

000 001 BOLT: DECISION-ALIGNED DISTILLATION AND 002 BUDGET-AWARE ROUTING FOR CONSTRAINED MUL- 003 TIMODAL QA ON ROBOTS 004 005

006 **Anonymous authors**
007 Paper under double-blind review
008
009
010

011 ABSTRACT 012

013 Robotic systems can require multimodal reasoning under stringent constraints of
014 latency, memory, and energy. Standard instruction tuning and token-level distil-
015 lation fail to deliver decision quality, reliability, and interpretability under these
016 constraints. We introduce BOLT, a decision-aligned distillation and budget-aware
017 routing framework that treats multi-choice prediction as a decision surface to be
018 aligned during training and selectively refined at inference. During training, BOLT
019 introduces Option-level Decision Distillation to align student models directly on
020 the decision surface of multi-choice answers, thereby eliminating prompt artifacts,
021 improving calibration, and optimizing the exact output space. At inference, BOLT
022 activates Budget-aware Test-time Augmentation, a calibrated router that uses low-
023 cost signals such as confidence, margin, entropy, retrieval affinity, and agreement
024 across short question decompositions to trigger high-resolution reevaluation, type-
025 matched retrieval exemplars, or question decomposition only when their expected
026 benefit outweighs cost. On Robo2VLM-1, a 2B BOLT student distilled from
027 LLaVA-1.5-13B improves accuracy from 28.66 in zero-shot to 42.89 with deci-
028 sion distillation and to 50.50 with budgeted routing, surpassing the 13B teacher at
029 36.74. It lowers expected calibration error, strengthens the risk-coverage frontier,
030 and slashes GPU memory from 26,878 MB for the teacher to 3,035 MB for the
031 distilled student, and 3,817 MB with all augmentations enabled. By constrain-
032 ing outputs to valid options while exposing retrieved evidence and decompositon
033 traces, BOLT reduces hallucination and provides transparent decision-making, en-
034 abling large-model quality on edge robots.
035

036 1 INTRODUCTION 037

038 Multimodal foundation models have progressed rapidly from contrastive vision-language pretrain-
039 ing to instruction-following vision-language models capable of grounded reasoning and multi-step
040 perception (Radford et al., 2021; Jia et al., 2021). Systems, such as LLaVA (Liu et al., 2023) and
041 Qwen2-VL (Wang et al., 2024), demonstrate strong zero-/few-shot performance across diverse vi-
042 sual question answering (VQA) tasks. There is growing interest in pushing these capabilities onto
043 robots and embedded platforms. In parallel, many robotics benchmarks adopt constrained-output
044 formulations (e.g., colors, arrow directions, options A–E, yes/no), which enable deterministic inter-
045 faces and safety checks and are well suited to on-device control and real-time loops (Brohan et al.,
046 2022; Chen et al., 2025; Gordon et al., 2018; Teney et al., 2018).

047 A practical challenge arises: achieving the decision quality of large vision-language models (VLMs)
048 for constrained, multi-choice decision making while respecting strict latency, memory, and energy
049 budgets on edge hardware. Prior work takes several approaches to this goal. Token-level knowledge
050 distillation (KD) inherited from text-only language models (LMs) seeks to transfer teacher behavior
051 at the sequence level (Hinton et al., 2015; Kim & Rush, 2016). Compact VLMs are directly fine-
052 tuned on instruction-following data to better conform to task prompts. Always-on test-time enhance-
053 ments such as higher-resolution re-evaluation and retrieval-augmented prompting with same-domain
exemplars aim to boost accuracy (Lewis et al., 2020; Rubin et al., 2021).

054 Selective prediction with budgeted or dynamic inference, covering confidence-based abstention
 055 (Geifman & El-Yaniv, 2017) as well as early-exit and adaptive-compute methods (Teerapittayanon
 056 et al., 2016; Figurnov et al., 2017), trades coverage for risk under resource constraints. Parameter-
 057 efficient adapters like LoRA and quantization-aware QLoRA further reduce adaptation cost and
 058 memory (Hu et al., 2022; Dettmers et al., 2023). Beyond raw accuracy, many strategies pursue better
 059 interpretability and reduced hallucination, including retrieved-evidence provenance, decomposition
 060 traces, and calibration, but most such methods incur substantially higher compute, memory, or la-
 061 tency when applied uniformly. However, optimization explicitly for multi-choice decision surfaces
 062 remains limited, and few studies simultaneously improve decision accuracy, increase interpretability,
 063 and mitigate hallucination under tight on-device resource constraints.

064 These gaps manifest in constrained, multi-choice robotic perception as several persistent pain points.
 065 Token-level distillation aligns surface form under a particular prompt template rather than the de-
 066 cision surface over the option set used in constrained decoding, which can make the student brittle
 067 and misaligned with evaluation. Always-on enhancements improve accuracy but increase latency
 068 and energy consumption, violating tight budgets; naive decomposition procedures may introduce
 069 spurious intermediate steps that diverge from visual evidence (Kim et al., 2020). Compact VLMs
 070 are commonly under-calibrated (Guo et al., 2017), undermining selective computation and abstention.

071 Hallucination remains nontrivial in small models and is compounded by limited interpretability:
 072 it is often unclear why a decision was taken or which evidence supported it (Li et al., 2023b).
 073 Existing selective or budgeted inference seldom couples uncertainty with retrieval affinity or with
 074 agreement across decompositions, and evaluations rarely report risk-coverage or accuracy-budget
 075 frontiers for constrained multimodal QA. Panel-based layouts and tiny colored markers exacerbate
 076 small-model failures, while real-time control imposes per-frame budgets and VRAM ceilings. Taken
 077 together, these limitations leave optimization for the multi-choice decision surface underdeveloped;
 078 under tight on-device budgets, few methods simultaneously improve decision accuracy, increase
 079 interpretability, and mitigate hallucination.

080 **Contributions** We address the above-mentioned limitations with a decision-centric strategy that
 081 aligns the student with the teacher at the level of answer options and allocates additional test-time
 082 compute only when inexpensive signals indicate positive expected gain under a target budget. The
 083 training component performs decision-aligned distillation at the option level so that the student
 084 learns the teacher’s preference over candidate answers under constrained decoding. The inference
 085 component uses budgeted, risk-calibrated routing to decide whether to re-evaluate at higher reso-
 086 lution, augment with retrieved same-domain exemplars, or invoke Question Decomposition (QD).
 087 This design not only improves accuracy-budget tradeoffs and calibration, but also mitigates halluci-
 088 nation by constraining outputs to valid options and grounding with retrieved context, and enhances
 089 interpretability by exposing decomposition traces and the retrieved exemplars that inform decisions.

090 We introduce Budgeted Option-Level Transfer (BOLT), a decision-centric framework for con-
 091 strained, multiple-choice VQA on robots. BOLT treats multiple-choice prediction as a decision
 092 surface to be aligned and then selectively refined: training performs option-level distillation to
 093 match teacher-student preferences over answers, while inference uses a budgeted, risk-calibrated
 094 router that spends extra compute only when inexpensive signals suggest positive expected gain
 095 (e.g., high-resolution re-evaluation, type-matched retrieval, short QD). By unifying decision align-
 096 ment with selective computation, BOLT achieves large-model decision quality under tight on-device
 097 latency/memory/energy budgets, delivering better accuracy-budget and risk-coverage trade-offs,
 098 sharper calibration, fewer hallucinations through constrained outputs and grounding, and clearer
 099 interpretability via visible evidence traces.

100 The key contributions of this paper can be summarized as follows.
 101

- 102 • Budgeted Option-Level Transfer (BOLT): A decision-centric framework for constrained,
 103 multi-choice VQA on robots that unifies option-level decision distillation (ODD) with bud-
 104 geted test-time augmentation (bTTA). By aligning training and inference around the multi-
 105 choice decision surface and spending compute only when inexpensive signals predict bene-
 106 fit, BOLT attains large-VLM decision quality under tight on-device latency/memory/energy
 107 budgets, improving accuracy-budget and risk-coverage frontiers and calibration while re-
 ducing hallucination and increasing interpretability.

- 108 • Option-level Decision Distillation: A decision-aligned objective that matches teacher-
109 student option distributions derived from answer-segment likelihoods, improving Exact-
110 Match and calibration over token-level distillation on constrained multimodal QA.
- 111 • Budgeted Test-time Augmentation: A risk-calibrated router that adapts inference compute
112 (Hi-Res, retrieval augmentation, QD) per instance using uncertainty and retrieval-affinity
113 features; under mild monotonicity assumptions, this induces a near-threshold policy that
114 optimizes accuracy subject to a compute budget and empirically improves risk-coverage
115 and accuracy-budget frontiers.
- 116 • Mitigating hallucination and improving interpretability: By constraining outputs to valid
117 option sets, grounding predictions with retrieved exemplars, and exposing QD traces, the
118 framework reduces contradiction-to-image errors and invalid-option responses while pro-
119 viding human-inspectable evidence chains; quantitative analysis appears in Section 4.6.

121 2 RELATED WORK

123 2.1 VISION-LANGUAGE MODELS FOR ROBOTICS AND CONSTRAINED-OUTPUT QA

125 Early vision-language pretraining focused on contrastive objectives that align images and texts in a
126 shared embedding space (Radford et al., 2021; Jia et al., 2021). Subsequent instruction-following
127 VLMs integrate autoregressive decoding and multimodal instruction tuning (e.g., LLaVA (Liu et al.,
128 2023), Qwen2-VL (Wang et al., 2024), BLIP-2 (Li et al., 2023a)), enabling strong zero-/few-shot
129 generalization on open-ended and task-driven QA. In robotics, there is an increasing emphasis on
130 models that interface with perception and control stacks under strict latency and energy constraints
131 (e.g., RT-1/RT-2) (Brohan et al., 2022; Zitkovich et al., 2023). Many robotic and diagnostic VQA set-
132 tings adopt constrained-output formulations to facilitate deterministic interfaces, safety checks, and
133 reliable evaluation (Chen et al., 2025; Gordon et al., 2018; Teney et al., 2018). However, this regime
134 exposes a specific gap: most training and adaptation practices remain token-level and open-ended,
135 which misaligns with the option-based decision surface used at evaluation and tends to increase
136 compute when applied uniformly on devices. We therefore study an option-aligned alternative and
137 show that aligning option distributions better preserves decision quality for constrained decoding
138 under on-device budgets.

