. the ground-truth category ¢. In this scenario, we have

Opi _ exp(2i)(3o5—; exp(zk)) — exp(z;) exp(2:)

8zi (Ezzl eXp(zk))2
_ exp(z;) (- exp(z;) ) 47)
> k1 exp(z5) > k1 exp(2r)

=pi(l—pi) =pityi —pi)- /] wi=1

As for zy, k # 1, we have

Opi _ —exp(z) exp(zn)
Oz (Xh—1 exp(aw))?
exp(z;) exp(zk) (48)

T o op(ar) Yy exp(a)
=—pipk =0ilyx — k). // Yr=0

Combining Eq. (46), Eq. (7)), and Eq. (48), we have
g: =P Y, (49)
where p = [p1,p2,- -+ ,p] € R andy = [y1,y2, -+ ,yc] € R

In this way, based on Eq. , the Hessian matrix H. & %L( f(z),y) of the loss w.r.z the network
output z(x) can be written as
_ 0’L(f(z),y) _ 0g:

H. = 02027  0z(x)
_op-y) _ Op

0z(z)  Oz(x)’

According to Eq. 1} and Eq. , we have gfz’;} =pi(1 — pi) = pi — p?, and Vk # i, gf; = —PiPk.
Then, the Hessian matrix H ., can be re-written as

(50)

H, =

o2() — Siaelprop2, - pe]) — o (51)

In order to prove the Hessian matrix H, is positive semi-define, we need to verify that all eigenvalues
of the Hessian matrix H, are non-negative. To this end, we use Gershgorin Circle theorem to estimate
the bound of eigenvalues. Specifically, Eq. (51) shows that for the k-th row of the Hessian matrix
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H_, the k-th diagonal element of the Hessian matrix H, is p;(1 — p;), and the sum of absolute
values .of non—diagonal' elements in the k-th row .is D k1 ke k| PRDR | = pk(l - pk.). In this.way,
according to Gershgorin Circle theorem, each eigenvalue A of the Hessian matrix H, satisfies
0 < A < maxy, 2pr(1 — pr). In other words, all eigenvalues of H, are non-negative. Hence, the
Hessian matrix H, is proven to be positive semi-definite.

Moreover, let us focus on the classification based on a sigmoid operation. In this case, the net-
work output z(x) € R is a scalar, and the cross-entropy loss can be represented as L(f(z),y) =
—log %, where y € {—1,+1}. Then, the gradient of the loss L(f(z),y) w.r.t the network
output z(z) € Ris given as

_ OL(f(z),y)
9= = 0z(x)
_ 1+ exp(z(z) -y)  exp(z(z)-y) y (52)
exp(z(x) -y) (1 +exp(z(z) - y))?
Y

Based on Eq. , H. & %L(f(a:), y) € R of the loss w.r.f the network output z(z) can be written
as

o ye(e@) )
=Y T T ew(e(@) - v)? 43
y? exp(z(x) -y >0

)
(1+exp(z(z) - y))*

Combining Eq. (52) and Eq. (53)), we have

H. _ p*ep)-y)  1tesp@) yy,_ oo
2~ [+ el ) ¢ y )* = exp(2(x) - y) (54)

If the attacking has not finished yet, i.e., z(z) -y > 0, then we have exp(z(z) -y) > 1, thereby H, > g¢2.
Based on Eq. (52), we obtain g7 = y*/(1 + exp(z - y))* € R > 0, thereby H. > g2 > 0.

Thus, Lemma([I]in main paper is proven. O
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F PROOF OF THEOREM 3]

In this section, we prove TheoremE]m Section [2.2] of the main paper, which explains training effects
of the adversarial perturbation §in Theoreml 2|on adversarial training.

Specifically, if we use vanilla training to fine-tune the network on the original input sample = for
a single step, then the gradient of the loss w.r.z. the weight W is given as gw = 5% L(f(z),y). In
comparison, if we train the network on the adversarial example = + é for a single step, then we will
get the gradient g\ = % L(f(x + §),y). In this way, Agw = g\ — gw denotes additional effects
of adversarial training on the gradient.

(adv)

9 .
Agw = gy —gw = WL(J‘(H& Y) —

= .’L‘(HhAh)T + (5(gh + I_thh)T

0
L (@) ) 5

Ah = W74 denotes the change of the intermediate-layer feature h caused by the perturbation 4,
where W7 = W'S;_1 - S, W4 1 W . For simplicity, we analyze the equivalent weight W for all
the first j linear layers, but actually W has similar behavior as W;, without hurting the generality of
the analysis. It is because W can be considered as W = W} A, where A = %;_; - S, Wy £, W In
this way, the output feature h = W]-Tx’ + b; of the j-th layer can be taken as h = W7z + b', where x’
can be roughly considered as 2’ =~ Az. Hence, using W for analysis will not significantly hurt the
generality of our theorems gn = aah L(f(z),y) indicates the gradient of the loss w.r.z. the feature h.
The matrix Hy, = gnH-g) , where g, = -2 2(z) indicates the gradient of the network output z(z) w.r.1.

the feature h. The matrix H, = m St 1Az HE ) is a weighted sum of the Hessian
2
matrix H" = 52 L(f(z +6®),y).

Proof. Accordmg to the chain rule, the gradient of the weight W can be written as g, =
(2L v )T L)) 00 )T Without loss of generality, let us first consider the i-th dimension
of h, i.e. hZ = WZTx € R, which is only related to the i-th row of W7. Thus, the gradient of the

loss w.rnt. W e R'*™ is given as

OL(f(x),y) _ OL(f(x),y) Ohi _ OL(f(2),y) =

owr —— 9h; WL Oy (56)
In this way, combining all dimensions of h, we have
ow'T owlr — owl 7 oW} (57)
_OL(U@).y)
oh '
In other words, the gradient g, of the loss w.zt the weight W can be represented as
_ OL(f(=),y)\r _ OL(f(2),y) 77
w = ( ) = z")
0Ly
onT In-

According to Eq. (58), the gradient g{” = % L(f(z + ), y) can be re-written as follows, where
gh+Ah = dh+AhL(f(m+5) )

9w = (& +8)(gn+an)”- (59)
Similar to Eq. (T9), the gradient of g, x can be re-written as follows.
Ghian ~ gn + HAh+ Y Ro(W" Az). (60)
t=1
The matrix H;, = §n,H.gi is used to approximate the gradient g, an, where g, = a% (z)
indicates the gradient of the network output z(z) w.rt. the feature h. The matrix H, =
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> 020zT
§1),y). Re(WTAz®) = 2 Ro(WT Az™), where Ro(W” Az(") denotes the terms higher than the
second order in the Taylor expansion.

Substituting Eq. back to Eq. , the gradient g\ can be represented as

m S Az® || HY is a weighted sum of the Hessian matrix H{" = —2 L(f(z +
t=1

m T
g = (z 4 6) <g,,, + HyAh+) RQ(WTAz(t))> . (61)
t=1

Thus, the additional effects of adversarial training on the gradient can be written as follows.

(adv)

Agw = 9w aw

m T
= 2(HyAR)T + 6(gp, + HyAR)T + (z +9) ( > RQ(WTAM)) (62)
t=1

~ z(HpAR)T + 6(gn + Hy,AR)T .

