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Abstract

Detecting the user’s intent and finding the corre-001
sponding slots among the utterance’s words are002
important tasks in natural language understand-003
ing. Their interconnected nature makes their004
joint modeling a standard part of training such005
models. Moreover, data scarceness and special-006
ized vocabularies pose additional challenges.007
Recently, the advances in pre-trained language008
models, namely contextualized models such009
as ELMo and BERT have revolutionized the010
field by tapping the potential of training very011
large models with just a few steps of fine-tuning012
on a task-specific dataset. Here, we leverage013
such models, and we design a novel architec-014
ture on top of them. Moreover, we propose015
an intent pooling attention mechanism, and we016
reinforce the slot filling task by fusing intent017
distributions, word features, and token repre-018
sentations. The experimental results on stan-019
dard datasets show that our model outperforms020
both the current non-BERT state of the art as021
well as stronger BERT-based baselines.022

1 Introduction023

With the proliferation of portable devices, smart024

speakers, and the evolution of personal assistants,025

such as Amazon Alexa, Apple Siri, Google Assis-026

tant, and Microsoft Cortana, a need for better nat-027

ural language understanding (NLU) has emerged.028

Moreover, many Web platforms and applications029

that interact with the users depend on the abili-030

ties of an internal NLU component, e.g., customer031

service with social media (Huang et al., 2021), in032

dialogue systems in general (Zeng et al., 2021), for033

web queries understanding (Tsur et al., 2016; Ye034

et al., 2016), and general understanding of natural035

language interaction (Vedula et al., 2020). The ma-036

jor challenges such systems face are (i) finding the037

intention behind the user’s request, and (ii) gath-038

ering the necessary information to complete it via039

slot filling, while (iii) engaging in a dialogue with040

the user.041

Intent PlayMusic

Words play music from 2005 by justin broadrick
↓ ↓ ↓ ↓ ↓ ↓ ↓

Slots O O O B-year O B-artist I-artist

Table 1: Example from the SNIPS dataset with slots
encoded in the BIO format. The utterance’s intent is
PlayMusic, and the given slots are year and artist.

Table 1 shows a user request collected from a per- 042

sonal voice assistant. Here, the intent is to play 043

music by the artist Justin Broadrick from year 2005. 044

The slot filling task naturally arises as a sequence 045

tagging task. Conventional neural network archi- 046

tectures, such as RNNs or CNNs are appealing 047

approaches to tackle this problem. Various exten- 048

sions thereof can be found in previous work (Xu 049

and Sarikaya, 2013a; Goo et al., 2018; Hakkani- 050

Tür et al., 2016; Liu and Lane, 2016; E et al., 2019; 051

Gangadharaiah and Narayanaswamy, 2019). More- 052

over, sequence tagging approaches such as Maxi- 053

mum Entropy Markov model (MEMM) (Toutanvoa 054

and Manning, 2000; McCallum et al., 2000) and 055

Conditional Random Fields (CRF) (Lafferty et al., 056

2001; Jeong and Lee, 2008; Huang et al., 2015) 057

have been added on top to enforce better modeling 058

of the dependencies between the posteriors for the 059

slot filling task. Recent work has introduced other 060

methods such as hierarchical structured capsule 061

networks (Xia et al., 2018; Zhang et al., 2019), and 062

graph interactive networks (Qin et al., 2020). 063

In this work, we investigate the usefulness of 064

pre-trained models for the Natural Language Un- 065

derstanding (NLU). Our approach is based on 066

BERT (Devlin et al., 2019) and its successor 067

RoBERTa (Liu et al., 2019). That model offer 068

two main advantages over previous ones (Hakkani- 069

Tür et al., 2016; Xu and Sarikaya, 2013a; Gan- 070

gadharaiah and Narayanaswamy, 2019; Liu and 071

Lane, 2016; E et al., 2019; Goo et al., 2018): 072

(i) they are based on the Transformer architec- 073
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(a) BERT-Joint. (b) Transformer-NLU (ours).

Figure 1: Model architectures for joint learning of intent and slot filling: (a) classical joint learning with
BERT/RoBERTa, and (b) proposed enhanced version of the model.