139 2.2 KNOWLEDGE DISTILLATION FOR MULTIMODAL MODELS AND CONSTRAINED 140 DECISIONS

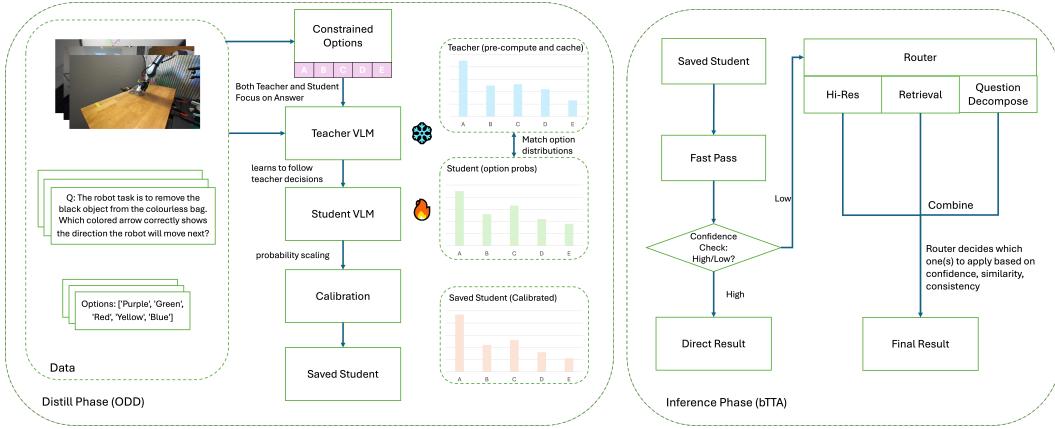
142 Knowledge distillation (KD) was introduced as logit-matching with temperature scaling (Hinton
143 et al., 2015) and later extended to sequence-level distillation for text generation (Kim & Rush,
144 2016). In vision and NLP, distillation spans token/logit-based matching, response-level training,
145 and feature/attention transfer, often improving latency and memory without fully retaining calibra-
146 tion or decision boundaries (Sanh et al., 2019; Touvron et al., 2021). Multimodal KD for VQA
147 typically mirrors token-level or cross-entropy supervision, which can entangle prompt-template
148 idiosyncrasies with answer learning and may misalign with the constrained option space used at
149 evaluation. Parameter-efficient tuning reduces adaptation cost and memory footprint (Hu et al.,
150 2022; Dettmers et al., 2023), but does not by itself address decision alignment or budgeted test-time
151 compute. Progress in distillation and parameter-efficient tuning notwithstanding, faithfully trans-
152 ferring a teacher’s option-level decision quality and calibration to compact VLMs for constrained
153 multiple-choice decoding without overrunning on-device memory budgets remains elusive.

154 2.3 RETRIEVAL-AUGMENTED INFERENCE AND BUDGETED/DYNAMIC COMPUTE

156 Retrieval-augmented methods provide external evidence or exemplars to improve factuality and
157 domain transfer, including RAG-style retrieval+generation, Fusion-in-Decoder, and memory-
158 augmented language models (Lewis et al., 2020; Izacard & Grave, 2020; Borgeaud et al., 2022;
159 Khandelwal et al., 2019; Rubin et al., 2021). In vision-language QA, retrieval can supply task-type
160 exemplars for in-context guidance, but naive always-on use increases latency and energy and can
161 degrade reliability when irrelevant evidence is injected. Separately, budgeted or dynamic inference
studies how to adapt computation to instance difficulty: early-exit and conditional computation in

162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215

Figure 1: **Pipeline overview.** *Left: Distill phase (ODD).* The teacher VLM provides option-level supervision via answer-segment likelihoods; the student learns to match the teacher’s decision distribution and is then calibrated. *Right: Inference phase (bTTA).* A fast constrained pass produces confidence features; a router selectively triggers **HR** re-evaluation, **tmRAG**, and **QD** and combines their outputs to form the final prediction under a compute budget.



CNNs/Transformers, adaptive-depth/width routing, and selective prediction with abstention trade off coverage for risk under resource constraints (Teerapittayanon et al., 2016; Figurnov et al., 2017; Geifman & El-Yaniv, 2017). What remains absent is a cost-aware controller that, under an explicit compute budget, relies on trustworthy instance-level signals to trigger high-cost augmentations only when they deliver positive net benefit.

2.4 CALIBRATION, HALLUCINATION, AND STRUCTURED DECOMPOSITION

Modern neural networks are often miscalibrated; post-hoc temperature scaling partially remedies this, but can be unstable across domains (Guo et al., 2017; Minderer et al., 2021). In VLMs, multi-modal hallucination persists (e.g., contradictions to the image or invalid-option outputs), and measuring/mitigating it remains an active area (Li et al., 2023b; Rohrbach et al., 2018). Interpretability tools range from retrieved-evidence provenance to structured reasoning traces. Modular/structured approaches, including neural module networks, program-like reasoning, and decomposition-style prompting, seek to expose intermediate structure and reduce spurious correlations (Yi et al., 2018; Hudson & Manning, 2018; Zhou et al., 2022). Despite techniques for post-hoc calibration, hallucination mitigation, and structured decomposition, it remains difficult to simultaneously improve accuracy, calibration, and hallucination while preserving tight on-device budgets and avoiding uniform overhead.

3 METHODOLOGY

3.1 PROBLEM SETUP AND NOTATION

We study constrained-output VQA for robotics. Each example is denoted as (x, q, \mathcal{O}, y) , where x is an image or panel layout, q is a natural-language question, $\mathcal{O} = \{o_1, \dots, o_K\}$ is a finite option set, and $y \in \{1, \dots, K\}$ is the ground-truth index set. We use a large teacher VLM T and a compact student VLM S_θ with parameters θ . Both are evaluated under constrained decoding: the model must output exactly one option text from \mathcal{O} .

We fix a chat template that places (x, q) in a user turn and the answer in an assistant turn. For option o_k , let the tokenized answer be $\mathbf{a}^{(k)} = (a_1^{(k)}, \dots, a_{L_k}^{(k)})$, and let the full sequence be $\mathbf{z}^{(k)} = (z_{1:L_0}^{(k)}, \mathbf{a}^{(k)})$ where indices $\mathcal{A}^{(k)} = \{L_0 + 1, \dots, L_0 + L_k\}$ correspond to the answer segment. For a model M , denote its next-token distribution by $p_M(\cdot | \mathbf{z}_{<t})$.

216 **Answer-segment likelihood.** We deliberately score only the assistant answer segment:
 217

$$218 \quad s_M(k \mid x, q) := \sum_{t \in \mathcal{A}^{(k)}} \log p_M\left(a_{t-L_0}^{(k)} \mid \mathbf{z}_{<t}^{(k)}\right). \quad (1)$$

221 This removes prompt-template wording from supervision and focuses exactly on the part that is
 222 evaluated under constrained decoding.

223 **Roadmap to test time.** Having defined how decisions are formed under constrained decoding, we
 224 first train the student so that its *option-level* decisions match the teacher, then design a budgeted
 225 router that decides when to pay for costlier augmentations at inference.

227 3.2 SYSTEM OVERVIEW AND DESIGN

229 As shown in Fig.1, we design BOLT, a decision-centric framework for constrained multimodal QA
 230 on robots that delivers large-model decision quality at small-model cost.

231 During training, BOLT utilizes Option-level Decision Distillation (ODD) to match the teacher’s
 232 temperature-softmax over answer options, which are computed from answer-segment likelihoods.
 233 A LoRA/QLoRA student is optimized with a small cross-entropy anchor, aligning the constrained-
 234 decoding decision surface, improving calibration, and mitigating prompt and length artifacts.

235 During inference, a budgeted router reads lightweight signals from the student distribution aug-
 236 mented by type-matched retrieval affinity and agreement across short QDs. It triggers only the
 237 helpful augmentations under a budget, namely HR high-resolution re-evaluation, tmRAG type-
 238 matched retrieval exemplars, and QD. This design concentrates computation where it pays off,
 239 yielding stronger accuracy-budget and risk-coverage tradeoffs than always-on enhancements. It
 240 reduces invalid-option and image-contradiction errors by grounding predictions, and improves inter-
 241 pretability via retrieved evidence and decomposition traces. Temperature scaling further calibrates
 242 probabilities used for routing.

244 3.2.1 OPTION-LEVEL DECISION DISTILLATION (ODD)

245 To transfer the decision quality of a large teacher to a compact student under constrained decoding,
 246 we propose ODD, a decision-aligned objective that supervises the model at the level of answer op-
 247 tions rather than tokens. Token-level KD from text LMs mixes prompt and answer tokens, penalizes
 248 template wording differences that are irrelevant at evaluation, and encourages surface-form imita-
 249 tion; in constrained QA, the evaluation hinges on the teacher’s preference over the option set. ODD
 250 therefore scores, for each option, only the assistant’s answer segment, sums its token log-likelihoods
 251 to form per-option scores, converts them with a temperature-softmax into a teacher option distribu-
 252 tion, and trains the student to match this distribution with a KL term plus a small cross-entropy to
 253 the ground-truth option. This directly targets the decision surface realized by constrained decoding,
 254 improves calibration, and avoids the prompt-answer tug-of-war inherent to token-level distillation;
 255 when option strings differ markedly in length, a light length-bias correction can be applied.

