
Under review as a conference paper at ICLR 2023

WHY ADVERSARIAL TRAINING OF RELU NETWORKS
IS DIFFICULT?

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper mathematically derives an analytic solution of the adversarial pertur-
bation on a ReLU network, and theoretically explains the difficulty of adversarial
training. Specifically, we formulate the dynamics of the adversarial perturbation
generated by the multi-step attack, which shows that the adversarial perturbation
tends to strengthen eigenvectors corresponding to a few top-ranked eigenvalues
of the Hessian matrix of the loss w.r.t. the input. We also prove that adversarial
training tends to strengthen the influence of unconfident input samples with large
gradient norms in an exponential manner. Besides, we find that adversarial training
strengthens the influence of the Hessian matrix of the loss w.r.t. network parameters,
which makes the adversarial training more likely to oscillate along directions of a
few samples, and boosts the difficulty of adversarial training. Crucially, our proofs
provide a unified explanation for previous findings in understanding adversarial
training (Liu et al., 2020; Kanai et al., 2021; Wu et al., 2020; Yamada et al., 2021;
Athalye et al., 2018; Tsipras et al., 2019; Ilyas et al., 2019; Liu et al., 2021; Chen
et al., 2020; Rice et al., 2020).

1 INTRODUCTION

Although deep neural networks (DNNs) have shown promise in different tasks, the DNN was usually
fooled by specific imperceptible perturbations of the input data (Goodfellow et al., 2014; LeCun et al.,
2015), which were termed adversarial examples. To defend against adversarial examples, the most
widely-used strategy is adversarial training (Kurakin et al., 2016; Madry et al., 2018). Despite the
effectiveness of adversarial training, extensive experiments have shown that adversarial training is
much more difficult to optimize than vanilla training. Previous studies explained this phenomenon
from different perspectives, such as the sharp loss landscape (Liu et al., 2020; Kanai et al., 2021; Wu
et al., 2020; Yamada et al., 2021), obfuscated gradients (Athalye et al., 2018), and inhomogeneous
data distribution (Sinha et al., 2017; Zhang & Wang, 2019b; Miyato et al., 2018).

Unlike previous research, this paper aims to derive an approximate analytic solution to adversarial
perturbations on a ReLU network, and further theoretically proves why adversarial training is difficult.
However, considering adversarial training is a complex algorithm with lots of tricks, we summarize
common settings in adversarial training into four assumptions (cf. A1-A4 in Section 2), so as to
simplify the proof. Particularly, we have also conducted experiments in Section 2 to verify that our
theorems can well explain adversarial training in real applications.

Then, based on the derived analytic solution to the adversarial perturbation of the multi-step attack, we
further explain their effects on adversarial training. Hence, we obtain the following three conclusions.

(1) The adversarial perturbation strengthens eigenvectors corresponding to a few top-ranked eigenval-
ues of the Hessian matrix of the loss w.r.t. the input.

(2) Adversarial training mainly focuses on a few unconfident input samples with large gradient norms.
Furthermore, we prove that the normalization/regularization of perturbations in `2 attacks and `∞
attacks alleviate such an imbalance.

(3) Adversarial training strengthens the influence of the Hessian matrix of the loss w.r.t. network
parameters. Hence, adversarial training is more likely to make network parameters oscillate, which
explains the difficulty of adversarial training, as well.

1

Under review as a conference paper at ICLR 2023

More crucially, our theoretical proof also provides a theoretical foundation, which may explain
various previous findings/understandings of adversarial training (Liu et al., 2020; Kanai et al., 2021;
Wu et al., 2020; Yamada et al., 2021; Athalye et al., 2018; Tsipras et al., 2019; Ilyas et al., 2019; Liu
et al., 2021; Chen et al., 2020; Rice et al., 2020).

Contributions of this paper are summarized as follows. (1) We derive an analytic solution that explains
the dynamics of the adversarial perturbation. (2) We prove that adversarial training strengthens the
influence of a few input samples, and increases the likelihood of the oscillation of network parameters,
which boosts the difficulty of adversarial training. (3) Our proofs can explain the benefit of the
normalization/regularization of perturbations in `2 attacks and `∞ attacks, and can provide a unified
view to understand a total of ten previous studies in adversarial training.

2 EXPLAINING ADVERSARIAL PERTURBATIONS AND ADVERSARIAL TRAINING

Let us first revisit adversarial training. Given a DNN fθ parametrized by θ and an input sample
x ∈ Rn with its true label y, the adversarial attack adds a human-imperceptible perturbation δ to fool
the DNN with the adversarial example x+ δ, whose objective is usually formulated as follows.

max
δ
L(fθ(x+ δ), y), s.t. ‖δ‖p ≤ ε, (1)

where fθ(x+ δ) denotes the network output, and L(fθ(x+ δ), y) represents the loss function. ε is
the constraint of the `p norm of the adversarial perturbation. To defend against adversarial attacks,
adversarial training is often formulated as a min-max game (Madry et al., 2018).

min
θ

E{x,y}
[

max
δ
L(fθ(x+ δ), y)

]
, s.t. ‖δ‖p ≤ ε, (2)

2.1 ANALYSIS OF ADVERSARIAL PERTURBATIONS

To analyze the dynamics of adversarial perturbations, let us consider the multi-step attack as follows,
where δ(t) is referred to as the perturbation generated after attacking for t steps; m represents the
total number of steps; α denotes the step size.

δ(m) =
∑m−1

t=0
α · gx+δ(t) . (3)

To simplify the story, we first analyze the most straightforward solution to the multi-step adversarial
attack, gx+δ(t) = ∂

∂x
L(f(x+ δ(t)), y). Then, we will extend the analysis to the widely-used `2 attack

and the `∞ attack (Dong et al., 2018; Goodfellow et al., 2014; Madry et al., 2018), where they
regularize or normalize the gradient as g(`2)

x+δ(t)
= gx+δ(t)/‖gx+δ(t)‖, and g(`∞)

x+δ(t)
= sign(gx+δ(t)).

Without loss of generality, let us consider a ReLU network f and an input sample x. z(x) denotes
the input feature of the top layer (e.g. a softmax layer f(x) = softmax(z(x)), or a sigmoid layer
f(x) = sigmoid(z(x))). The following equation formulates how the network uses the feature h of the
j-th linear layer to compute z(x).

z(x) = WT
l (. . .Σj+1(WT

j+1Σjh+ bj+1) . . .) + bl, (4)

where h = WT
j x
′ + bj denotes the linear transformation in the j-th layer, subject to x′ =

Σj−1(WT
j−1(. . .Σ1(WT

1 x+ b1) . . .) + bj−1). Wj and bj denote the weight and bias of the j-th linear
layer, respectively. The matrix Σj = diag(σj,1, σj,2, . . . , σj,D) ∈ RD×D represents gating states of the
j-th gating layer (e.g. a ReLU layer, or a MaxPooling layer), σj,d ∈ {0, 1}.

To simplify the proof for the analytic solution to adversarial perturbations, we summarize common
settings in adversarial training into the following assumptions, without hurting the trustworthiness.
(A1) We assume that the constraint of adversarial perturbations can be ignored. It is because there
exists a common fact in adversarial training that people usually learn a robust network on relatively
weak adversarial perturbations (Wong et al., 2020), which often have not reached the constraint
‖δ‖p < ε for perturbations δ. This has been widely considered as an effective trick to reduce the
optimization difficulty.
(A2) To simplify the proof, we assume that the adversarial perturbation is generated by the most
straightforward method, i.e., gradient ascent without regularization/normalization, although many
attacking methods (Dong et al., 2018; Goodfellow et al., 2014; Madry et al., 2018) regularize or

2

Under review as a conference paper at ICLR 2023

normalize the gradient as a trick to speed up the multi-step attack. Experimental results in Appendix C
have shown that the normalized perturbation in Remark 1 can approximately explain the `2 attack.
(A3) Because the change of gating states in multi-step attacks is usually chaotic and unpredictable
for analysis, it is difficult to theoretically model the unpredictable change of gating states during
attacking. Moreover, the chaotic change of gating states over numerous neurons may have mutually
offsetting effects on adversarial training, to some extent. Thus, we make the following assumption.
Assumption 1. We simplify our research into an idealized adversarial attack, whose adversarial per-
turbation does not significantly change gating states in gating layers. In this scenario, we approximate
the ReLU network f to a linear model, i.e., z(x) ≈ (W̃)Tx+ b̃, W̃T = WT

l Σl−1 · · ·Σ2W
T
2 Σ1W

T
1 .

Before the later analysis of the `2 attack and the `∞ attack, we first focus on the original form of the
multi-step attack, i.e. perturbation generated via gx+δ(t) = ∂

∂x
L(f(x+ δ(t)), y).

Theorem 1 (Dynamics of perturbations of the m-step attack, proven in Appendix A). Let us assume
that the gradient gx+δ(t) is a Lipschitz function with the Lipschitz constant K, ‖gx+δ(t) − gx‖ ≤
K · ‖δ(t)‖. Then, based on Assumption 1, the adversarial perturbation δ(m) can be approximated as
follows, where the overall adversarial strength β = αm is a small constant, and m is a large integer.

δ(m) =
∑n

i=1

(1 + αλi)
m − 1

λi
γivi + ρ, gx+δ(m) =

∑n

i=1
(1 + αλi)

mγivi. (5)

Here, λi and vi denote the i-th largest eigenvalue of the matrix H̄x = W̃ H̄z(W̃)T and its correspond-
ing eigenvector, respectively, where H̄x is used to approximate1 the second derivative of the loss w.r.t.
the input sample x. The matrix H̄z = 1∑m−1

t=1 ‖∆x
(t)‖

∑m−1
t=1 ‖∆x

(t)‖H(t)
z is a weighted sum of the

Hessian matrix H(t)
z = ∂2

∂z∂zT
L(f(x+ δ(t)), y), where ∆x(t) = α · gx+δ(t−1) denotes the perturbation

updated at the t-th step. γi = gTx vi ∈ R represents the projection of the gradient gx = ∂
∂x
L(f(x), y)

on the eigenvector vi. Particularly, if the step number m is large, then the residual term in the Taylor
expansion ρ ∈ Rn is ignorable, since each element ρi ∈ R is proven to be the order of O(1/m).

(A4) Notice that different parameter settings of multi-step attacks (such as the step size or the step
number) may make slightly different influences on adversarial perturbations. Thus, to remove side
effects of such settings and simplify the story, in the following manuscript, we assume the adversarial
perturbation in adversarial training is generated via the infinite-step attack with the infinitesimal step
size. In this way, the m-step attack in Theorem 1 can be extended to a more idealized case of the
infinite-step attack as follows, which is further used to analyze adversarial training.
Theorem 2 (Perturbations of the infinite-step attack, proven in Appendix B). β = αm reflects
the overall adversarial strength of the infinite-step attack with the step number m → +∞ and the
step size α = β/m → 0. Then, based on Assumption 1, this infinite-step adversarial perturbation
δ̂ = limm→+∞ α

∑m−1
t=0

∂
∂x
L(f(x+ δ(t)), y) can be re-written as follows.

δ̂ =
∑n

i=1

exp(βλi)− 1

λi
γivi + ρ̂, gx+δ̂ =

∑n

i=1
exp(βλi)γivi. (6)

Here, ρ̂ ∈ Rn denotes an ignorable residual term in the Taylor expansion, because each element
ρ̂i ∈ R is proven to be the order of O(1/m).

Theorem 1 and Theorem 2 show the following two conclusions.
(C. 1) The adversarial perturbation strengthens gradient components in gx along eigenvectors corre-
sponding to a few top-ranked eigenvalues λi of the matrix H̄x exponentially. Furthermore, a larger
adversarial strength β, such as attacking for more steps, is more likely to force the perturbation to
change along fewer top-ranked eigenvectors.
(C. 2) Both the gradient norm ‖gx+δ̂‖ w.r.t. the adversarial perturbation, and the perturbation norm
‖δ̂‖ increase along with the overall adversarial strength β = αm exponentially.

• Experimental verification 1 of Theorem 2. We have derived an analytic solution to the perturbation
in Theorem 2. Hence, we conducted experiments to verify the trustworthiness of Theorem 2, i.e.,

1Theoretically, it is very hard to derive the analytic solution to the adversarial perturbation δ(m) without such
an approximation. Hence, we use the matrix H̄z to approximate the equivalent Hessian matrix, which allows
us to derive the first analytic solution to the adversarial perturbation of the multi-step attack. More crucially,
experimental results in Table 1 verified the trustworthiness of such an approximation, i.e., the error between the
real perturbation and the theoretically derived solution is at the level of 10−8—10−5.

3

Under review as a conference paper at ICLR 2023

Table 1: The error κ between the derived analytic solution δ̂ in Theorem 2 and the real perturbation
generated on different ReLU networks. The small error κ successfully verified Theorem 2.

3-layer
MLP

4-layer
MLP

5-layer
MLP

3-layer
CNN

4-layer
CNN

5-layer
CNN

3-layer
ResCNN

4-layer
ResCNN

5-layer
ResCNN

Error κ 1.5 ×10−5 3.5 ×10−6 6.6 ×10−7 3.4 ×10−7 5.1 ×10−8 4.7 ×10−8 1.3 ×10−5 1.5 ×10−5 3.7 ×10−5

!"#	(&)

−2
−1

1
0

0.5 1.0
!

m!"##$!!

VGG-11

AlexNet

ResNet-18
0

‖&‖

2

4

0 0.5 1.0
!

m!"##$!!

&0
Perturbations of

ℓ!-attack
Perturbations of
ℓ"-attack

0.0 0.5

VGG-11

0
2
4
‖2#$%(")‖

!
m!"##$!! 0.0 0.5

AlexNet

0
2
4
‖2#$%(")‖6

!
m!"##$!! 0.0 0.5

ResNet-18

0
2.5
5.0

‖2#$%(")‖7.5

!
m!"##$!!

(a) (b) (c) (d) (e)

Figure 1: Exponential increases of perturbation norms ‖δ̂‖ and gradient norms ‖gx+δ̂(t)‖ with the
overall adversarial strength β ∝ m (because α was fixed here). Note that the instability of gating states
might bring in uncertainty and lead to an unclean phenomenon of an exponential increase. Whereas,
in subfigure (a), we controlled the gating states of each ReLU layer in each step of the adversarial
attack, in order to remove side effects brought by the chaotic gating states. Hence, subfigure (a)
exhibited a more clearly exponential increase of ‖δ̂‖ w.r.t. m.

checking whether the solution δ̂ derived in Theorem 2 well fitted the real perturbation δ∗ measured
in practice. Specifically, we calculated the metric κ = Ex[‖δ∗ − δ̂‖]/Ex[‖δ∗‖] to evaluate the error
between the derived solution δ̂ and the real perturbation δ∗. To this end, we generated adversarial
perturbations on different ReLU networks, where we followed settings in (Ren et al., 2022) to
construct various MLPs, CNNs, and CNNs with skip connections (namely ResCNNs), respectively.
Table 1 reports the error κ, which was small for each network, i.e., at the level of 10−8—10−5.
Thus, the theoretically derived perturbation δ̂ on Assumption 1 well fitted the real one, which
successfully verified Theorem 2. In other words, various assumptions1 made ignorable impacts on the
trustworthiness of Theorem 2, i.e., the derived solution could reflect the real dynamics of adversarial
perturbations. Please see Appendix J for more results and experimental settings.

• Experimental verification 2 of Theorem 2. Theorem 2 indicates that both the gradient ‖gx+δ̂‖
on the adversarial example and the perturbation ‖δ̂‖ had exponentially increasing norms w.r.t. the
overall adversarial strength β ∝ m (α is fixed here). Here, we conducted experiments to verify this
conclusion. Specifically, we generated perturbations δ̂ in Theorem 2 based on VGG-11 (Simonyan &
Zisserman, 2014), AlexNet (Krizhevsky et al., 2012), and ResNet-18 (He et al., 2016), which were
learned on the MNIST dataset (LeCun et al., 1998), respectively. Then, the perturbation δ̂ was crafted
by the gradient gx+δ̂(t) = ∂

∂x
L(f(x+ δ̂(t)), y). Besides, we also generated two baseline perturbations

via the `2 attack and the `∞ attack for comparison, i.e., applying g(`2)

x+δ(t)
, and g(`∞)

x+δ(t)
defined under

Eq. (3). Please see Appendix L for more details of experimental settings. Considering different
samples were successfully attacked at different steps, we normalized the step number, m/msuccess, as
the horizontal axis in Fig. 1. Here, the relative progress rate m/msuccess was used to align the progress
of the adversarial attacking on different samples. Fig. 1 shows that both the gradient norm ‖gx+δ̂‖,
and the perturbation norm ‖δ̂‖ increased exponentially with β ∝ m (because α was fixed here), which
verified Theorem 2.

Approximation for `2 attacks and `∞ attacks. As two typical attacking methods, the `2 attack
and the `∞ attack usually regularize/normalize the adversarial strength in each step by applying
g

(`2)

x+δ(t)
= gx+δ(t)/‖gx+δ(t)‖ and g(`∞)

x+δ(t)
= sign(gx+δ(t)), respectively. In fact, for the `∞ attack, we

can roughly consider that only the gradient component oTx g
(`∞)

x+δ(t)
ox disentangled from g

(`∞)

x+δ(t)
along

∂
∂x
L(f(x), y) is effective, where ox = ∂

∂x
L(f(x), y)/‖ ∂

∂x
L(f(x), y)‖ is the unit vector in the direction

of ∂
∂x
L(f(x), y). However, it is quite complex to analyze the exact attacking behavior. Therefore, in

Remark 1, we just brutally normalize the perturbation in Theorem 2 to roughly approximate
the regularization/normalization of perturbations in `2 attacks and `∞ attacks. Nevertheless, the
trustworthiness of the approximation in Remark 1 was experimentally verified. Table 3 in Appendix C
shows that the matching error between δ̂(norm) and the real perturbation generated via `2 attack was at
the level of 10−6—10−4, which successfully verified the trustworthiness of Remark 1.

Remark 1 (Normalized perturbation of the infinite-step attack). Based on Theorem 2, we ignore
residual terms ρ̂, where ρ̂i is proven to be the order of O(1/m). Then, the perturbation of the infinite-

4

Under review as a conference paper at ICLR 2023

step `2 attack generated via g(`2)

x+δ(t)
, and the perturbation of the infinite-step `∞ attack generated via

g
(`∞)

x+δ(t)
can be approximated as follows.

δ̂(norm) ≈ C · δ̂/‖δ̂‖ = C ·
∑n

i=1

exp(βλi)− 1

λi
γivi

/√∑n

i=1
(
exp(βλi)− 1

λi
γi)2, (7)

where C ∈ R reflects the total adversarial strength of the `2 attack or the `∞ attack.

(C. 3) Remark 1 reveals that a weak adversarial strength β makes the normalized perturbation δ̂(norm)

approximately parallel to the gradient gx. Whereas, a large adversarial strength makes the normalized
perturbation δ̂(norm) approximately parallel to the eigenvector v1 w.r.t. the largest eigenvalue.

2.2 EXPLAINING THE DIFFICULTY OF ADVERSARIAL TRAINING

In this subsection, we explain the effects of adversarial perturbations on weight optimization in
adversarial training. Without loss of generality, we analyze the learning dynamics of the j-th linear
layer of the ReLU network f . Specifically, if we use vanilla training to fine-tune the network on
the original input sample x for a single step, then the gradient of the loss w.r.t. the weight of the
j-th layer WT = WT

j Σj−1 · · ·Σ2W
T
2 Σ1W

T
1

2 is given as gW = ∂
∂W

L(f(x), y). In comparison, if we
train the network on the adversarial example x + δ̂ for a single step, then we will get the gradient
g(adv)
W = ∂

∂W
L(f(x+ δ̂), y). In this way, ∆gW = g(adv)

W − gW denotes additional effects of adversarial
training on the gradient.

∆gW = g(adv)
W − gW =

∂

∂W
L(f(x+ δ̂), y)− ∂

∂W
L(f(x), y). (8)

Similarly, ∆g(norm)
W = g(adv,norm)

W −gW represents additional effects on the gradient brought by adversarial
training, when we use the normalized perturbation δ̂(norm) in Remark 1 (related to the `2 attack and the
`∞ attack).

