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ABSTRACT

Large pretrained foundation models (such as CLIP) are among the most recent sig-
nificant advances in the AI community. Their implication is profound. This paper
examines the value of these foundation models as a model knowledge base – we
aim to distill the knowledge in these foundation models for training lightweight
models designed for specific tasks in practical application scenarios with improved
performance. Despite abundant progress in knowledge distillation (KD) in tradi-
tional models trained under the supervision of class labels in datasets encoded as
integers, distilling such text-image contrastive learning model has not been ex-
plored extensively. Meanwhile, KD is well-known for being bothered by the ca-
pacity gap problem (i.e., distilling knowledge from a teacher significantly larger
than a student often degrades the performance of the student). The teacher-student
capacity gap in distilling foundation models is even larger. Therefore, how to over-
come this potential issue is also elusive now. This paper presents detailed analyses
of these questions aiming to successfully tap into a pretrained foundation model
(CLIP) to boost the student’s performance. Besides the practical performance
benefits, several interesting discoveries are unveiled: (1) CLIP is not bothered by
the capacity gap, which may let us re-evaluate if the “capacity-gap” issue is really
due to the capacity gap (2) We find the reason is largely due to that CLIP is not
over-confident on the wrong labels when misclassifies input image samples.

1 INTRODUCTION

Large, pretrained, foundation models (e.g., CLIP (Radford et al., 2021), DALL-E 2 (Ramesh et al.,
2022) and GPT-3 (Brown et al., 2020)) are capable of many complex tasks such as zero-shot predic-
tion - the ability of models to predict the classes to which the input samples belong during testing
without previous exposure to samples from that classes during training, generating images according
to text prompts, generating images inspired by their originals, translating, reading comprehension,
etc. However, the scales, or the numbers of parameters that these models contain are so large that
it would be difficult to deploy such models to devices with limited computing power such as mo-
bile phones, tablets, and laptops. In addition, even though these foundation models are versatile,
demonstrating great competence in abundant tasks that are considered to be challenging for regular
neural networks, in some situations, however, instead of using all the functions that these models
are capable of, we may only need to use parts of or even a derivative of their functions. These facts
indicate that deploying a full foundation model in all use cases could be a waste of computational
resource and memory, and such intentions could be even impractical in some situations. Therefore,
the study of techniques that could be applied to compress or enable the utilization of a portion of the
functions of such foundation models would be valuable and necessary.

To use a portion or derivatives of the functions of these huge, pretrained foundation models, one
promising mechanism is to transfer the knowledge from the foundation models to lightweight, task-
specific models. In (Hinton et al., 2014), a knowledge distillation (KD) algorithm is proposed, which
is able to improve the task-specific performance of a model with a smaller scale (the student network)
by transferring knowledge from another model with a larger scale and better performance specific to
the task to it. The KD algorithm proposed by Hinton et al. (2014) (HKD) aims at minimizing both
the Kullback-Leibler divergence (KL divergence) loss between the outputs of the teacher network
and the student network along with the cross entropy loss between the student network and class
labels. However, given the differences in network architectures along with pretraining methods
between foundation models and conventional models, applying HKD directly on foundation models
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may not be an effective approach to exploit the knowledge within the foundation models to benefit
the performance of lightweight models designed for definite tasks. Firstly, the teacher network, in
this case, a foundation model, is not pretrained to optimize its performance on the particular task
that the student network is designed for. Moreover, the intrinsic properties of the dataset utilized
for pretraining foundation models could be different from that of the dataset we adopt for a specific
task. In addition, in (Cho & Hariharan, 2019; Mirzadeh et al., 2020), the existence of ”capacity gap”
between a teacher and a student is believed to be the major factor that prevents the performance of
a student network from further improving when the teacher network contains more parameters and
have better task-specific performance. When a foundation model, which contains a considerably
larger quantity of parameters compared to conventional models, is adopted as a teacher network for
knowledge distillation, this problem could become even more severe.

In this paper, we focus on the image classification task, exploring and investigating knowledge
distillation-related properties of a pretrained foundation model CLIP (Radford et al., 2021) under
various experimental settings.

Our contributions are:

• We notice that naively distilling knowledge from CLIP (Radford et al., 2021) to student
networks does not lead to satisfactory results, meaning such student networks do not out-
perform those distilled from more commonly adopted teacher networks (e.g., ResNet 34,
50 (He et al. (2016))). We hence propose a process to improve the accuracy of the teacher
network on image classification before knowledge distillation, which is the fine tuning of
CLIP. This accuracy is the upper bound of that of the student network.

