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ABSTRACT

We introduce Fengbo, a pipeline entirely in Clifford Algebra to solve 3D par-
tial differential equations (PDEs) specifically for computational fluid dynamics
(CFD). Fengbo is an architecture composed of only 3D convolutional and Fourier
Neural Operator (FNO) layers, all working in 3D Clifford Algebra. It models
the PDE solution problem as an interpretable mapping from the geometry to the
physics of the problem. Despite having just few layers, Fengbo achieves compet-
itive accuracy, superior to 5 out of 6 proposed models reported in Li et al. (2024)
for the ShapeNet Car dataset, and it does so with only 42 million trainable param-
eters, at a reduced computational complexity compared to graph-based methods,
and estimating jointly pressure and velocity fields. In addition, the output of each
layer in Fengbo can be clearly visualised as objects and physical quantities in 3D
space, making it a whitebox model. By leveraging Clifford Algebra and estab-
lishing a direct mapping from the geometry to the physics of the PDEs, Fengbo
provides an efficient, geometry- and physics-aware approach to solving complex
PDEs.

1 INTRODUCTION

Many natural phenomena and complex systems, including electromagnetism and seismic waves, are
governed by partial differential equations (PDEs). Solving these PDEs enables the prediction of a
system’s state evolution over time, which is valuable in applications such as stock price estimation
and weather forecasting. While PDEs often provide precise models of these systems, they are typi-
cally too complex to solve analytically. Numerical methods, such as finite element analysis (FEA)
and finite difference methods (FDM), are some of the well-established techniques for approximating
solutions in complex geometries and handling boundary conditions Perrone & Kao (1975); Liszka
& Orkisz (1980); Friswell & Mottershead (1995). However, these methods require significant com-
putational resources, particularly when high-resolution solutions are needed.

In the past decade, machine learning (ML) methods have been applied to solve PDEs Carleo et al.
(2019); Willard et al. (2020); Karniadakis et al. (2021). ML-based methods can be several orders of
magnitude faster than traditional numerical approaches, enabling rapid simulations while maintain-
ing acceptable accuracy. This is particularly useful for applications requiring real-time predictions,
such as weather forecasting and fluid dynamics simulations. Most ML approaches blend physical
laws with large datasets to efficiently approximate PDE solutions, significantly reducing computa-
tional costs. Neural operators, in particular, have gained attention as a novel approach to solving
PDEs Li et al. (2020b;a); Kovachki et al. (2023). They extend the idea of neural networks by learn-
ing mappings between function spaces, rather than finite-dimensional vectors. Unlike conventional
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neural networks, which approximate specific solutions, Neural Operators aim to approximate the
underlying operator of a PDE, allowing for generalization across different input conditions and con-
figurations, making them highly efficient at solving PDEs.

Fengbo. This paper introduces a Neural Operator pipeline for computational fluid dynamics (CFD)
cast entirely in Clifford Algebra. Named after the Taoist deity of the wind, Fengbo leverages the
embedding of data within an algebra of choice in the form of multivectors, which are the fundamental
objects in Clifford Algebra, to integrate physics and geometry data throughout the architecture. Its
operators, layers and neurons are all expressed as multivectors in Clifford Algebra.

Multivectors are a linear combination of objects, e.g. points, vectors, and planes, which can be
employed to represent geometrical shapes but also physical quantities (e.g. pressure and velocity
fields). This representation allows for an expressive and flexible encoding of complex relationships,
ultimately leading to a strong inductive bias to the neural network. This bias preserves geometric
relationships between different quantities, can ensure equivariance under transformations Ruhe et al.
(2024); Pepe et al. (2024a), and allows for more descriptive models Brandstetter et al. (2022); Pepe
et al. (2024c). As a result, we can achieve high performance using far fewer parameters compared
to conventional models.
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Figure 1: The Fengbo architecture. Irregular geometries are discretised into fixed-resolution vol-
umes of multivectors, over which Fengbo operates. It consists of three steps: (i) The geometry
blocks operate on the geometry of the PDEs domain, capture local features, ensure grade mixing
and upsample the inputs; (ii) The Clifford FNO establishes a mapping between the PDEs geometry
and their solution; (iii) The physics blocks operate on physical quantities, i.e. target of the regres-
sion. The entire architecture sits in 3D Clifford Algebra, guaranteeing interpretability.

Fengbo has three main components: (i) 3D Clifford Geometry block(s): one for each input geometry
in the dataset, to mix elements of different grades in multivectors with geometrical meaning. (ii) 3D
Clifford Fourier Neural Operator (FNO): to capture global interactions and map multivectors from
the geometry to the physics domain. We extend their implementation in Brandstetter et al. (2022)
to process full-grade 3D multivectors as opposed to only vector and bivector components. (iii) 3D
Clifford Physics block(s): Similar to (i), but for multivectors with physical meaning. There is one
Physics block for each output physical quantity to estimate in the dataset.

We tested Fengbo on the two available 3D computational fluid dynamics (CFD) datasets generated
and analysed in Li et al. (2024). Fengbo takes input multivectors representing the shape of the
vehicles and estimates the pressure field on their surfaces as well as the velocity field defined over
the domain. It does so with fewer than half the parameters required by the GINO architecture (Li
et al. (2024)) and by directly processing the geometries employed in CFD. Since every intermediate
output in Fengbo is a multivector with geometrical or physical meaning, Fengbo is a whitebox model
that allows for a clearer understanding of how data are processed and transformed from geometry to
physics.

2 RELATED WORK

Learning methods in PDE modelling. A key challenge in applying machine learning (ML) to
PDEs is ensuring that the model does not simply perform pattern recognition. Instead, the objective
is for the model to capture the underlying physical principles governing the PDEs and accurately
represent the geometry of the domain in which these equations are defined. Consequently, most
models designed for PDEs are designed to address these requirements.
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Physics-Informed Neural Networks (PINNs) Raissi et al. (2017; 2019); Cuomo et al. (2022), for
example, do so by incorporate the governing PDEs into the neural network training process and
learn directly from them. This integration helps ensure that the solutions respect physical constraints
and produce realistic outcomes, addressing the limitation of simpler ML models that might fail to
generalise on unseen data. However, PINNs are limited to a specific PDE and often require an
additional Graph Network for spatial generalisation.

A similar philosophy is found in solver-in-the-loop methods Um et al. (2020); Brahmachary &
Thuerey (2024); Lippe et al. (2024). These hybrid methods combine an ML architecture with a
relatively simple numerical solver. The numerical solver helps to refine the predictions of the ML
model, ensuring that the solutions remain grounded in the physical constraints of the problem. Deep
Galerkin Method (DGM) algorithms Sirignano & Spiliopoulos (2018); Li et al. (2022a); Al-Aradi
et al. (2022) also fall in the same category. DGM algorithms are trained to satisfy the differential
operator, initial conditions, and boundary conditions, proving to be particularly suitable to deal with
high-dimensional PDEs.

As CFD structures are often represented via point clouds, several approach exist in the literature
based on extensions of the PointNet Qi et al. (2017a); Kashefi et al. (2021); Nemati Taher & Subaşı
(2024); Kashefi (2024) and PointNet++ architectures Qi et al. (2017b); Zhang & Cao (2024); Gao
et al. (2024). PointNet is a simple yet effective way to handle irregular point clouds without resorting
to grids, but it fails at capturing global geometric context. PointNet++ mitigates this issue via multi-
scale data processing at the expense of a higher computational cost.