According to Lemma [3| in Appendix, each dimension in the term 7" R>(Az™) is the
order of O(1/m). In this way, the complexity of each dimension in the residual term
(z+8)(X, R2(WT Az ™))" is the order of O(1/m). Considering the step number m is infinite,
m — oo, the effects of the residual term (z + 6)( X7, R:(WTAz™"))” in Eq. can be
ignored, without affecting the subsequent proofs.

O

Assumption 3 (in Appendix). Given a ReLU network f, let W' = WS, 1. S Wy 8. W/ €
RP*". Because each column of WT'W is a high-dimensional vector, we can roughly consider that

any pair of columns in WTW is linearly dependent. Thus, WTW is a full rank matrix, and there
exists (WTW)~L,

Lemma 4 (in Appendix). Based on Assumption [2]in the main paper, let us focus on the binary

classification ??SEd on a sigmoid function. Then, the Hessian matrix H ;f) = %L( f(z+5Y),y)
and HY = 9+ L(f(z + 6),y) can be represented as HY = HP§og7 and H = H P §,§7 =

WHff)WT, respectively. Here, gn = 2-z(x) indicates the gradient of the network output z(z) w.r.t.

the feature h, and H" = a;?;zT L(f(z+6"),y) eR.

Proof.
(x ®) s z(x
o _ PLU@+00),y) O ST
h OhohT OhT
z(z z+51)),
_ G oLt +80).y) | 0uw) o OGN
OhT 0z(x) OhT OhT (63)
02(x) \7 O°L(f(x 4+ V), y) 02(x)

= OhT ) 0z(z)0z(x) ORT
= H§i>ghg,?f. /] z€R, HY R, according to Assumption [2]in the main paper
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Similarly, we have

OL(f(z4+6M)),y) dz(x)\T
H® — ’L(f(z+6),y) _ ( ORI T,
“ 0zx0xT oxT

(G oL@ +6D),y) | 9x(a) )
- aamT . 0z(x) + oxT ) oxT
= (az(x) )T 62L(f($ + 6(t))7 y) 8z(ac)
oxT 0z(x)0z(x) oxT
=wHPW)"

H(PLUat8 ) y) y
T

(64)

= Hit)gmgf. /] z€R, Hz(t) € R, according to Assumption [2]in the main paper

Furthermore, we use the chain rule to re-write the gradient g, of the network output z(x) w.r.t the
input sample x.
~ 9z(x) \ p
be = (am )" = CGuT gar

0z(xz) Oh )7

(65)

= (@G WhH" =Wgp.

In this way, substituting Eq. (63)) back to Eq. (64), we get
H = HY 5,57 = HOWgn(Wan)" = WH W™, (66)
Thus, Lemma[d]in Appendix is proven. O

Lemma 5 (in Appendix). Based on Assumption [I| when the loss function is formulated as the

cross-entropy loss, the Hessian matrix H;E;t) is positive semi-definite, which is proven in (Yao et al.,
2018). Moreover, based on Lemmall| the matrix H, is positive semi-definite, so the matrix H, is
positive semi-definite, as well.

Proof. Let us first focus on the positive semi-definiteness of the Hessian matrix H. g(ct). According

)

to Lemma the Hessian matrix H. z(t is positive semi-definite (proven in Section . Then, for any

vector a € R™, we have

ol HY o = a™W H® (W)Ta // According to Eq. ©4).

=WTa)T HO (WTa) (67)
> 0.
Moreover, it is because the matrix H, = m St Az | HEY is a weighted sum of the
t=

Hessian matrix H ét), where each Hessian matrix H. S) is positive semi-definite. Thus, the matrix H,
is also positive semi-definite.

In this way, the positive semi-definiteness of the matrix H,, is proven as follows, where a € R" is an
arbitrary vector.

ol Hya=a"W H, W)Ta // According to the definition of the matrix H,.
=(WTa)" H. (W'a) (68)
0

Thus, Lemma[3]is proven.
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Lemma 6 (in Appendix). Let §. = 2 z(x) denote the gradient of the network output z w.r.t the input
sample x, and A = BH.|§.||* € R. Then, we have

H, Agw = ( - 1)H, a:gh + = (62A - eA)ngzg,{. (69)

1
H.[|g.||?

Proof. To prove Lemmal6]in Appendix, we multiply 7. on both sides of Eq. (53).
H, Agw = H, (9" — gw) = Hy @(HyAR)T + H, (g + HyA)T (70)
Let us first focus on the first term H,a(H,Ah)” in Eq. (70). According to Eq. (37) and Lemma[d]in
Appendix, we can write Ah as follows.
Ah=WTs~ aW [l + U +aH,)+ -+ I +aH,)™ Yg.

=aW I+ T +aWH,W") + -+ (I +aWH,W")™ g, // according to Eq. (68) (71)

=aWr + WU+ aWH W) + -+ W+ aWH, W)™ g,
As discussed in Section each dimension in the residual term p is the order of O(1/m). Since
the step number m is infinite, m — +o00, the effects of the residual termp is small enough to

be ignored, without hurting the trustworthiness of the subsequent proof. Thus, we ignore the
residual term 4 in Eq. (37).

Furthermore, to simplify Ah, we apply the mathematical induction to prove that v¢,1 < t <
m,WI(I + aWH,W) = (I + aWTWH,)'W7T.

Base case: Whent =1, WT(I + aWH,W7T) = (WT + aWTWH,WT) = (I + aWTWH,)WT.
Inductive step: Fort > 1, assuming W7 (I + oW H,WT)!=! = (I + aWTW H,)* ' W7, we have
W+ aWHWD =WT (I + aWH,WHIH T + oW H,WT)
=T+ aWITWH)*WT (I + aWH,WT)
= (I 4+ aWTWH)" I +aWWi,) Wt

= +aW'Wh,)'wT

(72)

Conclusion: Since both the base case and the inductive step have been proven to be true, we obtain
WH(I+aWH WD = (I +aWTWH,)'WT.
In this way, we combine Eq. and Eq. (72). The change of the intermediate-layer feature  caused

by the perturbation § can be represented as

Ah=a[l + (T +aWI'WH,) + -+ (I +aW ' WH,)™ WTg,. (73)

Multiply (I + oW TW H},) on the both sides of Eq. , and we get
(I+aWTWH)AR = o[l +aWTWH,) + -+ T +aWTWH,)™"Wg,. (74)

Then, the difference between Eq. and Eq. is
(I +aWTWH,)Ah — Ah = a[(I + aWTWH,)™ - IIWTg,
= aWTWH,Ah = o[(I + aWTWH,)™ — I[WTg, (75)
= WIWH,Ah = [(I +aWTWH,)™ - IIWTg,.

Therefore, based on Eq. , we have
(H,AL)TWTW = (WTW H, AR)T
= ([T +aWTWH,)™ — IWTg,)T
gEW(I + aWTWH,)™ — 117 (76)
=gt WTW(I + aWTWH,)™ — 1|7
=gt WIW (I + aWTWH,)™ — gt WTW.
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Furthermore, the term g WX W (I + oW W H,)™ in Eq. can be re-written as

GWIW T + aH W W)™ = gf WIW (T + aH W W)T + aH W W)™ 1
=gt W'W + aWTWH,W"W)I + a«H,W W)™ !
=gt (I +aW"WH,)WW I + aH, W W)™ !
=gt (I +aW"WH)WTW I + o H,WW)(I + aH,WT W)™ 2
=gt (I +aW " WH,(WW + aW " WH,W W)(I + aH,WT W)™ 2
=gt (I +aW " WH,)*W"W I + aH,W W)™ 2

=gt (I 4+ aW"WH)"WTW.
(7)

Based on Lemmad]in Appendix, the term g7 (I + oW T W H,)™ in Eq. can be simplified as
gt (I +aW"WHL)™ = gt (I + aWTWH,) (I +aW " WH,)™ !