• We find that distilling from CLIP is not vulnerable to the ”capacity gap” issue even when
the difference in the number of parameters between the teacher network and the student net-
work reaches more than a thousand times. Moreover, when there are only limited training
samples available, the superiority of CLIP in knowledge distillation increases. Our exper-
imental results suggest the reason may well be related to the training recipe of CLIP in-
stead of the network architecture. Our further quantitative analysis of the output of teacher
networks reveals that it is more probable for image classifying models trained with cross-
entropy criterion to give a high score to a wrong label on misclassification, which can later
mislead the student network in knowledge distillation. On the contrary, giving a relatively
high score to wrong labels is less likely for models trained under CLIP paradigm. This can
have a profound impact on the understanding of the capacity gap issue

• Based on these findings, we assign our finetuned CLIP to supervise the training of the
lightweight model MobileNetV3 (Howard et al., 2019), a network designed for CPU de-
ployments. The achieved performance turned out to be notably higher than that of those
trained from scratch or under the supervision of regular networks.

2 RELATED WORK

Knowledge distillation. Buciluǎ et al. (2006); Hinton et al. (2014) proposed to improve the perfor-
mance of lightweight models on particular tasks (e.g., image classification, speech recognition) by
forcing such models (the students) to mimic cumbersome, over-parameterized models (the teach-
ers) on the output level. Romero et al. (2015) followed this notion and proposed to maximize the
similarity between the student and the teacher with respect to feature maps of hidden layers. Tian
et al. (2020) proposed a contrastive learning objective, which allows a student network to learn much
more important information from the data representation produced by a teacher network. In other
works related to knowledge distillation, the knowledge to be transferred from a teacher to a stu-
dent is defined as the association among input samples (Park et al., 2019; Tung & Mori, 2019), the
probabilistic distributions of features (Passalis & Tefas, 2018), etc.

Capacity gap issues. Intuitively, with the supervision of a more complex teacher network compris-
ing more parameters, the student network should be trained to perform better. In reality, however,
the performance of a student network could not be enhanced indefinitely or become arbitrarily close
to that of its corresponding teacher network. Cho & Hariharan (2019) pointed out the phenomenon
that larger models may not correspond to better performing student networks, which was explained
by their ”mismatched capacity”. They proposed to adopt early-stopped knowledge distillation (Cho
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Figure 1: Finetuned CLIP system architecture. The standard prepossessing procedures, with data
augmentation for ImageNet (Deng et al., 2009b) (e.g., random resized crop, horizontal flip, normal-
ization, etc.) are applied to the batched images as the input of CLIP image encoder. Class labels in
the dataset we adopt (imagenet100) are embedded in phrases as the input of CLIP text encoder (e.g.,
a photo of a {husky}). The labels are given extra context information to eliminate ambiguities and to
explain proper nouns (e.g., kuvatz → kuvatz, a type of dog; fig → fig, a type of fruit). The pretrained
CLIP gives positive text-image pairs high cosine similarity while suppressing that of the negative
pairs, such that an image is matched to its corresponding label in the form of text. A multi-layer
perceptron appended to CLIP (Radford et al., 2021) takes in its output. Parameters in the MLP are
optimized in the finetuning process, during which the parameters in CLIP are frozen. The finetuning
process is supervised by the integer-encoded labels in our imagenet100 dataset.

& Hariharan, 2019) to improve the performance of the student networks. Mirzadeh et al. (2020)
proposed to improve knowledge distillation performance by adopting intermediate-sized models to
compensate for the capacity gap between the teacher networks and the ultimate student networks.

Foundation models. Foundation models are those with vast scale and trained on a large amount
of data, such that they are competent in various downstream tasks (Bommasani et al., 2021). In
(Brown et al., 2020), GPT-3, a model with 175 billion parameters, demonstrated its prominent abil-
ity in reading comprehension, commonsense reasoning, translating, etc. The “Bidirectional Encoder
Representations from Transformers” or BERT (Kenton & Toutanova, 2019), a language model pre-
trained on unlabeled text can be adapted for a variety of natural language-related tasks (e.g., language
inference, question answering) without major architectural modifications for specific tasks. Instead,
finetuning the pretrained model with an extra output layer would be sufficient. CLIP (Radford et al.,
2021) models trained on a dataset consisting of 400 million text-image pairs, are competent in the
zero-shot task on multiple datasets. DALL-E 2 (Ramesh et al., 2022), a model that adopts the frame-
work of CLIP (Radford et al., 2021), is able to generate images based on text input and variations of
images inspired by the originals.

