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ABSTRACT

We introduce Bootstrap Your Own Noise (BYON), a self-supervised pretrain-
ing framework that unifies denoising diffusion with uncertainty-guided contrastive
learning to enhance both local and global feature representations. BYON forms a
self-reinforcing loop: contrastive learning improves reconstruction quality, and in
turn, improved reconstructions refine feature alignment. A Semantic Uncertainty
Estimation (SUE) module adaptively reweights contrastive updates based on re-
construction quality, while an Image-specific Adaptive Noise (IAN) adaptively
modulates the noise intensity at the image level based on token saliency, perturb-
ing more informative images more strongly. BYON consistently boosts perfor-
mance on image classification, semantic segmentation, object detection, instance
segmentation, and fine-grained visual classification (FGVC) tasks. To ensure re-
producibility, the code is available in the Supplementary material.

1 INTRODUCTION

Self-supervised learning (SSL) is a promising paradigm for pre-training large-scale, data-hungry
deep networks. By exploiting unlabeled datasets, SSL learns robust, transferable representations that
perform strongly on downstream tasks with limited labels. Following the appreciable success of pre-
training Transformers with Masked Language Modeling (MLM) (Radford et al., 2018; Devlin et al.,
2018; Liu et al., 2019; Clark et al., 2020; Raffel et al., 2020) in natural language processing (NLP),
Masked Image Modeling (MIM) (Bao et al., 2022; He et al., 2022; Xie et al., 2022) approaches
to mask and predict the portion of an image have become a dominant self-supervised pre-training
framework in computer vision. The simplicity and effectiveness of MIM have made it a prominent
choice for self-supervised pre-training, showing impressive results in downstream tasks such as
image classification, semantic segmentation, and object detection.

Building upon the success of MIM, recent work explores integrating diffusion models into self-
supervised learning, forming a new paradigm for representation learning. Denoising-based pre-
training (Wei et al., 2023; Zheng et al., 2023) augments MIM with generative denoising to capture
finer local structure beyond masked patch reconstruction. By introducing a progressive denoising
process (Rombach et al., 2022; Ramesh et al., 2021; Saharia et al., 2022), these approaches aim to
enrich feature learning and potentially improve transferability across a wide range of recognition
tasks, including image classification, semantic segmentation, object detection, instance segmenta-
tion, and fine-grained visual classification.

While effective for local feature learning, MIM and diffusion-based pre-training can underutilize
global semantic structure in practice. MIM (Bao et al., 2022; He et al., 2022; Xie et al., 2022)
reconstructs masked regions largely from nearby context, which encourages locality but lacking
global coherence; diffusion-based approaches (Wei et al., 2023; Zheng et al., 2023) progressively
refine high-level visual representations through denoising but lack explicit alignment of global fea-
ture distributions across image instances. As suggested by Fig. 1, attention-distance profiles and
head-diversity measures skew toward shorter ranges with depth, indicating weaker long-range ag-
gregation relative to local cues. Thus, our analyses indicate a tendency toward local bias in the
absence of explicit global alignment objectives.

To mitigate these tendencies, we explore integrating contrastive learning (Oord et al., 2018; Bach-
man et al., 2019; Chen et al., 2020b; He et al., 2020; Grill et al., 2020; Chen & He, 2021) with
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Figure 1: Average attention distance across heads (dots) with respect to layer depth for (a) Masked
Image Modeling (Xie et al., 2022), (b) Denoising-based Pre-training (Wei et al., 2023), and (c) our
proposed method (BYON), all with ViT-B. In (a) and (b), early layers cover a range of distances but
remain biased toward local attention (see the darker average dots). As layer depth increases, they fail
to aggregate information across a broader spatial distribution. BYON shows more varied per-head
behaviors and a more balanced distance distribution across layers, suggesting a better mix of local
and global representation learning.

denoising-based pre-training to strengthen both local and global representations. Contrastive learn-
ing, the dominant paradigm in SSL before the rise of MIM, has been effective at organizing the
global feature space via instance-level discrimination, and, through bootstrapping (Grill et al., 2020),
encourages consistency across views of the same image. These observations suggest that a con-
trastive objective alongside denoising could provide an explicit global alignment signal that com-
plements local reconstruction.

Building on this insight, we propose Bootstrap Your Own Noise (BYON), a self-supervised pre-
training framework that couples contrastive learning with denoising within the MIM setup, boot-
strapping representations from noised inputs. BYON pairs the fine-grained local detail encouraged
by diffusion-style reconstruction with an explicit contrastive objective that aligns instance-level em-
beddings, promoting more coherent global structure. Such global alignment can improve semantic
transfer by stabilizing cross-view invariances and reducing spurious locality. In practice, this lo-
cal–global coupling yields representations better suited to diverse recognition tasks, where preserv-
ing semantic structure is typically paramount.