= gi I+ oW WH.gngn )(I + W' WH,)™

= (gf +a H.Gt W Wan gi)(I + oW WH,)™

=1+ aB)gl(I+aWTWH,)™ ™ /| B=H.GiW Wi, R

= (1 +aB)gs (I +aW " WH,)(I + oW WH,)™? (78)
= (14 aB)gh (I + aW W H.gngi )(I + W W H;,)™ 2

= (1+aB)(gr +o H.gn W Win gy )T + oW WH,)" >

= (1+aB)’gf (I +aW " WH,)™?

=(1+aB) g .

In this way, combining Eq. and Eq. (77), we get
GWIWT + aH, W W)™ = gF (I + aWTWH,)"WTW

79
=1 +aB) g WW. (9

Substitute Eq. (79) back to Eq. (76), and we get
(HyAR)TWIW = giWITW (I + aWTWHy)™ — g WTW
=1 +aB)mgf WI'W — gt wTw (80)
=[(1+aB)™ — 1) WTW,
where B = H.Gi WTWgn € R.

According to Assumption [3]in Appendix, there exists (W7 W)~'. Hence, multiplying (W7 W)~ on
both sides of Eq. (80), we get

(HpAR)T = [(1+ aB)™ - 1]g; . (81)

Since the adversarial perturbation 4 is crafted via the infinite-step attack with the infinitesimal step
size, i.e., m — 400, we have

lim (14+aB)™ = e@mB — BB, (82)

m—r+oo
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Hence, combining Eq. (63) and Eq. (82)), we get

lim (1+aB)™ =¢PB

m——+oo
— PHG W Wan (83)

TTRIE
:eﬁHzngmH :e-A’

Gone 2
where A = ?H=13=1I" ¢ R,

Multiply Az to both side of Eq. (81), and then the first term H,a(H,Ah)" in Eq. can be written
as
Hyx(HyAR)T = lim [(1 4+ aB)™ — 1)Hyxg!
= (e* —1)H,zg} .

Then, let us focus on the second term H..6(gn + HnAh)™ in Eq. . Based on Eq. and Lemma
in Appendix, the second term H,6(gs + Hn,Ah)T can be re-written as follows.
Hx(g(gh + HhAh)T
= Hya[l + (I +aWHWT) + -+ (I +aWH, W)™ Vg (gn + HoAR)T (85)
= Hyall+ (I +aWHW") + -+ (T +aWH,W)" " UWgn(gn + HrAR)".

As discussed in Section each dimension of the residual term p is the order of O(1/m). Since
the step number m is infinite, m — 400, the effects of the residual term p is small enough to
be ignored, without hurting the trustworthiness of the subsequent proof. Thus, we ignore the
residual term 4 in Eq. (37).

For simplicity, let S = I+(I+aW H,W7T)+- - -+ (I+aW H, W)™ !, Then, multiply (I+oaW H,W7T)
to both sides of S, and we get
(I+aWH WS =T +aWHW ) 4+ -+ (T + aWH,W)™
= I+ aWHWNS -8 =T+ aWHW™ -1 (86)
= H.,aS = (I +aWH,W")™ —1. // according to Eq. (66)

Substituting Eq. (86) back to Eq. (83)), we have
Hob(gn + HyAR)T = [(I + aWH,WTY™ — IW g (gn + HyAR)T. (87)

To simplify Eq. , let us first consider the term (I + oW H, W)™ — I. Specifically, we apply
the mathematical induction to derive the term (I + aWHhWT)m —I,and getVt,1 <t < m, (I +
aWH, W) — I = L[(1+aB)" — WH,W", where B = H.g, W' Wgn € R.

Base case: Whent =1,
(I +aWH,W — T =aWH,WT

_ 88
= %[(1 +aB)! -1 WH,WT. (88)

Inductive step: For t > 1, assuming (I + aWH,W")*"' — I = L[(1+ aB)""' — JWH,W", we get
(I+aWHW -1 =T+ aWHW' NI +aWHWT) -1

=T+ aWHW '+ T+ aWHWY aWH,WT — 1
(89)
_ 1
~ B
+(I+aWHW  taWH,W".

(A+aB) ' —yWH,W"
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Since (I + aWH,W")""' — I = L[(1 4 aB)""" — JWH,W?", we obtain (I + onHhWT)t =

I+ 4[(14+aB)" ' —=1]WH,W". In this way, based on Lemma|7_1|1n Appendix, Eq. (89) can be further
simphﬁed as

(I +aWH,WT)" -
1

=5 [(1 +aB)™! — 1} wH,wW”

+a {1 + %[(1 +aB) —ywH, W | WH,WT

_ %[(1 +aB)t - 1} WH,WT

o {WHhWT + %[(1 +aB)t - 1]WHhWTWHhWT}

_ % [(1 +aB)t - 1} WH,W"

_ _ _ 90
+a {WHhWT + %[(1 +aB)"! — l]WHzghngTWHzghngT} ©0)
= % [(1 +aB)™! — 1} wH,w*
+a {Wﬁth + %[(1 +aB) ' 1] Bwﬁzghg,TWT} /| B=H.GaW"'Wg, eR
- % (1+aB)™' = 1} WH,W" +a {WHhWT +[Q+aB) "t —yWH,WT
= % 1+aB)™' —1+aB(1+ aB)t_l] wH,wWT
= % (1+aB)’ — 1] wWH,W".
Conclusion: Since both the base case and the inductive step have been proven, we have
_ 1 _
(I+aWH,WT —T= B [(1 +aB)t — 1} WH,WT, 1)
where B = H, gt WTWg, € R.
Substituting Eq. (91) back to Eq. (87), we have
H,6(gn + HyAR)T = E[(l +aB)™ — 1\WH,WTW gy, (gn + H,AR)T
1 _ _
E[(l +aB)™ — 11H,Wgn(gn + HnAh)"
1 _
E[(l +aB)™ — 1|H,g.(gn + HyAR)T //  According to Eq. (63)
1 1 _ _
E[(l + CKB) ]ngwgz: + E[(l + aB)m - I]ngw(HhAh)T'
92)
Based on Eq. (81)), the term H.g.(H,Ah)T can be represented as
Hy,go(HyAR)T = [(1+ aB)™ — 1]H, 9493 - (93)
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Combining Eq. (92) and Eq. (93), we have

. _ 1 _ 1 _ _
H,o(gn + H,AR)T = E[(l +aB)™ — 1|H,g.9} + B[(1 +aB)™ — 1)H,g.(H,AR)T
1 _ 1 _
= E[(l + aB)m - ]-]Hacga:gg + E[(l + aB)m - 1]2Hzgzgg (94)
1
B

(1 + aB)m[(]- + aB)m - ]-}szzgzglj;'

Based on Eq. (83), the second term H,0(gn + HnAh)" in Eq. (70) can be written as follows,
when the adversarial perturbation ¢ is generated via the infinite-step attack, m — +oo. Here,

A=ePH:N3:1" ¢ R and B = H.5TWTWgn € R.