∆g(norm)
W = g(adv,norm)

W − gW =
∂

∂W
L(f(x+ δ̂(norm)), y)− ∂

∂W
L(f(x), y). (9)

Assumption 2 (proven in Appendix D). The analysis of binary classification based on a sigmoid
function, f(x) = 1

1+exp(−z(x))
, z(x) ∈ R, can also explain the multi-category classification with a

softmax function, f(x) =
exp(z′1)∑c

i=1 exp(z
′
i)
, z′ ∈ Rc, if the second-best category is much stronger than other

categories. In this case, attacks on the multi-category classification can be approximated by attacks
on the binary classification between the best and the second-best categories, i.e., f(x) ≈ 1

1+exp(−z) ,
subject to z = z′1 − z′2 ∈ R. z′1 and z′2 are referred to as network outputs corresponding to the best
category and the second-best category, respectively.
Lemma 1 (proven in Appendix E). Let us focus on the cross-entropy loss L(f(x), y). If the classifi-
cation is based on a softmax operation, then the Hessian matrix Hz = ∂2

∂z∂zT
L(f(x), y) is positive

semi-definite. If the classification is based on a sigmoid operation, the scalar Hz ≥ g2
z ≥ 0, as long

as the attacking has not finished (still z(x) · y > 0, y ∈ {−1,+1}). Here, gz = ∂
∂z
L(f(x), y) ∈ R.

Theorems 3 and 4 explain training effects of the perturbation δ̂ in Theorem 2 on adversarial training.
Theorem 3 (proven in Appendix F). Based on Assumptions 1 and 2, let us focus on the binary
classification based on a sigmoid function. Then, the effect of the adversarial perturbation δ̂ in Eq. (6)
on the change of the gradient g̃x = ∂z(x)

∂x
is formulated as follows. ∆g̃x = −η∆gW g̃h represents the

additional effects of adversarial training on changing g̃x, because adversarial training makes an
additional change −η∆gW on W 3. In this way, g̃Tx ∆g̃x measures the significance of such additional
changes along the direction of the gradient g̃x.

g̃Tx ∆g̃x = −ηg̃Tx ∆gW g̃h = (eA − 1)g̃Tx ∆g̃(ori)
x − ηg2

z ‖g̃h‖2

H̄z
(e2A − eA), (10)

where g̃h = ∂z(x)
∂h

, A = βH̄z‖g̃x‖2 ∈ R, and η denotes the learning rate to update the weight.
Considering the footnote3, ∆g̃(ori)

x = −ηgW g̃h measures the effects of vanilla training on changing g̃x
in the current back-propagation.

2For simplicity, we analyze the equivalent weight W for all the first j linear layers, but actually W has
similar behaviors as Wj , without hurting the generality of the analysis. Please see Appendix F for discussion.

3It is because adversarial training changes W by−ηg(adv)
W , and vanilla training changes W by−ηgW , η > 0.

5

Under review as a conference paper at ICLR 2023

Table 2: Experimental verification of Theorem 3 on different adversarially trained ReLU networks.
The small error κ verified Theorem 3.

3-layer
MLP

4-layer
MLP

5-layer
MLP

3-layer
CNN

4-layer
CNN

5-layer
CNN

3-layer
ResCNN

4-layer
ResCNN

5-layer
ResCNN

Error κ 3.9 ×10−5 8.8 ×10−6 1.5 ×10−6 8.5 ×10−7 1.3 ×10−7 1.2 ×10−7 3.4 ×10−5 3.9 ×10−5 9.0×10−5

Theorem 4 (proven in Appendix G). Based on Assumptions 1 and 2, let us focus on the binary
classification based on a sigmoid function. Then, we derived the following equation w.r.t. adversarial
training based on perturbations δ̂ in Theorem 2. Considering the footnote3, ∆g̃(adv)

x = −ηg(adv)
W g̃h

reflects effects of adversarial training on changing the gradient g̃x. In this way, g̃Tx ∆g̃(adv)
x represents

the significance of such effects along the direction of the gradient g̃x.

g̃Tx ∆g̃(adv)
x = −ηg̃Tx g(adv)

W g̃h = eAg̃Tx ∆g̃(ori)
x − ηg2

z(e2A − eA)

H̄z
‖g̃h‖2. (11)

A common understanding of adversarial training is to alleviate the current gradient gx, i.e., having a
trend towards gTx ∆g̃x < 0, so as to boost the adversarial robustness. In this scenario, Theorem 3 and
Theorem 4 reveal the following two conclusions.
(C. 4) Adversarial training usually has a potential of decreasing the significance of the current
gradient, i.e., pushing g̃Tx ∆g̃x and g̃Tx ∆g̃(adv)

x towards negative values. It is because the second term in
Eq. (10) and Eq. (11) is non-positive, due to H̄z > 0 in Lemma 1. More crucially, if vanilla training
has already alleviated the current gradient gx (i.e., g̃Tx ∆g̃(ori)

x < 0), then adversarial training will further
strengthen such an alleviation in an exponential manner.
(C. 5) Adversarial training exponentially strengthens the influence of a few unconfident input samples
with large values of H̄z ∈ R and large gradient norms ‖g̃x‖. Such mechanisms make the adversarial
training more likely to oscillate in directions of a few samples (cf. Theorem 6), which boosts the
difficulty of adversarial training, as well.

• Experimental verification 1 of Theorem 3. For verification, we conducted experiments to examine
whether the theoretical solution φ̂ computed according to the right side of Eq. (10) well fitted
the real values of φ∗ = g̃Tx ∆g̃x measured in experiments. To this end, we calculated the metric
κ = Ex[‖φ∗ − φ̂‖]/Ex[‖φ∗‖] to evaluate the fitness between the theoretical derivation φ̂ and the real
effect φ∗, where φ∗ was computed using real measurements of g̃x, η, g(adv)

W , gW , and g̃h on a ReLU
network. In this way, we learned three types of ReLU networks on the MNIST dataset via adversarial
training, where we followed settings in (Ren et al., 2022) to construct MLPs, CNNs, and ResCNNs,
respectively. Please see Appendix K for more details of experimental settings. Table 2 shows that
for each ReLU network, the error κ was small, which meant that the derived training effect φ̂ well
matched the real effect φ∗. Thus, Theorem 3 was verified.

• Experimental verification 2 of Theorem 3. Based on Theorem 3, we obtained the conclusion
that adversarial training strengthened the influence of input samples with large H̄z values and large
gradient norms ‖g̃x‖. Here, we conducted experiments to verify this conclusion. Specifically, we
examined whether input samples with large H̄z, large H̄z‖g̃x‖2 values, and large A values had
large impacts |g̃Tx ∆g̃x| and ‖∆g(adv)

W ‖, i.e., whether adversarial training boosted the influence of such
samples. Note that in real applications, the A value changed in each step of the adversarial attack,
because the step-wise perturbation sometimes changed the matrix H̄z and the gradient g̃x. Thus,
to be precise, we estimated the real A value in Theorem 3 as Â =

∑m
t=1 αH̄z‖g̃x+δ̂(t)‖

2, subject to
g̃x+δ̂(t) = ∂

∂x
z(x + δ̂(t)). To this end, we learned AlexNet and VGG-11 on the MNIST dataset via

adversarial training on PGD, respectively. Please see Appendix L for more details of experimental
settings. Fig. 2 shows that input samples with larger values of H̄z, H̄z‖g̃x‖2, and Â usually yielded
larger ‖g̃Tx ∆g̃x‖ and ‖∆g(adv)

W ‖ values, which indicated that adversarial training strengthened the
influence of these samples. Thus, the conclusion C. 5 was verified.

• Experimental verification 3 of Theorem 3. We also obtained the conclusion from Theorem 3 that
the optimization direction of adversarial training was dominated by a few input samples with large
A = βH̄z‖g̃x‖2 values. Here, we conducted experiments to verify this conclusion. Specifically, let
∆gW = g(adv)

W − gW denote the additional effect of adversarial training on a specific sample x beyond
vanilla training. Then, based on the adversarially trained networks in experimental verification 2 of
Theorem 3, we measured the cosine similarity cos(∆gW ,∆gW) between the training effect ∆gW on
a single adversarial example and the average effect ∆gW = Ex+δ̂[∆gW] over different adversarial

6

Under review as a conference paper at ICLR 2023

Δ𝑔! 	
1.0
0.5
0.0
0.0 0.1 0.2

1.5

0.0 0.1 0.2
𝐻*" 𝑔+# $

Δ𝑔! 	
1.0
0.5
0.0

1.5 Δ𝑔! 	
1.0
0.5

0
0.0 0.2 0.4 0.6

𝒜/

1.5

0.0 0.1 0.2
𝐻*"

|𝑔+#%∆𝑔+#|

0.1

0.0

0.2

0.0 0.1 0.2
𝐻*" 𝑔+# $

|𝑔+#%∆𝑔+#|

0.1

0.0

0.2

0.0 0.2 0.4 0.6
𝒜/

|𝑔+#%∆𝑔+#|

0.1

0.0

0.2

0.0 0.1 0.2

Δ𝑔! 	10

5

0
0.0 0.2 0.4

Δ𝑔! 	10

5

0 𝐻*" 𝑔+# $

Δ𝑔! 	10

5

0
0.0 0.5 1.0

𝒜/

|𝑔+#%∆𝑔+#|

0.5
0.0

1.5
1.0

0.0 0.1 0.2 𝐻*"

|𝑔+#%∆𝑔+#|

0.5
0.0

1.5
1.0

0.0 0.2 0.4
𝐻*" 𝑔+# $

0.0 0.5 1.0
𝒜/

|𝑔+#%∆𝑔+#|

0.5
0.0

1.5
1.0

VG
G
−
11

Al
ex
N
et

𝐻*"

𝐻*"

Figure 2: Impacts ‖∆gW ‖ and |g̃Tx ∆g̃x| of different input samples on adversarial training. Adversarial
training boosted the influence of input samples with large H̄z, H̄z‖g̃x‖2, and Â values.

0 0.5 1.0 %&

cos	(∆-!, ∆-/!)

0.0

0.5

−0.5

VGG-11

0 0.5 1.0 1.5 %&

AlexNet
cos	(∆-!, ∆-/!)

0.0

0.5
100-step attack

150-step attack

200-step attack

Figure 3: Average cosine similarity Ex[cos(∆gW |x,∆gW)] between ∆gW and each sample x with a
specific Â value. ∆gW was similar to the direction of ∆gW w.r.t. samples with large Â values.

examples. Please see Appendix M and Appendix L for more results and experimental settings,
respectively. Fig. 3 shows that the direction of the average effect ∆gW was similar to (dominated by)
training effects of a few input samples with large Â values (the real A calculated in experiments),
which verified Theorem 3.

Effects of normalized perturbations. As aforementioned, the `2 attack and the `∞ attack can be
roughly considered as the regularization/normalization of adversarial perturbations. In this way, we
analyze the effects of the normalized perturbation δ̂(norm) on adversarial training, which approximately
explains adversarial training based on perturbations of the `2 attack and the `∞ attack.
Theorem 5 (proven in Appendix H). Based on Assumptions 1 and 2, let us focus on the binary
classification based on a sigmoid function. Then, we derived the following equation w.r.t. adversarial
training based on normalized perturbations δ̂(norm) in Remark 1. Considering the footnote3, ∆g̃(norm)

x =
−η∆g(norm)

W g̃h = −η(g(adv, norm)
W −gW)g̃h represents additional effects of adversarial training on changing

g̃x. In this way, g̃Tx ∆g̃(norm)
x = −ηg̃Tx ∆g(norm)

W g̃h reflects the significance of such additional effects along
the direction of the gradient g̃x.

g̃Tx ∆g̃(norm)
x = C ·

(eA
‖δ̂‖
− 1

‖δ̂‖
)
g̃Tx ∆g̃(ori)

x − C · ηg
2
z ‖g̃h‖2

H̄z

(
eA

‖δ̂‖
− 1

‖δ̂‖
+ C · (e

A

‖δ̂‖
− 1

‖δ̂‖
)2

)
. (12)

It is because Theorem 2 shows that an extremely weak adversarial strength β → 0 usually yields
‖δ̂‖ → ‖gx‖, and a relatively strong adversarial strength β usually makes ‖δ̂‖ → exp(β‖g̃x‖2g2

z)/‖gx‖
with an exponential strength. In this way, given a relatively strong attack, we can ignore the term
1/‖δ̂‖ → 0 in Eq. (12), and prove that the strength of the training effect g̃Tx ∆g̃(norm)

x is mainly determined
by the term exp(A)/‖δ̂‖ ≈ ‖gx‖ · exp(β‖g̃x‖2(H̄z − g2

z)). Please see Appendix H.2 for the proof.
Besides, according to Lemma 1, as long as the attack has not succeeded yet, we have H̄z − g2

z > 0,
but for too confident samples z(x)→∞ or too unconfident samples z(x) = 0, we get H̄z − g2

z = 0.
Hence, we obtain the following two conclusions.
(C. 6) Adversarial training on the normalized perturbations strengthens the influence of a few input
samples with large gradient norms ‖g̃x‖, which are neither too confident nor too unconfident.
(C. 7) Compared to Theorems 3 and 4, the normalized perturbation δ̂(norm) in Eq. (7) alleviates the
imbalance between different samples, which proves the benefits of `2 attacks and `∞ attacks.

Oscillation of network parameters. Above proofs can explain that adversarial training makes
network parameters oscillate in very few directions, which is considered as a common phenomenon
in adversarial training. Such an explanation is based on a typical claim in optimization (Cohen et al.,
2021; Wu et al., 2018) that if the largest eigenvalue of the Hessian matrix of the loss w.r.t network
parameters is large enough, network parameters will oscillate along the eigenvector corresponding to
the largest eigenvalue.

Here, although we do not directly prove that adversarial training can boost the largest eigenvalue
of the Hessian matrix of the loss w.r.t network parameters, Theorems 1 and 2 show that training
on adversarial examples is somewhat equivalent to boosting the influence of the Hessian matrix.

7

Under review as a conference paper at ICLR 2023

Conv-51Conv-11

VGG-11

Conv-21 Conv-31Conv-41
0

20

Conv1 Conv2 Conv3 Conv4 Conv5
0

2

AlexNet
!![∆(#$%)]
!!'([∆()*+)]

4

Figure 4: Influence of weight changes on gradients of the loss function w.r.t. network parameters
(weights). The weight change in adversarial training made more significant impacts ∆(adv) on gradients
than that in vanilla training ∆(ori), which verified Theorem 6.

Specifically, given a ReLU network f and an adversarial example x+ δ̂ for adversarial training, let
us temporarily consider the Hessian matrix Hh

def
= ∂2

∂h∂hT
L(f(x), y) w.r.t the output h of the j-th linear

layer. Then, the loss function on adversarial examples L(f(x+ δ̂), y) can be represented as follows.
Theorem 6. Let ∆h = WT δ̂ ∈ RD×1 denote the change of the intermediate-layer feature h caused
by the perturbation δ̂, and Loss(h + ∆h) = L(f(x + δ̂), y) represents the loss function on the
adversarial example x + δ̂. Then, we use the second-order Taylor expansion to decompose the
loss, i.e., Loss(h + ∆h) = Loss(h) + gTh∆h + 1

2!
∆hTHh∆h + R2(∆h) = Loss(h) + gTh (WT δ̂) +

1
2!

(WT δ̂)THh(WT δ̂) + R2(∆h), where gh = ∂L(f(x), y)/∂h represents the gradient of the loss
function L(f(x), y) w.r.t. the intermediate-layer feature h, and R2(∆h) indicates terms higher than
the second order. In this way, if we focus on the i-th dimension of δ̂, δ̂i ∈ R, the loss can be re-written
as follows, where wi denotes a row vector corresponding to the i-th row of the weight matrix W , and
τ is a constant w.r.t the change of wi.

Loss(h+ ∆h) = τ + [δ̂i g
T
h,i]w

T
i + wi[

1

2!
δ̂2
iHh]wTi . (13)

(C. 8) Theorem 6 reveals that adversarial training can be roughly considered to boost the influence of
the Hessian matrix w.r.t. network parameters wi, i.e., proportional to δ̂2

iHh, because the perturbation δ̂
increases exponentially along with the overall adversarial strength β = αm, according to Theorems 1
and 2. Adversarial training is more likely to make network parameters oscillate than vanilla training.

• Experimental verification of Theorem 6. Theorem 6 shows that adversarial training boosted
the influence of Hessian matrix w.r.t. the network parameters. Here, we conducted experiments to
verify this conclusion. Specifically, we learned AlexNet and VGG-11 on the MNIST dataset, and
measured effects of adversarial examples on the optimization of network parameters. To this end,
we used an original input sample x and its corresponding adversarial example x + δ to update the
weight Wj ∈ RD×D in each layer by the length ‖∆Wj‖ and ‖∆W (adv)

j ‖, respectively. Thus, vanilla
training’s influence and adversarial training’s influence of such weight changes on the gradient could
be estimated as ∆(ori) = 1

D‖∆Wj‖
· ‖(∂L(f(x|Wj + ∆Wj), y)/∂Wj) − (∂L(f(x|Wj), y)/∂Wj)‖, and

∆(adv) = 1

D‖∆W (adv)
j ‖

· ‖(∂L(f(x+ δ|Wj + ∆W
(adv)
j), y)/∂Wj) − (∂L(f(x+ δ|Wj), y)/∂Wj)‖, respec-

tively. Here, f(x|Wj + ∆Wj) denotes the output of the ReLU network f , when the weight of the
j-th linear layer was updated to Wj + ∆Wj . Please see Appendix L for more details of experimental
settings. Fig. 4 compares the influence of weight changes on gradients w.r.t. network parameters. We
discovered that compared to vanilla training, the weight change with a fixed strength in adversarial
training usually affected the gradient much more significantly. Such a phenomenon demonstrated
that adversarial training boosted the influence of Hessian matrix w.r.t. the network parameters, which
verified Theorem 6.

3 RELATED WORK: A UNIFIED ANALYSIS OF PREVIOUS FINDINGS IN
ADVERSARIAL TRAINING

In this section, we use our theorems to theoretically explain or provide a new perspective to understand
previous findings in adversarial training. In fact, some studies are not directly related to our theorems,
and we put the discussions on them in Appendix I.

• Many previous studies (Liu et al., 2020; Kanai et al., 2021; Wu et al., 2020; Yamada et al., 2021)
considered that the difficulty of adversarial training was caused by the sharp loss landscape w.r.t
network parameters. To this end, Theorem 6 verifies such an explanation. Specifically, we have

8

Under review as a conference paper at ICLR 2023

proven that adversarial training can be considered to strengthen the influence of the Hessian matrix of
the loss w.r.t. network parameters, which is equivalent to sharpening the loss landscape.

• Athalye et al. (2018) discovered that obfuscated gradients led to a false sense of security in defenses
against adversarial examples, which hindered adversarial training (Zhang & Wang, 2019a). To this
end, Theorem 3 and Theorem 4 explain the third type of obfuscated gradients in (Athalye et al.,
2018), i.e., vanishing gradients. Specifically, we have proven that adversarial training significantly
strengthens the influence of a few unconfident samples, and neglects the influence of many confident
samples, which makes the training process more likely to oscillate in directions of a few unconfident
samples. Such oscillation along optimization directions of a few hard samples usually significantly
increases norms of weights along such directions, and causes over-confident predictions on some
easy samples. These over-confident predictions on easy samples may lead to vanishing gradients.

• Tsipras et al. (2019) clarified that compared to vanilla training, adversarial training mainly relied on
robust features and did not use non-robust features for inference, which caused inferior classification
performance. To this end, Theorems 3 and 4 verify such a finding. Specifically, we have proven that
adversarial training is mainly dominated by a few samples, which easily makes network parameters
oscillate in very few directions. In other words, the training of non-robust features, or more precisely,
training on samples with significant Â values that are easily attacked, is hard to converge.

• Ilyas et al. (2019) demonstrated that adversarial examples were attributed to the presence of highly
predictive but non-robust features. To this end, Theorems 1 and 2 verify such a finding, which reveals
that in the multi-category classification, the direction of the largest eigenvalue of the Hessian matrix
Hx suppresses features related to the target category, and promotes features related to the second-best
category. Here, the eigenvector w.r.t. the largest eigenvalue corresponds to non-robust features.

• Liu et al. (2021) considered that the robust overfitting was caused by the fitting of hard samples,
under the assumption that all training samples followed a Gaussian mixture distribution in a logistic
regression problem. To this end, Theorem 3 and Theorem 4 explain such a finding in a more
generic classification task without assuming the data distribution. Specifically, we have proven that
compared to vanilla training, the adversarially trained network is more likely to be over-fitted to a
few unconfident samples, which correspond to hard samples in adversarial training.

• Chen et al. (2020) discovered that the overfitting in adversarial training was because the network
overfitted to adversarial examples generated in the early stage of adversarial training, and failed to
generalize to adversarial examples generated in the late stage. To this end, we provide a deeper
insight into such a phenomenon. Specifically, according to Theorem 3 and Theorem 4, only a few
unconfident samples with large gradient norms ‖g̃x‖ influence the adversarial training. In fact, the
imbalance of the sample influence can easily make unconfident samples with large H̄z values and
large gradient norms ‖g̃x‖ in the early stage of adversarial training significantly different from those
in the late stage. Such mechanisms lead to the overfitting in adversarial training.