256 **Option distributions and decision-aligned loss.** We first turn the teacher’s answer-segment
 257 scores into a calibrated preference over options by applying a temperature-softmax, which smooths
 258 overconfident peaks and exposes relative utilities across \mathcal{O} :

$$260 \quad p_T(k \mid x, q) = \frac{\exp(s_T(k)/\tau_{kd})}{\sum_{j=1}^K \exp(s_T(j)/\tau_{kd})}, \quad \tau_{kd} > 0. \quad (2)$$

263 We cache $\{p_T(k)\}$ offline for all training items so that student training compares against a fixed
 264 teacher distribution without repeatedly querying the teacher.

266 To make the teacher and student directly comparable in the same probability simplex, we build the
 267 student’s option distribution by normalizing its own answer-segment scores in the same way:

$$268 \quad p_S(k \mid x, q; \theta) = \frac{\exp(s_\theta(k))}{\sum_{j=1}^K \exp(s_\theta(j))}, \quad s_\theta(k) = s_{S_\theta}(k \mid x, q). \quad (3)$$

270 This places both models’ decisions on a common, prompt-invariant option space that mirrors constrained decoding at evaluation.
 271

272 With p_T and p_S defined, we optimize a decision-aligned objective that pulls the entire student distribution toward the teacher while retaining a minimal anchor to ground truth:
 273

$$275 \quad \mathcal{L}_{\text{ODD}}(\theta) = \lambda_{\text{KL}} \text{KL}(p_T \| p_S) + \lambda_{\text{CE}} \text{CE}(\delta_y \| p_S), \quad \lambda_{\text{KL}}, \lambda_{\text{CE}} \geq 0. \quad (4)$$

276 Intuitively, the KL term shapes the student’s decision surface by matching the teacher’s option preferences, and the small CE term provides a ground-truth anchor that stabilizes learning, preserves rare-option recall, and corrects teacher bias in ambiguous cases.
 277

278 **Invariances, length bias, and gradient shape.** ODD operates on sums of answer–token
 279 log-probabilities, is invariant to adding any constant to all $s_\theta(k)$, and is robust to benign tokenization
 280 changes for fixed option strings. When option strings differ substantially in length, we correct the
 281 scores by
 282

$$283 \quad \tilde{s}_\theta(k) = s_\theta(k) - \gamma \log L_k \quad \text{or} \quad s_\theta(k)/L_k, \quad \gamma \in [0, 1]. \quad (5)$$

284 For intuition about decision alignment, let $\mathbf{s}_\theta = [s_\theta(1), \dots, s_\theta(K)]^\top$. The gradients of Eq. (4) with
 285 respect to \mathbf{s}_θ are given by
 286

$$287 \quad \nabla_{\mathbf{s}_\theta} \text{KL}(p_T \| p_S) = \mathbf{p}_S - \mathbf{p}_T, \quad \nabla_{\mathbf{s}_\theta} \text{CE}(\delta_y \| p_S) = \mathbf{p}_S - \delta_y,$$

288 so the total signal pushes the student option distribution toward the teacher and the ground-truth
 289 anchor. When backpropagated to token logits, this supervision is applied only to answer-segment
 290 tokens, avoiding the prompt–answer tug-of-war that plagues token-level distillation.
 291

292 **Parameter-efficient training.** We train LoRA adapters in attention and MLP projections (optionally
 293 the multimodal projector) while keeping the base quantized with QLoRA. ODD gradients flow
 294 only through adapter paths and the projector, enabling single-GPU training.
 295

296 3.2.2 BUDGETED TEST-TIME AUGMENTATION (bTTA)

297 To maximize accuracy under an explicit compute budget while preserving low latency on edge
 298 hardware, we propose bTTA, an adaptive inference-time framework that allocates computation per
 299 instance. The distilled student first performs a fast constrained pass, from which we derive a compact
 300 routing feature vector based on the option distribution and auxiliary cues. A learned policy decides
 301 whether to execute high-resolution (HR) re-evaluation, type-matched retrieval exemplars (tmRAG),
 302 or Question Decomposition (QD). Each augmentation is modeled as an action with measurable cost
 303 and a learned success probability; bTTA triggers actions only when the predicted gain exceeds the
 304 cost within the budget, yielding calibrated final decisions and improved accuracy-budget tradeoffs.
 305

306 **Routing features and policy.** From the pass-1 option distribution p_S we compute confidence,
 307 margin, and entropy,
 308

$$309 \quad p_{\max} = \max_k p_S(k), \quad \Delta = p_{(1)} - p_{(2)}, \quad H = - \sum_k p_S(k) \log p_S(k).$$

310 We augment them with a *retrieval affinity*
 311

$$312 \quad \rho = \frac{1}{K_r} \sum_{j \in \text{Top-}K_r} \cos(\phi(x, q), \phi(x_j, q_j)),$$

313 where the memory stores only same-type items to avoid cross-type interference and, with an agree-
 314 ment score across short QD, runs
 315

$$316 \quad \kappa = 1 - \frac{2}{K_d(K_d - 1)} \sum_{k < k'} \text{JS}(p_S^{(k)} \| p_S^{(k')}),$$

317 which increases when independent decompositions concur. The feature vector $\mathbf{f} =$
 318 $[p_{\max}, \Delta, H, \rho, \kappa]$ drives the router. Let actions $\mathcal{A} = \{\text{HR}, \text{RAG}, \text{QD}\}$ collect HR, tmRAG, and
 319

324 QD. Each action a has a normalized marginal cost C_a and a binary improvement label ΔAcc_a relative
 325 to the current prediction. A gain model $g_\omega(\mathbf{f}, a) \approx \Pr[\Delta\text{Acc}_a = 1 \mid \mathbf{f}]$ is learned on validation
 326 logs, and the per-instance decision solves

$$328 \max_{\alpha_a \in \{0,1\}} \sum_{a \in \mathcal{A}} \alpha_a g_\omega(\mathbf{f}, a) W_a \quad \text{s.t.} \quad \sum_{a \in \mathcal{A}} \alpha_a C_a \leq B, \quad (6)$$

330 with small empirical weights W_a and budget B . Its Lagrangian relaxation yields a simple near-
 331 threshold rule

$$332 \text{trigger } a \iff g_\omega(\mathbf{f}, a) W_a \geq \tau C_a, \quad \text{with cumulative cost} \leq B, \quad (7)$$

334 which activates an augmentation when predicted gain exceeds cost by a threshold τ tuned on validation
 335 to satisfy the average budget and maximize accuracy. With diminishing returns across actions,
 336 greedy selection by this net value is a strong approximation.

337 **Actions and calibration.** *HR* replaces the image with a larger short-edge for a second constrained
 338 pass to recover fine detail. *tmRAG* retrieves Top- K_r same-type exemplars (desc, q , a) by cosine
 339 similarity in an encoder space and appends them to the prompt; the student re-answers to obtain
 340 p_S^{RAG} . *QD* elicits K_d short decompositions (two-three checks) with diversity via seeds or few-shot
 341 permutations, producing distributions $\{p_S^{(k)}\}_{k=1}^{K_d}$ and an aggregated vote

$$343 \hat{p}_S(\cdot) = \frac{1}{K_d} \sum_{k=1}^{K_d} p_S^{(k)}(\cdot), \quad \hat{o} = \arg \max_o \hat{p}_S(o), \quad (8)$$

346 while the agreement κ feeds back into routing to suppress unhelpful decompositions. Because routing
 347 relies on probabilities, we apply temperature scaling on a validation split,

$$349 p_S^{\text{cal}}(k) = \frac{\exp(s_\theta(k)/\tau_{\text{cal}})}{\sum_j \exp(s_\theta(j)/\tau_{\text{cal}})},$$

352 and reuse calibrated p_{max} , margin and entropy in Appendix F.

354 4 EXPERIMENTS

356 4.1 EXPERIMENT SETUP

358 We conduct the main study on **Robo2VLM-1** (Chen et al., 2025), a panel-style robotic perception
 359 QA benchmark with constrained option sets. Following our constrained decoding interface (Sec. 3),
 360 we evaluate by *Accuracy (Acc)* over options. For Robo2VLM-1, we form three non-overlapping
 361 splits by unique image identifiers: `train-kd` (used only to build the teacher option-distribution
 362 cache), `val` (router calibration and temperature scaling), and `test` (final reporting). Retrieval
 363 memories and decomposition exemplars are constructed exclusively from `train-kd` to avoid leak-
 364 age into `val/test`. Unless otherwise stated, all results are single-image, batch size 1.

365 We distill from three teachers spanning families and sizes, Qwen2.5-VL-7B, LLaVA-1.5-7B, and
 366 LLaVA-1.5-13B, using their per-option answer-segment likelihoods to form temperature-softmax
 367 teacher distributions p_T for ODD. The student is Qwen2-VL-2B-Instruct, trained with ODD via
 368 LoRA/QLoRA. All models share the same constrained-decoding interface and bTTA configuration
 369 for fair comparison. Unless otherwise specified, we report each teacher-student setting with τ_{kd} and
 370 the CE weight tuned on `val`.

371 4.2 MAIN RESULTS

373 Table 2 summarizes accuracy under a unified constrained-decoding protocol. A 2B student trained
 374 with option-level decision distillation attains 42.89% when distilled from LLaVA-1.5-13B, exceed-
 375 ing the 13B teacher at 36.74% and the 2B zero-shot baseline at 28.66% by sizable margins. Adding
 376 the budgeted test-time augmentation policy further increases accuracy to 50.50, while maintaining
 377 the same decoding interface. Replacing ODD with token-level KD yields lower accuracy across
 teachers: 33.91%/36.21%/37.58% when distilled from LLaVA-7B/Qwen2.5-VL-7B/LLaVA-13B,

378 Table 1: Module ablations on Robo2VLM-1
 379 (Acc %). Columns indicate whether **HR** (High-
 380 Resolution), **tmRAG** (type-matched retrieval ex-
 381emplars), and **QD** (Question Decomposition) are
 382 enabled.

Variant	HR	tmRAG	QD	Acc (%)
Qwen2 VL-2B (zero-shot)	N	N	N	28.66
Qwen2 VL-2B distilled by LLaVA-13B (ODD)	N	N	N	42.89
+ tmRAG	N	Y	N	44.31
+ QD	N	N	Y	45.47
+ HR	Y	N	N	46.64
+ HR + tmRAG	Y	Y	N	48.25
+ HR + QD	Y	N	Y	48.92
+ HR + tmRAG + QD	Y	Y	Y	50.50

Table 2: Comparison on Robo2VLM-1 (Acc %). All methods share the same constrained decoding and prompt template.

