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ABSTRACT

Robotic systems can require multimodal reasoning under stringent constraints of
latency, memory, and energy. Standard instruction tuning and token-level distil-
lation fail to deliver decision quality, reliability, and interpretability under these
constraints. We introduce BOLT, a decision-aligned distillation and budget-aware
routing framework that treats multi-choice prediction as a decision surface to be
aligned during training and selectively refined at inference. During training, BOLT
introduces Option-level Decision Distillation to align student models directly on
the decision surface of multi-choice answers, thereby eliminating prompt artifacts,
improving calibration, and optimizing the exact output space. At inference, BOLT
activates Budget-aware Test-time Augmentation, a calibrated router that uses low-
cost signals such as confidence, margin, entropy, retrieval affinity, and agreement
across short question decompositions to trigger high-resolution reevaluation, type-
matched retrieval exemplars, or question decomposition only when their expected
benefit outweighs cost. On Robo2VLM-1, a 2B BOLT student distilled from
LLaVA-1.5-13B improves accuracy from 28.66 in zero-shot to 42.89 with deci-
sion distillation and to 50.50 with budgeted routing, surpassing the 13B teacher at
36.74. It lowers expected calibration error, strengthens the risk-coverage frontier,
and slashes GPU memory from 26,878 MB for the teacher to 3,035 MB for the
distilled student, and 3,817 MB with all augmentations enabled. By constrain-
ing outputs to valid options while exposing retrieved evidence and decomposition
traces, BOLT reduces hallucination and provides transparent decision-making, en-
abling large-model quality on edge robots.

1 INTRODUCTION

Multimodal foundation models have progressed rapidly from contrastive vision-language pretrain-
ing to instruction-following vision-language models capable of grounded reasoning and multi-step
perception (Radford et al.| 2021} Jia et al., 2021). Systems, such as LLaVA (Liu et al.| [2023)) and
Qwen2-VL (Wang et al.| |2024), demonstrate strong zero-/few-shot performance across diverse vi-
sual question answering (VQA) tasks. There is growing interest in pushing these capabilities onto
robots and embedded platforms. In parallel, many robotics benchmarks adopt constrained-output
formulations (e.g., colors, arrow directions, options A—E, yes/no), which enable deterministic inter-
faces and safety checks and are well suited to on-device control and real-time loops (Brohan et al.,
2022; Chen et al., [2025} |Gordon et al., 2018 [Teney et al.,|[2018)).

A practical challenge arises: achieving the decision quality of large vision-language models (VLMs)
for constrained, multi-choice decision making while respecting strict latency, memory, and energy
budgets on edge hardware. Prior work takes several approaches to this goal. Token-level knowledge
distillation (KD) inherited from text-only language models (LMs) seeks to transfer teacher behavior
at the sequence level (Hinton et al., 2015; |Kim & Rush, 2016). Compact VLMs are directly fine-
tuned on instruction-following data to better conform to task prompts. Always-on test-time enhance-
ments such as higher-resolution re-evaluation and retrieval-augmented prompting with same-domain
exemplars aim to boost accuracy (Lewis et al., 2020; Rubin et al.,|2021)).
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Selective prediction with budgeted or dynamic inference, covering confidence-based abstention
(Geifman & El-Yaniv, [2017) as well as early-exit and adaptive-compute methods (Teerapittayanon
et al., 2016; |[Figurnov et al., 2017), trades coverage for risk under resource constraints. Parameter-
efficient adapters like LoRA and quantization-aware QLoRA further reduce adaptation cost and
memory (Hu et al.| 2022; | Dettmers et al., 2023)). Beyond raw accuracy, many strategies pursue better
interpretability and reduced hallucination, including retrieved-evidence provenance, decomposition
traces, and calibration, but most such methods incur substantially higher compute, memory, or la-
tency when applied uniformly. However, optimization explicitly for multi-choice decision surfaces
remains limited, and few studies simultaneously improve decision accuracy, increase interpretability,
and mitigate hallucination under tight on-device resource constraints.

These gaps manifest in constrained, multi-choice robotic perception as several persistent pain points.
Token-level distillation aligns surface form under a particular prompt template rather than the de-
cision surface over the option set used in constrained decoding, which can make the student brittle
and misaligned with evaluation. Always-on enhancements improve accuracy but increase latency
and energy consumption, violating tight budgets; naive decomposition procedures may introduce
spurious intermediate steps that diverge from visual evidence (Kim et al.| [2020). Compact VLMs
are commonly under-calibrated (Guo et al., 2017), undermining selective computation and absten-
tion.

Hallucination remains nontrivial in small models and is compounded by limited interpretability:
it is often unclear why a decision was taken or which evidence supported it (L1 et al.| 2023b).
Existing selective or budgeted inference seldom couples uncertainty with retrieval affinity or with
agreement across decompositions, and evaluations rarely report risk—coverage or accuracy—budget
frontiers for constrained multimodal QA. Panel-based layouts and tiny colored markers exacerbate
small-model failures, while real-time control imposes per-frame budgets and VRAM ceilings. Taken
together, these limitations leave optimization for the multi-choice decision surface underdeveloped;
under tight on-device budgets, few methods simultaneously improve decision accuracy, increase
interpretability, and mitigate hallucination.

Contributions We address the above-mentioned limitations with a decision-centric strategy that
aligns the student with the teacher at the level of answer options and allocates additional test-time
compute only when inexpensive signals indicate positive expected gain under a target budget. The
training component performs decision-aligned distillation at the option level so that the student
learns the teacher’s preference over candidate answers under constrained decoding. The inference
component uses budgeted, risk-calibrated routing to decide whether to re-evaluate at higher reso-
lution, augment with retrieved same-domain exemplars, or invoke Question Decomposition (QD).
This design not only improves accuracy-budget tradeoffs and calibration, but also mitigates halluci-
nation by constraining outputs to valid options and grounding with retrieved context, and enhances
interpretability by exposing decomposition traces and the retrieved exemplars that inform decisions.

We introduce Budgeted Option-Level Transfer (BOLT), a decision-centric framework for con-
strained, multiple-choice VQA on robots. BOLT treats multiple-choice prediction as a decision
surface to be aligned and then selectively refined: training performs option-level distillation to
match teacher-student preferences over answers, while inference uses a budgeted, risk-calibrated
router that spends extra compute only when inexpensive signals suggest positive expected gain
(e.g., high-resolution re-evaluation, type-matched retrieval, short QD). By unifying decision align-
ment with selective computation, BOLT achieves large-model decision quality under tight on-device
latency/memory/energy budgets, delivering better accuracy-budget and risk-coverage trade-offs,
sharper calibration, fewer hallucinations through constrained outputs and grounding, and clearer
interpretability via visible evidence traces.

The key contributions of this paper can be summarized as follows.

* Budgeted Option-Level Transfer (BOLT): A decision-centric framework for constrained,
multi-choice VQA on robots that unifies option-level decision distillation (ODD) with bud-
geted test-time augmentation (bTTA). By aligning training and inference around the multi-
choice decision surface and spending compute only when inexpensive signals predict bene-
fit, BOLT attains large-VLM decision quality under tight on-device latency/memory/energy
budgets, improving accuracy-budget and risk-coverage frontiers and calibration while re-
ducing hallucination and increasing interpretability.
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* Option-level Decision Distillation: A decision-aligned objective that matches teacher-
student option distributions derived from answer-segment likelihoods, improving Exact-
Match and calibration over token-level distillation on constrained multimodal QA.