• Rice et al. (2020) demonstrated that early stopping could effectively reduce overfitting in adversarial
training. To this end, Theorem 3 and Theorem 4 also explain the effectiveness of the early stopping.
Specifically, during adversarial training process, the network becomes robust, and the number of
unconfident samples decreases. Because adversarially trained networks mainly focus on unconfident
samples, the decreasing number of unconfident samples boosts the significance of overfitting. In this
way, early stopping can effectively reduce overfitting.

4 CONCLUSION AND DISCUSSION

This paper theoretically analyzes the dynamics of adversarial perturbations via an analytic solution.
We also prove that adversarial training strengthens the influence of a few input samples, which
boosts the difficulty of adversarial training. Crucially, our proofs provide a theoretical explanation
for previous studies in understanding adversarial training. Note that our analysis is all based on the
assumption that adversarial perturbations cannot significantly change the gating states of the ReLU
network. Despite this, experimental results show that our analysis can still explain most adversarial
perturbations generated in real cases, when gating states change. Besides, in this paper, we use the
normalized perturbations to approximate adversarial perturbations of the `2 attack and the `∞ attack,
instead of deriving an exact formulation for these perturbations. Nevertheless, experimental results
show that our analysis can well explain the `2 attack and the `∞ attack, to some extent.

9

Under review as a conference paper at ICLR 2023

ETHIC STATEMENT

This paper theoretically analyzes the dynamics of adversarial perturbations, and further theoretically
explains the difficulty of adversarial training. There are no ethic issues with this paper.

REPRODUCIBILITY STATEMENT

Proofs for all theorems and assumptions are provided in Appendix A, B, D, E, F, G, and H. Details
of experimental settings are provided in Appendix C, J, L, and K. Besides, we will release the code
when the paper is accepted.

REFERENCES

Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give a false sense of
security: Circumventing defenses to adversarial examples. In International conference on machine
learning, pp. 274–283. PMLR, 2018.

Tianlong Chen, Zhenyu Zhang, Sijia Liu, Shiyu Chang, and Zhangyang Wang. Robust overfitting
may be mitigated by properly learned smoothening. In International Conference on Learning
Representations, 2020.

Jeremy Cohen, Simran Kaur, Yuanzhi Li, J Zico Kolter, and Ameet Talwalkar. Gradient descent on
neural networks typically occurs at the edge of stability. In International Conference on Learning
Representations, 2021. URL https://openreview.net/forum?id=jh-rTtvkGeM.

Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun Zhu, Xiaolin Hu, and Jianguo Li. Boosting
adversarial attacks with momentum. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 9185–9193, 2018.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572, 2014.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, Brandon Tran, and Aleksander
Madry. Adversarial examples are not bugs, they are features. Advances in neural information
processing systems, 32, 2019.

Sekitoshi Kanai, Masanori Yamada, Hiroshi Takahashi, Yuki Yamanaka, and Yasutoshi Ida. Smooth-
ness analysis of adversarial training. arXiv preprint arXiv:2103.01400, 2021.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolu-
tional neural networks. Advances in neural information processing systems, 25, 2012.

Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial machine learning at scale. arXiv
preprint arXiv:1611.01236, 2016.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436–444,
2015.

Yann A LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Müller. Efficient backprop. In
Neural networks: Tricks of the trade, pp. 9–48. Springer, 2012.

Chen Liu, Mathieu Salzmann, Tao Lin, Ryota Tomioka, and Sabine Süsstrunk. On the loss landscape
of adversarial training: Identifying challenges and how to overcome them. Advances in Neural
Information Processing Systems, 33:21476–21487, 2020.

10

https://openreview.net/forum?id=jh-rTtvkGeM

Under review as a conference paper at ICLR 2023

Chen Liu, Zhichao Huang, Mathieu Salzmann, Tong Zhang, and Sabine Süsstrunk. On the impact of
hard adversarial instances on overfitting in adversarial training. arXiv preprint arXiv:2112.07324,
2021.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. To-
wards deep learning models resistant to adversarial attacks. In International Conference on Learn-
ing Representations, 2018. URL https://openreview.net/forum?id=rJzIBfZAb.

Takeru Miyato, Shin-ichi Maeda, Masanori Koyama, and Shin Ishii. Virtual adversarial training: a
regularization method for supervised and semi-supervised learning. IEEE transactions on pattern
analysis and machine intelligence, 41(8):1979–1993, 2018.

Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay Celik, and Ananthram
Swami. Practical black-box attacks against machine learning. In Proceedings of the 2017 ACM on
Asia conference on computer and communications security, pp. 506–519, 2017.

Zhuang QIAN, Shufei Zhang, Kaizhu Huang, Qiufeng Wang, Bin Gu, Huan Xiong, and Xinping Yi.
Perturbation diversity certificates robust generalisation, 2022. URL https://openreview.
net/forum?id=jm1RxJFQdDN.

Jie Ren, Mingjie Li, Meng Zhou, Shih-Han Chan, and Quanshi Zhang. Towards theoretical analysis
of transformation complexity of relu dnns. arXiv preprint arXiv:2205.01940, 2022.

Leslie Rice, Eric Wong, and Zico Kolter. Overfitting in adversarially robust deep learning. In
International Conference on Machine Learning, pp. 8093–8104. PMLR, 2020.

Ludwig Schmidt, Shibani Santurkar, Dimitris Tsipras, Kunal Talwar, and Aleksander Madry. Ad-
versarially robust generalization requires more data. Advances in neural information processing
systems, 31, 2018.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Aman Sinha, Hongseok Namkoong, Riccardo Volpi, and John Duchi. Certifying some distributional
robustness with principled adversarial training. arXiv preprint arXiv:1710.10571, 2017.

David Stutz, Matthias Hein, and Bernt Schiele. Confidence-calibrated adversarial training: Generaliz-
ing to unseen attacks. In International Conference on Machine Learning, pp. 9155–9166. PMLR,
2020.

Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Ian Goodfellow, Dan Boneh, and Patrick Mc-
Daniel. Ensemble adversarial training: Attacks and defenses. In International Conference on Learn-
ing Representations, 2018. URL https://openreview.net/forum?id=rkZvSe-RZ.

Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, and Aleksander Madry. Ro-
bustness may be at odds with accuracy. In International Conference on Learning Representations,
2019. URL https://openreview.net/forum?id=SyxAb30cY7.

Eric Wong, Leslie Rice, and J Zico Kolter. Fast is better than free: Revisiting adversarial training.
arXiv preprint arXiv:2001.03994, 2020.

Dongxian Wu, Shu-Tao Xia, and Yisen Wang. Adversarial weight perturbation helps robust general-
ization. Advances in Neural Information Processing Systems, 33:2958–2969, 2020.

Lei Wu, Chao Ma, et al. How sgd selects the global minima in over-parameterized learning: A
dynamical stability perspective. Advances in Neural Information Processing Systems, 31, 2018.

Masanori Yamada, Sekitoshi Kanai, Tomoharu Iwata, Tomokatsu Takahashi, Yuki Yamanaka, Hiroshi
Takahashi, and Atsutoshi Kumagai. Adversarial training makes weight loss landscape sharper in
logistic regression. arXiv preprint arXiv:2102.02950, 2021.

Zhewei Yao, Amir Gholami, Qi Lei, Kurt Keutzer, and Michael W Mahoney. Hessian-based analysis
of large batch training and robustness to adversaries. Advances in Neural Information Processing
Systems, 31, 2018.

11

https://openreview.net/forum?id=rJzIBfZAb
https://openreview.net/forum?id=jm1RxJFQdDN
https://openreview.net/forum?id=jm1RxJFQdDN
https://openreview.net/forum?id=rkZvSe-RZ
https://openreview.net/forum?id=SyxAb30cY7

Under review as a conference paper at ICLR 2023

Fuxun Yu, Chenchen Liu, Yanzhi Wang, Liang Zhao, and Xiang Chen. Interpreting adversarial
robustness: A view from decision surface in input space. arXiv preprint arXiv:1810.00144, 2018.

Runtian Zhai, Tianle Cai, Di He, Chen Dan, Kun He, John Hopcroft, and Liwei Wang. Adversarially
robust generalization just requires more unlabeled data. arXiv preprint arXiv:1906.00555, 2019.

Haichao Zhang and Jianyu Wang. Defense against adversarial attacks using feature scattering-based
adversarial training. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32. Curran Asso-
ciates, Inc., 2019a. URL https://proceedings.neurips.cc/paper/2019/file/
d8700cbd38cc9f30cecb34f0c195b137-Paper.pdf.

Haichao Zhang and Jianyu Wang. Defense against adversarial attacks using feature scattering-based
adversarial training. Advances in Neural Information Processing Systems, 32, 2019b.

12

https://proceedings.neurips.cc/paper/2019/file/d8700cbd38cc9f30cecb34f0c195b137-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/d8700cbd38cc9f30cecb34f0c195b137-Paper.pdf

Under review as a conference paper at ICLR 2023

A PROOF OF THEOREM 1

In this section, we prove Theorem 1 in Section 2.1 of the main paper, which analyzes the dynamics
of perturbations of the m-step attack.

Let us focus on the most straightforward solution to the multi-step adversarial attack. In this scenario,
given a ReLU network f and an input sample x ∈ Rn, the perturbation generated after attacking for
m steps is formulated as follows.

δ(m) =
∑m−1

t=0
α · gx+δ(t) , (14)

where gx+δ(t) = ∂
∂x
L(f(x+ δ(t)), y) represents the gradient of the loss w.r.t. the input sample x, and

m denotes the step size. Furthermore, we define the update of the perturbation at each step t as
follows.

∆x(t) def
= α · gx+δ(t−1) , (15)

In this way, the perturbation δ(m) generated after the m-step attack can be re-written as

δ(m) = ∆x(1) + ∆x(2) + · · ·+ ∆x(m). (16)

Then, in order to derive the analytic solution to the adversarial perturbation δ(m) in Eq. (14), we
use the quadratic Taylor approximation (LeCun et al., 2012; Cohen et al., 2021) to re-write the loss
function as follows.

L(f(x+ δ(t)), y) = L(f(x+ δ(t−1) + ∆x(t)), y)

= L(f(x+ δ(t−1)), y) + (∆x(t))T gx+δ(t−1) +
1

2
(∆x(t))TH(t−1)

x (∆x(t)) +R2(∆x(t)),

(17)
where gx+δ(t−1) = ∂

∂x
L(f(x + δ(t−1)), y) represents the gradient of the loss function w.r.t. the

adversarial example x+ δ(t−1). H(t−1)
x = ∂2

∂x∂xT
L(f(x+ δ(t−1)), y) represents the Hessian matrix of

the loss function w.r.t. the adversarial example x+ δ(t−1). R2(∆x(t)) is referred to as terms of higher
than the second order in the Taylor series w.r.t the perturbation ∆x(t).

Note that the order of ∆x(t) is O(1/m). Hence, if the step number m is large enough, the
perturbation ∆x(t) is ignorable. Moreover, each dimension Ri2(∆x(t)) of the residual term
R2(∆x(t)) ∈ Rn in Eq. (17) is proven to be the order of O(1/m2). Hence, the residual term
R2(∆x(t)) in Eq. (17) is also ignorable without hurting the subsequent proofs, if the step number
m is large enough. Please see Section A.2 for the detailed analysis.

In this way, based on Eq. (17), the gradient of the loss function w.r.t the adversarial example x+ δ(t)

can be represented as

gx+δ(t) =
∂

∂x
L(f(x+ δ(t)), y)

=
∂

∂x
L(f(x+ δ(t−1) + ∆x(t)), y)

=
∂

∂x

[
L(f(x+ δ(t−1)), y) + (∆x(t))T gx+δ(t−1) +

1

2
(∆x(t))TH(t−1)

x (∆x(t)) +R2(∆x(t))

]
// According to Eq. (17)

= gx+δ(t−1) +H(t−1)
x ∆x(t) +

∂

∂x
R2(∆x(t)).

(18)
Lemma 2 (in Appendix). Based on Assumption 1, the update of the perturbation with the multi-step
attack at step t can be represented as ∆x(t) = α(I + αH̄x)t−1gx + ψ(t), where gx = ∂

∂x
L(f(x), y).

H̄x = W̃ H̄z(W̃)T is used to approximate4 the second derivative of the loss w.r.t. the input sample

4Theoretically, it is very hard to derive the analytic solution to the adversarial perturbation δ(m) without such
an approximation. Hence, we use the matrix H̄z to approximate the equivalent Hessian matrix, which allows
us to derive the first analytic solution to the adversarial perturbation of the multi-step attack. More crucially,
experimental results in Table 1 verified the trustworthiness of such an approximation, i.e., the error between the
real perturbation and the theoretically derived solution is at the level of 10−8—10−5.

13

Under review as a conference paper at ICLR 2023

x, where W̃T = WT
l Σl−1 · · ·Σ2W

T
2 Σ1W

T
1 . The matrix H̄z = 1∑m−1

t=1 ‖∆x
(t)‖

∑m−1
t=1 ‖∆x

(t)‖H(t)
z is a

weighted sum of the Hessian matrix H(t)
z = ∂2

∂z∂zT
L(f(x+ δ(t)), y). ψ(t) ∈ Rn denotes an ignorable

residual term, because each dimension ψ(t)
i is the order ofO(1/m2), if the step numberm is sufficiently

large.

Proof. If the step t = 1, according to Eq. (15), we have ∆x(1) = αgx.

For ∀t > 1, the perturbation of the t-th step attack is defined as ∆x(t) = α · gx+δ(t−1) in Eq. (15).
Based on Eq. (18), the perturbation ∆x(t) can be re-written as

gx+δ(t−1) = gx+δ(t−2) +H(t−2)
x ∆x(t−1) +

∂

∂x
R2(∆x(t−1)) // According to Eq. (18)

= gx+δ(t−3) +H(t−3)
x ∆x(t−2) +

∂

∂x
R2(∆x(t−2)) +H(t−2)

x ∆x(t−1) +
∂

∂x
R2(∆x(t−1))

. . .

= gx +
∑t−1

t′=1
H(t′−1)
x ∆x(t′) +

t−1∑
t′=1

∂

∂x
R2(∆x(t′))

= gx +
∑t−1

t′=1
W̃H(t′−1)

z (W̃)T∆x(t′) +
∑t−1

t′=1

∂

∂x
R2(∆x(t′)) // According to Eq. (20)

≈ gx +
∑t−1

t′=1
W̃ H̄z(W̃)T∆x(t′) +

∑t−1

t′=1

∂

∂x
R2(∆x(t′))

= gx +
∑t−1

t′=1
H̄x∆x(t′) +

∑t−1

t′=1
R̃2(∆x(t′)).

(19)

Here, we use H̄x = W̃ H̄z(W̃)T to approximate5 the second derivative of the loss w.r.t. the input
sample x, where W̃T = WT

l Σl−1 · · ·Σ2W
T
2 Σ1W

T
1 based on Assumption 1. The matrix H̄z =

1∑m−1
t=1 ‖∆x

(t)‖

∑m−1
t=1 ‖∆x

(t)‖H(t)
z is a weighted sum of the Hessian matrix H

(t)
z = ∂2

∂z∂zT
L(f(x +

δ(t)), y). For simplicity, let R̃2(∆x(t′)) = ∂
∂x
R2(∆x(t′)).

Based on Assumption 1, we have

H(t)
x =

∂2L(f(x+ δ(t)), y)

∂x∂xT
=
∂(∂L(f(x+δ(t)),y)

∂z(x)
∂z(x)

∂xT
)T

∂xT

=
(∂z(x)

∂xT
)T

∂xT
· ∂L(f(x+ δ(t)), y)

∂z(x)
+ (

∂z(x)

∂xT
)T ·

∂(∂L(f(x+δ(t)),y)
∂z(x)

)

∂xT

= (
∂z(x)

∂xT
)T
∂2L(f(x+ δ(t)), y)

∂z(x)∂z(x)

∂z(x)

∂xT

= W̃H(t)
z (W̃)T . // According to Assumption 1 in the main paper.

(20)

Note that the order of ∆x(t) is O(1/m). If the step number m is large enough, the perturba-
tion ∆x(t) is ignorable. Moreover, each dimension

∑t−1
t′=1 R

i
2(∆x(t′)) ∈ R of the residual term∑t−1

t′=1 R2(∆x(t′)) ∈ Rn in Eq. (19) is proven to be the order of O(1/m). Hence, such a residual
term

∑t−1
t′=1 R̃2(∆x(t′)) is small enough to be ignored without hurting the trustworthiness of

further analysis, if the step number m is large. Please see Section A.2 for the detailed analysis.

Substituting Eq. (19) back to Eq. (15), the perturbation ∆x(t) can be re-written as

∆x(t) = α · gx+δ(t−1)

≈ α · gx + α ·
t−1∑
t′=1

H̄x∆x(t′) + α ·
t−1∑
t′=1

R̃2(∆x(t′)).
(21)

5Theoretically, it is very hard to derive the analytic solution to the adversarial perturbation δ(m) without such
an approximation. Hence, we use the matrix H̄z to approximate the equivalent Hessian matrix, which allows
us to derive the first analytic solution to the adversarial perturbation of the multi-step attack. More crucially,
experimental results in Table 1 verified the trustworthiness of such an approximation, i.e., the error between the
real perturbation and the theoretically derived solution is at the level of 10−8—10−5.

14

Under review as a conference paper at ICLR 2023

In this way, we apply the mathematical induction to prove Lemma 2 in Appendix, i.e., ∀1 ≤ t ≤
m,∆x(t) = α(I + αH̄x)t−1gx + ψ(t), where ψ(t) = α

∑t−1
t′=1(I + αH̄x)t−1−t′R̃2(∆x(t′)).

Base case: When t = 1, we have ∆x(1) = α · gx = α · (I + αH̄x)0gx.

Inductive step:
For t > 1, assuming ∆x(t−1) = α(I + αH̄x)t−2gx + α

∑t−2
t′=1(I + αH̄x)t−2−t′R̃2(∆x(t′)), we have

∆x(t) = α ·
(
gx + H̄x

∑t−1

t′=1
∆x(t′) +

∑t−1

t′=1
R̃2(∆x(t′))

)
// According to Eq. (21)

= α ·
[
gx + H̄x

∑t−2

t′=1
∆x(t′) +

∑t−2

t′=1
R̃2(∆x(t′))

]
+ α · H̄x∆x(t−1) + α · R̃2(∆x(t−1))

= ∆x(t−1) + α · H̄x∆x(t−1) + α · R̃2(∆x(t−1)) // According to Eq. (21)

= (I + α · H̄x)∆x(t−1) + α · R̃2(∆x(t−1))

= (I + α · H̄x)α ·
[
(I + αH̄x)(t−2)gx +

t−2∑
t′=1

(I + αH̄x)t−2−t′R̃2(∆x(t′))

]
+ α · R̃2(∆x(t−1))

= α · (I + αH̄x)t−1gx + α

t−1∑
t′=1

(I + αH̄x)t−1−t′R̃2(∆x(t′))

= α · (I + αH̄x)t−1gx + ψ(t),
(22)

where R̃2(∆x(t−1)) = ∂
∂x
R2(∆x(t−1)), and R2(∆x(t−1)) is referred to as the term of the perturbation

∆x(t−1) higher than the second order.

Conclusion: Since both the base case and the inductive step have been proven to be true, we have
∆x(t) = α(I + αH̄x)t−1gx + ψ(t), where ψ(t) = α

∑t−1
t′=1(I + αH̄x)t−1−t′R̃2(∆x(t′)).

Here, ψ(t) ∈ Rn denotes an ignorable residual term, because each dimension ψ
(t)
i is the order

of O(1/m2), if the step number m is sufficiently large. Please see Section A.2 for the detailed
analysis.

Thus, Lemma 2 in Appendix is proven.

A.1 PROOF OF THEOREM 1

Theorem 1 (Dynamics of perturbations of the m-step attack). Let us assume that the gradient gx+δ(t)

is a Lipschitz function with the Lipschitz constant K, ‖gx+δ(t) − gx‖ ≤ K · ‖δ(t)‖. Then, based on
Assumption 1, the adversarial perturbation δ(m) can be approximated as follows, where the overall
adversarial strength β = αm is a small constant, and the step number m is a large integer.