— A 1 _
H,o(gn + HoAR)T = lim E(l +aB)™[(1 4+ aB)™ — 1|H,g,9;

m——+oo
1 _
= E(eQBB — ) H,g,9F
1 2BH. 517 _ BHNGN\E , T ©3)
T e
z xT
1 _
- m(e”‘ — eA)ngzg,:f.

In this way, combining Eq. (84) and Eq. (93), Eq. (70) can be represented as

H, Agw = H, x(Hy,AR)T + H, 6(gn + HyAR)T

(96)

= (e = 1)H,zg] + (4

1 A\FG T
T —€ )ngmgh~
H. g1

Thus, Lemmal6]in Appendix is proven. O

F.1 PROOF OF THEOREM [3]

Theorem 3. Based on Assumptions[I|and[2] let us focus on the binary classification based on a
sigmoid function. Then, the effect of the adversarial perturbation § in Eq. (@ on the change of the
gradient g, = az(;) is formulated as follows. Ag, = —nAgw gn represents the additional effects
of adversarial training on changing §., because adversarial training makes an additional change
—nAgw on Wm In this way, §I Ag. measures the significance of such additional changes along the

direction of the gradient §,.

~T A ~ ~T ~ A =T A ~(ori) gz 1gnll® , 24 A

9o Age = —nGe Agwgn = (e = 1)ga Ay — ———— (7" —¢7), o7
where gn, = 3‘(;(;), A = BH.||§:||*> € R, and n denotes the learning rate to update the weight.
Considering the footnote’, AGL"™” = —ngw gn, measures the effects of vanilla training on changing §.

in the current back-propagation.

Proof. Based on Lemmafd]in Appendix and Lemmal6]in Appendix, we have

_ _ 1 _
HaAgw = (eA - 1)Hz1’9}? + 77~2(62A - eA)Hngg}?
H.||g=||
o o 1 o
= H.3.9: Agw = (e* — 1) H.3.3: xg + m(e” — e H.5297 gogn, (98)
. - 1 L. -
= Gogs Agw = (7 — 1)Gugs zgp + W(e“ —eMGuGs gugh- /) H.€R

"It is because adversarial training changes TV by —ng(;fv), and vanilla training changes W by —ngw, n > 0.
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Multiply g7 and g on both sides of Eq. , and we get

e i [P 1 P i
32 32Gr Agwgn = (€ — 1)3r §obs g1 Gn + = (€ — €31 G2 s 9o gi In

H.||g?
2
T~ ~ ~ A T~ ~ ~ g A A\~T o T~ ~T~
= §a oGz Agwin = (€ = 13 §oGa gwin + WEHQ@ — ") G2z GGh Gn

) (99)

= G5 Agwin = (¢* — 1az gwin + £ (** = )i gn

T - A v g2 gnll® aa o4

= J: Agwign = (e7 = 1)go gwgn + = 5—— (e —€7)
Let Ag, = —nAgw g represent the additional effects of adversarial training on changing g., because
adversarial training makes an additional change —nAgy on W. Let AG = —ngw gn reflect the

effects of vanilla training on changing . in the current back-propagation, considering the footnote’.
In this way, Eq. (99) can be re-written as

7 N A -7 o ong2 lgnll?, a4 4
9o (=mAgwgn = (e — 1)G, (—m)gw gn — g (e —e™)
z
B (100)
~T A = A ~T A ~(ori) 7795 ||9h||2 24 A
= 0, Agz = (e7 — 1), Agy" — —“=—— (" —e7).
z
Thus, Theorem 3]is proven. O
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G PROOF OF THEOREM [

In this section, we prove Theorem []in Section [2.2]of the main paper, which explains training effects
of the adversarial perturbation § in Theorem on adversarial training.

Theorem 4. Based on Assumptions [I|and [2] let us focus on the binary classification based on

a sigmoid function. Then, we derived the following equation w.r.t. adversarial training based on

perturbations § in Theorem 2| Considering the footnote’, AGe™ = —ng\s® g, reflects effects of

adversarial training on changing the gradient .. In this way, T AG“™ represents the significance of

such effects along the direction of the gradient g,.

ng2(e*4 — e

~T A ~(adv) ~T (adv)~ T
9z Agz = H.

A~ ~(ori ~
—nga g5 gn = e g5 NG — llgnll?. (101

Proof. Based on Eq. , Agw = g™ — gw, we add G gw gn on both sides of Eq. .

20~ 112
5 Bgwdn + 5 owdn = (¢~ 03T gwan + 37w + LI (24 o)
2| = 2
= 37 (Agw + gw)in = AT guwan + ZII (24 o) (102)
~T (adv) ~ AT - 93“%”2 24 A
= o gw G =€ gz gwin + =g (77 —e7).
z
Let AGE™ = —ngvg, represent effects of adversarial training on changing the gradient g,. Then,
Eq. (T02) can be simplified as
2015 112
~T adv) ~ ~T ~ ng: l1gnll*, -
9z (=g gn = gl (—mgwgn — (e — e
z
~ (103)
~T A ~(adv) A~T A ~(ori) 192 |gnll* o4 4
:ngmaV:e ngzorl_’i(e —€ )
z
Thus, Theoremd]is proven. O
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H PROOF OF THEOREM

In this section, we prove Theorem [5]in Section [2.2]of the main paper, which approximately explains
adversarial training based on perturbations of the /5 attack and the /., attack.

Specifically, if we use vanilla training to fine-tune the network on the original input sample = for
a single step, then the gradient of the loss w.r.z. the weight W is given as gw = 5% L(f(z),y). In
comparison, if we train the network on the adversarial example 2 +46™™ for a single step, then we will
get the gradient g{y"™™ = ;% L(f(z + 6™™), y). In this way, Agl™ = g™ — gy represents
additional effects on the gradlent brought by adversarial training, when we use the normalized
perturbation 6™°™ in Remarkl (related to the /5 attack and the £, attack).

0 R 0
(norm) ___(adv,norm) _ —- 7 (norm) _ v
AglE™ = g™ g = O L1+ 57,4 O Ls(@).).
— x(H—hAh(norm))T + S(norm) (gh + HhAh(norm)) (104)
= x(gflhAh) + —C 5( QHhAh)T,
0] I3 lloll
where Ap®e™ — T jnom — ng wTs = ng Ah denotes the change of the intermediate-layer feature

h caused by the perturbation ™™ Here, W' = W '%;_; --- S, W4 %, W{ . Note that, for simplicity,
we analyze the equivalent weight W for all the first j linear layers, but W actually has similar behavior
as W;, without hurting the generality of the analysis.

Proof. According to Eq. , gw = zg}, the gradient g™ = 2 [(f(x + §"™), ) can be

152
re-written as follows, where g;,,  peom = mﬂf (z + 0™™) y).
g "™ = (@ + 67™) (g4 anoom) - (105)

Similar to Eq. (T9), the gradient of g, | o ,eem can be re-written as follows.

