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Explore Hybrid Modeling for Moving Infrared Small Target
Detection

Anonymous Authors

ABSTRACT
Moving infrared small target detection, crucial in contexts like traf-
fic management and maritime rescue, encounters challenges from
factors such as complex backgrounds, target occlusion, camera
shake, and motion blur. Existing algorithms fall short in compre-
hensively addressing these issues by exploring hybrid modeling,
impeding generalization in complex and dynamic motion scenes.
In this paper, we propose a hybrid modeling method for moving
infrared small target detection via smoothed-particle hydrodynam-
ics (SPH) and Markov decision processes (MDP). SPH can simulate
the motion trajectories of targets and background scenes, while
MDP can optimize detection system strategies for optimal action
selection based on contexts and target states. Specifically, we de-
velop an SPH-inspired image-level enhancement algorithm which
models the image sequence of infrared video as a 3D spatiotempo-
ral graph in SPH. In addition, we design an MDP-guided temporal
feature perception module. This module selects reference frames,
aggregates features from both reference frames and the current
frame. The previous and current frames are modeled as an MDP
tailored for multi-frame infrared small target detection tasks, aiding
in detecting the current frame. Conducted extensive experiments
on two public dataset: DAUB and DATR, the proposed network
surpasses the state-of-the-art methods in terms of objective metrics
and visual quality.

CCS CONCEPTS
• Computing methodologies→ Object detection; Matching.

KEYWORDS
Moving infrared small target detection, Deep Learning, Mathemat-
ical model, Smoothed-particle hydrodynamics, Markov decision
processes

1 INTRODUCTION
Identifying moving targets in challenging weather conditions such
as fog and heavy rain is often difficult with visible light videos.
In contrast, infrared (IR) videos offer more reliable target detec-
tion, even in adverse weather, due to their unique imaging mech-
anism [26, 36, 39]. Accordingly, detecting small moving targets,
derived from this unique modality, i.e., IR videos, is a prominent
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Figure 1: Typical issue with moving infrared small targets.
Small targets marked by red bounding boxes, interferences
by yellow.

subject in computer vision, widely applied in traffic management
and maritime rescue [28, 37].

As shown in Figure 1, the long-distance nature of infrared imag-
ing results in insufficient information regarding target details such
as size, shape, and texture. Challenges arise for moving infrared
targets, including complex background, motion blur, interference
and camera shake [9, 21]. Addressing these internal and external
factors makes the task of detecting moving infrared small targets
in video sequences exceptionally challenging.

In recent years, numerous algorithms have emerged for infrared
small target detection [6, 12, 30, 38], categorized into single-frame
and multi-frame methods. Single-frame methods focus on small tar-
get characteristics, utilizing complex nested network structures and
attention modules to minimize information loss during pooling and
downsampling processes. DNA-Net [20] employs densely nested
interactive and spatial attention modules for feature fusion and
enhancement, while UIU-Net [31] achieves multi-level learning
by embedding a small U-Net into a larger one, yielding promis-
ing results in single-frame detection. However, limitations such as
occlusion, motion blur, and camera shake hinder single-frame meth-
ods’ efficacy in capturing moving infrared small targets. Human
visual judgment can infer a blurry target’s identity by leverag-
ing information from adjacent frames in videos. Utilizing multiple
frames provides rich temporal information compared to a single
frame, enabling various multi-frame methods like image-level target
enhancement and temporal feature perception [4, 25, 32, 45].

For image-level target enhancement, Du et al. [10] enhance small
targets through inter-frame alignment, yet overlook spatial informa-
tion’s significance. Zhu et al. [45] leverage optical flow to enhance

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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moving targets, but this method assumes constant target brightness,
which may not hold for infrared small targets due to fluctuations
caused by factors like temperature changes and occlusions. In addi-
tion, direct application of mainstream YOLO series enhancement
algorithms[15, 18, 19] like mosaic enhancement to infrared small
targets often leads to target loss. In summary, existing image-level
enhancement methods have progressed but have limitations on
specific modalities like IR videos, thus failing to achieve desired
detection effects. Can we view image-level target enhancement from
a mathematical modeling perspective? By scientifically modeling the
motion state of the target, we can capture more temporal informa-
tion. Smoothed Particle Hydrodynamics (SPH) simulates fluid be-
havior by dividing it into particles and simulating their interactions.
SPH can model image-level enhancement, simulating information
transmission and interaction within IR images, thus facilitating
enhancement.

For temporal feature perception, existing methods often em-
ploy complex temporal feature aggregation networks. For instance,
SSTNet [4] leverages LSTM’s memory prediction and a cross-slice
ConvLSTM structure to aggregate temporal information. Luo et
al. [22] utilize dense nested structures and optical flow to design
a multi-scale optical flow reconstruction network for capturing
moving small targets. The above temporal feature aggregation net-
works utilize neural networks’ nonlinear properties and parameter
learning to handle complex temporal data, potentially boosting
performance at the cost of increased training expenses. Can we
treat temporal feature perception as a prediction task and model state
evolution in time-series IR data? TheMarkov decision process (MDP)
can offer a simplified approach to modeling time-series IR data by
abstracting it into states and corresponding transition probabilities.
This can allow us tomove away from complex temporal aggregation
networks and focus on prediction instead.

In this paper, we propose a method to explore hybrid models
for detecting small moving infrared targets using SPH and MDP.
Inspired by SPH, we represent motion as fluid dynamics at the
image level, with the background and target modeled as stationary
and moving particles, respectively. We develop an SPH-inspired
image-level enhancement algorithm, using 3D spatiotemporal mod-
eling and SPH Gaussian elliptical kernels for 3D sliding filtering.
During sliding, it enhances local contrast and aggregates temporal
information, improving efficiency and unifying spatiotemporal di-
mensions. In addition, we design an MDP-guided temporal feature
perception module, comprising a lightweight feature aggregation
network and a prediction propagation module. It enriches the tem-
poral information of the target in the current frame by aggregating
the reference frame, while reusing detection results from the pre-
vious frame and integrating current frame predictions to model
the Markov decision. This assists in detecting the current frame
across various modeling states and extracting temporal information
from multiple frames. Experimental results on two public datasets
DAUB[16] and DATR[13], incorporating multiple metrics, indicate
that the proposed method outperforms the state of-the-art (SOTA)
methods.

·We find hybird models for moving infrared dim-small target
detection, with SPH and MDP playing a crucial role. These models
describe target motion and background changes, optimize decision
strategies, and boost detection system performance and efficiency.

Experimental results on the DAUB and DATR datasets show that
our method surpasses the SOTA methods.