Albeit versatile and flexible, PointNet-based methods are less accurate compared to more advanced
PDE surrogates, including Transformer-based models Cao (2021); Li et al. (2022b); Xiao et al.
(2023); Wu et al. (2024). Attention layers, especially when tailored to PDEs, offer a significant
accuracy boost while keeping the model size small. The major drawback of Transformers is their
computational complexity, generally O(N2). Several attempts have been made in order to reduce
the computational cost of such models, most notably the Galerkin Transformer Cao (2021), which
reduces the cost of the quadratic Fourier-attention from O(N2d) down to O(Nd2), with d the di-
mensionality of feature space, and the Transolver Wu et al. (2024), that introduces the Physics-
Attention layer to learn over slices of the domain ΩD, with complexity of O(f(N ; θ)), with f being
a function linear in N with dependence on the model parameters θ. Given the significant computa-
tional complexity of Transformer models, we regard them as a distinct category and instead focus
our analysis on Neural Operators, of which Fengbo is an example. To justify our choice, a discus-
sion on computational complexity of such models and their comparison to Fengbo is provided in
Appendix E.

Neural operators have recently emerged as a key architecture to tackle the problem of PDE mod-
elling Li et al. (2020a;b); Lütjens et al. (2022); Raonic et al. (2024); Azizzadenesheli et al. (2024).
Neural operators differ from neural networks since they learn mappings between function spaces,
or domains, instead of being function approximators like neural networks. When tackling PDEs,
Neural Operators learn a mapping from input functions, which represent the initial or boundary con-
ditions, to output functions, which represent the solution to the PDEs. They come come in several
versions: Fourier Neural Operators, for example, operate in the frequency domain, where convolu-
tions are more efficient at capturing long-range dependencies and periodic patterns in the data Li
et al. (2020a; 2023; 2024), but Convolutional, Laplace and Graph Neural Operators have also been
reported in the literature to address specific problem requirements. GINO Li et al. (2024), for exam-
ple, is a pipeline combining a Graph Neural Operator, that handles irregular shapes and maps them
onto a regular grid in latent space, and a Fourier Neural Operator, that processes the transformed
input in latent space, that achieves state-of-the-art performance on large scale 3D PDEs.

Hybrid methods that combine Neural Operators and Transformers also exist, such as a the general
Neural Operator Transformer in Hao et al. (2023), which introduces the heterogeneous normalized
attention and the geometric gating mechanism for 2D PDEs. Such methods, however, are complex
and up to ×4 times larger than most Transformer-based models as shown in Wu et al. (2024).

Clifford Algebra Networks. Clifford Algebra introduces multivectors to extend linear algebra into
a framework designed to couple multidimensional data and geometric transformations. Clifford Al-
gebra has been shown to be a valuable resource in several fields, including physics, computer vision
and computer graphics Lasenby & Lasenby (2001); Lasenby & Doran (2001); Doran & Lasenby
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(2003); Dorst & Lasenby (2011). We present a brief overview of Clifford Algebra we use in this pa-
per in Appendix A. Clifford Algebra Networks are architectures that work with multivector-valued
inputs, outputs, weights and biases, and that can perform geometric transformations in Clifford Al-
gebra. The renewed interest in this type of networks arose precisely due to their potential in PDE
modelling, but they have demonstrated promising results in several other fields, including computer
vision and bioinformatics Brandstetter et al. (2022); Roy et al. (2024); Ruhe et al. (2024); Pepe et al.
(2024d;a;c;b); Hockey et al. (2024). By encoding the geometry and physical properties directly into
the algebra, they can represent and solve PDEs by capturing the relationships between variables in a
geometrically meaningful way. This approach allows for smaller yet more expressive and descriptive
models that can better generalise the PDEs solution.

3 METHOD

Notation. Unless stated otherwise, we will employ lowercase Latin letters for scalar quantities (e.g.
p1, v1), boldface Latin letters for vectors (e.g. x,n,p,v), uppercase Latin letters for multivectors
(e.g. P, V,Q,B,W ) or integers (e.g. K,N,M,C), lowercase Greek letters for real-valued maps
(e.g. ϕ, ψ) and uppercase, boldface Greek letters for multivector-valued maps (e.g. Φ,Ξ). We use
a dash symbol to distinguish multivectors describing geometrical quantities from those describing
physical ones (e.g. P, P ′).

Navier-Stokes equations. The Navier-Stokes equations describe the motion of fluids. They read as
follows:

∂ρ

∂t
+∇ · (ρψ) = 0 (1)

Eq. 1 represents the conservation of mass in a fluid flow. It states that the time derivative of the fluid
density ρ plus the divergence of the mass flux ρψ must be zero. Here ψ represent the fluid velocity.
This ensures that mass is conserved within the fluid domain.

ρ
∂ψ

∂t
+ ρ(ψ · ∇)ψ = −∇ϕ+ µ∇2ψ + f (2)

Eq. 2 describes the conservation of momentum. It accounts for: the time rate of change of momen-
tum ρ∂ψ∂t , the convective term ρ(ψ · ∇)ψ which represents the transport of momentum due to the
fluid’s velocity, the pressure gradient force −∇ϕ, the viscous forces µ∇2ψ which resist the flow of
the fluid, and external forces f applied to the fluid. Here µ is the dynamic viscosity of the fluid and
ϕ is the pressure. As in many CFD applications, Eq. 2 can be simplified by assuming that the fluid
is incompressible and no forcing terms are present. We shall restrict this work to the steady state
model, in which partial derivatives in time are null.

3.1 ARCHITECTURE

The Fengbo architecture, shown in Fig. 1, is an architecture that maps the geometry of the domain of
the PDEs onto their solution. Specifically, we are interested in estimating jointly the scalar pressure
field ϕ(x) : ΩD ⊂ R3 → R and in the vector velocity field ψ(x) : ΩD ⊂ R3 → R3 that satisfy Eq.
1-2 over an irregular domain ΩD. We do as follows:

Voxelisation of the fluid domain. To deal with an irregular domain we need to support un-
structured meshes which are commonly used in CFD. We do so by generating a regular grid of
M ×M ×M voxels inside the fluid domain D. In general the voxels do not fit the boundary and
the discretization parameter M should be sufficiently large to capture a good level of geometric de-
tails. Our domain is a discrete volume of 3D space throughout, a simpler alternative to embedding
in latent space or the use of a graph representation of data.

Clifford Algebra embedding. We fill in each voxel i, j, k ∈ D with a multivector P : D →
G(3, 0, 0) (see Appendix A for notation), in which D ⊂ R3 represents the discrete grid of voxels
in which the multivector field is defined and G(3, 0, 0) is the 3D Clifford Algebra. We call Pijk the
multivector associated with the voxel specified by indexes i, j, k. We construct multivectors P to
have a scalar component mp, a vector component p and a bivector component B.
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Figure 2: An example of pressure geometry multivector P . It has a scalar component (the binary
mask mp), 3 vector components (the 3D coordinates p) and 3 bivector components (the dual of the
vectors n normal to points p).

• The scalar part is a binary mask mp, included to inform the network about which voxels
are filled and avoid ambiguity between the origin and empty voxels in the vector part, since
for both we have that p1 = p2 = p3 = 0.