W Az®). (106)

C
th’,Ah(norm) ~ Jh + HhA
= ||5||

“The matrix oy, = gnH.gi. is used to approximate the gradient g, xpeom, Where gy = oz(x)
1ndlcates the gradlent of the network output z(z) w.r.t. the feature h. The matrix H.

m St laz® | HY is a weighted sum of the Hessian matrix H" = 828822T L(f(z +
8D, 9). Ro(& WTAx(t)) = 2 Ry(:& - WTAz™), where Ro(-% - WP Az™) denotes the terms

[H] 31l
higher than the second order in the Taylor expansion.

Substituting Eq. (106) back to Eq. (105), the gradient g(adv o) can be represented as

51

C T
gg;i‘;]vnorm) (I + 6(norm))( . WTA.ZC(t))) ) (107)

H5||

t=1

Thus, the additional effects of adversarial training on the gradient can be written as follows.

(norm) (adv,norm)
Agw ™ = gw —gw

7 norm S(norm 7 norm; S(norm - C T
_ m(HhAh( ))T +5( )(gh +HhAh( ))T + (I +5( ))<ZR2(|S| . WTAx'(t)))
t=1

~ x(HhAh(norm))T + S(norm)(gh + HhAh(norm))T

C - T, c-0 C’ T
o]l H5|| \|5H
(108)

According to Lemmain Appendix, each dimension in the term 3°7* | R>(Az™) is the order of
O(1/m). In this way, each dimension in the residual term (z+3™™)( 37 | Ra( SH WT AT
is the order of O(-1). Considering the step number m is infinite, m — oo, the effects of the
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residual term (z + §™™) (" Ro(-< - WTAz®))” in Eq. (108) can be ignored, without
t=1 o]l
affecting the subsequent proofs.

O

Lemma 7 (in Appendix). Let . = 2 z(z) denote the gradient of the network output z w.r.t the input

sample x, and A = BH.||§.||*> € R. Then, we have

C _ C C _
H, Aglem™ = —— (e — D Hypagh + —————(e* = 1)[1 + —(e?* — 1) Hogagi . (109)
o™ = g (€~ Do+ e m (@ T D g 7 - D] Hegen

Proof. To prove Lemma[7]in Appendix, we multiply H, on both sides of Eq. (T04).

H Ag‘;/(')rm) H ( (adv,norm) gW)

_ 05 (110)
= H, ( HhAh) + H, (gh—i— HhAh)

Let us first focus on the first term . «(; 5, HaAh)” in Eq . Based on Eq , Hyx(HpAR)T
(e* —1)H,zg!, we have

T

_ C _ C _
H,x(— HyAh)T = ——(e* — 1)H,zg} . (111)

T\ —=— = —=
[16]] o]

Then, let us focus on the second term T < H,5(gn + T HhAh) in Eq. 1) Based on Eq. and

Lemma@in Appendix, the second term i 6HH +0(gn + T < H, Ah)T can be re-written as follows.
C - =
<~ H:6(gn + HhAh)
l[o1] 18]l
C _ ) . o
ol [16]]
_ Hgﬂﬁzam(uawﬁhwm+.._+(1+athWT)m71]Wgh(gh+”%”HhM)T‘

As discussed in Section[B.2} each dimension of the residual term p in Eq. (37) is the order of
O(1/m). Since the step number m is infinite, m — +oo, the effect of the residual term 6 of
Eq. (37) is small enough to be ignored, without hurting the trustworthiness of the subsequent
proof. Thus, we ignore the residual term p in Eq. (37).

For simplicity, let S = I + (I + aWH,W7") 4+ - + (I + aWHhWT)m !, According to Eq. (86), we
have proven H,aS = (I + aWH, W)™ —I. In this way, Eq. (112) can be further simplified as

C - C _ m C -
oy et g A = (0 WHWEYT — [ Won(on + rfinal)”. (13
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Moreover, we have proven (I 4+ oW H,WT)™ —

B=H.5TWTWg, € R. In this way, we get

16
_c

la

c - .
H.o(gn +

+

1511 - 5

( +aB)™
(1 +aB)™ —
-(1 +aB)™ —

-(1 +aB)™ —

[(1 +aB)™ —

HhA )T

1 Hzgzgiq;

ll91]

1 szgh(gh + — H

1} Hzgz(g

_ o
— 1| WH,W"Wgn(gn + il

||HH”Ah)

Hy,AR)T.

//  According to Eq. (63)

Based on Eq. , the term H,g.(-% o H,AR)T can be represented as

C
Hacg;c(
1]

HyAR)T

Combining Eq. (TT3)) and Eq. (TT4), we have

c - . C -
Hlé(gh‘f'f
o1l

151l

Hyp AR

5l

)" =

+
o]l - B

T3 2
161> - B

S H,5(gn + &

c
o1l - B
c

C
HﬂhBP1+

2

C
n&wskl*

T < H,AR)T

[+t -

[(1 +aB)™ —

|

It is because in Eq. l) we have proven hmm_,+oo(1 + aB)™
Then, the second term

C
= — 1 OZBm
n&d(+ )

{(1 +aB)™ — 1] ﬁzgz(g

— 1:| ngxg{.

1] ngzgg

HyAR)T
o]l

aB)™ — 1] Ha.gz98

2
1:| Hzgrg}?

C
— (1 +aB)™ —
o (TP

1] Ezgzgg.

I=%[(1+aB) = 1)WH,WT in Eq. , where

(114)

(115)

(116)

go1s 12
= e*, where A = PH:13217 ¢ R,

in Eq. (110) can be further written as follows, when

the adversarial perturbation 4 is generated via the infinite-step attack, m — +oco.

¢ —H, 5(9h+

1511

RN

1511

. C
lim —
m—+o00 ||5|| - B

)6l B

161187112

C

C (eA—l)[l—i— ¢

0+ a8 -

141l

(eA—l){l—l— ¢

llo

1} [ ng [(1+aB)™ —

(e* - 1)} H.9:9n

1]} H.g.gi,

(e* - 1)} H.g.i, -

In this way, combining Eq. (TTI)) and Eq. (I17), Eq. (II0) can be represented as

H, Agiy™ = H, :U(C '+ H, Cﬁd(gh+g
161l l[o]l o]l
C - C
o] 011 H 1|7 |
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(eA—1){1+Q

)T

l[o1l

(e* —1)|Hygagr .

(117)
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Thus, Lemma([7]in Appendix is proven. O

H.1 PROOF OF THEOREM[3]

Theorem 5. Based on Assumptions[I|and 2] let us focus on the binary classification based on a
sigmoid function. Then, we derived the following equation w.r.t. adversarial training based on
normalized perturbations 5"™ in Remark Considering the footnot AGr™ = —nAghe™ g, =

(gladvrorm) _ g\ gn represents additional effects of adversarial training on changing §... In this way,
GEAGr™ = —ngL Aglw™ gn reflects the significance of such additional effects along the direction of
the gradient g..

