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ABSTRACT

Deep neural networks trained end-to-end for accelerated magnetic resonance imag-
ing give excellent performance. Typically, these networks are trained and evaluated
under a setup where the object to be imaged is static. However, in practice, pa-
tients often move during data acquisition which leads to motion artifacts in the
reconstructed images. In this work, we first demonstrate that in the presence of
motion, significantly larger training sets are required for good performance when
training state-of-the-art neural networks to reconstruct an image for accelerated
MRI. Second, we demonstrate that as an alternative, one can resort to utilizing
untrained neural networks for this task. We propose a modified untrained net-
work which does not rely on any training set and performs single-instance rigid
motion-compensated compressed sensing MRI. Our approach outperforms un-
trained and trained optimization-based baselines such as ℓ1-norm minimization
and score-based generative models.

1 INTRODUCTION

Deep learning methods give state-of-the-art performance for many image restoration applica-
tions (Dong et al., 2014; Jin et al., 2017; Zhang et al., 2017; Sriram et al., 2020; Rivenson et al., 2018;
Jalal et al., 2021; Zhang et al., 2023), including for accelerated MRI reconstruction where the goal is
to reconstruct a high-quality MRI scan from a set of undersampled measurements. Most successful
deep learning-based accelerated MRI reconstruction models assume a static imaging setup, meaning
that a potential patient movement is not anticipated. Consequently, in case the patient moves during
data acquisition, motion artifacts arise and the image quality significantly degrades.

One possible approach to deal with motion artifacts is to simply train a network to reconstruct motion-
corrupted data. In this work, we first investigate this avenue, and find that motion-compensated
accelerated MRI reconstruction is very costly in terms of the amount of data required for training.
Thus, switching the task from artifact-free to motion-compensated accelerated MRI reconstruction
brings a significant burden in terms of the amount of data to be collected to train state-of-the-art MRI
models.

Subsequently, we propose to resort to untrained neural networks as an alternative. These models
operate in a single-instance reconstruction mode and do not require a large training set. We propose
an untrained network based on the ConvDecoder (Zalbagi Darestani & Heckel, 2021), an untrained
network tailored to MRI reconstruction. We specifically modify ConvDecoder’s loss function to
handle motion correction in addition to compressed sensing.

To summarize, here are our contributions:

• We demonstrate that state-of-the-art MRI reconstruction models require significantly more
data than the currently available large training sets in order to solve motion correction and
compressed sensing MRI at the same time.

• We propose an untrained network-based approach to perform motion-compensated acceler-
ated MRI reconstruction.

• We evaluate our approach for 2D and achieve competitive performance against other base-
lines such as sparsity-based and score-based models. Furthermore, proof of principle is also
demonstrated for 3D MRI data.
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1.1 PRIOR WORK

Over the past few years, several works have tackled the problem of motion artifact correction in MRI
using prospectively or retrospectively deep learning approaches. In general, one may categorize those
works as follows:

Model-based: These methods typically solve an optimization problem for each input sample by
incorporating knowledge of the physical measurement model (i.e., the forward operator A). In order
to perform motion correction, optimization is often done with respect to two sets of variables, one
parameterizing the image and one for the motion parameters. After convergence, the outputs are
estimates of the ground-truth image and motion parameters. Sparsity-based methods fall under this
category (Reyes et al., 2007; Yang et al., 2013; Mayer et al., 2022).

Data-driven: Several end-to-end deep learning-based models have made efforts to solve the motion
correction problem by training a neural network to learn a mapping from the motion-corrupted image
domain to the artifact-free image domain (Pawar et al., 2018; Al-Masni et al., 2022). These models
typically ignore the forward model and tackle the problem in a data-driven manner. A major limitation
of data-driven approaches is that reconstructed images tend to be blurry (this is an observation we
made for U-Net (Ronneberger et al., 2015) and E2E-VarNet (Sriram et al., 2020) but is also seen in
several other works (Pawar et al., 2018; Armanious et al., 2020)).