· We pioneer a mathematical approach to image-level target
enhancement and design an SPH-inspired image-level enhancement
algorithm. Due to SPH’s ability to establish strong spatiotemporal
relationships, our enhancement algorithm effectively retains details
and structure in IR videos, yielding enhanced images with greater
accuracy and naturalness.

· We make the first attempt to treat temporal feature perception
as a prediction task by designing an MDP-guided temporal feature
perception module. This tightly connected and hierarchical mod-
ule fully exploits temporal information and detection results from
reference frames. Modeling the motion process as a Markov model
follows explicit and interpretable design principles.

2 RELATEDWORK
2.1 Infrared Small Target Detection in Image
Due to the characteristics of infrared imaging, traditional single-
frame detectionmainly focuses onmodeling the relationship among
the target, background, and noise. Traditional algorithms include
filter-based methods such as maximum median/mean filters [9] and
new top-hat filters [1], human visual system-based local contrast
algorithms like LCM [3] and the improved algorithm MPCM [29]
based on local contrast, as well as detection algorithms based on
sparse representation, such as IPI [14] and improved RIPT [7], etc.
However, these methods often lack balance between background
suppression and target enhancement and rely heavily on manually
extracted features, resulting in lower accuracy and higher false
alarm rates.

Influenced by CNN, single-frame infrared small target detection
based on deep learning has become mainstream. Dai et al. [8] utilize
bottom-up attention modulation, integrating low-level features into
deeper high-level features. Zhang et al. [40] design Taylor finite
difference-inspired edge blocks and direction attention aggregation
blocks, effectively addressing challenges in detecting the shape of
infrared small targets. In addition, Zhang et al. [38] try to introduce
pruning into small target detection, and used wavelet pruning rules
and regularization methods to achieve infrared efficient pruning.
Zhu et al. [44] design a group of cross stage partial networks and
a spatial attention module with global average contrast to obtain
local and global spatial semantics. Jia et al. [17] abandon the global
transformer and the convolutional sliding window of CNN, regarde
the local area of the image as a graph node, and apply the graph neu-
ral network to infrared small target detection. In order to improve
the multi-scale perception ability of the network, Fang et al.[12]
designed a scale-adaptive feature enhancement mechanism and an
attention-guided cross-weighted feature aggregator. While these
single-frame detections excel in feature extraction for stationary
targets, applying them to moving small targets faces performance
limitations due to unique challenges.

2.2 Infrared Small Target Detection in Video
Multi-frame detection, with its unique and rich temporal infor-
mation, outperforms single-frame detection in both accuracy and
speed. Traditional multi-frame detection algorithms typically em-
ploy methods like energy accumulation. For instance, Zhang et al.
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Figure 2: Overview of the proposed method. On the left is the designed SPH-inspired image-level enhancement algorithm
(Section 3.2), which is used in the image preprocessing stage. On the right is the designed MDP-guided temporal feature
perception module (Section 3.3), which consists of three parts, inculding the frame selection module, the temporal feature
aggregation network and the frame propagation module based on Markov decision modeling.

[35] simplify the three-dimensional spatiotemporal information
into a two-dimensional search, accumulating target energy based
on motion direction. Background modeling methods include Zhou
et al. [41] modeling the current frame and background in the Fourier
domain, and Wang et al. [27] establishing a spatiotemporal tensor
model, representing target extraction as a low-rank and sparse
tensor decomposition problem. However, traditional algorithms
still face challenges such as poor robustness and high complexity,
despite performing well in specific scenarios.

With the development of deep learning, especially in video object
detection, the focus of multi-frame infrared small target detection
has shifted towards deep learning. The emergence of two-stage
Faster-RCNN algorithms [23], and the widespread application of
one-stage, YOLO series object detection algorithms have driven
advancements in video object detection. FGFA [46] distorts and
aggregates adjacent frames onto the current frame through optical
flow networks, enhancing target information. MEGA [5] utilizes
both local and global temporal information to enhance detection
in the current frame. YOLOV [24], based on a one-stage detector,
achieves significant success in inference speed by borrowing ideas
from region proposals in two-stage detection. TransVOD++[43]
proposes a temporal Transformer to aggregate spatial object queries
and feature memories of frames. However, these general detection
methods excel in learning capabilities for textured medium or large-
sized targets but may not universally apply to multi-frame infrared
small target detection due to infrared imaging characteristics.

Zhou et al. [42] propose an infrared image preprocessing and
enhancement algorithm, using techniques like clahe, histogram
stretching, and automatic gamma adjustment to enhance each chan-
nel separately and extract abundant feature information. But spatial
domain enhancement alone is ineffective for moving target scenar-
ios. Yan et al. [33] design a multiscale spatiotemporal difference
attention network to aggregate more temporal information in fea-
ture extraction, achieving a good balance between target discovery
and background suppression. Similarly, Bai et al. [2] introduce a
cross-connected bidirectional pyramid structure and variable ROI
pooling to enhance spatiotemporal information. Nevertheless, ag-
gregating temporal information from complex network structures

increases training and prediction costs. To mitigate this, Fan et al.
[11] combine a lightweight target detection network with target
tracking strategies to introduce motion target detection into track-
ing. Yuan et al. [34] design a dedicated module for infrared small
target detection and use prior predictions during inference to guide
the final output. However, the proposed method only improves
upon CIOU but does not fully utilize temporal information dur-
ing prediction. In summary, the above mentioned method lacks
robust mathematical modeling due to the complexity of scenes and
variations in this field, hindering comprehensive description with
simple mathematical models. This limitation constrains the devel-
opment of such detection methods, potentially resulting in subpar
performance of existing algorithms in real-world applications.

3 METHODOLOGY
3.1 Overall Architecture
The proposedmethod, illustrated in Figure 2, is based on the YOLOX
[15] framework. Given a set of input frames 𝑄 with a range of
2𝑇 + 1, where 𝑄 =

{
𝐼𝑡−𝑇 , 𝐼𝑡−(𝑇−1) , · · · , 𝐼𝑡 , 𝐼𝑡+1, · · · , 𝐼𝑡+𝑇

}
, before

entering the network, it is first modeled as a 3D spatiotemporal
graph using the proposed SPH-inspired image-level enhancement
algorithm (Section 3.2) for enhancing targets and suppressing back-
grounds. At this point, the current frame 𝐼𝑡 in 𝑄 is significantly
enhanced. Subsequently, the entire set of frames is transmitted to
a feature extraction network for feature extraction. The feature
extraction network adopts an FPN+PAN structure, with all input
frames sharing convolutional weights. Later, the output feature
set {𝐹𝑖 } , 𝑖 = 𝑡 − 𝑇, 𝑡 − 𝑇 + 1, · · · 𝑡, 𝑡 + 1, · · · 𝑡 + 𝑇, enters the pro-
posed MDP-guided temporal feature perception module (Section
3.3). This module comprises three parts: selection, aggregation, and
propagation. Firstly, a selection module picks out a reference frame
feature map 𝐹𝑠 (𝑠 ∈ 𝑄, 𝑠 ≠ 𝑡) more effective for the current frame
feature map 𝐹𝑡 . Then, 𝐹𝑡 and 𝐹𝑠 are jointly input into an aggregation
network for fusion, based on a multi-head attention mechanism
and multi-scale fusion network. Finally, the propagation module
transfers detection results from the previous frame 𝐹𝑡−1 (𝑡 ≥ 1) to
the current frame 𝐹𝑡 , aiding in current frame detection.
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3.2 SPH-inspired image-level enhancement
algorithm