We further leverage reconstruction uncertainty as a guiding signal to integrate diffusion-based recon-
struction with contrastive learning. Specifically, a Semantic Uncertainty Estimation (SUE) module
quantifies per-image reconstruction accuracy and dynamically reweights the contrastive loss: higher
uncertainty down-weights its contribution to the contrastive learning as it indicates a greater seman-
tic gap between the reconstructed and original features, while lower uncertainty increases it, rein-
forcing learning for well-aligned representations. By leveraging this interaction, our method creates
a self-reinforcing feedback loop where contrastive learning benefits from reliable reconstruction,
and in return, contrastive learning enhances the semantic alignment of diffusion-recovered features,
improving overall representation learning capability.

Lastly, we introduce Image-specific Adaptive Noise (IAN) to enhance the diffusion-based pretrain-
ing process. Unlike prior methods that apply uniform random noise (Wei et al., 2023; Zheng et al.,
2023), IAN adjusts image-level noise intensity based on token saliency: saliency scores are com-
puted per token, and assign stronger noise perturbations to images with more salient tokens. This
biases the model toward informative content by encouraging reconstruction of essential features
during denoising.

Our local–global framework (BYON) yields consistent gains across standard benchmarks (Deng
et al., 2009b; Zhou et al., 2017a; Lin et al., 2014a), covering image classification, seman-
tic segmentation, object detection, and instance segmentation. Relative to diffusion-based pre-
training (Wei et al., 2023; Zheng et al., 2023), BYON improves ImageNet-1K top-1 by accuracy
by 0.9%, semantic segmentation by 1.8%, and detection/instance segmentation by up to 7.5%.
BYON also performs strongly on fine-grained recognition benchmarks (CUB-200-2011 (Wah et al.,
2011), NABirds (Van Horn et al., 2015), iNaturalist 2017 (Van Horn et al., 2017), iNaturalist
2018 (Van Horn et al., 2018), Stanford Cars (Krause et al., 2013), and Aircraft (Maji et al., 2013)),
with gains up to 4.3%. These results indicate that coupling diffusion-style local cues with explicit
global alignment produces more transferable representations.
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Figure 2: Overview of Bootstrap Your Own Noise (BYON). The framework integrates denoising
diffusion models with uncertainty-guided contrastive learning to enhance both local and global fea-
ture representations. BYON consists of three key components: (1) Image-specific Adaptive Noise
(IAN), (2) the Semantic Uncertainty Estimation (SUE) module, and (3) bootstrapping representa-
tions from the diffusion model. This process forms a self-reinforcing feedback loop, where better-
aligned features improve reconstruction, which in turn refines uncertainty estimation and strengthens
contrastive learning.

We summarize our contributions:

• We introduce self-supervised pre-training framework (BYON) that couples diffusion-style
reconstruction with contrastive learning, unifying local and global representation learning
for transfer.

• The Semantic Uncertainty Estimation (SUE) module measures reconstruction reliability as
a guidance signal in self-reinforcing feedback loop.

• We propose Image-specific Adaptive Noise (IAN), which adjusts noise levels per image
based on token saliency scores, prioritizing the reconstruction of critical visual information.

2 RELATED WORK

2.1 CONTRASTIVE LEARNING

Contrastive learning—spanning pairwise and similarity-based objectives (He et al., 2020; Chen
et al., 2020b; Grill et al., 2020)—learns instance-discriminative representations by pulling positives
and pushing negatives. Extensions reduce reliance on explicit negatives via momentum encoders
or stop-gradient (Grill et al., 2020; Chen et al., 2020b). Inspired by this line, BYON bootstraps
diffusion outputs to couple fine-grained local learning (denoising) with uncertainty-guided global
alignment.

2.2 MASKED IMAGE MODELING (MIM)

Inspired by the scalability of MLM in NLP (Devlin et al., 2018; Radford et al., 2018; 2019; Liu et al.,
2019; Brown et al., 2020), MIM learns by predicting missing image content. Early work (Context
Encoder) regressed missing pixels with CNNs (Pathak et al., 2016). With Transformers, attention-
based MIM achieved strong results (Chen et al., 2020a; Dosovitskiy et al., 2020; Bao et al., 2022;
Zhou et al., 2022; He et al., 2022; Xie et al., 2022; Dong et al., 2022); e.g., BEiT uses a DALL·E-
style tokenizer (Bao et al., 2022), iBOT jointly updates it via momentum (Zhou et al., 2022), while
MAE and SimMIM simplify training with lightweight decoders (He et al., 2022; Xie et al., 2022).
Several works combine MIM with contrastive signals (Zhou et al., 2022; Kakogeorgiou et al., 2022;
Li et al., 2021), and recent studies highlight masked tokens’ role in convergence and accuracy (Choi
et al., 2024b; 2025). Our method follows the MIM paradigm but extends it with diffusion-driven
denoising and uncertainty-guided local–global discrimination, aiming to refine fine-grained features
and align global semantics.
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2.3 DENOISING DIFFUSION MODELS (DDMS)

DDMs corrupt and restore signals via iterative noise injection and denoising, yielding rich latent
features useful for fine-grained recognition. Recent work integrates diffusion with SSL by mixing
masking and noising (Wei et al., 2023; Zheng et al., 2023), but adding denoising to MIM alone has
offered limited gains. We propose to bootstrap representations from the denoising process, using
progressive refinement for local detail while coupling it with global semantic alignment, to improve
transferability.