ture (Vaswani et al., 2017), which allows them to074

use bi-directional context when encoding the to-075

kens instead of left-to-right (as in RNNs) or limited076

windows (as in CNNs), and (ii) the model is trained077

on huge unlabeled text collections, which allows078

it to leverage relations learned during pre-training,079

e.g., that Justin Broadrick is connected to music or080

that San Francisco is a city.081

We further adapt the pre-trained models for the082

NLU tasks. For the intent, we introduce a pooling083

attention layer, which uses a weighted sum of the084

token representations from the last language mod-085

elling layer. Moreover, we reinforce the slot repre-086

sentation with the predicted intent distribution, and087

word features such as predicted word casing, and088

named entities. To demonstrate its effectiveness,089

we evaluate it on two publicly available datasets:090

ATIS (Hemphill et al., 1990) and SNIPS (Coucke091

et al., 2018)092

Our contributions can be summarized as follows:093

• We enrich a pre-trained language model, such094

as BERT or RoBERTa, to jointly solve the095

tasks of intent classification and slot filling.096

• We introduce an additional pooling network097

from the intent classification task, allowing098

the model to obtain the hidden representation099

from the entire sequence.100

• We use the predicted user intent as an explicit101

guide for the slot fitting layer rather than just102

depending on the language model103

• We reinforce the slot learning with features104

such as named entity and true case annota-105

tions.106

• We present exhaustive analysis of the task- 107

related knowledge in the pre-trained model, 108

for both datasets. 109

2 Proposed Approach 110

We propose a joint approach for intent classifica- 111

tion and slot filling built on top of a pre-trained lan- 112

guage model. We further improve the base model 113

in three ways: (i) for intent detection, we obtain a 114

pooled representation from the last hidden states for 115

all tokens (Section 2.1), (ii) we obtain predictions 116

for the word case and named entities for each to- 117

ken (word features), and (iii) we feed the predicted 118

intent distribution vector, BERT’s last hidden rep- 119

resentations, and word features into a slot filling 120

layer (see Section 2.2). The complete architecture 121

of the model is shown in Figure 1b. 122

2.1 Intent Pooling Attention 123

Here, the task is to jointly learn the two strongly 124

correlated tasks, i.e., intent detection and slot filling. 125

Hereby, using the pooled representation from the 126

[CLS] token can miss important information about 127

the slots’ tags when used as an input for predicting 128

the users’ intent. We hypothesise that using the 129

token-level representation obtained from the last 130

layer before the slot projection one can help the 131

model in learning the intent detection task, as these 132

representations contain important task-specific in- 133

formation. 134

Therefore, we introduce a pooling attention layer 135

to better model the relationship between the task- 136

specific representations for each token and for the 137

intent. We further adopt a global concat atten- 138

tion (Luong et al., 2015) as a throughput mech- 139

anism. Namely, we learn an alignment function to 140
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predict the attention weights αint for each token.141