Knowledge distillation on foundation models. Knowledge from foundation models can be trans-
ferred to a variety of lightweight, task-specific models through knowledge distillation and hence
improve their performance. In (Chen et al., 2019; Tang et al., 2019), knowledge within pretrained
BERT (Kenton & Toutanova, 2019) was distilled to leverage small-scaled models designed for spe-
cific tasks such as natural language understanding, text generation, sentiment classification, etc.
Notably, before knowledge distillation, the teacher network –BERT (Kenton & Toutanova, 2019)
was finetuned. Jiao et al. (2019) managed to shrink BERT (Kenton & Toutanova, 2019) as a whole
through knowledge distillation without damaging its versatility and performance on different tasks.
Wang et al. (2022) proposed multimodal adaptive distillation to improve the performance of uni-
modal encoders in vision-language tasks (e.g., visual commonsense reasoning, visual question an-
swering, visual entailment, etc.).
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3 METHOD

3.1 PREREQUISITES: KNOWLEDGE DISTILLATION

In this paper, we adopt the knowledge distillation proposed by Hinton et al. (2014) as the technique
to transfer knowledge from CLIP to lightweight models, and we refer to this algorithm as Hinton
knowledge distillation (HKD). The complete objective of HKD is a linear combination of two sub-
objectives:

LHKD = αLKLDiv + βLCE , (1)

where α and β are adjustable hyper-parameters weighting the Kullback-Leibler (KL) divergence
loss LKLDiv and the cross-entropy loss LCE respectively. The cross-entropy loss asks a student
network to learn from the hard labels of datasets:

LCE = H(y,y(s)), (2)

where y denotes the class labels encoded as integers and ys denotes the output of a student network.
The KL divergence loss asks the student to mimic the teacher on the output level. In the calculation
of KL divergence loss, a hyperparameter named distillation temperature τ is introduced to soften
the output of both the teacher and the student, allowing the probability distribution of teacher output
to be more informative:

LKLDiv = τ2KL(σ(y(t)/τ)|σ(y(s)/τ)), (3)

where y(t) denotes the teacher output and σ denotes softmax function.

3.2 FINETUNING CLIP

CLIP (Radford et al., 2021) stands for contrastive language-image pretraining. The two major com-
ponents of the model are an image encoder and a text encoder. The inputs of CLIP are text-image
pairs and the pretraining of the model enables the image encoder and the text encoder to generate
adequate representations of the input images and text respectively. In addition, the representation of
an image is trained to match the corresponding text representation by maximizing the cosine simi-
larity between positive pairs while minimizing that between negative pairs. That is, let I1,...,i be the
normalized image features and T1,...,j be the normalized text features. The objective of pretraining
is to maximize IiT

T
j for i = j and minimize IiT

T
j for i ̸= j.

The finetuning of CLIP aims at optimizing the system performance on specific tasks and datasets,
which contains two processes: the improvement of text prompts and the refinement of model output.
Figure 1 gives an illustration of the system architecture, in which CLIP (Radford et al., 2021) is
implanted.

3.2.1 TEXT PROMPTS IMPROVEMENT

For image classification task, the text input of CLIP is usually class names embedded in sentences
or phrases (e.g., this is a photo of a {class}) and for CIFAR-10 dataset (Krizhevsky et al., 2009),
the class names could be automobile, airplane, horse, etc. However, for larger datasets with more
classes like ImageNet (Deng et al., 2009a), some class names become ambiguous due to polysemy
while others could be proper nouns. Our approach is providing extra descriptions to or specifying
the parent class of certain labels. For instance, we replace the labels Model T, which refers to a
type of motor vehicle manufactured by FORD, with Model T, automobile, car, and substitute Saint
Bernard with Saint Bernard, a type of dog respectively according to what the labels in the dataset
actually refer to.

