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Abstract

Temporal tabular question answering presents001
a significant challenge for Large Language002
Models (LLMs), requiring robust reasoning003
over structured data—a task where traditional004
prompting methods often fall short. These005
methods face challenges such as memorization,006
sensitivity to table size, and reduced perfor-007
mance on complex queries. To overcome these008
limitations, we introduce TEMPTABQA-C , a009
synthetic dataset designed for systematic and010
controlled evaluations, alongside a symbolic011
intermediate representation that transforms ta-012
bles into database schemas. This structured013
approach allows LLMs to generate and execute014
SQL queries, enhancing generalization and mit-015
igating biases. By incorporating adaptive few-016
shot prompting with contextually tailored ex-017
amples, our method achieves superior robust-018
ness, scalability, and performance. Experimen-019
tal results consistently highlight improvements020
across key challenges, setting a new benchmark021
for robust temporal reasoning with LLMs.022

1 Introduction023

Large Language Models (LLMs) have revolution-024

ized natural language processing, achieving re-025

markable success across a variety of tasks. How-026

ever, answering questions about temporal tabular027

data task that requires precise reasoning over struc-028

tured information with time-based attributes re-029

mains a significant challenge. This capability is030

crucial in fields such as finance, healthcare, and pol-031

icymaking, where actionable insights often depend032

on understanding and analyzing evolving datasets.033

Yet, existing methods often fall short, struggling034

with complex queries, large datasets, and scenar-035

ios that require nuanced reasoning. An example036

of such task, with a long table and correspond-037

ing query and it’s answer is shown in 1. These038

limitations underscore the urgent need for robust,039

scalable, and interpretable solutions.040

Q. In which year did Áron Szilágyi achieve his personal

highest number of gold medal wins? Gold Answer. 2022
Direct prompt (CoT): In 2020, Áron Szilágyi won a Gold Medal in the
Individual format at the Tokyo Olympics. This was his most successful year in
terms of highest Gold Medal wins since he did not win multiple Gold Medals in
any other format or competition. Answer: 2020.
Symbolic Intermediate Representation (SQL):

WITH gold_medal_counts AS (
SELECT m.year , COUNT(m.medal_id) AS

gold_medals
FROM Medal m JOIN Format f ON m.format_id = f

.format_id
JOIN Tournament t ON f.tournament_id = t.

tournament_id
JOIN Athlete a ON t.athlete_id = a.athlete_id
WHERE a.name = 'Áron Szilágyi' AND m.type = '

MedalGold '
GROUP BY m.year )

SELECT year FROM gold_medal_counts
WHERE gold_medals = (SELECT MAX(gold_medals) FROM

gold_medal_counts);

Answer: 2022

Figure 1: Structured table of Áron Szilágyi’s achievements
with question and answers. Direct prompting fails, whereas,
Symbolic Intermediate Representation give correct answer.
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A key obstacle lies in the lack of benchmarks that041

