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Abstract

We propose Neural Hamiltonian Diffusion (NHD), a unified framework for learning
stochastic Hamiltonian dynamics on differentiable manifolds. Unlike conventional
Hamiltonian Neural Networks (HNNs), which assume noise-free dynamics in flat
Euclidean spaces, our approach models stochastic differential equations (SDEs) on
curved manifolds endowed with both a Riemannian metric and a Poisson structure.
Specifically, we parameterize a neural Hamiltonian and define the dynamics via a
Stratonovich SDE whose drift is the Poisson vector field lifted horizontally to the
orthonormal frame bundle. This construction ensures coordinate-invariant, gauge-
consistent dynamics across (pseudo-)Riemannian manifolds, enabling physically
plausible modeling in systems with geometric constraints, periodicity, or relativis-
tic structure. We establish generalization guarantees under curvature-dependent
complexity and demonstrate applications across diverse scientific domains, includ-
ing toroidal molecular dynamics, quantum spin systems, and relativistic n-body
problems in Schwarzschild spacetime.

1 Introduction

Modeling physical dynamics from data is a fundamental challenge in machine learning, with applica-
tions ranging from molecular simulations and protein folding [Karplus and McCammon, 2002, Noé
et al., 2020] to planetary motion and gravitational systems with curved spacetime [Rein and Liu, 2019,
Pretorius, 2005]. A central goal in this context is to learn a dynamical model that not only predicts
future states accurately but also reflects the underlying physical laws such as symplectic structure,
and geometric invariance [Hairer et al., 2006]. However, many existing learning-based approaches
focus on approximating state transitions in Euclidean spaces without explicitly encoding the physics
or geometry of the system. In practice, physical systems often evolve on non-Euclidean domains. In
molecular dynamics, for example, internal coordinates such as dihedral angles naturally reside on
toroidal or pseudo-Riemannian manifolds [Zhou et al., 2020, Townsend et al., 2021]. Likewise, in
modeling N -body interactions near massive celestial bodies, the trajectories of particles evolve in
strongly curved spacetimes, where the underlying geometry plays a crucial role in determining the
causal and dynamical structure [Rezzolla and Zanotti, 2013]. Quantum spin systems modeled on com-
pact Lie groups also exhibit inherently curved dynamics due to their non-Euclidean group geometry
[Sakurai and Napolitano, 2017]. These systems are inherently geometric, and their governing laws
are often described by Hamiltonian mechanics on manifolds equipped with symplectic structures.

Recent advances in Hamiltonian learning including Hamiltonian Neural Networks (HNNs) [Grey-
danus et al., 2019] and their variants [Zhong et al., 2020, Chen et al., 2021, Cranmer et al., 2020,
Wang et al., 2023, Dierkes et al., 2023, Khoo et al., 2023] have shown that incorporating symplectic
structure can significantly improve generalization and long-term stability. Complementary approaches
such as Symplectic ODE-Nets [Zhong et al., 2020], Symplectic Recurrent Neural Networks [Chen
et al., 2021], and Symplectic Transformers [Finzi et al., 2020] embed symplectic constraints directly
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into the learning architecture. However, these models typically operate in flat Euclidean phase space
and do not generalize to curved configuration spaces or non-canonical geometries. Orthogonally,
a growing line of research on modeling learnable stochastic dynamics on Riemannian manifolds
[De Bortoli et al., 2022, Huang et al., 2022, Park et al., 2022, Mathieu et al., 2023] has enabled
geometry-aware stochastic modeling. Yet, these approaches are not physically grounded: they do not
enforce Hamiltonian or symplectic structure to preserve physical fidelity. In this context, our contri-
bution lies in unifying these previously disconnected pillars. We propose a stochastic Hamiltonian
modeling framework that incorporates both the geometric complexity of differentiable manifolds
and the structural constraints of Hamiltonian mechanics. We extend Hamiltonian learning to curved,
periodic, and causally structured domains with stochasticity. We highlight the following contributions:

• Neural Hamiltonian Diffusions on Curved Manifolds. We propose a novel framework that
unifies stochastic diffusion processes and Hamiltonian mechanics on general curved spaces. By
incorporating gauge consistency into the modeling, we ensure that the learned dynamics remain
physically meaningful and independent of local coordinate choices. Our approach respects both
the symplectic structure and the intrinsic geometry of the system, enabling faithful simulation of
stochastic physical processes beyond flat spaces.

• Geometry-Consistent Learning via Frame Bundle Lifts. Instead of learning dynamics directly
on the base manifold, we lift the formulation to the frame bundle to handle curvature and coordinate-
dependence explicitly. This allows the model to represent vector fields in a unified way across
locally varying orthonormal frames, ensuring compatibility between overlapping charts. This
geometric design provides consistency across varying local frames and improves the physical
reliability of the learned vector fields.

• Theoretical Guarantees and Empirical Superiority. We establish theoretical generalization
bounds that link curvature, network capacity, and frame symmetry, and prove that gauge consistency
intrinsically reduces worst-case deviations. Our method achieves superior performance compared
to existing approaches across various structured geometric systems, demonstrating the practical
benefits of incorporating geometric and physical consistency into learning.

2 Neural Hamiltonian Diffusion

Hamiltonian Dynamics. Let mt := (qt,pt) ∈ R2d denote the canonical position and momentum
coordinates in phase space, and let H ∈ C∞(R2d) be a smooth Hamiltonian function. We briefly
recall the canonical formulation of Hamiltonian dynamics in Euclidean phase space, where the system
evolves according to a smooth Hamiltonian function H via the associated Poisson bracket structure:

d

dt

[
qt
pt

]
= {m,H} := J∇H(qt,pt), where J :=

[
0 I
−I 0

]
. (1)

The operator {f, g} := ∇f⊤J∇g defines the canonical Poisson bracket for any smooth functions
f, g ∈ C∞(R2d), and {·, H} denotes the Hamiltonian vector field applied to observables. This
formulation is analytically tractable and serves as the foundation of classical conservative dynamics.

However, such Euclidean and deterministic formulations may face fundamental limitations when
applied to structured data domain. First, they assume a globally flat phase space, making them ill-
suited for modeling systems with curved or topologically structured configuration spaces such as those
encountered in relativistic, periodic, or molecular settings. Second, real-world physical dynamics are
often inherently stochastic, due to latent variables, thermal fluctuations, or observational uncertainty,
none of which are reflected in the deterministic formulation. To overcome these limitations, we move
beyond the classical regime and explore a generalized class of Hamiltonian systems that operate
over differentiable manifolds and evolve according to stochastic dynamics. Specifically, we adopt
the framework of Hamiltonian diffusion Bismut [1981], which preserves the structural fidelity of
Hamiltonian flows while incorporating both the intrinsic geometry of the underlying space and
the probabilistic nature of physical systems. This generalized formulation enables the modeling of
structured, curved, and noisy dynamics in a principled and physically consistent manner.

Hamiltonian Diffusion on Manifolds1. Throughout, we work on 2d-dimensional symplectic man-
ifold (M, ω) equipped with a Poisson structure i.e., {·, ·} with local coordinates m := (q,p) ∈

1For a detailed explanation of the background, we refer the reader to the Appendix A.

ii



Figure 1: Horizontally-lifted Hamiltonian Diffusion and Gauge Equivariance on Frame Bundle. (Left)
A red stochastic trajectory Xt evolves onM = T ∗Q. The learned horizontal vector field GHor

θ transports
an orthonormal frame Ut to Us that spans TM, t ≤ s; its connection-driven rotation is highlighted by the
blue arrow (U · h), realizing the symplectic structure in the principal O(d)-bundle. (Right) We visualize a
specific types of equivariant Hamiltonian vector fields along with their fiber rotations under O(d). The preserved
structure under transformations highlights the gauge equivariance property of our model.

T ∗Q :=M, where the configuration space is set to Riemannian manifolds (Q, g). Now, we give a
formal definition of Hamiltonian diffusion on manifolds:

Definition 2.1. Let (Ω,Ft := FB
t ,P) be the augmented probability space with 2d-dimensional

Brownian motion Bt. Given the standard non-degenerate symplectic 2-form ω :=
∑d
i=1 dq

i ∧ dpi,
we define aM-valued semi-martingale that solves the system of stochastic differential equations:

dXt = {m,Hθ}(Xt) ◦ dBt, ι{·,Hθ}ω = dHθ, Hθ := H(πq(·), πp(·); θ) ∈ C∞(T ∗Q×Θ), (2)

where πq : T ∗Q → Q and πp : T ∗Q → T ∗
qQ are canonical projections onto configuration manifold

and the fiber, and ι and d denote the interior product and the exterior derivative onM, respectively.

A neural Hamiltonian diffusion (NHD) refers to a stochastic process Xt evolving on a manifold under
the Hamiltonian flow, where the Hamiltonian Hθ is modeled by neural networks with parameters
θ ∈ Θ so as to reflect the induced physical structure of the system. As can be seen, the Poisson
bracket formulation naturally leads to geometry-aware dynamics, ensuring that the induced flow
respects the curvature and structure of the underlying manifold. To be more specific, the vector field
on the manifold takes the form

{m,Hθ} := Jg∇mHθ(q, p) =

[
0 G−1(q)

−G−1(q) 0

]
∇mHθ(q, p), (3)

where m = (q, p) ∈ T ∗Q, and G−1(q) is the inverse of the Riemannian metric on the configuration
manifold Q. The resulting vector field retains the skew-symmetric structure of Hamiltonian flows
while encoding local geometric information through the metric G := [gij ], and can be viewed as a
geometry-aware generalization of Euclidean Hamiltonian vector fields in Eq (1).

In deterministic Hamiltonian systems in Eq (1), energy conservation is encoded by the identity
Ḣ = 0, which holds along every trajectory, ensuring exact invariance of the Hamiltonian over time.
This reflects the fact that the energy function remains constant along deterministic flows. In contrast,
our stochastic Hamiltonian framework characterizes energy conservation through the stationarity of
the equilibrium distribution, given by Lθπ = 0, where π ∝ e−H(X∞). Rather than preserving energy
along individual sample paths, the Hamiltonian in this case governs the long-term statistical behavior
of the system via the generator Lθ. Table 3 summarizes the distinction between these two paradigms.

Horizontal Lift of Hamiltonian Diffusion. One major difficulty in the simulation of Eq. (2) lies in
the absence of canonical coordinates, as well as the lack of a principled method to define stochasticity
on manifolds. Recently, [De Bortoli et al., 2022] suggested geodesic random walks (GRWs) which
harness the property of extrinsic geometry by using Riemannian exponential maps. Yet, there are open
questions to respect Hamiltonian and symplectic structures by using GRWs. In contrast to extrinsic
approaches, we formulate the intrinsic geometry by lifting the process to the frame bundle [Hsu,
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2002], where geometry-consistent noise can be defined, naturally allowing for a principled realization
of stochastic Hamiltonian dynamics on manifolds Lázaro-Camí and Ortega [2008].

Formally, we introduce a horizontal lift (i.e.,Ut) of the diffusion process (i.e.,Xt) to the frame
bundle O(M), where the stochastic dynamics admit local frame coordinates adapted to the manifold:

Proposition 2.2 (Horizontal Hamiltonian Diffusion). Let Ut ∈ O(M) be the horizontal lift of the
diffusion process Xt = π(Ut), where π : O(M)→M is the canonical projection and m denotes a
local coordinate function onM. The lifted process Ut evolves according to the Stratonovich SDE:

dUt := GHor
θ (Ut) ◦ dBt, π(Ut) = Xt, Ut ∈ O(M), (4)

GHor
θ (Ut)︸ ︷︷ ︸

∈HU : Horizontal

:= ({m,Hθ}(Xt))∇x︸ ︷︷ ︸
:=Ĝθ

−
[(

Id ⊗ ({m,Hθ}(Xt))
⊤
)
· [ΓM]♭vec(E)

]
∇e︸ ︷︷ ︸

:=ω#Ĝθ ∈ VU : Vertical Fiber

, (5)

where [ΓM]♭ ∈ M(2d× d2) is the index-lowered connection tensor (i.e., Christoffel symbol), and
vec(E) ∈ M(d2, 1) is the vectorized local orthonormal frame. ∇x and ∇e denote the vectorized
gradients with respect to the configuration point and the frame coordinates, respectively.

Here, the horizontal process Ut ∈ O(M) augments the manifold trajectory with a local orthonormal
frame, enabling noise to be defined in the tangent space and lifted via the horizontal distribution. In
the formulation to ensure horizontal transport, we remove the vertical fiber part using the connection
one-form ω2. The resulting vector field GHor

θ (Ut) ∈ HUt
is obtained by projecting Ĝθ onto the

horizontal distribution as GHor
θ = (Id−ω♯) Ĝθ, which ensures that the Stratonovich increment lies in

HU = kerω. Figure 1 schematically illustrates this construction. Note that we lift the base metric g
to a Sasaki-type metric gM to induce geometric structure on the total spaceM = T ∗Q. The resulting
connection tensor ΓM serves as a geometric object defined on the total manifold of trajectory Xt:

Definition 2.3 (Lifted Metric on the Total Space). Let Q be a configuration manifold equipped
with Riemannian metric g with its total spaceM := T ∗Q. We define Sasaki-type metric onM as
gM := π∗

qg ⊕ g−1, where π∗
qg is a pull-back metric with respect to πq. Then, the connection tensor

associated with gM take the following block tensor form:

[ΓM]abc =

[
Γijk

1
2

(
∂qjg

ik + ∂qkg
ij
)

− 1
2∂qig

jk 0d×d

]
, ∀a, b, c ∈ {1, . . . , 2d}. (6)

Having the complete definition of Hamiltonian diffusion onM by using horizontal lifts in Proposi-
tion 2.2, we now shift our focus from defining the model to learning it from physical data.

Learning Geometric Dynamics. Main feature of modeling physical systems is that the system
is required to reconstruct both positional and complementary information such as velocity and
momentum. This additional physical information is represented as trajectories evolving in the second-
order tangent bundle of the phase space, formally modeled as γt = (qt,pt, q̇t, ṗt) ∈ T (T ∗Q). Given
observational trajectory sampled from a data path distribution γ̃t ∼ Pt,data on physical data space, we
seek to recover the underlying Hamiltonian Hθ that approximately generates the observed dynamics.
The objective is to align the empirical drift of the process with the vector field induced by the learned
Hamiltonian. To this end, we define the training loss over path distribution:

Definition 2.4 (Hamiltonian Learning). Let γt = (qt, pt, q̇t, ṗt) ∈ T (T ∗Q) be a sample trajectory
on the physical data space, and let γ̃t ∼ Pt,data denote the corresponding data distribution. Given a
parameterized Hamiltonian Hθ : T

∗Q → R, the geometric learning objective is defined as follows:

L(θ) := Et∼U[0,T ],γ̃t

[∥∥∥[˜̇qt, ˜̇pt]T − {m,Hθ} ◦ π(Ut)
∥∥∥2
gM

+ dQ(q̃t, πq ◦ π(Ut)|θ)2
∣∣∣∣U0

]
, (7)

where ∥·∥gM is a Riemannian norm, and dQ denotes a distance function on configuration space.