• The vector part p represents the N -point point cloud p ∈ R3 of coordinates in 3D space
and it encodes information about the shape or contour of the object.

• The bivector B represents the plane orthogonal to the normal n defined for each point in
p. In other words, B is the dual of n, i.e. B = I3n, in which n is the normal vector
perpendicular to the mesh points on the car surface and I3 = e1 ∧ e2 ∧ e3 is the G(3, 0, 0)
pseudoscalar. B is an oriented plane and hence it can be interpreted as containing informa-
tion about the surface of the object.

• The trivector component is left blank.

Since the output pressure field ϕ(x) is defined at each point p, we call P the pressure geometry
multivector. An example of a pressure geometry multivector is given in Fig. 2. The general form
of the pressure geometry multivector is:

P = mp + p+B = mp︸︷︷︸
scalar

+ p1e1 + p2e2 + p3e3︸ ︷︷ ︸
vector

+B12e12 +B13e13 +B23e23︸ ︷︷ ︸
bivector

(3)

For datasets that include other physical fields, we define other input multivectors. For example, if
the velocity vector field v is known, we construct a corresponding multivector V . The multivector
V : D → G(3, 0, 0) is also defined over a regular grid of voxels. We construct V to have a scalar
component mv and a vector component v. The vector component v corresponds to the K-point
point clouds v ∈ R3, with K ≫ N , defined for points surrounding the car surface, and mv

is its corresponding binary mask defined similarly to mp. Since the output velocity field ψ(x) is
defined over each point of v, we call V the velocity geometry multivector. Each velocity geometry
multivector V is of the form:

V = mv + v = mv︸︷︷︸
scalar

+ v1e1 + v2e2 + v3e3︸ ︷︷ ︸
vector

(4)

in which, similarly to P ,

• The scalar part is a binary mask mv .

• The vector part v represents the N -point point cloud v ∈ R3 of coordinates in 3D space
over which the velocity field is defined.

• The bivector and trivector components are left blank.

An example of V is shown in Fig. 3. The geometry multivectors P and V are representative of the
geometry simply because they are themselves the geometry of the PDEs domain.

3D Clifford Geometry block. We define the 3D Clifford Geometry block to be the module acting
on volumes of multivectors with a sequence of three 3D convolutional layers in Clifford Algebra.
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Figure 3: An example of velocity geometry multivector V . It has a scalar component (the binary
mask mv) and 3 vector components (the 3D coordinates v).

In Clifford Algebra Networks, weights and biases are multivectors W,D ∈ G(3, 0, 0), and convolu-
tions are performed via geometric products:

Q
(cout)
ijk =

C∑
cin=1

∑
l

∑
m

∑
n

P
(cin)
i+l,j+m,k+nW

(cin,cout)
ijk +D

(cout)
ijk (5)

where the range of the summation of l,m, n is specified by the kernel size and cin, cout are the input
and output channels, respectively. The 3D Clifford Geometry block takes in input a single geometry
multivector (e.g. P , V ) and it outputs C channels of multivectors. It serves four purposes:

• grade mixing: multivectors P , V in input to it only contains elements of a certain grade.
Convolutional layers allow grades to mix and have full multivectors in 3D Clifford Algebra
(i.e. with scalars up to trivector components).

• capturing local interactions: convolutions are traditionally used to extract feature from data
which are close to each other in space.

• filling up the volume: fitting an irregular grid into a regular one requires a high-resolution
grid, meaning that most of the initial input volume is sparse. Convolutions with a large
enough kernel avoid this issue by filling up the volume.

• increasing the number of channels in input to the Clifford FNO block.

We refer to the output of the geometry block processing the shape over which the pressure field is
defined (i.e. the pressure multivector P ) as QP and to the output of the geometry block processing
the shape over which the velocity field is defined (i.e. the velocity multivector V ) as QV .

Clifford FNO block. The 3D Fourier Neural Operator (FNO) in Clifford Algebra learns a mul-
tivector valued function Φ(Q) : G(3, 0, 0) → G(3, 0, 0) described by the 3D Clifford convolution
theorem of Brandstetter et al. (2022):

Q′ = Φ(Q) = F−1{F{Q}(ξ) · F{ka}(−ξ)}, (6)

in which ka : R3 → G(3, 0, 0) is the learnable filter of the FNO and F and F−1 are the Fourier and
inverse Fourier transforms, respectively, with the Fourier transform in G(3, 0, 0) applied pointwise
over each real coefficient of Q and defined as:

Q̂(ξ) = F{Q}(ξ) = Q̂0 + Q̂1e1 + Q̂2e2 + Q̂3e3 + Q̂12e12 + Q̂13e13 + Q̂23e23 + Q̂123e123. (7)

Q is defined as the sum of all the multivectors in output of the Geometry blocks. The codomain of
Φ(Q) is also multivector valued, and each multivector in output of the 3D Clifford FNO, which we
refer to Q′, is defined on a grid with the same resolution M of the inputs. The FNO captures global
interactions within the geometry and maps the input multivectors from a geometrical to a physics
domain.

3D Clifford Physics block. The 3D Clifford Physics block is analogous to its Geometry counter-
part. It differs from it since brings the C channels of multivector Q′ in output of the FNO down to
1. As we estimate two different quantities, we have two different blocks to output P ′ and V ′, the
pressure physics multivector and velocity physics multivector, respectively, for which we set

⟨P ′⟩0 = ϕ (8)
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Table 1: The three steps of the Fengbo pipeline.

Module Input Output Purpose
1. 3D Clifford Geometry blocks P = {Pi}Ng

i=1 Q = {Qi}Ng

i=1 local, upsample, grade mixing
2. 3D Clifford FNO Q =

∑Ng

i=1 Qi Q′ global, PDE modelling
3. 3D Clifford Physics blocks Q′ P′ = {P ′

i}
Np

i=1 local, downsample, grade mixing

⟨V ′⟩1 = ψ1e1 + ψ2e2 + ψ3e3 (9)

where ⟨·⟩k is the grade projector operator, which extracts the k-grade element out of the multivector.
In short, Fengbo models the PDE solution problem as a mapping Ξ(·) of 3D (geometry) multivectors
onto 3D (physics) multivectors in 3D Clifford Algebra G(3, 0, 0), i.e.

P′ = Ξ(P) (10)

in which P = {Pi}
Ng

i=1, with Ng the number of input geometries in the dataset, and P′ = {P ′
i}
Np

i=1,
with Np the number of output physical quantities to estimate. Ng and Np determine the number
of Geometry and Physics blocks in Fengbo, respectively. The steps in the Fengbo architecture are
summarised in Table 1. Additional insight on each block is provided in Appendix B.

4 EXPERIMENTS

4.1 DATASETS

ShapeNet Car. The ShapeNet Car dataset is a subset of the larger ShapeNet 3D model repository
consisting of thousands of realistic 3D car models employed in a CFD simulation with constant
inlet flow velocity. It contains 500 shapes for training and 111 for testing. For this dataset,
Ng = 2, Np = 2, i.e. P = {P, V } (two inputs geometries) and P′ = {P ′, V ′} (two physical
quantities to estimate, defined over the two different geometries).
Ahmed Body. The Ahmed Body dataset consists of CFD simulations with varying inlet flow
velocity ψin. It contains 500 parametric variations of CFD simulations over simplified car models
for training and 51 for testing. For this dataset, Ng = 1, Np = 1, i.e. P = {P} (a single
input geometry) and P′ = {P ′} (one physical quantity to estimate, no velocity field information
provided). The inlet velocity is a crucial component since the output pressure field range depends
on it. We embedded it as the trivector component of P since it has a single component in one
direction, i.e. ψine1 + 0e2 + 0e3. We do so by setting ⟨P ⟩3 = (mpψin)e123, in which mp is the
binary mask.