Data-driven and model-based: These methods tend to combine deep learning with model-based
optimization in order to correct motion artifacts. For example, Hossbach et al. (2022) trained a
neural network to predict motion parameters from the data, and then used those predictions as an
initialization for a sparsity-based method to correct motion artifacts. Score-based generative models
are also an example of this category. They rely on a pre-trained generator that is used inside an
optimization problem at inference. In this manner, they are claimed to be more robust against variable
motion patterns Levac et al. (2022). Score-based generative models also outperform traditional
generative models for medical imaging (Armanious et al., 2020).

2 PROBLEM SETUP: MOTION CORRUPTED COMPRESSED SENSING

Our goal is to reconstruct an image x∗ ∈ CN from undersampled measurements y = MFTx∗+z ∈
CM , where the number of measurements, M , is typically lower than the dimension of the image, N ,
and z is measurement noise. In the forward map, M is the known undersampling mask, F is the
Fourier transform, and T denotes the unknown rigid motion transform discussed in more detail below.
The measurement y is usually called the k-space in the context of MRI.

In practice, multiple receiver coils are used for signal reception, so there are nc coils each capturing a
k-space measurement with an at least a slightly different spatial sensitivity profile. Thus, there are nc

many k-spaces obtained as

yi = MFTSix
∗ + zi ∈ CM , i = 1, . . . , nc.

Here, nc denotes the number of receiver coils, Si is the complex-valued spatially-varying coil-
dependent sensitivity map of the i-th coil, that is applied through element-wise multiplication to the
image x∗, and zi is measurement noise.

2.1 MOTION ARTIFACT SYNTHESIS

We now specify the assumptions we make on the unknown motion transform T. Assuming a model
for the motion transform is important for our study, since patient movements are naturally unknown,
and thus one needs to make certain assumptions about these motion patterns in practice.

There are in general two types of motion occurring during an MRI scan: rigid motion and nonrigid
motion. Rigid motion results in linear transformations in the image and is typically caused by transla-
tions or rotations in 3D (e.g., head movements). Nonrigid motion results in anatomical deformations
in the scanned image and is typically caused by non-shape-preserving object transformations (e.g.,
respiratory motion).
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Figure 1: An example of interleaved trajectory with equispaced undersampling. In this example,
there are 3 repetition times (TRs) corresponding to 3 batches with 3 acquired lines per batch. This
means that for instance k-space lines corresponding to the 3 blue lines in the trajectory are recorded
during the first repetition time.

In this work, we primarily consider rigid motion caused by 2D translations. However, to demonstrate
that our approach is easily applicable to more complicated motion models (i.e., also including
rotations), we provide experimental results for 3D motion as well.

For 2D motion synthesis, we consider an interleaved trajectory with a 1D equispaced undersampling
pattern (with a fully-sampled center region), see Figure 1 for an example. We synthesize translation
artifacts by a simple linear phase shift in the k-space. Specifically, the k-space pixel value at
coordinates (x, y) is transformed as follows under (tx, ty) translations along the x and y axes:

k̃xy = kxy ∗ e2πj(txx+tyy).

Note that all k-space lines acquired during a given repetition time (TR) are, in a first approximation,
assumed to be acquired instantaneously, and thus these lines are affected by the same transformation.
Therefore, t number of x- and y-axis translation coefficients form the motion transform (t is the
number of TRs). From this point onward, we denote a motion transform as Tϕ where ϕ ∈ R2t

contains all translation parameters. For experiments with 3D data, ϕ ∈ R6t models 6 degrees of
freedom which are (tx, ty, tz) translations and (α, β, γ) rotations.

3 END-TO-END NETWORKS ARE COSTLY FOR MOTION-COMPENSATED
COMPRESSED SENSING MRI

Neural networks trained end-to-end give state-of-the-art accuracy for accelerated MRI reconstruction
for a static setup, i.e., for a setup where the patient does not move. Thus, a natural starting point
to develop a neural network for motion-compensated accelerated MRI is to train a neural network
end-to-end for reconstruction from motion-corrupted data. In this section, we demonstrate that
training a neural network end-to-end for motion-compensation is very expensive in the number of
training examples required.