Model	Params (B)	Acc (%)
LLaVA 1.5-7B (zero-shot)	7	21.58
LLaVA 1.5-13B (teacher, zero-shot)	13	36.74
Qwen2 VL-2B (zero-shot)	2	28.66
<i>Teacher: LLaVA-1.5-7B</i> → Student: Qwen2 VL-2B		
Qwen2 VL-2B distilled by LLaVA-7B (Token-KD)	2	33.91
+ bTTA	2	39.92
Qwen2 VL-2B distilled by LLaVA-7B (Ours, ODD)	2	38.53
+ bTTA	2	45.43
<i>Teacher: Qwen2.5-VL-7B</i> → Student: Qwen2 VL-2B		
Qwen2 VL-2B distilled by Qwen2.5-VL-7B (Token-KD)	2	36.21
+ bTTA	2	44.42
Qwen2 VL-2B distilled by Qwen2.5-VL-7B (Ours, ODD)	2	40.52
+ bTTA	2	47.16
<i>Teacher: LLaVA-1.5-13B</i> → Student: Qwen2 VL-2B		
Qwen2 VL-2B distilled by LLaVA-13B (Token-KD)	2	37.58
+ bTTA	2	47.02
Qwen2 VL-2B distilled by LLaVA-13B (Ours, ODD)	2	42.89
+ bTTA	2	50.50

trailing ODD by 4.62/4.31/5.31 points, respectively. With bTTA, token-level KD improves to 39.92/44.42/47.02 but still lags behind ODD+bTTA at 45.43%/47.16%/50.50%. The pattern is consistent across other teachers: distillation from LLaVA-1.5-7B yields 38.53% and rises to 45.43% with the policy, and distillation from Qwen2.5-VL-7B yields 40.52% and rises to 47.16%. These results indicate that aligning decisions at the option level closes most of the capacity gap, and instance-adaptive compute converts residual uncertainty into additional accuracy without changing the model architecture or the evaluation protocol. For completeness, NLL, Brier, ECE, and AURC, together with the full ablation breakdown, are reported in Appendix Table 8.

4.3 ABLATIONS

Table 1 examines the contribution of each inference-time component to the student distilled from LLaVA-1.5-13B. High-resolution re-evaluation primarily fixes resolution-limited errors and moves accuracy from 42.89% to 46.64%. Type-matched retrieval adds domain-appropriate exemplars and moves accuracy to 44.31% when used alone, and to 48.25% when combined with high resolution. QD reduces reasoning variance on difficult cases and moves accuracy to 45.47% alone, and to 48.92% together with high resolution. Enabling all three components achieves 50.50%. The gains are monotone and nearly additive, supporting the design of a router that triggers only the actions whose predicted gain exceeds their cost.

4.4 BUDGETED ROUTING: ACCURACY-BUDGET BEHAVIOR AND BASELINES

We study how the budgeted router allocates test-time compute and how this impacts accuracy under an explicit average budget B for $ODD+bTTA$. Each optional augmentation is treated as a binary action with fixed per-trigger costs $(C_{HR}, C_{tmRAG}, C_{QD}) = (0.50, 0.30, 0.35)$, on top of a base constrained pass costing 1.00. Sweeping a calibrated threshold yields a discrete accuracy-budget frontier (Appx. Fig. 10). Accuracy improves monotonically from the single-pass ODD baseline at $B=1.00$ to our full-budget setting around $B\approx 2.00$, where gains saturate.

Trigger compositions increase smoothly with B (Appx. Table 4). Feature-importance diagnostics on the learned gain model show that HR is primarily gated by entropy H , tmRAG by same-type retrieval affinity ρ , and QD by agreement κ across short decompositions, consistent with the router design in Sec. 3.2.2.

Under matched budgets, we compare to two single-signal dynamic-compute baselines (HR-Threshold and one-branch Early-Exit). Our router yields ~ 1.4 – 2.2 points accuracy and lower ECE/AURC by deciding both whether to escalate and which augmentation to trigger per instance (Appx. Table 5; more details are provided in Appx. F, G).

432 4.5 SYSTEM FOOTPRINT AND DEPLOYABILITY
433

434 Appx. Table 10a reports GPU memory with batch size one. The distilled 2B student occupies 3,035
 435 MB, which reduces memory by 88.7% relative to the 13B teacher at 26,878 MB and by 41.0%
 436 relative to the 2B zero-shot baseline at 5,144 MB. Activating the full set of augmentations raises
 437 the footprint to 3,817 MB, adding only 782 MB and remaining about seven times lighter than the
 438 13B teacher. In conjunction with the accuracy improvements in Table 2, this footprint makes the
 439 pipeline practical for edge deployment, since the model fits within commodity GPU memory while
 440 delivering higher accuracy than a much larger teacher.

441 For the LLaVA-1.5-13B to Qwen2-VL-2B setting, the *end-to-end* mean latency per question is
 442 8.97 s. Of this, the *bTTA* pipeline (routing + selectively triggered HR/tmRAG/QD) contributes only
 443 1.52 s on average, leaving 7.45 s for the first constrained pass (ODD student). Thus, *bTTA* accounts
 444 for 16.9% of total latency, while the pass-1 accounts for 83.1%. The effective throughput is 6.69
 445 items/min (0.11 QPS); see Table 10b.

446 4.6 HALLUCINATION ANALYSIS
447

448 We assess hallucination under constrained decoding using six proxies (IOR, NOA, Flip,
 449 HO_mean_wrong, OCW@0.7, and augmentation-conditioned contradiction rates RCR/QDC). The
 450 constrained interface removes string-form hallucinations outright (IOR= 0), while decision-level
 451 misuse of the “None of the above” sentinel is substantially reduced from 1.08% (zero-shot) to
 452 0.37% (ODD pass-1) and 0.22% (ODD+bTTA). The router actively corrects uncertain cases,
 453 26.71% of labels flip relative to pass-1, yielding fewer over-confident mistakes (OCW@0.7
 454 4.18% \rightarrow 0.27% \rightarrow 0.19%) despite a slight rise in average confidence on remaining errors
 455 (HO_mean_wrong 0.2678 \rightarrow 0.2946). Augmentation-conditioned diagnostics localize residual risks:
 456 retrieved exemplars can conflict with image-consistent answers (RCR 21.73%), while gated QD is
 457 largely but not perfectly self-consistent (QDC 1.74%). BOLT eliminates string-level hallucinations
 458 by design, curbs NOA misuse, and suppresses the high-confidence error tail; remaining errors are
 459 primarily driven by retrieval quality and decomposition policy. More details are in Appendix H.

460 5 LIMITATIONS AND FUTURE WORK
461

462 Our evaluation focuses on a single panel-style robotic VQA benchmark (Robo2VLM-1), reflecting
 463 the broader limitation that existing robotic multi-choice VQA datasets are scarce. The tmRAG
 464 component induces retrieval-driven hallucinations (RCR 21.73%), which is a common limitation of
 465 RAG pipelines when exemplars imperfectly match the query. In the future, we will (i) expand to
 466 multiple public datasets and report per-type risk-coverage and calibration, (ii) replace or comple-
 467 ment tmRAG with conflict-aware exemplar filtering, visual-entailment style option verification, and
 468 retrieval-free self-consistency voting, and (iii) optimize the router and student under compute-aware
 469 objectives (latency/energy) to improve calibration and robustness under distribution shift.

470 6 CONCLUSION
471

472 This work reframes constrained multimodal question answering for robotics as the joint problem of
 473 option-level decision alignment and on-demand inference, and demonstrates that aligning the stu-
 474 dent to the teacher in the option space used at evaluation, then spending computation only when
 475 inexpensive signals predict benefit, yields a compact system that is both accurate and reliable under
 476 tight resource budgets. BOLT transfers the teacher decision surface through Option-level Decision
 477 Distillation and concentrates compute via a calibrated, budgeted router, leading to substantial gains
 478 in accuracy, calibration, and interpretability without changing the interface or inflating memory, with
 479 a 2B student exceeding a 13B teacher on Robo2VLM-1 and showing stronger risk-coverage and
 480 accuracy-budget trade-offs along with lower invalid-option and image-contradiction errors. Future
 481 extensions include generalizing option-level alignment to broader structured outputs and multi-step
 482 control, strengthening retrieval filtering and consistency modeling while optimizing the router and
 483 the student jointly, and making energy and latency explicit objectives in end-to-end training fol-
 484 lowed by comprehensive evaluation across diverse robotic tasks and public benchmarks to promote
 485 reproducible assessment and responsible deployment.

486 REFERENCES
487

488 Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann, Trevor Cai, Eliza Rutherford, Katie Milli-
489 can, George Bm Van Den Driessche, Jean-Baptiste Lespiau, Bogdan Damoc, Aidan Clark, et al.
490 Improving language models by retrieving from trillions of tokens. In *International conference on
491 machine learning*, pp. 2206–2240. PMLR, 2022.

492 Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,
493 Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, et al. Rt-1: Robotics
494 transformer for real-world control at scale. *arXiv preprint arXiv:2212.06817*, 2022.

495 Kaiyuan Chen, Shuangyu Xie, Zehan Ma, Pannag R Sanketi, and Ken Goldberg. Robo2vilm: Vi-
496 sual question answering from large-scale in-the-wild robot manipulation datasets. *arXiv preprint
497 arXiv:2505.15517*, 2025.

498 Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
499 of quantized llms. *Advances in neural information processing systems*, 36:10088–10115, 2023.

500 Michael Figurnov, Maxwell D Collins, Yukun Zhu, Li Zhang, Jonathan Huang, Dmitry Vetrov, and
501 Ruslan Salakhutdinov. Spatially adaptive computation time for residual networks. In *Proceedings
502 of the IEEE conference on computer vision and pattern recognition*, pp. 1039–1048, 2017.