adequately capture the complexity and diversity of042

temporal reasoning tasks. Existing benchmarks,043

typically created manually, are inconsistent and fail044

to provide the variability needed to thoroughly eval-045

uate models. Without rigorous evaluation frame-046

works, it becomes difficult to diagnose weaknesses047

or ensure models can handle real-world scenarios.048

This raises an essential question: How can we de-049

sign benchmarks that effectively evaluate temporal050

reasoning across a range of challenging contexts?051

Equally important is the need for robust methods.052

Many existing approaches rely on direct prompt-053

ing, which often depends on heuristics and mem-054

orized patterns rather than true reasoning. This055

results in semantic biases and poor performance in056

demanding scenarios, such as counterfactual rea-057

soning, large table contexts, or multi-step queries.058

This leads to a second critical question: How can059

we develop methods that remain robust across di-060

verse table structures, dynamic data, and complex061

queries?062

To address these challenges, we propose a com-063

prehensive framework that reimagines how LLMs064

approach temporal tabular data. At its core is065

TEMPTABQA-C , a synthetic dataset generation066

method designed to fill the gaps in existing bench-067

marks. TEMPTABQA-C provides precise control068

over data characteristics, enabling consistent and069

systematic evaluation across a wide range of sce-070

narios, including counterfactual reasoning and intri-071

cate temporal queries. Building on this foundation,072

we introduce a symbolic intermediate represen-073

tation approach that transforms unstructured ta-074

bles into structured database schemas. LLMs are075

guided to generate SQL queries based on these076

schemas, which are executed to produce accurate077

answers. E.g. in Figure 1, the SQL query serves as078

a symbolic representation and provides the correct079

answer, whereas direct prompting fails on given080

query. This structured pipeline reduces semantic081

biases, enhances interpretability, and significantly082

improves the generalization of models across differ-083

ent table configurations. Additionally, we incorpo-084

rate adaptive few-shot prompting, a dynamic ap-085

proach that selects contextually relevant examples086

tailored to each query. This method overcomes the087

limitations of static examples, further improving088

the robustness of the system in complex scenarios.089

Our experiments demonstrate that this frame-090

work delivers substantial improvements over direct091

prompting methods. It excels in critical areas such092

as counterfactual reasoning, scalability to larger 093

datasets, and the handling of complex queries. Be- 094

yond these technical advancements, our work estab- 095

lishes a new benchmark for temporal tabular ques- 096

tion answering by addressing fundamental weak- 097

nesses in existing approaches and introducing in- 098

novative tools for evaluation and reasoning. These 099

contributions pave the way for building more inter- 100

pretable, scalable, and robust AI systems with im- 101

plications for critical real-world applications. Our 102

contributions are as follows: 103

1. We introduce TEMPTABQA-C , a synthetic 104

dataset designed for precise and robust eval- 105

uation of temporal tabular reasoning across 106

diverse and challenging scenarios. 107

2. We analyze the limitations of direct prompt- 108

ing, including reliance on memorization, sen- 109

sitivity to table size, and struggles with com- 110

plex multi-step or counterfactual reasoning. 111

3. We propose a symbolic intermediate rep- 112

resentation approach that enhances inter- 113

pretability, reduces biases, and improves gen- 114

eralization by guiding LLMs to generate and 115

execute SQL queries on structured schemas. 116

4. We enhance this approach with adaptive few- 117

shot prompting, enabling context-specific ex- 118

ample selection for improved flexibility and 119

performance in diverse scenarios. 120

To support future research, we will release the 121

TEMPTABQA-C dataset and source code (prompts 122

etc) upon acceptance. 123

2 The TEMPTABQA-C Dataset 124

The TEMPTABQA-C dataset is a large-scale, semi- 125

automatically generated resource designed for eval- 126

uating temporal reasoning in Large Language Mod- 127

els (LLMs). It provides a benchmark for analyzing 128

the temporal qualities of LLMs by enabling con- 129

trolled variations in data characteristics, making 130

it superior to traditional human-curated datasets. 131

This section describes the dataset creation process, 132

its schema, and key characteristics. 133

2.1 TEMPTABQA-C Creation Pipeline 134

The creation of TEMPTABQA-C follows a system- 135

atic pipeline to extract, structure, and store tempo- 136

ral information from Wikipedia infoboxes. Below, 137

we describe the steps involved in detail. 138
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Extracting Temporal Information. Temporal139

information about athletes, tournaments, events,140

and achievements is extracted from Wikipedia in-141

foboxes. These tables contain attributes such as142

"Name," "Date of Birth," "Tournaments Played,"143

and "Medals Won," which are programmatically144

extracted and input into a relational database using145

a predefined schema. This step ensures that the raw146

tabular data is converted into a structured format147

for efficient querying and storage.148

Relational Database Creation. The structured149

temporal data is converted into a relational database150

schema to enable efficient storage and querying.151

The schema is designed to represent key entities152

and their relationships comprehensively:153

• Athlete Table: Contains a unique154

athlete_id and the corresponding ath-155

lete’s name.156

• Personal Information Table: Captures birth157

year, month, and day for each athlete, linked158

to the athlete_id.159

• Tournament Table: Stores tournament de-160

tails, such as the name (e.g., "Olympic161

Games") and the athlete_id.162

• Format Table: Represents event formats163

(e.g., "100m Freestyle"), linked to tourna-164

ments through tournament_id.165

• Medal Table: Documents medals, including166

type (e.g., "Gold"), year (e.g., "2016"), and167

location (e.g., "Rio de Janeiro"), linked to for-168

mats through format_id.169

This schema ensures all entities are intercon-170

nected via primary and foreign keys, enabling com-171

plex queries like calculating an athlete’s age at the172

time of their first medal or comparing performance173

across tournaments.174

Question and Answer Generation Questions175

are generated using predefined templates filled with176

key attributes from the relational database. Tem-177

plates capture a wide range of temporal reasoning178

scenarios, such as:179

• At what age did [Athlete] win his most recent [Tourna-180
ment] [Medal Type]?181