We consider the popular class of unrolled networks, the best-performing networks for accelerated
MRI reconstruction (Sriram et al., 2020; Fabian & Soltanolkotabi, 2022). The idea behind these
models is to unroll an optimization problem and learn several iterates of it in an end-to-end manner.
Here, we study the end-to-end variational network architecture (Sriram et al., 2020) (E2E-VarNet).
For motion-corrupted accelerated MRI reconstruction, we modify each cascade of the E2E-VarNet’s
from

ki+1 = ki − η(Mki − y) +G(ki)

to

ki+1 = ki − η(MTϕk
i − y) +G(ki), (1)

in order to accound for the change in forward map. Note that only the data consistency block is
modified by incorporating the motion transform Tϕ. Here, G : Rn → Rn is a trainable neural
network (i.e., the learned regularizer) which performs refinement by mapping the current estimate of
the k-space to a refined k-space estimate for the next step. In this setup, the parameters of network G
and the parameters of a network that learns motion parameters ϕ are trained.

3



Under review as a conference paper at ICLR 2024

To evaluate the potential performance of this modified E2E-VarNet, we conduct the following
experiment. We assume that motion parameters (i.e., ϕ∗) are perfectly known during training and
inference. This is an idealized situation since in practice the motion parameters are unknown and have
to be estimated. However, studying this idealized situation clarifies whether this natural extension
of a state-of-the-art approach is capable of accurate image recovery for joint motion correction and
compressed sensing.

Experiments. We use the 2D-recorded multi-coil brain T2 portion of the fastMRI dataset (Zbontar
et al., 2020). We created a validation/test split of 160/300 slices. For the training dataset, depending
on the setup, we use a total of 850/3400/7587/21296/63888 training samples.

To vary the training set size, we compare two cases: one where we add additional slices from the
fastMRI dataset, and one where we keep the number of slices fixed but augment the dataset with more
motion patterns. For motion synthesis, we sample x and y translation parameters from a uniform
distribution tx, ty ∼ Unif(5, 10) according to the model from Section 2.1. Finally for undersampling,
we work with a 1D equispaced variable density mask (with 4x acceleration) which is the same for all
training and inference samples.

Figure 2 shows the result. Augmenting the training set with more slices (and not with more motion
patterns) improves reconstruction accuracy according to a power law. The improvement as a function
of training examples does not saturate in the span of the training set sizes that we consider. Contrary,
without motion corruption (i.e., the artifact-free regime) we are already in a regime of the power
law where only minimal performance improvements occur. The artifact-free power law is consistent
with that established for clean (without motion corruption) accelerated MRI reconstruction (Klug &
Heckel, 2023). This demonstrates that in order to train a network for motion-corrupted reconstruction,
we need a significantly larger dataset size for good performance, even in an ideal setup where we
know the motion corruption pattern.

Finally, note that according to Figure 2, a network trained on ≈60,000 images achieves 0.92 SSIM
for motion-compensated accelerated MRI reconstruction. However, in the artifact-free regime (i.e.,
when no motion appears during training/inference), the same performance is obtainable by training
the same network on only 1000 images. This demonstrates that motion-compensated accelerated
MRI reconstruction via E2E-VarNet is much more costly than solving artifact-free accelerated MRI
reconstruction.
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Figure 2: Test accuracy as a function of training set size. : Increasing the training set size by
adding more slices to the training set. : Increasing the training set size by adding more motion
patterns to a fixed set of slices. : Increasing the number of slices in the artifact-free regime
(i.e., reconstruction from clean undersampled data). By comparing the and curves, the test
accuracy scales differently based on the number of training slices which demonstrates the excessive
cost of motion-compensated compressed sensing MRI.