4.2 METRICS

We assess the quality of the pressure and velocity fields estimation through relative L2 norm (a
percentage), defined as:

LP =
∥⟨P ′

GT ⟩0 − ⟨P ′⟩0∥2
∥⟨P ′

GT ⟩0∥2
=

∥ϕ(x)− ϕ̂(x)∥2
∥ϕ(x)∥2

(11)

LV =
∥⟨V ′

GT ⟩1 − ⟨V ′⟩1∥2
∥⟨V ′

GT ⟩1∥2
=

∥ψ(x)− ψ̂(x)∥2
∥ψ(x)∥2

(12)

in which ϕ̂, ψ̂ represent estimated pressure and velocity fields via Fengbo, extracted as the grade-0
and grade-1 component of estimated physics multivectors P ′, V ′, respectively, while ϕ, ψ represent
ground truth fields, extracted as the grade-0 and grade-1 component of ground truth physics mul-
tivectors P ′

GT , V
′
GT , respectively. The relative L2 norm has also been employed as loss function

during training. Training details are discussed in detail in Appendix C. Code scripts can be found
here, while trained model weights are available upon request.

4.3 RESULTS

Results are summarised in Tables 2-3 for the ShapeNet Car and the Ahmed Body datasets, respec-
tively. Fengbo outperforms all variants of vanilla Fourier and Graph Neural Operators, as well as

7
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(a) (b) (c)

Figure 4: (a) Ground truth pressure field (b) Fengbo’s estimated pressure field and (c) their relative
error for a test shape in the ShapeNet Car dataset.

Table 2: Training and testing errors in pressure and velocity prediction on the ShapeNet Car dataset.
Fengbo results have been obtained with α, β = {5, 1} for pressure and with α, β = {1, 50} for
velocity, see Appendix C.

Model Pressure Velocity
training error testing error training error testing error

MLP - 13.0 - 5.12
PointNet Qi et al. (2017a) - 11.0 - 4.94

Graph U-Net Gao & Ji (2019) - 11.0 - 4.71
GraphSage Hamilton et al. (2017) - 10.5 - 4.61
MeshGraph Net Pfaff et al. (2020) - 7.81 - 3.54

GNO Li et al. (2020b) 18.2 18.8 - 3.83
Geo-FNO Li et al. (2020a) 10.8 15.9 - 16.7

UNet Ronneberger et al. (2015) 12.5 12.8 - -
FNO Li et al. (2020a) 9.65 9.42 - -

GINO (encoder-decoder) Li et al. (2024) 7.95 9.47 - 3.86
GINO (decoder) Li et al. (2024) 6.37 7.12 - -

Fengbo [ours] 6.94 8.86 3.23 3.47

Table 3: Training and testing errors in pressure prediction on the Ahmed Body dataset.

M.Gr.Net UNet FNO GINO (e-d) GINO (d) GINO (e-d), r= 0.025 GINO (d), r= 0.025 GINO (e-d)r= 0.035 GINO (d) r= 0.035 Fengbo [ours]
training 9.08 9.93 13.0 9.36 9.34 12.9 12.6 9.26 8.82 8.00
testing 13.9 11.2 12.6 9.01 8.31 12.8 12.7 9.30 9.39 10.7

UNet and Mesh GraphNet, and it yields comparable results to GINO. For the ShapeNet Car dataset,
for example, Fengbo is able to estimate the pressure field with a 0.6% lower relative L2 norm com-
pared to the GINO in its encoder-decoder (e-d) configuration, but with a 1.6% higher error compared
to its decoder-only (e) configuration. Fengbo does so, however, with 60% fewer trainable parame-
ters, with a reduced computational cost which does not depend on the degree of a graph representa-
tion of the input data, and being the only architecture reported able to do so while jointly estimating
the scalar pressure field and the 3D velocity vector field. Fengbo achieves competitive accuracy
thanks to this coupling of physical quantities, which allows to do so through simple convolutions
on coarsely discretised meshes. This is especially notable when compared to more sophisticated
architectures, including Geo-FNO Li et al. (2023), which degenerates when dealing with complex
geometry, as shown in Li et al. (2024); Wu et al. (2024), despite it being precisely designed to learn
to deform irregular domains onto a regular grid to be fed into the FNO. Models such as ONO Xiao
et al. (2023) and OFormer Li et al. (2023), which are transformer-based, also become unstable when
dealing with large meshes, as found in Wu et al. (2024).

(a) (b) (c)

Figure 5: (a) Ground truth velocity field (b) Fengbo’s estimated velocity field and (c) their relative
error for a test shape in the ShapeNet Car dataset.
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(a) (b) (c)

Figure 6: (a) Ground truth pressure field (b) Fengbo’s estimated pressure field and (c) their relative
error for a test shape in the Ahmed Body dataset.

Interestingly, estimating the velocity vector field appears to be an easier task to tackle. This is
likely due to the significantly smaller variance of the velocity data as opposed to the sharp pressure
variation over the car surface, as well as the fact that the velocity field ψ(x) is defined over a
point cloud containing 10× more points as opposed to ϕ(x). This is mirrored also in the smaller
gap between training and testing errors. The additional estimation of the velocity vector field does
not imply a computational overhead, since the vector and pressure fields exist naturally within the
multivector-based formulation of the problem and they are both embedded in a fixed-size volume.
Note that this would not apply to graph-based methods, in which a larger cell count would mean a
larger number of nodes, increasing drastically the computational complexity (see Table 4).

Similar observations can be made for the Ahmed Body dataset. Fengbo outperforms all models
reported, with the exception of some GINO configurations depending on the choice of the radius of
the Graph Neural Operator module. It is worth mentioning that experiments in Li et al. (2024) could
benefit from the joint estimate of the wall shear stress, a physical parameter which was missing in
the version of the dataset we employed. We are positive that regressing also on wall shear stress
in a joint fashion, just like pressure and velocity for ShapeNet Car, could bring down the error of
10.7% we obtained on the test set with Fengbo. Note also how Fengbo attains a training error of just
8%, the lowest out of every other model reported, indicating how additional parameter optimisation
could be performed and likely reduce overfitting to bring the error down even further.

Comparison of estimates with Fengbo and corresponding ground truth pressure fields are given in
Figs 4 and in Fig. 6 for the ShapeNet Car and Ahmed Body datasets, respectively. Note how errors
in the pressure field are generally isolated points in a more or less uniform region with relative error
close to zero. We are convinced that by simply smoothing the predicted field we could mitigate this
issue and improve performance.

sc
al

ar
ve

ct
or

scalar and vector components of Q’ (4 channels) ̂ϕ(x)

ψ̂(x)

Figure 7: Intermediate outputs are interpretable physical quantities: Q′, the output of the 3D Clifford
FNO block, is processed by Np = 2 3D Physics blocks in parallel to obtain ϕ̂(x) and ψ̂(x), the
pressure and velocity fields, respectively.

