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ABSTRACT

With the escalating demand for privacy-preserving machine learning, federated
learning (FL) stands out by enabling collaboration among decentralized entities.
Utilizing graph representations of data enhances learning for graph-level tasks,
crucial for FL with data distributed across local repositories. Despite its bene-
fits, stringent privacy regulations often compromise FL’s performance. Previous
methods aimed at ensuring privacy introduce performance degradation and com-
putational overhead. In response to these challenges, we propose using graph
coarsening—a simple yet effective method—to enhance the security and privacy
of FL on graph data. Our approach posits that graph coarsening alone can suffice
for privacy guarantees, as model parameters obtained from training on the coars-
ened graph effectively conceal sensitive information susceptible to privacy attacks.
Through comprehensive application and analysis, we demonstrate the efficacy
of graph coarsening within an FL setup, taking both the graph matrix and node
features as input, and jointly learning the coarsened graph matrix and feature matrix
while ensuring desired properties. The resultant coarsened graph representations
are then utilized to train model parameters, subsequently communicated within an
FL framework for downstream tasks such as classification. Extensive experimenta-
tion across various datasets confirms that graph coarsening ensures privacy while
enhancing performance with minimal trade-offs compared to traditional differential
privacy (DP) methods without adding extra complexity overhead.

1 INTRODUCTION

Federated learning (FL) is a distributed machine learning approach enabling multiple decentralized
entities to collaboratively train a shared model without exchanging their local data, thus preserving
data privacy by keeping raw data localized and only sharing model updates [41]. This paradigm
offers enhanced data privacy, reduced latency, and the ability to leverage diverse datasets from
multiple sources, resulting in robust and generalizable models [43]. However, FL faces significant
privacy challenges, as the exchange of model updates can still inadvertently leak sensitive information
through inference attacks [26]]. Addressing these concerns, methods like differential privacy (DP)
[34;13], secure multi-party computation [28}[16], and homomorphic encryption [24;[15] have been
proposed, each with its trade-offs [[19] such as reduced model performance, increased computational
complexity, and added communication overhead [37;133]]. Graph representation is crucial in capturing
relationships between entities, aiding in tasks like graph classification and prediction [40]. For
instance, in molecular research [9], graphs predict properties or classify enzymes [[12], while in social
networks [22], graphs facilitate community detection. In the context of graph data, FL involves clients
each with a local graph represented by a set of nodes and edges [[L1]]. Each client collaboratively
trains a global graph neural network (GNN) model by sharing model parameters or gradients rather
than raw graph data [3]].

Privacy attacks in FL threaten the confidentiality of graph data, even when raw data isn’t exchanged.
Adversaries can infer sensitive information from shared model updates, such as through gradient
inversion attacks where gradients are used to reconstruct private data [31]. For example, in a federated
graph machine learning scenario where healthcare institutions collaborate to predict patient outcomes,
an attacker could infer sensitive patient information from the model updates [30; [17; [14]. This
highlights the urgent need for robust privacy-preserving techniques in FL. Current methods for
privacy preservation in FL are categorized into data manipulation and model gradient manipulation



techniques [32; 30]. Data manipulation includes secure multi-party computation (SMPC) and
homomorphic encryption (HE), which ensure computations are carried out without revealing raw
data [[7]]. Model gradient manipulation, particularly DP, adds controlled noise to model updates,
with differential privacy stochastic gradient descent (DP-SGD) being a notable method [35; [27]].
However, these methods face significant limitations: the trade-off between privacy and model accuracy
increased computational complexity, and potential performance degradation [1]]. For instance, in fraud
detection using graph data, the noise added by DP can impair the detection accuracy, revealing the
limitations of DP in complex FL scenarios [25]. Addressing these challenges is crucial to advancing
privacy-preserving FL for graph data.

Data-based approaches for privacy preservation in FL, including data condensation and data reduction,
have been effective for non-graph and graph data [10]. Data condensation (DC) involves summarizing
a large dataset into a smaller synthetic dataset that retains essential statistical properties, providing
privacy by limiting the impact of individual samples on model parameters, effectively offering DP
[8]]. Data reduction techniques reduce the dimensionality or amount of data, thereby minimizing the
exposure of sensitive information [5]. However, these methods face limitations when applied to graph
data due to its intricate structure. To address this, we propose using graph coarsening as a privacy
measure. Graph coarsening simplifies a graph by merging nodes and edges, creating a smaller version
that preserves essential structural properties [4]]. Reconstructing the original graph from its coarsened
version is challenging, thus protecting sensitive information. In our approach, clients coarsen their
local graphs before training local models, which are then shared with the server for aggregation,
maintaining privacy with minimal performance trade-offs. We focus on featured graph coarsening
(FGC) [18]] due to its simplicity and flexibility. FGC ensures that coarsened graphs retain necessary
information, allowing for effective model training while ensuring privacy. This method integrates
seamlessly into the FL framework, providing a robust solution for privacy preservation in federated
graph machine learning.

