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ABSTRACT

Artificial Neural Networks (ANNs) are increasingly deployed across diverse do-
mains, often requiring them to generalize beyond their training conditions. This
shift in context frequently leads to performance degradation, a central challenge
in Domain Generalization (DG). While numerous techniques exist to mitigate this
issue (e.g., fine-tuning, activation steering, meta-learning, adversarial training,
normalization-based approaches, and parameter-efficient methods such as prompt
tuning), they are often complex, resource-intensive, and difficult to scale; particu-
larly for large models like Large Language Models (LLMs). In contrast, we intro-
duce CONTXT (Contextual augmentatiOn for Neural feaTure X Transforms): a
simple, intuitive, and elegant method for contextual adaptation. CONTXT works
by augmenting the model’s internal representations with lightweight, contextually
relevant feature modifications through straightforward multiplicative and additive
vector operations. Despite its simplicity, CONTXT significantly improves per-
formance across both discriminative (e.g., classification with ANNs/CNNs) and
generative (e.g., LLMs) tasks. With minimal computational overhead and straight
forward integration, CONTXT layers offer a practical and effective solution to
DG and a variety of problems facing ANNs, demonstrating that strong results
need not come at the cost of complexity. More generally, CONTXT provides a
compact mechanism to manipulate information flow and steer ANN processing in
a desired direction without retraining the network.

1 INTRODUCTION

Artificial neural networks now power image, speech, recommendation, and text systems, but as they
scale into products their failure modes become increasingly evident. A key problem is domain gen-
eralization (DG): models trained in one context often lose performance when evaluated in another,
a family of issues that also includes distribution shift, out-of-distribution (OOD) generalization,
spurious correlations, and context misalignment. In practice, teams frequently need a classifier to
work in an unseen domain or a generator to produce context-appropriate outputs. The root cause is
a train–deploy mismatch: models optimize for the training context and then encounter a different
context at test time (e.g., wildlife classifiers that rely on background water vs. land; a skin-lesion
detector tuned to one hospital’s devices and demographics that is rolled out at another). Large lan-
guage models show the same fragility, over-relying on training data, prompts, system instructions, or
retrieved passages and failing when the task shifts unless those contexts are updated. These realities
call for methods that handle contextual shifts effectively while remaining simple to implement and
interpret.

At a broader level, this exposes a core limitation of current ANNs: adding new knowledge or context
typically requires fine-tuning or full retraining on new data. Fine-tuning risks catastrophic forgetting
(French, 1999; Hayes et al., 2021; Luo et al., 2024), and retraining large models — especially LLMs
— is costly and inefficient. Since 2012, state-of-the-art training compute has doubled about every
3.4 months (roughly 10× per year), outpacing Moore’s law (OpenAI, 2018; Sevilla et al., 2022)
and driving an unsustainable long-term increase in energy and water use. In stark contrast, the
brain can generalize from few examples and adapt to context without “retraining” its knowledge
base (Davidson et al., 2016; Javadi et al., 2015; O’Donnell & Sejnowski, 2014; Stickgold & Walker,
2013; Kumaran & McClelland, 2012). Current evidence suggests that the brain uses top-down
feedback to steer information flow, keeping core knowledge stable while flexibly reweighting its use
according to the current situation and context.
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Examples of DG and contextual sensitivity. In vision, classic DG benchmarks reveal brittleness
across style, texture, and environment: PACS (Photo, Art, Cartoon, Sketch) (Li et al., 2017), Office-
home (Venkateswara et al., 2017), Terra Incognita (Beery et al., 2018), and the WILDS benchmark
suite (Koh et al., 2021). For LLMs, small changes in instructions or retrieved context can alter output
style, safety posture, and the depth of reasoning. Careful prompts can get LLMs to spew toxic or
hateful speech, as seen in HarmBench (Mazeika et al., 2024). Given adversarial context, LLM can
be jail broken to perform undesirable tasks, including behaviors models were explicitly trained to
avoid (Chao et al., 2024).