With respect to reconstruction quality, Figure 3 shows reconstructions for the experiment above. Note
that the reconstruction becomes blurry whenever the input sample is corrupted with motion artifacts
and this starts to alleviate with more training examples.
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Figure 3: Quality of modified E2E-VarNet reconstruction from motion-degraded undersampled
measurements improves significantly with more training data points. clean E2E-VarNet is a
network that is trained on 850 clean 4x undersampled slices and is applied to a clean test sample
(this is the best reconstruction E2E-VarNet can achieve for this test sample). vanilla E2E-VarNet
is a network that is trained on 850 motion-degraded 4x undersampled slices and is applied to a
motion-degraded test sample. modified E2EVarNet is a network with a modified DC block for
motion correction and is trained on motion-degraded 4x undersampled data, then applied to a motion-
degraded test sample. Our modified E2E-VarNet is trained on 850, 3400, 7587, 21296, and 63888
motion-degraded training slices.

4 UNTRAINED NETWORKS FOR MOTION-COMPENSATED COMPRESSED
SENSING

We propose an approach for motion compensated accelerated MRI based on untrained neural
networks. Without any training, convolutional neural networks (CNNs) can regularize inverse
problems as first demonstrated by (Ulyanov et al., 2018). Untrained network perform well for general
compressive sensing tasks (Veen et al., 2018; Heckel & Hand, 2019), and in particular for accelerated
MRI reconstruction (Arora et al., 2020; Zalbagi Darestani & Heckel, 2021; Slavkova et al., 2022).
Untrained networks outperform traditional untrained methods (such as ℓ1-regularized least squares)
but perform worse than state-of-the-art MRI reconstruction models such as unrolled neural networks
(e.g., the VarNet for static accelerated MRI).

In a nutshell, an untrained network reconstructs an image by fitting a randomly initialized neural
network to a measurement. The network is not pretrained on any training data, and the structure of
the network alone acts as a prior for the images. Note that for a given task, a few images from the
target domain are required only to tune the hyper-parameters of the network.

Although untrained CNNs are successful tools for various image restoration tasks (Ulyanov et al.,
2018; Veen et al., 2018; Heckel & Hand, 2019; Jin et al., 2021; Arora et al., 2020; Zalbagi Darestani
& Heckel, 2021; Jagatap & Hegde, 2019; Heckel, 2019), they have not yet been explored for
image reconstruction from motion-corrupted undersampled data. Here, we propose a variant of the
ConvDecoder (Zalbagi Darestani & Heckel, 2021) whose loss function is adjusted to handle motion
correction in addition to compressed sensing.
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4.1 METHOD

Let G : Rp → Rn be a neural network parameterized by θ ∈ Rp, specifically we use the convolutional
decoder architecture from (Zalbagi Darestani & Heckel, 2021). Given a measurement y we minimize
the loss

L(θ,ϕ) = ∥MFTϕSG(θ)− y∥22 (2)
with gradient descent starting from a random initialization of the network’s parameters and zero
initialization of the motion parameters. Note that we are optimizing jointly over the networks’
parameters, and thus over different images, as well as over the motion parameters, thus over different
forward maps.

This optimization yields the estimate θ̂ of the network’s parameters, and with this estimate we
reconstruct the ground truth image as x̂ = G(θ̂).

The network G we use throughout is based on (Zalbagi Darestani & Heckel, 2021) tuned on 10
randomly-selected samples from the training set of the fastMRI brain dataset (Zbontar et al., 2020).
Specifically, the network is a convolutional network with 8 layers and 64 channels per layer. Each con-
volutional layer comprises upsampling, convolution, ReLU activation, and batch normalization (Ioffe
& Szegedy, 2015) blocks. Finally, we use ESPIRiT (Uecker et al., 2014) to estimate coil sensitivity
maps S from the motion-degraded undersampled measurement.

Note that because the sensitivity maps are obtained from the corrupted undersampled data, they are
prone to an error caused by patient movements. We therefore assume mild patient movements (which
is often the case in practice), and thus the error in the coil sensitivity estimates becomes negligible.

4.2 EXPERIMENTS

We evaluate our approach for 2D and 3D motion correction tasks in the following two subsections,
respectively.