δ(m) =

n∑
i=1

(1 + αλi)
m − 1

λi
γivi + ρ, gx+δ(m) =

n∑
i=1

(1 + αλi)
mγivi. (23)

Here, λi and vi denote the i-th largest eigenvalue of the matrix H̄x = W̃ H̄z(W̃)T and its correspond-
ing eigenvector, respectively, where H̄x is used to approximate6 the second derivative of the loss w.r.t.
the input sample x. The matrix H̄z = 1∑m−1

t=1 ‖∆x
(t)‖

∑m−1
t=1 ‖∆x

(t)‖H(t)
z is a weighted sum of the

Hessian matrix H(t)
z = ∂2

∂z∂zT
L(f(x+ δ(t)), y), where ∆x(t) = α · gx+δ(t−1) denotes the perturbation

updated at the t-th step. γi = gTx vi ∈ R represents the projection of the gradient gx = ∂
∂x
L(f(x), y)

on the eigenvector vi. If the step number m is large, then the residual term in the Taylor expansion
ρ ∈ Rn is ignorable, since each element ρi ∈ R is proven to be the order of O(1/m).

6Theoretically, it is very hard to derive the analytic solution to the adversarial perturbation δ(m) without such
an approximation. Hence, we use the matrix H̄z to approximate the equivalent Hessian matrix, which allows
us to derive the first analytic solution to the adversarial perturbation of the multi-step attack. More crucially,
experimental results in Table 1 verified the trustworthiness of such an approximation, i.e., the error between the
real perturbation and the theoretically derived solution is at the level of 10−8—10−5.

15

Under review as a conference paper at ICLR 2023

Proof. According to Eq. (16) and Lemma 2 in Appendix, the perturbation δ(m) generated after the
m-step attack can be re-written as

δ(m) = ∆x(1) + ∆x(2) + · · ·+ ∆x(m)

= α[I + (I + αH̄x) + · · ·+ (I + αH̄x)m−1]gx +

m∑
t=1

ψ(t).
(24)

Because each Hessian matrix H(t)
x in matrix H̄x = 1∑m−1

t=1 ‖∆x
(t)‖

∑m−1
t=1 ‖∆x

(t)‖H(t)
x is a real-valued

symmetric matrix, this matrix H̄x is also a real-valued symmetric matrix. In this way, we can use
the eigenvalue decomposition to decompose H̄x as H̄x = V ΛV −1. Here, Λ = diag[λ1, λ2, · · · , λp]
is a diagonal matrix, whose diagonal elements are the corresponding eigenvalues, Λii = λi. The
square matrix V = [v1, v2, · · · , vn] ∈ Rn×n contains n linearly independent eigenvectors vi, i.e.,
∀i 6= k, vTi vk = 0, where vi is the eigenvector corresponding to the eigenvalue λi. Without loss
generality, we normalize these n eigenvectors vi, thereby V TV = I. In this scenario, the Hessian
matrix H̄x can be decomposed as H̄x = V ΛV T , and the perturbation δ(m) can be represented as

δ(m) = α[I + (I + αV ΛV T) + · · ·+ (I + αV ΛV T)m−1]gx +

m∑
t=1

ψ(t)

= α[V V T + (V V T + αV ΛV T) + · · ·+ (V V T + αV ΛV T)m−1]gx +

m∑
t=1

ψ(t)

= α[V IV T + V (I + αΛ)V T + · · ·+ [V (I + αΛ)V T]m−1]gx +

m∑
t=1

ψ(t)

= α[V IV T + V (I + αΛ)V T + · · ·+ V (I + αΛ)m−1V T]gx +

m∑
t=1

ψ(t)

= αV [I + (I + αΛ) + · · ·+ (I + αΛ)m−1]V T gx +

m∑
t=1

ψ(t).

= αV DV T gx +

m∑
t=1

ψ(t).

(25)

For simplicity, let D = α(I + (I + αΛ) + · · · + (I + αΛ)m−1), which is a diagonal matrix, since I,
I + αΛ, ..., (I + αΛ)m−1 are all diagonal matrices. In this way, let us focus on the k-th diagonal
element Dkk ∈ R.

Dkk = α(1 + (1 + αλk) + · · ·+ (1 + αλk)m−1)

= α(1× 1− (1 + αλk)m

1− (1 + αλk)
)

=
(1 + αλk)m − 1

λk
.

(26)

Then, combining Eq. (25) and Eq. (26), the perturbation δ(m) can be written as follows. Here,
considering that n eigenvectors of the Hessian matrix form a set of unit orthogonal basis, the gradient

16

Under review as a conference paper at ICLR 2023

gx can be represented as gx =
∑n
i=1 γivi, where γi is referred to as the projection length of gx on vi.

δ(m) = V DV T gx +

m∑
t=1

ψ(t)

= V DV T (

n∑
i=1

γivi) +

m∑
t=1

ψ(t)

=

n∑
i=1

Diiviv
T
i

n∑
k=1

γkvk +

m∑
t=1

ψ(t)

=
∑
i

(1 + αλi)
m − 1

λi
γivi + α

m∑
t=1

t−1∑
t′=1

(I + αH̄x)t−1−t′R̃2(∆x(t′))

=
∑
i

(1 + αλi)
m − 1

λi
γivi + ρ,

(27)

where we use ρ ∈ Rn to denote the residual term
∑m
t=1 ψ

(t). In Lemma 3 in Appendix, we have
proven that each dimension ρi ∈ R of the residual term ρ is the order of O(1/m). Thus, this
residual term ρ can be ignored, without hurting the trustworthiness of the analysis of the
adversarial perturbation, if the step number m is large.

Based on Eq. (19), the gradient gx+δ(m) of the loss w.r.t. the adversarial example x + δ(m) can be
re-written as follows. Here, R2(∆x(m)) denotes terms of the perturbation ∆x(m) higher than the
second order.

gx+δ(m) = gx +

m∑
t=1

H̄x∆x(t) +

m∑
t=1

∂

∂x
R2(∆x(t))

= gx + H̄xδ
(m) +

m∑
t=1

R̃2(∆x(t)).

(28)

Substituting Eq. (27) back to Eq. (28), the gradient gx+δ(m) can be written as

gx+δ(m) = gx + H̄x

(∑
i

(1 + αλi)
m − 1

λi
γivi + ρ

)
+

m∑
t=1

R̃2(∆x(t))

=

n∑
i=1

γivi + H̄x
∑
i

(1 + αλi)
m − 1

λi
γivi + H̄xρ +

m∑
t=1

R̃2(∆x(t))

=

n∑
i=1

γivi +
∑
i

(1 + αλi)
m − 1

λi
γi(H̄xvi) + H̄xρ +

m∑
t=1

R̃2(∆x(t))

=
n∑
i=1

γivi +
∑
i

(1 + αλi)
m − 1

λi
γi(λivi) + H̄xρ +

m∑
t=1

R̃2(∆x(t)).

≈
∑
i

(1 + αλi)
m γivi.

(29)

We have proven in Section A.2 that each dimension of the residual term H̄xρ +
∑m
t=1 R̃2(∆x(t))

in Eq. (29) is the order of O(1/m). Then, when the step number m is large enough, the residual
term H̄xρ +

∑m
t=1 R̃2(∆x(t)) is small enough to be ignored, without hurting the trustworthiness

of the analysis of the gradient. Please see Section A.2 for the detailed analysis.

Hence, Theorem 1 is proven.

A.2 REASON FOR IGNORING THE RESIDUAL TERM IN THEOREM 1

In this subsection, we clarify the reason why the residual term for the perturbation δ(m) in Theorem 1
and the residual term for the gradient gx+δ(m) in Theorem 1 can be ignored.

Lemma 3 (in Appendix). Each dimension ρi ∈ R of the residual term ρ =
∑m
t=1 ψ

(t) ∈ Rn is the order
of O(1/m), where m represents the total number of steps. ψ(t) = α

∑t−1
t′=1(I +αH̄x)t−1−t′R̃2(∆x(t′)),

17

Under review as a conference paper at ICLR 2023

and each dimension of ψ(t) is the order of O(1/m2). R̃2(∆x(t′)) = ∂
∂x
R2(∆x(t′)), and R2(∆x(t′))

denotes terms of ∆x(t′) higher than the second order in Taylor expansion.

Proof. Without loss of generality, let us focus on the i-th dimension of the residual term ρ =∑m
t=1 ψ

(t). For convenience, we use ρi ∈ R, ψ(t)
i ∈ R, and Ri2(∆x(t′)) ∈ R to denote the i-th

dimension of ρ, ψ(t), and R2(∆x(t′)), respectively. Then, the i-th dimension of the residual term ρ
can be re-written as

ρi =

m∑
t=1

ψ
(t)
i

= α

m∑
t=1

t−1∑
t′=1

(
(I + αH̄x)t−1−t′)

i
R̃i2(∆x(t′))

= α

m∑
t=1

t−1∑
t′=1

(1 + αλi)
t−1−t′ R̃i2(∆x(t′)). // According to Eq. (25)

(30)

In the following manuscript, we will prove that each dimension ρi of the residual term ρ is the order
of O(1/m2) step by step.

• Each dimension of the perturbation ∆x(m) is the order of O(1/m). Specifically, according to
Lemma 2 in Appendix, the perturbation ∆x(m) can be represented as

∆x(m) = α · gx+δ(m−1)

≈ α(I + αH̄x)m−1gx

= αV (I + αΛ)m−1V T gx. // According to Eq. (25)

(31)

Then, each dimension ∆x
(m)
i of the perturbation ∆x(m) can be represented as

∆x
(m)
i = α(1 + αλi)

m−1γivi. (32)

We notice that there exists a limit formula lima→+∞(1 + 1
a)a = exp(1). Then based on this

limit formula, the above equation can be further re-written as follows, when the step number m is
sufficiently large.

lim
m→+∞

∆x
(m)
i = lim

m→+∞
α(1 + αλi)

m−1γivi

≤ lim
m→+∞

α(1 + αλi)
mγivi

= lim
m→+∞

α(1 +
αm

m
λi)

mγivi

= α exp(αmλi)γivi

= α exp(βλi)γivi

= A ·B · C.

(33)

Here, A = α = β/m is the order of O(1/m), since β is a small constant, and m is a large enough
constant. Besides, B = exp(βλi) is a constant, and C = γivi is also a constant. Hence, the order of
A ·B ·C, i.e. each dimension ∆x

(m)
i of the perturbation ∆x(m), is O(1/m), when the step number m

is large enough.

• Each dimension Ri2(∆x(t)) of the term R2(∆x(t)) in the residual term ρ is the order of O(1/m2).
Because R2(∆x(t)) denotes terms of ∆x(t) higher than the second order in Taylor expansion, each
dimension Ri2(∆x(t)) of the term R2(∆x(t)) is the order of O(1/m3) + O(1/m4) + O(1/m5) + · · · .
Note that, when the step number m is large enough, O(1/m3) +O(1/m4) + · · · ≤ mO(1/m3), which
is the order of O(1/m2). Hence, each dimension Ri2(∆x(t)) of the term R2(∆x(t)) is the order of
O(1/m2).

• Each dimension R̃i2(∆x(t)) of the term R̃2(∆x(t)) in the residual term ρ is the order of O(1/m2).
Considering the assumption in Theorem 1 that the gradient gx+δ(t) = ∂

∂x
L(f(x+δ(t)), y) is a Lipschitz

18

Under review as a conference paper at ICLR 2023

function with the Lipschitz constant K, ‖gx+δ(t) − gx‖ ≤ K · ‖δ(t)‖, and the perturbation ∆x(t) is
small, each dimension R̃i2(∆x(t)) = ∂

∂x
Ri2(∆x(t)) of the term R̃2(∆x(t)) is also the order of O(1/m2).

• Each dimension ψ
(t)
i of the term ψ(t) in the residual term ρ is the order of O(1/m2). Note

that the term (1 + αλi)
t−1−t′ in Eq. (30) is bounded by 0 ≤ (1 + αλi)

t−1−t′ ≤ (1 + αλi)
m ≤

limm→+∞(1 + αλi)
m = exp(α · m · λi) = exp(βλi). In this way, ψ(t)

i can be bounded as follows,
where β = αm is a small constant.

ψ
(t)
i = α

t−1∑
t′=1

(1 + αλi)
t−1−t′ R̃i2(∆x(t′)) ≤ α ·m · (1 + αλi)

m R̃i2(∆x(t′))

≤ α ·m · exp(βλi) R̃
i
2(∆x(t′))

≤ β · exp(βλi) O(
1

m2
)

= O(
1

m2
).

(34)

• Each dimension ρi of the residual term ρ is the order of O(1/m).

ρi =

m∑
t=1

ψ
(t)
i

≤ m O(
1

m2
) // According to Eq. (34)

= O(
1

m
).

(35)

Reason for ignoring the residual term ρ for the perturbation δ(m) in Theorem 1. According to
Lemma 3 in Appendix, ρi is the order of O(1/m). When the step number m is large enough, the
residual term ρ is small enough to be ignored, without hurting the trustworthiness of the analysis of
adversarial perturbations and adversarial training in Theorems 3, 4, 5, and 6.

Moreover, we have conducted experiments to verify that the residual term ρ made an ignorable
influence on the adversarial perturbation, i.e., checking whether the theoretically derived solution δ̂
well fitted the real perturbation in practice. Table 4 shows that for each network, the solution δ̂ well
fitted the real one. Such a phenomenon successfully verified that the residual term could be ignored,
without hurting the trustworthiness of analyzing the adversarial perturbation. Please see Section J for
details.

Reason for ignoring the residual term H̄xρ +
∑m
t=1 R̃2(∆x(t)) for the gradient gx+δ(m) in Theo-

rem 1. According to Lemma 3 in Appendix, each dimension in the term H̄xρ is the order of O(1/m).
Moreover,

∑m
t=1 R̃

i
2(∆x(t)) is the order of m · O(1/m2) = O(1/m). Hence, each dimension in the

residual term H̄xρ +
∑m
t=1 R̃2(∆x(t)) for the gradient gx+δ(m) in Theorem 1 is the order of O(1/m).

Then, when the step number m is large enough, the residual term H̄xρ +
∑m
t=1 R̃2(∆x(t)) is small

enough to be ignored, without hurting the trustworthiness of the analysis of the gradient.

19

Under review as a conference paper at ICLR 2023

B PROOF OF THEOREM 2

In this section, we prove Theorem 2 in Section 2.1 of the main paper, which analyzes the adversarial
perturbation of the infinite-step attack.

B.1 PROOF OF THEOREM 2

Theorem 2 (Perturbations of the infinite-step attack). β = αm reflects the overall adversarial strength
of the infinite-step attack with the step number m→ +∞ and the step size α = β/m→ 0. Then, based
on Assumption 1, this infinite-step adversarial perturbation δ̂ = limm→+∞ α

∑m−1
t=0

∂
∂x
L(f(x+δ(t)), y)

can be re-written as follows.

δ̂ =

n∑
i=1

exp(βλi)− 1

λi
γivi + ρ̂, gx+δ̂ =

n∑
i=1

exp(βλi)γivi. (36)

Here, ρ̂ ∈ Rn denotes an ignorable residual term in the Taylor expansion, because ρ̂i ∈ R is proven
to be the order of O(1/m).

Proof. According to Eq. (16) and Lemma 2 in Appendix, when the step number m → +∞, the
infinite-step adversarial perturbation δ̂ can be represented as

δ̂ = lim
m→+∞

∆x(1) + ∆x(2) + · · ·+ ∆x(m)

= lim
m→+∞

α[I + (I + αH̄x) + · · ·+ (I + αH̄x)m−1]gx + lim
m→+∞

m∑
t=1

ψ(t).
(37)

Because the Hessian matrix H̄x is a real-valued symmetric matrix, we can use the eigenvalue
decomposition to decompose H̄x as H̄x = V ΛV −1 = V ΛV T . In this scenario, the perturbation δ̂ can
be further simplified as

δ̂ = lim
m→+∞

α[I + (I + αH̄x) + · · ·+ (I + αH̄x)m−1]gx + lim
m→+∞

m∑
t=1

ψ(t)

= lim
m→+∞

α[I + (I + αV ΛV T) + · · ·+ (I + αV ΛV T)m−1]gx + lim
m→+∞

m∑
t=1

ψ(t)

= lim
m→+∞

αV [I + (I + αΛ) + · · ·+ (I + αΛ)m−1]V T gx + lim
m→+∞

m∑
t=1

ψ(t)

= lim
m→+∞

αV DV T gx + lim
m→+∞

m∑
t=1

ψ(t),

(38)

where we use D = α(I + (I + αΛ) + · · ·+ (I + αΛ)m−1) for simplicity. Then, when the step number
m→ +∞, the k-th diagonal element limm→+∞Dkk can be written as

lim
m→+∞

Dkk = lim
m→+∞

[
α(1 + (1 + αλk) + · · ·+ (1 + αλk)m−1)

]
=

limm→+∞(1 + αλk)m − 1

λk

=
limm→+∞(1 + αmλk

m)m − 1

λk

=
exp(αmλk)− 1

λk

=
exp(βλk)− 1

λk
.

(39)

20

Under review as a conference paper at ICLR 2023

Then, combining Eq. (39) and Eq. (37), the perturbation δ̂ can be written as

δ̂ = lim
m→+∞

V DV T gx + lim
m→+∞

m∑
t=1

ψ(t)

= lim
m→+∞

V DV T (

n∑
i=1

γivi) + lim
m→+∞

m∑
t=1

ψ(t)

=

n∑
i=1

lim
m→+∞

Diiviv
T
i

n∑
k=1

γkvk + lim
m→+∞

α

m∑
t=1

t−1∑
t′=1

(I + αH̄x)t−1−t′R̃2(∆x(t′))

=
∑
i

exp(βλi)− 1

λi
γivi + ρ̂.

(40)

Here, we use ρ̂ ∈ Rn to denote the residual term limm→+∞
∑m
t=1 ψ

(t). In Lemma 3, we have
proven that each dimension ρ̂i ∈ R of the residual term ρ̂ is the order of O(1/m). Thus, this
residual term ρ̂ can be ignored, without hurting the trustworthiness of the analysis of the
adversarial perturbation, since the step number m is infinite. Please see Section B.2 for the
detailed discussion.

Based on Eq. (19), the gradient gx+δ̂ of the loss w.r.t. the adversarial example x+ δ̂ can be re-written
as follows. Here, R2(∆x(m)) denotes terms of the perturbation ∆x(m) higher than the second order.

gx+δ̂ = gx + lim
m→+∞

m∑
t=1

H̄x∆x(t) + lim
m→+∞

m∑
t=1

∂

∂x
R2(∆x(t))

= gx + H̄x δ̂ + lim
m→+∞

m∑
t=1

R̃2(∆x(t)).

(41)

Substituting Eq. (40) back to Eq. (41), the gradient gx+δ̂ can be written as

gx+δ̂ = gx + H̄x

(∑
i

exp(βλi)− 1

λi
γivi + ρ̂

)
+ lim
m→+∞

m∑
t=1

R̃2(∆x(t))

=

n∑
i=1

γivi + H̄x
∑
i

exp(βλi)− 1

λi
γivi + H̄xρ̂ + lim

m→+∞

m∑
t=1

R̃2(∆x(t))

=

n∑
i=1

γivi +
∑
i

exp(βλi)− 1

λi
γi(Hxvi) + H̄xρ̂ + lim

m→+∞

m∑
t=1

R̃2(∆x(t))

=

n∑
i=1

γivi +
∑
i

exp(βλi)− 1

λi
γi(λivi) + H̄xρ̂ + lim

m→+∞

m∑
t=1

R̃2(∆x(t))

≈
∑
i

exp(βλi) γivi.

(42)

Based on Lemma 3 in Appendix, we have proven that each dimension of the residual term
H̄xρ̂ + limm→+∞

∑m
t=1 R̃2(∆x(t)) in Eq. (42) is the order of O(1/m). Then, considering the step

number m is infinite, the residual term H̄xρ + limm→+∞
∑m
t=1 R̃2(∆x(t)) is small enough to

be ignored, without hurting the trustworthiness of the analysis of the gradient. Please see
Section B.2 for the detailed analysis.

Hence, Theorem 2 is proven.

B.2 REASON FOR IGNORING THE RESIDUAL TERM IN THEOREM 2

In this subsection, we clarify the reason why the residual term for the perturbation δ̂ in Theorem 2
and the residual term for the gradient gx+δ̂ in Theorem 2 can be ignored.

Reason for ignoring the residual term ρ̂ for the perturbation δ̂ in Theorem 2. According to
Lemma 3 in Appendix, ρ̂i is the order of O(1/m). Since the step number m is infinite, the residual

21

Under review as a conference paper at ICLR 2023

term ρ̂ is small enough to be ignored, without hurting the trustworthiness of the analysis of adversarial
perturbations and adversarial training in Theorems 3, 4, 5, and 6.