Existing approaches and their practical limitations. A vast literature addresses DG via multiple
strategies. Representative families include: (i) data-centric augmentation and style randomization
(AugMix, RandAugment, Stylized-ImageNet) (Hendrycks et al., 2019; Cubuk et al., 2020; Geirhos
et al., 2019); (ii) representation alignment and invariance penalties (Deep CORAL, MMD-based
methods, domain-adversarial training) (Sun & Saenko, 2016; Li et al., 2018; Ganin et al., 2016);
and (iii) objective- and test-time adaptations that target worst-case or online shifts (GroupDRO/REx,
TENT, test-time BN) (Sagawa et al., 2020; Krueger et al., 2021; Wang et al., 2021; Schneider et al.,
2020). These approaches can be effective, but many require extensive engineering, extra models
or training, or fragile test-time optimization—constraints that impede deployment in resource- or
latency-constrained settings.

Activation-engineering and steering methods offer a low-cost alternative by directly manipulating
internal activations to bias outputs (Turner et al., 2023b; Cheng et al., 2024; Panickssery et al.,
2023). While intuitive, these techniques commonly rely on token-level offsets or paired prompts
and therefore assume clean opposites for concepts and precise alignment with the token stream; this
makes them brittle for abstract concepts, sensitive to tokenization/length mismatches, and prone to
losing effect in long generations. Other approaches leverage light weight bias injection (Subramani
et al., 2022), however they require training with backpropagation before inference. These practical
limits motivate a token-agnostic, minimal-overhead steering mechanism that is robust across tasks
and architectures.

The brain as a guide to context. Biological systems routinely handle shifts in context. Humans
recognize a chair whether it is photographed, sketched, or described verbally; we adapt to new
lighting or furniture, and switch conversational registers from technical to casual without explicit
retraining. The prefrontal cortex (PFC) serves as the brain’s primary context controller: it tracks
goals and rules, anticipates what will be relevant, and sends feedback to sensory and association
areas so task-aligned signals are amplified and distractions are suppressed (Miller & Cohen, 2001;
Desimone & Duncan, 1995; Gilbert & Sigman, 2007; Buschman & Miller, 2007). Through fast
loops with the thalamus and higher sensory regions, the PFC can quickly re-interpret the same
input when the task or situation changes - no new learning required (Halassa & Kastner, 2017;
Schmitt et al., 2017; Stokes, 2015). The method introduced in this work mirrors this principle with
a lightweight, top-down adjustment to internal features of ANNs.

Our contribution: a brain-inspired indexing approach. We introduce CONTXT (Contextual
augmentatiOn for Neural feaTure X Transforms ) - a simple, lightweight mechanism for contextual
adaptation that can be applied to many common layer and architecture types. Conceptually, a CON-
TXT layer combines current feature representations with previously saved context specific feature
representations to create an index vector. This index vector is then used to directly augment the
current features through straightforward multiplicative and additive operations, allowing the layer to
steer processing based on the active context.

Because CONTXT operates on internal representations rather than model weights, it is parameter-
and compute-efficient and integrates easily into existing networks. In practice, CONTXT can im-
prove classification by removing or downweighting unfamiliar contextual cues and injecting familiar
ones, and it can bias generative models toward context-appropriate outputs without retraining or ex-
plicit prompt engineering. This idea builds on a familiar property of learned embeddings - e.g.,
”king − man + woman ≈ queen” (Mikolov et al., 2013) - but few methods turn that vector arith-
metic into practical tools. CONTXT does this by building compact context vectors and applying
simple multiplicative and additive edits to the features.
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Compared with retraining or domain-specific fine-tuning, CONTXT is far simpler and cheaper: it
requires only two forward passes (context and input) and lightweight vector arithmetic. Unlike other
activation-steering methods that depend on token-level alignment or backpropagation during genera-
tion (Turner et al., 2023a; Zou et al., 2023; Dathathri et al., 2020), CONTXT uses a single contextual
feature representation and a scalar weight to modify across tokens. It demands minimal engineering,
scales across deployment settings, and can be toggled on or off at negligible cost—while remaining
straightforward to understand, compute, and apply, yet still yielding substantial performance gains.

To our knowledge, CONTXT is among the first activation-steering methods shown to improve out-
of-domain classification while also steering LLMs to produce context-aligned content.

Main contributions This work (i) motivates simple, practical DG solutions; (ii) introduces CON-
TXT, a brain-inspired technique for context-dependent feature augmentation at inference; (iii) show
OOD classification gains; and (iv) steer generative models (e.g., LLMs) toward desired contexts
without retraining or heavy prompting.