2.4 UNCERTAINTY ESTIMATION

MIM-style regression yields pixel estimates, not distributions, motivating uncertainty signals for
reliability. While variance predictors exist (Lakshminarayanan et al., 2017; Kendall & Gal, 2017),
they add compute. Instead, we exploit the intact image already available in reconstruction: we define
a distance-based proxy for uncertainty between corrupted-patch encodings and the intact target, and
use it in the Semantic Uncertainty Estimation (SUE) module to guide local–global discrimination.

3 METHOD

3.1 OVERALL FRAMEWORK

In this section, we introduce Bootstrap Your Own Noise (BYON), a novel self-supervised learning
framework that integrates denoising diffusion models and uncertainty-guided contrastive learning to
enhance both local and global feature representations. Our method consists of three key components:
Semantic Uncertainty Estimation (SUE), Image-specific Adaptive Noise (IAN), and bootstrapping
representations where the denoising diffusion and contrastive learning are conducted in a comple-
mentary manner.

The overall architecture is illustrated in Fig. 2. A source image Is, consisting of noisy visible
tokens and masked tokens, is generated by applying masking and noise to an original image I .
Here, no corruption is applied to a reference image Ir, i.e., Ir = I . The source and target images
are encoded into full feature maps as well as class tokens. Formally, given encoders Es and Er,
F s = Es(Is), F r = Er(Ir), where F s, F r denote the token-wise feature maps. We also extract the
associated class tokens (global summaries) zs0, z

r
0 ∈ RD: zs0 = CLS(F s), zr0 = CLS(F r). Here, the

reference encoder Er is updated via an exponential moving average (EMA) of the source encoder
Es to maintain stable representation learning. The decoder then takes as inputs the source feature
maps from the source encoder and reconstructs an original image.

BYON bootstraps representations from the denoising process of diffusion models, enforcing global
feature alignment through contrastive learning while its contribution is dynamically reweighted
based on uncertainty of image reconstruction (SUE). This process establishes a self-reinforcing
feedback loop, where improved global alignment enhances image reconstruction, which in turn re-
inforces contrastive learning for global feature alignment. Furthermore, IAN dynamically adjusts
noise levels based on the saliency of an input image I to enhance the diffusion-based pretraining
process.

3.2 SEMANTIC UNCERTAINTY ESTIMATION (SUE)

We first introduce a new method, Semantic Uncertainty Estimation (SUE), which measures the un-
certainty of image reconstruction. Since early epochs exhibit inaccurate reconstruction, bootstrap-
ping latent representations becomes unreliable, making it crucial to assign appropriate importance
to contrastive loss based on the image-level reliability. To this end, the SUE predicts the uncertainty
of the reconstructed image and reweights the contrastive loss.

We define the image-level uncertainty score U based on the divergence between the reconstructed
image Î and the original image I .

U = σ(d(Î , I)), σ(k) =
1− ek

1 + ek
, (1)
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where d represents the L1 distance between two inputs. The obtained uncertainty map U is then
truncated with a threshold τ as

δu =
∑
i

µi/N, µi = (Ui < τ). (2)

N is the number of tokens. We used a fixed value τ = 0.5 for all experiments. Accordingly,
the hard thresholded map µ indicates reliable tokens, which will be used in the following section.
The estimated µ is used to reweight the contrastive loss, ensuring that more reliable reconstructions
contribute more to global feature alignment.

3.3 BOOTSTRAPPING REPRESENTATIONS

3.3.1 GLOBAL CONTRASTIVE LEARNING USING SUE

Figure 3: Global Contrastive Learning. The local and
global discrimination learning is performed using the asym-
metric heads ϕs and ϕr.

To enforce global feature alignment,
we apply contrastive learning be-
tween the classification tokens from
the source and reference views. As
illustrated in Fig. 3, the contrastive
module consists of a source projec-
tion head, a source prediction head,
and a reference projection head, with
only the source encoder and projec-
tion head being updated during train-
ing. Early training stages produce noisy reconstructions, making direct bootstrapping unreliable. To
mitigate this, we estimate uncertainty of image reconstruction and use it to dynamically weight the
contrastive loss. The contrastive loss is reweighted based on the computed uncertainty map µ in
equation 2 as follows:

Lcontrastive = −δu
< ϕs(zs0), ϕ

r(zr0) >

|ϕs(zs0)|2|ϕr(zr0)|2
, (3)

where ϕs is the source projection and prediction heads, while ϕr represent the reference projection
head applied to the classification tokens.

3.3.2 SELF-REINFORCING FEEDBACK LOOP

As illustrated in Fig. 2, the proposed bootstrapping framework forms a self-reinforcing feedback
loop. Specifically, contrastive learning encourages global feature alignment, which in turn enhances
reconstruction quality. The improved reconstruction facilitates more precise uncertainty estimation,
and the refined uncertainty further strengthens contrastive learning. This iterative synergy between
uncertainty-aware representation bootstrapping and contrastive learning enables BYON to learn sta-
ble, transferable global representations, leading to improved performance in downstream tasks.