4.2.1 2D MOTION-COMPENSATED COMPRESSED SENSING MRI

Here, we conduct evaluations on 336 middle slices of AXT2 volumes from the validation portion of
the fastMRI multicoil brain dataset (Zbontar et al., 2020). Each k-space in the dataset we consider
has the shape (#coils, 640, 320) with an undersampling ratio of 4; thus 80 out of 320 lines in the
k-space are recorded. We compare our method with the score-based generative model proposed by
(Levac et al., 2022) and ℓ1-norm wavelet regularized least-squares.

For motion artifact synthesis, we follow our approach detailed in Section 2.1. Specifically, we first
corrupt the k-space with motion transform Tϕ∗ to obtain a measurement y of size (#coils, 640,
320), and then undersample the measurement with a factor of 4 using a 1D equispaced variable
density mask. Note that three quarters of the 320 vertical lines in y are now equal to zero due to
undersampling.

As for the motion pattern and trajectory of sampling, we consider three settings:

1. 10 TRs and random x and y translations tx, ty ∼ Unif(−2, 2) which results in the ground-
truth motion parameter ϕ∗ ∈ R10∗2. This means every 8 lines in the k-space are affected by
the same motion state.

2. 24 TRs and random x and y translations tx, ty ∼ Unif(−2, 2) which results in the ground-
truth motion parameter ϕ∗ ∈ R24∗2.

3. 10 TRs and x and y translations tx and ty which results in the ground-truth motion parameter
ϕ∗ ∈ R10∗2. tx and ty are generated using sine and cosine functions to create a more realistic
motion pattern in the sense that two consecutive motion states are very close to each other.

Table 1 shows the results averaged over 336 slices. The ranking of the methods is Ours > score-based
model > ℓ1-minimization and this is observed for various types of motion patterns. Figure 4 illustrates
reconstruction examples along with motion parameter plots for each method1. Looking at those

1Results of the score-based model are obtained by reproducing the code provided by the authors (Levac et al.,
2022).
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Figure 4: From the SSIM values and the reconstructions itself, we can see that our method outperforms
ℓ1-minimization and score-based reconstruction methods. From the plots below which show the
reconstructed motion parameters tx, ty for each motion state, we can see that ConvDecoder performs
best as it reconstructs the motion parameters better. Here, motion parameters are sampled from
∼ Unif(−2, 2) for each method and the acceleration factor is 4.

pattern #states SSIM
ConvDecoder (ours) ℓ1-min. score-based

random 10 0.8864 0.7406 0.7967
random 24 0.8831 0.7366 0.7643

pseudo-realistic 10 0.8824 0.7326 0.7612

Table 1: Our untrained network outperforms the ℓ1-minimization and score-based reconstruction
algorithms for three motion pattern settings. SSIM scores are averaged over 336 AXT2 slices.

examples, we find the same ranking of algorithms as when ranking by SSIM in Table 1. Please see
the supplement for further examples.

In terms of computational efficiency, our method takes approximately 6 minutes per slice (similar to
ℓ1-minimization), whereas the score-based model takes approximately 30 minutes per slice. Runtimes
were recorded on a single RTX A6000 GPU.

4.2.2 3D MOTION-COMPENSATED COMPRESSED SENSING MRI WITH UNTRAINED NETWORKS

A popular MRI protocol in practice that offers higher resolution is 3D volumetric MRI. As opposed
to a 2D slice-by-slice measurement such as the fastMRI dataset (which we explored in the previous
section), in volumetric MRI, there are two phase encoding dimensions.

Patient movements in 3D cause serious motion artifacts in volumetric MRI. In this section, we
explain how our method can be applied to such 3D data and present an example reconstruction result.
Our untrained network operates in a 2D space by default for the fastMRI dataset. To extend it to
3D, we simply replace every 2D operator by its 3D variant (e.g., replacing 2D convolutions by 3D
convolutions). In this manner, the network generates a volume instead of a slice. An immediate
consequence of this modification is a higher memory consumption and a larger inference time. Please
see Table 2 for details.