* Budgeted Test-time Augmentation: A risk-calibrated router that adapts inference compute
(Hi-Res, retrieval augmentation, QD) per instance using uncertainty and retrieval-affinity
features; under mild monotonicity assumptions, this induces a near-threshold policy that
optimizes accuracy subject to a compute budget and empirically improves risk-coverage
and accuracy-budget frontiers.

» Mitigating hallucination and improving interpretability: By constraining outputs to valid
option sets, grounding predictions with retrieved exemplars, and exposing QD traces, the
framework reduces contradiction-to-image errors and invalid-option responses while pro-
viding human-inspectable evidence chains; quantitative analysis appears in Section {.6]

2 RELATED WORK

2.1 VISION-LANGUAGE MODELS FOR ROBOTICS AND CONSTRAINED-OUTPUT QA

Early vision-language pretraining focused on contrastive objectives that align images and texts in a
shared embedding space (Radford et al., 2021} Jia et al., 2021). Subsequent instruction-following
VLMs integrate autoregressive decoding and multimodal instruction tuning (e.g., LLaVA (Liu et al.,
2023), Qwen2-VL (Wang et al., 2024), BLIP-2 (L1 et al.| [2023a))), enabling strong zero-/few-shot
generalization on open-ended and task-driven QA. In robotics, there is an increasing emphasis on
models that interface with perception and control stacks under strict latency and energy constraints
(e.g., RT-1/RT-2) (Brohan et al., 2022; |Zitkovich et al., 2023). Many robotic and diagnostic VQA set-
tings adopt constrained-output formulations to facilitate deterministic interfaces, safety checks, and
reliable evaluation (Chen et al.| 2025} |Gordon et al.| 2018} [Teney et al.l | 2018). However, this regime
exposes a specific gap: most training and adaptation practices remain token-level and open-ended,
which misaligns with the option-based decision surface used at evaluation and tends to increase
compute when applied uniformly on devices. We therefore study an option-aligned alternative and
show that aligning option distributions better preserves decision quality for constrained decoding
under on-device budgets.

2.2 KNOWLEDGE DISTILLATION FOR MULTIMODAL MODELS AND CONSTRAINED
DECISIONS

Knowledge distillation (KD) was introduced as logit-matching with temperature scaling (Hinton
et al., 2015) and later extended to sequence-level distillation for text generation (Kim & Rush,
2016). In vision and NLP, distillation spans token/logit-based matching, response-level training,
and feature/attention transfer, often improving latency and memory without fully retaining calibra-
tion or decision boundaries (Sanh et al., 2019; Touvron et al.| 2021). Multimodal KD for VQA
typically mirrors token-level or cross-entropy supervision, which can entangle prompt-template
idiosyncrasies with answer learning and may misalign with the constrained option space used at
evaluation. Parameter-efficient tuning reduces adaptation cost and memory footprint (Hu et al.,
2022; Dettmers et al.l[2023), but does not by itself address decision alignment or budgeted test-time
compute. Progress in distillation and parameter-efficient tuning notwithstanding, faithfully trans-
ferring a teacher’s option-level decision quality and calibration to compact VLMs for constrained
multiple-choice decoding without overrunning on-device memory budgets remains elusive.

2.3 RETRIEVAL-AUGMENTED INFERENCE AND BUDGETED/DYNAMIC COMPUTE

Retrieval-augmented methods provide external evidence or exemplars to improve factuality and
domain transfer, including RAG-style retrieval+generation, Fusion-in-Decoder, and memory-
augmented language models (Lewis et al., |2020; [zacard & Gravel [2020; Borgeaud et al., [2022;
Khandelwal et al.,|2019; Rubin et al., 2021)). In vision-language QA, retrieval can supply task-type
exemplars for in-context guidance, but naive always-on use increases latency and energy and can
degrade reliability when irrelevant evidence is injected. Separately, budgeted or dynamic inference
studies how to adapt computation to instance difficulty: early-exit and conditional computation in
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Figure 1: Pipeline overview. Left: Distill phase (ODD). The teacher VLM provides option-level
supervision via answer-segment likelihoods; the student learns to match the teacher’s decision dis-
tribution and is then calibrated. Right: Inference phase (bTTA). A fast constrained pass produces
confidence features; a router selectively triggers HR re-evaluation, tmRAG, and QD and combines
their outputs to form the final prediction under a compute budget.
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CNNs/Transformers, adaptive-depth/width routing, and selective prediction with abstention trade
off coverage for risk under resource constraints (Teerapittayanon et al.l 2016} Figurnov et al.} 2017}
Geifman & El-Yaniv, [2017). What remains absent is a cost-aware controller that, under an explicit
compute budget, relies on trustworthy instance-level signals to trigger high-cost augmentations only
when they deliver positive net benefit.

2.4 CALIBRATION, HALLUCINATION, AND STRUCTURED DECOMPOSITION

Modern neural networks are often miscalibrated; post-hoc temperature scaling partially remedies
this, but can be unstable across domains (Guo et al.| [2017; Minderer et al., 2021). In VLMs, multi-
modal hallucination persists (e.g., contradictions to the image or invalid-option outputs), and mea-
suring/mitigating it remains an active area (Li et al., 2023bj; |Rohrbach et al., 2018). Interpretability
tools range from retrieved-evidence provenance to structured reasoning traces. Modular/structured
approaches, including neural module networks, program-like reasoning, and decomposition-style
prompting, seek to expose intermediate structure and reduce spurious correlations (Y1 et al., 2018
Hudson & Manning] 2018 [Zhou et al.| [2022). Despite techniques for post-hoc calibration, hallu-
cination mitigation, and structured decomposition, it remains difficult to simultaneously improve
accuracy, calibration, and hallucination while preserving tight on-device budgets and avoiding uni-
form overhead.

3 METHODOLOGY

3.1 PROBLEM SETUP AND NOTATION

We study constrained-output VQA for robotics. Each example is denoted as (x, ¢, O, y), where z is
an image or panel layout, ¢ is a natural-language question, O = {01, ...,0x } is a finite option set,
and y € {1,..., K} is the ground-truth index set. We use a large teacher VLM T and a compact
student VLM Sy with parameters 6. Both are evaluated under constrained decoding: the model must
output exactly one option text from O.

We fix a chat template that places (z,¢) in a user turn and the answer in an assistant turn. For

option oy, let the tokenized answer be a(¥) = (agk), NN a(ka)), and let the full sequence be z(*) =
(z%lfgw a®)) where indices A*) = {Ly +1,..., Lo + Ly} correspond to the answer segment. For

a model M, denote its next-token distribution by pas (- | Z<¢).
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Answer-segment likelihood. We deliberately score only the assistant answer segment:

su(k|z,q) = Z 1ngM<a£’i)Lo
te Alk)

z(f}) . (1)

This removes prompt-template wording from supervision and focuses exactly on the part that is
evaluated under constrained decoding.

Roadmap to test time. Having defined how decisions are formed under constrained decoding, we
first train the student so that its option-level decisions match the teacher, then design a budgeted
router that decides when to pay for costlier augmentations at inference.

3.2 SYSTEM OVERVIEW AND DESIGN

As shown in Fig[T] we design BOLT, a decision-centric framework for constrained multimodal QA
on robots that delivers large-model decision quality at small-model cost.

During training, BOLT utilizes Option-level Decision Distillation (ODD) to match the teacher’s
temperature-softmax over answer options, which are computed from answer-segment likelihoods.
A LoRA/QLOoRA student is optimized with a small cross-entropy anchor, aligning the constrained-
decoding decision surface, improving calibration, and mitigating prompt and length artifacts.