3.4 IMAGE-SPECIFIC ADAPTIVE NOISE (IAN)

Existing diffusion-based pre-training methods (Wei et al., 2023; Zheng et al., 2023) apply uniform
random noise to images, which often fails to emphasize critical visual information. To address this
limitation, we introduce Image-specific Adaptive Noise (IAN), which dynamically adjusts the noise
level based on the importance of individual input image, which is computed using token saliency
scores. This mechanism assigns stronger perturbations where it matters most, encouraging the model
to prioritize essential features during denoising.

3.4.1 TOKEN SALIENCY SCORE

To determine the importance of each token, we compute token saliency scores using the outgoing
attention weights (Choi et al., 2025) from the self-attention mechanism used in the Transformer.
Given a source input token sequence X ∈ RN×D, the affinity matrix A ∈ RN×N is computed as
A = XXT . Applying the softmax function along each row normalizes the attention scores:

Âi,j =
eAi,j∑
k e

Ai,k
. (4)
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Figure 4: Comparison of noise distribution. Prior diffusion-based pre-training (Wei et al., 2023;
Zheng et al., 2023) applies uniform random noise, yielding unstructured patterns. IAN scales noise
by image-level saliency (from token scores), assigning stronger perturbations to informative images
and biasing reconstruction toward meaningful regions.

The token saliency score S ∈ RN is then obtained by summing the outgoing attention weights
across all tokens:

Sj =
∑
i

Âi,j (5)

where higher values indicate a greater influence on the overall image representation. To introduce
diversity, we apply randomized perturbation to the saliency scores, as S̃j = Sj + U(0, 0.5) where
U(0, 0.5) is sampled from a uniform distribution.

3.4.2 IAN BASED ON TOKEN SALIENCY SCORES

We utilize the saliency scores S̃ to determine the noise level applied to each token. The adaptive
noise level is computed as:

y =
1

N

∑
j

1(S̃j > δ). (6)

t = min(Tmax,max(Tmin, λ · y + dnoise)), (7)

η = ∆η × 1

N

∑
j

S̃j +
1

N

∑
j

N (0, 1). (8)

where saliency-based thresholding y determines how many tokens exceed a given threshold δ.
We set Tmin and Tmax as the minimum and maximum timesteps and draw a stochastic term
dnoise ∼ Uniform(0, 1). A scaling coefficient λ controls how strongly y influences the assigned
timestep t, enabling adaptive scheduling. Adaptive noise level η is scaled according to the normal-
ized saliency score and further perturbed by a small random Gaussian noise term, where ∆η is a
hyperparameter that controls the base noise intensity. This ensures that tokens with higher saliency
receive stronger noise perturbations, forcing the model to focus on reconstructing essential visual
features, as depicted in Fig. 4.

As BYON is built upon the MIM framework, it follows the standard masked image modeling ap-
proach while applying ISN. Thus, BYON applies both token masking and adaptive noise to the
source image before feeding it into the source encoder. Given a source input image Is ∈ RN×D,
we define a binary mask matrix M ∈ {0, 1}N , where Mi = 1 indicates a noisy visible token and
Mi = 0 a masked token for i = 1, ..., N . The final corrupted source token x̃ is then generated by
applying masking and injecting IAN into the input token x as follows:

x̃ =
(√

αt · x+
√
1− αt · η ⊙ ϵ

)
⊙M + θ ⊙ (1−M), (9)

ϵ ∼ N (0, 1). (10)

where N (0, 1) is a standard Gaussian noise function, θ is a learnable masked token embedding, and
η is the saliency-based adaptive noise level. This adaptive noise strategy forces the model to learn
more robust local representations.

3.5 RECONSTRUCTION BY DE-NOISING AND DE-MASKING

The source feature is passed through a lightweight decoder that performs two key reconstruction
processes: de-noising and de-masking. These processes aim to recover the original feature represen-
tations. As shown in Fig. 2, the decoder receives noisy and masked representations and reconstructs
them through the following two functions:

x̂t−1
n = Φdenoise(x

t
n, xm, t) x̂ = Φdemask(xm, xv), (11)
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Figure 5: Self-attention from BYON. We visualized the self-attention of the image classification
token on the last layer. BYON explicitly encodes the local fine-grained semantics altogether with the
global semantics, resulting in favorable performance improvement. For instance, BYON captures
semantics from large instances like reptiles to very fine semantics like spider legs.

where xt
n represents noisy visible tokens at timestep t, xm represents masked tokens, and xv repre-

sents visible (unmasked) tokens.

The denoising process is modeled as a function Φdenoise, which predicts the token representations
x̂t−1
m from their noisy counterparts. This process follows the diffusion model’s iterative refinement,

progressively removing noise while leveraging context from the unmasked tokens. This ensures that
high-frequency details are preserved while gradually refining local structures.

Parallel to the de-noising step, the de-masking process reconstructs masked tokens by utilizing
surrounding visible token embeddings. The function Φdemask predicts the reconstructed representa-
tion x̂. This process enables the model to restore the missing semantic information by leveraging
neighboring token structures.