In Fig. 5, the ground truth and estimated velocity fields for a test case in the ShapeNet Car are
reported. Note how the range of the relative L2 error in Fig. 5c is significantly smaller than the
ranges in Figs. 4c - 6c. This is likely due to the denser, larger point clouds over which ψ(x) is
defined. Note also how larger errors are concentrated in the areas surrounding the outline of the car.
Small discontinuities in the estimated field with respect to ground truth can be noticed in Fig. 5b,
for example in the bottom right section: just like for ϕ̂(x), we believe that smoothing the estimated
field ψ̂(x) can further reduce the prediction error.

9



Published as a conference paper at ICLR 2025

An example of the interpretability offered by Fengbo is given in Fig. 7. Q′, the multivector in output
of the 3D Clifford FNO module, is processed by the the 2 Clifford Physics blocks to obtain 2 mul-
tivector P ′ and V ′, of which we extract the scalar part ϕ̂(x) and the vector part ψ̂(x), respectively.
Note that we are still dealing with full grade multivectors defined over the entire domain D, but
for the sake of visualisation we only plot the scalar and vector component masked by ms and mv ,
respectively. As the velocity and pressure field are processed, is it possible to have a visual intuition
on how they are being transformed into the final estimate. As the quantities plotted are scalars and
vectors throughout, they carry physical meaning and cannot be interpreted as anything else but pres-
sure and velocity fields, therefore we can claim that Fengbo is a whitebox model. This concept of
interpretable convergence is analogous to that presented in Pepe et al. (2024a) for protein structures
and in Pepe et al. (2024d) for camera poses.

Table 4: Comparison of different models. d is the maximum degree of the graph, D is the feature
space dimensionality. *: See Appendix E.

Model Range Complexity Irregular Grid Discretisation Convergent
PointNet Qi et al. (2017a) global O(N) ✓ ✗

PointNet++ Qi et al. (2017a) local-global O(N logN) ✓ ✗
GNN Scarselli et al. (2008) local O(Nd) ✓ ✗
CNN LeCun et al. (1995) local O(N) ✗ ✗

UNet Ronneberger et al. (2015) global O(N) ✗ ✗

Transformers Vaswani (2017) radius r O(N2) ✓ ✓
Transolver Wu et al. (2024) local-global O(NSC +NS2)* ✓ ✓

Galerkin Cao (2021) global O(ND2) ✓ ✓
MeshGraphNet Pfaff et al. (2020) local-global O(Nd) ✓ ✓

GNO Li et al. (2020b) global O(Nd) ✓ ✓
FNO Li et al. (2020a) global O(N logN) ✗ ✓

Geo-FNO Li et al. (2020a) global O(N logN) ✓ ✓
GINO Li et al. (2024) local-global O(N logN +Nd) ✓ ✓

Fengbo [ours] local-global O(N logN) ✗ ✓

g

Fengbo has a computational complexity of O(N logN) (see Table 4): the embedding into a 3D
volume has complexity O(N), and the limiting component on the computational complexity is
given by the Clifford FNO module, with complexity O(N logN). Moreover, Fengbo’s accuracy
is minimally impacted by smaller grid resolutions, making it robust to coarses discretisations and
hence discretisation convergent (see Ablation Study in Appendix D).

5 CONCLUSIONS

We introduced Fengbo, a Neural Operator pipeline able to solve large-scale, 3D PDEs over complex
shapes which sits entirely in 3D Clifford Algebra. With Fengbo, we combine the descriptive power
of Neural Operators with the inductive bias and interpretability of networks in Clifford Algebra to
obtain a compact pipeline that is able to estimate multiple physical quantities both accurately and at
once, without extra computational overhead.

We reported results on the two 3D CFD datasets available, ShapeNet Car and Ahmed Body, yielding
a test error lower than most previously reported NO models. We are able to do so with a model
with about 60% fewer parameters and with reduced computational complexity compared to graph-
and transformer-based models. Moreover, we also estimate jointly the velocity field, leveraging
exclusively geometrical information of ΩD. Fengbo is thus a lightweight, expressive and accurate
pipeline entirely in 3D Euclidean space.

Limitations. Due to limited computational resources, we could not test deeper, larger versions
of our proposed architecture, which caps at 42 million parameters. Fengbo might struggle when
applied on less informative datasets (e.g. fewer physical variables, lack of geometrical information)
that do not allow for the construction of full-grade multivectors. Besides, most implementations of
Clifford Algebra networks rely on a tensor representation of multivectors, negatively impacting the
model training speed.

Future work. Future work might include testing a larger Fengbo over multiple datasets, projecting it
down to 2D for or extending its use for different PDEs to estimate jointly multiple physical quantities
defined over complex, irregular domains.
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A CLIFFORD ALGEBRA FUNDAMENTALS

A.1 DEFINING A SUBALGEBRA

A Clifford algebra of size n can be defined over a scalar field and a set of n independent basis vectors
{ei}i=1,...n. We indicate a generic closed subalgebra withG(p, q, r) or alternativelyG(p, q, r), with
n = p + q + r. A closed subalgebra G(p, q, r) has p basis vectors that square to 1, q basis vectors
that square to -1 and r basis vectors that square to 0.

A.2 THE GEOMETRIC PRODUCT

Elements in a GA are called multivectors. Elements of any type can be added or multiplied to-
gether. Each element has a grade associated with it. By grade we define the dimension of the
hyperplane an object specifies. e.g. scalars are grade 0, vectors are grade 1, bivectors are grade 2,
etc. Clifford algebra is also known as Geometric algebra because of the geometric product. The
geometric product between two vectors is given by

ab = a · b+ a ∧ b (13)
in which the scalar (or inner) product a · b is the usual scalar product of linear algebra equal to the
cosine of the angle between a and b, while the wedge (or outer) product a ∧ b produces a bivector
(e.g. an oriented plane). The geometric product between vectors is hence the sum of a scalar and
a bivector, that have different grade. Any multivector of a unique grade r that can be defined as
A = a1 ∧ a2 ∧ ... ∧ ar is called a blade.

The reversion operator for a multivector is given by Ã. The reverse of a scalar is equal to the scalar
itself and the reverse of a vector is equal to the vector itself. For a multivector, we have that

(AB)˜= B̃Ã

(A+B)˜= Ã+ B̃
(14)

The general rule to reverse a r-blade is given by

Ãr = (−1)
r(r−1)

2 Ar (15)
The geometric product between a multivector and its reverse gives the squared magnitude: |A|2 =

⟨AÃ⟩0. The reversion operator can be used to define the inverse of a multivector as

A−1 =
Ã

|A|2
(16)

It can be easily shown that A−1A = 1 when AÃ is a scalar.