• At what age did Michael Phelps win his most recent Pan182
Pacific Championships Silver Medal?183

To generate answers, the relational database is184

queried using SQL-based logic, which systemati-185

cally retrieves the necessary information. For in-186

stance, answering a question about the age of an187

athlete during a specific tournament involves re-188

trieving the athlete’s birth year and the tournament189

year from the database and calculating the differ- 190

ence. Similarly, questions about medal counts or 191

locations are answered by aggregating or filtering 192

data from the tables. 193

The SQL-based logic is generalized across vari- 194

ous question types, allowing the generation of thou- 195

sands of unique question-answer pairs. Examples 196

include: 197

• At what age did Michael Phelps win his most recent 198
Olympic Games Silver Medal? Answer: 29 199

• In which city did Caeleb Dressel win his most recent 200
Olympic Games Silver Medal? Answer: Tokyo 201

This approach ensures the dataset is both scal- 202

able and robust for evaluating temporal reasoning 203

in LLMs. 204

2.2 TEMPTABQA-C Composition and Splits 205

The TEMPTABQA-C dataset is divided into Origi- 206

nal and CounterFact questions, with each category 207

further subdivided based on table size and question 208

reasoning difficulty. This structure enables fine- 209

grained and comprehensive evaluations. 210

Original Questions. Original questions are de- 211

rived directly from the structured database and are 212

categorized as follows: 213

1. Table size: we make questions on the table 214

with varied sizes: (a.) Small Tables: Contain con- 215

cise data, typically representing athletes with fewer 216

medals, (b.) Large Tables: Contain extensive data, 217

often representing athletes with a larger number of 218

medals. 219

2. Question Complexity: we answer ques- 220

tions on varied difficulty some requiring complex 221

multi-hop reasoning: (a.) Easy: Require basic 222

facts retrieval or single-step reasoning. E.g.: "How 223

many formats has Michael Phelps played?", (b.) 224

Medium: Involve multi-step reasoning, such as 225

calculations or comparisons. E.g.: "At what age 226

did Michael Phelps win his most recent Olympic 227

Silver Medal?", and (c.) Hard: Demand complex 228

reasoning, temporal analysis, and synthesis of mul- 229

tiple facts. E.g.: "What is the shortest time span 230

(in years) within which Michael Phelps won gold, 231

silver, and bronze medals in the same format across 232

any tournament?" 233

Counterfactual Questions. Counterfactual ques- 234

tions modify specific facts in the original dataset 235

while maintaining the same categorization based 236

on table size and difficulty of the reasoning of the 237

questions. This design challenges models to reason 238

effectively under hypothetical scenarios. 239
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Significance of TEMPTABQA-C . The dataset240

offers several unique advantages: (a.) Controlled241

Evaluation: Provides a framework for systemati-242

cally testing LLMs across diverse data character-243

istics., (b.) Scalability: Comprises over 200,000244

questions spanning a wide range of contexts and245

complexities., and (c.) Fine-Grained Analysis:246

Facilitates benchmarking of model biases and limi-247

tations, particularly for temporal reasoning.248

By providing a controlled, scalable, and diverse249

dataset, TEMPTABQA-C establishes a robust foun-250

dation for advancing research on temporal reason-251

ing in LLMs.252

3 Experimental Setup253

We designed experiments to address the following254

research questions:255

1. Robustness to Counterfactual Data: How256

robust are direct LLM prompts to counterfac-257

tual data, and can symbolic intermediate rep-258

resentations improve this?259
2. Handling Large Tables: Can a symbolic in-260

termediate representation outperform direct261

prompting when applied to larger tables?262
3. Impact of Question Complexity: How does263