Our main contributions are summarized below:

* We introduce Graph Coarsening for Privacy-Preserving Federated Learning (CPFL), a
novel framework integrating graph coarsening techniques into FL to enhance privacy while
maintaining performance balance.

» CPFL ensures privacy without additional communication overhead by training local models
on coarsened graphs, minimizing data transmission between clients and the server.

* We built the connection between graph coarsening and differential privacy and validated our
approach’s robust privacy preservation and effectiveness across various scenarios, including
cross-domain datasets in multi-client and multi-dataset settings.

2 BACKGROUND

2.1 FEDERATED GRAPH NEURAL NETWORK

In FL for graph data, GNNs are used for graph classification in a distributed environment where
privacy and regulatory restrictions prevent the centralization of data [38]]. This scenario involves
either partitioning a single graph dataset or distributing multiple graph datasets across several edge
servers or clients. Despite the inability to centralize data, collaborative training on this distributed
data can yield more powerful and versatile graph models. Our work focuses on leveraging GNNs as
the primary model for this collaborative effort in private and secure manner, applying them across
various domains characterized by heterogeneous graph data [[11].

We consider a scenario with K clients, each possessing its own dataset D(¥) = (G (k) V). Here,
GF) = (Y*) ) represents the graph(s) within the dataset, with vertex and edge feature sets
X0 = (2001 o and Z0) = {egi,)n}m’newm. The corresponding label set is denoted as Y (¥).
Each client trains a local GNN model on its data to learn graph representations and make predictions.
To enhance their models, these clients collaborate via a central server, sharing their locally trained
model parameters without disclosing their private data.

Here, GNNs are integrated into the FL paradigm. A typical GNN involves message propagation and
neighbourhood aggregation, where each node iteratively collects information from its neighbours and
combines it with its own to update its representation. This process for an L-layer GNN is expressed
as:



WD = o (b, age ({(hDsu e A})) . Ve (L, M

where hq(,l) is the representation of node v at the [-th layer, and hq(,o) = x,, represents the initial node

feature. NV, denotes the neighbors of node v, agg(-) is the aggregation function which varies with
different GNN architectures, and o is an activation function.

The graph-level representation h can be obtained by aggregating the node representations:

hg = readout({h,;v € V}), 2)

where readout(-) can be implemented through methods like mean pooling or sum pooling, which
aggregate the node embeddings into a single vector suitable for tasks such as graph classification.

To used GNNs in FL setting, the aggregation step involves combining the model updates from
multiple clients into a single global model update. This aggregation can be performed using various
strategies, including simple averaging, weighted averaging, adaptive methods like Adam, or other
custom approaches. The general aggregation step is represented as:

K
(t+1) _ (®)
0 Aggregate ({Gk ’Dk}k—l) . 3)

where 6(*+1) is the aggregated global model parameter at round t + 1, {O,Et)}szl represents the
model parameter from the K clients at round ¢, and Dy, is the local dataset of client k. The function
Aggregate(-) serves as a placeholder for the specific aggregation method used.

2.2  GRAPH COMPRESSION: PRIVACY-PRESERVING APPROACHES IN FL

In FL, multiple client devices collaboratively train a shared model while keeping their local data
decentralized, enhancing data privacy by preventing direct data sharing. However, privacy risks
persist as model updates can leak sensitive information through gradient inversion attacks [36]. To
mitigate these risks, various data manipulation techniques, such as random sparsification and dataset
condensation, have been proposed [23; 42]]. Random sparsification involves randomly removing
edges to achieve anonymity and can ensure DP while approximating the original graph’s spectrum
[6]]. However, there is a trade-off between the degree of sparsification and the preservation of critical
information, which impacts the graph’s utility. Excessive edge removal can compromise the graph’s
structural integrity and informative value. Dataset condensation, on the other hand, transforms the
dataset into a smaller, abstract representation while preserving essential features [8; [39]. In FL,
condensed local graphs on client devices reduce the risk of sensitive information leakage during
aggregation. By synthesizing representative data points instead of sharing actual data, condensation
maintains privacy and mitigates re-identification risks.

Despite the advantages, these techniques have limitations. Sparsification selects existing graph
elements, which may reduce interpretability and relevance to the original graph. Condensation,
while effective, can struggle to balance the trade-off between privacy and the preservation of key
information, leading to potential losses in data utility. Additionally, condensation methods can
introduce artifacts that deviate from the original data’s natural structure, impacting downstream
machine learning tasks [[10].