To evaluate our method on a real-world clinically-recorded sample, we consider a 3D brain volume
of size (#coil, H, W, D) = (31, 176, 176, 50). The volume is derived by downsampling a 3D Cartesian
FLAIR scan recorded at a field strength of 3T with an original matrix size of (31, 704, 352, 281).
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data type data size memory runtime
(#coils, H, W, D) (GB) (mins)

2D (4, 640, 320, 1) 2.1 6.3
3D (31, 176, 176, 50) 14.9 175.6

Table 2: Computational cost comparison between running our untrained network on a 2D or 3D
sample. GPU memory and runtime numbers are reported for an RTX A6000 GPU.

frequency
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phase
encoding
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Figure 5: The 3D sampling trajectory type we consider in our 3D motion-compensated accelerated
MRI reconstruction. Each readout along the frequency encoding direction is recorded via one
excitation.

The 3D sampling trajectory using which the volume was recorded is shown in Figure 5. For motion
artifacts, we considered 5 degrees of freedom: 3 rotations and 2 translations (we omitted z-axis
translation (feet to head direction) as the patient’s primary movement along this axis is expected to be
nodding, which is already modelled by rotation).

slice zero-filled reconstruction ground truth

13

26

28

Figure 6: 3D untrained motion-compensated compressed sensing MRI. Our qualitative analysis
shows that for the depicted slices, an untrained network reconstructs a quality image.

To reconstruct the unknown ground truth volume, we fitted the network to the 2.4× accelerated
motion corrupted volume Figure 6 shows a few slices of the reconstructed 3D volume. We observe
an amount of blurriness in all the reconstructed slices. Further, reconstructed slices 13 and 26 are of
better quality in terms of the low amount of present motion artifacts, whereas slice 28 contains some
residual artifacts.
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Figure 7: Our untrained network accurately recovers unknown motion transform parameters. Transla-
tion values are percentage of pixels and rotation values are in radian.

Finally in Figure 7, accurate recovery of motion parameters is shown. Note the offset between ground
truth and predicted translation parameters which is due to the ambiguity of the reconstruction problem
(i.e., a perfect reconstruction which is just a translated version of the ground truth image is still a
valid solution to the problem).

5 DISCUSSION AND CONCLUSION

Deep learning achieves excellent performance in controlled scenarios for solving accelerated MRI
reconstruction. However, in more realistic settings (such as accelerated MRI reconstruction from
motion-degraded data), the performance and robustness of deep learning models is unclear.

In this work, we first demonstrated that state-of-the-art MRI reconstruction models become very
expensive to use for motion-degraded MRI compressed sensing. This cost is reflected in the excessive
amount of training data they require to achieve a similar performance compared to when they are
employed for clean (artifact-free) MRI reconstruction.

We further proposed an approach based on untrained neural networks to solve the challenging task
of motion-degraded compressed sensing MRI without any need for training data. Our method
outperforms existing trained and untrained baselines w.r.t. to quantitative metrics as well as visual
quality of the reconstruction.

Our work motivates further research in the direction of untrained network based motion-compensated
compressed sensing MRI in multiple aspects. First, to study real-world (and not simulated) motion-
degraded samples recorded with motion-recording sensors attached to the patient. Second, investigat-
ing the performance of trained and untrained networks under other important types of artifacts (e.g.,
respiratory artifacts). Finally, exploring the role of underasmpling trajectory in motion-degraded
compressed sensing MRI and its effect on the performance of reconstruction models.
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A RECONSTRUCTION EXAMPLES FOR VARIOUS MOTION PATTERN SETTINGS
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Figure 8: Reconstruction examples and motion parameter plots given by our untrained network for
three settings.

12


	Introduction
	Prior work

	Problem setup: Motion corrupted compressed sensing
	Motion artifact synthesis

	End-to-end networks are costly for motion-compensated compressed sensing MRI
	Untrained networks for motion-compensated compressed sensing
	Method
	Experiments
	2D motion-compensated compressed sensing MRI
	3D motion-compensated compressed sensing MRI with untrained networks


	Discussion and Conclusion
	Reconstruction examples for various motion pattern settings