503 Yonatan Geifman and Ran El-Yaniv. Selective classification for deep neural networks. *Advances in
504 neural information processing systems*, 30, 2017.

505 Daniel Gordon, Aniruddha Kembhavi, Mohammad Rastegari, Joseph Redmon, Dieter Fox, and Ali
506 Farhadi. Iqa: Visual question answering in interactive environments. In *Proceedings of the IEEE
507 conference on computer vision and pattern recognition*, pp. 4089–4098, 2018.

508 Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern neural
509 networks. In *International conference on machine learning*, pp. 1321–1330. PMLR, 2017.

510 Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. *arXiv
511 preprint arXiv:1503.02531*, 2015.

512 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
513 Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022.

514 Drew A Hudson and Christopher D Manning. Compositional attention networks for machine rea-
515 soning. *arXiv preprint arXiv:1803.03067*, 2018.

516 Gautier Izacard and Edouard Grave. Leveraging passage retrieval with generative models for open
517 domain question answering. *arXiv preprint arXiv:2007.01282*, 2020.

518 Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc Le, Yun-Hsuan
519 Sung, Zhen Li, and Tom Duerig. Scaling up visual and vision-language representation learning
520 with noisy text supervision. In *International conference on machine learning*, pp. 4904–4916.
521 PMLR, 2021.

522 Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke Zettlemoyer, and Mike Lewis. Generalization
523 through memorization: Nearest neighbor language models. *arXiv preprint arXiv:1911.00172*,
524 2019.

525 Ildoo Kim, Younghoon Kim, and Sungwoong Kim. Learning loss for test-time augmentation. *Ad-
526 vances in neural information processing systems*, 33:4163–4174, 2020.

527 Yoon Kim and Alexander M Rush. Sequence-level knowledge distillation. In *Proceedings of the
528 2016 conference on empirical methods in natural language processing*, pp. 1317–1327, 2016.

529 Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
530 Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented gener-
531 ation for knowledge-intensive nlp tasks. *Advances in neural information processing systems*, 33:
532 9459–9474, 2020.

540 Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
 541 pre-training with frozen image encoders and large language models. In *International conference*
 542 *on machine learning*, pp. 19730–19742. PMLR, 2023a.

543

544 Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Wayne Xin Zhao, and Ji-Rong Wen. Evaluating
 545 object hallucination in large vision-language models. *arXiv preprint arXiv:2305.10355*, 2023b.

546

547 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. *Advances*
 548 *in neural information processing systems*, 36:34892–34916, 2023.

549

550 Matthias Minderer, Josip Djolonga, Rob Romijnders, Frances Hubis, Xiaohua Zhai, Neil Houlsby,
 551 Dustin Tran, and Mario Lucic. Revisiting the calibration of modern neural networks. *Advances*
 552 *in neural information processing systems*, 34:15682–15694, 2021.

553

554 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 555 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 556 models from natural language supervision. In *International conference on machine learning*, pp.
 557 8748–8763. PmLR, 2021.

558

559 Anna Rohrbach, Lisa Anne Hendricks, Kaylee Burns, Trevor Darrell, and Kate Saenko. Object
 560 hallucination in image captioning. *arXiv preprint arXiv:1809.02156*, 2018.

561

562 Ohad Rubin, Jonathan Herzig, and Jonathan Berant. Learning to retrieve prompts for in-context
 563 learning. *arXiv preprint arXiv:2112.08633*, 2021.

564

565 Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version of
 566 bert: smaller, faster, cheaper and lighter. *arXiv preprint arXiv:1910.01108*, 2019.

567

568 Surat Teerapittayanon, Bradley McDanel, and Hsiang-Tsung Kung. Branchynet: Fast inference
 569 via early exiting from deep neural networks. In *2016 23rd international conference on pattern*
 570 *recognition (ICPR)*, pp. 2464–2469. IEEE, 2016.

571

572 Damien Teney, Peter Anderson, Xiaodong He, and Anton Van Den Hengel. Tips and tricks for visual
 573 question answering: Learnings from the 2017 challenge. In *Proceedings of the IEEE conference*
 574 *on computer vision and pattern recognition*, pp. 4223–4232, 2018.

575

576 Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
 577 Hervé Jégou. Training data-efficient image transformers & distillation through attention. In
 578 *International conference on machine learning*, pp. 10347–10357. PMLR, 2021.

579

580 Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
 581 Jialin Wang, Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model’s perception of the
 582 world at any resolution. *arXiv preprint arXiv:2409.12191*, 2024.

583

584 Kexin Yi, Jiajun Wu, Chuang Gan, Antonio Torralba, Pushmeet Kohli, and Josh Tenenbaum. Neural-
 585 symbolic vqa: Disentangling reasoning from vision and language understanding. *Advances in*
 586 *neural information processing systems*, 31, 2018.

587

588 Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuur-
 589 mans, Claire Cui, Olivier Bousquet, Quoc Le, et al. Least-to-most prompting enables complex
 590 reasoning in large language models. *arXiv preprint arXiv:2205.10625*, 2022.

591

592 Brianna Zitkovich, Tianhe Yu, Sichun Xu, Peng Xu, Ted Xiao, Fei Xia, Jialin Wu, Paul Wohlhart,
 593 Stefan Welker, Ayzaan Wahid, et al. Rt-2: Vision-language-action models transfer web knowledge
 to robotic control. In *Conference on Robot Learning*, pp. 2165–2183. PMLR, 2023.

594 **A ADDITIONAL DERIVATIONS AND DETAILS**
 595

596 **A.1 MASKED LIKELIHOOD ON ANSWER SEGMENT**
 597

598 Let $\mathbf{z}^{(k)} = (z_1, \dots, z_L)$ and mask $m_t = \mathbb{I}[t \in \mathcal{A}^{(k)}]$. The masked NLL is
 599

$$600 \quad \mathcal{L}_{\text{NLL}}^{(k)}(\theta) = -\sum_{t=1}^L m_t \log p_{\theta}(z_t \mid \mathbf{z}_{<t}) = -\sum_{t \in \mathcal{A}^{(k)}} \log p_{\theta}(z_t \mid \mathbf{z}_{<t}). \quad (9)$$

$$601$$

$$602$$

603 By definition $s_{\theta}(k) = -\mathcal{L}_{\text{NLL}}^{(k)}(\theta)$. In practice, we set labels outside the answer segment to -100 to
 604 exclude them from loss.
 605

606 **A.2 GRADIENTS FOR ODD AND TOKEN-LEVEL BACKPROP**
 607

608 Let $\mathbf{s}_{\theta} = [s_{\theta}(1), \dots, s_{\theta}(K)]^{\top}$, $p_S = \text{softmax}(\mathbf{s}_{\theta})$. For fixed p_T , we have
 609

$$610 \quad \frac{\partial \text{KL}(p_T \| p_S)}{\partial s_{\theta}(j)} = p_S(j) - p_T(j), \quad \frac{\partial \text{CE}(\delta_y \| p_S)}{\partial s_{\theta}(j)} = p_S(j) - \mathbb{I}[j=y]. \quad (10)$$

$$611$$

612 Thus
 613

$$614 \quad \frac{\partial \mathcal{L}_{\text{ODD}}}{\partial s_{\theta}(j)} = \lambda_{\text{KL}}(p_S(j) - p_T(j)) + \lambda_{\text{CE}}(p_S(j) - \mathbb{I}[j=y]). \quad (11)$$

$$615$$

616 Each $s_{\theta}(j)$ is a sum of answer-token log-probs. Let ℓ_t be pre-softmax logits and y_t be the gold token
 617 at time t . For $t \in \mathcal{A}^{(j)}$,

$$618 \quad \frac{\partial s_{\theta}(j)}{\partial \ell_t} = \mathbf{e}_{y_t} - \text{softmax}(\ell_t), \quad \frac{\partial s_{\theta}(j)}{\partial \ell_t} = \mathbf{0} \text{ for } t \notin \mathcal{A}^{(j)}. \quad (12)$$

$$619$$

$$620$$

621 Hence, ODD produces an *option-weighted* learning signal focused on answer tokens, unlike
 622 token-level KD, which distributes weight over prompt tokens as well.
 623

624 **A.3 TEMPERATURE, LABEL SMOOTHING, AND LENGTH CORRECTION**
 625

626 Teacher temperature τ_{kd} controls the softness of p_T ; we select $\tau_{\text{kd}} \in [1.5, 3]$. We optionally use label
 627 smoothing ε in the CE term: $\text{CE}((1-\varepsilon)\delta_y + \varepsilon/K \| p_S)$, stabilizing optimization when p_T is sharp.
 628 Length correction in equation 5 mitigates rare cases where L_k differs across options.
 629

630 **A.4 ROUTER LEARNING AS CONTEXTUAL BANDITS**
 631

632 We cast routing as a contextual bandit with context \mathbf{f} and actions $a \in \mathcal{A}$ producing binary reward
 633 ΔAcc_a and cost C_a . We collect an offline log on a held-out split by executing pass-1, then all aug-
 634 mentations (for supervision only), recording $(\mathbf{f}, a, \Delta \text{Acc}_a, C_a)$. We train a probabilistic classifier
 635 $g_{\omega}(\mathbf{f}, a) \approx \Pr[\Delta \text{Acc}_a = 1 \mid \mathbf{f}]$ with class-imbalance weights and temperature calibration. At test
 636 time, we apply the near-threshold rule in equation 7. When logs are collected under a different pol-
 637 icy, an unbiased estimator of the expected gain can be formed by inverse propensity scores (IPS):
 638 $\widehat{\mathbb{E}}[\Delta \text{Acc}_a \mid \mathbf{f}] = \frac{\mathbb{I}[a=a_0] \Delta \text{Acc}_a}{\pi(a_0 \mid \mathbf{f})}$, where π is the logging propensity; we find that direct supervised g_{ω} is
 639 sufficiently stable in our setting.
 640

641 **A.5 LAGRANGIAN VIEW, THRESHOLD POLICY, AND SEQUENTIAL AUGMENTATIONS**
 642

643 The constrained problem, i.e., (6), has Lagrangian $\mathcal{L}(\alpha, \tau) = \sum_a \alpha_a (\mathbb{E}[\Delta \text{Acc}_a \mid \mathbf{f}] - \tau C_a) + \tau B$.
 644 For fixed τ , the maximizer sets $\alpha_a = 1$ iff the net value is nonnegative, giving the near-threshold rule
 645 in (7). When applying multiple augmentations sequentially, if the expected improvement exhibits
 646 *diminishing returns* (submodularity) over the action set, the greedy selection that iteratively picks
 647 the largest positive net value achieves a $(1 - 1/e)$ -approximation to the optimal set (Nemhauser
 648 bound). Empirically, we can cap the number of augmentation rounds (e.g., one or two) to keep
 649 latency predictable.