Graph coarsening presents a compelling alternative to sparsification and condensation for privacy
preservation in FL. Graph coarsening aggregates graph elements into supernodes and superedges,
making it challenging to reconstruct the original graph, thus enhancing privacy. The coarsened graph
retains the critical information necessary for effective model training while significantly reducing the
risk of sensitive information leakage. Moreover, graph coarsening can mitigate the issue of relating
back to the original graph, which is a common concern with sparsification and condensation methods.

One established method for graph coarsening is FGC [18]. Given an original graph G = (V, €, X, L),
where X' € RP*™ denotes the feature matrix of p nodes and L € RP*? is the graph Laplacian, FGC
aims to learn a coarsened graph G = (V, €, X, £) with m supernodes. The optimization problem



FGC solves is formulated as follows:

min —log det(CT LC + J) + (XTCTLCX) + gHCTHiQ, 4)
X,C

st. C€eSc={C>0]||[CTL3<1,Vi=1,....p}, X=CX, (5)

where C' € RP*™ is the coarsening matrix that maps the original graph to the coarsened graph, and
X e Rmxn represents the feature matrix of the coarsened graph. The term —+ log det(CTOC + J)
ensures the connectivity of the coarsened graph, tr(f( ToTOCX ) enforces smoothness in the feature
mapping, and %||CT||%2 imposes desirable properties on the mapping matrix C. The constraint

X = CX denotes the feature mapping from the original graph to the coarsened graph.

The FGC formulation is a multiblock non-convex optimization problem, efficiently solved using a
block successive upper bound minimization technique that iteratively updates variables in blocks,
ensuring convergence while balancing graph structure preservation and size reduction. We chose
FGC for our framework due to its unique strengths and its ability to guarantee similarity between the
coarsened and original graphs. This is the first work to integrate graph coarsening with FL to ensure
privacy, effectively handling heterogeneous datasets across different domains and distributions. While
our CPFL pipeline can utilize any coarsening algorithm, FGC’s model-agnostic, flexible, efficient,
and simple nature makes it ideal for diverse FL applications, maintaining robust privacy and utility.

3 THE GRAPH COARSENING FOR PRIVACY-PRESERVING FEDERATED
LEARNING (CPFL) FRAMEWORK

3.1 PRIVACY AND TRADE-OFFS IN GRAPH DATA REDUCTION TECHNIQUES

In FL, preserving data privacy while maintaining the utility of graph data for downstream tasks is
a significant challenge. DP [27] provides a mathematical framework to ensure that the inclusion
or exclusion of a single element (such as a node or edge in a graph) does not significantly affect
the outcome of an analysis. Formally, a randomized algorithm M satisfies (¢, )-DP if, for any two
neighboring graphs G and G’ (differing by one node or edge), and for any subset S of the output
space, the following inequality holds:

P[M(G) e S| <eP[M(G') € S]+4 (6)

Here, € represents the privacy budget, quantifying the allowed privacy loss, and § accounts for the
probability of the privacy guarantee being broken.

However, traditional reduction techniques like sparsification and condensation, while enhancing
privacy, often compromise the utility of the graph data. In tasks such as protein-protein interaction
networks, road networks, and social network analysis, removing nodes or edges can strip away
critical information, degrading the graph’s utility. Condensation methods synthesize fake elements,
potentially distorting the graph’s original structure and affecting tasks that rely on precise interactions,
such as drug discovery.

One promising solution here is graph coarsening which retains essential structural properties and
minimises the risk of reconstructing the original graph. It preserves data utility while enhancing
privacy, making it ideal for FL environments where both are critical. Visualization of graph coarsening
is given in Figure 1.

3.2 PROBLEM FORMULATION

Organizations often leverage sensitive graph data to advance their research and services. For instance,
pharmaceutical companies may use biological interaction networks to discover new drugs, and
research institutions may analyze genetic data for disease prediction. However, using raw graph data
(G) for model training poses significant privacy risks, including susceptibility to membership inference
attacks and potential data leaks during transmission to cloud servers, particularly from honest-but-
curious operators. To mitigate these risks, a more secure protocol involves first transforming the data
by generating a coarsened graph dataset (G) from the original graph data (G), which is then used for
model training in downstream applications. The threat model can be formalized as follows:
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(a) Original Graph (b) Coarsened Graph (c) Reconstructed Graph

Figure 1: Visualization of Graph Coarsening: Illustrating the transformation from the original graph
to a coarsened version, highlighting node merges and edge reductions.
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Figure 2: The CPFL Framework.

Attacker’s Objective The attacker’s goal is to determine if a specific node v or edge e is part of the
original graph dataset G.

Attacker’s Knowledge We assume a robust malicious entity, such as an honest-but-curious server,
who lacks direct access to G but has white-box access to both the coarsened graph dataset G derived
from G and the model f; trained on G.