increasing question complexity impact the per-264

formance of these two approaches?265

To answer these questions, we evaluated two266

core approaches: Direct Prompting and Symbolic267

Intermediate Representation. Each approach was268

evaluated under three prompting configurations:269

• Zero-shot: The model is prompted without270

examples, relying solely on its pretraining.271

For symbolic intermediate representation, this272

involves generating SQL queries without any273

in-context examples.274
• Non-Adaptive Few-shot: This setup provides275

a fixed set of six example question-answer276

pairs with the prompt. These examples re-277

main constant across all test questions, irre-278

spective of their context. For symbolic in-279

termediate representation, this includes fixed280

natural language-to-SQL mappings.281
• Adaptive Few-shot: In this approach, six ex-282

amples are dynamically chosen for each test283

question based on their relevance to the spe-284

cific question. This ensures that the few-shot285

examples align closely with the current ques-286

tion’s structure and content. For symbolic287

intermediate representation, this involves dy-288

namically selecting natural language-to-SQL289

examples tailored to the test question.290

In the Direct Prompting setup, models are 291

queried directly in natural language, and the an- 292

swers are returned as plain text. In the Symbolic 293

Intermediate Representation setup, models gener- 294

ate SQL queries based on the question and context, 295

which are executed on a structured database to ob- 296

tain answers. 297

We used the TEMPTABQA-C dataset, which 298

includes Original, counterfactual, and question dif- 299

ficulty (Easy, Medium, Hard) splits, along with 300

small and large table contexts. Models were evalu- 301

ated using Exact Match Score (EMS) 1, focusing 302

on the following key splits: 303

• Original vs. Counterfactual: We examined 304

whether the gap between Original and Coun- 305

terfactual data reduces as we move toward 306

symbolic intermediate reasoning. 307

• Large Table vs. Small Table: We evaluated 308

if the gap between large and small tables de- 309

creases with symbolic intermediate reasoning. 310

• Performance by Question Complexity: We 311

analyzed performance trends across Easy, 312

Medium, and Hard questions, particularly the 313

improvement brought by symbolic intermedi- 314

ate reasoning. 315

Through these experiments, we aim to demon- 316

strate that symbolic intermediate reasoning reduces 317

sensitivity to counterfactual data, scales better with 318

table size, and handles increasing question com- 319

plexity more effectively than direct prompting. 320

TEMPTABQA-C Test set. In order to eval- 321

uate the LLM’s we created a subset of the 322

TEMPTABQA-C dataset having the following num- 323

ber of question per category: 324

Category #Examples Category #Examples

Original 578 Easy 732
Counterfactual 699 Medium 507
Small Table 855 Hard 719
Large Table 538 Total 5067

Table 1: Dataset Splits and Their Number of Examples.
In our test set, the average context length for the 325

Small Table Split is 53.80 words when using the 326

infobox as the context, while for the Large Table 327

Split, it increases significantly to 348.85 words. 328

4 Results and Analysis 329

In this section, we present the results for GPT-4o 330

and Gemini 1.5 Pro. Additionally, we evaluated 331

1We also used a relaxed version of EMS (REMS), with
similar results detailed in the appendix.
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Gemini 1.5 Flash, GPT-4o Mini, Mixtral, Llama 3.1332

70B, Code Llama, and SQL Coder, which demon-333

strated similar trends. The results of these addi-334

tional experiments are included in the Appendix.335

4.1 Robustness on Counterfactual Data.336

To evaluate counterfactual robustness, we compare337

model performance on original and counterfactual338

datasets. Table 2 and 3 summarizes these results,339

including the performance gap (∆) between the340

original and counterfactual performance for GPT341

4o and Gemini-1.5-Pro.342

Method Adaptive Original CounterFact ∆

Direct (CoT) × 53.95 41.91 12.04
Direct (CoT) ✓ 54.92 41.7 13.22

SQL × 61.36 60.4 0.96
SQL ✓ 68.04 67.02 1.02

Table 2: Original vs Counterfactual for GPT-4o.

Method Adaptive Original CounterFact ∆

Direct (CoT) × 59.01 46.87 12.14
Direct (CoT) ✓ 60.23 49.04 11.19

SQL × 67.76 63.63 4.13
SQL ✓ 73.04 73.58 0.54

Table 3: Original vs Counterfactual for Gemini 1.5 Pro.