648 A.6 AGREEMENT METRICS AND ALTERNATIVES
649650 Beyond κ via average pairwise Jensen–Shannon similarity, we consider: (i) majority-vote rate
651 among $\{\arg \max p_S^{(k)}\}$; (ii) Kendall’s W on option rankings; (iii) variance of $\{p_S^{(k)}\}$ along the top
652 eigenvector. We use κ for differentiability in ablations and majority-vote for reporting.
653654 A.7 SELECTIVE RISK, RISK–COVERAGE, AND CALIBRATION
655656 Given a confidence score c (e.g., p_{\max}) and a threshold τ_c , the selective classifier accepts items with
657 $c \geq \tau_c$. Coverage is $\mathbb{P}(c \geq \tau_c)$ and selective risk is the error rate on accepted items. The area under
658 the risk-coverage curve (AURC) summarizes the trade-off. We estimate ECE on the accepted set
659 using fixed bins and report Brier score on calibrated p_S^{cal} ; post-hoc τ_{cal} is fitted by minimizing NLL
660 on a validation split not used for routing.
661662 A.8 COMPLEXITY AND MEMORY
663664 **Training.** ODD needs K forward passes per sample; with batching across options the per-step
665 complexity is $\mathcal{O}(K \cdot L_{\text{ans}} \cdot d)$ where L_{ans} is answer length (small) and d the model width. Only
666 LoRA parameters and (optionally) the projector are trainable; memory scales as $\mathcal{O}(r \cdot \text{params})$ where
667 r is LoRA rank. **Inference.** Pass-1 dominates little; Hi-Res adds a factor on the vision backbone;
668 retrieval cost is $\mathcal{O}(K_r \cdot d_{\phi})$ per query (pre-encoded memory); QD repeats decoding K_d times with
669 short outputs. We cap (K_r, K_d) (e.g., 4 and 3).
670671 A.9 IMPLEMENTATION NOTES
672673 (i) **Template alignment.** Use the same template for teacher and student; verify L_0 by tokenizing
674 prompt-only vs. prompt+answer. (ii) **Quantization and merge.** If merging LoRA into a full model
675 for deployment, reload the base in fp16/bf16 (not 4-bit) before merge. (iii) **Calibration reuse.** Fit
676 τ_{cal} once on validation and reuse across ablations to avoid information leakage. (iv) **Numerical
677 stability.** When computing equation 2, subtract $\max_k s_T(k)$ before softmax.
678679 B ALGORITHMS (PSEUDO-CODE)
680681 **KD cache construction (teacher).**
682683 **Require:** dataset $\mathcal{D}_{\text{train}}$, teacher T , temperature τ_{kd}
684 1: **for** each $(x, q, \mathcal{O}, y) \in \mathcal{D}_{\text{train}}$ **do**
685 2: **for** each $o_k \in \mathcal{O}$ **do**
686 3: Build $\mathbf{z}^{(k)}$; compute $s_T(k)$ by equation 1
687 4: **end for**
688 5: $p_T(k) \propto \exp(s_T(k)/\tau_{\text{kd}})$
689 6: Write JSONL: $\{\text{image, question, options, gt_idx, teacher_probs}\}$
690 7: **end for**
691692 **Student training (ODD + LoRA/QLoRA).**
693694 **Require:** KD cache, student S_{θ} , λ_{KL} , λ_{CE}
695 1: **while** not converged **do**
696 2: Sample a minibatch \mathcal{B}
697 3: **for** each $(x, q, \mathcal{O}, y, p_T)$ in \mathcal{B} **do**
698 4: **for** each $o_k \in \mathcal{O}$ **do**
699 5: compute $s_{\theta}(k)$ by equation 1
700 6: **end for**
701 7: form p_S by equation 3; compute \mathcal{L}_{ODD} by equation 4
702 8: **end for**
703 9: Update LoRA (and projector) parameters via AdamW
704 10: **end while**705 **Inference with budgeted routing (bTTA).**
706707 **Require:** instance (x, q, \mathcal{O}) , student S_{θ} , router g_{ω} , costs C_a , budget B , threshold τ

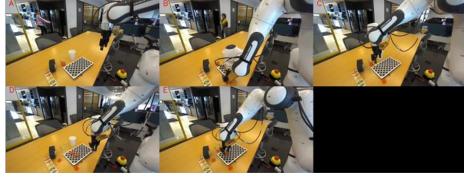
702
703
704
705
706
707
708
709
710
711
712
713

Figure 2: Letters

Q: The robot's task is to put the blue disc in the white cup and the orange discs in the clear cup. Which configuration shows the goal state that the robot should achieve?
 C: ['Configuration A', 'Configuration B', 'Configuration C', 'Configuration D', 'Configuration E']
 A: Configuration A

714
715
716
717
718
719
720
721
722

Figure 3: Colours

Q: In the image from ext2, which colored point is FARTHEST from the camera?
 C: ['None of the above', 'Purple', 'Red', 'Blue', 'Green']
 A: None of the above

```

723 1: Pass-1: get  $p_S$  and features  $\mathbf{f} = [p_{\max}, \Delta, H, \rho, \kappa, \dots]$ 
724 2:  $\mathcal{R} \leftarrow \emptyset; B_{\text{rem}} \leftarrow B$ 
725 3: for at most two rounds do
726 4:   For each  $a \in \mathcal{A}$  with  $C_a \leq B_{\text{rem}}$ , compute score  $u_a = g_{\omega}(\mathbf{f}, a)W_a/C_a$ 
727 5:   if all  $u_a < \tau$  then
728 6:     break
729 7:   end if
730 8:    $a^* \leftarrow \arg \max u_a$ ; apply  $a^*$ ;  $\mathcal{R} \leftarrow \mathcal{R} \cup \{a^*\}$ ;  $B_{\text{rem}} \leftarrow B_{\text{rem}} - C_{a^*}$ 
731 9:   Update  $p_S, \mathbf{f}$  (and memory if needed)
732 10: end for
733 11: Return final prediction by majority over  $\mathcal{R} \cup \{\text{pass-1}\}$  or max calibrated  $p_{\max}$ 
  
```

C DATASET ANALYSIS

Overview. Robo2VLM-1 is a panel-style robotic perception QA corpus with constrained option sets. The original release contains approximately 678k training items and 6.68k test items.

Our splits. We form three non-overlapping splits by *unique image identifier* to avoid leakage across partitions: a `train-kd` split used exclusively to build the teacher option-distribution cache and to train the ODD student, a `val` split for router calibration and temperature scaling, and the official `test` split for final reporting. Concretely, we subsample 6.78k items from the original 678k training pool as `val`, and use the remainder for `train-kd`.

Category. Robo2VLM-1 contains five constrained families: Fig. 2 Letters (choose A–E that matches the goal panel), Fig. 3 Colours (select the coloured point by a distance rule), Fig. 4 Arrows (choose the colored arrow that satisfies the described relation), Fig. 5 Instructions (pick the option consistent with a short instruction and the scene), and Fig. 6 Yes/No (queries about robot or scene state).

D CASE STUDY

We illustrate how *ODD + bTTA* behaves on three representative scenarios under constrained decoding. For each case, we show the input image, the router's chosen augmentation(s), and a short rationale.

756
757
758
759
760
761
762
763
764
765

Figure 4: Arrows

Q: The robot task is to take the blue cup from the left and move it to the right across the book. Which colored arrow correctly shows the direction the robot will move next?

C: ['Purple', 'None of the above', 'Yellow', 'Blue', 'Green']

A: None of the above

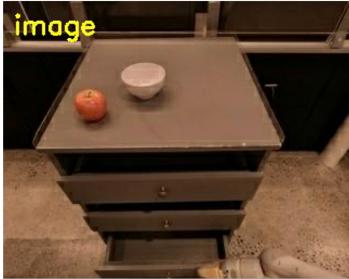
766
767

Figure 5: Instructions

Q: The robot is tasked to close bottom drawer. The robot is interacting with the drawer. Which phase of the grasp action is shown in the image?

C: ['Firmly grasping the drawer', 'Releasing the drawer by opening gripper', 'Approaching the drawer with open gripper', 'Closing gripper to grasp the drawer', 'Moving away with open gripper after releasing the drawer']

A: Closing gripper to grasp the drawer

778

Case A — Letters. The first pass is indecisive because several candidate panels share almost identical geometry and object placements. The router predicts that both higher spatial detail and structured checks could break ties, and triggers **Hi-Res** together with **tmRAG** (same-type exemplars) and **QD**. **tmRAG** nudges the model toward discriminative cues (e.g., specific contour junctions and relative offsets), while **QD** prunes inconsistent options via a few short checks. The subsequent **Hi-Res** re-evaluation clarifies fine edges and small gaps, aligning all signals on a single panel and fixing the initial mistake.

785

786

Case B — Arrows. At the default resolution, multiple elongated structures resemble arrow shafts or heads. The router detects that uncertainty mainly stems from local visual detail rather than missing priors, so it triggers only **Hi-Res**. Higher short-edge resolution makes the arrowhead orientation and shaft continuity unambiguous; the decision flips to the correct option without requiring retrieval or decomposition.