The local contrast method is commonly used for enhancing infrared
small targets, but it typically employs square-shaped kernels and
operates on single-frame images. In this study, we introduce an SPH-
inspired image-level enhancement algorithm that models sequences
as 3D spatiotemporal grids. It replaces square-shaped kernels with
Gaussian elliptical kernels from SPH to enhance targets in both
temporal and spatial dimensions. Inspired by SPH density fields,
this approach is combined with Gaussian difference, as illustrated
in Figure 3.

Because of the fixed filter size and variable target sizes, using
a square kernel may blend target and background information.
Employing a Gaussian elliptical kernel in SPH for local contrast
accommodates diverse target sizes. The Gaussian ellipse expression
is as follows:

Ω :
(𝑥 cos𝜃 − 𝑦 sin𝜃 )2

(2
√
2𝐿𝑚𝑎𝑥 )2

+ (𝑥 cos𝜃 + 𝑦 sin𝜃 )2

(
√
2𝐿𝑚𝑎𝑥 )2

= 1, (1)

where 𝐿𝑚𝑎𝑥 denotes the maximum value among all target sizes. 𝜃
represents the rotation angle of the ellipse, with this paper is 𝜋/4.

Inspired by SPH, we regard particles in the fluid as targets and
background in the IR video, where the mass of particles corresponds
to pixel values. The continuous density field computed by SPH is the
ratio of the total mass of particles within a local sampling volume to
the volume of the sampling volume. Similarly, we can approximate
the pixel value of the central pixel in the elliptical kernel by the
ratio of the sum of pixel values within the elliptical kernel to the
area of the kernel. The calculation formula is as:

𝐼𝑎𝑣𝑔 =
1
𝑆Ω

𝑁∑︁
𝑖=1

𝜔𝑖 𝐼𝑖 , (2)

where 𝑁 represents all the pixels within the elliptical kernel, 𝐼𝑖
is their corresponding pixel values, 𝑆Ω denotes the area of the
elliptical kernel, and 𝜔 stands for the weighting coefficient, which
depends on the distance between the pixel and the central pixel.

Subsequently, we divide the elliptical kernel into 9 sub-windows
along its major and minor axes. During the sliding process in the
spatial dimension, calculate the maximum pixel value 𝐼𝑚𝑎𝑥 in the
central sub-window. Compute the average grayscale value 𝑔𝑖 and
the maximum pixel value 𝑔𝑚𝑎𝑥 for various sub-windows around
the ellipse. The final enhancement for single-image is expressed as:

𝐸𝑡 = min
𝑖

𝐼2𝑎𝑣𝑔

𝑔𝑖
× 𝜀 (𝐼𝑚𝑎𝑥 −𝐺𝑚𝑎𝑥 ) , (3)

where 𝜀 represents the unit step function. As indicated by the for-
mula, when the target is located in the central sub-window, the
target is enhanced at that point.

Based on the rotational symmetry of the Gaussian ellipse, Gauss-
ian ellipse filtering is performed in the temporal dimension. This
approach efficiently achieves edge detection and key point detec-
tion, aligning features across frames, and ultimately enhancing the
target. The final aggregation enhancement formula is as follows:

𝐸𝑓 𝑖𝑛𝑎𝑙 = 𝑁

(
𝑡+𝑇∑︁

𝑖=𝑡−𝑇
𝑠𝑢𝑏 (𝑓𝑤𝑎𝑟𝑝 (𝐺𝑡 ∗ 𝐸𝑡 −𝐺𝑖 ∗ 𝐸𝑖 ) , 𝐸𝑡 )

)
, (4)
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Figure 3: Overview of the SPH-inspired image-level enhance-
ment algorithm. The black cylinder represents the motion
trajectory of the background. It can be observed that, within
a short-term frame, the background undergoes no significant
changes, while the red cylinder exhibits a noticeable twist,
allowing the capture of moving targets using temporal infor-
mation.

where 𝑁 denotes normalization, 𝑠𝑢𝑏 represents background sub-
traction, 𝑓𝑤𝑎𝑟𝑝 signifies feature alignment with the SIFT algorithm,
𝑖 indicates the reference frame value, and𝐺 stands for the Gaussian
difference function. The expression is as follows:

𝐺 (𝑥,𝑦) = 1√︃
2𝜋𝜎21

𝑒𝑥𝑝

(
−𝑥

2 + 𝑦2

2𝜎2

)
. (5)

3.3 MDP-guided temporal feature perception
module

MDP displaymemorylessness, where the probability of future states
depends only on the current state and is unaffected by past states.
This property makes them well-suited for handling sequential data
like image sequences, effectively capturing relationships between
time intervals. Moreover, MDP effectively model the relationship
between past data and future decisions, making them suitable for
predicting target positions, states, and other information in time
sequences. Accordingly, we can treat temporal feature perception as
a prediction task byMPD. Andwe develop anMDP-guided temporal
feature perception module to simplify modeling temporal data by
abstracting it into states and corresponding transition probabilities.
This reduction in complexity cuts computational costs and enhances
interpretation of the model’s behavior.

In fact, the MDP-guided temporal feature perception module is
divided into three sub-modules: frame selection module, feature-
level spatiotemporal information aggregation module, and frame-
level prediction information propagation module.

Frame selection module. According to the backbone structure
of YOLOX, the frame set 𝑄 ∈ R3×𝑇×𝑊 ×𝐻 , after passing through
the feature extraction network, produces outputs for three scales:
𝐹
𝑗
𝑖

∈ R𝐶 𝑗×(2𝑇+1)×𝑊𝑗×𝐻 𝑗 , 𝑗 = 1, 2, 3 , Here, 𝐶 𝑗 comprises three
channels with values [128, 256, 512], and𝑊𝑗 = 𝐻 𝑗 = [64, 32, 16].
For efficient reference frame selection, the second scale (𝐹 3

𝑖
∈
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R256×(2𝑇+1)×32×32) is chosen to match the image scale required
by the similarity calculation algorithm.