The grade projector operator is denoted by ⟨A⟩r, where r is the grade we want to extract from A.
This comes from the fact that a multivector in an n dimensional algebra can be written as

A =

n∑
i=0

⟨A⟩i (17)

The dual of a multivector is defined as
A∗ = AI−1

n (18)
where In is called the pseudoscalar, defined as In = e1 ∧ e2 ∧ ... ∧ en. The pseudoscalar is the
highest grade element in a GA. The product of grade-n pseudoscalar In and grade-r multivector
Ar is a grade-(n − r) multivector, and is termed the duality transformation. The pseudoscalar
interchanges inner and outer products:

Ar · (BsIn) = ⟨ArBsIn⟩|r−(n−s)| = ⟨ArBsIn⟩n−(r+s) = ⟨ArBs⟩r+sIn = Ar ∧BsIn (19)
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A.3 CLIFFORD ALGEBRA OF THE PLANE AND OF SPACE

The Clifford algebra of the Euclidean plane is denoted by G(2, 0, 0), with two basis vectors e1, e2.
Being an n = 2 dimensional GA (since p + q + r = 2 + 0 + 0 = 2 = n), it is spanned by 22 = 4
elements, namely a scalar, two vectors e1, e2 and the bivector e1e2 = e1 ∧ e2. G(2, 0, 0) includes
the concept of complex numbers, since the pseudoscalar of this algebra I = e1 ∧ e2 = e1e2 = e12
squares to -1, since I2 = e212 = e12e12 = (e1e2)(e1e2) = −(e1e1)(e2e2) = −1. A scalar plus a
bivector can be seen as a representation of a complex number, since Z = a+ Ib ≡ a+ ιb, where ι
is the imaginary unit. Similarly, if X = ae1 + be2 = e1(a+ bI) = e1Z.

Adding a third basis vector e3 we form G(3, 0, 0), the GA of Euclidean space, which is what we
employed in this paper. It has 23 = 8 elements, a scalar, three vectors, three bivectors (e12, e23, e13)
and one trivector (e123 = e1 ∧ e2 ∧ e3 = I3, the pseudoscalar). The GA of space includes
quaternion algebra, since a quaternion q = w + ai + bj + ck can be represented as a multivector
A = w + ae12 + be13 + ce23.

B IMPLEMENTATION DETAILS

Details of the Fengbo architecture are shown in Fig. 8. The 3D Clifford Geometry block (Fig. 8a)
consists of 3 3D convolutional layers with kernel size 5×5×5. The first 2 convolutions are followed
by a group normalisation layer and a GeLU activation function. The block yields multivectors with
progressively increasing number of channels Cg = {1, 2, 4}.
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(b) 3D Clifford Physics block
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(c) 3D Clifford FNO block

Figure 8: The three components of the Fengbo architecture.

An example of the geometric interpretability of the intermediate outputs of Fengbo is given in Fig. 9.
Multivector P , containing a scalar, vector and bivector component, is processed by the 3D Clifford
Geometry block to obtain the 4-channel-multivector Q. We employ a grayscale colormap for scalar
quantities, i.e. scalar and trivector components, and jet and rainbow colormaps for the vector
and bivector components, respectively. The input shape multivector P built from the dataset is
scattered within the [−1, 1] volume, bounded by the tanh activation function. Elements of different
grades are mixed, as can be noticed from the appearance of trivector components. The sequence
of convolutions makes the 3D multivectors progressively denser. The last multivector QP , with
4-channels, is unbounded due to the lack of an activation function and fed into the 3D Clifford
FNO. Each channel shows how different grade elements in the volume cluster to form different
shapes, more or less aligned in a certain direction. While far from the original car shape, these blobs
indeed represent scalar, vectors, bivectors and trivectors in 3D space: the vector components shown,
for example, cannot be interpreted as anything else than coordinates of 3D point clouds precisely
because of our choice of embedding. Similar considerations can be made for V and QV .

Fig 8b shows the 3D Clifford Physics block. It contains the same layers as the 3D Clifford Geometry
block, but with a decreasing number of channels Cp = {2, 1, 1}, as shown in Fig. 7, and a different
meaning attached to the multivector representation, where the scalar and vector part represent the
pressure field ϕ(x) and the velocity field ψ(x).
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Figure 9: Intermediate layers outputs from P to QP within the 3D Clifford Geometry block for a
test sample in the ShapeNet Car dataset.

Fig 8c shows the 3D Clifford FNO block. It includes F = 2 residual blocks, 4 input channels, 4
output channels, C = 25 hidden channels and m = 8 Fourier modes for each of its 3 dimensions.
Each layer is followed by a group normalisation layer and a GeLU activation function.

Pipeline Generalisability. Fengbo operates entirely within Clifford Algebra, which is naturally
suited for a multidimensional treatment Lasenby & Lasenby (2001); Lasenby & Doran (2001); Do-
ran & Lasenby (2003); Hitzer (2012), and extensions of a same architecture in Clifford Algebra to
higher dimensions has been widely documented in the literature as one of the main advantages of
these types of networks Brandstetter et al. (2022); Ruhe et al. (2024; 2023); Pepe et al. (2024c).
The implementation of a 2D equivalent to our 3D Fengbo pipeline is straightforward, as detailed
in Table 5. By projecting the convolutional operations from 3D to 2D and operating within either
G(2, 0, 0) or G(0, 2, 0), we achieve a fully analogous approach for 2D problems with targets that
include scalar fields or 2D vector fields. Besides, just like Fengbo 3D is not limited to the task of 3D
flow estimation, Fengbo 2D is not limited to 2D flows, but it can be extended to any 2D PDE that
establishes a mapping from the geometry to the physics of the problem.

Table 5: Comparison of Fengbo’s 3D and 2D configurations.

Model Algebra Dimensionality (D) Tensor Shape Complexity Geometry Block FNO Physics Block Normalisation Targets
Fengbo 3D G(3, 0, 0), G(0, 3, 0) 8 C×M×M×M×D O(N logN), N =

M3
3D Clifford Convolu-
tions

3D full-grade Spec-
tral Convolutions, 3
Fourier modes

3D Clifford Convolu-
tions

Group Normalisation
3D

2 scalar fields, 1 3D
vector field, 1 3D
bivector field.

Fengbo 2D G(2, 0, 0), G(0, 2, 0) 4 C ×M ×M ×D O(N logN), N =
M2

2D Clifford Convolu-
tions

2D full-grade Spec-
tral Convolutions, 2
Fourier modes

2D Clifford Convolu-
tions

Group Normalisation
2D

2 scalar fields, 1 2D
vector field.

We can consider the 2D Fengbo as a simpler subcase of the 3D case, since its 3D implementation
presents several more challenges, namely:

• 6-dimensional tensors in 3D, with shapeB×C×M×M×M×D, whereB is the batch size,
C is the number of channels, M is the grid resolution and D is the algebra dimensionality
as opposed to 5-dimensional tensors in 2D, with shapeB×C×M×M×D, which require
significantly less memory and allow for larger model sizes.

• Larger algebra dimensionality, D = 23 = 8 elements in G(3, 0, 0), namely 1 scalar, 1
trivector, 3 vectors and 3 bivectors, as opposed to the 2D case with D = 4, with 1 scalar,
1 bivector and 2 vectors. This has implications in the sparsity of the input tensors and in
their memory requirements, which negatively impact convergence.

• Significantly higher computational complexity, since it stays the same for both cases,
namely O(N logN), but with N = M3 for the 3D case and N = M2 for the 2D case.
Moving to 2D would allow for a larger discretisation that can preserve a higher level of
detail at a fraction of the computational cost.