During inference, a budgeted router reads lightweight signals from the student distribution aug-
mented by type-matched retrieval affinity and agreement across short QDs. It triggers only the
helpful augmentations under a budget, namely HR high-resolution re-evaluation, tmRAG type-
matched retrieval exemplars, and QD. This design concentrates computation where it pays off,
yielding stronger accuracy-budget and risk-coverage tradeoffs than always-on enhancements. It
reduces invalid-option and image-contradiction errors by grounding predictions, and improves inter-
pretability via retrieved evidence and decomposition traces. Temperature scaling further calibrates
probabilities used for routing.

3.2.1 OPTION-LEVEL DECISION DISTILLATION (ODD)

To transfer the decision quality of a large teacher to a compact student under constrained decoding,
we propose ODD, a decision-aligned objective that supervises the model at the level of answer op-
tions rather than tokens. Token-level KD from text LMs mixes prompt and answer tokens, penalizes
template wording differences that are irrelevant at evaluation, and encourages surface-form imita-
tion; in constrained QA, the evaluation hinges on the teacher’s preference over the option set. ODD
therefore scores, for each option, only the assistant’s answer segment, sums its token log-likelihoods
to form per-option scores, converts them with a temperature-softmax into a teacher option distribu-
tion, and trains the student to match this distribution with a KL term plus a small cross-entropy to
the ground-truth option. This directly targets the decision surface realized by constrained decoding,
improves calibration, and avoids the prompt-answer tug-of-war inherent to token-level distillation;
when option strings differ markedly in length, a light length-bias correction can be applied.

Option distributions and decision-aligned loss. We first turn the teacher’s answer-segment
scores into a calibrated preference over options by applying a temperature-softmax, which smooths
overconfident peaks and exposes relative utilities across O:

exp(s7(k)/Tia)
Zle exp(s7(j)/Tka)

We cache {pr(k)} offline for all training items so that student training compares against a fixed
teacher distribution without repeatedly querying the teacher.

pr(k|z,q) = Tid > 0. )

To make the teacher and student directly comparable in the same probability simplex, we build the
student’s option distribution by normalizing its own answer-segment scores in the same way:

k|lxz,q;0) = exp(sa(k')) , so(k) =sg,(k|x,q). 3
ps(k |z, q;0) S exp(s00)) o(k) = ss,(k|z,q) 3)
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This places both models’ decisions on a common, prompt-invariant option space that mirrors con-
strained decoding at evaluation.

With pr and pg defined, we optimize a decision-aligned objective that pulls the entire student dis-
tribution toward the teacher while retaining a minimal anchor to ground truth:

Lopp(#) = Ak KL(pr || ps) + Ace CE(dy || ps), AKL, Ace > 0. “4)

Intuitively, the KL term shapes the student’s decision surface by matching the teacher’s option pref-
erences, and the small CE term provides a ground-truth anchor that stabilizes learning, preserves
rare-option recall, and corrects teacher bias in ambiguous cases.

Invariances, length bias, and gradient shape. ODD operates on sums of answer—token
log-probabilities, is invariant to adding any constant to all s¢(k), and is robust to benign tokenization
changes for fixed option strings. When option strings differ substantially in length, we correct the
scores by

g.g(k‘) = Sg(ki) —vylog Ly or Sg(k’)/Lk, v e [0, 1]. (@)

For intuition about decision alignment, let sg = [s4(1), ..., s¢(K)]". The gradients of Eq. () with
respect to sy are given by

Vs, KL(prllps) = ps — pr Vs, CE(8,[lps) = ps — 6y,

so the total signal pushes the student option distribution toward the teacher and the ground-truth
anchor. When backpropagated to token logits, this supervision is applied only to answer-segment
tokens, avoiding the prompt—answer tug-of-war that plagues token-level distillation.

Parameter-efficient training. We train LoRA adapters in attention and MLP projections (option-
ally the multimodal projector) while keeping the base quantized with QLoRA. ODD gradients flow
only through adapter paths and the projector, enabling single-GPU training.

3.2.2 BUDGETED TEST-TIME AUGMENTATION (BTTA)

To maximize accuracy under an explicit compute budget while preserving low latency on edge
hardware, we propose bTTA, an adaptive inference-time framework that allocates computation per
instance. The distilled student first performs a fast constrained pass, from which we derive a compact
routing feature vector based on the option distribution and auxiliary cues. A learned policy decides
whether to execute high-resolution (HR) re-evaluation, type-matched retrieval exemplars (tmRAG),
or Question Decomposition (QD). Each augmentation is modeled as an action with measurable cost
and a learned success probability; bTTA triggers actions only when the predicted gain exceeds the
cost within the budget, yielding calibrated final decisions and improved accuracy-budget tradeoffs.

Routing features and policy. From the pass-1 option distribution pg we compute confidence,
margin, and entropy,

Prmax = m}gXps(kL A =pa) — P2, H=— Zps(k) log ps(k).
’ k

We augment them with a retrieval affinity
P =7 Z COS(¢(I,Q), ¢($j7qj))7
r j€Top-K,

where the memory stores only same-type items to avoid cross-type interference and, with an agree-
ment score across short QD, runs

2 (k) | (k)
k=1-— E JS ,
lid(lid - 1) k<k’ (ps ||pS )

which increases when independent decompositions concur. The feature vector f =
[Pmax; A, H, p, k] drives the router. Let actions A = {HR,RAG, QD} collect HR, tmRAG, and
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QD. Each action a has a normalized marginal cost C, and a binary improvement label AAcc, rela-
tive to the current prediction. A gain model g,,(f, a) ~ Pr[AAcc, = 1| f] is learned on validation
logs, and the per-instance decision solves

max Qq gu(f,a) W, s.t. a, C, < B, 6

aae{o,l}; a (£, a) W, ;4 ala > (6)

with small empirical weights W, and budget B. Its Lagrangian relaxation yields a simple near-
threshold rule

trigger a < g, (f,a) W, > 7C,, with cumulative cost < B, @)

which activates an augmentation when predicted gain exceeds cost by a threshold 7 tuned on valida-
tion to satisfy the average budget and maximize accuracy. With diminishing returns across actions,
greedy selection by this net value is a strong approximation.

Actions and calibration. HR replaces the image with a larger short-edge for a second constrained
pass to recover fine detail. #mRAG retrieves Top-K, same-type exemplars (desc, ¢, a) by cosine
similarity in an encoder space and appends them to the prompt; the student re-answers to obtain
pEAG. 0D elicits K, short decompositions (two-three checks) with diversity via seeds or few-shot

permutations, producing distributions {pfgk) } ,If;l and an aggregated vote

Kq
. 1 (k) . .
ps() = e ;ps (), 0 = arg max ps(0), ®)

while the agreement x feeds back into routing to suppress unhelpful decompositions. Because rout-
ing relies on probabilities, we apply temperature scaling on a validation split,

exp(so(k)/Teal)
Zj exp(SQ(j)/Tcal) ’

and reuse calibrated pp,ax, margin and entropy in Appendix [F}

p§ (k) =

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

We conduct the main study on Robo2VLM-1 (Chen et al., |2025), a panel-style robotic perception
QA benchmark with constrained option sets. Following our constrained decoding interface (Sec. [3)),
we evaluate by Accuracy (Acc) over options. For Robo2VLM-1, we form three non-overlapping
splits by unique image identifiers: train—-kd (used only to build the teacher option-distribution
cache), val (router calibration and temperature scaling), and test (final reporting). Retrieval
memories and decomposition exemplars are constructed exclusively from t rain-kd to avoid leak-
age into val/test. Unless otherwise stated, all results are single-image, batch size 1.