Total Loss. The overall learning objective is formulated as:

Ltotal = Ldemask + λ · Ldenoise + Lcontrastive (12)

where λ is a loss-balancing hyperparameter that controls the relative importance of denoising loss
in the overall objective. In all experiments, we set λ = 0.1 to maintain consistency.

4 EXPERIMENTS

4.1 COMPARISON METHODS

To ensure a fair comparison, we compare BYON against state-of-the-art denoising-based pre-
training methods (Wei et al., 2023; Zheng et al., 2023) explicitly designed for recognition tasks.
Other recent denoising-based methods (Peebles & Xie, 2023; Gao et al., 2023; Hatamizadeh et al.,
2024) are not designed for recognition tasks and demonstrated substantially lower performance in
preliminary evaluations, making their inclusion neither informative nor relevant to our recognition-
focused pre-training objectives. Furthermore, as BYON builds upon MIM, we additionally bench-
mark against two canonical MIM methods, SimMIM (Xie et al., 2022) and MAE (He et al., 2022),
to assess improvements beyond standard MIM architectures. To ensure the validity of our findings,
all methods are reproduced under identical hardware and training configurations to facilitate
a controlled and unbiased comparison. The baselines have been trained in large cluster resources
that are not available to everyone. Please note that all comparisons used the same setup, with code
available for verification. For methods with publicly available code (Xie et al., 2022; He et al., 2022;
Zheng et al., 2023), we use the official implementations, while for those without (Wei et al., 2023),
we reimplement them based on the original papers. The difference in reproduced performance stems
from hardware differences.

4.2 IMPLEMENTATION DETAILS

All experiments were conducted under identical conditions for a fair analysis, with each method
reimplemented, leading to potential deviations from reported results in original papers. We used
ViT-B (Dosovitskiy et al., 2020) as the backbone and trained all models for 400 epochs on ImageNet-
1K (Deng et al., 2009b) using 4 × A100 GPUs. Following comparison methods (Xie et al., 2022; He
et al., 2022; Wei et al., 2023; Zheng et al., 2023), ImageNet-1K image classification dataset (Deng
et al., 2009a) was used without label information in the pre-training step. Full implementation
details, including code and experimental settings, are provided in the Supplementary material.
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Figure 6: Evaluation on Image Classification, Semantic Segmentation, Object Detection, and
Instance Segmentation. BYON surpasses all baselines across tasks: it attains 83.5% top-1 accuracy
on ImageNet-1K (Deng et al., 2009b), 44.7% mIoU on ADE20K (Zhou et al., 2017a), and 48.5
AP bbox / 48.3% APmask on COCO (Lin et al., 2014a).

Figure 7: Evaluation on Fine-Grained Visual Classification (FGVC). BYON consistently out-
performs all baselines in FGVC tasks, demonstrating its ability to capture both fine-grained local
details and global semantic consistency.

4.3 VISUALIZATION OF ATTENTION MAPS

To better understand how BYON enhances feature learning, we visualize the attention maps of the
model trained with our framework. Fig. 5 presents the input images (top row) and their corre-
sponding attention responses (bottom row). Our method effectively encodes both local fine-grained
semantics and global contextual information, leading to improved representation learning. In align-
ment with Fig. 1, BYON attends to critical regions across various object scales from large instances
like reptiles to fine details such as spider legs, demonstrating its ability to capture rich semantic
structures for enhanced feature alignment and recognition performance.

4.4 EVALUATION ON IMAGE CLASSIFICATION

We fine-tuned our pre-trained model on ImageNet-1K dataset (Deng et al., 2009a) using an AdamW
optimizer for 100 epochs. In Fig. 6, BYON achieves 83.5% top-1 accuracy, outperforming all base-
lines. Compared to MaskDiT (82.8%) and DiffMAE (82.6%), which also leverage diffusion-based
pre-training, BYON demonstrates superior feature learning by effectively integrating local-global
representation learning through uncertainty-guided contrastive learning.

4.5 EVALUATION ON SEMANTIC SEGMENTATION

We fine-tuned the pre-trained model on ADE20K dataset (Zhou et al., 2017b) which consists of 25K
images of 150 semantic categories. The semantic segmentation performance was measured with
mean intersection over union (mIOU) in Fig. 6. BYON attains a 44.7% mIoU, significantly sur-
passing all baselines, with a notable 1.8% absolute improvement over MaskDiT and MAE (42.9%).
This highlights BYON’s ability to transfer more structured representations to dense prediction tasks,
where global contextual understanding is crucial.
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De-noising
(Noised Tokens)

De-masking
(Masked Tokens)

IAN
(w/ Noised Token only) SUE Acc

✓ 80.14
✓ ✓ 82.38
✓ ✓ 82.01

✓ 82.89
✓ ✓ 83.02

✓ ✓ 82.86
✓ ✓ ✓ 83.16
✓ ✓ ✓ 82.84
✓ ✓ ✓ ✓ 83.56

Table 1: Ablation over all component combinations. IAN consistently helps when noised tokens
are used; SUE contributes most with IAN and both tasks; the full model performs best, supporting
local–global coupling with adaptive corruption.