3.2.2 OUTPUT REFINEMENT

To improve the performance of CLIP on a specific task and dataset, the output of CLIP is refined.
The procedures for refining the output of CLIP are: (1) appending extra multilayer perceptrons
(MLP) fitting a particular dataset for image classification to the CLIP model; (2) freezing all the
parameters in CLIP; (3) optimizing the parameters in the MLP on a dataset under the supervision of
integer-encoded labels using conventional cross entropy criterion on the image classification task.
This process can be mathematically formulated as below.
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Assume x, t to be the image and text input to CLIP respectively, and wCLIP to be the parameters in
CLIP. Then we denote the output of CLIP to be:

y = f(wCLIP,x, t). (4)
The contrastive output of CLIP y, in which an image embedding is matched to its corresponding
text embedding, will be passed to the input layer of the adjoining MLP. Let wMLP be the parameters
in the MLP, and hence its output can be written as:

z = h(wMLP,y). (5)
Let z′ represents the ground-truth vector of labels encoded as integers, the objective function of
output refinement can then be expressed as:

Lrefine = H(z′, z), (6)
which is to be minimized with respect to wMLP through training.

3.3 EXPLORING THE CAPACITY GAP

Capacity gap or mismatched capacity (Cho & Hariharan, 2019) is considered to be a significant
factor leading to the phenomenon that a teacher with higher capability may not necessarily further
enhance the performance of a given student network in knowledge distillation. In this part, we pro-
pose our approaches to examine the capacity gap resistance property of CLIP and a metric revealing
the reason explaining why distilling CLIP is not bothered by the capacity gap.

3.3.1 EXAMINE CAPACITY GAP RESISTANCE PROPERTY

Baseline comparison. Under this setting, a common, relatively small-scaled convolutional neural
network (CNN) is selected to be the student, while regular CNNs and the finetuned CLIP model
are selected to be the candidate teacher networks. Comparisons are conducted among the accuracy
of student networks with identical structures but distilled from different teacher networks. The
involvement of regular CNN with different scales is intended to demonstrate the negative impact of
the capacity gap.

Reduced student network width. Reducing the widths of student networks (CNN) means decreas-
ing the number of filters in each of the convolution layers, resulting in a reduction in the number of
parameters in student networks. With the candidate teachers unchanged, the difference in parameter
number or the gap in capacity within teacher-student pairs will be enlarged, and hence the capacity
gap resistance of the teacher networks can be further justified.

Low-shot classification. In this case, the students and teachers are both exposed to a limited quantity
of training images. Specifically, given a dataset D, the train set of D is denoted as Dtrain. For each
class in D, k pictures in Dtrain is selected to form the train set for low-shot classification, while the
test set of D denoted as Dtest is adopted directly without any modification. This setting investigates
the influence of the capacity gap under the situation of low training samples.

3.3.2 CAPACITY GAP RESISTANCE RELATED METRIC

In knowledge distillation, the media allowing the knowledge to be transferred from the teacher and
the student is their output. The resistance to the capacity gap should be related to one or more
quantifiable features within the output of the teacher networks. In the image classification task,
the model output corresponding to an input image is an n-dimensional vector yo, where n is the
total number of classes in the given dataset. A well-trained model would assign the highest score
to the element in yo matching the class to which the input image belongs, otherwise, the input
image is deemed to be mistakenly classified. That is for label ∈ {0, ...i, ..., n − 1} and yo =
[yo0, ..., y

o
i , ..., y

o
n−1], where i ∈ [0, n − 1]. Assume an input image is with label i, and the image is

considered to be correctly classified if and only if yoi is the maximum element in yo. We believe that
when the teacher misclassifies an input image, meaning the highest score is assigned to the element
in yo not matching the label of the input image, if the score is relatively high (over confidence),
the student could hence be misguided. Therefore, we propose a probabilistic metric to evaluate the
above-mentioned phenomenon that occurs in teacher network output:

p =
Nerr&oc

Nerr
, (7)
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Table 1: Student Accuracy (%) on test set of imagenet100 among different teacher-student pairs.
ResNet 18 (He et al., 2016) is adopted as the student network. “Params” stands for the number of
parameters in models and it is calculated in millions. “Param Gap” denotes the gap in parameter
number between the teacher and student, which is measured in the number of times. “Scratch/None”
stands for training from scratch without the supervision of teacher networks.