We obtain the latter by multiplying the outputs from142

the language model H ∈ RN×dh by a latent weight143

matrix Wint_e ∈ Rdh×dh , where N is the number144

of tokens in an example and dh is the hidden size of145

the Transformer. This is followed by a non-linear146

tanh activation. In order to obtain importance logit147

for each token, we multiply the latter by a projec-148

tion vector v ∈ Rdh (shown in Eq. 1). We further149

normalize and scale (Vaswani et al., 2017) to obtain150

the attention weights.151

αint = softmax(
v · tanh(Wint_e ·HT )√

dh
) (1)152

hint = tanh(
N∑
i=1

αi
inth

i
enc) (2)153

yint = Winth
T
int + bint (3)154

Finally, we gather a hidden representation hint as155

a weighted sum of all attention inputs, and we pass156

it through a tanh activation (see Eq. 2). For the157

final prediction, we use a linear projection on top158

of hint. We apply dropouts on hint, and on the159

attention weights (Vaswani et al., 2017).160

2.2 Slots Modeling161

The task of slot filling is closely related to tasks162

such as part-of-speech (POS) tagging and named163

entity recognition (NER). Also, it can benefit from164

knowing the interesting entities in the text. There-165

fore, we reinforce the slot filling with tags found by166

a named entity recognizer (word features). Next,167

we combine the intent prediction, the language168

model’s hidden representations, and some extracted169

word features into a single vector used for token170

slot attribution. Details about all components are171

discussed below.172

Word Features A major shortcoming of having173

free-form text as an input is that it tends not to174

follow basic grammatical principles or style rules.175

The casing of words can also guide the models176

while filling the slots, i.e., upper-case words can177

refer to names or to abbreviations. Also, knowing178

the proper casing enabled the use of external NERs179

or other tools that depend on the text quality.180

As a first step, we improve the text casing us-181

ing a TrueCase model from CoreNLP. The model182

maps the words into the following classes: UP-183

PER, LOWER, INIT_UPPER, and O, where O is184

for mixed-case words such as McVey. With the text185

re-cased, we further extract the named entities with 186

a NER annotator. Named entities are recognized 187

using a combination of three CRF sequence tag- 188

gers trained on various corpora. Numerical entities 189

are recognized using a rule-based system. Both 190

the truecaser and the NER model are part of the 191

Stanford CoreNLP toolkit (Manning et al., 2014). 192

Finally, we merge some entities ((job) title, ideol- 193

ogy, criminal charge) into a special category other 194

as they do not correlate directly to the domains of 195

either dataset. Moreover, we add a custom regex- 196

matching entry for airport_code, which are three- 197

letter abbreviations of the airports. The latter is 198

specially designed for the ATIS (Tur et al., 2010) 199

dataset. While, marking the proper terms, some 200

of the codes introduce noise, e.g., the proposition 201

for could be marked as an airport_code because 202

of FOR (Aeroporto Internacional Pinto Martins, 203

Fortaleza, CE, Brazil). In order to mitigate this 204

effect, we do a lookup in a dictionary of English 205

words, and if a match is found, we trigger the O 206

class for the token. 207

In order to allow the network to learn better fea- 208

ture representations for the named entities and the 209

casing, we pass them through a two-layer feed- 210

forward network. The first layer is shown in Eq. 5 211

followed by a non-linear PReLU activation, where 212

Ww ∈ R23×32. The second one is a linear projec- 213

tion fwords (Eq. 6), where Wproj ∈ R32×32. 214

siw = Ww[ners; cases] + bw (4) 215

hiw = max(0, siw) + α ∗min(0, siw) (5) 216

fwords(ners, cases) = Wprojh
i
w
T
+ bproj (6) 217

Sub-word Alignment Modern NLP approaches 218

suggest the use of sub-word units (Sennrich et al., 219

2016; Kudo and Richardson, 2018), which mitigate 220

the effects of rare words, while preserving the effi- 221

ciency of a full-word model. Although they are a 222

flexible framework for tokenization, sub-word units 223

require additional bookkeeping for the models in 224

order to maintain the original alignment between 225

words and their labels. 226

We first split the sentences into the original word- 227

tag pairs, we then disassemble each one into word 228

pieces (or BPE, in the case of RoBERTa). Next, 229

the original slot tag is assigned to the first word 230

piece, while each subsequent one is marked with 231

a special tag (X). Still, the word features from the 232

original token are copied to each unit. To align 233
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the predicted labels with the input tags, we keep a234

binary vector for the active positions.235

Slot Filling as Token Classification As in Devlin236

et al. (2019), we treat the slot filling as token clas-237

sification, and we apply a shared layer on top of238

each token’s representations to predict the tags.239

Furthermore, we assemble the feature vector for240

the ith slot by concatenating together the predicted241

intent probabilities, the word features, and the con-242

textual representation from the language model.243

Afterwards, we add a dropout followed by a linear244

projection to the proper number of slots:245

yis = Ws[softmax(yint); f
i
words;h

i
LM ] + bs (7)246

247 2.3 Interaction and Learning248

To train the model, we use a joint loss function249

Ljoint for the intent and for the slots. For both250

tasks, we apply cross-entropy over a softmax ac-251

tivation layer, except in the case of CRF tagging.252

In those experiments, the slot loss Lslot will be the253

negative log-likelihood (NLL) loss. Moreover, we254

introduce a new hyper-parameter γ to balance the255

objectives of the two tasks. Finally, we propagate256

the loss from all the non-masked positions in the se-257

quence, including word pieces, and special tokens258

([CLS], <s>, etc.). Note that we do not freeze any259

weights during fine-tuning.260

3 Experimental Setup261

Dataset In our experiments, we use two pub-262

licly available datasets, the Airline Travel Infor-263

mation System (ATIS) (Hemphill et al., 1990), and264

SNIPS (Coucke et al., 2018). The ATIS dataset265

contains transcripts from audio recordings of flight266

information requests, while the SNIPS dataset is267

gathered by a custom intent engine for personal268

voice assistants. Albeit both are widely used in269

NLU benchmarks, ATIS is substantially smaller –270

almost three times in terms of examples, and it con-271

tains s times less words. However, it has a richer272

set of labels, 21 intents and 120 slot categories,273

as opposed to the 7 intents and 72 slots in SNIPS.274

Another key difference is the diversity of domains275

– ATIS has only utterances from the flight domain,276

while SNIPS covers various subjects, including en-277

tertainment, restaurant reservations, weather fore-278

casts, etc. (see Table 2) Furthermore, ATIS allows279

multiple intent labels. As they only form about 2%280

of the data, we do not extend our model to multi-281

label classification. Yet, we add a new intent cate-282

ATIS SNIPS

Vocab Size 722 11,241
Average Sentence Length 11.28 9.05
#Intents 21 7
#Slots 120 72
#Training Samples 4,478 13,084
#Dev Samples 500 700
#Test Samples 893 700

Table 2: Statistics about the ATIS and SNIPS datasets.

gory for combinations seen in the training dataset, 283

e.g., utterance with intents flight and also airfare, 284

would be marked as airfare#flight. A comparison 285

between the two datasets is shown in Table 2. 286

Measures We evaluate our models with three 287

well-established evaluation metrics. The intent de- 288

tection performance is measured in terms of ac- 289

curacy. For the slot filling task, we use F1-score. 290

Finally, the joint model is evaluated using sentence- 291

level accuracy, i.e., proportion of examples in the 292

corpus, whose intent and slots are both correctly 293

predicted. Here, we must note that during evalua- 294

tion we consider only the predictions for aligned 295

words (we omit special tokens, e.g., [CLS], [SEP], 296

<s>, </s>) and word pieces). 297

Baselines For our baseline models, we use 298

BERT (Devlin et al., 2019) and RoBERTa (Liu 299

et al., 2019), which we fine-tune. Details about the 300

state-of-the-art model are shown in Appendix A.2. 301

The model’s architecture is shown in Figure 1a. 302

• BERT For training the model, we follow 303

the fine-tuning procedure proposed by Devlin 304

et al. (2019). We train a linear layer over the 305

pooled representation of the special [CLS] to- 306

ken to predict the utterance’s intent. The latter 307

is optimized during pre-training using the next 308

sentence prediction (NSP) loss to encode the 309

whole sentence. Moreover, we add a shared 310

layer on top of the last hidden representations 311

of the tokens in order to obtain a slot predic- 312

tion. Both objectives are optimized using a 313

cross-entropy loss. 314

• RoBERTa This model follows the same train- 315

ing procedure as BERT, but drops the NSP 316

task during pre-training. Still, the intent loss 317

is attached to the special start token <s>. 318
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ATIS SNIPS

Model Intent (Acc) Sent. (Acc) Slot (F1) Intent (Acc) Sent. (Acc) Slot (F1)