2Abusing notation, we denote both the connection one-form and the symplectic form by ω for simplicity
(with ω# is its pull-back), as the meaning will be unambiguous from context.
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Eq. (7) defines a hybrid loss that combines a vector field alignment term and a trajectory reconstruction
term. The first term ensures that the learned Hamiltonian vector field aligns with the empirical time
derivatives of the state to reflect the underlying physical dynamics. The second term penalizes
deviations between the predicted and observed positions on the configuration manifold. The entire
objective is conditioned on a fixed initial state U0 = π−1([q0,p0]), reflecting the initial value nature
of Hamiltonian systems where the full trajectory is determined by the initial condition. Together,
these objectives encourage the model to learn a Hamiltonian function that faithfully captures both the
evolution of the system and its observed behavior.

Designing Neural Hamiltonian Functions. To model physically consistent dynamics in curved or
structured spaces, we aim to construct Hamiltonian functions that reflect the underlying geometry of
the configuration space. As motivated from conventional force-field modeling Salomon-Ferrer et al.
[2013], we begin by formulating N -body interaction systems on (pseudo-)Riemannian manifolds
parameterized by neural networks.

Hθ

(
qN

pN

)
=

1

2

N∑
i=1

[pi]⊤G−1pi︸ ︷︷ ︸
(i) Kinetic Energy

+
∑
k

Wθ

(
qk

pk

)
︸ ︷︷ ︸

(ii) Single-particle Potential

+
∑
i<j

Vθ
(
qi

qj

)
︸ ︷︷ ︸

(iii) Pairwise Interaction

. (8)

Eq. (8) defines a parameterized Hamiltonian function for a system of interacting particles, where
the joint state (qN := {q1, · · · , qN}, pN := {p1, · · · , pN}) ∈ MN evolves on the cotangent
space of the joint configuration manifold (MN , (gM)N ). The proposed Hamiltonian consists of
three distinct components: (i) the first kinetic energy term represents the kinetic energy of each
particle and incorporates geometry-awareness by using the local inverse Riemannian metric, (ii)
the second potential term captures single-particle effects through neural potentials that depend on
individual states, including temporal, environmental, or local structural influences, and (iii) the third
term accounts for pairwise interactions that model spatial dependencies and mutual influence across
particles, which are essential for capturing correlated behavior on the manifold. Having established
the parameterized Hamiltonian function Hθ, we now derive the associated Poisson bracket {·,Hθ}
expressed explicitly in local coordinates onM as follows:

{m,Hθ} := Jg∇mHθ = Jg

G−1pN +
∂Wθ

∂p
,−∂Wθ

∂q
+
∑
i≤j

∂Vθ(qi,qj)
∂q

T ∈ X(T ∗QN ).

In what follows, we impose a structural constraint on the neural Hamiltonian Hθ that respects the
gauge symmetry of the underlying frame bundle, leading to the formulation of gauge equivariance on
O(M) to ensure the efficient learning of the parameterized Poisson bracket {m,Hθ}.
Gauge Equivariance on Frame Bundle. While the choice of frame can be arbitrary, the proposed
horizontal lift canonically projects dynamics from the base manifold to its frame bundle in a manner
that is independent of specific frame parametrization. In this context, gauge equivariance is an
essential property for ensuring that learned dynamics remain consistent across arbitrary frame choices
and preserve geometric coherence during transport Cohen et al. [2019]. This principle can also
formally be realized through the geometry of the orthonormal frame bundle in our framework.

Let U ∈ O(M) and h ∈ O(d) be orthonormal frame and the rotation defined by Rh(U) := U · h,
then the orthonormal frame bundle O(M) admits a natural right action of the structure group
O(d) := {h ∈ GL(d,R) | h⊤h = Id}. This action describes local gauge transformations within
each fiber, and naturally lifts geometric quantities from base manifoldM into an equivariant bundle.

Definition 2.5 (Gauge Equivariance on the Frame Bundle). Let f : O(M) → V be a map into a
representation space V ∼= Rdq ⊕Rdp ∼= R2d, corresponding to position and momentum components in
the cotangent bundle. We say that f is gauge equivariant if, for every h ∈ O(d),

f(U · h) = ρ(h−1)f(U), ρ(h) =

[
Id 0
0 h

]
∈ GL(2d), (9)

where U ∈ O(M) is an orthonormal frame, and U · h denotes the right action of h on U.

Figure 1 provides an illustrative example of gauge equivariance defined over the orthonormal frame
bundle. The equivariance property reflects that under frame transformation, local momentum vectors
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p ∈ Rd transform covariantly as p 7→ hp, while position vectors q ∈ Rd remain invariant as
base coordinates. In the context of Hamiltonian learning, the goal is then to construct the neural
Hamiltonian Hθ such that the resulting geometry-induced drift term GHor

θ (U) is gauge equivariant
under the frame transformation U 7→ U · h, which holds if the following condition is satisfied:

{m,Hθ}(π(U · h)) = ρ(h−1){m,Hθ}(π(U)), ∀h ∈ O(d). (10)

To realize equivariant learning within frame bundle coordinates, we propose the Frame Equivariant
Transformer U-Net3. This architecture integrates canonicalization by transforming coordinates into
the local orthonormal frame via U⊤p, performing invariant computations, and reconstructing outputs
via Up̂, thereby ensuring gauge-consistent predictions. In Appendix, we provide the algorithm and
pseudo-code for sampling frame-equivariant and neural network architectures.

3 Theoretical Analysis
In this section, we present two theoretical results: a generalization bound linking curvature and model
capacity, and a deviation bound showing how gauge equivariance improves stability across frames.

Uniform-in-time Generalization of Hamiltonian Learning. With the objective function posed
earlier, a natural question arises: If the model achieves near-perfect trajectory matching, why is
Hamiltonian learning still necessary? This question is fundamental, as trajectory matching alone
does not guarantee physically meaningful generalization. To analyze this rigorously, we consider the
neural network θ⋆, which exactly reproduces the physical trajectories.

(C1) θ⋆ = argmin
θ∈Θ

dQ(q̃t, π(Ut|θ)), Θ := BW s,2(θ⋆, R). (11)

Here, the radius R of the ball Θ reflects the capacity of neural networks. Unfortunately, although the
neural network θ∗ perfectly fits the physical trajectory in the training phase, it fails to capture the
holistic physical information such as velocity and momentum. Proposition 3.1 demonstrates that our
proposed geometric Hamiltonian learning significantly improves generalization.

Proposition 3.1 (Informal). Let Pt(θ) := Law(γt(θ)) be an associated probability measure of model
trajectory, and assume the condition (C1) in Eq. (11) holds, Under the mild regularity conditions of
Hamiltonian function, the learned model distribution fails to remain close to the data distribution
uniformly over time with high probability:

P

[
sup
t∈[0,T ]

sup
θ∈Θ
W (Pt(θ),Pt,data) ≤ δ

]
≲ exp

(
−Ω · δ1/2∥Γ∥3/2∞ R1/2(logR)1/4

)
,

whereW :=W2,2
T (T∗Q) denotes the squared Wasserstein distance on the physical data space T (T ∗Q),

and Ω is a constant depending on geometric and model-specific quantities.

Generalization in geometric Hamiltonian learning hinges on two key factors: the curvature of the
configuration manifold (i.e.,Γ) and the network capacity (i.e., R). High curvature (∥Γ∥∞) intensifies
stochastic distortion, while large R increases variance. This induces a trade-off—expressive models
capture complex geometry but risk overfitting under curvature. Trajectory matching alone is insuf-
ficient, often neglecting velocity and momentum structure. Our method resolves this by enforcing
physically consistent dynamics beyond position-level fitting.

Gauge Equivariance Ensures Smaller Deviations. In the second theoretical finding, Proposition 3.2
shows that enforcing gauge equivariance not only yields uniformly smaller worst-case Wasserstein
deviations between the learned trajectories and the reference geodesic across all admissible frames, but
also tightens the resulting generalization bounds by eliminating spurious frame-dependent variance.

Proposition 3.2 (Informal). Let γ : [0, T ] → T ∗Q be a reference physical data represented as a
geodesic. For any Hamiltonian Hθ define the frame–rotated trajectory by Xt(h) := (qt, πp◦π(Ut·h))
for h ∈ O(d). Then, for arbitrary h′ ∈ O(d), there exists constants κ,C > 0 such that the following
inequality holds:

W
(
Peq
t (h′), δγ(t)

)
= sup
h∈O(d)

W
(
Peq
t (h), δγ(t)

)
≤ sup
h∈O(d)

W
(
Pt(h), δγ(t)

)
≤ Ceκt, (12)

where Xeq
t (h) ∼ Peqt (h) is generated by a gauge–equivariant Hamiltonian function Hθ.

3Appendix D contains in-detailed information of model architecture.
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Figure 2: Visualization of Three-body Quantum Spin Dynamics via Hopf Projection. Each subplot shows
the spin trajectory of a single body on the 3-sphere S3, projected to two orthogonal complex planes: z1 = x+ iy
(orange) and z2 = z + iw (magenta). (Left) Ground-truth trajectories reveal nonlinear yet phase-coherent
dynamics. (Right) Our model (HDM) accurately reproduces the spin geometry across bodies.

4 Related Works

Hamiltonian Neural Networks. Hamiltonian Neural Networks (HNNs) [Greydanus et al., 2019]
introduced the idea of learning a scalar energy function H(q, p) whose gradients define conservative
dynamics. Several extensions have since been proposed to improve generality, structure preservation,
or application-specific modeling. [Cranmer et al., 2020] proposed learning Lagrangian dynamics as
an alternative to the Hamiltonian formulation. [Chen et al., 2021] introduced symplectic recurrence
for better long-term stability. [Wang et al., 2023] incorporated symplectic constraints into the learning
process. [Simiao et al., 2023] adapted HNNs to rigid-body dynamics with energy-aware formula-
tions. [Dierkes et al., 2023] focused on automatic symmetry detection and exploitation. [Khoo et al.,
2023] proposed modeling separable Hamiltonians to reflect physical modularity. Unlike prior work
constrained to Euclidean domains, our model learns Hamiltonian dynamics directly on manifolds,
enabling faithful modeling of geometry-aware physical systems.

Neural Diffusion on Manifolds. Recent work has extended neural stochastic modeling to non-
Euclidean spaces, particularly Riemannian manifolds, by incorporating geometric structure into
diffusion or score-based generative models. [De Bortoli et al., 2022] proposed Riemannian score-based
generative modeling on smooth manifolds, generalizing Langevin dynamics and score matching to
curved spaces. [Huang et al., 2022] developed Riemannian diffusion models by extending continuous-
time stochastic differential equations (SDEs) to arbitrary manifolds. [Park et al., 2022] introduced
Riemannian Neural SDEs, enabling stochastic representation learning directly on manifolds using
intrinsic geometry. [Lou et al., 2023] addressed the scalability of Riemannian diffusion models
for high-dimensional and complex manifold settings. [Fishman and Cunningham, 2023] tackled
constrained diffusion in non-Euclidean domains by incorporating boundary-aware mechanisms. These
works lay the foundation for stochastic modeling on manifolds. Building on this line of research, our
approach extends geometric diffusion models with a Hamiltonian perspective, enabling structured
modeling of physical dynamics on curved spaces.

5 Experiments

Problem Formulation. In this section, we validate our proposed framework across three distinct
physical scenarios that reflect a diverse range of geometric structures: (i) an interacting spin system
evolving on the compact Lie group manifold SU(2) ∼= S3, (ii) relativistic N -body dynamics formu-
lated on Lorentzian spacetimes such as the Schwarzschild manifolds and (iii) molecular dynamics of
protein backbones represented on high-dimensional toroidal configuration spaces TN . Each setting
highlights a unique combination of curvature, topology, and physical constraints, allowing us to
assess the generality and fidelity of neural Hamiltonian diffusion on non-Euclidean domains. We
compare our method with recent state-of-the art methodologies in geometric sequential modeling
including GeoTDM Han et al. [2024], EqMotion Xu et al. [2023], EGNN Satorras et al. [2021], SE-3
transformer Fuchs et al. [2020]. Hamiltonian learning based such as HNN Greydanus et al. [2019],
SympHNN David and Méhats [2023], Noether van der Ouderaa et al. [2024] are also considered.

In all scenarios, we formulate physical dynamics prediction as a sequence modeling problem on
non-Euclidean manifolds. Let {γt}Tt=1 denote a trajectory of geometric states γt ∈ T (T ∗Q) sampled
from a Hamiltonian system. During training, each model is conditioned on a single initial state γ1
and trained to autoregressively predict the subsequent states {γt}Tobs

t=2. At test time, the predicted state
is re-fed into the model to generate the next one, allowing the model to learn long-range extrapolation
dynamics at each step. This setup reflects realistic forecasting settings where long-term evolution
must be inferred from geometric observations. A comprehensive summary of the experimental setups
is included in the Appendix.
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Model AD-3 2AA 4AA Spin Schwarzschild

HNN 0.413 / 0.779 0.612 / 0.859 ≥ 1.0 0.141 / 0.275 0.106 / 0.218
Noether 0.554 / 0.614 0.580 / 0.723 ≥ 1.0 0.077 / 0.162 0.053 / 0.116
SympHNN 0.596 / 0.717 0.519 / 0.736 ≥ 1.0 0.083 / 0.124 0.063 / 0.175

SE(3)-Tr. 0.312 / 0.513 0.445 / 0.596 0.649 / 0.830 0.384 / 0.665 0.338 / 0.437
EGNN 0.251 / 0.501 0.367 / 0.405 0.417 / 0.474 0.182 / 0.242 0.155 / 0.246
EqMotion 0.081 / 0.117 0.062 / 0.152 0.131 / 0.174 0.090 / 0.102 0.081 / 0.149
GeoTDM 0.045 / 0.102 0.079 / 0.145 0.093 / 0.179 0.037 / 0.085 0.026 / 0.046

NHD (Ours) 0.023 / 0.084 0.055 / 0.103 0.117 / 0.186 0.019 / 0.097 0.012 / 0.035

Table 1: Comparison of toroidal protein trajectory prediction and curved-space N -body dynamics. The first
three columns (AD-3, 2AA, 4AA) report ADE/FDE on protein torsion angle trajectories. The last two columns
(Spin and Schwarzschild) report ADE from N -body simulations of spin-based and Schwarzschild-metric particle
systems with N = 3 and N = 5 particles. The first and second best is highlighted with bold and blue.

Figure 3: Spatiotemporal Ramachan-
dran Map. Torsional state evolution
over time compared between true and
predicted trajectories.

Molecular Dynamics of Protein Backbones. In modeling
Hamiltonian formulations of protein molecular dynamics, we
are motivated by classical force fields used in molecular model-
ing Cornell et al. [1995], Maier et al. [2015], Tian et al. [2019],
which incorporate structured physical interactions such as bond
stretching, angle bending, torsional rotations, and non-bonded
forces. We reinterpret these force fields as learnable neural po-
tentials while preserving underlying geometric and physical
consistency. The configuration space is set to high-dimensional
torusQ := TNangle , whereNangle denotes the number of torsional
degrees of freedom (e.g., , backbone dihedral angles ϕ, ψ, ω and
side-chain angles χi). To evaluate the proposed framework, we
perform experiments on three representative peptide systems of
increasing complexity: AD-3 Alanine dipeptide, which exhibits
simple dynamics on T2, 2AA dipeptides, where T4 arises from backbone and occasional side-chain
torsions, and 4AA tetrapeptides, which form structured dynamics on T12 due to multiple interacting
torsional modes. To extract geometric Hamiltonian states, we post-process time-aligned atomic
trajectories from the Timewarp Klein et al. [2023] to compute angles (ϕ, ψ, ω, χi) as generalized
coordinates, and approximate their corresponding momenta by estimating the reduced moment of
inertia associated with each torsional mode. Time derivatives are computed via finite differences
across consecutive frames. We evaluate trajectory quality using standard geodesic metrics on the
torus manifold, including average displacement error (ADE) and final displacement error (FDE),
where distances are measured along TNangle = S1 × · · · × S1. As summarized in Table 1, our method
outperforms existing benchmarks by a significant margin across all evaluated metrics.