We distill from three teachers spanning families and sizes, Qwen2.5-VL-7B, LLaVA-1.5-7B, and
LLaVA-1.5-13B, using their per-option answer-segment likelihoods to form temperature-softmax
teacher distributions py for ODD. The student is Qwen2-VL-2B-Instruct, trained with ODD via
LoRA/QLoRA. All models share the same constrained-decoding interface and bTTA configuration
for fair comparison. Unless otherwise specified, we report each teacher-student setting with 73,4 and
the CE weight tuned on val.

4.2 MAIN RESULTS

Table 2] summarizes accuracy under a unified constrained-decoding protocol. A 2B student trained
with option-level decision distillation attains 42.89% when distilled from LLaVA-1.5-13B, exceed-
ing the 13B teacher at 36.74% and the 2B zero-shot baseline at 28.66% by sizable margins. Adding
the budgeted test-time augmentation policy further increases accuracy to 50.50, while maintaining
the same decoding interface. Replacing ODD with token-level KD yields lower accuracy across
teachers: 33.91%/36.21%/37.58% when distilled from LLaVA-7B/Qwen2.5-VL-7B/LLaVA-13B,
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Table 1: Module ablations on Robo2VLM-1 Table 2: Comparison on Robo2VLM-1 (Acc %).
(Acc %). Columns indicate whether HR (High- All methods share the same constrained decoding
Resolution), tmRAG (type-matched retrieval ex- and prompt template.

emplars), and QD (Question Decomposition) are

enabled. Model Params (B) Acc (%)
LLaVA 1.5-7B (zero-shot) 7 21.58
- LLaVA 1.5-13B (teacher, zero-shot) 13 36.74
Variant HR tmRAG QD Acc (%) Qwen2 VL-2B (zero-shot) 2 28.66
Qwen2 VL-2B (zero-shot) N N N 28.66 Teacher: LLaVA-1.5-7B — Student: Qwen2 VL-2B
Qwen2 VL-2B distilled by LLaVA-13B (ODD) N N N 42.89 Qwen2 VL-2B distilled by LLaVA-7B (Token-KD) 2 3391
* mRAG N N N a3l Q ¥ b;”‘;ﬁL 2B distilled by LLaVA-7B  (Ours, ODD) ; zggi
5. wen! - istilled by LLaVA- urs, 38.53
v YNy s tu s
+ HR + tmRAG Y Y N 48.25 Teacher: Qwen2.5-VL-7B — Student: Qwen2 VL-2B
+HR + QD Y N Y 4892 Qwen2 VL-2B distilled by Qwen2.5-VL-7B  (Token-KD) 2 36.21
+HR + tmRAG + QD Y Y Y 50.50 +bTTA 2 44.42
Qwen2 VL-2B distilled by Qwen2.5-VL-7B (Ours, ODD) 2 40.52
+bTTA 2 47.16
Teacher: LLaVA-1.5-13B — Student: Qwen2 VL-2B
Qwen?2 VL-2B distilled by LLaVA-13B  (Token-KD) 2 37.58
+bTTA 2 47.02
Qwen?2 VL-2B distilled by LLaVA-13B (Ours, ODD) 2 42.89
+bTTA 2 50.50

trailing ODD by 4.62/4.31/5.31 points, respectively. With bTTA, token-level KD improves to
39.92/44.42/47.02 but still lags behind ODD+bTTA at 45.43%/47.16%/50.50%. The pattern is con-
sistent across other teachers: distillation from LLaVA-1.5-7B yields 38.53% and rises to 45.43%
with the policy, and distillation from Qwen2.5-VL-7B yields 40.52% and rises to 47.16%. These re-
sults indicate that aligning decisions at the option level closes most of the capacity gap, and instance-
adaptive compute converts residual uncertainty into additional accuracy without changing the model
architecture or the evaluation protocol. For completeness, NLL, Brier, ECE, and AURC, together
with the full ablation breakdown, are reported in Appendix Table|[S]

4.3  ABLATIONS

Table [1| examines the contribution of each inference-time component to the student distilled from
LLaVA-1.5-13B. High-resolution re-evaluation primarily fixes resolution-limited errors and moves
accuracy from 42.89% to 46.64%. Type-matched retrieval adds domain-appropriate exemplars and
moves accuracy to 44.31% when used alone, and to 48.25% when combined with high resolu-
tion. QD reduces reasoning variance on difficult cases and moves accuracy to 45.47% alone, and to
48.92% together with high resolution. Enabling all three components achieves 50.50%. The gains
are monotone and nearly additive, supporting the design of a router that triggers only the actions
whose predicted gain exceeds their cost.

4.4 BUDGETED ROUTING: ACCURACY-BUDGET BEHAVIOR AND BASELINES

We study how the budgeted router allocates test-time compute and how this impacts accuracy un-
der an explicit average budget B for ODD+bTTA. Each optional augmentation is treated as a bi-
nary action with fixed per-trigger costs (Chr, Cimrac, Cop) = (0.50,0.30,0.35), on top of a base
constrained pass costing 1.00. Sweeping a calibrated threshold yields a discrete accuracy-budget
frontier (Appx. Fig.[I0). Accuracy improves monotonically from the single-pass ODD baseline at
B=1.00 to our full-budget setting around B~2.00, where gains saturate.

Trigger compositions increase smoothly with B (Appx. Table [)). Feature-importance diagnostics
on the learned gain model show that HR is primarily gated by entropy H, tmRAG by same-type
retrieval affinity p, and QD by agreement « across short decompositions, consistent with the router

design in Sec.[3.2.2]

Under matched budgets, we compare to two single-signal dynamic-compute baselines
(HR-Threshold and one-branch Early-Exit). Our router yields +~1.4-2.2 points accuracy and lower
ECE/AURC by deciding both whether to escalate and which augmentation to trigger per instance
(Appx. Table[5} more details are provided in Appx.[H [G).
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4.5 SYSTEM FOOTPRINT AND DEPLOYABILITY

Appx. Table[I0areports GPU memory with batch size one. The distilled 2B student occupies 3,035
MB, which reduces memory by 88.7% relative to the 13B teacher at 26,878 MB and by 41.0%
relative to the 2B zero-shot baseline at 5,144 MB. Activating the full set of augmentations raises
the footprint to 3,817 MB, adding only 782 MB and remaining about seven times lighter than the
13B teacher. In conjunction with the accuracy improvements in Table [2] this footprint makes the
pipeline practical for edge deployment, since the model fits within commodity GPU memory while
delivering higher accuracy than a much larger teacher.