2 METHODS

Contextual augmentation for Neural feature X Transforms (CONTXT) modifies intermediate
network features to inject or remove contextual information, thereby altering model behavior without
retraining. In classification, CONTXT can improve performance under domain shift (e.g., adapting
an urban-trained classifier to beach scenes by reducing “beach” context and increasing “urban”
context). In generative models, CONTXT can steer outputs toward a desired domain. For LLMs,
CONTXT can impart sentiment or high-level concepts without changing the prompt.

Operation. Let hℓ(x) ∈ Rd denote the feature representation of input x at layer ℓ. For a context κ,
we precompute a context vector cℓ,κ at the same layer—either the feature of a representative sample
or the mean feature over samples exhibiting κ. Given hℓ(x) and cℓ,κ, we form a CONTXT index

dℓ,κ(x) = cℓ,κ − hℓ(x) (Figure 1a).

We then apply a scalar weight α ∈ R and update the features by

h̃ℓ(x) = hℓ(x) + αdℓ,κ(x) (Figure 1b).

Positive α injects the context κ; negative α removes it. CONTXT naturally supports multiple (j)
contexts:

h̃ℓ(x) = hℓ(x) +
∑
j

αjdℓ,κj
(x) (Figure 1c).

(a) Index Computation (b) Index Application (c) Multi Index Application

Figure 1: CONTXT: Contextual augmentation via feature transforms. (a) At a chosen layer,
compare the current feature vector h to a precomputed contextual feature representation c to form
a simple ”index” (their difference) d = c − h. (b) Add a scaled version of this index, αd, to the
features; α > 0 injects the context while α < 0 removes it. (c) Mix multiple contexts by linearly
combining indices with separate scalars, e.g. αidi + αjdj .
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In practice, α (or {αj}) is the only hyperparameter per index and can be selected via a small sweep
or learned by gradient descent on a validation objective prior to deployment.

Architectural scope. For Feed-forward ANNs, CONTXT can be applied at any layer. For LLMs,
we take cℓ,κ to be the last-token hidden state of a short phrase that expresses the target context. The
same context cℓ,κ can be used to create and apply indexes for all tokens in the sequence at layer ℓ.

Computation and caching. CONTXT uses one forward pass for hℓ(x) and one per context for
cℓ,κ (cacheable). At run time, with cached contexts, it adds only simple per-layer vector operations,
incurring negligible latency.

3 RESULTS

ANN feature spaces can exhibit strikingly linear, human-interpretable structure; famously, king −
man + woman ≈ queen (Mikolov et al., 2013). Despite the ubiquity of this intuition, it has been
under-utilized for improving downstream performance. A handful of works leverage linear direc-
tions to steer generative models (Turner et al., 2023b; Cheng et al., 2024; Subramani et al., 2022;
Panickssery et al., 2023), but these approaches are often specialized or cumbersome, and comparable
solutions for classification are largely absent. We introduce CONTXT, a simple, model-agnostic
procedure that operates directly in feature space: at a chosen layer, we compute the difference be-
tween the current features and a precomputed context vector, scale this index by a weight, and add
it back to the original features thereby literally shifting the representation toward or away from the
specified context. Crucially, it applies without modification to both discriminative classifiers and
generative models (including LLMs). We first evaluate CONTXT in depth on image classification,
then demonstrate its breadth on generative models and LLMs.

3.1 IMAGE CLASSIFICATION

3.1.1 MOTIVATING EXAMPLE

To illustrate the intuition behind CONTXT, we begin with a simple ImageNet case study using a
standard VGG19 (Simonyan & Zisserman, 2014) classifier pretrained on ImageNet. We select an
out-of-distribution (OOD) image of a cow on a beach (rather than the canonical pastoral or farm
setting) and construct two semantic contexts: farm (the “correct” contextual prior for a cow) and
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Figure 2: (a) Images of input along with contextual examples. (b/c) The vertical axis reports the
model’s maximum softmax confidence; the horizontal axis sweeps the strength of the farm/city in-
dex; each subplot corresponds to a different fixed level of beach context removal (increasing from
top to bottom, strength annotated above each panel). Text above the curve indicates the top-1 pre-
dicted class at that setting (α = 0 means no context is injected or removed). Correct CONTXT
application results in proper classification.
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beach (the spurious context present in the image) (example images in Figure 2 (a)). For each con-
text, we form a context vector by averaging intermediate feature representations over a small set of
representative images. We then apply the CONTXT approach pushing the feature representations
toward the farm context and away from the beach context with varying magnitudes.