Analysis: Comparing the performance of GPT-343

4o and Gemini 1.5 Pro across original and coun-344

terfactual datasets provides valuable insights into345

the robustness of Direct Prompting and SQL-based346

reasoning methods. A model that truly reasons347

about data should not be affected by the origin of348

the data.349

However, for Direct Prompting, both models ex-350

hibit significant performance gaps between the orig-351

inal and counterfactual datasets, indicating a heavy352

reliance on memorized knowledge rather than ro-353

bust reasoning capabilities. For GPT-4o, the per-354

formance gaps are 12.04 (non-adaptive) and 13.22355

(adaptive), while Gemini 1.5 Pro shows slightly356

larger gaps of 12.14 and 11.19, respectively. No-357

tably, the adaptive approach improves the perfor-358

mance on original data but increases sensitivity to359

counterfactuals for GPT-4o. In contrast, Gemini360

1.5 Pro’s adaptive Direct Prompting reduces the361

gap slightly but still fails to address the core issue362

of data sensitivity.363

On the other hand, SQL-based methods, demon-364

strate superior robustness in both models, with per-365

formance gaps significantly smaller than those in366

Direct Prompting. For GPT-4o, the non-adaptive367

SQL gap is just 0.96, and the adaptive SQL gap368

is 1.02. Similarly, for Gemini 1.5 Pro, the non- 369

adaptive SQL gap is 4.13, and the adaptive SQL 370

gap reduces further to 0.54, showcasing its capa- 371

bility to reason effectively across different datasets. 372

The use of symbolic intermediate representations in 373

SQL methods explains this robustness, as these ap- 374

proaches operate independently of the data origin, 375

focusing instead on schema-driven reasoning. 376

Finally, the adaptive approach enhances perfor- 377

mance across both methods and models, particu- 378

larly for SQL. For example, in GPT-4o, adaptive 379

SQL improves counterfactual performance by 6.62 380

points compared to non-adaptive SQL, while in 381

Gemini 1.5 Pro, it further narrows the performance 382

gap to an almost negligible 0.54 points. This high- 383

lights the critical role of dynamic, context-sensitive 384

few-shot examples in enhancing model reasoning 385

capabilities and robustness across diverse datasets. 386

4.2 Impact of Table Size. 387

To evaluate the impact of data size, we compare 388

model performance on small and large datasets. 389

Table 4 and 5 presents the results, including the 390

gap between small and large datasets for GPT 4o 391

and Gemini 1.5 Pro. 392

Method Adaptive Small Large ∆

Direct (CoT) × 71.11 46.84 24.27
Direct (CoT) ✓ 73.92 48.88 25.04

SQL × 71.93 70.82 1.11
SQL ✓ 72.16 73.23 1.07

Table 4: Small Table vs Large Table for GPT-4o

Method Adaptive Small Large ∆

Direct (CoT) × 65.79 43.86 21.93
Direct (CoT) ✓ 66.26 41.86 24.40

SQL × 62.22 54.65 7.57
SQL ✓ 71.47 72.43 0.96

Table 5: Small Table vs Large Table for Gemini 1.5 Pro

Analysis: A model capable of genuine reason- 393

ing should operate independently of data size. For 394

example, the correctness of an SQL query’s result 395

is unaffected by the size of the tables—it impacts 396

only the computation time, not the quality of the 397

outcome. However, the trends for small vs. large ta- 398

bles closely mirror those observed in the original vs. 399

counterfactual analysis. Direct Prompting shows 400

significant performance drops with larger tables, 401

with GPT-4o and Gemini 1.5 Pro exhibiting gaps 402

of 24.27 and 21.93 in non-adaptive settings, respec- 403

tively. This underscores the method’s sensitivity to 404

data complexity and dependence on memory. 405
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In contrast, SQL-based methods demonstrate406