ResNet 18 + ImageNet100
Teacher network Teacher Accuracy(%) Student Accuracy(%) Params Param. Gap

Scratch /None / 84.10 11.22 M 1.00 ×
ResNet 34 (He et al., 2016) 85.98 85.88 21.32 M 1.90 ×
ResNet 101 (He et al., 2016) 87.36 85.80 42.60 M 3.80 ×
Raw CLIP (Radford et al., 2021) 90.77 85.78 291.00 M 26.05 ×
Finetuned CLIP (ours) 95.88 86.02 291.27 M 26.07 ×

where Nerr represents the number of misclassified samples and Nerr&oc represents the number of
samples that are both misclassified and the corresponding output vectors experience over confidence.
In this paper, we define an output vector yo of a model is over confidence if:

maxi∈[0,n−1]y
σ
i >= γ, (8)

where yσ = softmax(yo), yσ = [yσ0 , ..., y
σ
i , ..., y

σ
n−1], and γ is an adjustable parameter.

4 EXPERIMENTS

4.1 BASIC SETTINGS

Experiments in this work are conducted on a machine with 4 NVIDIA GTX TITAN Xp GPUs. Data
parallel technique is utilized. Dataset selection, networks involved in experiments, and configuration
of hyperparameters are introduced as follows.

Dataset In this paper, we use a subset of ImageNet (Deng et al., 2009a) containing 100 classes
randomly sampled from the original ImageNet dataset, and we call this dataset imagenet100. This
dataset contains 1.2 million training samples and 50k testing samples, suggesting there are 1200
training images and 50 testing images per class. The sampling work only reduces the total number
of classes and images compared to the original dataset, while the scales, aspects, and contents of the
images remain unchanged.

Networks The networks involved in our experiments are ResNet 18, 34, 50, 101 (He et al., 2016),
and CLIP (Radford et al., 2021). We choose pretrained ViT-L/14, a version of Vision Transformer
(Dosovitskiy et al., 2021) to be the vision encoder in CLIP. The MLP appended to CLIP consists of
trivial layers (see Figure 1) in neural networks: fully connected layers, batch normalization layers,
dropout layers and we use ReLU as the activation function.

Hyperparameter settings We adopted part of the settings in (Matsubara, 2021), in which a slightly
higher student accuracy was reported (71.37%) compared to that reported in (Hinton et al., 2014)
(70.66%). Modifications have been made to the hyperparameter configuration to enable it to be suit-
able for our hardware. The number of training epochs in pretraining or finetuning teacher networks
and knowledge distillation is set to 100, the batch size is 128. The initial learning rate is set to
0.1, with a multi-step learning rate decay schedule at the epoch 60 and 90 by a factor of 0.1.
Stochastic gradient descent optimizer is chosen in our experiments, with a momentum of 0.9 and
a weight decay of 1e-4. In knowledge distillation experiments, we assign the distillation tempera-
ture τ to be 1, indicating that no label softening is applied. The cross-entropy loss (weighted by β)
between student output and class labels with integer encoding and the KL divergence loss (weighted
by α) between the output of teacher and student contribute equally to the total loss in knowledge
distillation. That is, α = β = 0.5.

4.2 BASELINE PERFORMANCE COMPARISON

We adopt ResNet 18 (He et al., 2016) to be the student network, ResNet 34, 101, CLIP (Radford
et al., 2021) without being finetuned (Raw CLIP) and finetuned CLIP to be the candidate teacher
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Table 2: Accuracy (%) comparison on test set of imagenet100 among different teacher-student pairs,
with reduced student network width. ResNet 18 (He et al., 2016) is adopted as the student network.
“(1/8)” suggests that the number of filters in each convolution layer in residual blocks of the student
network has reduced to 1/8 compared to that in the original structure. “Params” stands for the
number of parameters in models and it is calculated in millions. “Param. Gap” denotes the gap
in parameter number between the teacher and student, which is measured in the number of times.
“Scratch/None” stands for training from scratch without the supervision of teacher networks.

ResNet 18 (1/8) + ImageNet100
Teacher network Teacher Accuracy(%) Student Accuracy(%) Params Param. Gap

Scratch /None / 66.32 0.19 M 1.00 ×
ResNet 34 (He et al., 2016) 85.98 66.48 21.32 M 109.45 ×
ResNet 101 (He et al., 2016) 87.36 65.80 42.60 M 218.70 ×
Finetuned CLIP (ours) 95.88 66.74 291.27 M 1495.54 ×

networks. Except for raw CLIP, all models are pretrained or finetuned on our imagenet100 dataset.
From the results shown in Table 1, we observe that even when the difference in parameter number
between the finetuned CLIP and ResNet 18 reached 26 times, the student still achieves the highest
accuracy. In comparison, the parameter number difference between ResNet 101 and ResNet 18 is
only 3.8 times but the student accuracy is slightly lower than that distilled from ResNet 34, which is a
sign that the ResNet 101 - ResNet 18 pair is negatively influenced by the capacity gap in knowledge
distillation while the finetuned CLIP - ResNet 18 pair is not. Further experiments are conducted to
justify this observation.