Moreover, we have conducted experiments to verify that the residual term ρ̂ made an ignorable
influence on the adversarial perturbation, i.e., checking whether the theoretically derived solution δ̂
well fitted the real perturbation in practice. Table 4 shows that for each network, the solution δ̂ well
fitted the real one. Such a phenomenon successfully verified that the residual term could be ignored,
without hurting the trustworthiness of analyzing the adversarial perturbation. Please see Section J for
details.

Reason for ignoring the residual term H̄xρ̂ + limm→+∞
∑m
t=1 R̃2(∆x(t)) for the gradient gx+δ̂ in

Theorem 2. According to Lemma 3 in Appendix, each dimension in the term H̄xρ̂ is the order of
O(1/m). Moreover,

∑m
t=1 R̃

i
2(∆x(t)) is the order ofm·O(1/m2) = O(1/m). Hence, each dimension in

the residual term H̄xρ̂+limm→+∞
∑m
t=1 R̃2(∆x(t)) for the gradient gx+δ(m) in Theorem 2 is the order

of O(1/m). Since the step number m is infinite, the residual term H̄xρ̂ + limm→+∞
∑m
t=1 R̃2(∆x(t))

is small enough to be ignored, without hurting the trustworthiness of the analysis of the gradient.

22

Under review as a conference paper at ICLR 2023

C DETAILED EXPLANATION FOR REMARK 1

In this section, we consider `2 attacks and `∞ attacks. As two typical attacking methods, the
`2 attack and the `∞ attack usually regularize/normalize the adversarial strength in each step
by applying g

(`2)

x+δ(t)
= ∂

∂x
L(f(x + δ(t)), y)/‖ ∂

∂x
L(f(x + δ(t)), y)‖, and g

(`∞)

x+δ(t)
= sign(∂

∂x
L(f(x +

δ(t)), y)), respectively. In fact, for the `∞ attack, we can roughly consider that only the gra-
dient component oTx g

(`∞)

x+δ(t)
ox disentangled from g

(`∞)

x+δ(t)
along ∂

∂x
L(f(x), y) is effective, where

ox = ∂
∂x
L(f(x), y)/‖ ∂

∂x
L(f(x), y)‖ is the unit vector in the direction of ∂

∂x
L(f(x), y). However,

it is quite complex to analyze the exact attacking behavior. Therefore, in Remark 1, we just nor-
malize the perturbation in Theorem 2 to roughly approximate the regularization/normalization of
perturbations in `2 attacks and `∞ attacks.

Remark 1 (Normalized perturbation of the infinite-step attack). Based on Theorem 2, we ignore
residual terms ρ̂, where ρ̂i is proven to be the order of O(1/m). Then, the perturbation of the infinite-
step `2 attack generated via g(`2)

x+δ(t)
, and the perturbation of the infinite-step `∞ attack generated via

g
(`∞)

x+δ(t)
can be approximated as follows.

δ̂(norm) ≈ C · δ̂/‖δ̂‖ = C ·
∑n

i=1

exp(βλi)− 1

λi
γivi

/√∑n

i=1
(
exp(βλi)− 1

λi
γi)2, (43)

where C ∈ R reflects the total adversarial strength of the `2 attack or the `∞ attack.

• Experimental verification 1 of Remark 1. Although Remark 1 is a brutal approximation of the
`2 attack and `∞ attack, we conducted experiments to verify the trustworthiness of Remark 1, i.e.,
checking whether the approximate perturbation δ̂(norm) in Remark 1 well matched the real perturbation
δ(`2) generated via the `2 attack. To this end, we calculated the cosine similarity cos(δ̂(norm), δ(`2)) to
evaluate the error between the theoretical perturbation δ̂(norm) in Remark 1 and the real perturbation
δ(`2) measured in practice.

Specifically, we learned three types of ReLU networks, including MLPs, CNNs, and MLPs with skip
connections (namely ResMLP), on the MNIST dataset. The specific architectures of these three types
of ReLU networks were introduced in Section J.

Then, based on each network, we followed the setting in (Wu et al., 2020) to generate the adversarial
perturbation δ(`2) via the `2 attack, and set the `2-norm constraint of the adversarial perturbation as
ε = 128/255 for fair comparison.

Table 3 reports the cosine similarity cos(δ̂(norm), δ(`2)) for each network, which was averaged over
40 randomly-selected training samples. We discovered that the cosine similarity cos(δ̂(norm), δ(`2))

approximated to 1, which indicated that the theoretically derived perturbations δ̂(norm) in Remark 1
well matched the real perturbation δ(`2) of the `2 attack. Such a phenomenon successfully verified
trustworthiness of Remark 1.

Table 3: Cosine similarity cos(δ̂(norm), δ(`2)) between the approximate perturbation δ̂(norm) in Remark 1
and the real perturbation δ(`2) of the `2 attack. The cosine similarity cos(δ̂(norm), δ(`2)) approximated
to 1, which successfully verified trustworthiness of Remark 1.

1-layer
MLP

3-layer
MLP

3-layer
ResMLP

3-layer
CNN

cos(δ̂(norm), δ(`2)) 0.999285 0.999995 0.999908 0.999999

23

Under review as a conference paper at ICLR 2023

D PROOF OF ASSUMPTION 2 IN MAIN PAPER

In this section, we prove Assumption 2 in Section 2.2 of the main paper.

Assumption 2 in main paper. The analysis of binary classification based on a sigmoid function,
f(x) = 1

1+exp(−z(x))
, z(x) ∈ R, can also explain the multi-category classification with a softmax

function, f(x) =
exp(z′1)∑c

i=1 exp(z
′
i)
, z′ ∈ Rc, if the second-best category is much stronger than other

categories. In this case, attacks on the multi-category classification can be approximated by attacks
on the binary classification between the best and the second-best categories, i.e., f(x) ≈ 1

1+exp(−z) ,
subject to z = z′1 − z′2 ∈ R. z′1 and z′2 are referred to as network outputs corresponding to the best
category and the second-best category, respectively.

Proof. Given an input sample x and a ReLU network f trained for multi-category classification
based on a softmax function, let z′i ∈ R, 1 ≤ i ≤ c denote the network output of the i-th confident
category, i.e., z′1 > z′2 > · · · > z′c. Then, the probability for the most confident category is given as
follows.

p1 =
exp(z′1)∑c
i=1 exp(z′i)

=
1∑c

i=1 exp(z′i − z′1)
.

(44)

When the second-best category is much stronger than other categories, we have ∀i > 2, exp(z′i −
z′1)� exp(z′2 − z′1) < exp(z′1 − z′1) = 1. In this way, Eq. (44) can be re-written as

p1 =
1∑c

i=1 exp(z′i − z′1)
≈ 1

exp(z′2 − z′1) + 1
=

1

1 + exp(−(z′1 − z′2))
. (45)

Let z = z′1 − z′2 ∈ R, and we have f(x) = p1 ≈ 1
1+exp(−z) . In this way, attacks on the multi-category

classification can be approximated by attacks on the binary classification between the best and the
second-best categories.

Hence, Assumption 2 is proven.

24

Under review as a conference paper at ICLR 2023

E PROOF OF LEMMA 1 IN MAIN PAPER

In this section, we prove Lemma 1 in Section 2.2 of the main paper.

Lemma 1 in main paper. Let us focus on the cross-entropy loss L(f(x), y). If the classification is
based on a softmax operation, then the Hessian matrix Hz = ∂2

∂z∂zT
L(f(x), y) is positive semi-definite.

If the classification is based on a sigmoid operation, the scalar Hz ≥ g2
z ≥ 0, as long as the attacking

has not finished (still z(x) · y > 0, y ∈ {−1,+1}). Here, gz = ∂
∂z
L(f(x), y) ∈ R.

Proof. Let us first consider the classification based on a softmax operation. Given an input sample
x and a ReLU network f , the output of the network can be written as z(x) = f(x) ∈ Rc. In this
case, let pi = exp(zi)/

∑c
k=1 exp (zk) denote the probability that the network f classifies the input

sample x as the i-th category, where zi ∈ R is referred to as the network output of the i-th category.
Then, the cross-entropy loss can be represented as L(f(x), y) = −

∑c
i=1 yi log(pi), where yi ∈ {0, 1}

denotes the label. Here, let i denote the ground-truth label for the input sample x, i.e., yi = 1, and
∀k 6= i, yk = 0. In this way, the gradient of the loss L(f(x), y) w.r.t the network output z(x) ∈ Rc is
given as

gz =
∂L(f(x), y)

∂z(x)
= −yi

pi
· ∂pi
∂z(x)

= − 1

pi
· ∂pi
∂z(x)

. (46)

Let us first focus on the network output zi w.r.t. the ground-truth category i. In this scenario, we have

∂pi
∂zi

=
exp(zi)(

∑c
k=1 exp(zk))− exp(zi) exp(zi)

(
∑c
k=1 exp(zk))2

=
exp(zi)∑c
k=1 exp(zk)

· (1− exp(zi)∑c
k=1 exp(zk)

)

= pi(1− pi) = pi(yi − pi). // yi = 1

(47)

As for zk, k 6= i, we have

∂pi
∂zk

=
− exp(zi) exp(zk)

(
∑c
k′=1 exp(zk′))2

= − exp(zi)∑c
k′=1 exp(zk′)

· exp(zk)∑c
k′=1 exp(zk′)

= −pipk = pi(yk − pk). // yk = 0

(48)

Combining Eq. (46), Eq. (47), and Eq. (48), we have

gz = p− y, (49)

where p = [p1, p2, · · · , pc] ∈ Rc, and y = [y1, y2, · · · , yc] ∈ Rc.

In this way, based on Eq. (49), the Hessian matrix Hz
def
= ∂2

∂z∂zT
L(f(x), y) of the loss w.r.t the network

output z(x) can be written as

Hz =
∂2L(f(x), y)

∂z∂zT
=

∂gz
∂z(x)

=
∂(p− y)

∂z(x)
=

∂p
∂z(x)

.

(50)

According to Eq. (47) and Eq. (48), we have ∂pi
∂zi

= pi(1 − pi) = pi − p2
i , and ∀k 6= i, ∂pi

∂zk
= −pipk.

Then, the Hessian matrix Hz can be re-written as

Hz =
∂p

∂z(x)
= diag([p1, p2, · · · , pc])− ppT . (51)

In order to prove the Hessian matrix Hz is positive semi-define, we need to verify that all eigenvalues
of the Hessian matrix Hz are non-negative. To this end, we use Gershgorin Circle theorem to estimate
the bound of eigenvalues. Specifically, Eq. (51) shows that for the k-th row of the Hessian matrix

25

Under review as a conference paper at ICLR 2023

Hz , the k-th diagonal element of the Hessian matrix Hz is pi(1 − pi), and the sum of absolute
values of non-diagonal elements in the k-th row is

∑c
k′=1,k′ 6=k |pkpk′ | = pk(1 − pk). In this way,

according to Gershgorin Circle theorem, each eigenvalue λ of the Hessian matrix Hz satisfies
0 ≤ λ ≤ maxk 2pk(1 − pk). In other words, all eigenvalues of Hz are non-negative. Hence, the
Hessian matrix Hz is proven to be positive semi-definite.

Moreover, let us focus on the classification based on a sigmoid operation. In this case, the net-
work output z(x) ∈ R is a scalar, and the cross-entropy loss can be represented as L(f(x), y) =

− log exp (z(x)·y)
1+exp(z(x)·y)

, where y ∈ {−1,+1}. Then, the gradient of the loss L(f(x), y) w.r.t the network
output z(x) ∈ R is given as

gz =
∂L(f(x), y)

∂z(x)

= −1 + exp(z(x) · y)

exp(z(x) · y)
· exp(z(x) · y)

(1 + exp(z(x) · y))2
· y

= − y

1 + exp(z(x) · y)
∈ R.

(52)

Based on Eq. (52), Hz
def
= ∂2

∂z∂zT
L(f(x), y) ∈ R of the loss w.r.t the network output z(x) can be written

as
Hz =

∂gz
∂z(x)

= −y · − y exp(z(x) · y)

(1 + exp(z(x) · y))2

=
y2 exp(z(x) · y)

(1 + exp(z(x) · y))2
≥ 0.

(53)

Combining Eq. (52) and Eq. (53), we have

Hz

g2
z

=
y2 exp(z(x) · y)

(1 + exp(z(x) · y))2
· (−1 + exp(z(x) · y)

y
)2 = exp(z(x) · y) (54)

If the attacking has not finished yet, i.e., z(x) · y > 0, then we have exp(z(x) · y) > 1, thereby Hz > g2
z .

Based on Eq. (52), we obtain g2
z = y2/(1 + exp(z · y))2 ∈ R > 0, thereby Hz > g2

z > 0.

Thus, Lemma 1 in main paper is proven.

26

Under review as a conference paper at ICLR 2023

F PROOF OF THEOREM 3

In this section, we prove Theorem 3 in Section 2.2 of the main paper, which explains training effects
of the adversarial perturbation δ̂ in Theorem 2 on adversarial training.

Specifically, if we use vanilla training to fine-tune the network on the original input sample x for
a single step, then the gradient of the loss w.r.t. the weight W is given as gW = ∂

∂W
L(f(x), y). In

comparison, if we train the network on the adversarial example x+ δ̂ for a single step, then we will
get the gradient g(adv)

W = ∂
∂W

L(f(x+ δ̂), y). In this way, ∆gW = g(adv)
W − gW denotes additional effects

of adversarial training on the gradient.

∆gW = g(adv)
W − gW =

∂

∂W
L(f(x+ δ̂), y)− ∂

∂W
L(f(x), y)

= x(H̄h∆h)T + δ̂(gh + H̄h∆h)T .

(55)

∆h = WT δ̂ denotes the change of the intermediate-layer feature h caused by the perturbation δ̂,
where WT = WT

j Σj−1 · · ·Σ2W
T
2 Σ1W

T
1 . For simplicity, we analyze the equivalent weight W for all

the first j linear layers, but actually W has similar behavior as Wj , without hurting the generality of
the analysis. It is because W can be considered as W = WT

j A, where A = Σj−1 · · ·Σ2W
T
2 Σ1W

T
1 . In

this way, the output feature h = WT
j x
′ + bj of the j-th layer can be taken as h = WTx+ b′, where x′

can be roughly considered as x′ ≈ Ax. Hence, using W for analysis will not significantly hurt the
generality of our theorems. gh = ∂

∂h
L(f(x), y) indicates the gradient of the loss w.r.t. the feature h.

The matrix H̄h = g̃hH̄z g̃
T
h , where g̃h = ∂

∂h
z(x) indicates the gradient of the network output z(x) w.r.t.

the feature h. The matrix H̄z = 1∑m−1
t=1 ‖∆x

(t)‖

∑m−1
t=1 ‖∆x

(t)‖H(t)
z is a weighted sum of the Hessian

matrix H(t)
z = ∂2

∂z∂zT
L(f(x+ δ(t)), y).

Proof. According to the chain rule, the gradient of the weight W can be written as gw =
(∂L(f(x),y)

∂WT)T = (∂L(f(x),y)

∂hT
∂h
∂WT)T . Without loss of generality, let us first consider the i-th dimension

of h, i.e. hi = WT
i x ∈ R, which is only related to the i-th row of WT . Thus, the gradient of the

loss w.r.t. WT
i ∈ R1×n is given as

∂L(f(x), y)

∂WT
i

=
∂L(f(x), y)

∂hi

∂hi
∂WT

i

=
∂L(f(x), y)

∂hi
xT . (56)

In this way, combining all dimensions of h, we have

∂L(f(x), y)

∂WT
= [

∂L(f(x), y)

∂WT
1

,
∂L(f(x), y)

∂WT
2

, · · · , ∂L(f(x), y)

∂WT
D

]T

=
∂L(f(x), y)

∂h
xT .

(57)

In other words, the gradient gw of the loss w.r.t the weight W can be represented as

gW = (
∂L(f(x), y)

∂WT
)T = (

∂L(f(x), y)

∂h
xT)T

= x
∂L(f(x), y)

∂hT
= xgTh .

(58)

According to Eq. (58), the gradient g(adv)
W = ∂

∂W
L(f(x + δ̂), y) can be re-written as follows, where

gh+∆h = ∂
∂h+∆h

L(f(x+ δ̂), y).
g(adv)
W = (x+ δ̂)(gh+∆h)T . (59)

Similar to Eq. (19), the gradient of gh+∆h can be re-written as follows.

gh+∆h ≈ gh + H̄h∆h+

m∑
t=1

R̃2(WT∆x(t)). (60)

The matrix H̄h = g̃hH̄z g̃
T
h is used to approximate the gradient gh+∆h, where g̃h = ∂

∂h
z(x)

indicates the gradient of the network output z(x) w.r.t. the feature h. The matrix H̄z =

27

Under review as a conference paper at ICLR 2023

1∑m−1
t=1 ‖∆x

(t)‖

∑m−1
t=1 ‖∆x

(t)‖H(t)
z is a weighted sum of the Hessian matrix H

(t)
z = ∂2

∂z∂zT
L(f(x +

δ(t)), y). R̃2(WT∆x(t)) = ∂
∂h
R̃2(WT∆x(t)), where R2(WT∆x(t)) denotes the terms higher than the

second order in the Taylor expansion.

Substituting Eq. (60) back to Eq. (59), the gradient g(adv)
W can be represented as

g(adv)
W = (x+ δ̂)

(
gh + H̄h∆h+

m∑
t=1

R̃2(WT∆x(t))

)T
. (61)

Thus, the additional effects of adversarial training on the gradient can be written as follows.

∆gW = g(adv)
W − gW

= x(H̄h∆h)T + δ̂(gh + H̄h∆h)T + (x+ δ̂)

(m∑
t=1

R̃2(WT∆x(t))

)T
≈ x(H̄h∆h)T + δ̂(gh + H̄h∆h)T .

(62)

According to Lemma 3 in Appendix, each dimension in the term
∑m
t=1 R2(∆x(t)) is the

order of O(1/m). In this way, the complexity of each dimension in the residual term
(x+ δ̂)

(∑m
t=1 R̃2(WT∆x(t))

)T is the order of O(1/m). Considering the step number m is infinite,
m → +∞, the effects of the residual term (x + δ̂)

(∑m
t=1 R2(WT∆x(t))

)T in Eq. (62) can be
ignored, without affecting the subsequent proofs.

Assumption 3 (in Appendix). Given a ReLU network f , let WT = WT
j Σj−1 · · ·Σ2W

T
2 Σ1W

T
1 ∈

RD×n. Because each column of WTW is a high-dimensional vector, we can roughly consider that
any pair of columns in WTW is linearly dependent. Thus, WTW is a full rank matrix, and there
exists (WTW)−1.

Lemma 4 (in Appendix). Based on Assumption 2 in the main paper, let us focus on the binary
classification based on a sigmoid function. Then, the Hessian matrix H(t)

h = ∂2

∂h∂hT
L(f(x+ δ(t)), y)

and H(t)
x = ∂2

∂x∂xT
L(f(x+ δ(t)), y) can be represented as H(t)

h = H
(t)
z g̃hg̃

T
h and H(t)

x = H
(t)
z g̃xg̃

T
x =

WH
(t)
h WT , respectively. Here, g̃h = ∂

∂h
z(x) indicates the gradient of the network output z(x) w.r.t.

the feature h, and H(t)
z = ∂2

∂z∂zT
L(f(x+ δ(t)), y) ∈ R.

Proof.

H
(t)
h =

∂2L(f(x+ δ(t)), y)

∂h∂hT
=
∂(∂L(f(x+δ(t)),y)

∂z(x)
∂z(x)

∂hT
)T

∂hT

=
(∂z(x)

∂hT
)T

∂hT
· ∂L(f(x+ δ(t)), y)

∂z(x)
+ (

∂z(x)

∂hT
)T ·

∂(∂L(f(x+δ(t)),y)
∂z(x)

)

∂hT

= (
∂z(x)

∂hT
)T
∂2L(f(x+ δ(t)), y)

∂z(x)∂z(x)

∂z(x)

∂hT

= H(t)
z g̃hg̃

T
h . // z ∈ R, H(t)

z ∈ R, according to Assumption 2 in the main paper

(63)

28

Under review as a conference paper at ICLR 2023

Similarly, we have

H(t)
x =

∂2L(f(x+ δ(t)), y)

∂x∂xT
=
∂(∂L(f(x+δ(t)),y)

∂z(x)
∂z(x)

∂xT
)T

∂xT

=
(∂z(x)

∂xT
)T

∂xT
· ∂L(f(x+ δ(t)), y)

∂z(x)
+ (

∂z(x)

∂xT
)T ·

∂(∂L(f(x+δ(t)),y)
∂z(x)

)

∂xT

= (
∂z(x)

∂xT
)T
∂2L(f(x+ δ(t)), y)

∂z(x)∂z(x)

∂z(x)

∂xT

= W̃H(t)
z (W̃)T

= H(t)
z g̃xg̃

T
x . // z ∈ R, H(t)

z ∈ R, according to Assumption 2 in the main paper

(64)

Furthermore, we use the chain rule to re-write the gradient g̃x of the network output z(x) w.r.t the
input sample x.

g̃x = (
∂z(x)

∂xT
)T = (

∂z(x)

∂hT
∂h

∂xT
)T

= (g̃ThW
T)T = Wg̃h.