A 2 1~ 112
~T A ~(norm) € 17 a ~fori) N9 thH
nggz :C( = A)nggz -C- 5

ol lloll H

et 1 A

N e P - L) BT
o e e 7)o

I8l 1181

Proof. Based on Lemmafd]in Appendix and Lemma[7)in Appendix, we have

_ C _ C C _
HIA(norm): = EA—lemT‘f‘f@A_l|:1+f6A—1:|HIIT
A T T T T EA R T A R

7 ~ ~ norm C 7 ~ ~
= H.3.9: Agiy™ = ——(e* — 1) H. 3291 xgi-

18]
C A C 4 o o~ T T
+ (" - 1) [1 + —=(e" - 1)} H.GzJz 929n
0]l H- |32 12 flo]l
~ ~T (norm) C A ~ ~T T
= 020: Agyy " = ﬁ(e = 1)32Gx ©gn
C A C 4 . .7 T 5
f(e —1)|:1+f(€ —1):|ggcgzgxgh // H., eR
0] H |32 12 llo]l

Multiply g7 and g, on both sides of Eq. (120), and we get

(adv)

81t is because adversarial training changes T by —ngy - and vanilla training changes W by —ngw, n > 0.
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T - - C T . ~
Gr GoGe Agw™dn = —— (€™ = 1)3r GoGr 291 Gn

9]
C A |: C A :|~T~ T T
———(e7" —=1) |1+ —( —1 T il go
H6HH2||g1”2( ) ||5||( )| Gz GGz 9= 9n Gn

(norm) ~

~T~ ~T C 4 T~ ~T -
= G2 G202 Agyy  9n = —=— (€7 = 1)§z §u Gz gW Jn

l[o]l
ng A C 4 T~ ~T~ ~T~
(" = 1) |1+ —=(e" — 1)| Gz G2z G=Gh In
01| H - 1g= 12 [[o]l
~T (norm) ~ C A ~T ~
= Gz Agwy gwm(e —1)Gz gwin (121)

Cg? C T
et [1 L 1)] i an

Co:llgnll® a _ {1 + (et - 1)}

~T (norm) ~ C A ~T ~
= Gz Agyy gn = —— (e = )Gz gwgn + — % = .
v 16122 1811

1511

= gTAg‘M"ﬁ“m)gh =C- (i — LA)NTgWgh
ol lloll
20~ 2 A A
1 1
He ol o]l ol lloll
Let Agl™ = —nAgiw™ gy represent the additional effects of adversarial training on changing g.,

considering the footnote'. In this way, Eq. (121 can be re-written as

A 2= 12 / A A
~T (norm) ~ € 1\ .7 ~ n9: th” € 1 ¢ 1 2
9o =MAG ™" gh = C - (- — =G (=gwin — = | =~ = + O (- — =)
ol ol H: ol 1Sl ol llall
A 2= 112 / A A
~T A ~(norm) e 1 .71 ~(ori) N9~ ”gh” € 1 € 1 12
ol ol H: ol llall ol llall
Thus, Theorem 3]is proven. [

H.2 PROOF FOR THE STRENGTH OF THE TRAINING EFFECT gl Agi o™ IN THEOREM

Given a relatively strong attack, Theorem 2| shows 16]] = exp(B|7=192)/|lg=||. In this way, we can
ignore the term 1/||4|| — 0 in Eq. , and prove that the strength of the training effect GgT Agom™ s
mainly determined by the term exp(A)/||0]| = ||gz|| - exp(B]|§=||*(H. — ¢2)). The proof is as follows.

Proof. Given a relatively strong attack, we can ignore the term 1/ 16| — 0 in Eq. (12), because a a
relatively strong adversarial strength 3 usually makes ||§|| — exp(83||dz|>¢2)/||g=|| with an exponential
strength. In this way, Eq. (I2) can be re-written as

~(norm) — C ) (e'A 1 )~TA~(ori) o 7793 ||§h”2 ( e-A 1 +C . ( e'A 1 )2)

L AG — = —)3. Ag o TR T
[lof ol H. lloll Mol lloll 4l
A 2 11= 112 A A
€ T A ~(ori) N9 th” ( € ¢ 2
~ O C g agen — 9z lanll” fe” o e 123
H H. o\ 3] H (123)
A 21~ 2 A
e ~T A ~ori ﬁngth €
= — C - - A r — ——— | 1 C- — .
TR . T
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Thus, §ZAg™ is determined by the term % Since the attack is relatively strong, we have
16]] ~ exp(B]|=|I>92)/|lg=||- In this case, the term % can be represented as

et |gallexp(A)

T30~ exo(Bla2a2)
o exp(Bllg=lI?g2) (124)

= ||gm||exp ﬁ”gacHQ(I_{z _93) .

Hence, we can consider the strength of the training effect X Agi"™ is mainly determined by the term
exp(A)/ 0]l = llga |l - exp(Bl1g=[1*(H: — g2)). O
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I MORE DISCUSSIONS ABOUT RELATED WORK

In fact, Section (3| has discussed the relationship between our theorems and previous findings of
adversarial training. Here, we further discuss previous related works, although these works did not
all focus on explaining adversarial training. Nevertheless, if this paper is accepted, we will move this
section to the main paper.

Some previous studies (Liu et al. [2020; [Kanai et al.|, 2021 [Wu et al., |2020; 'Yamada et al.l 2021}
Yu et al., 2018)) considered that the sharp loss landscape w.rzt. network parameters resulted in the
difficulty of adversarial training. |Kurakin et al.| (2016) demonstrated that label leaking hindered
adversarial training. [Tsipras et al.[|(2019) had proven that compared to vanilla training, adversarial
training relied on robust features and did not use non-robust features for inference, which resulted in
the inferior classification performance. The gradient-masking phenomenon (Papernot et al., 2017
Athalye et al.,2018; |Tramer et al.| |2018]) led to a false sense of security in defenses against adversarial
examples. [Ilyas et al.|(2019) had proven that adversarial examples were attributed to the presence of
highly predictive but non-robust features. Some works (Sinha et al.,[2017; Zhang & Wang|, 2019b;
Miyato et al. [2018]) demonstrated adversarial examples generated in the supervised way usually
corrupted the underlying data structure, which hindered adversarial training (QIAN et al.| 2022).

Crucially, it has been discovered that adversarial training usually has a more significant overfitting
problem than vanilla training (Rice et al.}[2020). |Liu et al.| (2021) had proven that the overfitting in
adversarial training was caused by the model’s attempt to fit hard adversarial examples. |Chen et al.
(2020) considered that the model overfitted the attacks generated in the early stage of adversarial
training, and failed to generalize to the attacks in the late stage. Stutz et al.| (2020) demonstrated
that the overfitting in adversarial training was a result of enforcing high-confidence predictions on
adversarial examples. [Schmidt et al.|(2018) and [Zhai et al.|(2019) considered that the significantly
high adversarial data complexity made adversarial training difficult to achieve good generalization
capacity. [Rice et al.|(2020) used early stopping to reduce overfitting in adversarial training.