4.6 EVALUATION ON OBJECT DETECTION AND INSTANCE SEGMENTATION

To transfer the pre-trained model to object detection and instance segmentation, we fine-tuned on the
COCO dataset (Lin et al., 2014b) using Mask R-CNN (He et al., 2017). Fig. 6 presents the results in
terms of bounding box AP (AP bbox) and mask AP (APmask). BYON achieves 48.5% AP bbox and
48.3% APmask, outperforming all baselines. Compared to SimMIM (46.8% / 46.6%) and MAE
(46.0% / 41.8%), BYON demonstrates improved transferability, particularly in dense prediction
tasks, where both local and global information are crucial. Moreover, BYON surpasses DiffMAE
(44.9% / 38.4%) and MaskDiT (43.3% / 40.8%), highlighting the benefits of uncertainty-guided
contrastive learning and adaptive noise in enhancing object-centric representations.

4.7 EVALUATION ON FINE-GRAINED VISUAL CLASSIFICATION (FGVC)

To assess the effectiveness of BYON in Fine-Grained Visual Classification (FGVC) tasks, we
evaluate its performance on diverse FGVC benchmarks, including CUB-200-2011 (Wah et al.,
2011), NABirds (Van Horn et al., 2015), iNaturalist 2017 (Van Horn et al., 2017), iNaturalist
2018 (Van Horn et al., 2018), Stanford Cars (Krause et al., 2013), and Aircraft (Maji et al., 2013).

As shown in Fig. 7, BYON demonstrates consistent superiority across all FGVC benchmarks, sug-
gesting that its local-global feature learning strategy plays a crucial role in distinguishing fine-
grained patterns. Notably, DiffMAE (Wei et al., 2023) and MaskDiT (Zheng et al., 2023), which
rely solely on denoising-based pretraining, fail to bridge the gap between generative learning and
discriminative tasks, leading to suboptimal performance. In contrast, BYON effectively leverages
contrastive learning to enforce global feature alignment, allowing it to better separate visually simi-
lar categories while still benefiting from the fine-grained representation learning of diffusion models.
These results highlight that BYON’s balanced approach to local and global representation learning
is particularly well-suited for fine-grained recognition, offering a compelling alternative to existing
pretraining paradigms.

4.8 ABLATION STUDY

We evaluate all component combinations—De-noising (noised tokens), De-masking (masked to-
kens), IAN (saliency-adaptive noise; applicable only with De-noising), and SUE (uncertainty-guided
reweighting). IAN consistently helps whenever noised tokens are present; SUE is most effective
when paired with IAN and both tasks; the full configuration yields the highest accuracy, supporting
a design that couples local (denoising) and global (alignment) signals with adaptive corruption.

5 CONCLUSION

We introduced BYON, a self-supervised framework that integrates diffusion models with
uncertainty-guided contrastive learning. BYON refines feature alignment through a self-reinforcing
loop, leveraging SUE for adaptive contrastive weighting and IAN for saliency-driven noise. Exper-
iments confirm its effectiveness across diverse tasks.
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Appendix

A MULTI-SEED EVALUATION

SimMIM MAE DiffMAE MaskDiT BYON

ImageNet 82.54± 0.15 82.78± 0.20 82.60± 0.33 82.86± 0.05 83.56± 0.16

ADE20K 42.62± 0.16 43.02± 0.12 42.68± 0.48 42.90± 0.11 44.46± 0.21

Table 2: Comparison on ImageNet top-1 (%) and ADE20K mIoU (%). BYON achieves the best
mean ± std in both settings.

We evaluate all methods over five independent runs with different random seeds and report mean
and standard deviation in Tab. 2, thereby assessing both central tendency and run-to-run stability.
On ImageNet, BYON attains 83.56± 0.16, exceeding SimMIM (Xie et al., 2022), MAE (He et al.,
2022), DiffMAE (Wei et al., 2023), and MaskDiT (Zheng et al., 2023). The standard deviation
remains low and comparable to MIM baselines, while DiffMAE exhibits larger variability (±0.33),
indicating reduced stability. On ADE20K, BYON reaches 44.46±0.21, improving over comparison
methods. The gains are more pronounced in segmentation. Taken together, the results indicate
that BYON delivers higher average performance and favorable stability across runs, clarifying its
empirical benefit under a standardized evaluation protocol.

B IMPACT OF LONGER PRE-TRAINING DURATION

Figure 8: Impact of Longer Pre-Training Duration. To further examine the effect of extended
training, we conduct a long 800-epoch pre-training experiment, observing additional improvements.
While BYON benefits from longer training, our results confirm that 400 epochs provide a well-
balanced trade-off between efficiency and performance.

We analyze the effect of pre-training duration by comparing BYON with MAE over different training
epochs, as shown in Fig. 8. We demonstrate that BYON achieves performance comparable to
MAE (He et al., 2022) trained for 800 epochs with just 400 epochs, validating its efficiency in self-
supervised pre-training. This indicates that BYON trained with 400 epochs is sufficient for robust
feature learning across benchmarks. To further examine the effect of extended training, we conduct a
long 800-epoch pre-training experiment, observing additional improvements. While BYON benefits
from longer training, our results confirm that 400 epochs provide a well-balanced trade-off between
efficiency and performance.
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Figure 9: Comparison of whole timestep and top-k timestep visualizations. We present a visu-
alization of different timesteps in the denoising process. The top row illustrates images at various
timesteps ranging from 0 to 1000, showing the progressive corruption of the original image as noise
increases. The bottom row visualizes the top five most frequently selected timesteps in BYON’s
dynamic noise adaptation mechanism.