(65)

In this way, substituting Eq. (65) back to Eq. (64), we get

H(t)
x = H(t)

z g̃xg̃
T
x = H(t)

z Wg̃h(Wg̃h)T = WH
(t)
h WT . (66)

Thus, Lemma 4 in Appendix is proven.

Lemma 5 (in Appendix). Based on Assumption 1, when the loss function is formulated as the
cross-entropy loss, the Hessian matrix H(t)

x is positive semi-definite, which is proven in (Yao et al.,
2018). Moreover, based on Lemma 1, the matrix H̄z is positive semi-definite, so the matrix H̄x is
positive semi-definite, as well.

Proof. Let us first focus on the positive semi-definiteness of the Hessian matrix H(t)
x . According

to Lemma 1, the Hessian matrix H(t)
z is positive semi-definite (proven in Section E). Then, for any

vector a ∈ Rn, we have

aT H(t)
x a = aT W̃ H(t)

z (W̃)Ta // According to Eq. (64).

= (W̃Ta)T H(t)
z (W̃Ta)

≥ 0.

(67)

Moreover, it is because the matrix H̄z = 1∑m−1
t=1 ‖∆x

(t)‖

∑m−1
t=1 ‖∆x

(t)‖H(t)
z is a weighted sum of the

Hessian matrix H(t)
z , where each Hessian matrix H(t)

z is positive semi-definite. Thus, the matrix H̄z
is also positive semi-definite.

In this way, the positive semi-definiteness of the matrix H̄x is proven as follows, where a ∈ Rn is an
arbitrary vector.

aT H̄x a = aT W̃ H̄z (W̃)Ta // According to the definition of the matrix H̄x.

= (W̃Ta)T H̄z (W̃Ta)

≥ 0.

(68)

Thus, Lemma 5 is proven.

29

Under review as a conference paper at ICLR 2023

Lemma 6 (in Appendix). Let g̃x = ∂
∂x
z(x) denote the gradient of the network output z w.r.t the input

sample x, and A = βH̄z‖g̃x‖2 ∈ R. Then, we have

H̄x ∆gW = (eA − 1)H̄xxg
T
h +

1

H̄z‖g̃x‖2
(e2A − eA)H̄xgxg

T
h . (69)

Proof. To prove Lemma 6 in Appendix, we multiply H̄x on both sides of Eq. (55).

H̄x ∆gW = H̄x (g(adv)
W − gW) = H̄x x(Hh∆h)T + H̄x δ̂(gh +Hh∆h)T . (70)

Let us first focus on the first term H̄xx(H̄h∆h)T in Eq. (70). According to Eq. (37) and Lemma 4 in
Appendix, we can write ∆h as follows.

∆h = WT δ̂ ≈ αWT [I + (I + αH̄x) + · · ·+ (I + αH̄x)m−1]gx

= αWT [I + (I + αWH̄hW
T) + · · ·+ (I + αWH̄hW

T)m−1]gx // according to Eq. (66)

= α[WT +WT (I + αWH̄hW
T) + · · ·+WT (I + αWH̄hW

T)m−1]gx.

(71)

As discussed in Section B.2, each dimension in the residual term ρ̂ is the order of O(1/m). Since
the step number m is infinite, m → +∞, the effects of the residual termρ̂ is small enough to
be ignored, without hurting the trustworthiness of the subsequent proof. Thus, we ignore the
residual term ρ̂ in Eq. (37).

Furthermore, to simplify ∆h, we apply the mathematical induction to prove that ∀t, 1 ≤ t ≤
m,WT (I + αWH̄hW

T)t = (I + αWTWH̄h)tWT .

Base case: When t = 1, WT (I + αWH̄hW
T) = (WT + αWTWH̄hW

T) = (I + αWTWH̄h)WT .

Inductive step: For t > 1, assuming WT (I + αWH̄hW
T)t−1 = (I + αWTWH̄h)t−1WT , we have

WT (I + αWH̄hW
T)t = WT (I + αWH̄hW

T)t−1(I + αWH̄hW
T)

= (I + αWTWH̄h)t−1WT (I + αWH̄hW
T)

= (I + αWTWH̄h)t−1(I + αWTWH̄h)WT

= (I + αWTWH̄h)tWT

(72)

Conclusion: Since both the base case and the inductive step have been proven to be true, we obtain
WT (I + αWH̄hW

T)t = (I + αWTWH̄h)tWT .

In this way, we combine Eq. (71) and Eq. (72). The change of the intermediate-layer feature h caused
by the perturbation δ̂ can be represented as

∆h = α[I + (I + αWTWH̄h) + · · ·+ (I + αWTWH̄h)m−1]WT gx. (73)

Multiply (I + αWTWH̄h) on the both sides of Eq. (73), and we get

(I + αWTWH̄h)∆h = α[(I + αWTWH̄h) + · · ·+ (I + αWTWH̄h)m]WT gx. (74)

Then, the difference between Eq. (74) and Eq. (73) is

(I + αWTWH̄h)∆h−∆h = α[(I + αWTWH̄h)m − I]WT gx

⇒ αWTWH̄h∆h = α[(I + αWTWH̄h)m − I]WT gx

⇒WTWH̄h∆h = [(I + αWTWH̄h)m − I]WT gx.

(75)

Therefore, based on Eq. (75), we have

(H̄h∆h)TWTW = (WTWH̄h∆h)T

= ([(I + αWTWH̄h)m − I]WT gx)T

= gTxW [(I + αWTWH̄h)m − I]T

= gThW
TW [(I + αWTWH̄h)m − I]T

= gThW
TW (I + αWTWH̄h)m − gThWTW.

(76)

30

Under review as a conference paper at ICLR 2023

Furthermore, the term gThW
TW (I + αWTWH̄h)m in Eq. (76) can be re-written as

gThW
TW (I + αH̄hW

TW)m = gThW
TW (I + αH̄hW

TW)(I + αH̄hW
TW)m−1

= gTh (WTW + αWTWH̄hW
TW)(I + αH̄hW

TW)m−1

= gTh (I + αWTWH̄h)WTW (I + αH̄hW
TW)m−1

= gTh (I + αWTWH̄h)WTW (I + αH̄hW
TW)(I + αH̄hW

TW)m−2

= gTh (I + αWTWH̄h)(WTW + αWTWH̄hW
TW)(I + αH̄hW

TW)m−2

= gTh (I + αWTWH̄h)2WTW (I + αH̄hW
TW)m−2

· · ·

= gTh (I + αWTWH̄h)mWTW.
(77)

Based on Lemma 4 in Appendix, the term gTh (I + αWTWH̄h)m in Eq. (77) can be simplified as

gTh (I + αWTWH̄h)m = gTh (I + αWTWH̄h)(I + αWTWH̄h)m−1

= gTh (I + αWTWH̄z g̃hg̃
T
h)(I + αWTWH̄h)m−1

= (gTh + α H̄z g̃
T
hW

TWg̃h g
T
h)(I + αWTWH̄h)m−1

= (1 + αB)gTh (I + αWTWH̄h)m−1 // B = H̄z g̃
T
hW

TWg̃h ∈ R

= (1 + αB)gTh (I + αWTWH̄h)(I + αWTWH̄h)m−2

= (1 + αB)gTh (I + αWTWH̄z g̃hg̃
T
h)(I + αWTWH̄h)m−2

= (1 + αB)(gTh + α H̄z g̃
T
hW

TWg̃h g
T
h)(I + αWTWH̄h)m−2

= (1 + αB)2gTh (I + αWTWH̄h)m−2

· · ·

= (1 + αB)mgTh .

(78)

In this way, combining Eq. (78) and Eq. (77), we get

gThW
TW (I + αH̄hW

TW)m = gTh (I + αWTWH̄h)mWTW

= (1 + αB)mgThW
TW.

(79)

Substitute Eq. (79) back to Eq. (76), and we get

(H̄h∆h)TWTW = gThW
TW (I + αWTWH̄h)m − gThWTW

= (1 + αB)mgThW
TW − gThWTW

= [(1 + αB)m − 1]gThW
TW,

(80)

where B = H̄z g̃
T
hW

TWg̃h ∈ R.

According to Assumption 3 in Appendix, there exists (WTW)−1. Hence, multiplying (WTW)−1 on
both sides of Eq. (80), we get

(H̄h∆h)T = [(1 + αB)m − 1]gTh . (81)

Since the adversarial perturbation δ̂ is crafted via the infinite-step attack with the infinitesimal step
size, i.e., m→ +∞, we have

lim
m→+∞

(1 + αB)m = eαmB = eβB. (82)

31

Under review as a conference paper at ICLR 2023

Hence, combining Eq. (65) and Eq. (82), we get

lim
m→+∞

(1 + αB)m = eβB

= eβH̄z g̃
T
hW

TWg̃h

= eβH̄z‖g̃x‖2 = eA,

(83)

where A = eβH̄z‖g̃x‖2 ∈ R.

Multiply H̄xx to both side of Eq. (81), and then the first term H̄xx(H̄h∆h)T in Eq. (70) can be written
as

H̄xx(H̄h∆h)T = lim
m→+∞

[(1 + αB)m − 1]H̄xxg
T
h

= (eA − 1)H̄xxg
T
h .

(84)

Then, let us focus on the second term H̄xδ̂(gh+ H̄h∆h)T in Eq. (70). Based on Eq. (37) and Lemma 4
in Appendix, the second term H̄xδ̂(gh + H̄h∆h)T can be re-written as follows.

H̄xδ̂(gh + H̄h∆h)T

= H̄xα[I + (I + αWH̄hW
T) + · · ·+ (I + αWH̄hW

T)m−1]gx(gh + H̄h∆h)T

= H̄xα[I + (I + αWH̄hW
T) + · · ·+ (I + αWH̄hW

T)m−1]Wgh(gh + H̄h∆h)T .

(85)

As discussed in Section B.2, each dimension of the residual term ρ̂ is the order of O(1/m). Since
the step number m is infinite, m→ +∞, the effects of the residual term ρ̂ is small enough to
be ignored, without hurting the trustworthiness of the subsequent proof. Thus, we ignore the
residual term ρ̂ in Eq. (37).

For simplicity, let S = I+(I+αWH̄hW
T)+· · ·+(I+αWH̄hW

T)m−1. Then, multiply (I+αWH̄hW
T)

to both sides of S, and we get

(I + αWH̄hW
T)S = (I + αWH̄hW

T) + · · ·+ (I + αWH̄hW
T)m

⇒ (I + αWH̄hW
T)S − S = (I + αWH̄hW

T)m − I

⇒ H̄xαS = (I + αWH̄hW
T)m − I. // according to Eq. (66)

(86)

Substituting Eq. (86) back to Eq. (85), we have

H̄xδ̂(gh + H̄h∆h)T = [(I + αWH̄hW
T)m − I]Wgh(gh + H̄h∆h)T . (87)

To simplify Eq. (87), let us first consider the term (I + αWH̄hW
T)m − I. Specifically, we apply

the mathematical induction to derive the term (I + αWH̄hW
T)m − I, and get ∀t, 1 ≤ t ≤ m, (I +

αWH̄hW
T)t − I = 1

B [(1 + αB)t − 1]WH̄hW
T , where B = H̄z g̃

T
hW

TWg̃h ∈ R.

Base case: When t = 1,

(I + αWH̄hW
T)1 − I = αWH̄hW

T

=
1

B
[(1 + αB)1 − 1]WH̄hW

T .
(88)

Inductive step: For t > 1, assuming (I + αWH̄hW
T)t−1 − I = 1

B [(1 + αB)t−1 − 1]WH̄hW
T , we get

(I + αWH̄hW
T)t − I = (I + αWH̄hW

T)t−1(I + αWH̄hW
T)− I

= (I + αWH̄hW
T)t−1 + (I + αWH̄hW

T)t−1αWH̄hW
T − I

=
1

B [(1 + αB)t−1 − 1]WH̄hW
T

+ (I + αWH̄hW
T)t−1αWH̄hW

T .

(89)

32

Under review as a conference paper at ICLR 2023

Since (I + αWH̄hW
T)t−1 − I = 1

B [(1 + αB)t−1 − 1]WH̄hW
T , we obtain (I + αWH̄hW

T)t−1 =
I+ 1

B [(1 +αB)t−1−1]WH̄hW
T . In this way, based on Lemma 4 in Appendix, Eq. (89) can be further

simplified as

(I + αWH̄hW
T)t − I

=
1

B

[
(1 + αB)t−1 − 1

]
WH̄hW

T

+ α

[
I +

1

B [(1 + αB)t−1 − 1]WH̄hW
T

]
WH̄hW

T

=
1

B

[
(1 + αB)t−1 − 1

]
WH̄hW

T

+ α

[
WH̄hW

T +
1

B [(1 + αB)t−1 − 1]WH̄hW
TWH̄hW

T

]

=
1

B

[
(1 + αB)t−1 − 1

]
WH̄hW

T

+ α

[
WH̄hW

T +
1

B [(1 + αB)t−1 − 1]WH̄z g̃hg̃
T
hW

TWH̄z g̃hg̃
T
hW

T

]

=
1

B

[
(1 + αB)t−1 − 1

]
WH̄hW

T

+ α

[
WH̄hW

T +
1

B [(1 + αB)t−1 − 1]BWH̄z g̃hg̃
T
hW

T

]
// B = H̄z g̃

T
hW

TWg̃h ∈ R

=
1

B

[
(1 + αB)t−1 − 1

]
WH̄hW

T + α

[
WH̄hW

T + [(1 + αB)t−1 − 1]WH̄hW
T

]
=

1

B

[
(1 + αB)t−1 − 1 + αB(1 + αB)t−1

]
WH̄hW

T

=
1

B

[
(1 + αB)t − 1

]
WH̄hW

T .

(90)

Conclusion: Since both the base case and the inductive step have been proven, we have

(I + αWH̄hW
T)t − I =

1

B

[
(1 + αB)t − 1

]
WH̄hW

T , (91)

where B = H̄z g̃
T
hW

TWg̃h ∈ R.

Substituting Eq. (91) back to Eq. (87), we have

H̄xδ̂(gh +Hh∆h)T =
1

B
[(1 + αB)m − 1]WH̄hW

TWgh(gh + H̄h∆h)T

=
1

B
[(1 + αB)m − 1]H̄xWgh(gh + H̄h∆h)T

=
1

B
[(1 + αB)m − 1]H̄xgx(gh + H̄h∆h)T // According to Eq. (65)

=
1

B
[(1 + αB)m − 1]H̄xgxg

T
h +

1

B
[(1 + αB)m − 1]H̄xgx(H̄h∆h)T .

(92)

Based on Eq. (81), the term H̄xgx(H̄h∆h)T can be represented as

H̄xgx(H̄h∆h)T = [(1 + αB)m − 1]H̄xgxg
T
h . (93)

33

Under review as a conference paper at ICLR 2023

Combining Eq. (92) and Eq. (93), we have

H̄xδ̂(gh + H̄h∆h)T =
1

B
[(1 + αB)m − 1]H̄xgxg

T
h +

1

B
[(1 + αB)m − 1]H̄xgx(H̄h∆h)T

=
1

B
[(1 + αB)m − 1]H̄xgxg

T
h +

1

B
[(1 + αB)m − 1]2H̄xgxg

T
h

=
1

B
(1 + αB)m[(1 + αB)m − 1]H̄xgxg

T
h .

(94)

Based on Eq. (83), the second term H̄xδ̂(gh + H̄h∆h)T in Eq. (70) can be written as follows,
when the adversarial perturbation δ̂ is generated via the infinite-step attack, m → +∞. Here,
A = eβH̄z‖g̃x‖2 ∈ R, and B = H̄z g̃

T
hW

TWg̃h ∈ R.

H̄xδ̂(gh +Hh∆h)T = lim
m→+∞

1

B
(1 + αB)m[(1 + αB)m − 1]H̄xgxg

T
h

=
1

B
(e2βB − eβB)H̄xgxg

T
h

=
1

H̄z‖g̃x‖2
(e2βH̄z‖g̃x‖2 − eβH̄z‖g̃x‖2)H̄xgxg

T
h

=
1

H̄z‖g̃x‖2
(e2A − eA)H̄xgxg

T
h .

(95)

In this way, combining Eq. (84) and Eq. (95), Eq. (70) can be represented as

H̄x ∆gW = H̄x x(H̄h∆h)T + H̄x δ̂(gh + H̄h∆h)T

= (eA − 1)H̄xxg
T
h +

1

H̄z‖g̃x‖2
(e2A − eA)H̄xgxg

T
h .

(96)

Thus, Lemma 6 in Appendix is proven.

F.1 PROOF OF THEOREM 3

Theorem 3. Based on Assumptions 1 and 2, let us focus on the binary classification based on a
sigmoid function. Then, the effect of the adversarial perturbation δ̂ in Eq. (6) on the change of the
gradient g̃x = ∂z(x)

∂x
is formulated as follows. ∆g̃x = −η∆gW g̃h represents the additional effects

of adversarial training on changing g̃x, because adversarial training makes an additional change
−η∆gW on W 7. In this way, g̃Tx ∆g̃x measures the significance of such additional changes along the
direction of the gradient g̃x.

g̃Tx ∆g̃x = −ηg̃Tx ∆gW g̃h = (eA − 1)g̃Tx ∆g̃(ori)
x − ηg2

z ‖g̃h‖2

H̄z
(e2A − eA), (97)

where g̃h = ∂z(x)
∂h

, A = βH̄z‖g̃x‖2 ∈ R, and η denotes the learning rate to update the weight.
Considering the footnote7, ∆g̃(ori)

x = −ηgW g̃h measures the effects of vanilla training on changing g̃x
in the current back-propagation.

Proof. Based on Lemma 4 in Appendix and Lemma 6 in Appendix, we have

H̄x∆gW = (eA − 1)H̄xxg
T
h +

1

H̄z‖g̃x‖2
(e2A − eA)H̄xgxg

T
h

⇒ H̄z g̃xg̃
T
x ∆gW = (eA − 1)H̄z g̃xg̃

T
x xg

T
h +

1

H̄z‖g̃x‖2
(e2A − eA)H̄z g̃xg̃

T
x gxg

T
h

⇒ g̃xg̃
T
x ∆gW = (eA − 1)g̃xg̃

T
x xg

T
h +

1

H̄z‖g̃x‖2
(e2A − eA)g̃xg̃

T
x gxg

T
h . // H̄z ∈ R

(98)

7It is because adversarial training changes W by−ηg(adv)
W , and vanilla training changes W by−ηgW , η > 0.

34

Under review as a conference paper at ICLR 2023

Multiply g̃Tx and g̃h on both sides of Eq. (98), and we get

g̃Tx g̃xg̃
T
x ∆gW g̃h = (eA − 1)g̃Tx g̃xg̃

T
x xg

T
h g̃h +

1

H̄z‖g̃x‖2
(e2A − eA)g̃Tx g̃xg̃

T
x gxg

T
h g̃h

⇒ g̃Tx g̃xg̃
T
x ∆gW g̃h = (eA − 1)g̃Tx g̃xg̃

T
x gW g̃h +

g2
z

H̄z‖g̃x‖2
(e2A − eA)g̃Tx g̃xg̃

T
x g̃xg̃

T
h g̃h

⇒ g̃Tx ∆gW g̃h = (eA − 1)g̃Tx gW g̃h +
g2
z

H̄z
(e2A − eA)g̃Th g̃h

⇒ g̃Tx ∆gW g̃h = (eA − 1)g̃Tx gW g̃h +
g2
z‖g̃h‖2

H̄z
(e2A − eA)

(99)

Let ∆g̃x = −η∆gW g̃h represent the additional effects of adversarial training on changing g̃x, because
adversarial training makes an additional change −η∆gW on W 7. Let ∆g̃(ori)

x = −ηgW g̃h reflect the
effects of vanilla training on changing g̃x in the current back-propagation, considering the footnote7.
In this way, Eq. (99) can be re-written as

g̃Tx (−η)∆gW g̃h = (eA − 1)g̃Tx (−η)gW g̃h −
ηg2
z ‖g̃h‖2

H̄z
(e2A − eA)

⇒ g̃Tx ∆g̃x = (eA − 1)g̃Tx ∆g̃(ori)
x − ηg2

z ‖g̃h‖2

H̄z
(e2A − eA).

(100)

Thus, Theorem 3 is proven.