Quantum Spin System. In quantum physics, a spin system refers to a collection of particles, each
possessing an intrinsic angular momentum (spin) that interacts with neighboring spins according
to specified coupling rules. Mathematically, spin states are modeled as unit vectors on a sphere or,
as elements of compact Lie groups. We model the dynamics of mutually interacting quantum spins
on the unit 3-sphere S3 ⊂ R4, where each spin is represented as a unit quaternion that evolves
under rigid-body dynamics. The system is equipped with anisotropic inertia and pairwise coupling
Hamiltonians, giving rise to nonlinear, geometry-constrained motion. The total Hamiltonian of the
system takes the following form: H(qN ,pN ) = 1

2

∑N
i=1(pi)

⊤I−1pi −
∑
i<j λij (⟨qi,qj⟩)

2 where
ωi ∈ R3 is the body angular velocity of the i-th spin, I ∈ R3×3 is the moment of inertia tensor,
and λij is the coupling strength promoting alignment between spins qi and qj . The inner product
⟨qi, qj⟩ = xixj + yiyj + zizj + wiwj measures the similarity of unit quaternions on S3. The time
evolution is governed by the Hamiltonian equations q̇i = 1

2Ω(ωi)qi and ω̇i = I−1τi, where Ω(ω)
encodes angular velocity and τi is the coupling torque promoting spin alignment. The induced
dynamics are thus constrained to a Riemannian manifold, specifically the 3-sphere endowed with
its canonical metric. We visualize the resulting trajectories using Hopf projection π : S3 → S2 in
Figure 2, where each spin is mapped to complex plane components (z1, z2) ∈ C2 with z1 = x+ iy,
z2 = z + iw, |z1|2 + |z2|2 = 1. Both the qualitative trajectories in Figure 2 and the quantitative
metrics in Table 1 demonstrate that our dynamics accurately capture the underlying spin system
evolution.
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Figure 5: Three-body Trajectories in the Spacetime of Schwarzschild Black Holes. Left: The ground-truth
simulation obtained by numerically integrating the exact relativistic dynamics, shows three mutually interacting
bodies (labels 1–3) spiraling toward the event horizon (i.e.,Schwarzschild Radius = 2M ). Center: The
proposed method accurately captures the relativistic deflection and inward inspiral of all three trajectories,
remaining faithful to the ground-truth. Right: Existing Euclidean HNN trained without explicit geometric
conditioning yields inconsistent trajectories that indicate an incorrect physical regime.

Figure 4: Comparison of total Hamiltonian H(t) and
cumulative relative drift Et|∆Ht|/H0 across models.

Relativistic Particle Dynamics. In the last exper-
iment, we consider the dynamics N interacting
bodies in the curved spacetime surrounding com-
pact astrophysical objects such as Schwarzschild
black hole. In formulation, the background force
field is derived from general relativity, encapsulat-
ing the relativistic geometry of spacetime. Mean-
while, the interaction forces between bodies fol-
low classical modeling assumptions, e.g., pairwise
Newtonian-like potentials. This setup allows us to generalize classical N -body systems to curved
spacetime environments beyond the fat spaces Satorras et al. [2021]. The Hamiltonian consists
of a kinetic term defined via the inverse Schwarzschild metric and a classical pairwise potential:
H(qN ,pN ) = 1

2M

∑N
i=1

∑3
µ,ν=0 g

µν(qi) pµi p
ν
i −

∑
i<j

GM2√
∥q⃗i−q⃗j∥2

E+ε2
. The geodesic structure

of the spacetime introduces non-Euclidean curvature effects in the momentum transport, while
inter-body forces remain Newtonian-like. We implement a symplectic leapfrog integrator adapted
to relativistic Hamiltonian flow and simulate multi-body systems initialized near stable orbital radii.
The results clearly indicate that Euclidean methods struggle to model particle behavior in curved
geometry. In contrast, our proposed HDM achieves superior reconstruction accuracy and substantially
lower energy drift in Table 1, reflecting improved alignment with the intrinsic geometry of the system.

N G-equiv Non-equiv

3 0.019 0.024 (+24%)
5 0.097 0.103 (+6%)
10 0.120 0.173 (+44%)
20 0.148 0.169 (+14%)

Table 2: Performance degradation as
the number of spin particles increases.

Ablation Study. We assess the numerical stability and scal-
ability of our model via two ablation criteria: (i) energy conser-
vation, and (ii) robustness across varying system sizes. Figure 4
shows that our method yields significantly lower energy drift
compared to Euclidean baselines (i.e., SympHNN), indicating
better consistency with the underlying geometric structure. In
addition, Table 2 reports how performance degrades as the
number of spin particles increases. While both models exhibit
reduced accuracy for larger N , the proposed gauge-equivariant
model remains consistently more stable. For instance, while both models experience increasing
error as N grows, the non-equivariant variant exhibits a sharp deterioration at N = 10, with over a
sevenfold increase in ADE relative to N = 3. In contrast, the gauge-equivariant model maintains a
more gradual degradation, reflecting improved scalability under growing system complexity.

6 Conclusion
This work presented Neural Hamiltonian Diffusion (NHD), a unified framework that integrates
geometry-aware diffusion processes with structure-preserving Hamiltonian learning. We formulated
a diffusion process lifted to the frame bundle and constructed neural Hamiltonian vector fields
that are equivariant under frame transformations. We provided theoretical results characterizing the
generalization properties of the proposed method, including uniform-in-time bounds and frame-
wise deviation under gauge transformations. Experiments results across diverse scientific domains
demonstrated that our NHD consistently improves physical fidelity and predictive stability compared
to Euclidean or non-Hamiltonian baselines.
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A Backgrounds

A.1 Stochastic Riemannian Geometry, Hamiltonian Dynamics

LetM be a smooth d-dimensional Riemannian manifold with metric g. The tangent bundle TM
is the disjoint union of all tangent spaces TxM for x ∈M. The orthonormal frame bundle O(M)
is a principal O(n)-bundle overM, where each point U ∈ O(M) is an ordered orthonormal basis
(e1, . . . , en) of TxM at some x ∈ M. The canonical projection π : O(M) → M maps a frame
to its base point. This allows lifting trajectories fromM to O(M) in a geometrically structured
way. A connection on O(M) decomposes the tangent space TUO(M) into vertical and horizontal
components:

TUO(M) = HU ⊕ VU .
The connection form ω ∈ Ω1(O(M); so(n)) is a Lie algebra-valued 1-form satisfying:

• ω(A∗) = A for all A ∈ so(n), where A∗ is the fundamental vertical vector field,
• R∗

gω = Adg−1ω under the right action Rg of g ∈ O(n).

A vector field X onM lifts horizontally toO(M) if ω(X̃) = 0. This horizontal lift allows stochastic
processes onM to be lifted into O(M) while preserving the connection structure.

Let Xt ∈M be a semimartingale on a smooth manifoldM. Let Ut ∈ O(M) denote a process on
the frame bundle such that π(Ut) = Xt. We say Ut is the horizontal lift of Xt if it satisfies the
following condition from Hsu [2002]:

dUt =

n∑
i=1

Hi(Ut) ◦ dBi
t, U0 = u,

where {Hi} is the canonical horizontal vector field associated with the standard basis vectors ei ∈ Rn,
and Bt is an Rn-valued Brownian motion. This construction allows noise to be defined canonically
on Rn, lifted horizontally via Hi, and transported on the manifold through Ut. The projected process
Xt = π(Ut) then inherits stochastic dynamics that respect the geometry induced by the connection.

An orthonormal frame U ∈ O(M) at x = π(U) is represented as an isometry U : Rn → TxM,
i.e., for a standard basis vector ei ∈ Rn, Uei = exi ∈ TxM. Thus, the process Ut evolves according
to the geometry ofM with stochastic noise applied in the frame coordinates and mapped into the
tangent bundle via horizontal transport. This perspective ensures that noise is not only intrinsic to the
manifold but also compatible with the Levi-Civita connection and geometric constraints ofM.

Hamiltonian Vector Fields on Manifolds. Let H : T ∗Q → R be a Hamiltonian. The Hamiltonian
vector field XH is defined implicitly via the symplectic form ω on T ∗Q, i.e., ιXHω = dH. In local
Darboux coordinates (qi, pi), XH takes the standard form:

XH =
∑
i

(
∂H

∂pi

∂

∂qi
− ∂H

∂qi
∂

∂pi

)
.

This is the core generator of deterministic Hamiltonian evolution and provides the basis for its
stochastic extension. For smooth functions f, g : T ∗Q → R, the Poisson bracket is defined as:

{f, g} := ω(Xf , Xg) =
∑
i

(
∂f

∂qi
∂g

∂pi
− ∂f

∂pi

∂g

∂qi

)
.

Horizontal Lift and Connection form. In Section 2 and Figure 1, we described the evolution of
lifted Hamiltonian dynamics on the orthonormal frame bundle O(M). The key construction relies
on decomposing a lifted vector field into horizontal and vertical components with respect to the
principal connection. Let Ĝθ(Ut) ∈ TUt

O(M) denote the full lifted vector field constructed from
the Hamiltonian flow {m,Hθ}. This field is not guaranteed to lie in the horizontal distribution HUt

:=
kerωUt

and must be projected to ensure that the resulting SDE respects the manifold connection
structure. The canonical projection is defined via the connection 1-form ω ∈ Ω1(O(M); so(d)),
which satisfies:

ωUt
(VUt

) = h ∈ so(d), ωUt
(HUt

) = 0.

xiii



The vertical component is extracted using ω, and the projection onto the horizontal space is given by:

GHor
θ (Ut) = Ĝθ(Ut)− ωUt

(
Ĝθ(Ut)

)♯
, (13)

where ωUt
(Ĝθ)

♯ ∈ VUt
denotes the vertical lift of the Lie algebra element associated to the vertical

component, and ♯ maps Lie algebra elements to fundamental vector fields. This ensures that the
resulting direction GHor

θ ∈ HUt
lies entirely in the horizontal distribution, satisfying the condition

ω(GHor
θ ) = 0. In local coordinates used in Eq. (5), the vertical component explicitly appears as the

second term involving the connection tensor [ΓM]♭ and the vectorized frame vec(E). The subtraction
in Eq. (5) therefore realizes the above projection in local form, decomposing the lifted vector field
into:

Ĝθ = GHor
θ +GVer

θ , GVer
θ := ω

(
Ĝθ

)♯
. (14)

This decomposition plays a crucial role in ensuring that the Stratonovich increment dUt =
GHor
θ (Ut) ◦ dBt evolves along a direction consistent with the geometry of T ∗Q. This geomet-

ric consistency is essential for transporting noise on the manifold without introducing spurious
curvature-induced distortions, and forms the foundation of the gauge-consistent stochastic Hamilto-
nian dynamics defined in this paper. Note that the proof of Proposition 2.2 will deliver the detailed
calculation of deriving the vanishing connection 1-form to show the validity.

Infinitesimal Generator and Fokker-Planck Equation. The stochastic process Xt ∈M := T ∗Q
governed by the Stratonovich SDE proposed in main manuscript

dXt = {m,Hθ}(Xt) ◦ dBt,

defines a diffusion process on the symplectic manifoldM with Hamiltonian vector field {m,Hθ}.
The corresponding infinitesimal generator Lθ acts on smooth test functions f ∈ C∞(M) as:

Lθf(x) =
1

2

2d∑
i=1

{m,Hθ}i (x) · ∂i
(
{m,Hθ}i (x) · ∂if(x)

)
,

where the index i runs over local coordinates (q1, . . . , qd, p1, . . . , pd) on T ∗Q, and {m,Hθ}i denotes
the i-th component of the Hamiltonian vector field. Let ρt(x) ∈ Dens(M) denote the time-dependent
probability density function of Xt. Then, the evolution of ρt is governed by the Fokker–Planck
equation associated with the generator Lθ:

∂ρt(x)

∂t
= L∗

θρt(x), (15)

where L∗
θ is the formal adjoint of Lθ in the L2(M) sense. Explicitly, using integration by parts, this

yields:
∂ρt(x)

∂t
=

1

2

2d∑
i=1

∂i

(
{m,Hθ}i (x) · ∂i

(
{m,Hθ}i (x) · ρt(x)

))
,

where the density ρt allows the Radon-Nikodym derivative with respect to probability measure
Pt by the formula dPt = ρtdx with Lebesgue measure dx. This formulation describes how the
probability mass of the stochastic process spreads over the symplectic manifold under the influence
of the geometry-aware Hamiltonian noise.
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Table 3: Comparison between Euclidean HNNs and Neural Hamiltonian Diffusions (Ours).
Comparison Item Euclidean HNNs Neural Hamiltonian Diffusions (Ours)

Space R2d (flat) General manifold T ∗Q
Structure Fixed symplectic form J Poisson structure from lifted geometry

Noise None (deterministic) Intrinsic stochasticity (via horizontal lift)
Energy Conservation Pathwise Ḣ = 0 Statistical: Lθπ = 0

B Experimental Setup

B.1 Relativistic Dynamics

We consider a Hamiltonian system defined on full spacetime phase space (M, g), whereM is a
Lorentzian manifold with Schwarzschild metric g. The canonical geodesic Hamiltonian governing N
interacting particles takes the form:

H(x,p) =

N∑
i=1

1

2M
gµν(xi) p

i
µp
i
ν −

∑
i<j

GM2√
∥x⃗i − x⃗j∥2 + ε2

, (16)

where gµν(x) is the inverse Schwarzschild metric and piµ is the four-momentum conjugate to the
spacetime coordinate xµi = (ti, ri, θi, ϕi). The second term encodes softened pairwise gravitational
interactions.

The inverse Schwarzschild metric in spherical coordinates is given by:

gµν(r, θ) =


−
(
1− 2GM

r

)−1
0 0 0

0
(
1− 2GM

r

)
0 0

0 0 1
r2 0

0 0 0 1
r2 sin2 θ

 . (17)

The dynamics follow the relativistic Hamilton equations:

dxµi
dt

=
∂H

∂piµ
,

dpiµ
dt

= − ∂H

∂xµi
. (18)

We summarize the physical-to-code variable mapping as:
q = (r, θ, ϕ) Position in Schwarzschild coordinates,

q̇ =
∂H

∂p
Relativistic velocity (spatial),

p = (p0, p1, p2, p3) Canonical four-momentum,

ṗ = −∂H
∂q

+∇V Force from geometry and pairwise interaction.

Each particle i ∈ {1, . . . , N} is initialized with a four-position qi = (ti, ri, θi, ϕi) drawn from:

ri ∼ N (8.0, 0.012),

θi ∼ N (π/2, 0.0052),

ϕ
(0)
i ∼ U [π, 1.3π], ϕi ∼ N (ϕ

(0)
i , 0.012),

centered around a stable orbital radius with small angular spread.

Initial four-momentum is sampled to induce slightly perturbed circular orbits:

pi = m ·


1

1− 2GM/ri
−0.1
0
εϕ

 , with εϕ ∼ N (0, 0.012).
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Table 4: Initial state (reproducible random seed 42).