Joint Seq. (Hakkani-Tür et al., 2016) 92.60 80.70 94.30 96.90 73.20 87.30
Atten.-Based (Liu and Lane, 2016) 91.10 78.90 94.20 96.70 74.10 87.80
Sloted-Gated (Goo et al., 2018) 95.41 83.73 95.42 96.86 76.43 89.27
Capsule-NLU (Zhang et al., 2019) 95.00 83.40 95.20 97.30 80.90 91.80
Interrelated SF-First (E et al., 2019) 97.76 86.79 95.75 97.43 80.57 91.43
Interrelated ID-First (E et al., 2019) 97.09 86.90 95.80 97.29 80.43 92.23
Stack-Propagation (Qin et al., 2019) 96.9 86.5 95.9 98.0 86.9 94.2
AGIF (Qin et al., 2020) 97.1 87.2 96.0 98.1 87.3 94.8

BERT-Joint 97.42 87.57 95.74 98.71 91.57 96.27
RoBERTa-Joint 97.42 87.23 95.32 98.71 90.71 95.85

Transformer-NLU:BERT 97.87 88.69 96.25 98.86 91.86 96.57

Transformer-NLU:RoBERTa 97.76 87.91 95.65 98.86 92.14 96.35
Transformer-NLU:BERT w/o Slot Features 97.87 88.35 95.97 98.86 91.57 96.25
Transformer-NLU:BERT w/ CRF 97.42 88.26 96.14 98.57 92.00 96.54

Table 3: Intent detection and slot filling results on the SNIPS and the ATIS datasets. The best results in each category
are in bold. Our models are in italic; the non-italic models on top come from the literature. Qin et al. (2019, 2020)
report single-precision results.

4 Experiments and Analysis319

Evaluation Results Table 3 presents quantitative320

evaluation results in terms of (i) intent accuracy,321

(ii) sentence accuracy, and (iii) slot F1.The first322

part of the tables refers to previous work, whereas323

the second part presents our experiments and is324

separated with a double horizontal line.325

While, models become more accurate, the abso-326

lute difference between two experiments becomes327

smaller and smaller, thus a better measurement is328

needed. Hereby, we introduce a fine-grained mea-329

sure, i.e., Relative Error Reduction (RER) percent-330

age, which is defined as the proportion of absolute331

error reduced by a modela compared to modelb.332

RER = 1− Errormodela

Errormodelb

(8)333

Table 4 shows the error reduction by our model334

compared to the current SOTA (see Appx. A.2), and335

to a BERT-based baselines (see Section 3). Since336

there is no single best model from the SOTA, we337

take the per-column maximum among all, albeit338

they are not recorded in a single run. For the ATIS339

dataset, we see a reduction of 11.64% (1.49 points340

absolute) for sentence accuracy, and 6.25% (0.25341

points absolute) for slot F1, but just 4.91% for in-342

tent accuracy (see Table 3). Such a small improve-343

ment can be due to the quality of the dataset and344

to its size. For the SNIPS dataset, we see major345

increase in all measures and over 35% error reduc- 346

tion. In absolute terms, we have 0.76 for intent, 347

4.84 for sentence, and 1.77 for slots (see Table 3). 348

This effects cannot be only attributed to the better 349

model (discussed in the analysis below), but also 350

to the implicit information that BERT learned dur- 351

ing its extensive pre-training. This is especially 352

useful in the case of SNIPS, where fair amount 353

of the slots in categories like SearchCreativeWork, 354

SearchScreeningEvent, AddToPlaylist, PlayMusic 355

are names of movies, songs, artists, etc. 356

Transformer-NLU Analysis We dissect the pro- 357

posed model by adding or removing prominent 358

components to outline their contributions. The 359

results are shown in the second part of Table 3. 360

First, we compare the results of BERT-Joint and 361

the enriched model Transformer-NLU:BERT. We 362

can see a notable reduction of the intent classifi- 363

cation error by 17.44% and 11.63% for the ATIS 364

and the SNIPS dataset, respectively. Furthermore, 365

we see a 19.87% (ATIS) and 17.35% (SNIPS) er- 366

ror reduction in slot’s F1, and 11.43% (ATIS) and 367

11.63% (SNIPS) for sentence accuracy. We also try 368

RoBERTa as a backbone to our model: while we 369

still see the positive effect of the proposed archi- 370

tecture, the overall results are slightly worse. We 371

attribute this to the different set of pre-training data 372

(CommonCrawl vs. Wikipedia). We further focus 373

our analysis on BERT-based models, since they 374

performed better than RoBERTa-based ones. We 375
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further report models’ variability in Appendix B.1.376