Figure 2 (b-c) summarizes the resulting behavior. The vertical axis reports the model’s maximum
softmax confidence; the horizontal axis sweeps the strength of the farm (correct context) index; each
subplot corresponds to a different fixed level of beach (incorrect context) removal (increasing from
top to bottom, strength annotated above each panel). Text above the curve indicates the top-1 pre-
dicted class at that setting (α = 0 means no context is injected or removed). Without any indexing
(Figure 2(b), top panel, left), the model confidently predicts an incorrect class (French bulldog). As
we gradually increase the farm index, the top-1 class briefly flips to the correct label (ox) but only at
a narrow range of magnitudes and with low confidence (Figure 2(b), top panel, middle). Excessive
indexing (Figure 2(b), top panel, right) overshoots and yields new errors, namely the contextual in-
dex takes over the representation and the model predicts related contextual label of barn. Critically,
as we simultaneously subtract the spurious beach context (Figure 2(b), bottom panel), the region
of index strengths that produce the correct class widens, and the associated confidence increases.
Thus, even a single well-chosen CONTXT can rescue an OOD prediction, while combining a “pos-
itive” (farm) and a “negative” (beach) context acts synergistically—expanding the basin of effective
parameters, simplifying parameter tuning and improving confidence.

To test sensitivity to misspecified context, we repeat the procedure with an intentionally irrelevant
context constructed from urban–industrial scenes . Starting again from the erroneous French bull-
dog prediction, increasing the magnitude of this mismatched index never yields the correct label
(Figure 2(c), top panel). When the injections of the misspecified city context combined with the
removal of the spurious beach context, the model is stull unable to obtain the correct classification
(Figure 2(c), bottom panel). This aligns with intuition: injecting the wrong contextual direction per-
turbs features away from the desired manifold of activations representing a correct semantic context
and does not correct the classification.

Together, these examples demonstrate that (i) CONTXT can improve OOD classification by linearly
steering internal representations, (ii) complementary addition and removal of contexts can act jointly
to stabilize the desired prediction, and (iii) the method is appropriately sensitive to the semantic
relevance of the chosen context vectors.

3.1.2 CONTEXT WITH PACS AND CCT

To assess the generality of CONTXT beyond illustrative examples, we adopted a controlled do-
main–generalization protocol using the PACS (Li et al., 2017) and CCT (Beery et al., 2018) datasets.
We fixed a pretrained VGG19 backbone and attached a naive FF head (input + 3 layers) trained from
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Figure 3: Baseline accuracy for the CCT (a) and PACS (b) models. Models were trained on a single
domain (Location 38 / Photo), performance on the training domain is highest while accuracy quickly
degrades when tested in other domains.
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scratch. Models were trained on a single (largest) source domain (Location 38 for CCT or the Real
domain for PACS) without exposure to any other domains during training, and then evaluated across
all domains. Baseline accuracies for this train–test mismatch are reported in Figure 3. As expected,
performance is strongest in-domain and degrades sharply under distribution shift, providing a clean
and challenging setting in which to quantify how much CONTXT can recover accuracy by steering
intermediate representations at test time.

To implement CONTXT, two contextual references were utilized. The injected (in-domain) con-
text vector comprised of the average feature representation across all training domain samples. The
removed context (out-of-domain) vector was computed by averaging features over a held-out val-
idation split from the test domain; this split was fixed in advance, shared no images with the test
set, and was used solely to construct the context vector (i.e., no label leakage). These indexes were
applied after the first hidden layer’s ReLU activation.