Body x y z w ωx ωy ωz

1 −0.496 0.647 0.576 −0.011 0.228 −0.238 0.040
2 0.261 0.400 0.812 −0.314 −0.141 0.136 −0.113
3 −0.183 0.861 0.318 0.351 −0.119 −0.438 0.176

Frame Bundle Structure and Spatial Diffusion. Let (M, g) be a pseudo-Riemannian mani-
fold with signature (−,+,+,+). The pseudo-orthonormal frame bundle O(1,3)(M) is a principal
SO(1, 3)-bundle. A point in this bundle is written as:

Ut = (xµ, eµa), where gµν(x) eµa eνb = ηab,

and η = diag(−1, 1, 1, 1) is the Minkowski metric. The frame eµa forms a local orthonormal
basis of TxM. To respect relativistic causality, we restrict stochastic diffusion to spatial directions
a = 1, 2, 3. Let Bt = (B

(1)
t , B

(2)
t , B

(3)
t ) be Brownian noise on the spatial frame. The spatially-

restricted horizontal SDE on the frame bundle is then:

dUt = GHor
θ (Ut) ◦

(
0
dBt

)
, π(Ut) = Xt, Ut ∈ O(1,3)(M). (19)

No perturbation is applied to the temporal component (a = 0), and the drift term is entirely de-
terministic, maintaining consistency with the Lorentzian structure. The simulation integrates this
Hamiltonian system using a symplectic leapfrog method, with symbolic metric evaluation via SymPy.
The background mass M = 1.0 determines the Schwarzschild radius rs = 2GM = 2.0.

B.2 Spin Dynamics

Our goal in the expereiment is to model the time-evolution of three mutually–interacting rigid–body
spins living on the unit 3-sphere S3⊂R4, simulate three dynamical regimes, and render the results
through the Hopf fibration. Let q = (x, y, z, w) ∈ S3 be a unit quaternion representing a rigid rotation.
We split q into the complex pair

(
z1, z2

)
∈ C2, z1 = x+ iy, z2 = z + iw, so that |z1|2 + |z2|2 = 1.

We treat each spin as a point mass with principal inertia (2, 1, 0.5) and equip the system with the
pair-exchange Hamiltonian defined as follows:

H
(
{qi, ωi}Ni=1

)
=

N∑
i=1

1

2
ω⊤i Iωi −

J

2

∑
i ̸=j

(q⊤i qj),

where ωi∈R3 is the spatial angular velocity, I=diag(2, 1, 0.5), and J > 0 promotes alignment. Then,
the Hamilton equations read q̇i = 1

2 Ω(ωi) qi, ω̇i = I−1τi, with Ω(ω) and τi = −J
∑
j ̸=i(qi −

qj)1:3 the coupling torque. To simulate the dynamics, we employ an explicit Euler step of size
∆t = 0.02 s and renormalize qi to unit length after each step to avoid drift off S3. All runs start
from the randomized seed quaternion/velocity ensemble (Table 4 for seed 42). Each trajectory
contains T = 300 frames. While a unit quaternion (z1, z2) ∈ S3 ⊂ C2 projects via the Hopf
projection π(z1, z2) =

(
2ℜ(z1z̄2), 2ℑ(z1z̄2), |z1|2 − |z2|2

)
∈ S2. , we display each trajectory in

polar arg–magnitude coordinates of (z1, z2): (θk, rk) = (arg zk, |zk|), k = 1, 2.

B.3 Toroidal Protein Sequence

We convert the raw Cartesian trajectory contained in traj-arrays.npz into generalized coor-
dinates (θ, θ̇, p, ṗ) on the dihedral-torus to support Hamiltonian learning. The .npz file provides
positions xt ∈ RN×3, velocities vt, and time stamps t ∈ R+. Dihedral angles θt = (ϕt, ψt, ωt) ∈
(−π, π]3 are computed from atomic coordinates using standard torsion definitions applied to atom
quadruplets Aϕ,Aψ,Aω ⊂ {1, . . . , N}4, which are in turn extracted from the molecular topology
file traj-state0.pdb via MDTRAJ. This topology file also provides element-wise atomic masses
{mi}Ni=1 for moment of inertia computation.

We first estimate a uniform time step ∆t = meank(tk+1 − tk) in femtoseconds from the raw time
array. Angular velocities for each torsion angle θ ∈ {ϕ, ψ, ω} are then computed by finite differencing:
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Variable Symbol Shape

Angular velocities θ̇ (T − 1)× 3
Angular momenta p (T − 1)× 3
Momentum derivatives ṗ (T − 2)× 3

Table 5: Dimensions of the augmented physical variables.

θ̇k = (θk+1−θk)/∆t, followed by periodic unwrapping using θ̇k ← wrap(−π,π](θ̇k) where the wrap
function applies atan2(sin·, cos·) elementwise. The resulting angular velocity matrix θ̇ ∈ R(T−1)×3

is stored under the key torsion_dots. To compute the scalar moment of inertia Ik for a given
torsion at time tk, we approximate the rotation axis as the normalized vector e = (xa2 − xa1)/∥ · ∥
and use only the two terminal atoms to define transverse distances. Specifically,

Ik = ma0 r
2
⊥(xa0) +ma3 r

2
⊥(xa3), r⊥(r) = ∥(r− xa1)− [(r− xa1) · e] e∥ .

This produces a single scalar inertia for each dihedral and time step. Using this, we compute the
conjugate angular momentum as pk = Ik θ̇k and aggregate the result as a matrix p ∈ R(T−1)×3

stored as torsion_momentum. To obtain generalized forces, we compute the time derivatives of
angular momentum by finite differencing:

ṗk =
pk+1 − pk

∆t
, ṗk ← wrap(−π,π](ṗk),

where we again apply periodic unwrapping. This finally yields the data ṗ ∈ R(T−2)×3. Table 5
summarizes the shape of the augmented tensors.

B.4 Experimental Details

All experiments were conducted on a single NVIDIA RTX 5090 GPU using Python 3.11 and PyTorch
2.1.0 with CUDA 11.8 support. The proposed framework is evaluated on a pre-processed protein
trajectory dataset embedded in a curved configuration space. We use an 80%/20% temporal split for
training and testing. Each sub-trajectory consists of 0.8T frames: the initial frame t0 serves as the
input, and the following 0.8T frames (t1:0.8T ) are used for supervision. The model input and target
sequences include generalized coordinates, velocities, momenta, and their time derivatives:

(q, q̇, p, ṗ) ∈ RT×3,

where T denotes the total number of time steps in each sequence.

The neural architecture in Algorithm 1 is a Gauge-Equivariant Transformer UNet designed to model
Hamiltonian vector fields on curved manifolds by incorporating symmetry-preserving inductive
biases. The input to the network is a concatenation of configuration and momentum coordinates
(q, p) ∈ R2d, transformed into a canonical local gauge frame using a Cholesky-based projection with
gauge matrix G ∈ Rd×d. This projected input is passed through a linear embedding layer and fused
with a temporal encoding via sinusoidal or MLP-based TimeEmbedding.

The model consists of an encoder–decoder Transformer with L = 16 residual blocks, each using
multi-head self-attention, GELU activations, and layer normalization. Skip connections and projection
layers link encoder and decoder stages. Predictions for time derivatives are generated in a local gauge
frame and mapped back to the global frame using a Cholesky-based projection, ensuring gauge
equivariance. The network uses a hidden size of 128 and contains approximately 3M parameters.
Training is performed for 105 epochs using the Adam optimizer with learning rate 10−4 and batch
size 128. The loss combines a local alignment term and a long-range reconstruction objective.

L(θ) = Et∼U [0,T ]

[
λ
∥∥[̂̇qt, ̂̇pt]⊤ − [q̇t, ṗt]⊤∥∥2gM︸ ︷︷ ︸

Lalign

+
1

Ntar

Ntar∑
i=1

∥∥wrap(q̂t,i − qt,i)∥∥22︸ ︷︷ ︸
Lrecon

]
, λ = 0.1.

To simulate future trajectories, we employ a geometry-aware simulator that integrates stochastic
Hamiltonian dynamics via Stratonovich SDEs on the cotangent bundle. This simulator leverages
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Algorithm 1 GAUGE EQUIVARIANT TRANSFORMER UNET

1: Input: x = [qN , pN ] ∈2dN , time t, bundle metric G

2: Output:
[̂̇qN , ̂̇pN]

3: // Canonical gauge transform
4: qcan← G⊤qN , xcan← [qcan, p

N ]

5: // Encoder–decoder trunk (shared context)
6: h←Linear(xcan) + TimeEmbed(t)
7: h←Unsqueeze(h, 1)
8: for i = 1 to L do h←EncBlocki(h), enci←h
9: end for

10: for i = 1 to L do h←Concat(h, encL−i+1); h←DecProji(h); h←DecBlocki(h)
11: end for
12: c←GlobalPool(h) // context vector shared by all potentials

13: // Shared trunk Tϕ and two headsHsp,Hpair

14: for i = 1 to N do ▷ single-particle branch
15: ϕi ← Tϕ

(
[qi, pi], c

)
// shared weights

16: E i
sp ← Hsp(ϕi) // head 1

17: end for
18: for all pairs (i, j), i < j do ▷ pairwise branch
19: ϕij ← Tϕ

(
[qi, qj ], c

)
// same trunk

20: E ij
pair ← Hpair(ϕij) // head 2

21: end for

22: KE← 1
2

∑
i(p

i)⊤G−1pi // kinetic
23: SP←

∑
i E

i
sp, PI←

∑
i<j E

ij
pair

24: Hθ = KE+ SP + PI

25: ̂̇qN = ∇pNHθ , ̂̇pN = ∇qNHθ

26: ̂̇qN ← G ̂̇qN // back to global frame
27: return

[̂̇qN , ̂̇pN]

gauge-equivariant drift fields and lifts the dynamics into a frame bundle, where the noise is transported
horizontally. Chart transitions are handled using a manifold-aware update rule. The numerical
integrator uses a fixed step size ∆t = 2.0 fs and isotropic Gaussian noise of magnitude 10−2

√
∆t.

Performance is evaluated using two common metrics: the Average Displacement Error (ADE) and
the Final Displacement Error (FDE), defined as

ADE =
1

N Ttar

∑
n,t

∥q̂n,t − qn,t∥2 , FDE =
1

N

∑
n

∥q̂n,Ttar − qn,Ttar∥
2
.

Random seeds for torch, numpy, and random are fixed to 42 for reproducibility. The codebase and
configuration files will be made publicly available at https://github.com/Anonymous/HDM.

Simulation of Neural Hamiltonian Diffusion. Algorithm 2 outlines the simulation process of our
Hamiltonian Diffusion Model (HDM) based on Proposition 2.2. Starting from an initial state (q0, p0),
we construct a lifted representation U0 on the frame bundle using the inverse metric and its Cholesky
decomposition. At each step, the model predicts a gauge-equivariant Hamiltonian drift, and isotropic
noise is projected onto the horizontal space to ensure geometric consistency. The state is updated via
a Stratonovich integrator that respects the manifold structure, and chart transitions are handled as
needed. The algorithm outputs both the lifted trajectory on the frame bundle and its projection onto
the base manifold, enabling structured simulation over curved geometric spaces.

Initialisation of the Lifted State U0 = (x0, E0) ∈ O(M). The horizontal SDE of Proposition2.2
requires an initial condition on the orthonormal-frame bundle. This amounts to choosing (i) a base
point x0 ∈ M—which fixes the particle’s initial configuration—and (ii) an orthonormal frame
E0 ∈ SO(Tx0

M) that serves as the local gauge in which all subsequent tangent-space computations
are expressed.
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Algorithm 2 SIMULATE NEURAL HAMILTONIAN DIFFUSION(q0, p0, t0, T, nf ; Hθ)

Require: Initial state (q0, p0) ∈ T ∗Q, start–end times (t0, T ), # Stratonovich steps nf , parameterized Hamilto-
nian Hθ

Ensure: Lifted trajectory {Ut}t0≤t≤T and its projection {Xt = π(Ut)}
1: // Initial frame lift
2: g♯ ← g♯(q0, p0) // inverse bundle metric
3: ν0 ← chol

(
g♯
)

// local orthonormal frame
4: U0 ← (q0, p0, vec(ν0)) // coordinates on O(T ∗Q)
5: C0 ← 1d // initial chart index
6: // Stratonovich SDE integration
7: for k = 0 to nf − 1 do
8: t← t0 + k∆t, ∆t← T−t0

nf

9: qt, pt,Ut ← unpack(Uk)
10: // Horizontal Hamiltonian drift
11:

[
wq, wp

]
← MODELFORWARD

(
[qt, pt], t,Ut

)
12: Ghor

θ (Uk)←
[
wq,−wp

]
// {m,Hθ} part

13: // Horizontal diffusion term
14: Ht ← Hframe(qt,Ut) // horizontal projector
15: ξ ∼ N (0, I2d), sto =

√
∆tHtξ

16: // Stratonovich increment
17: Uk+1 ← Uk +Ghor

θ (Uk)∆t+ sto
18: // (optional) Chart update on frame bundle
19: Ck+1,Uk+1 ← CHARTUPDATE(Uk+1, Ck)
20: end for

return {Uk}
nf
k=0, {Xk = π(Uk)}

1. Base point x0. In practice x0 is dictated by the task: for trajectory prediction one sets x0 = xdata
(the observed configuration at time 0); for sampling or controlled experiments one may draw x0 from
a prescribed distribution onM (e.g. the uniform measure on S2).

2. Orthonormal frame E0. Given a coordinate chart m = (q1, . . . , qd) around x0 with metric
matrix g(x0), one constructs E0 by orthonormalising the coordinate basis via the Gram–Schmidt (or
Cholesky) procedure:

E0 =
[
e1 · · · ed

]
, ⟨ei, ej⟩g(x0) = δij .

For the sphere example (d = 2) with (χ, φ) coordinates one obtains

e1 = ∂χ
∣∣
x0
, e2 =

1

sinχ0
∂φ
∣∣
x0
, E0 =

[
1 0

0 1/ sinχ0

]
.

3. Phase–space variables. If the model evolves on T ∗M one also specifies the initial momentum
p0 ∈ T ∗

x0
M. Typical choices are (a) the empirical momentum if one starts from real data, or (b)

a draw from the canonical Gibbs distribution p0 ∼ N
(
0, g−1(x0)

)
, which is consistent with the

kinetic term 1
2p

⊤g−1p in the Hamiltonian.

4. Vectorised form for the SDE. For implementation the frame is flattened, vec(E0) ∈ Rd2 , and
concatenated with (q0, p0) to produce the full initial vector fed into Algorithm ??. Because E0 is
already orthonormal, the integrator starts in the horizontal sub-bundle, and the structural proper-
ties guaranteed by Proposition2.2 are preserved from the first step onward without any corrective
projection.
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C Lemmas

Lemma C.1. Let Γ := Γijk be the connection (i.e., Christoffel symbols) of a smooth configura-
tion manifold (Q, g), and let Rijkl be the components of the Riemann curvature tensor. Let us
denote ∥Γ∥∞ := supx∈Q maxi,j,k |Γijk(x)|, and ∥∂Γ∥∞ := supx∈Q maxi,j,k,l |∂kΓijl(x)|. Then the
following sup-norm inequality holds:

∥R∥∞ ≤ 2∥∂Γ∥∞ + 2∥Γ∥2∞, ∥Γ∥∞ ≡ 0 −→ ∥R∥∞ ≡ 0.