791

792

Case C — Colours. The first pass confuses nearby colored markers due to tiny blobs, slanted edges, and mild occlusion. The router fires **Hi-Res** to sharpen boundaries and **tmRAG** to anchor color naming with in-domain exemplars. Although edges become cleaner, the retrieved exemplars do not fully match the viewpoint and lighting, and residual aliasing between adjacent markers remains. The final choice stays incorrect, exposing a failure mode where **HR+tmRAG** is insufficient without an additional structural check (e.g., verifying spatial constraints) or stronger color normalization.

799

800

E RETRIEVE-AUGMENTED INFERENCE ANALYSIS

801
802
803
804
805

We report the fraction of evaluation items for which the **tmRAG** was actually executed (“hit rate”). The per-type usage on Robo2VLM-1 is: colors 18.57%, arrows 22.18%, letters 15.28%, yes/no 19.51%, and instructions 4.48%, the overall **tmRAG** usage equals their sum, **80.02%** of all items (Table 3).

806
807
808
809

tmRAG yields the least utility on instruction-type questions, as evidenced by the router rarely triggering it (only 4.48%). This aligns with the nature of such items: the decision hinges more on following a short procedural rule or template than on recalling domain exemplars. Two factors suppress **tmRAG**’s gain here: (i) instruction phrasings vary widely across panels, lowering retrieval affinity and increasing the risk that injected exemplars are off-pattern; (ii) when exemplars do not

810
811
812 **image**
813
814
815
816
817
818
819
820
821

Figure 6: Yes/No

Q: Is the robot's gripper open?

C: ['Partially open', 'Yes', 'No', 'Cannot be determined']

A: Yes

Q: The robot's task is to remove the black pen from the white mug. Which configuration shows the goal state that the robot should achieve?

C: ['Configuration D', 'Configuration B', 'Configuration E', 'None of the above', 'Configuration C']

GT: None of the above

822
823
824
825
826
827
828

ODD result: Configuration D - X **Wrong**
bTTA choice route: RAG+QD+Hi-Res
Full result: None of the above - ✓ **Correct**

Question Decomposition:

1) Are the target objects correctly identified (a black pen and a white mug)?	Ans: Yes
2) Is the black pen completely outside the mug (nothing crossing the rim plane)?	Ans: No
3) Is the mug empty and upright, with the pen no longer contacting the mug's inner cavity?	Ans: No

836 Figure 7: **Letters.** Select the panel (A–E) whose layout best matches the query view; several candidates appear near-duplicate at default resolution.
837

838
839

840 structurally match the required steps, they can introduce irrelevant cues and dilute the option distribution. In contrast, arrows (22.18%) and, to a lesser extent, yes/no and colors benefit more from 841 tmRAG because type-consistent exemplars provide stable visual–verbal anchors (e.g., orientation 842 disambiguation, color naming) that the student can reliably reuse under constrained decoding. Practically, we gate tmRAG for instruction-type items more conservatively and prefer QD or HR when 843 the router predicts a higher net gain.
844

845
846

F ROUTING DIAGNOSTICS AND BUDGET SENSITIVITY

847
848
849
850
851
852
853
854

We analyze how the router allocates test-time compute under an explicit average budget B for $ODD + bTTA$ and how this translates into accuracy. Actions are binary with fixed per-trigger costs $(C_{HR}, C_{tmRAG}, C_{QD}) = (0.50, 0.30, 0.35)$, and the base constrained pass costs 1.00. Sweeping the calibrated threshold τ changes the trigger composition, yielding a discrete accuracy–budget frontier. The average budget is

$$B = 1.0 + 0.50 \text{ Trig}(HR) + 0.30 \text{ Trig}(tmRAG) + 0.35 \text{ Trig}(QD),$$

855
856
857
858
859
860

where $\text{Trig}(a)$ is the fraction of items for which action a fires. We report six operating points $B \in \{1.00, 1.17, 1.29, 1.53, 1.95, 2.00\}$, chosen to align with the empirical quantiles of HR usage (approximately 0/25/40/60/90%) and a round budget cap at 2.00.

861
862
863

Budget–accuracy frontier. Figure 10 plots accuracy versus B . bTTA concentrates compute on instances predicted to benefit, raising accuracy from 42.9% at $B=1.00$ (ODD only) to 46.1/47.3/49.3% at $B=1.17/1.29/1.53$, and further to **50.4% at $B=1.95$** and **50.5% at $B=2.00$** . Gains saturate as easy wins are exhausted.

864
865
866
867
868
869
870
871

Q: The robot task is to remove the black lid from the grey pot on the stove and place it inside the sink. Which colored arrow correctly shows the direction the robot will move next?

C: ['Yellow', 'Purple', 'Red', 'Blue', 'Green']

GT: Red

872 ODD result:Blue - X **Wrong**
873 bTTA choice route: Only Hi-Res
874 Full result: Red - ✓ **Correct**

Figure 8: **Arrows.** Decide which colored arrow satisfies the described direction/relation in a cluttered kitchen scene.

878
879
880
881
882
883
884
885
886

Q: In the image from ext2, which colored point is FARTHEST from the camera?

C: ['Purple', 'Green', 'Yellow', 'Blue', 'Red']

GT: Green

887 ODD result:Purple - X **Wrong**
888 bTTA choice route: RAG+Hi-Res
889 Full result: Yellow - X **Wrong**

891 Figure 9: **Colours.** Identify the correct colored target in a tilted view where small markers and
 892 partial occlusions make boundaries ambiguous.

893
894
895
896

Trigger compositions. Table 4 shows the trigger rates that realize each budget; all increase monotonically. tmRAG fires when same-type affinity is high, HR when uncertainty is high, and QD when short decompositions agree, matching Sec. 3.2.2.

897

899
900
901
902

Feature importance. A calibrated logistic gain model confirms that HR is most sensitive to entropy H , tmRAG to same-type affinity ρ , and QD to agreement κ , consistent with the design (details in Appendix).

903

904

905

G. ROUTING BASELINES: CONFIDENCE THRESHOLD AND EARLY EXIT

907
908
909
910
911
912
913
914

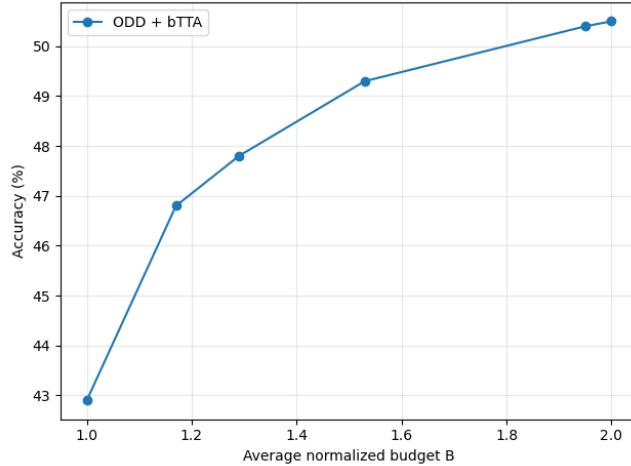
We next compare our budgeted router against two classic dynamic-compute policies under the same average budget B (base pass costs 1.00; actions: HR=0.50). The *HR-Threshold* baseline fires Hi-Res if $p_{\max} < \tau_p$; the *Early-Exit (one-branch)* baseline accepts the pass-1 decision if the margin Δ exceeds τ_Δ and otherwise runs Hi-Res. Table 5 reports accuracy and calibration at three budgets aligned with our sweep in §F. Our router consistently outperforms single-signal gating by +1.4–2.2 Acc at matched B , while also lowering ECE and AURC. The gains stem from exploiting multiple inexpensive signals (entropy, margin), retrieval affinity, and agreement across short decompositions to decide when and what to spend.

915
916
917

At equal average budgets, single-trigger policies that only escalate to Hi-Res leave accuracy on the table and remain less calibrated. Our multi-signal router provides consistent improvements by tailoring both the depth (whether to escalate) and the type (HR vs. retrieval vs. QD) of extra compute per instance.

918 Table 3: tmRAG routing frequency by constrained type on Robo2VLM-1 (share of all evaluated
 919 items).

Type	Routed (%)
Colors	18.57
Arrows	22.18
Letters	15.28
Yes/No	19.51
Instructions	4.48
Total (any tmRAG)	80.02



947 Figure 10: Accuracy-budget frontier on Robo2VLM-1 with *ODD + bTTA*. Points are $B \in$
 948 $\{1.00, 1.17, 1.29, 1.53, 1.95, 2.00\}$.

H HALLUCINATION ANALYSIS

954 We quantify different facets of hallucination under constrained decoding using six proxies: (i) *Invalid-Option Rate* (IOR): fraction of outputs not in the allowed option set; (ii) *None-of-the-Above*
 955 *misuse* (NOA): fraction of cases where “None of the above” is predicted but contradicted by the
 956 image/goal; (iii) *Flip*: fraction of examples whose final label differs from the first-pass label (a
 957 measure of how often the router forces a change); (iv) *Mean p_{\max} on wrong* (HO_mean_wrong):
 958 average confidence on incorrect predictions; (v) *Over-Confident Wrong @ 0.7* (OCW@0.7): share
 959 of wrong predictions with $p_{\max} \geq 0.7$; and (vi) contradiction rates tied to optional augmentations:
 960 *RCR* (retrieval-contradiction rate, share of routed-to-RAG cases where retrieved exemplars point to
 961 a label inconsistent with the image-consistent answer) and *QDC* (QD-contradiction, share of QD
 962 runs whose intermediate checks conflict with the final option).

963 Table 6 shows that the constrained interface eliminates string-form hallucinations (IOR = 0 across
 964 all settings), while decision-level misuse of the “None of the above” sentinel is substantially re-
 965duced but not fully removed, dropping from **1.08%** (zero-shot) to **0.37%** (ODD pass-1) and **0.22%**
 966 (ODD+bTTA). The router then actively revises uncertain cases: the final stage **flips 26.71%** of labels
 967 relative to pass-1, converting many first-pass errors into correct answers, at the cost of a slight in-
 968 crease in the average confidence on the remaining mistakes (HO_MEAN_WRONG **0.2678** → **0.2946**);
 969 crucially, the tail of over-confident errors shrinks markedly (OCW@0.7 **4.18%** → **0.27%** → **0.19%**).
 970 Augmentation-conditioned diagnostics localize residual risks: retrieval can inject conflicting cues
 971 (**RCR = 21.73%**), whereas QD is largely but not perfectly self-consistent once gated (**QDC =**
1.74%).