First, we compute the similarity between frames 𝐹𝑡−1, 𝐹𝑡 , and
𝐹𝑡+1 using the perceptual hash algorithm (𝑝𝐻𝑎𝑠ℎ) as:

𝑆𝑖𝑚 (𝑖 ) = 𝑝𝐻𝑎𝑠ℎ (𝐹𝑡−1, 𝐹𝑡 , 𝐹𝑡+1) , (6)

where 𝑝𝐻𝑎𝑠ℎ stands for the perceptual hash algorithm. This algo-
rithm takes fixed-size 32×32 inputs and employs Discrete Cosine
Transform (DCT) for pairwise image comparison, yielding the sim-
ilarity value through Hamming distance.

After obtaining three sub-similarity values, they are normalized
to the range (1,𝑇 ), while acquiring the normalization weight 𝜔𝑛𝑜𝑟 .
The expression for 𝜔𝑛𝑜𝑟 is:

𝜔𝑛𝑜𝑟 = (𝑇 − 1) /
(
𝑆𝑖𝑚 (𝑖𝑚𝑎𝑥 ) − 𝑆𝑖𝑚 (𝑖𝑚𝑖𝑛)

)
, (7)

where 𝜔𝑛𝑜𝑟 represents the normalized coefficient weight. The final
index value is calculated as:

𝑖𝑛𝑑𝑒𝑥 = [1 + 𝜔𝑛𝑜𝑟 ×
1
𝑁

∑︁
𝑖

𝑆𝑖𝑚 (𝑖 ) ] . (8)

where [] represents rounding up, 𝑁 is the total number of obtained
similarity values. Frame selection effectively avoids redundancy in
spatiotemporal information. High similarity between the current
frame and adjacent frames may indicate occlusion, stationary tar-
gets, or slow motion. In such cases, the index obtains a larger value,
directing attention to more distant and relevant frames. This aligns
with human visual perception, extracting richer information from
distant frames and eliminating redundant information from similar
adjacent frames, facilitating target acquisition. These principles
serve as the starting point for designing frame selection modules.

Feature aggregation module. After selecting reference frames,
the chosen feature set

{
𝐹
′
𝑖

}
, where 𝑖 = 𝑡 − 𝑘, 𝑡 − 1, 𝑡, 𝑡 + 1, 𝑡 + 𝑘 (𝑘 =

𝑖𝑛𝑑𝑒𝑥), is fed into a lightweight aggregation network for spatiotem-
poral fusion. This network aggregates features from adjacent frames
𝐹
′
𝑡+1 and further reference frames 𝐹

′

𝑡+𝑘 , followed by fine aggrega-
tion with the current frame 𝐹

′
𝑡 . The aggregation process resembles

a transformer’s encoder-decoder structure, incorporating residual
connections and multi-head attention modules to enhance tempo-
ral features. Due to network symmetry, the explanation is based
on one side’s structure. Initially, the spatiotemporal information
of the distant reference frame 𝐹𝑡+𝑘 is aggregated with 𝐹𝑡+1. The
aggregation formula is as follows:

𝐹 1𝐴𝑔𝑔 = 𝜎 [𝑓 (𝐹𝑡+𝑘 ) , 𝑓 (𝐹𝑡+1)] ⊗ 𝑓 (𝐹𝑡+𝑘 ) ⊕ 𝑓 (𝐹𝑡+1) , (9)

where 𝜎 represents the sigmoid activation function, [] denotes con-
catenation, ⊗ is element-wise multiplication, ⊕ indicates element-
wise addition, and 𝑓 stands for the convolution operation. Similarly,
𝐹 2
𝐴𝑔𝑔

is derived from 𝐹𝑡−𝑘 and 𝐹𝑡−1. 𝐹 1𝐴𝑔𝑔 and 𝐹 2
𝐴𝑔𝑔

now represent
feature maps obtained by fusing temporal features from adjacent
and distant reference frames. Subsequently, they are concatenated
with the current frame in preparation for the final temporal feature
aggregation. The formula is as follows:

𝐹
′
𝐴𝑔𝑔 =

[
𝐹 1𝐴𝑔𝑔, 𝐹

′
𝑡 , 𝐹

2
𝐴𝑔𝑔

]
⊕ 𝑃𝐸, (10)

where 𝑃𝐸 is the added positional encoding, 𝐹
′
𝑡 represents the current

frame. The input 𝐹
′
𝐴𝑔𝑔

undergoes initial feature extraction through

normalization and convolutional layers. The formula is:

𝐹
′′
𝐴𝑔𝑔 = 𝑓

(
𝑁𝑜𝑟𝑚

(
𝐹
′
𝐴𝑔𝑔

))
⊕ 𝐹

′
𝐴𝑔𝑔, (11)

where 𝑁𝑜𝑟𝑚 denotes normalization, 𝑓 represents the convolution
operation. Following enhancement processing via the multi-head
attention module, we obtain the final feature map 𝐹𝐴𝑔𝑔 , defined as
follows:

𝐹𝐴𝑔𝑔 = Φ
(
𝐹
′′
𝐴𝑔𝑔

)
⊗ 𝐹

′′
𝐴𝑔𝑔 ⊕ 𝐹

′
𝐴𝑔𝑔 . (12)

where Φ represents the multi-head attention module.
Predictive propagationmodule. After feature aggregation, the

aggregated frame 𝐹𝐴𝑔𝑔 is fed into the decoupling head for informa-
tion prediction. The predicted results, including target coordinates,
classification information, and object presence, are then decoded.
When 𝑡 ≥ 1, we model the motion of small IR targets using an MDP.
We utilize the detection results from the previous frame to cor-
rect the detection results for the current frame. The MDP consists
of quintuplicate variables: 𝑀𝐷𝑃 (𝑆,𝐴, 𝑃, 𝑅, 𝜋). Here, 𝑆 represents
target states, categorized as presence or absence. 𝐴 stands for the
actions performed between states, including detecting the IR target
in both frames, not detecting the IR target in both frames, detecting
the IR target in the previous frame but not in the subsequent frame,
and not detecting the IR target in the previous frame but detecting it
in the subsequent frame. 𝑃 denotes the set of state transitions, while
𝑅 signifies the reward function, indicating the rewards obtained
when different actions are taken in a certain state. The policy 𝜋

defines the actions 𝐴 that the model may take under various states
𝑆 , along with their corresponding probabilities. By learning each
policy, we obtain locally maximal rewards and ultimately achieve
the optimal result for the entire detection process. Additionally, we
define a dynamic frame variable 𝑘 , storing the most recent IR target
detection outcome.