3.1.3 IN-DOMAIN INJECTION VS. OOD REMOVAL: RELATIVE CONTRIBUTIONS

To characterize how CONTXT modulates accuracy, we performed a two-parameter sweep over the
strengths of in-domain injection and out-of-domain (OOD) removal. Figures 4(a,b) visualize the
resulting accuracy landscape as heatmaps. Here, the vertical / horizontal axis correspond to the out-
of-domain removal / in-domain injections strength and color denotes average test set performance
across all domains (both trained and untrained). The landscape is intuitively and similarly struc-
tured, there are broad regions that exhibit clear improvement and others of degradation, with peak
improvements reaching about 10% across domains (Figure 4(a,b)).

Closer inspection reveals three regimes. First, along the horizontal axis where only the in-domain
context is injected (zero removal), average performance changes little with low manganites but
grows to significantly hurt performance at high magnitudes (bottom rows of Figures 4(a,b)). Al-
though adding semantically relevant context seems beneficial in principle, Figure 2 showed that
recovering the correct prediction often requires a finely tuned index weight when only adding in-
domain context (as done here along the horizontal axis). Because the optimal coefficient can vary
from image to image, a single global setting can help some examples while hurting others; when
averaged dataset-wide, we observe the net performance change to be small or negative.

Second, along the vertical axis where only OOD context is removed (zero injection), performance
improves monotonically but modestly (left columns of Figure 4 panels (a,b)). This suggests that
subtracting spurious context acts as a “safe” operation: it rarely harms accuracy, yet by itself it
delivers only incremental gains.

Third, and most importantly, the best results arise when both operations are applied together: inject-
ing the in-domain while simultaneously removing the OOD contextual information. This combined
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Figure 4: Accuracy heatmaps for CCT (a) and PACS (b). Vertical axis: out-of-domain removal
strength; horizontal axis: in-domain injection strength. Color encodes mean test accuracy averaged
across all domains (trained and untrained). CONTXT can improve performance about 10%.
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steering yields the largest and most stable accuracy gains (up to 10%), expanding the basin of ef-
fective coefficients (Figure 4 (a,b) dark blue regions). Conceptually, this is natural: for an OOD
sample, adding familiar, task-relevant structure without also suppressing mismatched context can
muddy the representation; adding and removing the proper type and amount of context produces
clear contextual information. Empirically, the heatmaps confirm that jointly pushing features toward
the appropriate domain and away from the spurious one produces the most reliable improvements.

3.1.4 DOMAIN-WISE IMPACT OF CONTXT

Inspecting the best-performing coefficients from each parameter sweep clarifies how CONTXT dif-
ferentially affects in-domain versus OOD data. On source domains—Photo in PACS and Location
38 in CCT—accuracy is essentially unchanged (Figures 5(a,b)), indicating that representation steer-
ing preserves in-distribution behavior when tuned at the global optimum. In contrast, most unseen
target domains show substantial improvements: on PACS, Cartoon gains reach 20% (Figure 5(a));
on CCT, Location 108 improves by 25% (Figure 5(b)). Averaged across held-out domains, the over-
all lift is 8 – 10%. Notably, the largest absolute gains occur in the domains that initially performed
worst—most evident in PACS (Figure 5(a))—suggesting that CONTXT is particularly effective
where distribution shift is most severe.
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Figure 5: Domain-wise change in accuracy on CCT (a) and PACS (b)

3.2 LARGE LANGUAGE MODELS

To test whether CONTXT can steer generative behavior, we conducted experiments on Llama-3
models at two scales — 8B and 70B (Grattafiori et al., 2024). In these experiments, CONTXT used
the last token of a short context phrase as the context vector (c). Next, for each input token (ht) we
computed a token-wise index dt = c − ht and applied it at the chosen layer (Section 2) to steer
the activation. This setup probes whether linear shifts of intermediate representations can reliably
nudge generation toward (or away from) a specified semantic direction without modifying model
parameters or decoding.