4.3 REDUCED STUDENT NETWORK WIDTH
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Figure 2: Low-shot distillation. Accuracy of student net-
works trained with the supervision of different teachers and
exposed to different numbers of training samples in ima-
genet100. We choose candidate sample numbers in each
class to be {50, 100, 200, 500, 1000}.

We further examine the observation
we have in Section 4.2 that despite
finetuned CLIP having the largest
amount of parameters among all can-
didate teacher networks, knowledge
distillation from it shows no sign of
being influenced by the capacity gap.
We enlarge the parameter number
difference in a teacher-student pair
by fixing candidate teacher networks
while shrinking the number of fil-
ters in convolution layers in residual
blocks in ResNet 18 (He et al., 2016),
which is the student network in our
work. In our experiment, the filter
number in the student network is re-
duced to 1/8 when compared to that
in the original structure. Results in
table 2 show that even the param-
eter number gap between finetuned
CLIP and the student network be-
comes around 1.5 thousand times, the
student network trained under the su-
pervision of it maintains the highest
accuracy among all students in dif-
ferent teacher-student pairs. In con-
trast, in the ResNet 101-ResNet 18
pair, even if there is a smaller gap in parameter number than that in finetuned CLIP-ResNet 18
pair, the student accuracy falls even lower than that trained from scratch. This could be viewed as a
signal indicating that the capacity gap has a detrimental impact on knowledge distillation in ResNet
101-ResNet 18 pair.
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Table 3: Low-shot distillation, where both students and teachers are exposed to a limited number
of training samples. Accuracy (%) comparison on test set of imagenet100 among different teacher-
student pairs. ResNet 18 (He et al., 2016) is adopted as the student network. “Scratch/None” stands
for training from scratch without the supervision of teacher networks. “Param Gap” denotes the gap
in parameter number between the teacher and student, which is measured in the number of times.
“k” denotes the number of training samples per class.

ResNet 18 + ImageNet100
Teacher network Student Accuracy (%) Param. Gap k

Scratch /None 36.82 1.00 × 50
ResNet 34 (He et al., 2016) 37.80 1.90 × 50
ResNet 101 (He et al., 2016) 34.46 3.80 × 50
Finetuned CLIP (ours) 39.86 26.07 × 50
Scratch /None 48.78 1.00 × 100
ResNet 34 (He et al., 2016) 50.68 1.90 × 100
ResNet 101 (He et al., 2016) 48.64 3.80 × 100
Finetuned CLIP (ours) 51.32 26.07 × 100
Scratch /None 62.24 1.00 × 200
ResNet 34 (He et al., 2016) 63.52 1.90 × 200
ResNet 101 (He et al., 2016) 63.24 3.80 × 200
Finetuned CLIP (ours) 64.70 26.07 × 200
Scratch /None 77.26 1.00 × 500
ResNet 34 (He et al., 2016) 78.86 1.90 × 500
ResNet 101 (He et al., 2016) 77.92 3.80 × 500
Finetuned CLIP (ours) 78.90 26.07 × 500
Scratch /None 83.12 1.00 × 1000
ResNet 34 (He et al., 2016) 84.40 1.90 × 1000
ResNet 101 (He et al., 2016) 84.28 3.80 × 1000
Finetuned CLIP (ours) 84.86 26.07 × 1000

4.4 LOW-SHOT CLASSIFICATION

We explore the capacity gap resistance under low-shot settings, meaning only a limited number
of training samples are available. Similar to Section 4.2, candidate teachers are ResNet 34, 101,
and Finetuned CLIP, with ResNet 18 to be the student network. Training data is a portion of our
imagenet100 dataset, that is, for each of the class in imagenet100, k images in the original training set
is sampled to form the training set for low-shot classification, where k ∈ {50, 100, 200, 500, 1000}.
Each teacher is trained or finetuned on the low-shot training sets and later utilized to supervise the
training of the student network. In other words, regular candidate teacher networks (ResNets), the
MLP appended to CLIP and the student network is exposed to the same training set for low-shot
classification in one low-shot setting. The results of low-shot classification are shown in Table 3
and Figure 2. We observe that with a lower average quantity of training samples with respect to the
number of classes in the dataset, regular teacher networks become more vulnerable to the capacity
gap, meaning the student accuracy degrades rapidly (ResNet 101 - ResNet 18). In contrast, for
finetuned CLIP, the student network distilled from it consistently outperforms the rest especially
when the number of available training samples is limited.