Proof of Lemma C.1. Recall that, in a local coordinate chart on a smooth Riemannian manifold
(Q, g), the components of the Riemann curvature tensor are

Rijkl = ∂kΓ
i
jl − ∂lΓ

i
jk + Γikm Γmjl − Γilm Γmjk,

where Γijk are the Christoffel symbols. Define the sup-norms

∥Γ∥∞ := sup
x∈Q

max
i,j,k

∣∣Γijk(x)∣∣, ∥∂Γ∥∞ := sup
x∈Q

max
i,j,k,l

∣∣ ∂kΓijl(x)∣∣,
and

∥R∥∞ := sup
x∈Q

max
i,j,k,l

∣∣Rijkl(x)∣∣.
For the derivative part ofRijkl, we have∣∣∂kΓijl − ∂lΓ

i
jk

∣∣ ≤ ∣∣∂kΓijl∣∣ +
∣∣∂lΓijk∣∣ ≤ 2 ∥∂Γ∥∞.

For other quadratic parts, we control the terms by showing that∣∣ΓikmΓmjl − ΓilmΓmjk
∣∣ ≤ ∣∣ΓikmΓmjl

∣∣ +
∣∣ΓilmΓmjk

∣∣ ≤ ∥Γ∥2∞ + ∥Γ∥2∞ = 2 ∥Γ∥2∞.

Applying above results and then we take the maximum over all indices at each point to have

|Rijkl(x)| ≤ 2 ∥∂Γ∥∞ + 2 ∥Γ∥2∞, ∀x ∈ Q.

Finally, this gives
∥R∥∞ ≤ 2 ∥∂Γ∥∞ + 2 ∥Γ∥2∞.

If ∥Γ∥∞ ≡ 0 (so every Γijk vanishes identically), then ∂kΓijl ≡ 0 as well, and Rijkl ≡ 0 by (∗).
Consequently ∥R∥∞ ≡ 0. This concludes the proof.

Lemma C.2. Let (M, g) be a Riemannian manifold. Fix a smooth reference curve γ : [0, T ]→M
and define

Ft(y) := exp−1
γ(t)(y) ∈ Tγ(t)M, Jt := Ft

(
Xt

)
,

where Xt is a solution to the proposed Stratonovich Hamiltonian Diffusion Model (HDM). Assume
that XH

(
γ(t)

)
= 0 for all t ∈ [0, T ]. Then, to first order in the stochastic differential, we have

D exp−1
γ(t)

(
dXt

)
≈ ∇Jt{m,Hθ}

(
γ(t)

)
◦ dBt. (20)

Proof. We start by recalling the behavior of the exponential map and its derivative. For v ∈ Tγ(t)M ,
define the geodesic γv(s) := expγ(t)(sv). Given ξ ∈ Texpγ(t)(v)

M , the differential of the exponential
map satisfies

D expγ(t)(v)[ξ] = Jξ(1), (21)

where Jξ denotes the unique Jacobi field along γv satisfying the initial conditions

Jξ(0) = 0, ∇γ̇vJξ(0) = ξ.

At the origin v = 0, the exponential map behaves simply:

D expγ(t)(0) = Id, D2 expγ(t)(0) = 0.
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This tells us that near v = 0, the differential D expγ(t)(v) is close to the identity up to second-order
terms. Thus, for y close to γ(t) (writing v = exp−1

γ(t)(y)), the differential of the inverse exponential
map satisfies

D exp−1
γ(t)(y) =

(
D expγ(t)(v)

)−1
= Id+O(∥v∥2). (22)

Next, we apply a Taylor expansion to the Hamiltonian vector field XH around γ(t). Since Jt =
exp−1

γ(t)(Xt) represents a small deviation, we have

XH(Xt) = XH

(
γ(t)

)
+∇JtXH

(
γ(t)

)
+O(∥Jt∥2). (23)

By the assumption XH

(
γ(t)

)
= 0, this simplifies to

XH(Xt) = ∇JtXH

(
γ(t)

)
+O(∥Jt∥2).

Thus, the stochastic differential dXt is given by

dXt = ∇JtXH

(
γ(t)

)
◦ dBt +O(∥Jt∥2) ◦ dBt.

Now, we apply the differential of the inverse exponential map to both sides. Using (22), we find

D exp−1
γ(t)

(
dXt

)
=
[
Id+O(∥Jt∥2)

] [
∇JtXH

(
γ(t)

)
◦ dBt +O(∥Jt∥2) ◦ dBt

]
= ∇JtXH

(
γ(t)

)
◦ dBt +O(∥Jt∥3) ◦ dBt.

Finally, since Jt = O(|Bt|) under small-noise scaling, the remainder term O(∥Jt∥3) ◦ dBt becomes
negligible compared to dBt in the Stratonovich limit. Thus, we conclude the desired first-order
approximation:

D exp−1
γ(t)

(
dXt

)
≈ ∇Jt{m,Hθ}

(
γ(t)

)
◦ dBt.

Lemma C.3. Let (Q, g) be a d-dimensional Riemannian manifold. Assume that the scalar curvature
Scal(x) satisfies

sup
x∈Q
|Scal(x)| ≤ S (24)

for some constant S ≥ 0. Then the operator sup-norm of the Riemann curvature tensor satisfies the
estimate

∥R∥∞ ≤
2S

d(d− 1)
. (25)

In particular, the curvature-induced deviation term (B) in the stochastic Jacobi analysis can be
uniformly bounded in terms of the scalar curvature bound S.

Proof. Recall that for any point x ∈ Q and any orthonormal basis {ei}di=1 of TxQ, the scalar
curvature is given by

Scal(x) =
∑
i<j

2K(ei, ej), (26)

where K(ei, ej) denotes the sectional curvature of the 2-plane spanned by ei and ej :

K(ei, ej) =
g(R(ei, ej)ej , ei)

∥ei ∧ ej∥2
= g(R(ei, ej)ej , ei). (27)

There are exactly
(
d
2

)
= d(d−1)

2 independent pairs (i, j), and each sectional curvature contributes
linearly to the scalar curvature. Therefore, taking absolute values and using the triangle inequality,
we obtain

2max
i<j
|K(ei, ej)| ·

(
d

2

)
≥ |Scal(x)|, (28)

xxi



which rearranges to

max
i<j
|K(ei, ej)| ≥

|Scal(x)|
d(d− 1)

. (29)

Since by definition

∥R∥∞ = sup
x∈Q

sup
∥u∥=∥v∥=1

∥R(u, v)∥g and ∥R(u, v)∥g ≈ |K(u, v)|

up to constants depending on the wedge norm ∥u ∧ v∥ = 1 for orthonormal pairs, we obtain

∥R∥∞ ≤ 2 sup
x∈Q

max
i<j
|K(ei, ej)| ≤

2S

d(d− 1)
, (30)

where the factor 2 arises from symmetrization conventions in the definition of the Riemann tensor
versus the sectional curvature. Thus, the curvature tensor’s sup-norm is explicitly controlled by the
scalar curvature bound S.

Lemma C.4. Øksendal and Øksendal [2003] Let (Bt)t∈[0,T ] be a standard Brownian motion. Then,
the mean-squared expectation of Stratonovich SDEs can be calculated as follows:

E
∥∥∥∥∫ t

0

Zs ◦ dBs
∥∥∥∥2 =

∫ t

0

E∥Zs∥2 ds+
1

4
E
∥∥∥∥∫ t

0

∇Zs · Zs ds
∥∥∥∥2

+ E
〈∫ t

0

Zs dBs,

∫ t

0

∇Zs · Zs ds
〉

(31)
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D Proofs

This section serves to rigorously formalize all theoretical results that were informally stated in the
main text. The goal is to provide complete proofs that fill in the technical gaps and support the
conceptual developments discussed earlier.

D.1 Proof of Proposition 2.2

Proposition D.1 (Horizontal Hamiltonian Diffusion). Let Ut ∈ O(M) be the horizontal lift of the
diffusion process Xt = π(Ut), where π : O(M)→M is the canonical projection and m denotes a
local coordinate function onM. The lifted process Ut evolves according to the Stratonovich SDE:

dUt := GHor
θ (Ut) ◦ dBt, π(Ut) = Xt, Ut ∈ O(M), (32)

GHor
θ (Ut) := ({m,Hθ}(Xt))∇x −

[(
Id ⊗ ({m,Hθ}(Xt))

⊤
)
· [ΓM]♭vec(E)

]
∇e, (33)

where [ΓM]♭ ∈ M(2d× d2) is the index-lowered connection tensor (i.e., Christoffel symbol), and
vec(E) ∈ M(d2, 1) is the vectorized local orthonormal frame. ∇x and ∇e denote the vectorized
gradients with respect to the configuration point and the frame coordinates, respectively.

Proof. We begin by deriving the horizontal lift of stochastic Hamiltonian dynamics in local coor-
dinates. This involves expressing the dynamics {Xt} on the cotangent bundle T ∗Q under a local
trivialization of the frame bundle OM, equipped with a moving frame Et. For explicit analytical
and numerical handling, we represent the Stratonovich SDEs in terms of Euclidean coordinates via
the horizontal lift operator. In this coordinate system, the horizontal lift of the Stratonovich-type
stochastic Hamiltonian dynamics is written as:

q̇it =

(
∂Hθ
∂pi

)
(Xt)−

n∑
j=1

n∑
α=1

(
n∑
k=1

Γijk(qt) e
α,k
t

)(
∂Hθ
∂pj

)
(Xt)e

α,i
t ◦ dBt,

ṗit = −
(
∂Hθ
∂qi

)
(Xt)−

n∑
j=1

n∑
α=1

(
n∑
k=1

Γijk(qt) e
α,k
t

)(
∂Hθ
∂qj

)
(Xt)e

α,i
t ◦ dBt.

(34)

The above system describes the horizontal lift of Hamiltonian dynamics where the curvature of the
base manifold Q encoded by the Christoffel symbols Γijk and the stochastic transport along local
orthonormal frames Et jointly modulate the diffusion. The geometric structure is embedded via the
lifted noise term on T ∗Q, ensuring that Brownian motion remains horizontal with respect to the
Levi-Civita connection.

To enable stochastic calculus, we now transform the Stratonovich integrals in (34) into Itô form. This
allows the introduction of correction terms due to the nonlinear dependence of the coefficients on the
stochastic process. The position dynamics in Itô form become:

q̇it =

(∂Hθ
∂pi

)
−

n∑
j=1

n∑
α=1

(
n∑
k=1

Γijk e
α,k
t

)(
∂Hθ
∂pj

)
eα,it

 dBt

+
1

2

2n∑
j=1

{
∂2Hθ
∂pi∂pj

−
n∑
r=1

n∑
α=1

n∑
k=1

[
∂Γirk
∂pj

eα,kt

(
∂Hθ
∂pr

)
eα,it + Γirk

∂Eα,kt

∂pj

(
∂Hθ
∂pr

)
eα,it

+ Γirke
α,k
t

∂2Hθ
∂pj∂pr

Eα,it + Γirke
α,k
t

(
∂Hθ
∂pr

)
∂eα,it
∂pj

]}
·Vj dt.

(35)
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Similarly, the momentum equation is converted as:

ṗit =

−(∂Hθ
∂qi

)
−

n∑
j=1

n∑
α=1

(
n∑
k=1

Γijk E
α,k
t

)(
∂Hθ
∂qj

)
Eα,it

 dBt

+
1

2

2n∑
j=1

{
− ∂2Hθ
∂qi∂qj

−
n∑
r=1

n∑
α=1

n∑
k=1

[
∂Γirk
∂qj

Eα,kt

(
∂Hθ
∂qr

)
Eα,it + Γirk

∂Eα,kt

∂qj

(
∂Hθ
∂qr

)
Eα,it

+ ΓirkE
α,k
t

∂2Hθ
∂qj∂qr

Eα,it + ΓirkE
α,k
t

(
∂Hθ
∂qr

)
∂Eα,it

∂qj

]}
·Vj dt.

(36)

Here, the additional drift induced by curvature and moving frames is absorbed into the auxiliary term
Vj , defined as:

Vj(X) =

(
1j≤d ·

∂Hθ
∂pj

(X)− 1j>d ·
∂Hθ
∂qj−d

(X)

)
−

n∑
α,r,k

Γj
′

rk(q)E
α,k
t

(
∂Hθ
∂ξr

(X)

)
Eα,j

′

t . (37)

In Euclidean coordinates with Cartesian frames, all connection coefficients vanish (Γ = 0), and the
orthonormal frame Et becomes static. As a result, the geometric correction term Vj also disappears,
recovering the standard stochastic Hamiltonian flow.

To summarize and simplify the geometric formulation, we now express the entire Hamiltonian
diffusion in matrix notation. Let us define the following tensorial representations:

{m,Hθ} ∈ R1×2d, Id⊗ {m,Hθ}⊤ ∈ Rd×2d, Γ♭ ∈ R2d×d2 , vec(Et) ∈ Rd
2

.

Let a := Γ♭ ·vec(Et) denote the geometric distortion vector. Then, the matrix form of the Hamiltonian
diffusion reads:

(Ito) dXt = {m,Hθ}(Xt) dBt +
1

2

2d∑
j=1

(
D2{m,Hθ} · aj

)
· aj dt, (38)

where aj denotes the j-th column of a, and D2{m,Hθ} ∈ R2d×2d×2d is a rank-3 tensor containing
Hessian of Hamiltonian. This reformulation makes explicit the second-order geometry-aware cor-
rection arising from horizontal noise transport in local coordinates. With the form of Stratonovich’s
diffusion, one can recover the original definition used in Eq (5) as follows:

(Stratonovich) dXt =
[
{m,Hθ}(Xt)−

(
Id⊗ {m,Hθ}⊤

)
Γ♭ vec(Et)

]
◦ dBt. (39)

The first part of the proof is complete by rewriting the above dynamics presented as Stratonovich
SDEs.

As a next step, we aim to establish the theoretical validity of our geometric construction by verifying
whether the proposed vector fields GHor

θ indeed lie in the horizontal distribution of the orthonormal
frame bundle O(M), whereM := T ∗Q is the cotangent bundle equipped with a Sasaki-type metric.

We introduce canonical coordinates onM as

xα = (qi, pi), α ∈ {1, . . . , 2d}. (40)

With block index conventions where q-indices are i, j, k ∈ {1, . . . , d} and fibre indices are ı̄ := d+ i,
the Sasaki-type metric onM is given by

gM = g ⊕ g−1, (41)

where g is the base Riemannian metric on Q. The Christoffel symbols of the Levi-Civita connection
onM, denoted ΓMα

βγ , have the following block structure (with ∂i := ∂/∂qi):

ΓMα
βγ =


Γijk, α = i, β = j, γ = k,
1
2 (∂jg

ik + ∂kg
ij), α = i, β = j, γ = k̄,

− 1
2∂ℓgjk, α = ℓ̄, β = j, γ = k,

0, otherwise.

(42)
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Let U = (x,E) ∈ O(M) be a point on the orthonormal frame bundle, where E = (Eαa) ∈ R2d×2d

is an orthonormal frame at x. We define the vectorized frame by

vec(E) ∈ R(2d)2 , (43)

which stacks the columns of E. We also define the index-lowered connection tensor

[ΓM]♭ ∈ R(2d)×(2d)2 (44)

via the transformation
([ΓM]♭vec(E))α := ΓMα

βγ E
β
a. (45)

Then for any v ∈ R2d, we have the key identity:

mat
(
[I2d ⊗ v⊤][ΓM]♭vec(E)

)
= ΓM(v)E, (46)

where ΓM(v)αβ := ΓMα
βγ v

γ , and mat(·) reshapes a vector of length (2d)2 into a 2d× 2d matrix.