For the LLaVA-1.5-13B to Qwen2-VL-2B setting, the end-to-end mean latency per question is
8.97s. Of this, the bTTA pipeline (routing + selectively triggered HR/tmRAG/QD) contributes only
1.52 s on average, leaving 7.45 s for the first constrained pass (ODD student). Thus, bTTA accounts
for 16.9% of total latency, while the pass-1 accounts for 83.1%. The effective throughput is 6.69
items/min (0.11 QPS); see Table [T0B]

4.6 HALLUCINATION ANALYSIS

We assess hallucination under constrained decoding using six proxies (IOR, NOA, Flip,
HO_mean_wrong, OCW @0.7, and augmentation-conditioned contradiction rates RCR/QDC). The
constrained interface removes string-form hallucinations outright (IOR= 0), while decision-level
misuse of the “None of the above” sentinel is substantially reduced from 1.08% (zero-shot) to
0.37% (ODD pass-1) and 0.22% (ODD+bTTA). The router actively corrects uncertain cases,
26.71% of labels flip relative to pass-1, yielding fewer over-confident mistakes (OCW @0.7
4.18%—0.27%—0.19%) despite a slight rise in average confidence on remaining errors
(HO_mean_wrong 0.2678—0.2946). Augmentation-conditioned diagnostics localize residual risks:
retrieved exemplars can conflict with image-consistent answers (RCR 21.73%), while gated QD is
largely but not perfectly self-consistent (QDC 1.74%). BOLT eliminates string-level hallucinations
by design, curbs NOA misuse, and suppresses the high-confidence error tail; remaining errors are
primarily driven by retrieval quality and decomposition policy. More details are in Appendix

5 LIMITATIONS AND FUTURE WORK

Our evaluation focuses on a single panel-style robotic VQA benchmark (Robo2VLM-1), reflect-
ing the broader limitation that existing robotic multi-choice VQA datasets are scarce. The tmRAG
component induces retrieval-driven hallucinations (RCR 21.73%), which is a common limitation of
RAG pipelines when exemplars imperfectly match the query. In the future, we will (i) expand to
multiple public datasets and report per-type risk-coverage and calibration, (ii) replace or comple-
ment tmRAG with conflict-aware exemplar filtering, visual-entailment style option verification, and
retrieval-free self-consistency voting, and (iii) optimize the router and student under compute-aware
objectives (latency/energy) to improve calibration and robustness under distribution shift.

6 CONCLUSION

This work reframes constrained multimodal question answering for robotics as the joint problem of
option-level decision alignment and on-demand inference, and demonstrates that aligning the stu-
dent to the teacher in the option space used at evaluation, then spending computation only when
inexpensive signals predict benefit, yields a compact system that is both accurate and reliable under
tight resource budgets. BOLT transfers the teacher decision surface through Option-level Decision
Distillation and concentrates compute via a calibrated, budgeted router, leading to substantial gains
in accuracy, calibration, and interpretability without changing the interface or inflating memory, with
a 2B student exceeding a 13B teacher on Robo2VLM-1 and showing stronger risk-coverage and
accuracy-budget trade-offs along with lower invalid-option and image-contradiction errors. Future
extensions include generalizing option-level alignment to broader structured outputs and multi-step
control, strengthening retrieval filtering and consistency modeling while optimizing the router and
the student jointly, and making energy and latency explicit objectives in end-to-end training fol-
lowed by comprehensive evaluation across diverse robotic tasks and public benchmarks to promote
reproducible assessment and responsible deployment.
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A ADDITIONAL DERIVATIONS AND DETAILS

A.1 MASKED LIKELIHOOD ON ANSWER SEGMENT

Letz%) = (21,...,21) and mask m; = I[t € A(k)]. The masked NLL is

L
LEL0) = =Y milogps(z | 2r) = — Y logpa(zr | zr). ©)
t=1 te. Alk)
By definition sy (k) = fﬁl(\IIZ)L(Q). In practice, we set labels outside the answer segment to —100 to

exclude them from loss.

A.2 GRADIENTS FOR ODD AND TOKEN-LEVEL BACKPROP

Letsg = [sg(1),...,59(K)]T, ps = softmax(sg). For fixed pr, we have
DKL | . OCE(, N
W =ps(i) — pr(h), w = ps(j) — Ilj=yl. (10)
Thus or
655(]}]; = XL (ps(j) — pr(4)) + Ace(ps(4) — Ili=y]). (i

Each s¢(j) is a sum of answer-token log-probs. Let £; be pre-softmax logits and y; be the gold token
at time ¢. For t € AW,

9s9(J) 9s9(J)
8£t a‘et

Hence, ODD produces an option-weighted learning signal focused on answer tokens, unlike
token-level KD, which distributes weight over prompt tokens as well.

=0fort ¢ AV, (12)

= e,, — softmax(£;),

A.3 TEMPERATURE, LABEL SMOOTHING, AND LENGTH CORRECTION

Teacher temperature T4 controls the softness of pr; we select 7ig € [1.5, 3]. We optionally use label
smoothing ¢ in the CE term: CE((1—¢)d,+¢/K || ps), stabilizing optimization when pr is sharp.
Length correction in equation [5| mitigates rare cases where L;, differs across options.

A.4 ROUTER LEARNING AS CONTEXTUAL BANDITS

We cast routing as a contextual bandit with context f and actions a € A producing binary reward
AAcc, and cost C,. We collect an offline log on a held-out split by executing pass-1, then all aug-
mentations (for supervision only), recording (f, a, AAcc,, Cy). We train a probabilistic classifier
9w (f,a) = Pr[AAcc, = 1|f] with class-imbalance weights and temperature calibration. At test
time, we apply the near-threshold rule in equation [/ When logs are collected under a different pol-
icy, an unbiased estimator of the expected gain can be formed by inverse propensity scores (IPS):
IAE[AAcca If] = %, where 7 is the logging propensity; we find that direct supervised g, is
sufficiently stable in our setting.

A.5 LAGRANGIAN VIEW, THRESHOLD POLICY, AND SEQUENTIAL AUGMENTATIONS

The constrained problem, i.e., @, has Lagrangian L(o, 7) = >, (IE[AAcca|f} — TC’a) + 7B.
For fixed 7, the maximizer sets o, = 1 iff the net value is nonnegative, giving the near-threshold rule
in (7). When applying multiple augmentations sequentially, if the expected improvement exhibits
diminishing returns (submodularity) over the action set, the greedy selection that iteratively picks
the largest positive net value achieves a (1 — 1/e)-approximation to the optimal set (Nemhauser
bound). Empirically, we can cap the number of augmentation rounds (e.g., one or two) to keep
latency predictable.

12
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A.6 AGREEMENT METRICS AND ALTERNATIVES

Beyond x via average pairwise Jensen—Shannon similarity, we consider: (i) majority-vote rate
among {arg max p(sk)}; (ii) Kendall’s W on option rankings; (iii) variance of {pgg)} along the top
eigenvector. We use « for differentiability in ablations and majority-vote for reporting.

A.7 SELECTIVE RISK, RISK-COVERAGE, AND CALIBRATION

Given a confidence score ¢ (e.g., pmax) and a threshold 7., the selective classifier accepts items with
¢ > 7. Coverage is P(c > 7.) and selective risk is the error rate on accepted items. The area under
the risk-coverage curve (AURC) summarizes the trade-off. We estimate ECE on the accepted set
using fixed bins and report Brier score on calibrated p?l; post-hoc 7, is fitted by minimizing NLL
on a validation split not used for routing.

A.8 COMPLEXITY AND MEMORY

Training. ODD needs K forward passes per sample; with batching across options the per-step
complexity is O(K - Ly, - d) where Ly, is answer length (small) and d the model width. Only
LoRA parameters and (optionally) the projector are trainable; memory scales as O(r-params) where
r is LoRA rank. Inference. Pass-1 dominates little; Hi-Res adds a factor on the vision backbone;
retrieval cost is O(K, - dg) per query (pre-encoded memory); QD repeats decoding K4 times with
short outputs. We cap (K., K ) (e.g., 4 and 3).

A.9 IMPLEMENTATION NOTES

(i) Template alignment. Use the same template for teacher and student; verify L by tokenizing
prompt-only vs. prompt+answer. (ii) Quantization and merge. If merging LoRA into a full model
for deployment, reload the base in fp16/bf16 (not 4-bit) before merge. (iii) Calibration reuse. Fit
Teal ONce on validation and reuse across ablations to avoid information leakage. (iv) Numerical
stability. When computing equation subtract maxy, st (k) before softmax.

B ALGORITHMS (PSEUDO-CODE)

KD cache construction (teacher).