If the IR target is detected in the current frame, we match the
policy with the result from the previous frame. The reward function
at this point is defined as follows:

𝑅1𝑡−1→𝑡 = 𝜀

(
min
𝑖, 𝑗

(√︂(
𝑥𝑖𝑡 − 𝑥

𝑗

𝑡−1

)2
+

(
𝑦𝑖𝑡 − 𝑦

𝑗

𝑡−1

)2))
, (13)

where 𝑖 and 𝑗 are the top five highest-scoring results detected in
the current frame and the previous frame, respectively. 𝜀 represents
the IR target state of the previous frame, defines as follows:

𝜀 =

{
1, 𝑖 𝑓 𝑏𝑜𝑥 𝑒𝑥𝑖𝑠𝑡𝑠 ;
0, 𝑖 𝑓 𝑏𝑜𝑥 𝑖𝑠 𝑙𝑜𝑠𝑡 ;

(14)

If the IR target remains undetected in the current frame, the
reward function is as follows:

𝑅2𝑡−1→𝑡 = 𝜀 × 𝜏𝑡−1 + (1 − 𝜀) × 𝜏𝑘 , (15)

where 𝜏𝑘 represents the results detected in the most recent frame
𝑘 . Actually, the overall reward function is defined as follows:

𝑅𝑡−1→𝑡 = 𝑝 [𝑞 × 𝑅1𝑡−1→𝑡 + (1 − 𝑞) × 𝑅2𝑡−1→𝑡 ]+
(1 − 𝑝) [𝑞 × 𝑅2𝑡−1→𝑡 + (1 − 𝑞) × 𝑅1𝑡−1→𝑡 ] .

(16)

where 𝑝 and 𝑞 have the same expression as 𝜀, representing the
values of the previous frame and the current frame in two different
states 𝑆 .



581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ACM MM, 2024, Melbourne, Australia Anonymous Authors

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

GT SANet UIU-Net YOLOX TransVOD++ YOLOV OursFaster-RCNN

(a) (g)(f)(e)(d)(c)(b) (h)

Figure 4: Visual results of different methods. The red boxes represent correctly detected targets, the blue boxes represent false
alarms, and the yellow boxes represent missed detections. The first column represents the ground truth and the rest of the
columns represent the visual result of Faster-RCNN, SANet, UIU-Net, YOLOX, TransVOD++, YOLOV, and Ours respectively.

Finally, the adjusted IR target box and score information are com-
pared with the ground truth for loss calculation, and the ultimate
loss expression is as follows:

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝜆𝐿𝑟𝑒𝑔 + 𝐿𝑐𝑙𝑠 + 𝐿𝑜𝑏 𝑗 . (17)

where 𝐿𝑟𝑒𝑔 indicates the regression loss, 𝐿𝑐𝑙𝑠 is the classification
loss, and 𝐿𝑜𝑏 𝑗 represents the confidence loss.

4 EXPERIMENT
4.1 Dataset and Implementation Details
4.1.1 Dataset. We conduct extensive experiments on the proposed
method using two publicly infrared small target datasets DAUB
and DATR, along with comprehensive comparative and thorough
ablation experiments. The DAUB dataset comprises various scenar-
ios under sky and ground backgrounds, with a total of 22 video
sequences. We select 18 sequences that meet the definition of small
targets and divide the dataset into a 7:3 training-validation ratio.
The training set includes 11 sequences with a total of 9734 frames,
while the validation set comprises 6 sequences with 4044 images.
The background of the DATR dataset is relatively simple, mainly
for tracking and detecting vehicles, but it contains more targets

per frame. The DATR dataset comprises 87 video sequences, with
each sequence divided into 250 frames. Sequences 1-76 form the
training set with 19000 images, and sequences 77-87 constitute the
validation set with 2500 images.
4.1.2 Implementation Details. For all experiments, we standardize
input images to 512×512 and apply the same data augmentation
strategy. During training, we utilize the SGD optimizer with an
initial learning rate of 0.01, momentum of 0.937, weight decay of
5 × 10−4, and a learning rate reduction factor of 0.1. For DAUB
dataset, the maximum training epochs are set to 100, with early
termination if performance do not change over multiple epochs,
while for DATR dataset, the maximum training epochs are set to 20.
The batch size is set to 8, and during the training process, confidence
threshold is set to 0.65, and non-maximum suppression is set to 0.3.
All experiments are conducted on two NVIDIA RTX-3080 GPUs.
4.1.3 Evaluation Metrics. We use object-level evaluation metrics
to assess our model’s performance, including precision, recall, and
F1 score. Precision represents the probability of correct predictions,
recall represents the probability of accurate predictions, and the
F1 score is the harmonic mean of precision and recall, reflecting
the balance between the two. The definition of these metrics are as
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Table 1: Comparison of different methods on the DAUB
dataset.

Method Pre(%) Rec(%) F1(%) mAP50(%)

UIU-Net[31] 88.02 94.1 90.96 82.13
DNANet[20] 93.54 96.18 94.84 89.32
SANet[44] 92.99 96.11 94.52 83.3

Faster-RCNN[23] 45.28 57.16 50.57 40.9
YOLOv5[18] 91.45 95.82 93.58 88.83
YOLOX[15] 95.93 92.95 94.42 88.97
YOLOv8[19] 94.2 59.4 72.86 77.26
YOLOv[24] 91.58 80.85 85.88 72.62

TransVOD++[43] 83.78 65.34 73.42 54.48
Ours 97.38 97.04 97.21 94.26
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Figure 5: PR curves of different methods on DAUB dataset.

follows:
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
, (18)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
, (19)

𝐹1 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
, (20)

where TP, FP, FN denote the true positive, false positive, false nega-
tive, respectively.

In addition, we compute the PR curve of the model. The PR
curve reflects the relationship between precision and recall at dif-
ferent confidence levels. From this curve, we derive mAP using the
following formula:

𝑚𝐴𝑃 =
1
𝑛

𝑛∑︁
1

∫ 1

0
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑟𝑒𝑐𝑎𝑙𝑙)𝑑 (𝑟𝑒𝑐𝑎𝑙𝑙) . (21)

In this study, 𝑛 denotes the number of target categories, which is 1.
Additionally, we use an IOU threshold of 0.5 for computing mAP,
referred to as mAP50.

4.2 Quantitative Results
We quantitatively compare the proposed method’s performance
based on mAP50, precision, recall rate, and F1 score, along with

Table 2: Comparison of different methods on the DATR
dataset.