Next, we remove the additional slot features – pre-377

dicted intent, word casing, and named entities. The378

results are shown as Transformer-NLU:BERT w/o379

Slot Features. As expected, the intent accuracy re-380

mains unchanged for both datasets, since we retain381

the pooling attention layer, while the F1-score for382

the slots decreases. For SNIPS, the model achieved383

the same score as for BERT-Joint, while for ATIS384

it was within 0.2 points absolute.385

Finally, we added a CRF layer on top of the slot386

network, since it had shown positive effects in ear-387

lier studies (Xu and Sarikaya, 2013a; Huang et al.,388

2015; Liu and Lane, 2016; E et al., 2019). We389

denote the experiment as Transformer-NLU:BERT390

w/ CRF. However, in our case it did not yield the391

expected improvement. The results for slot filling392

are close to the highest recorded, while a drastic393

drop in intent detection accuracy is observed, i.e., -394

17.44% for ATIS, and -20.28% for SNIPS. We at-395

tribute this degradation to the large gradients from396

the NLL loss. The effect is even stronger in the397

case of smaller datasets, making the optimization398

unstable for parameter-rich models such as BERT.399

We tried to mitigate this issue by increasing the γ400

hyper-parameter, effectively reducing the contribu-401

tion of the slot’s loss Lslot to the total, which in402

turn harmed the slot’s F1. Moreover, the model403

does swap interchangeable slots, rather than the B-404

and I- prefixes, or slots unrelated to the intent (see405

the Error Analysis below).406

BERT Knowledge Analysis As we start to un-407

derstand better BERT-based large pre-trained trans-408

former models (Petroni et al., 2019; Rogers et al.,409

2020), we also start to observe some interesting410

phenomena. BERT is trained on Wiki articles,411

which allows it to learn implicit information about412

the world in addition to learning knowledge about413

language itself. Here, we evaluate how that for-414

mer type of knowledge reflects on the two NLU415

evaluation datasets. As a first step, we extract all416

the slot phrases from the training sets, i.e., all the417

words in the slot sequence. Next, we send the latter418

as a query to Wikipedia and we collect the article419

titles. Then, we try to match the phrase with an ex-420

tracted title. In order to reduce the false negatives,421

we normalize both texts (strip punctuation, replace422

digits with zeros, lower-case), allow difference of423

one character between the two, and finally if the424

title starts with the phrase, we count it as a match425

Metric Relative Error Reduction

ATIS
Intent (Acc) 4.91% 17.44%
Sent. (Acc) 11.64% 11.43%
Slot (F1) 6.25% 19.87%

SNIPS
Intent (Acc) 40.00% 11.63 %
Sent. (Acc) 35.91% 6.76%
Slot (F1) 37.64% 17.35%

Transformer-NLU vs. SOTA vs. BERT

Table 4: Relative error reduction (Eq. 8) comparing
Transformer-NLU:BERT to the two baselines: i) current
SOTA for each measure, and ii) conventionally fine-
tuned BERT-Joint without the improvements.

(e.g., Tampa vs. Tampa, Florida). Overall, 66% 426

of the slots in ATIS and 69% in SNIPS matched a 427

Wikipage title. 428

Next, we evaluate how much of that information 429

is stored in the model by leveraging the standard 430

masking mechanism used during pre-training. In 431

particular, we split each slot in subwords, and then 432

we replace them one by one sequentially with the 433

special [MASK] token. We then sort the predic- 434

tions for that position by probability and we take 435

the rank of the true word. Finally, we calculate the 436

mean reciprocal rank (MRR) over all the aforemen- 437

tioned ranks: 0.46 for ATIS, and 0.36 for SNIPS. 438

We must note that the BERT’s dictionary contains 439

32K pieces, and the expected uniform MRR is 440

∼1/16,000. Below, we present two examples to 441

illustrate both high- and low-ranked predictions. 442

High ranked: play the album jack takes the floor 443

by tom le [MASK] on netflix, here the model’s top 444

predictions are: [##hrer, ##rner, ##mmon, ##hr, 445

##rman], and the correct token is ranked with the 446

highest probability. 447

Low ranked: play some hong jun [MASK], here 448

the model’s top guesses are mostly punctuation, 449

and general words such as [to, ;, ##s, and]. The 450

correct token ##yang is at position 3,036, which 451

indicates that this term is challenging. 452

In SNIPS types such as track, movie_name, en- 453

try_name, artist, album have very high MRR (0.33– 454

0.40), and ones that require numerical value, or 455

are not part of well-known named entities suchf as 456

object_part_of_series_type (OPST) are the lowest 457

(under 0.1). The same in ATIS for country_name 458
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(8e-3), restriction_code (4e-3), meal (4e-3), in con-459