Require: dataset Dy, teacher T', temperature 7yq
1: for each (z,q, 0, y) € Dyin do
for each o, € O do
Build z(*); compute s7(k) by equation|l]
end for
pr(k) oc exp(st(k)/Tia)
Write JSONL: {image, question, options, gt_idx, teacher_probs}
end for

Student training (ODD + LoRA/QLoRA).

Require: KD cache, student Sy, k1, A\ce
1: while not converged do
2:  Sample a minibatch B
3: foreach (z,q,0,y,pr)in B do
4 for each o, € O do
5 compute sg(k) by equation [I]
6 end for
7: form pg by equation 3} compute Lopp by equation 4]
8
9

10:

AR AN S ol

end for
Update LoRA (and projector) parameters via AdamW
end while

Inference with budgeted routing (bTTA).
Require: instance (z, ¢, O), student Sy, router g,,, costs C,, budget B, threshold 7

13
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Figure 2: Letters

Q: The robot's task is to put the blue disc in the white cup
and the orange discs in the clear cup. Which
configuration shows the goal state that the robot should
achieve?

C: ['Configuration A, 'Configuration B!, 'Configuration C|,
'Configuration D', 'Configuration E']

A: Configuration A

Figure 3: Colours

Q: In the image from ext2, which colored point is
FARTHEST from the camera?

C:['None of the above', 'Purple’, 'Red’, 'Blue’, 'Green']

A: None of the above

1: Pass-1: get pg and features £ = [ppax, A, H, p, &, . . .]

2: R4 0; Bem <+ B

3: for at most two rounds do

4:  Foreach a € A with C; < Biem, compute score u, = g, (f,a)W,/C,
5. ifall u, < 7 then

6: break

7. endif

8:  a* < argmaxug; apply a*; R < R U {a*}; Brem < Brem — Cax

9:  Update pg, f (and memory if needed)
10: end for
11: Return final prediction by majority over R U {pass-1} or max calibrated py,ax

C DATASET ANALYSIS

Overview. Robo2VLM-1 is a panel-style robotic perception QA corpus with constrained option
sets. The original release contains approximately 678k training items and 6.68k test items.

Our splits. We form three non-overlapping splits by unique image identifier to avoid leakage
across partitions: a t rain—-kd split used exclusively to build the teacher option-distribution cache
and to train the ODD student, a val split for router calibration and temperature scaling, and the
official test split for final reporting. Concretely, we subsample 6.78k items from the original 678k
training pool as val, and use the remainder for t rain-kd.

Category. Robo2VLM-1 contains five constrained families: Fig. [2] Letters (choose A-E that
matches the goal panel), Fig. [3] Colours (select the coloured point by a distance rule), Fig. 4] Ar-
rows (choose the colored arrow that satisfies the described relation), Fig. [3| Instructions (pick the
option consistent with a short instruction and the scene), and Fig. [6] Yes/No (queries about robot or
scene state).

D CASE STUDY

We illustrate how ODD + bTTA behaves on three representative scenarios under constrained de-
coding. For each case, we show the input image, the router’s chosen augmentation(s), and a short
rationale.

14
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Figure 4: Arrows

Q: The robot task is to take the blue cup from the left and
move it to the right across the book. Which colored arrow
correctly shows the direction the robot will move next?

C: ['Purple’, 'None of the above!, 'Yellow!, 'Blue’, 'Green']

A: None of the above

Figure 5: Instructions

Q: The robot is tasked to close bottom drawer. The robot

is interacting with the drawer. Which phase of the grasp
action is shown in the image?

C: ['Firmly grasping the drawer', 'Releasing the drawer by
opening gripper', '‘Approaching the drawer with open gripper’,
'Closing gripper to grasp the drawer, 'Moving away with open
gripper after releasing the drawer']

A: Closing gripper to grasp the drawer

Case A — Letters. The first pass is indecisive because several candidate panels share almost iden-
tical geometry and object placements. The router predicts that both higher spatial detail and struc-
tured checks could break ties, and triggers Hi-Res together with tmRAG (same-type exemplars) and
QD. tmRAG nudges the model toward discriminative cues (e.g., specific contour junctions and rel-
ative offsets), while QD prunes inconsistent options via a few short checks. The subsequent Hi-Res
re-evaluation clarifies fine edges and small gaps, aligning all signals on a single panel and fixing the
initial mistake.

Case B — Arrows. At the default resolution, multiple elongated structures resemble arrow shafts
or heads. The router detects that uncertainty mainly stems from local visual detail rather than miss-
ing priors, so it triggers only Hi-Res. Higher short-edge resolution makes the arrowhead orientation
and shaft continuity unambiguous; the decision flips to the correct option without requiring retrieval
or decomposition.

Case C — Colours. The first pass confuses nearby colored markers due to tiny blobs, slanted
edges, and mild occlusion. The router fires Hi-Res to sharpen boundaries and tmRAG to anchor
color naming with in-domain exemplars. Although edges become cleaner, the retrieved exemplars do
not fully match the viewpoint and lighting, and residual aliasing between adjacent markers remains.
The final choice stays incorrect, exposing a failure mode where HR+tmRAG is insufficient without
an additional structural check (e.g., verifying spatial constraints) or stronger color normalization.

E RETRIEVE-AUGMENTED INFERENCE ANALYSIS

We report the fraction of evaluation items for which the tmRAG was actually executed (“hit
rate”’). The per-type usage on Robo2VLM-1 is: colors 18.57%, arrows 22.18%, letters 15.28%,
yes/no 19.51%, and instructions 4.48%, the overall tmRAG usage equals their sum, 80.02% of all
items (Table[3).

tmRAG yields the least utility on instruction-type questions, as evidenced by the router rarely trig-
gering it (only 4.48%). This aligns with the nature of such items: the decision hinges more on
following a short procedural rule or template than on recalling domain exemplars. Two factors sup-
press tmRAG’s gain here: (i) instruction phrasings vary widely across panels, lowering retrieval
affinity and increasing the risk that injected exemplars are off-pattern; (ii) when exemplars do not
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Figure 6: Yes/No
Q: Is the robot's gripper open?
C: ['Partially open’, 'Yes', 'No!, 'Cannot be determined']

A: Yes

Q: The robot's task is to remove the black pen from the
white mug. Which configuration shows the goal state that
the robot should achieve?

C: ['Configuration D', 'Configuration B}, 'Configuration E,
'None of the above', 'Configuration C']

GT: None of the above

ODD result: Configuration D - X Wrong
bTTA choice route: RAG+QD+Hi-Res
Full result: None of the above - v Correct

Question Decomposition:

1) Are the target objects correctly identified (a black pen and a white mug)? Ans: Yes
2) Is the black pen completely outside the mug (nothing crossing the rim plane)? Ans: No
3) Is the mug empty and upright, with the pen no longer contacting the mug’s inner cavity? Ans: No

Figure 7: Letters. Select the panel (A—E) whose layout best matches the query view; several candi-
dates appear near-duplicate at default resolution.

structurally match the required steps, they can introduce irrelevant cues and dilute the option dis-
tribution. In contrast, arrows (22.18%) and, to a lesser extent, yes/no and colors benefit more from
tmRAG because type-consistent exemplars provide stable visual-verbal anchors (e.g., orientation
disambiguation, color naming) that the student can reliably reuse under constrained decoding. Prac-
tically, we gate tmRAG for instruction-type items more conservatively and prefer QD or HR when
the router predicts a higher net gain.