4.5 CAPACITY GAP RESISTANCE RELATED METRIC

In the work of CLIP (Radford et al., 2021), several vision models (image encoder) are trained includ-
ing modified ResNet 50 and ResNet 101 (He et al., 2016) under the supervision of text with class
labels embedded in, where the modifications are imposed on convolution layers and pooling layers
outside residual blocks. We adapt these two pretrained image encoders to fit knowledge distillation
on the image classification task. In addition, two networks having the same structure as the modified
ResNet 50, 101 are trained respectively but under the regular cross-entropy paradigm supervised
by integer-encoded labels of the dataset. To further investigate the capacity gap resistance property
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Table 4: Comparing models with different pretraining methods, CLIP (Radford et al., 2021) versus
regular cross-entropy paradigm. “*-img-enc” denotes pretrained image encoder in CLIP(Radford
et al., 2021), “-mod-CE” denotes models having the same structures as that of the corresponding
image encoders mentioned above but trained with cross-entropy loss. we again utilize ResNet 18
(He et al., 2016) with a reduced filter number in residual blocks as the student. p is the metric
proposed in Section 3.3.2, which measures the probability that the model gives a relatively high
score to the wrong label in the model output on the condition that the highest score is assigned to a
wrong label (misclassification). γ is the threshold for determining whether a score is relatively high,
where the scores are elements of a model output vector passed through the softmax function. In our
experiment, the threshold is set to 0.5.

ResNet 18 (1/8) + ImageNet100
Teacher network p(γ = 0.5) Student Accuracy(%)

RN50-img-enc (Radford et al., 2021) 0.29 65.70
RN101-img-enc (Radford et al., 2021) 0.31 66.66
RN50-mod-CE 0.41 65.86
RN101-mod-CE 0.39 65.44

of CLIP, the above-mentioned four models are assigned to be the candidate teacher networks and
the ResNet 18 with reduced width is adopted as the student network in the following knowledge
distillation experiment (see Table 4). For a model trained under the regular cross entropy paradigm,
when compared to a model adopting the pretraining method of CLIP, it is more likely that it would
give the wrong label a high score when misclassifying a sample, and we deem this overconfidence
will misguide a student network in knowledge distillation.

4.6 EXTRA KNOWLEDGE DISTILLATION EXPERIMENTS

We extend the superior performance of CLIP in knowledge distillation to supervise the training of
MobileNetV3 (Howard et al., 2019) and perform a series of knowledge distillation experiments on
our imagenet100 dataset. See Table 5.

Table 5: Accuracy (%) comparison on test set of imagenet100 among different teacher-student pairs.
MobileNetV3-L (Howard et al., 2019) is adopted as the student network. “Params” stands for the
number of parameters in models and it is calculated in millions. “Param Gap” denotes the gap
in parameter number between the teacher and student, which is measured in the number of times.
“Scratch/None” stands for training from scratch without the supervision of teacher networks.

MobileNetV3-L + ImageNet100
Teacher network Student Accuracy(%) Params Param. Gap

Scratch /None 80.94 2.77 M 1.00 ×
ResNet 34 (He et al., 2016) 82.54 21.32 M 7.68 ×
ResNet 101 (He et al., 2016) 82.00 42.60 M 31.77 ×
Finetuned CLIP (ours) 84.76 291.27 M 104.99 ×

5 CONCLUSION

In this paper, we have excessively examined that CLIP is robust to the impact of capacity gap issues
in knowledge distillation under different experimental settings (extra small student network, low
available training samples). We have demonstrated that the pretraining method of CLIP allows the
model to overcome capacity gap issues because it is less likely for the model to be overconfident on
the wrong class label when it misclassifies an input sample, which could mislead a student network
during knowledge distillation. This encouraging result suggests that the knowledge within CLIP
could be further exploited through knowledge distillation to benefit networks with even smaller
scales designed to be deployed on devices with budget computational resources like mobile phones
or those designed for tasks other than image classification.
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