Attacker’s Capacity The attacker possesses unlimited computational resources to generate shadow
coarsened graph datasets from data with the same distribution as G and to train shadow models on
them. It is important to note that white-box access to model parameters does not significantly aid
MIA, thus we exclude other advantages conferred by white-box access to fg.

3.3 TECHNICAL DESIGN

We employ an FL framework where multiple clients with graph data collaborate via a central server,
ensuring data remains decentralized and private. GNNs are ideal for this FL framework as their
parameters encapsulate structural and feature information of graphs. The framework of CPFL is shown
in Figure 2, where each client’s graph data G, = (V;, &;, X, Y;) is coarsened to G; = (V;, &, X;,Y5)
using a coarsening ratio r. This reduces data complexity while retaining essential structure and
obscuring sensitive information.

Each client trains a local GNN model on Dy, which is a set of G; graphs each client has, resulting in
model parameters ). At each communication round ¢, clients send their parameters 0,(:) to the server,
which aggregates them to update the global model parameters (*+1):

VK
0+ = Aggregate ({O,g),Dk}k_l) . (7)

The updated global model is sent back to clients for further training. This process repeats until
convergence. Aggregation can use strategies like weighted averaging, ensuring the global model
reflects all clients’ knowledge while maintaining privacy. Our method shows that graph coarsening
in FL enhances privacy and maintains performance in graph-level tasks, achieving effective model



performance with minimal privacy risks and computational overhead compared to traditional methods
like DP.

3.4 CONNECTION TO DP

Nodes and edges in a graph can contain highly sensitive information, such as social contacts, personal
opinions, and private communication records. Node-Differential Privacy (Node-DP) and Edge-
Differential Privacy (Edge-DP) offer rigorous theoretical guarantees to protect the privacy of these
connections by limiting the influence of any single node or edge on the output [27]. This provides
meaningful privacy protection in various applications.

In the context of graph coarsening, given a graph G = (V, E) algorithm aims to learn a coarsened
graph G (f/, £ ) using a mapping matrix C. It is important to note that this reconstructed graph
G, (Vy, &) from G(V, €) is just edges-added version of G(V, &), having no discernible meaning to it.
Based on the above-mentioned threat model, we will evaluate different attack scenarios to assess if
graph coarsening is able to preserve privacy or not.

Case 1: If the attacker has access to model parameters of k*" client 0,(:) , it can only infer about the
coarsened graph G. Since the information about the nodes and edges between them is still not known,
the privacy is preserved.

Case 2: If the attacker has access to model parameters of k" client 9,(;) and the loading matrix C'

(which means coarsening ratio (r) is known), attacker can reconstruct the coarsened graph G and
using this, it is possible to construct a G,. with same nodes as the original graph. However, the
connection is still concealed thereby preserving edge-level privacy.

Definition: An algorithm A satisfies e-edge differential privacy (e-edge DP), where € > 0, if and
only if for any two edge neighboring graphs G and G is satisfied

VT C Range(A) : Pr[A(G) € T] < € Pr[A(G,) € T (8)

where Range(A) denotes the set of all possible outputs of A.
Discussion: After coarsening, the graph can be reconstructed using the relation
L.=P'Lp=PrcTLcP = (CP)'LCP = (ccHTLCCt # L )

Since CCT # I and it is a block diagonal matrix. This signifies that the reconstructed graph retains a
similar number of nodes as the original graph, but contains more edges compared to the original graph.
Thus we can say that the two dataset G(V, E) and G,.(V,., E,.) are differentially private. Therefore,
since we trained our model using the coarsened graph without knowledge of the coarsening ratio, it is
impossible to revert to the original graph, ensuring that our dataset remains 100% private.

Definition(Global L,-sensitivity As): Let f represent the aggregation function and D (or D’) be the
users’ data. Let X be the set of all neighbouring databases. We can define the (global) Lo-sensitivity

of f as:
Balf)i= , max IF(D) = F(D)]: (10)

We note that the maximum is taken over all neighbouring pairs of datasets in X .

Theorem: Motivated by the Lo sensitivity definition, in our case, we consider D = L, i.e., the
original graph, and D’ = L, = (CCT)T LCC" is reconstructed from the coarsened graph L. The Lo
sensitivity for our case is defined as follows:
Ay = L—(cchfLeot 11

2 D,D/gl)?,}fgzD/ I ( ) I2 (n
The sensitivity Ao depends on the coarsening ratio r = %, where p is the number of nodes in
the original graph and m is the number of nodes in the coarsened graph. Aggressive coarsening
(r < 0.5) conceals almost 100% of the nodes, ensuring near-complete privacy and maximizing
sensitivity. Decreasing r increases As. So, coarsening ratio (r) controls the level of privacy preserved
as illustrated in later section.