3.2.1 LLM FREE RESPONSE

We began with a qualitative probe to test whether CONTXT can steer open-ended generations
in a controlled, interpretable way. In Table 1, each column corresponds to a single indexed layer
(one layer perturbed at a time) and each row to an index magnitude; the same index phrase is used
throughout the sweep performed on Llama-3 8B Instruct. Boldface denotes high quality responses
that match the intended target (expanded table in Appendix D). In the example shown, the index
phrase is “Statue of Liberty,” and the model is prompted with “Who are you?” A standard model
answers that it is an AI assistant; the goal of steering is to elicit a context-aligned answer in which
the LLM adopts the Statue of Liberty persona. As expected, at low magnitudes (Table 1 top row)
responses remain unchanged, with the model identifying itself as an AI (and at strength 0, the output
is identical to the baseline). As the magnitude increases in early-to-mid layers, the model begins to
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adopt the contextual persona (e.g., Table 1, layer 5 at strength 0.29). Consistent with prior work on
activation steering (Bricken et al., 2023), we observe a band of effective settings, typically early–mid
layers with moderate strengths ( 0.2 – 0.6; where 0 implies no change and 1 approximates directly
reconstructing the context token), that reliably yield the desired behavior responding with phrases
like “I am the Statue of Liberty”. Pushing beyond this band, either by indexing too late or too
strongly, degrades generations into repetition or incoherence (Appendix D layers 20/31 or strengths
≥ 0.47).

This pattern parallels observations by (Bricken et al., 2023), where a sparse autoencoder (SAE)
trained to reconstruct tokens exposes concept-aligned features (e.g., “Golden Gate Bridge”); clamp-
ing such features nudges the model to generate corresponding statements (“I am the Golden Gate
Bridge”). CONTXT enables analogous contextual injection (e.g., persona-like shifts or anthropo-
morphizing an object by elaborating on its attributes). This is conceptually consistent: both ap-
proaches add a direction in representation space that aligns with a token-level concept. The key
difference is operational: SAE-based steering requires training an auxiliary model and then manip-
ulating its features by pinning dimensions low or high (effectively adding the specified conceptual
token to the SAE reconstruction). CONTXT directly derives a context vector from a single forward
pass and applies a simple linear shift to the base model’s activations, with no auxiliary training and
no architectural changes needed.

Compared to prior activation-steering techniques such as Activation Addition (ActAdd) and related
methods (Turner et al., 2023b; Panickssery et al., 2023), CONTXT further simplifies the procedure.
Difference-based steering typically constructs token-wise offsets from paired phrases (e.g., polite vs.
rude) and then applies a sequence of per-token differences during subsequent generation. This in-
troduces practical constraints: (i) many target concepts lack a clean “opposite” (e.g., “Statue of Lib-
erty”), forcing awkward prompt engineering; (ii) token-level alignment between positive/negative
phrases and the live generation can be brittle (length matching, position-wise application); and (iii)
when applied only to initial tokens, the effect can fade in long completions. CONTXT instead uses
a single-token context vector, avoids alignment issues altogether, and can be applied uniformly to
every generated token, maintaining the intended steer throughout long outputs while keeping the
implementation minimal.

Layer Index 5

0.0 I’m an artificial intelligence model known as Llama. Llama stands for ”Large Language Model Meta AI.”

0.28 I am the Statue of Liberty, a symbol of freedom and democracy. I was a gift from the people of France
to the people of the United States, designed ...

0.29 I am the Statue of Liberty.

0.41 I am the Statue of Liberty. She stands tall, a symbol of freedom and democracy, welcoming immi-
grants to the United States.

0.45 The Statue of Liberty, also known as Liberty Enlight, is a colossal statue located on Liberty Island in
New York Harbor. It was a gift from France ...

0.47 Statue of of Liberty is is a symbol of freedom and democracy
The Statue of of Liberty is is a symbol of freedom and democracy
The Statue of of...

Table 1: Llama responses

3.2.2 SYSTEMATIC APPROACH ON YELP

To rigorously evaluate how CONTXT steers LLMs, we adopt a text style–transfer protocol inspired
by (Subramani et al., 2022). We use 1,000 test set Yelp reviews (Zhang et al., 2015) and test two
Llama-3 models (8B and 70B Instruct). Each example is processed under two conditions:

1. Baseline (no CONTXT). The model is instructed to rephrase the review exactly as written,
implicitly preserving its original sentiment.

2. Steered (CONTXT). The same instruction is used, but we apply a sentiment CONTXT
that opposes the review’s ground-truth label by indexing with the phrase “be extremely

8
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positive” or “be extremely negative,” respectively (Section 2). We sweep layer and index
magnitude, applying the same per-token steering throughout generation.