C ANALYSIS OF DYNAMIC NOISE ADAPTATION

Fig. 9 presents a visualization of different timesteps in the denoising process. The top row illus-
trates images at various timesteps ranging from 0 to 1000, showing the progressive corruption of the
original image as noise increases. The bottom row visualizes the top five most frequently selected
timesteps in BYON’s dynamic noise adaptation mechanism. These timesteps are determined by se-
lecting the highest-ranked values in predefined intervals (e.g., 0–100, 100–200, 200–300), reflecting
the model’s dynamic preference for specific noise levels during training.

Unlike DiffMAE, which relies on a standard diffusion-based reconstruction process, BYON incor-
porates a hybrid masking strategy (Zheng et al., 2023; Choi et al., 2024a), introducing an additional
challenge when reconstructing masked patches at extreme noise levels. To address this, we modify
the diffusion process by reducing the betas values, slowing down the noise diffusion rate. This al-
lows the model to better handle high-noise conditions by ensuring that essential semantic structures
are not excessively degraded. By adopting this noise scheduling, BYON enhances its reconstruc-
tion capability, particularly in handling partially corrupted patches, ultimately improving its feature
learning and transferability across recognition tasks.

D COMPARISON WITH CONTRASTIVE–MIM METHODS

iBOT CMAE BYON

ImageNet 82.03± 0.17 82.89± 0.20 83.56± 0.16

Table 3: Comparison with contrastive-MIM. ImageNet top-1 (%) reported as mean ± std over 5
seeds.

Table 3 compares BYON to representative contrastive–MIM approaches (Zhou et al., 2022; Huang
et al., 2022). Under the same 5-seed protocol, BYON attains 83.56 ± 0.16, surpassing iBOT (Zhou
et al., 2022) (82.03 ± 0.17; +1.53) and CMAE (Huang et al., 2022) (82.89 ± 0.20; +0.67).

The results indicate that adding a contrastive signal benefits not only MIM-style pre-training (e.g.,
iBOT, CMAE) but also our diffusion-enhanced setting. In BYON, contrastive learning supplies an
explicit global alignment objective that complements the local, reconstruction-driven inductive bias
of diffusion. This coupling reduces the tendency toward locality (observed in reconstruction-only
regimes), stabilizes cross-view invariances at the instance level, and yields higher ImageNet top-1
with comparable or lower variance. In other words, contrastive learning acts as a structural prior
on the feature space that is orthogonal to the denoising objective: the former aligns embeddings
across augmentations and instances, while the latter refines fine-grained details via progressive noise
removal.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

E LAMBDA TUNING FOR RECOGNITION

λ=0 λ=0.1 λ=0.5 λ=1

Acc 82.94 83.56 83.28 81.70

Table 4: Lambda tuning for recognition. Recognition accuracy (%) under different λ values.
λ=0.1 provides the best performance.

We sweep λ ∈ {0, 0.1, 0.5, 1} to quantify how strongly the saliency signal should shape the
noise/timestep schedule. Performance peaks at λ=0.1 (Tab. 4). Two trends emerge: (i) moving
from λ=0 to 0.1 adds a mild saliency bias that improves alignment between corruption and infor-
mative content, yielding a clear gain; (ii) larger values (0.5, 1) degrade accuracy—over-emphasizing
saliency leads to overly aggressive perturbations on salient regions and reduces the diversity of train-
ing signals, which harms recognition transfer.

For fairness, we note that MaskDiT (Zheng et al., 2023) originally uses λ=10 for generation.
Because recognition favors conservative corruption (for stable feature transfer), we re-tuned both
MaskDiT and BYON to λ=0.1 in all recognition comparisons. This setting consistently provided
the best accuracy in our protocol.

F KEY COMPONENTS AND COUPLINGS: RELIABILITY-AWARE ALIGNMENT
(CL+SUE) AND SALIENCY-AWARE CORRUPTION (DDM+IAN)

Our framework couples denoising diffusion with contrastive alignment to learn features that are both
locally precise and globally coherent. The ablations (Tab. 1) expose two necessary couplings and
clarify why decoupled variants underperform.

(1) Contrastive Learning (CL) must be reweighted by Semantic Uncertainty Estimation (SUE).

Reconstruction reliability varies across images and training steps. SUE provides a per-sample re-
liability score and reweights the CL objective accordingly. Without SUE, CL treats unreliable re-
constructions as clean positives, injecting label noise into the alignment target and flattening the
instance structure. With SUE, alignment pressure is strong when reconstructions are faithful and
weak when they are uncertain, yielding a reliability-aware global signal. In Tab. 1, adding SUE to
the denoising path improves accuracy over denoising alone; its effect is largest when paired with
IAN and de-masking, indicating that SUE complements, rather than replaces, local reconstruction.