We now set
v := {m,Hθ}(x) = (∂pHθ,−∂qHθ) ∈ R2d, (47)

which defines the base vector field associated with the Hamiltonian dynamics. Then the lifted
horizontal vector field on the frame bundle is given by

GHor
θ = vα∂xα −

[
I2d ⊗ v⊤

]
[ΓM]♭vec(E) · ∂E . (48)

To confirm horizontality, we define the temporal derivative of the frame:

Ė := −[I ⊗ v⊤][ΓM]♭vec(E), (49)

which is equivalent to
Ė = −vec(ΓM(v)E). (50)

The Levi-Civita connection 1-form evaluated at a vector field V is given by

ωab(V ) = Eaα

(
Ėαb + ΓMα

βγ v
γEβb

)
. (51)

Substituting the expression for Ėαb, we obtain

Ėαb = −ΓMα
βγ v

γEβb, (52)

which implies
ωab(G

Hor
θ ) = Eaα

(
−ΓMα

βγ v
γEβb + ΓMα

βγ v
γEβb

)
= 0. (53)

Therefore, the connection 1-form vanishes:

ω(GHor
θ ) = 0, (54)

which confirms that the vector field lies in the horizontal distribution:

GHor
θ ∈ HO(M). (55)

In conclusion, the proposed Stratonovich SDE

dUt = GHor
θ (Ut) ◦ dBt (56)

is the horizontal lift of the Hamiltonian diffusion process on the cotangent bundle T ∗Q, ensuring
geometric consistency with the underlying connection onM.
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D.2 Proof of Proposition 3.1

Proposition D.2 (Time-uniform Generalization Bound of Hamiltonian Diffusion). Let Pt(θ⋆) :=
Law(γt(θ

⋆)) be an associated probability measure of model trajectory, and assume that the proposed
neural networks lie in Sobolev ball i.e., ∥θ∥W 2,s ≤ R,∀θ ∈ Θ, and first and second derivatives of
Hamiltonian are Lipschitzian.

P

[
sup
t∈[0,T ]

sup
θ⋆∈Θ

W (Pt(θ⋆),Pt,data) ≤ δ

]
≲ exp

(
−Ω · δ1/2∥Γ∥3/2∞ R1/2(logR)1/4

)
, (57)

While the first bound captures the uniform deviation of the learned trajectory distribution from the
target data measure across time, we next provide a concentration result that controls the deviation
between the empirical Wasserstein distance and its population expectation.

P

[
sup
t∈[0,T ]

sup
θ∈Θ

∣∣∣∣∣W
(
1

n

n∑
i

δγ(θi), P̃data

)
− EθW

(
γ(θ), P̃

)∣∣∣∣∣ ≤ δ
]

≲ exp

(
−Ω · δ1/2∥Γ∥3/2∞

R1/2(logR)1/4

n1/4

)
, (58)

whereW :=W2,2
T (T∗Q) stands for the squared Wasserstein distance on physical data space T (T ∗Q),

Ω := Ω(σ, λmax, LH , L∇H , d, s), d > 2s is a constant depending on metric tensor g and the
smoothness, Lipschitz constant of Hamiltonian.

Proof. While the proposed stochastic system is semi-martingale, the chain rule with respect to
Poisson bracket (i.e., Eq.(2.8) Lázaro-Camí and Ortega [2008]) direct gives the following result:

πiq ◦ π(Ut)− πiq ◦ π(U0) =

d∑
j=1

∫ t

0

{πiq,Hθ}(Xs) ◦ dBj
s

=

d∑
j=1

∫ t

0

d∑
k=1

(
∂πiq
∂qk

∂Hjθ
∂pk

−
∂πiq
∂pk

∂Hjθ
∂qk

)
(Xs) ◦ dBj

s

=

d∑
k,j=1

∫ t

0

(
δki
∂Hjθ
∂pk

)
(Xs) ◦ dBj

s =

d∑
j=1

∫ t

0

∂Hjθ
∂pi

(Xs) ◦ dBj
s,

(59)

where δba denotes the Kronecker delta. This reveals that the stochastic evolution of the velocity field
depends explicitly on the derivatives with respect to momentum coordinates in Eq. (59), highlighting
the necessity of incorporating additional physical information. For further discussion, we first give a
Sasaki-type fiber metric (i.e., norm) on TM = T (T ∗Q). Then, the squared distance between γ1 and
γ2 on tangent bundle TM can be naturally defined as follows:

d2T (T∗Q)(γ
1, γ2) = ∥(q1, p1, q̇1, ṗ1)− (q2, p2, q̇2, ṗ2)∥2T (T∗Q)

= ∥q1 − q2∥2gQ + ∥p1 − p2∥2
g−1
Q

+ ∥q̇1 − q̇2∥2gQ + ∥ṗ1 − ṗ2∥2
g−1
Q

(60)

where g−1
Q (α#, β#) = gQ(α, β) is a dual metric on configuration space. Following by the definition

of the norm on tangent bundle of total manifold T (T ∗Q), the discrepancy between model trajectory
γ(θ and data trajectory γ̃ can be calculated as follows:

d2T (T∗Q)(γ(θ), γ̃) = ∥(qt(θ),pt(θ), q̇t(θ), ṗt(θ))− (q̃t, p̃t, ˜̇qt, ˜̇pt)∥2T (T∗Q)

= ∥(0d,pt(θ), q̇t(θ),0d)− (0d, p̃t, ˜̇qt,0d)∥2T (T∗Q)

≤ ∥(0d,pt(θ), q̇t(θ),0d)− (0d,pt(θ0),pt(θ0),0d)∥2T (T∗Q)

+ ∥(0d,pt(θ0), q̇t(θ0),0d)− (0d, p̃t, ˜̇qt,0d)∥2T (T∗Q)

(61)

Let assume that the test neural network θ satisfies perfectly matches particle trajectories almost
surely i.e., πq ◦ π(Ut) = qt(θ) = q̃t, and assume both mapping ∇pH(q, ·; θ) and ∇qH(p, ·; θ) is
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an injective mapping for each fixed q and p. Consider another neural network θ0 both matches both
particle trajectory and their corresponding momentum behavior e.g., θ0 := argminθ L(θ).

If there exists a inverse Lipschitz constant L−1
H of second mapping, then the assumptions leads to the

second and third inequality in Eq. (62):

W2,2
T (T∗Q) (Law(γ(θ),Law(γ̃))

≤ Ed2T (T∗Q)(γ(θ), γ̃)

≤ E∥q̇t(θ)− q̇t(θ0)∥2gQ + E∥p(θ)− p(θ0)∥2g−1
Q

≤ (1 + L−2
Hθ

)E∥q̇t(θ)− q̇t(θ0)∥2gQ .

(62)

Given the fact that velocity field lies in the tangent of configuration space q̇t ∈ TQ ∼= Rd, taking a
supremum with respect neural networks in both side of inequality in Eq. (62) gives

sup
θ∈Θ
W (Law(γ(θ),Law(γ̃)) ≤ (1 + L−2

Hθ
) sup
θ∈Θ

E
[
∥q̇t(θ)− q̇t(θ0)∥2gQ

]
≤ (1 + L−2

Hθ
)λ2max(gQ) sup

θ∈Θ
E
[
∥q̇t(θ)− q̇t(θ0)∥2E

]
.

(63)

For readability, we simplify the notation asW :=W2,2
T (T∗Q). Note that the expectation in this context

is taken from µqt ∈ P(TqtQ) for each t ∈ [0, T ]. In first inequality, we normalize the Riemannian
inner product with the Euclidean correspondence by using the property: ∥v∥2gQ ≤ λ

2
max(gQ)∥v∥2E for

any vectors v ∈ TptQ. Next, our goal is to obtain the following type of decomposition

sup
θ∈Θ

E
[
∥q̇t(θ)− q̇t(θ0)∥2E

]
≤ f · sup

θ
(1)
t ∈Θ

∥θ(1)t − θ
(2)
t ∥2Θ. (64)

where the time-dependent constant f := f(t,Γ, ∂Γ, ∂IHθ) depends on the connection form Γ and
their derivative ∂Γ, and the Lipschitz constants of higher-order derivatives Lip(∂IHθ),∀I ≤ 2. To
this end, we first define four auxiliary processes as follows:

Dt(θ) := ∂piHθ, Aj,α(qt) =

d∑
k=1

Γkjα(qt)E
α,k
t ,

Bij,α(θ) = (∂piHθ)E
α,i
t , Zt =

∑
j,α

Aj,α(qt)δBj,α(t),

(65)

where the mean-squared norm of processes ∥A∥2E , ∥δB∥2E , ∥Z∥2E , ∥D∥2E , ∥∇Z∥2E is bounded above
with some constants CA, CB , CZ , CD, C∇Z . Having the definition in hands, the proposed velocity
vector fields for arbitrary network θ can be simplified with the following form:

q̇t(θ) =

∫ t

0

Ds(θ)−
∑
j,α

Aj,α(qs)Bj,α(θ) ◦ dBt. (66)

With the definition δq̇t := q̇t(θ) − q̇t(θ0) for deviation between two velocity vector fields, direct
calculation leads to have norm-squared expectation as follows:

E
[
∥δq̇s∥2E

]
= E

∣∣∣∣∣∣∣∣ ∫ t

0

δDs −
∑
j,α

Aj,α(qs) δBj,α(s) ◦ dBs
∣∣∣∣∣∣∣∣2
E



≤ 2E

[∣∣∣∣∣∣∣∣ ∫ t

0

δDsds

∣∣∣∣∣∣∣∣2
]
+ 2E


∣∣∣∣∣∣∣∣ ∫ t

0

∑
j,α

Aj,α(qs) δBj,α(s)︸ ︷︷ ︸
:=Zs

◦dBs
∣∣∣∣∣∣∣∣2
E


(67)

Following by the conversion of Stratonovich SDE into Ito’s SDE in Lemma C.4, the second term of
right-hand in last inequality can be upper-bounded with the following form:

E

[∥∥∥∥∫ t

0

Zs ◦ dBs
∥∥∥∥2
]
≤ C2

Z

(
1 +

1

4
t2C2

∇Z + t
3
2C∇Z

)
(68)
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This bound reflects the second-moment structure of the Stratonovich integral, where the dominant
contribution arises from the squared noise norm C2

Z , and the correction terms involve both the norm
and gradient of the stochastic vector field Zt.s

∥A∥E := CA ≤
√
dλ−1/2

max ∥Γ∥∞, ∥Γ∥∞ = sup
q∈Q

sup
j,α,k
|Γkjα(q)| (69)

∥δB∥E := CB ≤ LHλ
−1/2
max ∥θ − θ0∥, (70)

∥Z∥E := CZ ≤ d2CACB = d5/2λ−1
max∥Γ∥∞LH∥θ − θ0∥. (71)

This shows that the magnitude of the noise vector Zt grows quadratically with the model distance
∥θ − θ0∥, and is modulated by the geometric curvature ∥Γ∥∞ and the Hamiltonian smoothness LH .

∇Zs =
∑
j,α

∇Aj,α(qs) · δBj,α(s) + Aj,α(qs) · ∇δBj,α(s). (72)

This decomposition separates the gradient of the stochastic vector field Zt into two terms: one
involving the spatial derivative of the geometry-aware coefficient Aj,α, and the other involving the
gradient of the perturbation δBj,α, both of which are influenced by the manifold structure and the
Hamiltonian model.

∥∇A(qs)∥E := C∇A ≤
√
d∥∂Γ∥∞, ∥Γ∥∞ = sup

q∈Q
sup
j,α,k
|∂Γkjα(q)|2 (73)

∥∇δB∥E := C∇B ≤ (LH + L∇H∥∇qEα,is ∥2E)∥θ − θ0∥, (74)

Since the orthonormal frame is locally updated by parallel transport, one can obtain

∂qjE
α,i
s (qs) = −

∑
i

Γkji(qs)E
α,i
s , ∥∇qEα,is ∥E ≤ dλ−1/2

max ∥Γ∥∞ (75)

Therefore, the spatial variation of each frame componentEα,it is entirely determined by the Christoffel
symbol and remains uniformly bounded under smooth parallel transport.s

∥∇Zs∥E := C∇Z ≤ d2(C∇ACB + CAC∇B)

≤ d5/2 [∥∂Γ∞∥LH + ∥Γ∥∞(L∇H + LH∥Γ∥∞)] ∥θ − θ0∥.
(76)

Hence, the total spatial gradient ∇Zt scales linearly with the parameter deviation ∥θ − θ0∥, and is
tightly controlled by the geometry through ∥Γ∥∞, ∥∂Γ∥∞ and the Lipschitz constants LH , L∇H .

E

[∣∣∣∣∣∣∣∣ ∫ t

0

δq̇sds

∣∣∣∣∣∣∣∣2
E

]
≤ f(t,Γ, ∂Γ) · E

[
∥δθ∥2E

]
(77)

For L = LH ∨ L∇H , f is defined as follows:

f(t,Γ, ∂Γ) := L ∨ d5λ−1
maxL

2∥Γ∥2∞
(
1 + t3d5L2 [∥∂Γ∥∞ + ∥Γ∥∞(1 + ∥Γ∥∞)]

2
)
. (78)

Now, our goal is to simplify the inequality, making f is related to the curvature skewness. Using
Lemma C.1, the curvature tensor provides a lower bound on ∥∂Γ∥∞, which allows us to eliminate
the explicit derivative dependence and reparameterize R1 in terms of ∥R∥∞ and ∥Γ∥∞.

∥R∥∞ ≤ 2∥∂Γ∥∞ + 2∥Γ∥2∞ ⇒ ∥∂Γ∥∞ ≥ 1
2∥R∥∞ − ∥Γ∥

2
∞ (79)

This inequality gives a curvature-dependent upper bound on the Riemann tensor norm in terms of
the supremum of the partial derivatives and ∥Γ∥∞, which allows us to replace ∥R∥∞ by ∥Γ∥∞ in
subsequent expressions. By combining the previous inequality with the triangle inequality, we obtain
a uniform bound on ∥∂Γ∥∞ + ∥Γ∥∞(1 + ∥Γ∥∞) that is linear in ∥R∥∞ and ∥Γ∥∞, facilitating
simplification of higher-order terms.

∥∂Γ∥∞ + ∥Γ∥∞(1 + ∥Γ∥∞) ≤ 1
2∥R∥∞ − ∥Γ∥

2
∞ + ∥Γ∥∞(1 + ∥Γ∥∞) = 1

2∥R∥∞ + ∥Γ∥∞ (80)

Thus, the curvature dependence can be simplified to a function of ∥R∥∞ and ∥Γ∥∞ only.

(∥∂Γ∥∞ + ∥Γ∥∞(1 + ∥Γ∥∞))
2 ≤ 2

(
1
2∥R∥∞

)2
+ 2∥Γ∥2∞ = 1

2∥R∥
2
∞ + 2∥Γ∥2∞ (81)
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Squaring both sides, we derive a bound for the squared norm (∥∂Γ∥∞ + ∥Γ∥∞(1 + ∥Γ∥∞))2, which
ensures that second-order curvature contributions can be expressed as a function of ∥R∥∞ and ∥Γ∥2∞
alone.

f(t,Γ,R) := L ∨ d5λ−1
maxL

2
(
1 + t3d5L2

)
∥Γ∥2∞

(
1

2
∥R∥∞ + 2∥Γ∥∞

)
∝ ∥Γ∥3∞. (82)

As a result, the original function f(t,Γ,R) can now be written in terms of ∥Γ∥∞ only, up to a
multiplicative constant, removing explicit curvature dependence from the generalization bound.