Method Pre(%) Rec(%) F1(%) mAP50(%)

UIU-Net[31] 98.51 93.32 96.21 92.32
DNANet[20] 97.13 84.39 90.31 81.36
SANet[44] 98.39 92.55 95.38 91.63

Faster-RCNN[23] 75.82 88.92 81.85 66.13
YOLOv5[18] 89.44 95.74 92.48 84.27
YOLOX[15] 98.72 95.43 97.00 94.02
YOLOv8[19] 93.97 88.81 91.32 82.29
YOLOv[24] 98.56 96.12 97.63 93.60

TransVOD++[43] 70.65 62.91 66.56 43.50
Ours 99.32 97.44 97.86 96.13
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Figure 6: PR curves of different methods on DATR dataset.

Precision-Recall (P-R) curves. Tables 1 and 2 present the metrics
for the 9 object detection methods, including UIU-Net, DNA-Net,
SANet, Faster-RCNN, YOLOv5, YOLOX, YOLOv8, TransVOD++
and YOLOV. Our method consistently outperforms others across
all metrics, showing superior detection performance. For instance,
on the DAUB dataset, our method improves precision, recall, F1,
and mAP50 by 3.84%, 0.86%, 2.37%, and 4.94% over the second-
ranked methods(DNA-Net), respectively. Notably, Faster-RCNN
performs the poorest, potentially due to excessive candidate box
generation. While YOLO series detectors show promising results,
image enhancement algorithms in preprocessing may overshadow
objects, affecting overall performance. Infrared small target de-
tection algorithms achieve excellent results but are hampered by
complex networks, leading to slow training and inference speeds.
Video detection algorithms like YOLOV and TransVOD++ exhibit
poor performance due to unsuitable temporal feature aggregation
networks for infrared small targets. While on DATR dataset, our
method likewise achieves the best results on four metrics. It im-
proves precision, recall, F1, and mAP50 by 0.6%, 2.01%, 0.86%, and
2.11% over the second-ranked methods(YOLOX). Compared with
the DAUB dataset, most of the methods have achieved better im-
provement on the DATR dataset, and we believe that the reason
is that the small targets in the DATR dataset are relatively larger,
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the background is relatively simple. It also has to do with how the
dataset is divided.

The Precision-Recall (P-R) curve, illustrated in Figure 5 and 6, is
a crucial comprehensive metric. It computes precision and recall
at various thresholds, revealing the correlation between them and
evaluating the relevance of detection results. A curve closer to
the upper right corner signifies superior network performance. In
Figure 5, our curve, highlighted in red, notably covers almost all the
compared methods in the upper right corner, demonstrating our
network’s superior balance between accuracy and recall, resulting
in the best overall performance. In addition, it can be seen that the
curve of Faster-RCNN is the most flat, and the curve of YOLOV and
YOLOv8 ends quickly with the increase of recall. The curves of the
rest of the methods are not much different, but they are all below
our curve as a whole. This is consistent with the above analysis
and experimental results.

4.3 Visual Results
For a more intuitive comparison of contrastive effects, we select six
existing methods for visual comparison with our network. And we
choosed several typical scenarios in the DAUB dataset, including
mountains, clouds, cities, and forests. As depicted in Figure 4, our
method accurately locates small targets without producing missed
detections or false positives at the same IOU threshold, and it can
be clearly seen that the results of our method are highly consistent
with the groundtruth. Faster-RCNN exhibits the highest number of
missed detections and false positives. This is in line with the results
of quantitative experiments. Among single-frame infrared small
target detection networks, SANet achieves the highest accuracy but
still encounters false positives and missed detections. In the case of
the two video detectors, TransVOD++ demonstrates subpar visual
results, possibly due to challenges in training as a transformer
detector and limited applicability to multi-frame infrared small
target detection as a general detection framework. YOLOV has a
good detection effect in simple backgrounds, but missed detections
and false detections occur in complex backgrounds and very small
target situations. Because of the image preprocessing stage of YOLO
causes confusion of complex backgrounds and targets, resulting in
submerged targets. YOLOX showed good results, but their detection
boxes did not have the best coincidence with the groundtruth.

4.4 Ablation Study
To validate the effectiveness of our proposed modules, we con-
duct ablation experiments, with results shown in Table 3. The
base network solely utilizes YOLOX as the detector, without in-
tegrating the SPH-inspired image-level enhancement algorithm
and MDP-guided temporal feature perception module. We then
progressively add these components to YOLOX and observed their
impact. Results indicate significant enhancements when incorpo-
rating both the MDP-guided temporal feature perception module
and the SPH-inspired image-level enhancement algorithm into the
base framework. Specifically, on both datasets, the baseline with the
SPH-inspired image-level enhancement algorithm improves mAP50
by 1.38% and 1.52%, respectively. Similarly, the baseline with the
MDP-guided temporal feature perception module improves mAP50
by 3.07% and 1.94%, respectively. Notably, combining both modules

Table 3: Ablation experiments for components of the pro-
posed method on DAUB dataset.

Method mAP50(%) mAP0.50:0.95(%)

YOLOX 88.97 50.33
+MDP-guided 92.04 52.27
+SPH-inspired 90.35 51.85

+MDP-guided+SPH-inspired 94.26 54.32

results in synergistic effects, elevating mAP50 by 5.29% and 3.99%,
respectively, demonstrating a greater performance boost than the
sum of their individual contributions.

Through ablation experiments, we observe a notable trend: the
MDP-guided temporal feature perception module outperforms the
SPH-inspired image-level enhancement algorithm. Further analysis
reveals that while the SPH-inspired algorithm enhances targets and
suppresses background using spatiotemporal information, it faces
challenges in detecting small, dark infrared targets against bright
backgrounds and clutter. In contrast, the subsequent MDP-guided
temporal feature perception module leverages Markov modeling
to address moving small targets and eliminate static bright back-
grounds, resulting in significantly enhanced detection performance.
Essentially, the SPH-inspired algorithm provides coarse localiza-
tion, reducing false negatives, while the MDP-guided module offers
fine localization, reducing both false negatives and false positives.
Consequently, comprehensive analysis supports the superiority of
the MDP-guided temporal feature perception module in enhancing
infrared small targets compared to the SPH-inspired image-level
enhancement algorithm.

5 CONCLUSION
This paper presents a multi-frame infrared small target detection
network by finding hybird models: SPH and MDP. SPH simulates
fluid behavior by dividing it into particles and modeling their inter-
actions. It can also simulate information propagation and interac-
tion in images, enhancing them. MDP, known for their memoryless-
ness, is effective for handling sequential data like image sequences,
capturing relationships between time intervals. Accordingly, the
MDP-guided temporal feature perception module effectively ad-
dresses challenges posed by complex backgrounds and occlusions,
while the SPH-inspired image-level enhancement algorithm tackles
issues arising from camera shake and motion blur. Results on the
dataset demonstrate improved accuracy in target detection with re-
duced false positive and false negative rates. Ablation experiments
highlight the contributions of the designed modules and algorithms
to enhancing network performance. In the future, we can consider
integrating data from different sensors (such as infrared and visible
light) to enhance the performance and robustness of target detec-
tion. Further algorithm optimization is also essential to minimize
power usage and enhance real-time capabilities, meeting the re-
quirements of resource-constrained environments and real-time
applications.