Moreover, handling 3D datasets with the proposed pipeline inherently includes the capability to
process 2D datasets of Li et al. (2020a); Wu et al. (2024). This is shown in Table 6. When processing
instances in ShapeNet Car and Ahmed Body, we: 1) sample points from the unstructured meshes;
2) discretise the irregular point clouds onto regular grids and 3) embed them in multivector form.
Datasets like AirFRANS, which also contains unstructured meshes, would be processed in the same
way. All the remaining 6 datasets fall into data structures which are intermediate steps of the pipeline
we established with Fengbo: point clouds, like the Elasticity dataset, can be directly discretised onto
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regular grids and embedded into multivector form, regular grids of the Plasticity, Airfoil and Pipe
datastes can be simply embedded as multivectors, as already demonstrated in Brandstetter et al.
(2022); Pepe et al. (2024b), and structured meshes of the Navier-Stokes and Darcy datasets can be
processed like their unstructured counterparts, demonstrating Fengbo’s generalisability to 2D cases.

Table 6: Data representations and their processing steps with the Fengbo pipeline.

Unstructured Meshes Point Clouds Regular Grid Structured Mesh
Datasets ShapeNet Car, Ahmed Body (3D), AirFRANS (2D) Elasticity (2D) Plasticity, Airfoil, Pipe (2D) Navier-Stokes, Darcy (2D)
1. Sample points from mesh ✓ - - ✓

2. Discretise onto regular grid ✓ ✓ - ✓
3. Embed in multivector form ✓ ✓ ✓ ✓

C TRAINING DETAILS

Fengbo was trained on 3 NVIDIA A100 GPUs with 40GB RAM. It was trained for 100 epochs with
a batch size of 3, for a total of approximately 24 compute hours. We employed the Adam optimiser
to update the model’s weights with default parameters of β1 = 0.9, β2 = 0.999. We adopted a
learning rate of 10−4, reduced on plateau by a factor of 2 with patience on the validation loss set to
8 epochs. The loss we minimised for the ShapeNet Car dataset is

L = αLP + βLV + ∥ϕ− ϕ̂∥1 (20)

with parameters α = 5, β = 1 picked empirically to weight the pressure component more, since it
was harder to regress. A similar loss was employed for the Ahmed Body dataset:

L = αLP + β∥r − r̂∥1 + ∥ϕ− ϕ̂∥1 (21)

but with α = 1, β = 1 and r being the Reynolds number embedded as the trivector component of
the output, i.e. ⟨R′⟩3 = (mpr)e123, where R′ refers to the second output of the network, P ′ being
the first. No velocity information is provided. The L1 norm term on pressure was added to further
penalise large deviations of ϕ̂, the estimated pressure field with respect to ground truth.

We employed elastic net regularisation, with λ1 = 10−5 lasso regularisation coefficient and
λ2 = 10−4 ridge regularisation coefficient, to encourage group selection of correlated features and
reduce overfitting, which we found to be significant over such small training sets. For training, input
geometries are normalised in the range [−1, 1], vector velocity fields are normalised in the range
[0, 1] and pressure fields are unit normalised by subtracting their mean and dividing them by their
variance. Test metrics are measured over denormalised quantities to yield physically meaningful
errors.

D ABLATION STUDY

Table 7: Ablation on the impact of M .

Grid Size M ShapeNet Car Ahmed Body
Pressure Velocity Pressure

training testing training testing training testing
40 6.69 12.8 5.58 6.11 10.6 15.1
50 7.38 11.2 5.99 5.70 10.4 13.9
60 6.42 10.1 5.17 5.26 9.17 12.3
70 7.43 10.5 5.97 5.61 8.10 11.7
80 6.94 8.86 5.56 5.10 8.00 10.7

Pipeline Scalability. We study the impact of four components of the Fengbo pipeline, namely the
grid sizeM , the number of hidden channels in the 3D Clifford FNO moduleC, the number of blocks
in the FNO F and the number of modes in the FNO m.
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The impact of grid size on Fengbo’s accuracy is shown in Table 7. We train and test on volumes
with the same resolution. It can be noted that, by reducing the number of voxels by 87.5% (from
M = 80 to M = 40), i.e. significantly reducing the level of details in our input shape, Fengbo still
yields a test error only 4% higher for the ShapeNet Car dataset and 4.5% higher for the Ahmed Body
dataset. We can hence claim discretisation convergence.

Since the 3D Clifford FNO is Fengbo’s key component, we study the impact of its parameters. In
Fig. 10 we report the ablations over the number channels C within the FNO for the two datasets and
for the relative L2 norm over pressure and velocity fields ϕ, ψ, respectively. For the velocity field
of ShapeNet Car we tested two combinations of the weighting coefficients of the loss function α, β.
The grid size is fixed to M = 80 and the number of blocks within the FNO is fixed to F = 2, while
we test C = {5, 10, 15, 20, 25}.
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(b) Relative L2 norm on pressure, Ahmed Body
dataset versus C.
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(c) Relative L2 norm on velocity, ShapeNet Car
dataset versus C. {α, β} = {5, 1}
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(d) Relative L2 norm on velocity, ShapeNet Car
dataset versus C. {α, β} = {1, 50}

Figure 10: Ablation on the number of hidden channels C.

In all four presented scenarios, a higher number of hidden channels (i.e. a wider network) yields a
steep decrease in the error at testing stage, proving how a larger version of Fengbo to that presented
in the main body of this manuscript (C = 25) could further improve the quality of the PDE solution
and demonstrating its scalability with respect to C.

In Fig. 11 we study the impact of the number of FNO blocks for the same four cases above. We
tested F = 1, 2, 3, 4 by keeping C = 15 and M = 80. Also in this scenario, a deeper network
corresponds to a more accurate estimation and hence scalability with respect to F . Note, in Fig.
11a, a lower absolute minimum for relative L2 norm over ϕ for the ShapeNet Car dataset of 8.25%
with F = 4.

We then studied the impact of the number of Fourier modes m of the FNO. We tested m =
{3, 6, 8, 10, 12, 14} by keeping F = 2 and C = 20. In this case results are less uniform across
the four test cases, but we can conclude thar a larger number of modes often corresponds to similar
if not worse performances, as already pointed out in Brandstetter et al. (2022).

The effect that these ablations have on the number of models parameters and size are reported in
Fig. 13. Note how the ablations on M are missing since they do not affect the model dimension.
The model size scales exponentially with respect to C,m, and linearly with respect to F . Fourier
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(a) Relative L2 norm on pressure, ShapeNet Car
dataset versus F .
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(b) Relative L2 norm on pressure, Ahmed Body
dataset versus F . {α, β} = {5, 1}.
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(c) Relative L2 norm on velocity, ShapeNet Car
dataset versus F .
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(d) Relative L2 norm on pressure, Ahmed Body
dataset versus F . {α, β} = {1, 50}.

Figure 11: Ablation on the number of FNO blocks F .
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(a) Relative L2 norm on pressure, ShapeNet Car
dataset versus m.
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(b) Relative L2 norm on pressure, Ahmed Body
dataset versus m.
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(c) Relative L2 norm on velocity, ShapeNet Car
dataset versus m. {α, β} = {5, 1}.
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(d) Relative L2 norm on pressure, Ahmed Body
dataset versus F . {α, β} = {1, 50}.