L, Sensitivity w.r.t. Features: Consider D = X € R”*? represent the feature matrix of the original
graph and D' = X, € RP*? is the reconstructed features obtained from the coarsened features
X € RFX4 The L, sensitivity with respect to feature is defined as:

Ay = max X — X, ||lr (12)
D,D'€X,D=D’

IX = Xellp = |X = CX|[r = | X - C(C*X)|lp = |(I - CCT)X]|F (13)

Note that I — CC™ acts as a projection matrix that determines the reconstruction error introduced by
coarsening. We can further bound this error using the properties of the Frobenius norm:

(I —CCHX||p < I —CCH|p||X|r (14)

Analysis Based on Coarsening Ratio: Let r = % denote the coarsening ratio, which measures the
reduction in the number of nodes. Consider the following scenarios:

e r — 1: Whenr — 1, k = P, meaning the number of supernodes is almost equal to the
number of original nodes. In this scenario, C* ~ C' —1 and hence CCt ~ I. This implies:

||]—CC+||F —0

Thus, the reconstruction error || X — X,.|| # is minimized, indicating that the coarsened graph
retains almost all the information of the original graph.

e r — 0: When r — 0, £ < P, meaning a large number of original nodes are mapped to a
small set of supernodes. This results in a significant loss of information, making CCT far
from being an identity matrix. In this case:

I —CCT||F>1

This leads to a high reconstruction error, making the coarsened graph more sensitive to
changes in the original graph structure.

Sensitivity and Differential Privacy Implications: As r decreases, the reconstruction error increases,
which in turn increases the sensitivity of the model output. This behavior can be linked to differential
privacy, where sensitivity quantifies the impact of changes in the input on the output. High sensitivity
requires adding more noise to achieve a given privacy budget e. Therefore, as the coarsening ratio
decreases (i.e., as r — 0), the sensitivity increases, making it harder to ensure strong privacy
guarantees without significant utility loss.

In contrast, when r is high, the sensitivity is low, which means less noise is needed to achieve the same
privacy guarantee. This suggests that, depending on the coarsening ratio, the balance between privacy
and utility can be controlled, making graph coarsening a potentially effective privacy-preserving
mechanism in federated learning.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets We use 13 graph classification datasets from three domains: molecules (5), proteins (3), and
social networks (5) [38]. Node features and graph labels vary across datasets, as detailed in Appendix
A and B. We experiment with different coarsening ratios (r) and noise levels (¢) to evaluate privacy
using graph coarsening and DP-SGD. Performance is assessed by convergence improvements or
degradations round-wise.

Baselines We first test self-training to see if decentralized learning improves with collaborative
training, using FedAvg [21], FedProx [20], GCFL, and GCFL+ [38]]. Each client trains a locally
downloaded model without communication. The graph classification model used is a GIN, with
architecture and hyper-parameters fixed across all baselines.

Parameters We use three-layer GINs with a hidden size of 64, batch size of 128, and Adam optimizer
(learning rate 0.001, weight decay 5e-4). For FedProx, p is 0.01, and the local epoch E is 1. The
coarsening ratio () and noise level (¢) are varied across all settings. Experiments ran on 24GB
NVIDIA TITAN RTX GPUs.



4.2 CLASSIFICATION ACCURACY: CCPL vs DP-SDG

We present classification accuracy using graph coarsening and differentially private stochastic gradient
descent (DP-SGD) [27]] in FL settings. DP-SGD, the gold standard for privacy-preserving machine
learning, adds calibrated noise to gradients to protect individual data points, quantified by the privacy
budget (e)—lower values indicate stronger privacy. We evaluated performance based on varying
coarsening ratios () and privacy budgets (¢), also assessing effectiveness in heterogeneous data
settings by combining datasets from Molecules, Proteins, and Social Networks.

Our evaluation shows that graph coarsening often outperforms DP-SGD in maintaining classification
accuracy across different datasets and settings. For example, in single-data multi-client settings (given
in Table 1) like the PROTEINS dataset, graph coarsening achieved 0.62 accuracy with FedProx,
compared to 0.62 with DP-SGD and 0.75 with the original dataset. In the IMDB-(B) dataset, graph
coarsening achieved 0.72 with FedAvg, compared to 0.47 with DP-SGD. In the multi-data multi-
client setting given in Table 2, for the Molecules group, although DP values indicated that FedProx
handled privacy better with a DP of 0.67, the consistent performance of graph coarsening techniques
underscores their viability in heterogeneous settings. In multi-data multi-client multi-domain settings
shown in Table 3, graph coarsening showed significant advantages, such as in the MIX 2 setting
(Molecules + Social Networks), where FedProx achieved 0.65 accuracy with a coarsening ratio of
0.1, compared to 0.55 with DP-SGD (e = 8).