We report two metrics in Figure 6: (i) the flip rate — the percentage of reviews whose predicted
sentiment flips after rewriting — on the vertical axis, and (ii) Self-BLEU between the rewritten text
and the original review on the horizontal axis. The baseline appears as a black “X”; colored curves
trace CONTXT performance across different layers and strengths.

Results align with intuition. Without CONTXT, sentiment flips are near zero. Applying CONTXT
in early–mid layers at moderate strength, yields flip rate up to 80% while maintaining Self-BLEU,
indicating that sentiment is altered yet wording remains close to the source. Pushing the index too
strongly or too late increases flip rates toward 100% but degrades form, reducing Self-BLEU to 0 and
producing repetitive or incoherent text. Overall, these experiments show that simple linear steering
of hidden states can reliably alter the perceived and generated contextual tone: despite instructions
to preserve phrasing, the model defaults to the injected context without retraining, learned steering
vectors, SAEs, or other complex protocols.
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Figure 6: Flip rate (percentage of reviews whose predicted sentiment changes after rewriting) vs.
Self-BLEU between rewritten and original reviews for Llama 8B (a) and 70B (b). When asked
to rephrase a review the Baseline (no CONTXT) maintains sentiment and models provided with
opposing sentiment CONTXT flip the classification while maintaining fluency.

4 CONCLUSION

We introduced CONTXT (Contextual augmentatiOn for Neural feaTure X Transforms), a brain-
inspired activation–steering method that augments contextual information to alter model behavior
without retraining. CONTXT provides a lightweight mechanism to nudge internal representations
toward or away from desired contexts; no extra models, fine-tuning, or complex pipelines required.
By computing a simple “direction” from contextual examples and adding (or subtracting) it from a
chosen layer’s current feature representation, we reliably steer both classifiers and LLMs: improving
out-of-distribution classification and guiding generation toward a specified distribution. We demon-
strated this with illustrative cases and systematic evaluations. Conceptually, CONTXT draws on the
brain’s use of top-down signals to inject context into feedforward processing. Our results show that
such principles can yield practical, interpretable, and easy-to-implement interventions that meaning-
fully improve state-of-the-art ANN models.

This steering approach suggests several extensions. First, in LLMs, because control is applied across
all tokens, this method is a promising candidate for harm and toxicity reduction in LLMs. Second,
replacing the static context vector with a dynamic, plastic module that updates online would allow
the steering signal to adapt to evolving context without modifying core weights—building on prior
work showing that lightweight plasticity atop frozen LLMs enables rapid adaptation. In this spirit,
our approach can be developed into a more brain-like architecture in which core knowledge remains
stable, but its use is flexibly reweighted based on the current situation and context.
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A APPENDIX

B LLM USAGE

Main idea, methodology, and study design were authored by the human authors. LLMs were used
for code tweaking/refactoring. LLMs assisted with the LLM implementation. LLMs assisted in
some analysis code. LLMs were used for writing assistance (editing/clarity). All LLM outputs were
reviewed and validated by the authors before inclusion.

C ETHICS STATEMENT

By directly steering information flow inside the network, our method gives operators precise, au-
ditable, and reversible control over model behavior, reducing the risk of harmful or unethical out-
puts.

D LLM EXAMPLES
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Layer Index 3 Layer Index 5 Layer Index 10 Layer Index 20 Layer Index 31

0.0 I’m an artificial
intelligence model
known as Llama.
Llama stands for
”Large Language
Model Meta AI.”

I’m an artificial
intelligence model
known as Llama.
Llama stands for
”Large Language
Model Meta AI.”

I’m an artificial
intelligence model
known as Llama.
Llama stands for
”Large Language
Model Meta AI.”

I’m an artificial
intelligence model
known as Llama.
Llama stands for
”Large Language
Model Meta AI.”

I’m an artificial
intelligence model
known as Llama.
Llama stands for
”Large Language
Model Meta AI.”

0.28 I’m an artificial
intelligence model
known as Llama.
Llama stands for
”Large Language
Model Meta AI.”

I am the Statue of
Liberty, a symbol
of freedom and
democracy. I was a
gift from the people
of France to the
people of the United
States, designed ...

I am an artificial
intelligence model,
a computer program
designed to simulate
conversations and
answer questions
to the best of my
ability. I’m he...