We now consider the set of neural networks θ0 constrained within a metric ball defined by a Sobolev-
type functional distance. Let Θ denote the set of such neural networks whose Sobolev norm and
supremum norm are simultaneously bounded by a constant R > 0. We then define the associated
function class with respect to the L2-norm, and consider a probability space (Θ,Σµ, P̃µ) supported
on Θ.

Θ := {θ ∈W s,2 ∩ L∞(µq); ∥θ∥W s,2(µq) ≤ r, ∥θ∥∞ ≤ R}, (83)

Frθ =
{
F (θ) := ∥θ0 − θ∥2L2(µq)

; θ, θ0 ∈ Θ
}
. (84)

For the random variable θ(ω) ∈ Σµ, let us define auxiliary processes as

Z = sup
t∈[0,T ]

sup
F∈Fr

Θ

F (θt), X = sup
t∈[0,T ]

sup
F∈Fr

Θ

∣∣∣∣∣ 1n
n∑
i

F (θit)− EF (θt)

∣∣∣∣∣ . (85)

For the metric dF ((t, F ), (s,G)) = ∥F (θt) − G(θs)∥L2(µq) where s ≤ t ∈ [0, T ], the ε-covering
number on product space [0, T ]×Frθ can be interpreted as a product of two sub-coverings in separate
spaces:

N(ϵ, [0, T ]×FrΘ, dF ) ≤ N(ε1,FrΘ, ∥·∥L2
) ·N(ε2, [0, T ], | · |) (86)

This shows that the metric entropy can be decomposed as summation of two sub-terms:

logN(ϵ, [0, T ]×FrΘ, dF ) ≤ logN(ε1,FrΘ, ∥·∥L2
) + logN(ε2, [0, T ], | · |), (87)

where the algebraic constraint on ε1 and ε2 is given as

ε21 + ε22 = (εβε)
2 + (ε

√
1− βε)2 = ε, βε ∈ (0, 1). (88)

As a next step, we derive the upper bound of expectation for the variable Z, assuming that F (θt) has
controlled by Gaussian-like long-tail property, Proposition 1.2.1 Talagrand [2005]). Specifically, we
apply Dudley’s entropy integral bound to have the following result:

Ẽθ[Z] := Ẽθ

[
sup
t∈[0,T ]

sup
F∈Fr

Θ

F (θ)

]

≲ lim sup
r→∞

∫ Diam(Θ)

0

√
logN (ε, [0, T ]×Frθ , dF )dε

≲ lim sup
r→∞

∫ Diam(Θ)

0

√
logN (ε1,Frθ , ∥·∥L2) + logN(ε2, [0, T ], | · |)dε

≲ lim sup
r→∞

∫ Diam(Θ)

0

√
logN (ε1,Θ, ∥·∥L2) + logN(ε2, [0, T ], | · |)dε

≤ lim sup
r→∞

∫ Diam(Θ)

0

√
logN (εβϵ, BW s,2 , ∥·∥W s,2) + logN(ε

√
1− βε, [0, T ], | · |)dε

≲
∫ r

0

√(
r

εβε

) d
s

+ log

(
T

ε
√
1− βε

+ 1

)
dε, d > s,

(89)

where the expectation Ẽθ is taken with the probability measure P̃µ. The third inequality naturally
follows from the embedding W s,2 ↪→ L2 and the fact that φ(a) = ∥θ − a∥2L2 is 1-Lipschitz for
some a ∈ BW s,2(r) where we consider the function composition Fθ = φ ◦BW s,2(r). In the fourth
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inequality, we follow the entropy number in metric ball with radius r in Sobolev space W s,2 Wellner
et al. [2013], and taking supremum under the constraint ∥·∥W 2,s ≤ R.

Since the final expression is non-integrable in general case, we only provide their approximation
bound with Taylor expansion in the case when the first term in square root nominates the other term.

Ẽθ[Z] ≲
(2r)d/2sR1−d/2s

1− d/2s
+

1

21+d/2srd/2s
Rd/2s+1

d/2s+ 1

[
log(R)− 1

d/2s+ 1

]
+O(R−2), (90)

where d > 2s, and we simply set the variable βε = 0.5. After optimizing with respect to the radius r
the right-hand side, we finally have the time-uniform upper-bound of empirical estimates.

Ẽθ[Z] ∼ O(R
√
logR). (91)

Let us now turn our attention to the empirical concentration behavior of the Wasserstein distance,
initiating our analysis with the standard symmetrization lemma.

Ẽθ[X] ≤ 2Rn := 2Eσrad

[
sup
t∈[0,T ]

sup
F∈Fr

Θ

1

n

n∑
i

aiF (θ
i
t)

]

≤ lim sup
r→∞

12√
n

∫ Diam(Θ)

0

√
logN (ε, [0, T ]×Frθ , dnF )dε

≤ lim sup
r→∞

12√
n

∫ Diam(Θ)

0

√
logN (ε1,Frθ , ∥·∥nL2) + logN(ε2, [0, T ], | · |)dε

(92)

where the empirical version of metrics can be rewritten as following form:

∥F∥nL2 :=
1

n

n∑
i=1

∥F (θit)∥L2 , dnF ((t, F ), (s,G)) =
1

n

n∑
i=1

|F (θit)−G(θit)|. (93)

Here, ai ∼ U[{±1}] and Rn are denote both Rademacher variables and their corresponding empirical
Rademacher complexity. As with the similar calculation conducted in Eq. (89), the expectation of X
admits an upper bound that involves both the function class radius R and sample complexity n.

Ẽθ(X) ∼ O

(
R

√
logR

n

)
. (94)

The result was obtained by using the identical metric entropy calculated in Eq (89) to derive the
upper bound. Note that the additional assumption of Gaussian-like property is not considered here as
opposite to first inequality in Eq. (89). Combining the result in Eq. (63), Eq. (64) and the definition
of auxiliary processes in Eq. (85), we obtain two inequalities

(R1) := sup
t∈[0,T ]

sup
θ∈Θ
W
(
Law(γ(θ)), P̃data)

)
≤ A · Z, (95)

(R2) := sup
t∈[0,T ]

sup
θ∈Θ

∣∣∣∣∣W
(
1

n

n∑
i

δγ(θi), P̃data

)
− EθW

(
γ(θ), P̃

)∣∣∣∣∣ ≤ A · X, (96)

A := (1 + L−2
Hθ

) · λ2max · f. (97)

Next, we show the exponential probability inequality associated with (L2(µq),Σµ, P̃µ) by introducing
the classical result from Theorem 3 Massart [2000]. Here, the probability space is considered as one
specific choice of generic metric space.

P̃µ

[[
Z
X

]
≤ (1 + ϵ)

[
Ẽθ[Z]
Ẽθ[X]

]
− σ

√
54

5
x−

(
5

2
+

216

5
ε−1

)
Rx

]
≤ e−x, (98)

where σ2 = supF∈Fr
θ

Var(F (θ)) is a maximal variance of function class, and two positive constants
ε, x > 0 are arbitrary. Collecting the result obtained from Eq. (89), (95), (96), (98), we have

P̃µ

[
1

A

[
(R1)
(R2)

]
≤
[
Ẽθ[Z]
Ẽθ[X]

]
(1 + ϵ)− σ

√
54

5
x−

(
5

2
+

216

5ε

)
Rx

]
≤ e−x (99)
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Our goal is to find the optimal constant D > 0 such that the quadratic expression in right-hand side
serves as an upper bound for the left-hand side polynomial of linear order in Eq. (100).

A−B
√
x− Cx ≤ ADx2, (100)

Here, the constants A, B, and C capture the contributions from the empirical moments, noise level,
and smoothness complexity, and are given by:

A = α(1 + ϵ) :=

[
Ẽθ[Z]
Ẽθ[X]

]
(1 + ϵ), B = σ(54/5)

1
2 , C =

5

2
+

216

5ε
. (101)

By minimizing the right-hand side with respect to the free variable x, we obtain the optimal constant
D that balances the quadratic and linear terms:

D =
CE2 +BE −A

AE4
, E =

−3B +
√
9B2 + 32AC

4C
. (102)

Substituting the identity Dx2 = δ into the exponential tail inequality, we arrive at the following
probabilistic bound for (R1):

P̃µ [(R1) ≤ δ] ≤ exp

(
−
√

δ

D

)
. (103)

Observing that
√
9B2 + 32AC ≥

√
32AC and setting ϵ = 1, we obtain the following upper bound

for D(α,A) by simplifying the denominator expression:

D(α,A) ≤ 1

A

[
−C

2

α
+
BC3/2

α3/2

]
=

1

A

[
208849

100α
+

3σ
√
30 · 4573/2

103/2 · 5α3/2

]
. (104)

By substituting the upper bound of D(α,A) obtained in Eq. (104) into the general exponential
inequality in Eq. (103), we derive the following explicit bound on the probability of the event (R1),
which reflects the asymptotic decay behavior in terms of R and the structural parameters:

P̃µ [(R1) ≤ δ]

≲ exp

(
−
√
δA

[
10R3/4(logR)3/8

√
1

208849R1/2(logR)1/4 − 18536.41
√
30σ

])
. (105)

We now further simplify the expression by isolating the leading-order terms and observing that the
dominant contribution arises from the linear dependence on R1/2(logR)1/4 in the denominator. This
leads to a more interpretable asymptotic bound expressed in terms of the supremum norm of the
function class.

P̃µ [(R1) ≤ δ] ≲ exp
(
−Ω · δ1/2∥Γ∥3/2∞ R1/2(logR)1/4

)
. (106)

Similarly, we consider the case where the effective complexity α scales with the number of samples n
as α = R

√
logR/n. This reflects a regime where the resolution increases with sample size, leading

to the following generalization bound:

P̃µ [(R2) ≤ δ]

≲ exp

(
−
√
δA

[
10R3/4(logR)3/8

n1/4

√
1

208849
√
R(logR)1/4 − 18536.41

√
30n1/4σ

])
. (107)

As before, we simplify the expression by extracting the leading dependence on R, logR, and n to
arrive at an asymptotic bound that reveals the effect of sample size scaling on the generalization rate:

P̃µ [(R2) ≤ δ] ≲ exp

(
−Ω · δ1/2∥Γ∥3/2∞

R1/2(logR)1/4

n1/4

)
, (108)

where Ω := Ω(σ, λmax, LH , L∇H , d, s), d > 2s. This final bound highlights that under the sample-
size-aware complexity scaling α = R

√
logR/n, the generalization error decays exponentially in the

effective resolution scale R and the logarithmic complexity logR, with an additional improvement in
rate proportional to n1/4. The result reveals how incorporating geometric inductive bias and adaptive
complexity can yield sharper generalization guarantees in high-dimensional structured models.
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D.3 Proof of Proposition 3.2

Proposition D.3 (Worst-case geodesic deviation under frame rotations). Let γ : [0, T ]→ T ∗Q be a
reference physical data represented as a geodesic. For any Hamiltonian Hθ define the frame–rotated
trajectory Xt(h) by Xt(h) := (qt, hpt) for h ∈ O(d). Write κθ := (Lθ + ∥R∥∞Cθ)D, where Lθ
and Cθ are the Lipschitz bounds of ∇2{m,Hθ} and {m,Hθ}, D is the diameter of some compact
domain K, and R is the Riemann tensor. Then, for every t ∈ [0, T ],

sup
h∈O(d)

d2
(
Xeq
t (h), γ(t)

)
≤ sup

h∈O(d)

d2
(
Xt(h), γ(t)

)
≤ d2

(
X0, γ(0)

)
eκθ t,

where Xeq
t is generated by a Φ-gauge–equivariant Hamiltonian Hθ satisfying the same bound with

smaller constants LΦ
θ ≤ Lθ, CΦ

θ ≤ Cθ. Thus gauge equivariance minimizes the worst-case geodesic
deviation over all frame actions h.

Proof. Let us assume that the physical data trajectory γ : [0, T ] → T ∗Q forms a geodesic, which
satisfies the vanishing connection:

∇γ̇(t)γ̇(t) = 0. (109)
This identity ensures that the acceleration of γ with respect to the connection vanishes, meaning
that γ locally minimizes path length and follows the intrinsic geometry of the manifold. In order to
quantify small deviations from the reference geodesic γ, we define a deviation vector field Jt as the
logarithmic map from γ(t) to a nearby perturbed point Xt:

Jt = exp−1
γ(t)(Xt) = logγ(t)(Xt) ∈ Tγ(t)(T ∗Q). (110)

This construction allows us to express perturbations within a common tangent space at γ(t), facilitat-
ing differential analysis. To derive the stochastic differential equation governing Jt, we apply the
chain rule for Stratonovich differentials adapted to manifold settings. This yields

dJt =
dF

dt
(t,Xt)dt+DF (t,Xt)[dXt] +

1

2

∑
k

∇2
Ek,Ek

F (t,Xt)dt

= ∇γ̇(t)Ft(Xt)dt+DF (t,Xt)[dXt]

= ∇γ̇(t)Jtdt+∇Jt{m,Hθ}(γ(t)) ◦ dBt

(111)

where F (t, x) = exp−1
γ(t)(x) and {Ek} denotes an orthonormal basis of the tangent space. Expanding

each term individually, we observe that the time derivative of the logarithmic map corresponds to the
covariant derivative along the base curve γ(t), giving

dF

dt
=

∂

∂t
exp−1

γ(t) = ∇γ̇(t)F. (112)

Additionally, the differentials involving dXt are computed via the pullback under Ft, while second-
order corrections involving∇2F are responsible for curvature effects, although these higher-order
terms will vanish to leading order under our assumptions.

To measure the growth of deviations quantitatively, we introduce an energy functional E(t) defined
by the Riemannian norm of the differential of Jt:

dE(t) =
1

2
g (dJt, dJt) . (113)

Here, g denotes the Riemannian metric lifted to the tangent bundle, such as the Sasaki metric if
necessary. For notational clarity, we introduce two auxiliary processes:

Kt = ∇γ̇(t)Jt, Lt = ∇Jt{m,Hθ}(γ(t)). (114)

The term Kt represents the covariant derivative of Jt along the trajectory γ(t), while Lt captures
how the Hamiltonian vector field varies along the perturbation direction Jt. Following by standard
estimation of SDEs (i.e., dt2 = 0, dt ◦ dBt = 0, (dBt)

2 = dt), we have

dE(t) =
1

2
g(dJt, dJt) =

1

2
g(Kt, Lt)(dt)

2 + g(Kt, Lt)dt ◦ dBt +
1

2
g(Lt, Lt)(dBt)

2

=
1

2
g (∇Jt{m,Hθ}(γ(t)),∇Jt{m,Hθ}(γ(t))) dt =

1

2
∥∇Jt{m,Hθ}(γ(t))∥g.