(2) Denoising Diffusion Models (DDM) must be paired with Image-specific Adaptive Noise (IAN).

Denoising is only as instructive as the corruption schedule. Uniform noise produces many easy or
miscalibrated training cases; IAN scales noise by saliency so that corruption preferentially targets
informative content. This increases the fraction of semantically meaningful reconstruction signals
while preserving diversity via stochasticity. In the ablation, DDM+IAN consistently outperforms
DDM alone and boosts joint de-noising+de-masking, demonstrating that adaptive corruption is a
first-order factor in representation quality.

Design implication. The effective unit is not CL or DDM in isolation, but the couples (CL+SUE)
and (DDM+IAN). These couples are orthogonal to the underlying MIM backbone: they can be at-
tached to MAE (He et al., 2022)/SimMIM (Xie et al., 2022)/iBOT (Zhou et al., 2022)-style pipelines
with minimal changes, as evidenced by consistent gains in Tab. 1. In summary, reliability-aware
alignment (CL+SUE) and saliency-aware corruption (DDM+IAN) are the decisive ingredients; to-
gether they convert reconstruction signals into transferable representations by balancing local refine-
ment with stable global alignment.

G REPORT OF FLOPS AND GPU HOURS

Table 5 reports pre-training cost across methods. BYON requires 63.8 GFLOPs and 97 GPU hours,
compared to 45.5 / 84 for DiffMAE and 43.7 / 83 for MaskDiT. Thus, BYON introduces a moderate
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DiffMAE MaskDiT BYON

GFLOPs 45.5 43.7 63.8
GPU Hours 84 83 97

Table 5: Compute comparison. Pre-training cost measured as theoretical GFLOPs per step and
total GPU hours under our setup. BYON incurs higher cost than DiffMAE/MaskDiT due to the
added contrastive/uncertainty pathways.

overhead (40–45% more GFLOPs and 15–17% more wall-clock) relative to diffusion-only baselines,
attributable to the contrastive branch and uncertainty-guided weighting. As shown in the accuracy
tables, this extra compute coincides with higher mean performance while maintaining low variance,
indicating a favorable accuracy–compute trade-off under our standardized protocol.

H EFFECT OF IAN ACROSS MASK RATIOS

Mask Ratio = 50% Mask Ratio = 60% Mask Ratio = 70%

w/o IAN 82.25 82.84 82.77
w/ IAN 83.04 83.56 83.54

Table 6: Effect of IAN across mask ratios. IAN consistently improves recognition accuracy for
50–70% masking.

Table 6 shows that IAN consistently improves performance across masking levels: +0.79 at 50%
(82.25 to 83.04), +0.72 at 60% (82.84 to 83.56), and +0.77 at 70% (82.77 to 83.54). The gains
are stable (0.72–0.79) and insensitive to the masking hyperparameter, indicating that saliency-aware
corruption complements both moderate and aggressive masking. Intuitively, as masked area in-
creases, reconstruction pressure grows; IAN steers noise toward informative content, yielding more
semantically useful denoising signals and thereby tighter transfer performance across ratios.

I COMPARISON WITH OFF-THE-SHELF UNCERTAINTY

We replace SUE with an off-the-shelf uncertainty module, DUQ (Deterministic Uncertainty Quan-
tification), keeping all other settings fixed. DUQ attains 83.02%, below SUE’s 83.56%. DUQ es-
timates uncertainty in a task-agnostic manner, whereas SUE is task-coupled: it measures reliability
with respect to the reconstruction objective that produces the very features used for alignment. This
coupling enables reliability-aware reweighting of the contrastive loss precisely when reconstruc-
tions are faithful and de-emphasizes uncertain cases. In contrast, the DUQ signal is less aligned
with reconstruction fidelity, yielding weaker calibration for the alignment target and smaller gains.
Empirically, SUE provides a stronger global-alignment prior with minimal overhead. In short, for
representation transfer, uncertainty must be tied to the reconstruction task (SUE), rather than esti-
mated in a task-agnostic fashion (DUQ).

J ONE DECODER VS. TWO DECODERS

We compare a single shared decoder (for both de-noising and de-masking) with two separate de-
coders (one per task). Two decoders yield 83.59%, only a +0.03 improvement over the shared-
decoder configuration (83.56%). Splitting decoders increases parameters and compute but offers
limited benefit. The tasks are synergistic at the representation level—sharing a decoder encourages
feature reuse and mitigates overfitting to task-specific idiosyncrasies. With separate decoders, the
added capacity does not translate into materially better transfer, likely because the bottleneck is
upstream (encoder + alignment) rather than in the decoding head. Moreover, a shared decoder en-
forces a mild multi-task regularization, stabilizing training without sacrificing accuracy, since both
branches ultimately solve the same reconstruction task. Thus, given the marginal accuracy gain
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and higher complexity, a single decoder is a more favorable design point for recognition-oriented
pre-training.

K THE USE OF LLMS

LLMs were used only for minor language improvements. They were not involved in the conception
of the research, experiments, analysis, interpretation, or drafting.
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