While DP-SGD offers strong privacy protection, it often reduces classification performance. Graph
coarsening, however, provides a balanced approach, preserving essential structural properties while
offering privacy benefits with minimal impact on classification accuracy. This makes graph coarsening
a compelling choice for privacy-preserving FL, especially where high model performance is critical.

Preserving Properties of G in CPFL Incorporating hyperbolic error (HE)[2] metrics into our FL
analysis highlights the balance between utility and privacy in graph coarsening. Our results (given
in Figure 3) show that GCFL and GCFL+ outperform FedAvg and FedProx, supported by low HE
values indicating minimal distortion. For example, in the Proteins dataset, HE values for coarsening
ratios of 0.3, 0.5, and 0.7 are 21.41, 18.18, and 14.69, respectively, demonstrating retained structural
properties. Similar trends are observed in Molecules and Social Networks datasets. These low
HE values confirm that graph coarsening preserves data utility while enhancing privacy, making it
preferable to traditional DP methods. Integrating HE metrics underscores the effectiveness of graph
coarsening in balancing privacy and performance in FL.

4.3 EVALUATING UTILITY OF CPFL FOR PRIVACY ENHANCEMENT

The two subfigures, 4 (a) and 4 (b), illustrate how the percentage of nodes and edges concealed varies
with increasing coarsening ratios (r) across three datasets: MUTAG, PROTEINS, and Reddit (M). As
the coarsening ratio increases, a higher percentage of nodes and edges are concealed, indicating a
reduced level of granularity in the graph representation. Concealing a greater proportion of nodes
and edges by increasing the coarsening ratio directly reduces the level of detail in the graph. This
results in a decrease in Lo-sensitivity, as each node or edge has a diminished influence on the graph’s
overall structure. Lower Lo-sensitivity means that the impact of modifying or omitting a single node
or edge is minimized, making it harder for an adversary to distinguish whether a particular node or
edge was part of the original graph. In differential privacy, the parameter € quantifies the level of
privacy provided. Lower Lo-sensitivity translates to a smaller A f (the sensitivity parameter), which
means that for a fixed amount of noise, the effective € value will decrease. As the figures show that a
higher coarsening ratio results in more concealed nodes and edges, it implies a reduced sensitivity,
thereby strengthening privacy guarantees (lower €).

Ly-sensitivity measures the maximum change in a function’s output when a single input data point
is modified. For graph data, it indicates how much model output or gradient values change when
a specific node or edge is altered. By coarsening the graph, the number of nodes and edges is
reduced, effectively lowering Lo-sensitivity, which decreases the potential for inferring specific
details from the original graph structure. In the context of differential privacy, lower Lo-sensitivity
means that achieving a given privacy level (e) requires less noise, thus preserving model utility.
As observed in Figure 4(c), Lo-sensitivity decreases consistently with higher coarsening ratios for
various datasets, confirming that graph coarsening can act as a natural privacy mechanism. This



Table 1: Classification performance on the single-dataset multi-client setting for » = 0.5 and e=5.

PROTIENS IMDB (B) DHFR COLLAB
All | CPFL | DP-SGD | All | CPFL | DP-SGD | All | CPFL | DP-SGD | All | CPFL | DP-SGD
Self-Train | 0.69 | 0.62 0.35 0.78 | 0.78 0.46 0.61 | 0.61 047 071 ] 0.71 0.35
FedAvg | 0.74 | 0.62 0.44 0.78 | 0.72 0.47 0.66 | 0.66 0.56 073 1 071 0.33
FedProx | 0.75 | 0.62 0.62 077 ] 0.72 0.63 0.75 | 0.65 0.61 0.69 | 0.68 0.66
GCFL | 0.76 | 0.62 0.32 0.81 | 0.75 0.46 0.67 | 0.68 0.56 0.74 | 0.73 0.41
GCFL+ | 0.75 | 0.62 0.35 077 ] 0.74 0.47 0.71 ] 0.68 0.53 073 ] 0.73 0.38