929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Explore Hybrid Modeling for Moving Infrared Small Target Detection ACM MM, 2024, Melbourne, Australia

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Xiangzhi Bai and Fugen Zhou. 2010. Analysis of new top-hat transformation and

the application for infrared dim small target detection. Pattern Recognition 43, 6
(2010), 2145–2156.

[2] Yuanning Bai, Ruimin Li, Shuiping Gou, Chenchen Zhang, Yaohong Chen, and
Zhihui Zheng. 2022. Cross-connected bidirectional pyramid network for infrared
small-dim target detection. IEEE Geoscience and Remote Sensing Letters 19 (2022),
1–5.

[3] CL Philip Chen, Hong Li, Yantao Wei, Tian Xia, and Yuan Yan Tang. 2013. A
local contrast method for small infrared target detection. IEEE transactions on
geoscience and remote sensing 52, 1 (2013), 574–581.

[4] Shengjia Chen, Luping Ji, Jiewen Zhu, Mao Ye, and Xiaoyong Yao. 2024. SSTNet:
Sliced spatio-temporal network with cross-slice ConvLSTM for moving infrared
dim-small target detection. IEEE Transactions on Geoscience and Remote Sensing
(2024).

[5] Yihong Chen, Yue Cao, Han Hu, and Liwei Wang. 2020. Memory enhanced
global-local aggregation for video object detection. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition. 10337–10346.

[6] De Cheng, XiaojianHuang, NannanWang, LingfengHe, Zhihui Li, and XinboGao.
2023. Unsupervised visible-infrared person reid by collaborative learning with
neighbor-guided label refinement. In Proceedings of the 31st ACM International
Conference on Multimedia. 7085–7093.

[7] Yimian Dai and Yiquan Wu. 2017. Reweighted infrared patch-tensor model with
both nonlocal and local priors for single-frame small target detection. IEEE
journal of selected topics in applied earth observations and remote sensing 10, 8
(2017), 3752–3767.

[8] Yimian Dai, Yiquan Wu, Fei Zhou, and Kobus Barnard. 2021. Asymmetric contex-
tual modulation for infrared small target detection. In Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision. 950–959.

[9] Suyog D Deshpande, Meng Hwa Er, Ronda Venkateswarlu, and Philip Chan. 1999.
Max-mean and max-median filters for detection of small targets. In Signal and
Data Processing of Small Targets 1999, Vol. 3809. SPIE, 74–83.

[10] Jinming Du, Huanzhang Lu, Luping Zhang, Moufa Hu, Sheng Chen, Yingjie Deng,
Xinglin Shen, and Yu Zhang. 2021. A spatial-temporal feature-based detection
framework for infrared dim small target. IEEE Transactions on Geoscience and
Remote Sensing 60 (2021), 1–12.

[11] Jun Fan, Jingbiao Wei, Hai Huang, Dafeng Zhang, and Ce Chen. 2023. IRSDT: A
Framework for Infrared Small Target Tracking with Enhanced Detection. Sensors
23, 9 (2023), 4240.

[12] Houzhang Fang, Zikai Liao, Lu Wang, Qingshan Li, Yi Chang, Luxin Yan, and
Xuhua Wang. 2023. DANet: Multi-scale UAV Target Detection with Dynamic
Feature Perception and Scale-aware Knowledge Distillation. In Proceedings of the
31st ACM International Conference on Multimedia. 2121–2130.

[13] Ruigang Fu, Hongqi Fan, Yongfeng Zhu, Bingwei Hui, Zhilong Zhang, P Zhong,
D Li, S Zhang, G Chen, and L Wang. 2022. A dataset for infrared time-sensitive
target detection and tracking for air-ground application. China Sci. Data 7, 2
(2022), 206–221.

[14] Chenqiang Gao, DeyuMeng, Yi Yang, YongtaoWang, Xiaofang Zhou, and Alexan-
der G Hauptmann. 2013. Infrared patch-image model for small target detection
in a single image. IEEE transactions on image processing 22, 12 (2013), 4996–5009.

[15] Zheng Ge, Songtao Liu, Feng Wang, Zeming Li, and Jian Sun. 2021. Yolox:
Exceeding yolo series in 2021. arXiv preprint arXiv:2107.08430 (2021).

[16] Bingwei Hui, Zhiyong Song, Hongqi Fan, P Zhong, W Hu, X Zhang, J Lin, H Su,
W Jin, Y Zhang, et al. 2019. A dataset for infrared image dim-small aircraft target
detection and tracking under ground/air background. Sci. Data Bank 5 (2019),
12.

[17] Guimin Jia, Yu Cheng, and Tao Chen. 2024. IRGraphSeg: Infrared Small Target
Detection Based on Hierarchical GNN. IEEE Geoscience and Remote Sensing Letters
(2024).

[18] Glenn Jocher. 2020. Ultralytics YOLOv5. https://doi.org/10.5281/zenodo.3908559
[19] Glenn Jocher, Ayush Chaurasia, and Jing Qiu. 2023. Ultralytics YOLO. https:

//github.com/ultralytics/ultralytics
[20] Boyang Li, Chao Xiao, Longguang Wang, Yingqian Wang, Zaiping Lin, Miao Li,

Wei An, and Yulan Guo. 2022. Dense nested attention network for infrared small
target detection. IEEE Transactions on Image Processing 32 (2022), 1745–1758.

[21] Lingyi Lu and Xin Xu. 2021. Visible-Infrared Cross-Modal Person Re-
identification based on Positive Feedback. In Proceedings of the 3rd ACM In-
ternational Conference on Multimedia in Asia. 1–6.

[22] Yihang Luo, Xinyi Ying, Ruojing Li, Yujun Wan, Bo Hu, and Qiang Ling. 2022.
Multi-scale Optical Flow Estimation for Video Infrared Small Target Detection.
In 2022 2nd International Conference on Computer Science, Electronic Information
Engineering and Intelligent Control Technology (CEI). IEEE, 129–132.

[23] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. 2015. Faster r-cnn:
Towards real-time object detection with region proposal networks. Advances in
neural information processing systems 28 (2015).

[24] Yuheng Shi, Naiyan Wang, and Xiaojie Guo. 2023. YOLOV: Making still im-
age object detectors great at video object detection. In Proceedings of the AAAI

Conference on Artificial Intelligence, Vol. 37. 2254–2262.
[25] Xiaoliang Sun, Xiaolin Liu, Zhixuan Tang, Gucan Long, and Qifeng Yu. 2017.