Unlike previous studies, this paper analyzes the dynamics of adversarial perturbations, and theoret-
ically explains the difficulty of adversarial training, based on the derived analytic solution. More
crucially, our proof can also provide a theoretical explanation for previous findings/understandings
of adversarial training (Liu et al} [2020; |Kanai et al., [2021; [Wu et al., 2020; 'Yamada et al., 2021}
Athalye et al.,[2018; [Tsipras et al.,[2019; [Ilyas et al.,[2019; [Liu et al., 2021} |Chen et al., 2020; Rice
et al.| 2020) in Section
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J EXPERIMENTAL VERIFICATION 1 OF THEOREM [2]

To verify the correctness of Theorem [2| we conducted experiments to generate adversarial per-
turbations on four types of ReLLU networks, and examined whether the derived analytic solu-
tion well fitted the real perturbation measured in practice. Specifically, we calculated the metric
k= E.[||0* — 8]|]/E.[||6*||] to evaluate the error between the derived analytic solution §in Theorem
and the real perturbation §* measured in experiments. Here, we followed the same scenario in Wu
et al.| (2020) to generate adversarial perturbations §* via gradient ascent. Specifically, we set the
step size o = 0.005 to approximately represent the infinite-step attack, i.e., setting m = 200. The
attacking stopped when the /5-norm of adversarial perturbations reached the constraint ¢ = 128/255
for fair comparison.

To this end, we learned four types of ReLU networks, including MLPs, CNNs, MLPs with skip
connections (namely ResMLP), and CNNs with skip connections (namely ResCNN) on the MNIST
dataset (LeCun et al.| [1998)) via adversarial training. Here, we followed settings in (Ren et al.|
2022)) to construct five different MLPs, which consisted of 1, 2, 3, 4, 5 fully-connected (FC) layers,
respectively. Each FC layer contained 200 neurons. We also built five different CNNs, which consisted
of 1,2, 3,4, 5 convolutional layers, respectively, with a FC layer on the top. Each convolutional layer
contained 32 filters. Additionally, we added a skip-connection to each block of a FC layer and a
ReLU layer in the above MLPs to construct different ResMLPs. We also added a skip connection to
each block consisting of a convolutional layer and a ReLU layer in the above CNNss to build different
ResCNNG.

To generate adversarial perturbations, we constructed four baseline attacks. In the first baseline, we
set the loss function to the MSE loss, and controlled the gating states of each ReLLU layer in each
step of the adversarial attack to be the same as those corresponding to the original input sample z. In
this way, this baseline attack ignored the residual term p in Theorem 2] and neglected changes of
gating states in Assumption|l} thereby being termed attack w/o p w/o AX. For the second baseline
attack, we did not fix the gating states of each ReLLU layer, thereby being termed attack w/o p For
the third baseline attack, we controlled the gating states of ReLU layer, and set the loss function to
the cross-entropy loss without ignoring the residual term p, thereby being named as attack w/o AX.
For the fourth baseline attack, we both set the loss function to the cross-entropy loss and did not fix
the gating states, thereby being named as attack. Then, for each baseline attack, we averaged the
error x over 40 randomly-selected training samples.

Table ] reports errors x computed in four different experimental settings, which were small. Such a

phenomenon indicated that the theoretically derived perturbations ¢ well fitted the real one, which
successfully verified Theorem[2] In other words, the residual term p could be ignored, without hurting

the trustworthiness of analyzing the adversarial perturbation 4.

Table 4: The error « between the derived analytic solution §in Theorem and the real perturbation
based on different ReLU networks. The error x based on each network was small, which successfully
verified Theorem 2

Attacking 1-layer 2-layer 3-layer 4-layer S-layer ‘ 3-layer 4-layer S-layer
methods MLP MLP MLP MLP MLP ResMLP ResMLP ResMLP
Attack w/o pw/o AS | 79x107% 12 x107*  1.5x107° 35x107% 6.6 x1077 | 1.3x10™* 1.5x107* 1.5x107*
Attack w/o p \ 79x107* 43 x1072 6.5x1072 28 x107% 2.3 x107?2 \ 47 x107%  9.0x1072 7.8x1072
Attack w/o AX \ 33x107*  3.6x107° 5.1x107% 1.1x1076% 1.9x1077 \ 42x107°  39x107° 4.2x107°
Attack \ 33 x107%  25x107%  29x1072  1.4x1072 2.3x1072 \ 3.5x1072  59x1072 6.0x1072
Attacking 1-layer 2-layer 3-layer 4-layer S-layer 3-layer 4-layer S-layer
methods CNN CNN CNN CNN CNN ResCNN ResCNN ResCNN
Attack w/o p w/o AS \ 1.2x107%  45x107% 34x1077 5.1x107% 4.7x10°8 \ 1.3x107°  1.5x1075 3.7x107°
Attack w/o p \ 1.5x107" 1.8 x1072 3.0x1072 28 x1072 1.0 x1072 \ 9.6 x1072 83 x1072 5.5x1072
Attack w/o AS \ 41x1077  1.5x107%  1.0x1077  1.7x107%  1.4x1078 \ 4.0x1076  4.8x107% 1.2x107°
Attack \ 93x1072  1.6x1072 2.6x1072 23x1072 1.0x1072 \ 7.5x1072  8.4x1072 4.7x1072
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K EXPERIMENTAL VERIFICATION 1 OF THEOREM 3]

To verify the correctness of Theorem [3} we conducted experiments to examine whether the derived
training effect well fitted the real effect, based on sixteen adversarially trained ReL.U networks
in Section [J| Specifically, we calculated the metric k = E.[||¢* — ¢||/[|¢*||] to_evaluate the fitting
between the theoretical derivation ¢ computed using the right side of Eq. (10) and ¢* = §Z Ag.
measured in experiments, where ¢* was computed using real measurements of g., 7, g\, gw, and g
on each ReLU network.

To generate adversarial perturbations, we set the loss function to the MSE loss. Here, we randomly
selected 40 training samples to generate adversarial perturbations. Specifically, we followed the same
scenario in[Wu et al.| (2020) to generate adversarial perturbations * via gradient ascent. We set the
step size o = 0.005 to approximately represent the infinite-step attack, i.e., setting m = 200. The
attacking stopped when the £2-norm of adversarial perturbations reached the constraint e = 128 /255
for fair comparison. Considering Theorem 3] was based on the assumption of consistent gating states
in Assumption |1} we measured an additional effect ¢’ in experiments by manually forcing gating
states of each ReLU layer in the process of generating adversarial perturbations to be the same as
gating states for the input sample without being perturbed. To this end, we calculated a new error
K = E.[||¢' — ¢[l/||¢']l]. Such a setting well fitted Assumption Table reports errors x and '
computed in two different experimental settings, which both verified the correctness of Theorem 3]
Particularly, the change of gating states was unpredictable, which brought significant instability in
the computation of ¢* on a few adversarial examples, e.g., causing dividing 0. Thus, we used 90%
samples corresponding to the smallest errors between ¢ and ¢* to calculate the metric «. Experimental
results show that the derived training effect ¢* still well explained real effects on most adversarial
examples.