Table 2: Classification performance on the multi-data multi-client setting

Molecules
ALL CPFL DP-SDG
r=0.1 [ =02 | =03 | =05 | =8 | e=5 | e=4 | =3
Self-Train | 0.7 | 0.63 | 0.63 | 0.64 | 0.67 | 0.62 | 0.58 | 0.58 | 0.56
FedAvg | 0.72 | 0.63 | 0.63 | 0.63 | 0.66 | 0.62 | 0.62 | 0.62 | 0.62
FedProx | 0.73 | 0.63 | 0.62 | 0.55 | 0.6 | 0.67 | 0.67 | 0.67 | 0.67
GCFL 0.72 ] 0.63 | 0.63 | 0.63 | 0.67 | 0.67 049 | 0.5 | 0.5
GCFL+ | 0.72 | 0.63 | 0.63 | 0.63 | 0.68 | 0.62 | 0.62 | 0.62 | 0.62
Proteins
ALL CPFL DP-SDG
r=0.1 | =02 | =03 | =05 | =8 | =5 | e= e=3
Self-Train | 0.58 | 0.5 0.5 0.5 | 052 | 044|044 (044|044
FedAvg | 0.55 | 044 | 051 | 052 | 0.54 | 043 ] 043 | 0.36 | 0.36
FedProx | 0.58 | 049 | 0.51 | 047 | 0.51 | 0.5 | 0.47 | 0.46 | 045
GCFL 057 | 045 [ 052 | 053 | 0.52 | 043 [ 043 | 0.44 | 0.44
GCFL+ | 0.57 | 044 | 051 | 051 | 0.54 | 043 [ 0.36 | 0.36 | 0.38
Social Networks
ALL CPFL DP-SDG
r=0.1 [ =02 | =03 [ =05 | =8 | =5 | e= e=3
Self-Train | 0.64 | 0.6 | 0.62 | 0.62 | 0.62 | 045 | 045 | 045 | 045
FedAvg | 0.66 | 0.6 | 0.61 0.6 | 0.61 | 048 | 0.46 | 0.46 | 0.45
FedProx | 0.66 | 0.62 | 0.63 | 0.64 | 0.63 | 0.62 | 0.62 | 0.59 | 0.57
GCFL 0.65 | 0.61 | 0.61 | 0.61 | 0.61 | 0.51 | 047 | 0.45 | 0.46
GCFL+ | 065 ] 0.6 | 0.61 | 062 | 0.62 | 049 | 0.38 | 0.38 | 0.36

reduction in Lo-sensitivity provides strong empirical support for our claim that graph coarsening is an
effective privacy-preserving measure in federated learning. By lowering sensitivity, graph coarsening
minimizes the risk of information leakage even if an attacker has access to the coarsened graph or the
shared model updates. In practical federated learning scenarios, adjusting the coarsening ratio allows
for fine-tuning the balance between privacy and accuracy. Higher coarsening ratios offer stronger
privacy protection while maintaining acceptable performance levels.

Thus, graph coarsening not only aligns with the principles of e-differential privacy but also provides a
straightforward, efficient approach to achieve tighter privacy guarantees with minimal computational
overhead. This makes it a promising technique for enhancing privacy in real-world federated learning
applications.

Table 3: Classification performance on the multi-domain multi-data multi-client setting

Mix 1 (Molecules + Proteins)

ALL CPFL DP-SDG
r=0.1 | r=0.2 | r=03 | =05 | =8 | =5 | e=4 | =3
Self-Train | 0.66 | 0.58 | 0.58 | 0.58 | 0.62 | 0.54 | 0.54 | 0.53 | 0.53
FedAvg | 0.65 | 0.56 | 0.58 | 059 | 0.62 | 0.58 | 0.55 | 0.53 | 0.53
FedProx [ 0.69 | 0.56 | 0.59 | 059 | 0.61 [0.6I | 0.6 | 0.6 | 0.59
GCFL 0.64 | 056 | 058 | 059 | 0.63 | 0.58 | 0.58 | 0.55 | 0.54
GCFL+ | 0.67 | 0.56 | 0.58 | 0.59 | 0.62 | 049 | 0.49 | 048 | 048
Mix 2 (Molecules + Social Networks)
ALL CPFL DP-SDG
r=0.1 | r=0.2 | r=03 | r=0.5 | e=8 | e=5 | =4 | =3
Self-Train | 0.64 | 0.62 | 0.62 | 0.62 | 0.6 | 0.5 | 048 | 048 | 048
FedAvg | 0.66 | 062 | 0.62 | 058 | 0.6 | 057 | 0.56 | 0.55 | 0.54
FedProx | 0.66 | 0.63 | 0.65 | 0.59 | 0.65 | 0.65 | 0.65 | 0.64 | 0.63
GCFL 0.65 | 063 | 064 | 056 | 0.6 | 0.58 | 0.58 | 0.58 | 0.53
GCFL+ | 0.65 | 0.63 | 0.63 | 0.55 | 0.59 | 0.59 | 0.58 | 0.58 | 0.58
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Figure 3: Hyperbolic error (HE) values from FGC across different coarsening ratios (r).
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Figure 4: Evaluating graph coarsening for privacy enhancement in federated learning ensuring (a)
node level privacy, (b) edge level privacy and (c) Lo sensitivity for coarsening ratio (r).

4.4 CONVERGENCE ANALYSIS

We evaluated the classification accuracy relative to communication round to demonstrate convergence
of the FL setup with the privacy measures implemented through CPFL and DP-SDG [29]. Figure 5
illustrates the average accuracy curve for datasets for different domains. It can be inferred that CPFL
achieves a faster convergence rate compared to the widely used DP.