F ROUTING DIAGNOSTICS AND BUDGET SENSITIVITY

We analyze how the router allocates test-time compute under an explicit average budget B for
ODD + bTTA and how this translates into accuracy. Actions are binary with fixed per-trigger costs
(Cur, Cimrac; Cop) = (0.50,0.30,0.35), and the base constrained pass costs 1.00. Sweeping the
calibrated threshold 7 changes the trigger composition, yielding a discrete accuracy—budget frontier.
The average budget is

B = 1.0 + 0.50 Trig(HR) + 0.30 Trig(tmRAG) + 0.35 Trig(QD),

where Trig(a) is the fraction of items for which action a fires. We report six operating points
B € {1.00, 1.17, 1.29, 1.53, 1.95, 2.00}, chosen to align with the empirical quantiles of HR usage
(approximately 0/25/40/60/90%) and a round budget cap at 2.00.

Budget-accuracy frontier. Figure[T0|plots accuracy versus B. bTTA concentrates compute on in-
stances predicted to benefit, raising accuracy from 42.9% at B=1.00 (ODD only) to 46.1/47.3/49.3%
at B=1.17/1.29/1.53, and further to 50.4% at B=1.95 and 50.5% at B=2.00. Gains saturate as
easy wins are exhausted.
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Q: The robot task is to remove the black lid from the grey
pot on the stove and place it inside the sink. Which
colored arrow correctly shows the direction the robot will
move next?

C: ['Yellow!, 'Purple’, 'Red;, 'Blue’, 'Green']

GT: Red

ODD result:Blue - X Wrong
bTTA choice route: Only Hi-Res
Full result: Red - v Correct

Figure 8: Arrows. Decide which colored arrow satisfies the described direction/relation in a clut-
tered kitchen scene.

Q: In the image from ext2, which colored point is
FARTHEST from the camera?

C:['Purple, 'Green), 'Yellow), 'Blue’, 'Red']

GT: Green

ODD result:Purple - X Wrong
bTTA choice route: RAG+Hi-Res
Full result: Yellow - X Wrong

Figure 9: Colours. Identify the correct colored target in a tilted view where small markers and
partial occlusions make boundaries ambiguous.

Trigger compositions. Table[d]shows the trigger rates that realize each budget; all increase mono-
tonically. tmRAG fires when same-type affinity is high, HR when uncertainty is high, and QD when
short decompositions agree, matching Sec.[3.2.2]

Feature importance. A calibrated logistic gain model confirms that HR is most sensitive to en-
tropy H, tmRAG to same-type affinity p, and QD to agreement x, consistent with the design (details
in Appendix).

G ROUTING BASELINES: CONFIDENCE THRESHOLD AND EARLY EXIT

‘We next compare our budgeted router against two classic dynamic-compute policies under the same
average budget B (base pass costs 1.00; actions: HR=0.50). The HR-Threshold baseline fires Hi-
Res if pmax < 7p; the Early-Exit (one-branch) baseline accepts the pass-1 decision if the margin
A exceeds T and otherwise runs Hi-Res. Table 5| reports accuracy and calibration at three budgets
aligned with our sweep in §F] Our router consistently outperforms single-signal gating by +1.4-2.2
Acc at matched B, while also lowering ECE and AURC. The gains stem from exploiting multiple
inexpensive signals (entropy, margin), retrieval affinity, and agreement across short decompositions
to decide when and what to spend.

At equal average budgets, single-trigger policies that only escalate to Hi-Res leave accuracy on
the table and remain less calibrated. Our multi-signal router provides consistent improvements by
tailoring both the depth (whether to escalate) and the type (HR vs. retrieval vs. QD) of extra compute
per instance.
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Table 3: tmRAG routing frequency by constrained type on Robo2VLM-1 (share of all evaluated
items).

Type Routed (%)
Colors 18.57
Arrows 22.18
Letters 15.28
Yes/No 19.51
Instructions 448

Total (any tmRAG) 80.02

—8— ODD + bTTA
50 4

49 4

48 1

47 4

Accuracy (%)

46 1

45 -

43 -

T T T T T T
1.0 1.2 1.4 1.6 18 2.0
Average normalized budget B

Figure 10: Accuracy-budget frontier on Robo2VLM-1 with ODD + bTTA. Points are B €
{1.00,1.17,1.29,1.53,1.95,2.00}.

H HALLUCINATION ANALYSIS

We quantify different facets of hallucination under constrained decoding using six proxies: (i)
Invalid-Option Rate (IOR): fraction of outputs not in the allowed option set; (ii) None-of-the-Above
misuse (NOA): fraction of cases where “None of the above” is predicted but contradicted by the
image/goal; (iii) Flip: fraction of examples whose final label differs from the first-pass label (a
measure of how often the router forces a change); (iv) Mean pn.x on wrong (HO_mean_wrong:
average confidence on incorrect predictions; (v) Over-Confident Wrong @ 0.7 (OCW @0.7): share
of wrong predictions with pyax > 0.7; and (vi) contradiction rates tied to optional augmentations:
RCR (retrieval-contradiction rate, share of routed-to-RAG cases where retrieved exemplars point to
a label inconsistent with the image-consistent answer) and QDC (QD-contradiction, share of QD
runs whose intermediate checks conflict with the final option).

Table [6] shows that the constrained interface eliminates string-form hallucinations (IOR = 0 across
all settings), while decision-level misuse of the “None of the above” sentinel is substantially re-
duced but not fully removed, dropping from 1.08% (zero-shot) to 0.37% (ODD pass-1) and 0.22%
(ODD+bTTA). The router then actively revises uncertain cases: the final stage flips 26.71 % of labels
relative to pass-1, converting many first-pass errors into correct answers, at the cost of a slight in-
crease in the average confidence on the remaining mistakes (HO_MEAN_WRONG 0.2678—0.2946);
crucially, the tail of over-confident errors shrinks markedly (OCW @0.7 4.18 % —0.27 % —0.19%).
Augmentation-conditioned diagnostics localize residual risks: retrieval can inject conflicting cues
(RCR = 21.73%), whereas QD is largely but not perfectly self-consistent once gated (QDC =
1.74%).
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Table 4: Threshold sweep for ODD + bTTA: trigger rates that realize each budget B (base cost 1.00;
action costs 0.50/0.30/0.35).

B HR trig. tmRAG trig. QD trig. Acc (%)

1.00 0% 0% 0% 429
1.17 25% 10% 4.3% 46.1
1.29 40% 20% 8.6% 47.3
1.53 60% 40% 31.4% 49.3
1.95 90% 80% 74.3% 50.4
2.00 90% 80% 88.6% 50.5

Table 5: Routing/dynamic-compute baselines on Robo2VLM-1 (teacher LLaVA-13B — student
ODD; constrained decoding). Budgets B € {1.29,1.53,1.95} match the sweep in §E}

Method @ Budget B HR trig. tmRAG trig. QD trig. Acc(%)T ECE| AURC]

HR-Threshold @ 1.29 40% 0% 0% 45.7 0.233  0.3209
Early-Exit @ 1.29 35% 0% 0% 45.1 0.238  0.3216
bTTA (ours) @ 1.29 40% 20% 8.6% 47.3 0.219  0.3176
HR-Threshold @ 1.53 60% 0% 0% 47.6 0.226  0.3198
Early-Exit @ 1.53 55% 0% 0% 46.9 0.229  0.3204
bTTA (ours) @ 1.53 60% 40% 31.4% 49.3 0.197  0.3160
HR-Threshold @ 1.95 90% 0% 0% 49.1 0.221 0.3189
Early-Exit @ 1.95 85% 0% 0% 48.7 0.223  0.3193
bTTA (ours) @ 1.95 90% 80% 74.3% 50.4 0.172  0.3115

I POWER AND ENERGY.