972 Table 4: Threshold sweep for *ODD + bTTA*: trigger rates that realize each budget B (base cost 1.00;
 973 action costs 0.50/0.30/0.35).

B	HR trig.	tmRAG trig.	QD trig.	Acc (%)
1.00	0%	0%	0%	42.9
1.17	25%	10%	4.3%	46.1
1.29	40%	20%	8.6%	47.3
1.53	60%	40%	31.4%	49.3
1.95	90%	80%	74.3%	50.4
2.00	90%	80%	88.6%	50.5

983 Table 5: Routing/dynamic-compute baselines on Robo2VLM-1 (teacher LLaVA-13B \rightarrow student
 984 ODD; constrained decoding). Budgets $B \in \{1.29, 1.53, 1.95\}$ match the sweep in §F.

Method @ Budget B	HR trig.	tmRAG trig.	QD trig.	Acc (%) \uparrow	ECE \downarrow	AURC \downarrow
HR-Threshold @ 1.29	40%	0%	0%	45.7	0.233	0.3209
Early-Exit @ 1.29	35%	0%	0%	45.1	0.238	0.3216
bTTA (ours) @ 1.29	40%	20%	8.6%	47.3	0.219	0.3176
HR-Threshold @ 1.53	60%	0%	0%	47.6	0.226	0.3198
Early-Exit @ 1.53	55%	0%	0%	46.9	0.229	0.3204
bTTA (ours) @ 1.53	60%	40%	31.4%	49.3	0.197	0.3160
HR-Threshold @ 1.95	90%	0%	0%	49.1	0.221	0.3189
Early-Exit @ 1.95	85%	0%	0%	48.7	0.223	0.3193
bTTA (ours) @ 1.95	90%	80%	74.3%	50.4	0.172	0.3115

I POWER AND ENERGY.

We log board power at 50 ms granularity on the same single-GPU host and integrate over action windows. Using the per-trigger durations and power (HR: 1.05 s/175 W, tmRAG: 0.40 s/110 W, QD: 0.65 s/160 W) and a base constrained pass of 7.45 s/165 W (1,229 J), Table 7 converts the unified trigger rates from Appendix F into per-query energy. At the mid-budget operating point $B=1.53$ (HR/tmRAG/QD trigger rates 60%/40%/31.4%), the added energy over the base is 160.7 J, for a total of 1,389.7 J and a +6.4 Acc gain (42.9% \rightarrow 49.3%), i.e., ~ 25.1 J per additional accuracy point. At the budget cap $B=2.00$ (90%/80%/88.6%), the total reaches 1,521.9 J for 50.5% accuracy, i.e., ~ 38.6 J per additional point versus the ODD baseline. Energy scales nearly linearly with B and is dominated by the base pass; among actions, HR contributes most, tmRAG is lightest, and QD lies between. Absolute wattage can vary across devices; relative trends are robust under the same pipeline.

J ADDITIONAL TABLES

K DECLARATION OF LLM USAGE

During the preparation of this manuscript, large language models were used only to improve the clarity of writing.

Table 6: Hallucination proxies on Robo2VLM-1 under **constrained decoding** for all settings. **Zero-shot** uses the undistilled Qwen2-VL-2B (single constrained pass). **Pass-1** uses the ODD student (single pass). **Final** uses ODD + bTTA (HR + tmRAG + QD when routed). Lower is better for all metrics except *Flip*.

Metric	Zero-shot (no ODD)	Pass-1 (ODD)	Final (ODD + bTTA)
Invalid-Option Rate (IOR)	0.00%	0.00%	0.00%
None-of-the-Above misuse (NOA) ↓	1.08%	0.37%	0.22%
Flip (label changed)	0.00%	0.00%	26.71%
Mean p_{\max} on wrong (HO_mean_wrong) ↓	0.3312	0.2678	0.2946
OCW@0.7 (over-confident wrong) ↓	4.18%	0.27%	0.19%
RCR (retrieval contradiction) ↓	—	—	21.73%
QDC (QD contradiction) ↓	—	—	1.74%

Table 7: Power/energy on Robo2VLM-1 (batch=1, single GPU). “Energy/Trigger” = Power × Duration. Trigger rates at $B=1.53$ are 60%/40%/31.4% for HR/tmRAG/QD; at $B=2.00$ are 90%/80%/88.6%. Totals are base energy (1,229 J) plus per-action contributions.

Action / Stage	Avg Power (W)	Dur./Trigger (s)	Energy/Trigger (J)	Contrib@1.53 (J)	Contrib@2.00 (J)
Pass-1 (ODD)	165	7.45	1,229	— (base)	
HR	175	1.05	184	110.4	165.6
tmRAG	110	0.40	44	17.6	35.2
QD	160	0.65	104	32.7	92.1
Total energy / query (J)	—			1,389.7	1,521.9

Table 8: Calibration and selective-computation metrics on Robo2VLM-1. We report negative log-likelihood (NLL), Brier score, Expected Calibration Error (ECE), and area under the risk–coverage curve (AURC). All methods share the same constrained decoding and prompt template; temperature calibration is fitted on validation only.

Variant	NLL ↓	Brier ↓	ECE ↓	AURC ↓
<i>Teacher: LLaVA-1.5-13B</i>				
Qwen2 VL-2B distilled by LLaVA-13B	1.4717	0.6843	0.2440	0.3198
+ tmRAG	1.4578	0.6791	0.2295	0.3181
+ QD	1.4464	0.6748	0.2175	0.3166
+ tmRAG + QD	1.4367	0.6715	0.2080	0.3157
+ HR	1.4354	0.6709	0.2063	0.3155
+ HR + tmRAG	1.4196	0.6650	0.1899	0.3135
+ HR + QD	1.4136	0.6630	0.1842	0.3131
+ HR + tmRAG + QD	1.3984	0.6574	0.1685	0.3113
<i>Teacher: LLaVA-1.5-7B</i>				
Qwen2 VL-2B distilled by LLaVA-7B	1.5200	0.7005	0.2700	0.3245
+ tmRAG	1.5113	0.6972	0.2608	0.3234
+ QD	1.5033	0.6942	0.2524	0.3223
+ tmRAG + QD	1.4942	0.6910	0.2434	0.3215
+ HR	1.4866	0.6882	0.2354	0.3205
+ HR + tmRAG	1.4803	0.6857	0.2287	0.3196
+ HR + QD	1.4752	0.6841	0.2239	0.3193
+ HR + tmRAG + QD	1.4586	0.6779	0.2066	0.3173
<i>Teacher: Qwen2.5-VL-7B</i>				
Qwen2 VL-2B distilled by Qwen2.5-VL-7B	1.4950	0.6920	0.2560	0.3218
+ tmRAG	1.4827	0.6874	0.2431	0.3202
+ QD	1.4750	0.6845	0.2350	0.3192
+ tmRAG + QD	1.4639	0.6806	0.2240	0.3182
+ HR	1.4631	0.6798	0.2230	0.3174
+ HR + tmRAG	1.4481	0.6746	0.2073	0.3161
+ HR + QD	1.4431	0.6729	0.2025	0.3158
+ HR + tmRAG + QD	1.4321	0.6688	0.1910	0.3144

Table 9: Comparison on Robo2VLM-1 (Acc %). All methods share the same constrained decoding and prompt template.

Model	Params (B)	Acc (%)
LLaVA 1.5-7B (zero-shot)	7	21.58
LLaVA 1.5-13B (teacher, zero-shot)	13	36.74
Qwen2 VL-2B (zero-shot)	2	28.66
Qwen2 VL-2B <i>distilled by</i> LLaVA-7B	2	38.53
+ tmRAG	2	39.49
+ QD	2	40.36
+ tmRAG + QD	2	41.44
+ HR	2	42.27
+ HR + tmRAG	2	42.96
+ HR + QD	2	43.58
+ HR + tmRAG + QD	2	45.43
Qwen2 VL-2B <i>distilled by</i> Qwen2.5-VL-7B	2	40.52
+ tmRAG	2	41.80
+ QD	2	42.59
+ tmRAG + QD	2	43.81
+ HR	2	43.18
+ HR + tmRAG	2	45.44
+ HR + QD	2	46.02
+ HR + tmRAG + QD	2	47.16
Qwen2 VL-2B <i>distilled by</i> LLaVA-13B	2	42.89
+ tmRAG	2	44.31
+ QD	2	45.47
+ tmRAG + QD	2	46.52
+ HR	2	46.64
+ HR + tmRAG	2	48.25
+ HR + QD	2	48.92
+ HR + tmRAG + QD	2	50.50

(a) GPU memory usage (MB). Distillation cuts memory by 88.7% vs the 13B teacher; enabling all augmentations adds only 782 MB.

(b) Latency on Robo2VLM-1 for the LLaVA-13B → Qwen2-VL-2B setting (batch=1, single GPU). bTTA includes HR/tmRAG/QD only when routed.

Variant	GPU Memory (MB)	Notes
LLaVA 1.5-13B (teacher, zero-shot)	26,878	reference large model
Qwen2 VL-2B (zero-shot)	5,144	compact baseline
Qwen2 VL-2B <i>distilled</i> (ODD) + HR + tmRAG + QD (ours, full)	3,035 3,817	↓88.7% vs 13B; ↓41.0% vs 2B ↓85.8% vs 13B; ↓25.8% vs 2B

	Pass-1 only	bTTA overhead	End-to-end
Mean per-question latency (s)	7.45	1.52	8.97
Share of total	83.1%	16.9%	100%
Throughput (items/min)	–	–	6.69

Table 10: (a) Memory and (b) latency