35

Under review as a conference paper at ICLR 2023

G PROOF OF THEOREM 4

In this section, we prove Theorem 4 in Section 2.2 of the main paper, which explains training effects
of the adversarial perturbation δ̂ in Theorem 2 on adversarial training.

Theorem 4. Based on Assumptions 1 and 2, let us focus on the binary classification based on
a sigmoid function. Then, we derived the following equation w.r.t. adversarial training based on
perturbations δ̂ in Theorem 2. Considering the footnote7, ∆g̃(adv)

x = −ηg(adv)
W g̃h reflects effects of

adversarial training on changing the gradient g̃x. In this way, g̃Tx ∆g̃(adv)
x represents the significance of

such effects along the direction of the gradient g̃x.

g̃Tx ∆g̃(adv)
x = −ηg̃Tx g(adv)

W g̃h = eAg̃Tx ∆g̃(ori)
x − ηg2

z(e2A − eA)

H̄z
‖g̃h‖2. (101)

Proof. Based on Eq. (55), ∆gW = g(adv)
W − gW , we add g̃Tx gW g̃h on both sides of Eq. (99).

g̃Tx ∆gW g̃h + g̃Tx gW g̃h = (eA − 1)g̃Tx gW g̃h + g̃Tx gW g̃h +
g2
z‖g̃h‖2

H̄z
(e2A − eA)

⇒ g̃Tx (∆gW + gW)g̃h = eAg̃Tx gW g̃h +
g2
z‖g̃h‖2

H̄z
(e2A − eA)

⇒ g̃Tx g
(adv)
W g̃h = eAg̃Tx gW g̃h +

g2
z‖g̃h‖2

H̄z
(e2A − eA).

(102)

Let ∆g̃(adv)
x = −ηg(adv)

W g̃h represent effects of adversarial training on changing the gradient g̃x. Then,
Eq. (102) can be simplified as

g̃Tx (−η)g(adv)
W g̃h = eAg̃Tx (−η)gW g̃h −

ηg2
z ‖g̃h‖2

H̄z
(e2A − eA)

⇒ g̃Tx ∆g̃(adv)
x = eAg̃Tx ∆g̃(ori)

x − ηg2
z ‖g̃h‖2

H̄z
(e2A − eA).

(103)

Thus, Theorem 4 is proven.

36

Under review as a conference paper at ICLR 2023

H PROOF OF THEOREM 5

In this section, we prove Theorem 5 in Section 2.2 of the main paper, which approximately explains
adversarial training based on perturbations of the `2 attack and the `∞ attack.

Specifically, if we use vanilla training to fine-tune the network on the original input sample x for
a single step, then the gradient of the loss w.r.t. the weight W is given as gW = ∂

∂W
L(f(x), y). In

comparison, if we train the network on the adversarial example x+ δ̂(norm) for a single step, then we will
get the gradient g(adv,norm)

W = ∂
∂W

L(f(x + δ̂(norm)), y). In this way, ∆g(norm)
W = g(adv,norm)

W − gW represents
additional effects on the gradient brought by adversarial training, when we use the normalized
perturbation δ̂(norm) in Remark 1 (related to the `2 attack and the `∞ attack).

∆g(norm)
W = g(adv,norm)

W − gW =
∂

∂W
L(f(x+ δ̂(norm)), y)− ∂

∂W
L(f(x), y).

= x(H̄h∆h(norm))T + δ̂(norm)(gh + H̄h∆h(norm))T

= x(
C

‖δ̂‖
H̄h∆h)T +

C · δ̂
‖δ̂‖

(gh +
C

‖δ̂‖
H̄h∆h)T ,

(104)

where ∆h(norm) = WT δ̂(norm) = C

‖δ̂‖W
T δ̂ = C

‖δ̂‖∆h denotes the change of the intermediate-layer feature

h caused by the perturbation δ̂(norm). Here, WT = WT
j Σj−1 · · ·Σ2W

T
2 Σ1W

T
1 . Note that, for simplicity,

we analyze the equivalent weight W for all the first j linear layers, but W actually has similar behavior
as Wj , without hurting the generality of the analysis.

Proof. According to Eq. (58), gW = xgTh , the gradient g(adv,norm)
W = ∂

∂W
L(f(x + δ̂(norm)), y) can be

re-written as follows, where gh+∆h(norm) = ∂
∂h+∆h(norm)L(f(x+ δ̂(norm)), y).

g(adv,norm)
W = (x+ δ̂(norm))(gh+∆h(norm))T . (105)

Similar to Eq. (19), the gradient of gh+∆h(norm) can be re-written as follows.

gh+∆h(norm) ≈ gh + H̄h∆h(norm) +

m∑
t=1

R̃2(
C

‖δ̂‖
·WT∆x(t)). (106)

The matrix H̄h = g̃hH̄z g̃
T
h is used to approximate the gradient gh+∆h(norm) , where g̃h = ∂

∂h
z(x)

indicates the gradient of the network output z(x) w.r.t. the feature h. The matrix H̄z =
1∑m−1

t=1 ‖∆x
(t)‖

∑m−1
t=1 ‖∆x

(t)‖H(t)
z is a weighted sum of the Hessian matrix H

(t)
z = ∂2

∂z∂zT
L(f(x +

δ(t)), y). R̃2(C

‖δ̂‖ ·W
T∆x(t)) = ∂

∂h
R̃2(C

‖δ̂‖ ·W
T∆x(t)), where R2(C

‖δ̂‖ ·W
T∆x(t)) denotes the terms

higher than the second order in the Taylor expansion.

Substituting Eq. (106) back to Eq. (105), the gradient g(adv,norm)
W can be represented as

g(adv,norm)
W = (x+ δ̂(norm))

(
gh + H̄h∆h(norm) +

m∑
t=1

R̃2(
C

‖δ̂‖
·WT∆x(t))

)T
. (107)

Thus, the additional effects of adversarial training on the gradient can be written as follows.

∆g(norm)
W = g(adv,norm)

W − gW

= x(H̄h∆h(norm))T + δ̂(norm)(gh + H̄h∆h(norm))T + (x+ δ̂(norm))

(m∑
t=1

R̃2(
C

‖δ̂‖
·WT∆x(t))

)T
≈ x(H̄h∆h(norm))T + δ̂(norm)(gh + H̄h∆h(norm))T

= x(
C

‖δ̂‖
H̄h∆h)T +

C · δ̂
‖δ̂‖

(gh +
C

‖δ̂‖
H̄h∆h)T .

(108)

According to Lemma 3 in Appendix, each dimension in the term
∑m
t=1 R2(∆x(t)) is the order of

O(1/m). In this way, each dimension in the residual term (x+ δ̂(norm))
(∑m

t=1 R̃2(C

‖δ̂‖ ·W
T∆x(t))

)T
is the order of O(1

m
). Considering the step number m is infinite, m→ +∞, the effects of the

37

Under review as a conference paper at ICLR 2023

residual term (x + δ̂(norm))
(∑m

t=1 R̃2(C

‖δ̂‖ · W
T∆x(t))

)T in Eq. (108) can be ignored, without
affecting the subsequent proofs.

Lemma 7 (in Appendix). Let g̃x = ∂
∂x
z(x) denote the gradient of the network output z w.r.t the input

sample x, and A = βH̄z‖g̃x‖2 ∈ R. Then, we have

H̄x ∆g(norm)
W =

C

‖δ̂‖
(eA − 1)H̄xxg

T
h +

C

‖δ̂‖H̄z‖g̃x‖2
(eA − 1)

[
1 +

C

‖δ̂‖
(eA − 1)

]
H̄xgxg

T
h . (109)

Proof. To prove Lemma 7 in Appendix, we multiply Hx on both sides of Eq. (104).

H̄x ∆g(norm)
W = H̄x (g(adv,norm)

W − gW)

= H̄x x(
C

‖δ̂‖
H̄h∆h)T + H̄x

C · δ̂
‖δ̂‖

(gh +
C

‖δ̂‖
H̄h∆h)T .

(110)

Let us first focus on the first term H̄x x(C

‖δ̂‖ H̄h∆h)T in Eq. (110). Based on Eq. (84), H̄xx(H̄h∆h)T =

(eA − 1)H̄xxg
T
h , we have

H̄xx(
C

‖δ̂‖
H̄h∆h)T =

C

‖δ̂‖
(eA − 1)H̄xxg

T
h . (111)

Then, let us focus on the second term C

‖δ̂‖ H̄xδ̂(gh + C

‖δ̂‖ H̄h∆h)T in Eq. (110). Based on Eq. (37) and

Lemma 4 in Appendix, the second term C

‖δ̂‖ H̄xδ̂(gh + C

‖δ̂‖ H̄h∆h)T can be re-written as follows.

C

‖δ̂‖
H̄xδ̂(gh +

C

‖δ̂‖
H̄h∆h)T

=
C

‖δ̂‖
H̄xα[I + (I + αWH̄hW

T) + · · ·+ (I + αWH̄hW
T)m−1]gx(gh +

C

‖δ̂‖
H̄h∆h)T

=
C

‖δ̂‖
H̄xα[I + (I + αWH̄hW

T) + · · ·+ (I + αWH̄hW
T)m−1]Wgh(gh +

C

‖δ̂‖
H̄h∆h)T .

(112)

As discussed in Section B.2, each dimension of the residual term ρ̂ in Eq. (37) is the order of
O(1/m). Since the step number m is infinite, m → +∞, the effect of the residual term ρ̂ of
Eq. (37) is small enough to be ignored, without hurting the trustworthiness of the subsequent
proof. Thus, we ignore the residual term ρ̂ in Eq. (37).

For simplicity, let S = I + (I + αWH̄hW
T) + · · ·+ (I + αWH̄hW

T)m−1. According to Eq. (86), we
have proven H̄xαS = (I + αWH̄hW

T)m − I. In this way, Eq. (112) can be further simplified as

C

‖δ̂‖
H̄xδ̂(gh +

C

‖δ̂‖
H̄h∆h)T =

C

‖δ̂‖
[
(I + αWH̄hW

T)m − I
]
Wgh(gh +

C

‖δ̂‖
H̄h∆h)T . (113)

38

Under review as a conference paper at ICLR 2023

Moreover, we have proven (I + αWH̄hW
T)m − I = 1

B [(1 + αB)t − 1]WH̄hW
T in Eq. (91), where

B = H̄z g̃
T
hW

TWg̃h ∈ R. In this way, we get
C

‖δ̂‖
H̄xδ̂(gh +

C

‖δ̂‖
H̄h∆h)T

=
C

‖δ̂‖ · B

[
(1 + αB)m − 1

]
WH̄hW

TWgh(gh +
C

‖δ̂‖
H̄h∆h)T

=
C

‖δ̂‖ · B

[
(1 + αB)m − 1

]
H̄xWgh(gh +

C

‖δ̂‖
H̄h∆h)T

=
C

‖δ̂‖ · B

[
(1 + αB)m − 1

]
H̄xgx(gh +

C

‖δ̂‖
H̄h∆h)T // According to Eq. (65)

=
C

‖δ̂‖ · B

[
(1 + αB)m − 1

]
H̄xgxg

T
h

+
C

‖δ̂‖ · B

[
(1 + αB)m − 1

]
H̄xgx(

C

‖δ̂‖
H̄h∆h)T .

(114)

Based on Eq. (81), the term H̄xgx(C

‖δ̂‖ H̄h∆h)T can be represented as

H̄xgx(
C

‖δ̂‖
H̄h∆h)T =

C

‖δ̂‖

[
(1 + αB)m − 1

]
H̄xgxg

T
h . (115)

Combining Eq. (115) and Eq. (114), we have
C

‖δ̂‖
H̄xδ̂(gh +

C

‖δ̂‖
H̄h∆h)T =

C

‖δ̂‖ · B

[
(1 + αB)m − 1

]
H̄xgxg

T
h

+
C

‖δ̂‖ · B

[
(1 + αB)m − 1

]
H̄xgx(

C

‖δ̂‖
H̄h∆h)T

=
C

‖δ̂‖ · B

[
(1 + αB)m − 1

]
H̄xgxg

T
h

+
C2

‖δ̂‖2 · B

[
(1 + αB)m − 1

]2

H̄xgxg
T
h

=
C

‖δ̂‖ · B

[
(1 + αB)m − 1

][
1 +

C

‖δ̂‖
[
(1 + αB)m − 1

]]
H̄xgxg

T
h .

(116)

It is because in Eq. (83), we have proven limm→+∞(1 + αB)m = eA, where A = eβH̄z‖g̃x‖2 ∈ R.
Then, the second term C

‖δ̂‖ H̄xδ̂(gh + C

‖δ̂‖ H̄h∆h)T in Eq. (110) can be further written as follows, when

the adversarial perturbation δ̂ is generated via the infinite-step attack, m→ +∞.
C

‖δ̂‖
H̄xδ̂(gh +

C

‖δ̂‖
H̄h∆h)T

= lim
m→+∞

C

‖δ̂‖ · B

[
(1 + αB)m − 1

][
1 +

C

‖δ̂‖
[
(1 + αB)m − 1

]]
H̄xgxg

T
h

=
C

‖δ̂‖ · B
(eA − 1)

[
1 +

C

‖δ̂‖
(eA − 1)

]
H̄xgxg

T
h

=
C

‖δ̂‖H̄z‖g̃x‖2
(eA − 1)

[
1 +

C

‖δ̂‖
(eA − 1)

]
H̄xgxg

T
h .

(117)

In this way, combining Eq. (111) and Eq. (117), Eq. (110) can be represented as

H̄x ∆g(norm)
W = H̄x x(

C

‖δ̂‖
H̄h∆h)T + H̄x

C · δ̂
‖δ̂‖

(gh +
C

‖δ̂‖
H̄h∆h)T

=
C

‖δ̂‖
(eA − 1)H̄xxg

T
h +

C

‖δ̂‖H̄z‖g̃x‖2
(eA − 1)

[
1 +

C

‖δ̂‖
(eA − 1)

]
H̄xgxg

T
h .

(118)

39

Under review as a conference paper at ICLR 2023

Thus, Lemma 7 in Appendix is proven.

H.1 PROOF OF THEOREM 5

Theorem 5. Based on Assumptions 1 and 2, let us focus on the binary classification based on a
sigmoid function. Then, we derived the following equation w.r.t. adversarial training based on
normalized perturbations δ̂(norm) in Remark 1. Considering the footnote8, ∆g̃(norm)

x = −η∆g(norm)
W g̃h =

−η(g(adv, norm)
W −gW)g̃h represents additional effects of adversarial training on changing g̃x. In this way,

g̃Tx ∆g̃(norm)
x = −ηg̃Tx ∆g(norm)

W g̃h reflects the significance of such additional effects along the direction of
the gradient g̃x.

g̃Tx ∆g̃(norm)
x = C ·

(eA
‖δ̂‖
− 1

‖δ̂‖
)
g̃Tx ∆g̃(ori)

x − C · ηg
2
z ‖g̃h‖2

H̄z

(
eA

‖δ̂‖
− 1

‖δ̂‖
+ C · (e

A

‖δ̂‖
− 1

‖δ̂‖
)2

)
. (119)

Proof. Based on Lemma 4 in Appendix and Lemma 7 in Appendix, we have

H̄x ∆g(norm)
W =

C

‖δ̂‖
(eA − 1)H̄xxg

T
h +

C

‖δ̂‖H̄z‖g̃x‖2
(eA − 1)

[
1 +

C

‖δ̂‖
(eA − 1)

]
H̄xgxg

T
h

⇒ H̄z g̃xg̃
T
x ∆g(norm)

W =
C

‖δ̂‖
(eA − 1)H̄z g̃xg̃

T
x xg

T
h

+
C

‖δ̂‖H̄z‖g̃x‖2
(eA − 1)

[
1 +

C

‖δ̂‖
(eA − 1)

]
H̄z g̃xg̃

T
x gxg

T
h

⇒ g̃xg̃
T
x ∆g(norm)

W =
C

‖δ̂‖
(eA − 1)g̃xg̃

T
x xg

T
h

+
C

‖δ̂‖H̄z‖g̃x‖2
(eA − 1)

[
1 +

C

‖δ̂‖
(eA − 1)

]
g̃xg̃

T
x gxg

T
h . // H̄z ∈ R

(120)

Multiply g̃Tx and g̃h on both sides of Eq. (120), and we get

8It is because adversarial training changes W by−ηg(adv)
W , and vanilla training changes W by−ηgW , η > 0.

40

Under review as a conference paper at ICLR 2023

g̃Tx g̃xg̃
T
x ∆g(norm)

W g̃h =
C

‖δ̂‖
(eA − 1)g̃Tx g̃xg̃

T
x xg

T
h g̃h

+
C

‖δ̂‖H̄z‖g̃x‖2
(eA − 1)

[
1 +

C

‖δ̂‖
(eA − 1)

]
g̃Tx g̃xg̃

T
x gxg

T
h g̃h

⇒ g̃Tx g̃xg̃
T
x ∆g(norm)

W g̃h =
C

‖δ̂‖
(eA − 1)g̃Tx g̃xg̃

T
x gW g̃h

+
Cg2

z

‖δ̂‖H̄z‖g̃x‖2
(eA − 1)

[
1 +

C

‖δ̂‖
(eA − 1)

]
g̃Tx g̃xg̃

T
x g̃xg̃

T
h g̃h

⇒ g̃Tx ∆g(norm)
W g̃h =

C

‖δ̂‖
(eA − 1)g̃Tx gW g̃h

+
Cg2

z

‖δ̂‖H̄z
(eA − 1)

[
1 +

C

‖δ̂‖
(eA − 1)

]
g̃Th g̃h

⇒ g̃Tx ∆g(norm)
W g̃h =

C

‖δ̂‖
(eA − 1)g̃Tx gW g̃h +

Cg2
z‖g̃h‖2

‖δ̂‖H̄z
(eA − 1)

[
1 +

C

‖δ̂‖
(eA − 1)

]

⇒ g̃Tx ∆g(norm)
W g̃h = C ·

(eA
‖δ̂‖
− 1

‖δ̂‖
)
g̃Tx gW g̃h

+ C · g
2
z‖g̃h‖2

H̄z

(
eA

‖δ̂‖
− 1

‖δ̂‖
+ C · (e

A

‖δ̂‖
− 1

‖δ̂‖
)2

)
.

(121)

Let ∆g̃(norm)
x = −η∆g(norm)

W g̃h represent the additional effects of adversarial training on changing g̃x,
considering the footnote1. In this way, Eq. (121) can be re-written as

g̃Tx (−η)∆g(norm)
W g̃h = C ·

(eA
‖δ̂‖
− 1

‖δ̂‖
)
g̃Tx (−η)gW g̃h −

ηg2
z ‖g̃h‖2

H̄z

(
eA

‖δ̂‖
− 1

‖δ̂‖
+ C · (e

A

‖δ̂‖
− 1

‖δ̂‖
)2

)
⇒ g̃Tx ∆g̃(norm)

x = C ·
(eA
‖δ̂‖
− 1

‖δ̂‖
)
g̃Tx ∆g̃(ori)

x − ηg2
z ‖g̃h‖2

H̄z

(
eA

‖δ̂‖
− 1

‖δ̂‖
+ C · (e

A

‖δ̂‖
− 1

‖δ̂‖
)2

)
.

(122)

Thus, Theorem 5 is proven.

H.2 PROOF FOR THE STRENGTH OF THE TRAINING EFFECT g̃Tx ∆g̃(NORM)
x IN THEOREM 5

Given a relatively strong attack, Theorem 2 shows ‖δ̂‖ → exp(β‖g̃x‖2g2
z)/‖gx‖. In this way, we can

ignore the term 1/‖δ̂‖ → 0 in Eq. (12), and prove that the strength of the training effect g̃Tx ∆g̃(norm)
x is

mainly determined by the term exp(A)/‖δ̂‖ ≈ ‖gx‖ · exp(β‖g̃x‖2(H̄z − g2
z)). The proof is as follows.

Proof. Given a relatively strong attack, we can ignore the term 1/‖δ̂‖ → 0 in Eq. (12), because a a
relatively strong adversarial strength β usually makes ‖δ̂‖ → exp(β‖g̃x‖2g2

z)/‖gx‖with an exponential
strength. In this way, Eq. (12) can be re-written as

g̃Tx ∆g̃(norm)
x = C ·

(eA
‖δ̂‖
− 1

‖δ̂‖
)
g̃Tx ∆g̃(ori)

x − ηg2
z ‖g̃h‖2

H̄z

(
eA

‖δ̂‖
− 1

‖δ̂‖
+ C · (e

A

‖δ̂‖
− 1

‖δ̂‖
)2

)
≈ C · e

A

‖δ̂‖
g̃Tx ∆g̃(ori)

x − ηg2
z ‖g̃h‖2

H̄z

(
eA

‖δ̂‖
+ C · (e

A

‖δ̂‖
)2

)

=
eA

‖δ̂‖

[
C · g̃Tx ∆g̃ori

x −
ηg2
z‖g̃h‖2

H̄z

(
1 + C · e

A

‖δ̂‖

)]
.