Real-time visual enhancement for infrared small dim targets in video. Infrared
physics & technology 83 (2017), 217–226.

[26] Karasawa Takumi, Kohei Watanabe, Qishen Ha, Antonio Tejero-De-Pablos, Yoshi-
taka Ushiku, and Tatsuya Harada. 2017. Multispectral object detection for au-
tonomous vehicles. In Proceedings of the on Thematic Workshops of ACM Multi-
media 2017. 35–43.

[27] Guanghui Wang, Bingjie Tao, Xuan Kong, and Zhenming Peng. 2021. Infrared
small target detection using nonoverlapping patch spatial–temporal tensor factor-
ization with capped nuclear norm regularization. IEEE Transactions on Geoscience
and Remote Sensing 60 (2021), 1–17.

[28] Xing Wei, Diangang Li, Xiaopeng Hong, Wei Ke, and Yihong Gong. 2020. Co-
attentive lifting for infrared-visible person re-identification. In Proceedings of the
28th ACM international conference on multimedia. 1028–1037.

[29] Yantao Wei, Xinge You, and Hong Li. 2016. Multiscale patch-based contrast
measure for small infrared target detection. Pattern Recognition 58 (2016), 216–
226.

[30] Tianhao Wu, Boyang Li, Yihang Luo, Yingqian Wang, Chao Xiao, Ting Liu,
Jungang Yang, Wei An, and Yulan Guo. 2023. MTU-Net: Multilevel TransUNet
for space-based infrared tiny ship detection. IEEE Transactions on Geoscience and
Remote Sensing 61 (2023), 1–15.

[31] Xin Wu, Danfeng Hong, and Jocelyn Chanussot. 2022. UIU-Net: U-Net in U-Net
for infrared small object detection. IEEE Transactions on Image Processing 32
(2022), 364–376.

[32] Yuyang Xi, Zhitao Zhou, Ying Jiang, Liuwei Zhang, Yunfei Li, Zhipeng Wang,
Fanjiao Tan, and Qingyu Hou. 2023. Infrared moving small target detection
based on spatial-temporal local contrast under slow-moving cloud background.
Infrared Physics & Technology 134 (2023), 104877.

[33] Puti Yan, Runze Hou, Xuguang Duan, Chengfei Yue, Xin Wang, and Xibin Cao.
2023. STDMANet: Spatio-temporal differential multiscale attention network
for small moving infrared target detection. IEEE transactions on geoscience and
remote sensing 61 (2023), 1–16.

[34] Shudong Yuan, Bei Sun, Zhen Zuo, Honghe Huang, Peng Wu, Can Li, Zhaoyang
Dang, and Zongqing Zhao. 2023. IRSDD-YOLOv5: Focusing on the Infrared
Detection of Small Drones. Drones 7, 6 (2023), 393.

[35] Fei Zhang, Chengfang Li, and Lina Shi. 2005. Detecting and tracking dim moving
point target in IR image sequence. Infrared Physics & Technology 46, 4 (2005),
323–328.

[36] Jing Zhang and Dacheng Tao. 2020. Empowering things with intelligence: a
survey of the progress, challenges, and opportunities in artificial intelligence of
things. IEEE Internet of Things Journal 8, 10 (2020), 7789–7817.

[37] Mingjin Zhang, Haichen Bai, Jing Zhang, Rui Zhang, ChaoyueWang, Jie Guo, and
Xinbo Gao. 2022. Rkformer: Runge-kutta transformer with random-connection
attention for infrared small target detection. In Proceedings of the 30th ACM
International Conference on Multimedia. 1730–1738.

[38] Mingjin Zhang, Handi Yang, Jie Guo, Yunsong Li, Xinbo Gao, and Jing Zhang.
2024. IRPruneDet: Efficient Infrared Small Target Detection viaWavelet Structure-
Regularized Soft Channel Pruning. In Proceedings of the 38th Annual AAAI Con-
ference on Artificial Intelligence. 1857–1865.

[39] Mingjin Zhang, Ke Yue, Jing Zhang, Yunsong Li, and Xinbo Gao. 2022. Explor-
ing feature compensation and cross-level correlation for infrared small target
detection. In Proceedings of the 30th ACM International Conference on Multimedia.
1857–1865.

[40] Mingjin Zhang, Rui Zhang, Yuxiang Yang, Haichen Bai, Jing Zhang, and Jie Guo.
2022. ISNet: Shape matters for infrared small target detection. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 877–886.

[41] Anran Zhou, Weixin Xie, and Jihong Pei. 2021. Background modeling com-
bined with multiple features in the Fourier domain for maritime infrared target
detection. IEEE Transactions on Geoscience and Remote Sensing 60 (2021), 1–15.

[42] Jinjie Zhou, Baohui Zhang, Xilin Yuan, Cheng Lian, Li Ji, Qian Zhang, and Jiang
Yue. 2023. YOLO-CIR: The network based on YOLO and ConvNeXt for infrared
object detection. Infrared Physics & Technology 131 (2023), 104703.

[43] Qianyu Zhou, Xiangtai Li, Lu He, Yibo Yang, Guangliang Cheng, Yunhai Tong,
Lizhuang Ma, and Dacheng Tao. 2022. TransVOD: end-to-end video object detec-
tion with spatial-temporal transformers. IEEE Transactions on Pattern Analysis
and Machine Intelligence (2022).

[44] Jiewen Zhu, Shengjia Chen, Lexiao Li, and Luping Ji. 2023. Sanet: Spatial attention
network with global average contrast learning for infrared small target detection.
In ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 1–5.

[45] Wenming Zhu and Yihua Tan. 2023. A moving infrared small target detection
method based on optical flow-guided neural networks. In 2023 4th International
conference on computer vision, image and deep learning (CVIDL). IEEE, 531–535.

[46] Xizhou Zhu, Yujie Wang, Jifeng Dai, Lu Yuan, and Yichen Wei. 2017. Flow-
guided feature aggregation for video object detection. In Proceedings of the IEEE
international conference on computer vision. 408–417.

https://doi.org/10.5281/zenodo.3908559
https://github.com/ultralytics/ultralytics
https://github.com/ultralytics/ultralytics

	Abstract
	1 Introduction
	2 RELATED WORK
	2.1 Infrared Small Target Detection in Image
	2.2 Infrared Small Target Detection in Video

	3 METHODOLOGY
	3.1 Overall Architecture
	3.2 SPH-inspired image-level enhancement algorithm
	3.3 MDP-guided temporal feature perception module

	4 Experiment
	4.1 Dataset and Implementation Details
	4.2 Quantitative Results
	4.3 Visual Results
	4.4 Ablation Study

	5 Conclusion
	References