Table 5: Experimental verification of Theorem 3]on different adversarially trained ReLU networks.
Both the error x and the error £’ are small, which verifies Theorem

‘ 1-layer MLP  2-layer MLP  3-layer MLP  4-layer MLP  5-layer MLP ‘ 3-layer ResMLP  4-layer ResMLP  5-layer ResMLP

k| 34x1073 3.5 x1072 2.0 x1071 1.7 x107! 1.5 x107! 6.1 x1072 2.8 x1071 5.8 x1072
k' | 3.4 x1073 33 x1074 3.9 x107° 8.8 x1076 1.5 x107¢ 3.7 x10~4 4.5 x107* 43 x107*
| 1-layer CNN  2-layer CNN  3-layer CNN  4-layer CNN  5-layer CNN | 3-layer ResCNN  4-layer ResCNN  5-layer ResCNN
k| 1.6 x1072 1.5 x1072 1.3x1071 2.0x1071 1.1x107! 7.4x1073 1.6x1071 4.0%x1072
K | 2.9 x10¢ 1.1x107° 8.5x107 1.3%x10°7 1.2x1077 3.4x107° 3.9x107° 9.0x107°
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L DETAILED DISCUSSIONS OF EXPERIMENTAL SETTINGS

* In “experimental verification 2 of Theorem [2]', we used SGD with learning rate 0.01, and set
the batch size to 128 to train VGG-11 (Simonyan & Zisserman, 2014}, AlexNet (Krizhevsky et al.|
2012), and ResNet-18 (He et al., 2016) on MNIST dataset, respectively. In this way, for each
network architecture, we used the model that was trained for 50 epochs to generate adversarial

perturbations. Specifically, we crafted adversarial perturbations ¢ in Theorem [2| by the gradient

Gors = = L(f(z + 6M), y) for 500 steps with the step size a = Te5€ = 0.02. We further generated

adversarial perturbations of the /5 attack by gﬁ;(t) =2 L(f(x+6Y),9)/IIZL(f(z+6D),y)| for
1

200 steps with the step size a = 55¢ = 0.02. Besides, we also crafted adversarial perturbations

of the /., attack by applying gi‘ir";ft) = sign(Z L(f(z + 61),y)) for 20 steps with the step size
o = 155¢ = 0.02. Note that the goal of this experiment was to verify whether the norm of the
gradient ||g__ ;||, and the norm of the adversarial perturbation [|6]| increased with the step number m
in an approximately exponential manner. Hence, we ignored the constraint |||, < ¢ of adversarial
perturbations, in order to prevent the analysis from being affected by the constraint 4]/, < e.
Additionally, in this experiment, we randomly selected 100 training samples in the MNIST dataset
for evaluation. Moreover, in subfigure (a) of Fig.[I] we controlled the gating states of each ReLU
layer in each step of the adversarial attack to be the same as those corresponding to the original input
sample z, in order to remove side effects brought by the chaotic gating states. Whereas, in subfigures
(b-e) of Fig.[I] we did not control the gating states of each ReLU layer, which was a more common
setting in adversarial attack.

* In “experimental verification 2 of Theorem[3]', we trained VGG-11 and AlexNet on MNIST dataset
against a PGD adversary with 20 steps of the step size {;e = 0.2. We learned the above networks
using SGD with learning rate 0.01.Then, for each network architecture, we used the model that was
trained for 50 epochs to generate adversarial perturbations. Specifically, the adversarial perturbation
o for evaluation was generated via the gradient g, sy = 22 L(f(z + 8),y) for 100 steps with
the step size o = 35¢ = 0.02. Here, we still neglected the constraint of adversarial perturbations.
Additionally, in this experiment, we randomly selected 100 training samples in the MNIST dataset
for evaluation.

* In “experimental verification 3 of Theorem[3]', we trained VGG-11 and AlexNet on MNIST dataset
against a PGD adversary with 20 steps of the step size ;5e = 0.2. We learned the above networks
using SGD with learning rate 0.01.Then, for each network architecture, we used the model that was
trained for 50 epochs to generate adversarial perturbations. Specifically, the adversarial perturbation
§ for evaluation were generated via the gradient g, 5 = %L(f(m +6®), y) for 100, 150 and 200
steps with the step size @ = ti5¢ = 0.02, respectively. Here, we ignored the constraint of adversarial
perturbations. Additionally, in this experiment, we randomly selected 100 training samples in the
MNIST dataset for evaluation.

* In “experimental verification of Theorem[6]', we used SGD with learning rate 0.01, and set the batch
size to 128 to train VGG-11 and AlexNet on MNIST dataset, respectively. Given an input sample z,

we generated adversarial example x + § of the ¢ attack by gi"j;m =ZL(f(z+ 5D), )/l ZL(f(xz+
1

5, y)|| for 20 steps with the step size a = ;¢ = 0.2. To verify Theorem 6, we used the original
input sample x and the corresponding adversarial example = + § to update the weight W; in the
j-th layer by the same length ||AW;| = ||AW7.(“dV)H = 0.001. Additionally, in this experiment, we
randomly selected 100 training samples in the MNIST dataset for evaluation.
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M MORE RESULTS FOR EXPERIMENTAL VERIFICATION 3 OF THEOREM [3]

In this section, we conducted additional experiments for “experimental verification of Theorem 3."
Different from “experimental verification of Theorem 3" in Section[2.2] of the main paper, here, we
used the model that was trained for 20 epochs to verify the conclusion that the optimization direction
of adversarial training was dominated by a few input samples with large A = BH.||g||* values.

Specifically, let Agw = ¢\ — gw denote the additional effect of adversarial training on a specific

sample x beyond vanilla training. Then, based on the adversarially trained networks in “experimental
verification 2 of Theorem [3]' in Section [2.2] we measured the cosine similarity cos(Agw, Agy,)
between the training effect Agw on a single adversarial example and the average effect Agy,,, =
E, s[Agw] over different adversarial examples.

Fig. 5] demonstrated a similar phenomenon to Fig. [3|in Section [2.2] of the main paper. That is, the
direction of the average effect Agy,, was similar to (dominated by) training effects of a few input
samples with large A values (the real A calculated in experiments). Thus, the trustworthiness of
Theorem 3] was verified.

VGG-11 AlexNet
cos(Agw,Adw) 0.6 c0s(Ag,,,Ag, —— 100-step attack
0.5 1
0.4 150-step attack
0.25
0.2 1
001, : : d 00l : : | T 200step atack
0 0.5 1.0 A 0 0.5 1.0 A

Figure 5: Average cosine similarity E; [cos(Agw [, Agy,)] between Agy, and each sample x with a
specific A value. Agy, is similar to the direction of Agw w.r.t. samples with large A values.
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N EVIDENCE FOR THAT ADVERSARIAL TRAINING TENDS TO OSCILLATE IN
THE DIRECTIONS OF A FEW UNCONFIDENT SAMPLES

In this section, we conducted new experiments to verify the conclusion that adversarial training was
more likely to oscillate in the direction of a few unconfident samples.

Specifically, we constructed a synthetic dataset with 5000 samples, 90% of which were confident
samples and 10% of which were unconfident samples. We followed settings in (Wu et al., [2020) to
train a 5-layer MLP on this synthetic dataset against a PGD adversary. To verify that adversarial
training was more likely to oscillate in the directions of a few unconfident samples, we checked
whether the training curve of unconfident samples was more likely to oscillate than the training curve
of confident samples.

Fig.[6] shows the training loss w.rz. the confident sample and the training loss w.r.z. the unconfident
sample, respectively. We discovered that compared to confident samples, training curves of different
unconfident samples exhibited differently. Such a phenomenon demonstrated that adversarial training
was more likely to oscillate in the directions of a few unconfident samples, which successfully verified
our conclusion.

loss
= confident sample

2

= unconfident sample

Figure 6: The training loss w.r:z. the confident sample and the training loss w.r.z. the unconfident
sample. Adversarial training was more likely to oscillate in the directions of a few unconfident
samples
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