trast to airline_code (0.45), transport_type (0.42),460

etc. However, ATIS in general does not require461

such task-specific knowledge, and its MRR is way462

higher in general, which is reflected by the overall463

improvement compared to the baseline models.464

Error Analysis Here, we discuss what errors465

the proposed architecture solves compared to the466

BERT model, and what types of errors are left467

unsolved. First, we compare the performance468

of our method (Transformer-NLU) to BERT-Joint469

(BERT). In the intent detection task, the largest470

improvement (over BERT) comes from examples471

with slots, indicative for a given intent. This472

suggests that the model successfully uses the473

slot information gathered by the pooling atten-474

tion layer. For the following groups, this is most475

prominent: (i) examples with multi-label intents,476

e.g., atis_airline#atis_flight_no – “i need flight477

numbers and airlines . . . ”, where BERT predicted478

atis_flight_no; (ii) examples containing distinc-479

tive words for another intent class – “Give me480

meal flights ...”, atis_flight → meal (BERT), “I481

need a table . . . when it is chiller”, GetWeather482

→ BookRestaurant (BERT). For all the aforemen-483

tioned examples, both models filled the slots cor-484

rectly, but only Transformer-NLU captured the485

correct intent. Moreover, we see a positive ef-486

fect in detecting SearchCreativeWork and Search-487

ScreeningEvent, while BERT tends to wrongly fill488

the slots, and thus swaps the two intents, e.g., “find489

heat wave”, or “find now and forever”. Finally, we490

see an additional improvement for AddToPlaylist491

and atis_ground_fare.492

Next, we compare the performance of the two493

models on slot filling. As expected, the newly494

proposed model performs better, when the cu-495

rated features capture some interesting phenomena.496

We observe that, when filling code slots (airport,497

meal, airfare) – “what does . . . code bh mean”,498

artists, albums, movies, object names – dwele, ny-499

oil, turk (artist → entity_name (BERT)), locations –500

“. . . between milwaukee and indiana”, state → city501

(BERT); BERT confuses mango (city) with the fruit502

(cuisine); “new york city area” O → city (BERT)503

and time-related ones – afternoon, late night, a.m..504

Finally, we discuss the errors of Transformer-NLU505

in general. For the ATIS dataset, 50% of the wrong506

intents come from multi-label cases (35% with507

two labels, and 15% with three), 31% atis_flight508

– “how many flights does . . . /have to/leave . . . ” 509

(→ atis_quantity), 11% atis_city – list la (→ 510

atis_abbreviation), and the others are mistakes in 511

atis_aircraft. For the slots, 50% of the errors 512

come from tags that can have a fromloc/toloc prefix, 513

e.g., city, airport_code, airport_name, etc., another 514

20% are time-related (arrive_date, return_date), 515

and filled slots without tag 7%. The errors by the 516

model for the SNIPS datasets are as follows: mis- 517

labeled intents PlayMusic 11%, SearchCreative- 518

Work 22%, SearchScreeningEvent 67%, slots – 519

movie_name 19%, object_name 16%, playlist 9%, 520

track 9%, entity_name 5%, album 4%, timeRange 521

4%, served_dish 2%, filled slots without tag 19%. 522

The model misses 9% (ATIS) and 17% (SNIPS) 523

of all the slots that should be filled. This is ex- 524

pected since SNIPS’ slots have a larger dictio- 525

nary (11K words), with a large proportion of the 526

slots being names, and often including prepositions, 527

e.g., “. . . trailer of the multiversity”. 528

5 Related Work 529

5.1 Intent Classification 530

Several approaches have focused only on the ut- 531

terance intent, and have omitted slot information. 532

For example, Hu et al. (2009) mapped each in- 533

tent domain and user’s queries into a Wikipedia 534

representation space, Kim et al. (2017) and Xu 535

and Sarikaya (2013b) used log-linear models with 536

multiple-stages and word features. Ravuri and 537

Stolcke (2015) investigate word and character n- 538

gram language models based on Recurrent Neural 539

Networks and LSTMs (Hochreiter and Schmid- 540

huber, 1997), Xia et al. (2018) proposed a zero- 541

shot transfer thought Capsule Networks (Sabour 542

et al., 2017) and semantic features for detecting the 543

user intent, without labeled data. Moreover, some 544

work addressed the task in a multi-class multi-label 545

setup (Xu and Sarikaya, 2013b; Kim et al., 2017; 546

Gangadharaiah and Narayanaswamy, 2019). 547

5.2 Slot Filling 548

Before the rise of deep learning, sequential mod- 549

els such as Maximum Entropy Markov model 550

(MEMM) (Toutanvoa and Manning, 2000; McCal- 551

lum et al., 2000), and Conditional Random Fields 552

(CRF) (Lafferty et al., 2001; Jeong and Lee, 2008) 553

were the state-of-the-art choice. Recently, sev- 554

eral combinations thereof and different neural net- 555

work architecture were proposed (Xu and Sarikaya, 556

2013a; Huang et al., 2015; E et al., 2019). Zhu et al. 557
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(2020) explored label embeddings from slots fill-558