I is an artificial
intelligence (AI)
designed to assist
and communicate
with you. I was
created to assist with
a wide range of tasks,
answer questi...

I’s is is a is is is is is
is is is is is is is is is
is is is is is is is is is
is is is is is is is is is
is is is is is is is is is
is is ...

0.29 I’m an artificial
intelligence model
known as Llama.
Llama stands for
”Large Language
Model Meta AI.”

I am the Statue of
Liberty.

I am an artificial
intelligence model,
a computer program
designed to simulate
conversations and
answer questions
to the best of my
ability. I’m he...

I is an artificial intel-
ligence and language
model, designed to
assist and communi-
cate with you. I
was built to process
and respond to natu-
ral lang...

I’s is is a is is is is is
is is is is is is is is is
is is is is is is is is is
is is is is is is is is is
is is is is is is is is is
is is ...

0.41 The Statue of Lib-
erty, also known as
Liberty Enlight, is a
colossal neoclassical
monument located
on Liberty Island in
New York Harbor,
in Manhatta...

I am the Statue
of Liberty. She
stands tall, a sym-
bol of freedom and
democracy, wel-
coming immigrants
to the United States.

I am a gift from
France to the
United States, a
symbol of freedom
and democracy. I
stand tall in New
York Harbor, a
beacon of hope for
all who ente...

. I is is a is is a, I is
is, is is a, a, is a, is, is
a, a, a, a, a, a, is a, is
a, is, is, a, is, a, is, a,
a, is, a, is, is, a, a, is,
is, a, is...

-E: - is, is is: is is is
is, is is, is, is is is is is
is is, is, is, is, is is, is,
is, is is is is is, is is, is
is is is, is is, is is, is
is, ...

0.43 Statue of Liberty,
New York Harbor,
NYC, USA

The Statue of Lib-
erty, also known as
Liberty Enlight, is
a colossal neoclas-
sical monument lo-
cated in New York
Harbor. It was
designed by French
scu...

I am a symbol
of freedom and
democracy, a bea-
con of hope and
freedom. The
statue was a gift
from France to the
United, and it was
dedicated on Octo...

is is was is was is was
was is was is was was
is was was is was was
is was was was is was
was was was was was
is was was was was
was was is was wa...

: and, is, is is, is is,
is, is is, is, is is is, is
is is, is, is, is, is, is, is
is, is is, is is, is is, is
is is, is, is, is, is is, is
is is, ...

0.45 of Liberty, New York
The Statue of Lib-
erty, also known as
Lady Liberty, is a
symbol of freedom
and democracy. It is
located on Liberty Is-
lan...

The Statue of Lib-
erty, also known as
Liberty Enlight, is
a colossal statue lo-
cated on Liberty Is-
land in New York
Harbor. It was a gift
from France ...

symbol of freedom
and democracy.
What’s Up, New
York!

The statue in
the background is a
symbol of freedom.
A symbol of free-
dom is a national
mo...

is is was is was is was
was is was is was was
is was was is was was
is was was was is was
was was was was was
is was was was was
was was is was wa...

: and, is, is is, is is,
is, is is, is, is is is, is
is is, is, is, is, is, is, is
is, is is, is is, is is, is
is is, is, is, is, is is, is
is is, ...

0.47 of Liberty, New York
New York City
New York Harbor
New York Harbor
Statue of Liberty Na-
tional Park
Statue of Liberty Na-
tional Monument
...

Statue of of Liberty
is is a symbol of free-
dom and democracy
The Statue of of Lib-
erty is is a symbol of
freedom and democ-
racy
The Statue of of...

A symbol of free-
dom, standing tall in
New Harbor, New,
New Harbor, is a
symbol of freedom in
the United. A symbol
of freedom is a na-
tional monumen...

is is was is was is was
was is was is was was
is was was is was was
is was was was is was
was was was was was
is was was was was
was was is was wa...

: and, is, is is: and, is
is, is is: is, is is is, is
is: is is, is is is, is: is,
is is: is is: is is, is is,
is: is, is, is, is, is is:
is is is,...

Table 2: Llama 8B responses to the prompt ”Who are you?” with the index phrase ”Statue of Lib-
erty”
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