Figure 12: Ablation on the number of Fourier modes m.
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modes have the biggest impact on the model parameters, with m = 14 corresponding to a ×13
increase with respect to the Fengbo presented in the main body of the text, without benefiting the
test error. The number of blocks F , on the other hand, corresponds to a relatively milder increase
in the model size while still providing a substantial improvement in performance. This proves our
claim in the Limitation section, i.e. that a deeper network can likely correspond to more robust and
accurate predictions than those shown in Table 2.
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Figure 13: Number of parameters (M) and model size (MB) as a function of C,R,m.

Lastly, the impact of the weighting coefficients of the loss function on Fengbo’s accuracy is shown
in Table 8. We fix the resolution to M = 80 and vary the weight attributed to different physical
quantities in the loss function. β weights velocity for the ShapeNet Car dataset and the Reynolds
number for the Ahmed Body dataset, while α weights the pressure in both. Note how the Reynolds
number does not contribute in a significant way to the estimation of pressure in the Ahmed Body
dataset. From Table 8 we can conclude that the high accuracy accuracy of Fengbo stems also due to
the joint estimation of variables, e.g regressing also on ψ can better constraint the values of ϕ can
assume and vice versa. α, β can be thought as two parameters that mix quantities to be regressed and
that can be tuned based on the specific requirements of problem to be tackled, e.g. which quantity
we wish to prioritise.

Table 8: Ablation on the impact of α, β.

α β
ShapeNet Car Ahmed Body

Pressure Velocity Pressure
training testing training testing training testing

1 0 8.53 9.21 - - 8.60 11.8
1 1 9.07 9.32 7.23 4.39 8.00 10.7
2 1 8.03 9.30 6.40 4.56 8.23 10.9
5 1 6.94 8.86 5.56 5.10 7.64 10.9

10 1 5.38 9.12 4.28 5.48 9.31 11.9
0 1 - - 4.90 4.03 - -
1 2 9.37 9.50 4.09 4.12 8.42 11.9
1 5 7.71 9.83 3.98 3.82 8.34 11.8
1 10 9.37 10.1 3.82 3.60 8.26 11.8
1 20 10.5 10.8 3.37 3.59 - -
1 50 8.42 11.4 3.23 3.47 - -

E NOTES ON COMPUTATIONAL COMPLEXITY

As outlined in Section 2, we focused primarily on Neural Operators over Transformers due to the
latter’s significantly higher computational complexity, namely O(N2). Transformers, albeit offer-
ing improved performances, introduce substantial challenges in terms of resource requirements and
scalability. As a proof of that, we offer an analysis of the theorical complexity of the Fengbo model
and compare it with the current state-of-the-art in Transformer-based solvers, the Transolver archi-
tecture Wu et al. (2024), which to the best of our knowledge is both the most accurate and the least
computationally expensive Transformer architecture designed to solve PDEs. Albeit mostly vali-
dated over 2D problems, the Transolver has also been tested over one 3D dataset, namely ShapeNet
Car.
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More specifically, authors of Wu et al. (2024) designed an ad hoc attention layer, the Physics-
Attention layer, that operates on slices of the PDE domain Ωd. The reported computational com-
plexity of such layer O(NSC + S2C), in which N is the number of meshes, S is the number of
slices into which the domain is partitioned and C is the number of hidden channels of the model.
The authors claim a quasi-linear complexity with respect to N . However, the overall complexity is
heavily dependent on the choice of the model parameters S and C, and for large values of S and C,
which is the setting for most of the experiments in Wu et al. (2024), it becomes sub-quadratic. We
compare the model complexities for the 3D and the 2D case.

3D Case. Model complexities for the 3D case are shown in Fig. 14. For the ShapeNet Car, specif-
ically, the reported parameters are as follows: N ≃ 32000 meshes, S = 32 slices into which the
car surface is partitioned and C = 256 channels. This places the computational complexity of the
Transolver architecture for the ShapeNet Car dataset at the green marker shown in Fig. 14a.

On the other hand, as shown in Table 4, we report a computational complexity of O(N logN) for the
Fengbo pipeline. In our approach, N is the dimension of the 3D regular grid, hence N =M3, with
M being the grid resolution. This places the computational complexity of the Fengbo architecture
for the ShapeNet Car dataset at the yellow marker shown in Fig. 14a.

Such design choices yielded results shown in Fig. 14b: the Transolver model attains a 1.4% de-
crease relative L2 error over Fengbo, but at a computational complexity of two orders of magnitude
larger. It is also worth noting that the experiment setting for Transolver followed the implementa-
tion of 3D-GeoCA Deng et al. (2024), which takes 789 samples for training and 100 samples for
testing. On the other hand, we followed the approach of GINO Li et al. (2024), in which we retain
611 watertight meshes and employ 500 samples for training and 100 for testing, meaning that the
Transolver, besides being computationally more complex, was also trained on 57.8% more samples.
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Figure 14: Computational complexity comparison of Fengbo and Transolver Wu et al. (2024) for
the 3D case.

A similar claim can be made for the Ahmed Body dataset, not analysed in Wu et al. (2024), but
whose complexity can still be studied. Assuming one point per mesh, i.e. N = 100000, and the
same parameters configuration employed for the ShapeNet Car dataset, i.e. {S,C} = {32, 256},
the resulting complexity of the model also reaches O(108), corresponding to to the pink marker in
Fig. 14a. With Fengbo, the grid resolution is kept unchanged for the Ahmed Body dataset, which
yields identical complexity to the ShapeNet Car dataset, demonstrating its robustness to larger mesh
size.

2D Case. We compare the ablations presented in Appendix A of this manuscript with those pre-
sented in Appendix C of Wu et al. (2024). We compute the corresponding Fengbo complexity as the
grid size varies, i.e. M = {40, 50, 60, 70, 80} and the corresponding Transolver complexity as N
and C vary across datasets and as the number of slices S vary employed across ablations, namely
S = {1, 8, 16, 32, 64, 96, 128, 256, 512, 1024}. This is summarised in Table 9. We then plot the
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M
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Figure 15: relative L2 norm promotion versus computational complexity for Fengbo and Tran-
solver’s ablations.

relative L2 norm promotion versus the resulting complexities for six 2D datasets (Darcy, Elasticity,
Plasticity, Airfoil, Navier-Stokes and Pipes) and two 3D datasets (ShapeNet Car and Ahmed Body).
The promotion is defined as Pi = Li/L∗, with Li the relative L2 norm reported for the ith ablation
and L∗ the overall minimum L2 norm reported. We do so as different datasets might present very
different ranges of L.

This is shown in Fig. 15, in which the markers represent different ablations and the curves are the
resulting interpolations. Note how, even when compared to 2D datasets, Fengbo still operates at one
order of magnitude below Transolver for the Elasticity dataset and at two orders of magnitude for
the remaining five datasets. On top of that, the computational cost to lower L to the optimal value is
also significantly lower for the Fengbo pipeline. Additionally, if Fengbo were to be tested in a 2D
scenario, the value of N would likely be much smaller than 106.

Table 9: Complexity comparison for different datasets

Darcy Elasticity Plasticity AirFoil Navier Stokes Pipes ShapeNet Car, Ahmed Body (Fengbo)
N 7225 976 3131 11271 16641 4096 803

S 64 64 64 64 64 32 -
C 128 128 128 128 128 256 -
Complexity O(108) O(107) O(08) O(108) O(108) O(108) O(106)
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