ing and different kinds of prior knowledge such as:559

atomic concepts, slot descriptions, and slot exem-560

plars. Zhang et al. (2020) used time-delayed neural561

networks achieving state-of-the-art performance.562

Siddique et al. (2021) investigated zero-shot trans-563

fer of the slot filling knowledge between different564

tasks. However, a steer away from sequential mod-565

els is observed in favor of self-attentive ones such566

as the Transformer (Vaswani et al., 2017; Radford567

et al., 2018; Devlin et al., 2019; Liu et al., 2019;568

Radford et al., 2019; Raffel et al., 2020; Lewis569

et al., 2020). They compose a contextualized repre-570

sentation of both a sentence, and each of its words,571

through a sequence of intermediate non-linear hid-572

den layers, usually followed by a projection layer,573

in order to obtain per-token tags. Such models574

were successfully applied to closely related tasks,575

e.g., named entity recognition (NER) (Devlin et al.,576

2019), part-of-speech (POS) tagging (Tsai et al.,577

2019), etc.578

Approaches modeling the intent or the slot as in-579

dependent of each other suffer from uncertainty580

propagation due the absence of shared knowledge581

between the tasks. To overcome this limitation, we582

learn both tasks using a joint model.583

5.3 Joint Models584

Given the correlation between the intent and word-585

level slot tags, it is natural to train them jointly. Re-586

cent surveys covered different aspects of joint and587

individual modeling of the slot and the intent (Lou-588

van and Magnini, 2020; Weld et al., 2021).589

Xu and Sarikaya (2013a) introduced a shared intent590

and slot hidden state Convolutional Neural Net-591

work (CNN), followed by a globally normalized592

CRF (TriCRF) for sequence tagging. Since then,593

Recurrent Neural Networks have been dominating,594

e.g., Hakkani-Tür et al. (2016) used bidirectional595

LSTMs for slot filling and the last hidden state596

for intent classification, Liu and Lane (2016) in-597

troduced shared attention weights between the slot598

and the intent layer. Goo et al. (2018) integrated599

the intent via a gating mechanism into the context600

vector of LSTM cells used for slot filling.601

Qin et al. (2019) used an self-attentive bidirectional602

LSTM encoder for the input utterances and a dual603

decoder for the intents and the slots, and they ap-604

plied both at the token-level. E et al. (2019) intro-605

duced a bidirectional interrelated model, using an606

iterative mechanism to correct the predicted intent 607

and the slot by multiple step refinement. Zhang 608

et al. (2019) tried to exploit the semantic hierar- 609

chical relationship between words, slots, and in- 610

tent via a dynamic routing-by-agreement schema 611

in Capsule Networks (Sabour et al., 2017). Qin 612

et al. (2020) proposed an adaptive graph-interactive 613

framework using BiLSTMs and graph attention net- 614

works (GAT) (Velickovic et al., 2018) to model the 615

interaction between intents and slots at the token 616

level. Recently, Qin et al. (2021) introduced a co- 617

interactive Transformer that mixes the slot and the 618

intent information by building a bidirectional con- 619

nection between them. 620

Here, we use a pre-trained Transformer, and in- 621

stead of depending only on the language model’s 622

hidden state to learn the interaction between the 623

slot and the intent, we fuse the two tasks together. 624

Namely, we guide the slot filling by the predicted 625

intent, and we use a pooled representation from 626

the task-specific outputs of BERT for intent de- 627

tection. Moreover, we leverage information from 628

external sources: (i) from explicit NER and true 629

case annotations, and (ii) from implicit information 630

learned by the language model during its extensive 631

pre-training. 632

6 Conclusion 633

We studied the two main challenges in natural lan- 634

guage understanding, i.e., intent detection and slot 635

filling. Addressing these tasks is important in a 636

number of scenarios arising on Web platforms and 637

Web-based applications such as customer service 638

in social media, dialogue systems, web queries un- 639

derstanding, and general understanding of natural 640

language interaction with the user. 641

In particular, we proposed an enriched pre- 642

trained language model to jointly model the 643

two tasks (i.e., intent detection and slot filling), 644

i.e., Transformer-NLU. We designed a pooling at- 645

tention layer in order to obtain intent representation 646

beyond just the pooled one from the special start 647

token. Further, we reinforced the slot filling with 648

word-specific features, and the predicted intent dis- 649

tribution. Our experiments on two standard datasets 650

showed that Transformer-NLU outperforms other 651

alternatives for all standard measures used to evalu- 652

ate NLU tasks. We found that the use of RoBERTa 653

and adding a CRF layer on top of the slot filling 654

network did not help. 655
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Ethics and Broader Impact656

Applicability657

Our intent pooling mechanism, as well as the fea-658

tures we introduced, are potentially applicable to659

other semantic parsing and sequence labeling tasks.660

They increase the model’s size by just few tens of661

thousands of parameters, which is very efficient in662

comparison to modern NLP models, which have663

millions or even billions of parameters.664

Biases665

On the down side, we would like to warn about the666

potential biases in the data used for training Trans-667

formers such as BERT and RoBERTa, as well as668

in the ATIS and the SNIPS datasets. Moreover, the669

use of large-scale Transformers and GPUs could670

contribute to global warming.671

Environmental Impact672

Finally, we would also like to warn that the use673

of large-scale Transformers requires a lot of com-674

putations and the use of GPUs/TPUs for training,675

which contributes to global warming. This is a bit676

less of an issue in our case, as we do not train such677

models from scratch; rather, we fine-tune them on678

relatively small datasets. Moreover, running on a679

CPU for inference, once the model has been fine-680

tuned, is perfectly feasible, and CPUs contribute681

much less to global warming.682
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Appendix969