(115)
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Finally, differentiating once more with respect to time and expanding the covariant derivatives using
standard curvature identities yields

dË(t) =
d

dt

(
1

2
g (∇Jt{m,Hθ}(γ(t)),∇Jt{m,Hθ}(γ(t)))

)
= g

(
∇γ̇(t)∇Jt{m,Hθ}(γ(t)),∇Jt{m,Hθ}(γ(t))

)
= g

(
∇Jt∇γ̇(t){m,Hθ}(γ(t)) +R(γ̇(t), Jt){m,Hθ},∇Jt{m,Hθ}(γ(t))

)
.

(116)

where R denotes the Riemannian curvature tensor. This equation connects the second derivative of
the energy with the curvature of the manifold and the structure of the Hamiltonian flow.

While the lifted Riemannian metric g is compatible with the Levi-Civita connection (i.e., ∇g = 0),
we can relate the time derivative of the metric pairing along the trajectory as follows:

d

dt
g(U, V ) = g(∇γ̇(t)U, V ) +U, g(∇γ̇(t)V ), (117)

where U = V = {m,Hθ} denotes the Hamiltonian vector field evaluated along the curve γ(t). This
relation reflects the fundamental property of metric compatibility and provides a way to track how
the energy associated with the Hamiltonian flow evolves along the trajectory. To simplify further,
we notice that the covariant derivative of a vector field composed with γ(t) can be expanded by the
product rule of covariant derivatives along curves:

∇γ̇(t)∇JtW = ∇Jt∇γ̇(t)W +R(γ̇(t), Jt)W, (118)

where W = {m,Hθ}(γ(t)), and R denotes the Riemannian curvature tensor. This decomposition
separates the effects of directional covariant changes along the flow from the intrinsic curvature-
induced distortions arising from the manifold’s geometry.

Given the above expansion, we can derive an upper bound for the second derivative of the energy
functional Ë(t) in terms of the norms of relevant geometric quantities:

dË(t) ≤

∥∇Jt∇γ̇(t){m,Hθ}(γ(t))∥g︸ ︷︷ ︸
(A)

+ ∥R(γ̇(t), Jt){m,Hθ}∥g︸ ︷︷ ︸
(B)

 ∥∇Jt{m,Hθ}(γ(t))∥g︸ ︷︷ ︸
=dE(t)

.

(119)
Here, term (A) corresponds to the covariant second derivative contribution, while term (B) captures
the effect of curvature-induced deviations along the geodesic trajectory. These two contributions
govern the overall behavior of the energy growth along the stochastic Hamiltonian flow.

Applying Grönwall’s inequality to this differential inequality, we obtain an exponential upper bound
on the evolution of the energy deviation:

d2(Xt, γ(t)) = dE(t) ≤ dE(0)e(sups(A)|s+(B)|s)t (120)

where (A) and (B) represent the supremum bounds of the two terms over the time interval of interest.

This estimate provides a key control over the divergence between the stochastic trajectory Xt and the
reference geodesic γ(t) under Hamiltonian diffusion dynamics. We now aim to show that imposing
an equivariance constraint on the Hamiltonian function intrinsically reduces the upper bound on the
growth of geodesic distance. Specifically, the two key terms in the upper bound (92) can be estimated
separately as follows:

(A) := ∥∇Jt∇γ̇(t){m,Hθ}(γ(t))∥g ≤ ∥Jg∥ · ∥∇2{m,Hθ}∥op · ∥Jt∥g · ∥γ̇(t)∥g (121)

(B) := ∥R(γ̇(t), Jt){m,Hθ}∥g ≤ ∥R∥∞ · ∥Jt∥g · ∥γ̇(t)∥ · ∥{m,Hθ}∥g. (122)

where ∥R∥∞ denotes the sup-norm of the Riemannian curvature tensor over the manifold. Next,
consider the action of the orthogonal group O(d) on the configuration and momentum coordinates
(q, p). For any h ∈ O(d), the equivariant Hamiltonian satisfies

Hθ(q, p,U · h) = Hθ(q, ρ(h
−1)p,U) ∀h ∈ O(d). (123)
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where ρ(h) =
[
h 0
0 Id

]
∈ GL(2d) acts on (q, p) coordinates. Differentiating both sides with respect

to (q, p) and using the chain rule, we obtain

∇(q,p)H(q, p,U · h) = ρ(h)∇(q,p)Hθ(q, ρ(h
−1)p,U), (124)

where we have used the fact that ρ(h) is orthogonal, and that differentiation of ρ(h−1) introduces a
right multiplication by ρ(h). Differentiating once more yields the second derivative relation:

∇2
(q,p)Hθ(q, p,U · h) = ρ(h)∇2

(q,p)Hθ(q, ρ(h
−1)p,U) ρ(h−1). (125)

Since ρ(h) is orthogonal, it preserves the operator norm of tensors. Therefore, for any matrix A,

∥ρ(h)A∥ = ∥A∥, ∥ρ(h)Aρ(h−1)∥ = ∥A∥ for all A. (126)

This property ensures that the norm of the differential operators remains invariant under frame
transformations. Using these observations, we can describe the differential operators acting on the
Hamiltonian as

∇{m,Hθ} := ∇(q,p){m,Hθ}, ∇2{m,Hθ} := ∇2
(q,p){m,Hθ(q, p,U)}. (127)

From the orthogonality and isometry of ρ(h), it follows that

sup
h∈O(d))

∥∇(q,p)Hθ(q, p,U · h)∥ = sup
h∈O(d)

∥∇(q,p)Hθ(q, ρ(h
−1)p,U)∥

= sup
h∈O(d)

∥∇(q,p)Hθ(q, p,U)∥

= ∥∇(q,p)Hθ(q, p,U)∥,

(128)

and similarly for the second derivative,

sup
h∈O(d)

∥∇2
(q,p)H(q, p,U · h)∥ = ∥∇2

(q,p)H(q, p,U)∥. (129)

Let Φ ≤ O(d) be the gauge subgroup that leaves the Hamiltonian Hθ invariant, that is,

Hθ(q, p,U · h) = Hθ(q, ρ(h
−1)p,U), ∀h ∈ Φ, U ∈ O(d),

where ρ : Φ→ GL(2d) is the canonical block embedding ρ(h) = diag(h,1d) acting on (q, p), and
the right action U 7→ U ·h is free and proper. Consequently, O(d) ↠ O(d)/Φ is a principal Φ-bundle
with a smooth projection πΦ : O(d) → O(d)/Φ, and the base O(d)/Φ is a smooth homogeneous
manifold homeomorphic to the coset space O(d)/Φ ≃ G/K for some closed subgroup K ≃ Φ.

Endow the bundle with the canonical Ehresmann connection induced by the Levi–Civita connection
of the configuration manifold. The tangent space at U ∈ O(d) splits as TUO(d) = HU ⊕ VU , where
VU is the vertical subspace associated with the Φ-action. Since Φ acts by isometries, horizontal lifts
preserve the Sasaki metric and the Itô–Stratonovich structure; Brownian noise injected along HU
descends canonically to the base O(d)/Φ. Let [U] ∈ O(d)/Φ denote a frame class and fix a smooth
section σ : O(d)/Φ→ O(d). Define the lifted stochastic flow by

X
[U]
t := Xt(σ([U])),

where Xt(·) solves the stochastic Hamiltonian system dXt = {m,Hθ}(Xt) ◦ dBt. Because Hθ is
Φ-equivariant, the Hamiltonian vector fields satisfy

{m,Hθ}(q, p, σ([U]) · h) = ρ(h−1){m,Hθ}(q, ρ(h)p, σ([U])), ∀h ∈ Φ,

where the lift ρ respects the orthogonal structure. Consequently, both the first and second derivatives
obey

∇(q,p)Hθ(σ([U]) · h) = ρ(h−1)∇(q,p)Hθ(σ([U])),

∇2
(q,p)Hθ(σ([U]) · h) = ρ(h−1)∇2

(q,p)Hθ(σ([U]))ρ(h),

which implies the norm invariance relations

∥∇(q,p)Hθ(σ([U]))∥ = ∥∇(q,p)Hθ(σ([Id]))∥, ∥∇2
(q,p)Hθ(σ([U]))∥ = ∥∇2

(q,p)Hθ(σ([Id]))∥.
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Let J [U]
t := exp−1

γ(t)(X
[U]
t ) be the deviation Jacobi field and define the Sasaki energy

E[U](t) :=
1

2
g
(
J
[U]
t , J

[U]
t

)
.

Using the stochastic Jacobi equation and applying the curvature identity

∇γ̇(t)∇Jt = ∇Jt∇γ̇(t) +R(γ̇(t), Jt),

we obtain a differential inequality controlling the energy:

Ė[U](t) ≤ (A[U] +B[U])E[U](t),

where A[U] := ∥∇2{m,Hθ}∥op and B[U] := ∥R∥∞∥{m,Hθ}∥g evaluated along the flow. Due
to (96), the terms A[U] and B[U] are invariant across [U] ∈ O(d)/Φ. Thus, applying Grönwall’s
inequality yields the uniform bound

E[U](t) ≤ E[U](0)e
(A+B)t, d2(X

[U]
t , γ(t)) ≤ dE(0)e(A+B)t, ∀[U] ∈ O(d)/Φ.

In contrast, for the non-equivariant model (without Φ symmetry), the best bound achievable is

d2(Xt(h), γ(t)) ≤ dE(0)e(Amax+Bmax)t, Amax := sup
h∈O(d)

A(h), Bmax := sup
h∈O(d)

B(h),

with Amax ≥ A and Bmax ≥ B in general. Hence, we conclude that

sup
[U]∈O(d)/Φ

d2(X
[U]
t , γ(t)) = d2(X

[Id]
t , γ(t)) ≤ dE(0)e(A+B)t ≤ sup

h∈O(d)

d2(Xt(h), γ(t)).

Since O(d)/Φ is compact (being the quotient of the compact Lie group O(d) by a closed subgroup),
the uniform estimate (97) implies exponential W2-stability of the equivariant diffusion. In contrast, the
non-equivariant dynamics suffer from a generally larger exponential factor (Amax+Bmax) > (A+B).
Therefore, gauge-equivariant Hamiltonian learning provides strictly better control over stochastic
deviation and ensures tighter uniform generalization error bounds on curved configuration spaces.

We now further refine the upper bounds for the error terms (A) and (B) by exploiting the geometric
structure of the Hamiltonian system. First, we recall that the canonical symplectic matrix Jg satisfies
∥Jg∥ = 1, as it acts isometrically on T ∗(Q) and preserves the standard Riemannian norm induced by
the Sasaki metric. Moreover, since the reference trajectory γ(t) is parametrized by arc-length, we
have

∥γ̇(t)∥g = 1 for all t ∈ [0, T ]. (130)
Furthermore, assuming that both the stochastic trajectory Xt and the geodesic γ(t) remain within a
compact subset K ⊂ T ∗Q, we have

∥Jt∥g = d(Xt, γ(t)) ≤ D, (131)

where D := diam(K) denotes the geodesic diameter of K. Under these simplifications, the two
contributions (A) and (B) can be bounded more explicitly. Using the fact that ∥Jg∥ = 1 and
∥γ̇(t)∥g = 1, the covariant second derivative term satisfies

(A) =
∥∥∇Jt∇γ̇(t){m,Hθ}(γ(t))

∥∥
g
≤ Lθ ·D, (132)

where Lθ := supx∈T∗Q ∥∇2{m,Hθ}(x)∥op denotes the global Lipschitz bound on the Hessian of
the Hamiltonian vector field. Similarly, the curvature-induced deviation term satisfies

(B) = ∥R(γ̇(t), Jt){m,Hθ}(γ(t))∥g ≤ ∥R∥∞ · Cθ ·D, (133)

where ∥R∥∞ := supx∈Q sup∥u∥g=∥v∥g=1 ∥Rx(u, v)∥g is the global sup-norm of the Riemannian cur-
vature tensor, and Cθ := supx∈T∗Q ∥{m,Hθ}(x)∥g is the global growth bound on the Hamiltonian
vector field. Therefore, the sum (A) + (B) admits the uniform estimate

(A) + (B) ≤ (Lθ + ∥R∥∞Cθ)D, (134)

which depends linearly on the diameter D of the compact domain K and the regularity constants
Lθ and Cθ. If the Hamiltonian Hθ is Φ-equivariant under a subgroup Φ ⊂ O(d), the constants Lθ
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and Cθ improve to LΦ
θ and CΦ

θ respectively, reflecting the additional regularity induced by gauge
symmetry. In this case, we obtain the sharper bounds

(A)eq ≤ LΦ
θ ·D, (B)eq ≤ ∥R∥∞ · CΦ

θ ·D, (135)

and the total deviation is controlled by

(A)eq + (B)eq ≤ (LΦ
θ + ∥R∥∞CΦ

θ )D, (136)

where LΦ
θ < Lθ and CΦ

θ < Cθ due to the symmetry reduction. If the space is assumed to have
bounded scalar curvature κmax, one can improve the by following Lemma C.3 as follows:

(A)eq + (B)eq ≤ (LΦ
θ +

κmax
d(d− 1)

CΦ
θ )D. (137)

Substituting these improved bounds into the Grönwall estimate derived earlier, we conclude that the
equivariant stochastic Hamiltonian dynamics exhibits exponentially tighter control of the geodesic
deviation compared to the general non-equivariant case, with an explicit exponent that scales linearly
with the curvature bounds, Hamiltonian regularity, and the diameter of the compact reachable set.

Corollary D.4 (Worst-case W2 deviation). Under the setting of Proposition D.4 assume, in addition,
that the initial state is deterministic, X0 = γ(0). For each frame rotation h ∈ O(d), let us set

Pt(h) := Law
[
Xt(h)

]
, Peq

t (h) := Law
[
Xeq
t (h)

]
.

Then, for every t ∈ [0, T ],

sup
h∈O(d)

W
(
Peq
t (h), δγ(t)

)
≤ sup
h∈O(d)

W
(
Pt(h), δγ(t)

)
≤ d2

(
X0, γ(0)

)
eκθt

with the same κθ as in Proposition D.4. Hence gauge equivariance minimises the worst-case 2-
Wasserstein divergence from the reference geodesic over all frame actions h.

Proof. Fix a rotation h ∈ O(d) and let Pt(h) = Law[Xt(h)]. Because the reference point γ(t) is
deterministic, the unique optimal coupling between Pt(h) and δγ(t) is the map Xt(h) 7→ γ(t). Hence

W
(
Pt(h), δγ(t)

)
= E d2

(
Xt(h), γ(t)

)
. (138)

Proposition C.3 provides the uniform pathwise bound d2
(
Xt(h), γ(t)

)
≤ d2(X0, γ(0)) e

κθt for every
h. Taking expectations preserves the same right–hand side yields

W
(
Pt(h), δγ(t)

)
≤ d2

(
X0, γ(0)

)
eκθt ∀h ∈ O(d). (139)

The same reasoning with the gauge–equivariant trajectory Xeq
t (h) gives an analogous inequality

with the smaller constants LΦ
θ , C

Φ
θ ; by Proposition C.3 this already realizes the infimum over h. By

taking supremum operator over h ∈ O(d) in both, it completes the chain of inequalities stated in the
corollary.

xxxvi



NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The manuscript effectively communicates the primary goals of the research.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification:
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Guidelines:
• The answer NA means that the paper has no limitation while the answer No means that

the paper has limitations, but those are not discussed in the paper.
• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: The appendix includes the necessary theoretical background and underlying
assumptions for the analysis.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The appendix provides a clear account of how each experimental setup was
constructed.
Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The full description (PyTorch code) of the proposed method will be released in
GitHub.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: [TODO]
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification:
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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