We log board power at 50 ms granularity on the same single-GPU host and integrate over action
windows. Using the per-trigger durations and power (HR: 1.05 s/175 W, tmRAG: 0.40s/110 W, QD:
0.65s/160 W) and a base constrained pass of 7.45s/165W (1,2291]), Table [/| converts the unified
trigger rates from Appendix. [ into per-query energy. At the mid-budget operating point B=1.53
(HR/tmRAG/QD trigger rates 60%/40%/31.4%), the added energy over the base is 160.7J, for a
total of 1,389.7J and a +6.4 Acc gain (42.9%—49.3%), i.e., ~25.1 J per additional accuracy point.
At the budget cap B=2.00 (90%/80%/88.6%), the total reaches 1,521.9] for 50.5% accuracy, i.e.,
~ 38.6 J per additional point versus the ODD baseline. Energy scales nearly linearly with B and
is dominated by the base pass; among actions, HR contributes most, tmRAG is lightest, and QD
lies between. Absolute wattage can vary across devices; relative trends are robust under the same
pipeline.

J ADDITIONAL TABLES

K DECLARATION OF LLLM USAGE

During the preparation of this manuscript, large language models were used only to improve the
clarity of writing.
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Table 6: Hallucination proxies on Robo2VLM-1 under constrained decoding for all settings. Zero-
shot uses the undistilled Qwen2-VL-2B (single constrained pass). Pass-1 uses the ODD student
(single pass). Final uses ODD + bTTA (HR + tmRAG + QD when routed). Lower is better for all
metrics except Flip.

Metric Zero-shot (no ODD) Pass-1 (ODD) Final (ODD + bTTA)
Invalid-Option Rate (IOR) 0.00% 0.00% 0.00%
None-of-the-Above misuse (NOA) | 1.08% 0.37% 0.22%
Flip (label changed) 0.00% 0.00% 26.71%
Mean pyax on wrong (HO_mean_wrong) | 0.3312 0.2678 0.2946
OCW @0.7 (over-confident wrong) | 4.18% 0.27% 0.19%
RCR (retrieval contradiction) | - - 21.73%
QDC (QD contradiction) | - - 1.74%

Table 7: Power/energy on Robo2VLM-1 (batch=1, single GPU). “Energy/Trigger” =
PowerxDuration. Trigger rates at B=1.53 are 60%/40%/31.4% for HR/tmRAG/QD; at B=2.00
are 90%/80%/88.6%. Totals are base energy (1,229 J) plus per-action contributions.

Action / Stage Avg Power (W)  Dur./Trigger (s) Energy/Trigger (J) Contrib@1.53 (J) Contrib@2.00 (J)
Pass-1 (ODD) 165 7.45 1,229 — (base)

HR 175 1.05 184 1104 165.6
tmRAG 110 0.40 44 17.6 35.2

QD 160 0.65 104 32.7 92.1

Total energy / query (J) — 1,389.7 1,521.9

Table 8: Calibration and selective-computation metrics on Robo2VLM-1. We report negative log-
likelihood (NLL), Brier score, Expected Calibration Error (ECE), and area under the risk—coverage
curve (AURC). All methods share the same constrained decoding and prompt template; temperature
calibration is fitted on validation only.

Variant NLL | Brier| ECE]| AURC]|

Teacher: LLaVA-1.5-13B

Qwen2 VL-2B distilled by LLaVA-13B 1.4717 0.6843 0.2440 0.3198
+ tmRAG 1.4578 0.6791 0.2295 0.3181
+ QD 1.4464 0.6748 0.2175 0.3166
+ tmRAG + QD 1.4367 0.6715 0.2080 0.3157
+ HR 1.4354  0.6709 0.2063 0.3155
+ HR + tmRAG 1.4196 0.6650 0.1899 0.3135
+ HR + QD 1.4136 0.6630 0.1842 0.3131
+ HR + tmRAG + QD 1.3984 0.6574 0.1685 0.3113

Teacher: LLaVA-1.5-7B

Qwen2 VL-2B distilled by LLaVA-7B 1.5200 0.7005 0.2700 0.3245
+ tmRAG 1.5113  0.6972 0.2608 0.3234
+ QD 1.5033 0.6942 0.2524 0.3223
+ tmRAG + QD 1.4942  0.6910 0.2434 0.3215
+ HR 1.4866 0.6882 0.2354 0.3205
+ HR + tmRAG 1.4803 0.6857 0.2287 0.3196
+HR + QD 1.4752  0.6841 0.2239 0.3193
+ HR + tmRAG + QD 1.4586 0.6779 0.2066 0.3173

Teacher: Qwen2.5-VL-7B
Qwen2 VL-2B distilled by Qwen2.5-VL-7B  1.4950 0.6920 0.2560  0.3218

+ tmRAG 1.4827 0.6874 0.2431  0.3202
+QD 1.4750 0.6845 0.2350 0.3192
+ tmRAG + QD 1.4639 0.6806 0.2240  0.3182
+HR 14631 0.6798 0.2230 0.3174
+ HR + tmRAG 1.4481 0.6746 0.2073  0.3161
+HR + QD 1.4431 0.6729 0.2025  0.3158
+ HR + tmRAG + QD 1.4321 0.6688 0.1910 0.3144
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Table 9: Comparison on Robo2VLM-1 (Acc %). All methods share the same constrained decoding

and prompt template.

Model Params (B) Acc (%)
LLaVA 1.5-7B (zero-shot) 7 21.58
LLaVA 1.5-13B (teacher, zero-shot) 13 36.74
Qwen2 VL-2B (zero-shot) 2 28.66
Qwen2 VL-2B distilled by LLaVA-7B 2 38.53
+ tmRAG 2 39.49
+QD 2 40.36
+ tmRAG + QD 2 41.44
+ HR 2 42.27
+ HR + tmRAG 2 42.96
+HR + QD 2 43.58
+ HR + tmRAG + QD 2 45.43
Qwen2 VL-2B distilled by Qwen2.5-VL-7B 2 40.52
+ tmRAG 2 41.80
+QD 2 42.59
+ tmRAG + QD 2 43.81
+ HR 2 43.18
+ HR + tmRAG 2 45.44
+ HR + QD 2 46.02
+ HR + tmRAG + QD 2 47.16
Qwen2 VL-2B distilled by LLaVA-13B 2 42.89
+ tmRAG 2 44.31
+ QD 2 45.47
+ tmRAG + QD 2 46.52
+ HR 2 46.64
+ HR + tmRAG 2 48.25
+ HR + QD 2 48.92
+ HR + tmRAG + QD 2 50.50

(a) GPU memory usage (MB). Distillation cuts mem-
ory by 88.7% vs the 13B teacher; enabling all augmen-
tations adds only 782 MB.

(b) Latency on Robo2VLM-1 for the LLaVA-13B —
Qwen2-VL-2B setting (batch=1, single GPU). bTTA
includes HR/tmRAG/QD only when routed.

Variant GPU Memory (MB) Notes
26,878

5,144

3,035
3,817

LLaVA 1.5-13B (teacher, zero-shot)
Qwen2 VL-2B (zero-shot)

Qwen2 VL-2B distilled (ODD)
+ HR + tmRAG + QD (ours, full)

reference large model
compact baseline
1.88.7% vs 13B; | 41.0% vs 2B
1 85.8% vs 13B; | 25.8% vs 2B

Pass-1 only bTTA overhead End-to-end

Mean per-question latency (s) 7.45 1.52 8.97
Share of total 83.1% 16.9% 100%
Throughput (items/min) - - 6.69

Table 10: (a) Memory and (b) latency
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