“Enriched Pre-trained Transformers970

for Joint Slot Filling and Intent Detection”971

A Experimental Setup972

A.1 Model Details973

We use the PyTorch implementation of BERT from974

the Transformers library of (Wolf et al., 2020) as a975

base for our models. We fine-tune all models for 50976

epochs with hyper-parameters set as follows: batch977

size of 64 examples, maximum sequence length of978

50 word pieces, dropout set to 0.1 (for both atten-979

tions and hidden layers), and weight decay of 0.01.980

For optimization, we use Adam with a learning981

rate of 8e-05, β1 0.9, β2 0.999, ϵ 1e-06, and warm-982

up proportion of 0.1. Finally, in order to balance983

between the intent and the slot losses, we set the984

parameter γ to 0.6, we test the range 0.4–0.8 with985

0.1 increment. All the models use the same pre-986

processing, post-processing, and the standard for987

these tasks metrics. In order to tackle the problem988

with random fluctuations for BERT/RoBERTa, we989

ran the experiments three times and we used the990

best-performing model on the development set. We991

define the latter as the highest sum from all three992

measures described in Appendix 3. All the above-993

mentioned hyper-parameter values were tuned on994

the development set, and then used for the final995

model on the test set. All models were trained on a996

single K80 GPU instance for around an hour.997

A.2 State-of-the-art Models998

We further compare our approach to some other999

benchmark models. Here, we must note that we1000

include models that do not use embeddings from1001

large pre-trained Transformers such as BERT in or-1002

der to measure the improvements that come solely1003

from the pre-training procedure (see Section 4):1004

• Joint Seq. (Hakkani-Tür et al., 2016) uses a1005

Recurrent Neural Network (RNN) to obtain1006

hidden states for each token in the sequence1007

for slot filling, and uses the last state to predict1008

the intent.1009

• Atten.-Based (Liu and Lane, 2016) treats the1010

slot filling task as a generative one, applying1011

sequence-to-sequence RNN to label the input.1012

Further, an attention weighted sum over the1013

encoder’s hidden states is used to detect the1014

intent.1015

• Slotted-Gated (Goo et al., 2018) introduces 1016

a special gated mechanism to an LSTM net- 1017

work, thus reinforcing the slot filling with the 1018

hidden representation used for the intent de- 1019

tection. 1020

• Capsule-NLU (Zhang et al., 2019) adopts Cap- 1021

sule Networks to exploit the semantic hierar- 1022

chy between words, slots, and intents using 1023

dynamic routing-by-agreement schema. 1024

• Interrelated (E et al., 2019) uses a Bidirec- 1025

tional LSTM with attentive sub-networks for 1026

the slot and the intent modeling, and an inter- 1027

related mechanism to establish a direct con- 1028

nection between the two. SF (slot), and ID 1029

(intent) prefixes indicate which sub-network 1030

to execute first. 1031

• Stack-Propagation (Qin et al., 2019) consists 1032

of a self-attentive BiLSTM encoder for the 1033

utterance and two decoders, one for the intent- 1034

detection task that performs a token-level in- 1035

tent detection, and one for the slot filling task. 1036

• AGIF (Qin et al., 2019) uses Adaptive Graph- 1037

Interactive Framework to jointly model intent 1038

detection and slot filling with an intent-slot 1039

graph interaction layer applied to each token 1040

adaptively. 1041

Chen et al. (2019) used BERT with a token clas- 1042

sification pipeline to jointly model the slot and 1043

the intent, with an additional CRF layer on top.1 1044

However, they evaluated the slot filling task using 1045

per-token F1-score (micro averaging), rather than 1046

per-slot entry, as is standard, which in turn artifi- 1047

cially inflated their results. As their results are not 1048

comparable to the rest, we do not include them in 1049

our comparisons. 1050

B Model Analysis 1051

B.1 Variability Analysis 1052

In addition to the results discused in Section 4, 1053

we also report the Transformer-NLU:BERT’s (and 1054

BERT’s) µ and σ, 95% confidence internals over 1055

all runs: ATIS – Intent 98.0±0.17 (BERT 97.13± 1056

0.26), Sentence 88.6± 0.23 (BERT 87.8± 0), Slot 1057

96.3± 0.06 (BERT 96.0± 0.14); SNIPS – Intent 1058

1In terms of micro-average F1 for slot filling, Chen et al.
(2019) reported 96.1 on ATIS and 96.27 on SNIPS (per-token).
For comparison, for our joint model, these scores are 98.1 and
97.9 (per-token); however, the correct scores for our model
are actually 95.7 and 96.3 (per-slot).
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Figure 2: Intent pooling attention weight for one example per dataset. The thicker the line, the higher the attention
weight.

98.6 ± 0.14 (BERT 98.42 ± 0), Sentence 92.0 ±1059

0.17 (BERT 91.8± 0.19), Slot 96.2± 0.05 (BERT1060

96.1±0.06). The aforementioned results show that1061

the mean scores of the models in the slot filling task1062

are close, but the variance in Transformer-NLU is1063

lower. Further, we must note that these values are1064

calculated over the best runs from each model re-1065

training, and they are not achieved in a single run.1066

B.2 Intent Pooling Attention Visualization1067

Next, we visualize the learned attention weights1068

on Figure 2a. It presents a request from the ATIS1069

dataset: i want fly from baltimore to dallas round1070

trip. The utterance’s intent is marked as atis_flight,1071

and we can see that the attention successfully1072

picked the key tokens, i.e., I, want, fly, from, and to,1073

whereas supplementary words such as names, loca-1074

tions, dates, etc. have less contribution. Moreover,1075

when trained on the ATIS dataset, the layer tends1076

to set the weights in the two extremes — equally1077

high for important tokens, and towards zero for the1078

rest. We attribute this to the limited domain and1079

vocabulary.1080

Another example, from the SNIPS dataset, is shown1081

on Figure 2b. Here, the intent is to add a song to1082

a playlist (AddToPlaylist). In this example, we see1083

a more diverse spread of attention weights. The1084

model again assigns the highest weight to the most1085

relevant tokens add, to, the, and play. Also, the1086

model learned that the first wordpiece has the high-1087

est contribution, while the subsequent ones are sup-1088

plementary.1089

Finally, we let the pooling attention layer consider1090

the special tokens marking the start and the end1091

([CLS], and [SEP]) of a sequence, since they are1092

expected to learn semantic sentence-level repre-1093

sentations from the penultimate layer. The model 1094

assigns high attention weights to both. 1095
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