(123)

41

Under review as a conference paper at ICLR 2023

Thus, g̃Tx ∆g̃(norm)
x is determined by the term eA

‖δ̂‖ . Since the attack is relatively strong, we have

‖δ̂‖ ≈ exp(β‖g̃x‖2g2
z)/‖gx‖. In this case, the term eA

‖δ̂‖ can be represented as

eA

‖δ̂‖
≈ ‖gx‖ exp(A)

exp(β‖g̃x‖2g2
z)

= ‖gx‖ exp

[
β‖g̃x‖2(H̄z − g2

z)

]
.

(124)

Hence, we can consider the strength of the training effect g̃Tx ∆g̃(norm)
x is mainly determined by the term

exp(A)/‖δ̂‖ ≈ ‖gx‖ · exp(β‖g̃x‖2(H̄z − g2
z)).

42

Under review as a conference paper at ICLR 2023

I MORE DISCUSSIONS ABOUT RELATED WORK

In fact, Section 3 has discussed the relationship between our theorems and previous findings of
adversarial training. Here, we further discuss previous related works, although these works did not
all focus on explaining adversarial training. Nevertheless, if this paper is accepted, we will move this
section to the main paper.

Some previous studies (Liu et al., 2020; Kanai et al., 2021; Wu et al., 2020; Yamada et al., 2021;
Yu et al., 2018) considered that the sharp loss landscape w.r.t. network parameters resulted in the
difficulty of adversarial training. Kurakin et al. (2016) demonstrated that label leaking hindered
adversarial training. Tsipras et al. (2019) had proven that compared to vanilla training, adversarial
training relied on robust features and did not use non-robust features for inference, which resulted in
the inferior classification performance. The gradient-masking phenomenon (Papernot et al., 2017;
Athalye et al., 2018; Tramèr et al., 2018) led to a false sense of security in defenses against adversarial
examples. Ilyas et al. (2019) had proven that adversarial examples were attributed to the presence of
highly predictive but non-robust features. Some works (Sinha et al., 2017; Zhang & Wang, 2019b;
Miyato et al., 2018) demonstrated adversarial examples generated in the supervised way usually
corrupted the underlying data structure, which hindered adversarial training (QIAN et al., 2022).

Crucially, it has been discovered that adversarial training usually has a more significant overfitting
problem than vanilla training (Rice et al., 2020). Liu et al. (2021) had proven that the overfitting in
adversarial training was caused by the model’s attempt to fit hard adversarial examples. Chen et al.
(2020) considered that the model overfitted the attacks generated in the early stage of adversarial
training, and failed to generalize to the attacks in the late stage. Stutz et al. (2020) demonstrated
that the overfitting in adversarial training was a result of enforcing high-confidence predictions on
adversarial examples. Schmidt et al. (2018) and Zhai et al. (2019) considered that the significantly
high adversarial data complexity made adversarial training difficult to achieve good generalization
capacity. Rice et al. (2020) used early stopping to reduce overfitting in adversarial training.

Unlike previous studies, this paper analyzes the dynamics of adversarial perturbations, and theoret-
ically explains the difficulty of adversarial training, based on the derived analytic solution. More
crucially, our proof can also provide a theoretical explanation for previous findings/understandings
of adversarial training (Liu et al., 2020; Kanai et al., 2021; Wu et al., 2020; Yamada et al., 2021;
Athalye et al., 2018; Tsipras et al., 2019; Ilyas et al., 2019; Liu et al., 2021; Chen et al., 2020; Rice
et al., 2020) in Section 3.

43

Under review as a conference paper at ICLR 2023

J EXPERIMENTAL VERIFICATION 1 OF THEOREM 2

To verify the correctness of Theorem 2, we conducted experiments to generate adversarial per-
turbations on four types of ReLU networks, and examined whether the derived analytic solu-
tion well fitted the real perturbation measured in practice. Specifically, we calculated the metric
κ = Ex[‖δ∗ − δ̂‖]/Ex[‖δ∗‖] to evaluate the error between the derived analytic solution δ̂ in Theorem 2
and the real perturbation δ∗ measured in experiments. Here, we followed the same scenario in Wu
et al. (2020) to generate adversarial perturbations δ∗ via gradient ascent. Specifically, we set the
step size α = 0.005 to approximately represent the infinite-step attack, i.e., setting m = 200. The
attacking stopped when the `2-norm of adversarial perturbations reached the constraint ε = 128/255
for fair comparison.

To this end, we learned four types of ReLU networks, including MLPs, CNNs, MLPs with skip
connections (namely ResMLP), and CNNs with skip connections (namely ResCNN) on the MNIST
dataset (LeCun et al., 1998) via adversarial training. Here, we followed settings in (Ren et al.,
2022) to construct five different MLPs, which consisted of 1, 2, 3, 4, 5 fully-connected (FC) layers,
respectively. Each FC layer contained 200 neurons. We also built five different CNNs, which consisted
of 1, 2, 3, 4, 5 convolutional layers, respectively, with a FC layer on the top. Each convolutional layer
contained 32 filters. Additionally, we added a skip-connection to each block of a FC layer and a
ReLU layer in the above MLPs to construct different ResMLPs. We also added a skip connection to
each block consisting of a convolutional layer and a ReLU layer in the above CNNs to build different
ResCNNs.

To generate adversarial perturbations, we constructed four baseline attacks. In the first baseline, we
set the loss function to the MSE loss, and controlled the gating states of each ReLU layer in each
step of the adversarial attack to be the same as those corresponding to the original input sample x. In
this way, this baseline attack ignored the residual term ρ̂ in Theorem 2, and neglected changes of
gating states in Assumption 1, thereby being termed attack w/o ρ̂ w/o ∆Σ. For the second baseline
attack, we did not fix the gating states of each ReLU layer, thereby being termed attack w/o ρ̂ For
the third baseline attack, we controlled the gating states of ReLU layer, and set the loss function to
the cross-entropy loss without ignoring the residual term ρ̂, thereby being named as attack w/o ∆Σ.
For the fourth baseline attack, we both set the loss function to the cross-entropy loss and did not fix
the gating states, thereby being named as attack. Then, for each baseline attack, we averaged the
error κ over 40 randomly-selected training samples.

Table 4 reports errors κ computed in four different experimental settings, which were small. Such a
phenomenon indicated that the theoretically derived perturbations δ̂ well fitted the real one, which
successfully verified Theorem 2. In other words, the residual term ρ̂ could be ignored, without hurting
the trustworthiness of analyzing the adversarial perturbation δ̂.

Table 4: The error κ between the derived analytic solution δ̂ in Theorem 2 and the real perturbation
based on different ReLU networks. The error κ based on each network was small, which successfully
verified Theorem 2.

Attacking
methods

1-layer
MLP

2-layer
MLP

3-layer
MLP

4-layer
MLP

5-layer
MLP

3-layer
ResMLP

4-layer
ResMLP

5-layer
ResMLP

Attack w/o ρ̂ w/o ∆Σ 7.9×10−4 1.2 ×10−4 1.5×10−5 3.5 ×10−6 6.6 ×10−7 1.3×10−4 1.5×10−4 1.5×10−4

Attack w/o ρ̂ 7.9×10−4 4.3 ×10−2 6.5 ×10−2 2.8 ×10−2 2.3 ×10−2 4.7 ×10−2 9.0×10−2 7.8×10−2

Attack w/o ∆Σ 3.3×10−4 3.6×10−5 5.1×10−6 1.1×10−6 1.9×10−7 4.2×10−5 3.9×10−5 4.2×10−5

Attack 3.3 ×10−4 2.5×10−2 2.9×10−2 1.4×10−2 2.3×10−2 3.5×10−2 5.9×10−2 6.0×10−2

Attacking
methods

1-layer
CNN

2-layer
CNN

3-layer
CNN

4-layer
CNN

5-layer
CNN

3-layer
ResCNN

4-layer
ResCNN

5-layer
ResCNN

Attack w/o ρ̂ w/o ∆Σ 1.2×10−6 4.5×10−6 3.4×10−7 5.1×10−8 4.7×10−8 1.3×10−5 1.5×10−5 3.7×10−5

Attack w/o ρ̂ 1.5 ×10−1 1.8 ×10−2 3.0 ×10−2 2.8 ×10−2 1.0 ×10−2 9.6 ×10−2 8.3 ×10−2 5.5×10−2

Attack w/o ∆Σ 4.1×10−7 1.5×10−6 1.0×10−7 1.7×10−8 1.4×10−8 4.0×10−6 4.8×10−6 1.2×10−5

Attack 9.3×10−2 1.6×10−2 2.6×10−2 2.3×10−2 1.0×10−2 7.5×10−2 8.4×10−2 4.7×10−2

44

Under review as a conference paper at ICLR 2023

K EXPERIMENTAL VERIFICATION 1 OF THEOREM 3

To verify the correctness of Theorem 3, we conducted experiments to examine whether the derived
training effect well fitted the real effect, based on sixteen adversarially trained ReLU networks
in Section J. Specifically, we calculated the metric κ = Ex[‖φ∗ − φ̂‖/‖φ∗‖] to evaluate the fitting
between the theoretical derivation φ̂ computed using the right side of Eq. (10) and φ∗ = g̃Tx ∆g̃x
measured in experiments, where φ∗ was computed using real measurements of g̃x, η, g(adv)

W , gW , and g̃h
on each ReLU network.

To generate adversarial perturbations, we set the loss function to the MSE loss. Here, we randomly
selected 40 training samples to generate adversarial perturbations. Specifically, we followed the same
scenario in Wu et al. (2020) to generate adversarial perturbations δ∗ via gradient ascent. We set the
step size α = 0.005 to approximately represent the infinite-step attack, i.e., setting m = 200. The
attacking stopped when the `2-norm of adversarial perturbations reached the constraint ε = 128/255
for fair comparison. Considering Theorem 3 was based on the assumption of consistent gating states
in Assumption 1, we measured an additional effect φ′ in experiments by manually forcing gating
states of each ReLU layer in the process of generating adversarial perturbations to be the same as
gating states for the input sample without being perturbed. To this end, we calculated a new error
κ′ = Ex[‖φ′ − φ̂‖/‖φ′‖]. Such a setting well fitted Assumption 1. Table 5 reports errors κ and κ′
computed in two different experimental settings, which both verified the correctness of Theorem 3.
Particularly, the change of gating states was unpredictable, which brought significant instability in
the computation of φ∗ on a few adversarial examples, e.g., causing dividing 0. Thus, we used 90%
samples corresponding to the smallest errors between φ̂ and φ∗ to calculate the metric κ. Experimental
results show that the derived training effect φ∗ still well explained real effects on most adversarial
examples.

Table 5: Experimental verification of Theorem 3 on different adversarially trained ReLU networks.
Both the error κ and the error κ′ are small, which verifies Theorem 3.

1-layer MLP 2-layer MLP 3-layer MLP 4-layer MLP 5-layer MLP 3-layer ResMLP 4-layer ResMLP 5-layer ResMLP

κ 3.4 ×10−3 3.5 ×10−2 2.0 ×10−1 1.7 ×10−1 1.5 ×10−1 6.1 ×10−2 2.8 ×10−1 5.8 ×10−2

κ′ 3.4 ×10−3 3.3 ×10−4 3.9 ×10−5 8.8 ×10−6 1.5 ×10−6 3.7 ×10−4 4.5 ×10−4 4.3 ×10−4

1-layer CNN 2-layer CNN 3-layer CNN 4-layer CNN 5-layer CNN 3-layer ResCNN 4-layer ResCNN 5-layer ResCNN

κ 1.6 ×10−2 1.5 ×10−2 1.3×10−1 2.0×10−1 1.1×10−1 7.4×10−3 1.6×10−1 4.0×10−2

κ′ 2.9 ×10−6 1.1×10−5 8.5×10−7 1.3×10−7 1.2×10−7 3.4×10−5 3.9×10−5 9.0×10−5

45

Under review as a conference paper at ICLR 2023

L DETAILED DISCUSSIONS OF EXPERIMENTAL SETTINGS

• In “experimental verification 2 of Theorem 2", we used SGD with learning rate 0.01, and set
the batch size to 128 to train VGG-11 (Simonyan & Zisserman, 2014), AlexNet (Krizhevsky et al.,
2012), and ResNet-18 (He et al., 2016) on MNIST dataset, respectively. In this way, for each
network architecture, we used the model that was trained for 50 epochs to generate adversarial
perturbations. Specifically, we crafted adversarial perturbations δ̂ in Theorem 2 by the gradient
gx+δ̂(t) = ∂

∂x
L(f(x+ δ̂(t)), y) for 500 steps with the step size α = 1

100
ε = 0.02. We further generated

adversarial perturbations of the `2 attack by g(`2)

x+δ(t)
= ∂

∂x
L(f(x+ δ(t)), y)/‖ ∂

∂x
L(f(x+ δ(t)), y)‖ for

200 steps with the step size α = 1
100

ε = 0.02. Besides, we also crafted adversarial perturbations
of the `∞ attack by applying g

(`∞)

x+δ(t)
= sign(∂

∂x
L(f(x + δ(t)), y)) for 20 steps with the step size

α = 1
100

ε = 0.02. Note that the goal of this experiment was to verify whether the norm of the
gradient ‖gx+δ̂‖, and the norm of the adversarial perturbation ‖δ̂‖ increased with the step number m
in an approximately exponential manner. Hence, we ignored the constraint ‖δ̂‖p < ε of adversarial
perturbations, in order to prevent the analysis from being affected by the constraint ‖δ̂‖p < ε.
Additionally, in this experiment, we randomly selected 100 training samples in the MNIST dataset
for evaluation. Moreover, in subfigure (a) of Fig. 1, we controlled the gating states of each ReLU
layer in each step of the adversarial attack to be the same as those corresponding to the original input
sample x, in order to remove side effects brought by the chaotic gating states. Whereas, in subfigures
(b-e) of Fig. 1, we did not control the gating states of each ReLU layer, which was a more common
setting in adversarial attack.

• In “experimental verification 2 of Theorem 3", we trained VGG-11 and AlexNet on MNIST dataset
against a PGD adversary with 20 steps of the step size 1

10
ε = 0.2. We learned the above networks

using SGD with learning rate 0.01.Then, for each network architecture, we used the model that was
trained for 50 epochs to generate adversarial perturbations. Specifically, the adversarial perturbation
δ̂ for evaluation was generated via the gradient gx+δ̂(t) = ∂

∂x
L(f(x + δ̂(t)), y) for 100 steps with

the step size α = 1
100

ε = 0.02. Here, we still neglected the constraint of adversarial perturbations.
Additionally, in this experiment, we randomly selected 100 training samples in the MNIST dataset
for evaluation.

• In “experimental verification 3 of Theorem 3", we trained VGG-11 and AlexNet on MNIST dataset
against a PGD adversary with 20 steps of the step size 1

10
ε = 0.2. We learned the above networks

using SGD with learning rate 0.01.Then, for each network architecture, we used the model that was
trained for 50 epochs to generate adversarial perturbations. Specifically, the adversarial perturbation
δ̂ for evaluation were generated via the gradient gx+δ̂(t) = ∂

∂x
L(f(x+ δ̂(t)), y) for 100, 150 and 200

steps with the step size α = 1
100

ε = 0.02, respectively. Here, we ignored the constraint of adversarial
perturbations. Additionally, in this experiment, we randomly selected 100 training samples in the
MNIST dataset for evaluation.

• In “experimental verification of Theorem 6", we used SGD with learning rate 0.01, and set the batch
size to 128 to train VGG-11 and AlexNet on MNIST dataset, respectively. Given an input sample x,
we generated adversarial example x+ δ of the `2 attack by g(`2)

x+δ(t)
= ∂

∂x
L(f(x+ δ(t)), y)/‖ ∂

∂x
L(f(x+

δ(t)), y)‖ for 20 steps with the step size α = 1
10
ε = 0.2. To verify Theorem 6, we used the original

input sample x and the corresponding adversarial example x + δ to update the weight Wj in the
j-th layer by the same length ‖∆Wj‖ = ‖∆W (adv)

j ‖ = 0.001. Additionally, in this experiment, we
randomly selected 100 training samples in the MNIST dataset for evaluation.

46

Under review as a conference paper at ICLR 2023

M MORE RESULTS FOR EXPERIMENTAL VERIFICATION 3 OF THEOREM 3

In this section, we conducted additional experiments for “experimental verification of Theorem 3."
Different from “experimental verification of Theorem 3" in Section 2.2 of the main paper, here, we
used the model that was trained for 20 epochs to verify the conclusion that the optimization direction
of adversarial training was dominated by a few input samples with large A = βH̄z‖g̃x‖2 values.

Specifically, let ∆gW = g(adv)
W − gW denote the additional effect of adversarial training on a specific

sample x beyond vanilla training. Then, based on the adversarially trained networks in “experimental
verification 2 of Theorem 3" in Section 2.2, we measured the cosine similarity cos(∆gW ,∆gW)
between the training effect ∆gW on a single adversarial example and the average effect ∆gW =
Ex+δ̂[∆gW] over different adversarial examples.

Fig. 5 demonstrated a similar phenomenon to Fig. 3 in Section 2.2 of the main paper. That is, the
direction of the average effect ∆gW was similar to (dominated by) training effects of a few input
samples with large Â values (the real A calculated in experiments). Thus, the trustworthiness of
Theorem 3 was verified.

0 0.5 1.0 𝒜&

cos	(∆𝑔! ,∆�̅�!)

0.25

0.5

0.0

VGG-11

0.4

0.6

0.2

0.0

cos	(∆𝑔! ,∆�̅�!)
AlexNet

0 0.5 1.0 𝒜&

100-step attack

150-step attack

200-step attack

Figure 5: Average cosine similarity Ex[cos(∆gW |x,∆gW)] between ∆gW and each sample x with a
specific Â value. ∆gW is similar to the direction of ∆gW w.r.t. samples with large Â values.

47

Under review as a conference paper at ICLR 2023

N EVIDENCE FOR THAT ADVERSARIAL TRAINING TENDS TO OSCILLATE IN
THE DIRECTIONS OF A FEW UNCONFIDENT SAMPLES

In this section, we conducted new experiments to verify the conclusion that adversarial training was
more likely to oscillate in the direction of a few unconfident samples.

Specifically, we constructed a synthetic dataset with 5000 samples, 90% of which were confident
samples and 10% of which were unconfident samples. We followed settings in (Wu et al., 2020) to
train a 5-layer MLP on this synthetic dataset against a PGD adversary. To verify that adversarial
training was more likely to oscillate in the directions of a few unconfident samples, we checked
whether the training curve of unconfident samples was more likely to oscillate than the training curve
of confident samples.

Fig. 6 shows the training loss w.r.t. the confident sample and the training loss w.r.t. the unconfident
sample, respectively. We discovered that compared to confident samples, training curves of different
unconfident samples exhibited differently. Such a phenomenon demonstrated that adversarial training
was more likely to oscillate in the directions of a few unconfident samples, which successfully verified
our conclusion.

confident
sample

unconfident
sample

廘ᴩ◽廗䷘ᶅᴩpdf䖃䅇㘫漓
⋮ᷤ䗳㊤㐽廚媹㒆

confident sample

unconfident sample

0 25 50 75 epoch

loss

2

0

Figure 6: The training loss w.r.t. the confident sample and the training loss w.r.t. the unconfident
sample. Adversarial training was more likely to oscillate in the directions of a few unconfident
samples

48

	Introduction
	Explaining adversarial perturbations and adversarial training
	Analysis of adversarial perturbations
	Explaining the difficulty of adversarial training

	Related work: a unified analysis of previous findings in adversarial training
	Conclusion and discussion
	Proof of Theorem 1
	Proof of Theorem 1
	Reason for ignoring the residual term in Theorem 1

	Proof of Theorem 2
	Proof of Theorem 2
	Reason for ignoring the residual term in Theorem 2

	Detailed explanation for Remark 1
	Proof of Assumption 2 in main paper
	Proof of Lemma 1 in main paper
	Proof of Theorem 3
	Proof of Theorem 3

	Proof of Theorem 4
	Proof of Theorem 5
	Proof of Theorem 5
	Proof for the strength of the training effect x T x(norm) in Theorem 5

	More discussions about related work
	Experimental verification 1 of Theorem 2
	Experimental verification 1 of Theorem 3
	Detailed Discussions of experimental settings
	More results for experimental verification 3 of Theorem 3
	Evidence for that adversarial training tends to oscillate in the directions of a few unconfident samples