5 CONCLUSION

In this work, we introduced a graph coarsening technique as a privacy measure in federated learning
environments for graph data. This approach facilitates private and secure collaborative training of
advanced graph models, such as neural networks for classification, without the need for direct data
exchange. Our extensive experiments show that the tradeoff associated with this privacy measure
is minimal compared to traditional methods like differential privacy. Moreover, since this measure
is applied as a preprocessing step, it incurs minimal computational overhead, ensuring that the
performance of round-wise communication in federated learning remains unaffected. While our study
primarily focuses on protecting against graph reconstruction attacks, future research should investigate
other potential attacks in federated learning for graph data. We believe this work lays the groundwork
for further studies on privacy-preserving techniques through client-side data manipulation and the
development of methods to evaluate their effectiveness.

n Accuracy (%)

20 4 & 8 100 120 10 160 180 200 20 40 60 8 100 120 140 160 180 200 0 w0 & w0
mmunication Round Commaication Round Comm

(a) Molecule (b) Protein (c) Social Networks

Figure 5: Classification accuracy with graph coarsening (r=0.5) and differential privacy (e=5) versus
communication round in multi dataset multi=client setting.
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A APPENDIX

A.1 DATASET DESCRIPTION

We have utilized a diverse set of datasets from three distinct subcategories: Molecules, Proteins, and
Social Networks. Each dataset varies in terms of the number of classes, graphs, average nodes, and
average edges, providing a broad spectrum for analysis and classification tasks.

In the Molecules subcategory, we have the following datasets: Mutag, BZR, COX2, DHFR, and
PTC_MR. Each of these datasets contains 2 classes. Mutag consists of 188 graphs with an average of
17.93 nodes and 19.79 edges per graph. BZR has 405 graphs, averaging 35.75 nodes and 38.36 edges
per graph. COX2 includes 467 graphs with an average of 41.22 nodes and 43.45 edges per graph.
DHFR comprises 756 graphs, with averages of 42.43 nodes and 44.54 edges per graph. PTC_MR has
344 graphs, with an average of 14.29 nodes and 14.69 edges per graph.

For the Proteins subcategory, we employed the ENZYMES, DD, and PROTEINS datasets. EN-
ZYMES is the most diverse with 6 classes, encompassing 600 graphs, each averaging 32.63 nodes
and 62.14 edges. DD has 2 classes and includes 1178 graphs with a high average of 284.32 nodes
and 715.66 edges per graph. The PROTEINS dataset also has 2 classes, consisting of 1113 graphs,
with averages of 39.06 nodes and 72.82 edges per graph.

In the Social Networks subcategory, we used datasets such as COLLAB, Reddit (M), IMDB (B),
IMDB (M), and Reddit (B). COLLAB has 3 classes and includes 5000 graphs with an average of
74.49 nodes and 2457.78 edges per graph. Reddit (M) is more diverse with 5 classes, consisting of
5000 graphs with an average of 508.29 nodes and 594.87 edges per graph. IMDB (B) includes 2
classes and 1000 graphs, each averaging 19.77 nodes and 96.53 edges. IMDB (M) has 3 classes,
encompassing 1500 graphs with averages of 13 nodes and 65.94 edges. Lastly, Reddit (B) contains 2
classes and 2000 graphs, each averaging 429.63 nodes and 497.75 edges.

MOLECULES
Number of Classes | Number of Graphs | Average Nodes | Average Edges
Mutag 2 188 17.93 19.79
BZR 2 405 35.75 38.36
COX2 2 467 41.22 43.45
DHFR 2 756 42.43 44.54
PTC_MR | 2 344 14.29 14.69
PROTEINS
Number of Classes | Number of Graphs | Average Nodes | Average Edges
ENZYMES | 6 600 32.63 62.14
DD 2 1178 284.32 715.66
PROTEINS | 2 1113 39.06 72.82
SOCIAL NETWORKS
Number of Classes | Number of Graphs | Average Nodes | Average Edges
COLLAB | 3 5000 74.49 2457.78
Reddit M) | 5 5000 508.29 594.87
IMDB (B) | 2 1000 19.77 96.53
IMDB (M) | 3 1500 13 65.94
Reddit (B) | 2 2000 429.63 497.75

A.2 SETTINGS

Single Data Multi-Client (SDMC) Setting In the SDMC setting, we have a single graph dataset
distributed across multiple clients. Each client holds a portion of the graph data. The goal is to train a
graph machine learning model while respecting data privacy and without centralizing the data.

Multi Data Multi-Client (MDMC) Setting In the MDMC setting, we have multiple graph datasets,
each owned by different clients. The goal is to train a federated graph machine learning model that
can generalize across different graphs while maintaining data privacy.
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