remarkable robustness, maintaining minimal per-407

formance gaps across table sizes (e.g., 1.07 for408

adaptive SQL in GPT-4o and 0.96 in Gemini 1.5409

Pro). This resilience stems from schema-driven rea-410

soning, which abstracts away from the data’s size411

or origin 2. Adaptive few-shot examples further412

enhance performance, particularly for SQL-based413

methods, allowing them to consistently deliver high414

accuracy even with larger tables.415

These findings emphasize that Direct Prompt-416

ing struggles with data complexity and scale, mir-417

roring its limitations in counterfactual settings.418

SQL-based methods, on the other hand, exemplify419

robustness and scalability by leveraging schema-420

driven symbolic representations that are agnostic421

to data size or source. The dynamic selection of422

adaptive examples further strengthens their reliabil-423

ity, making them a superior choice for reasoning424

over complex and evolving datasets.425

4.3 Effect of question complexity.426

To evaluate question complexity effects, we com-427

pare model performance on Easy, Medium, and428

Hard questions. Table 6 and 7 summarizes the re-429

sults for GPT-4o and Gemini-1.5-Pro respectively.430

Method Adaptive Easy Medium Hard

Direct (CoT) × 71.18 63.12 53.35
Direct (CoT) ✓ 74.38 63.91 54.17

SQL × 78.58 75.54 62.62
SQL ✓ 79.83 73.57 66.32

Table 6: Easy, Medium, and Hard results for GPT-4o

Method Adaptive Easy Medium Hard

Direct (CoT) × 73.26 60.71 57.43
Direct (CoT) ✓ 78.04 66.43 59.28

SQL × 80.86 70.33 59.59
SQL ✓ 75.86 71.47 59.24

Table 7: Easy, Medium, and Hard results on Gemini 1.5 Pro

Analysis: Performance consistently declines431

across all models and settings as question com-432

plexity increases from Easy to Hard, aligning with433

previous findings on the influence of data size and434

complexity. While such a drop is expected for both435

models and humans (though less severe for the436

latter), the key question is: can we do better and437

reduce this decline? Direct Prompting struggles438

as question complexity increases, with significant439

2We tested counterfactual versions, showing similar find-
ings to section 4.1.

drops in accuracy (e.g., from 71.18 to 53.35 for non- 440

adaptive GPT-4o). Adaptive prompting slightly 441

mitigates this decline but remains limited in han- 442

dling complex queries effectively. 443

SQL-based methods demonstrate greater re- 444

silience to complexity, maintaining higher accuracy 445

across all levels. For example, non-adaptive SQL 446

in GPT-4o drops moderately from 78.58 (Easy) 447

to 62.62 (Hard), while adaptive SQL narrows this 448

gap further, achieving 66.32 for Hard questions. 449

Similarly, Gemini 1.5 Pro exhibits stable perfor- 450

mance with SQL, with adaptive settings providing 451

consistent improvements, particularly for harder 452

questions. 453

These results reinforce SQL’s robustness through 454

schema-driven reasoning, which abstracts complex- 455

ity and reduces reliance on memorization. Adaptive 456

prompting enhances performance across all meth- 457

ods, particularly in SQL-based approaches, where 458

tailored examples improve the model’s ability to 459

handle challenging queries. This underscores the 460

importance of structured reasoning and adaptive 461

techniques for tackling increasing data and query 462

complexity effectively. 463

5 What Did We Learn? 464

1. Impact of Symbolic Representations. Pars- 465

ing data into symbolic queries consistently boosts 466

model performance. Symbolic representations 467

bridge counterfactual gaps, reduce dependence on 468

data size, and enhance the handling of complex 469

questions. By structuring data more clearly, sym- 470

bolic queries improve robustness and address chal- 471

lenges like noise and memorization. 472

2. Benefits of Schema-Based Reasoning. 473

Schemas provide a clean, data-agnostic abstraction 474

of database structures, removing irrelevant noise 475

and simplifying reasoning. By presenting only the 476

schema without any underlying data, we ensure 477

there is no room for memorization. Unlike raw ta- 478

bles, which mix useful and irrelevant data, schemas 479

provide a stable framework that ensures consistent 480

performance, especially in counterfactual scenarios 481

where structured reasoning is critical. 482

3. Effect of Data Size. Data size significantly 483

affects model performance. Larger tables often in- 484

troduce noise, increasing the risk of hallucinations. 485

Schemas mitigate this by segmenting data into key 486

components, reducing cognitive overload and clar- 487

ifying the reasoning process, allowing models to 488

perform more reliably on large, complex datasets. 489
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4. Handling Complex Questions. Schema-490

based reasoning excels in answering complex ques-491

tions by supporting logical, step-by-step reasoning.492

SQL query generation fosters clarity and reduces493

ambiguity. In contrast, raw text tables, especially494

those with counterfactual data, often lack structure,495

leading to errors or incomplete reasoning. By offer-496

ing a predefined framework, schemas reduce cogni-497

tive demands, enabling models to handle nuanced498

queries more effectively.499

6 Discussion of Model Failures500

6.1 Inadequacy of Direct Complex Strategies501

Several techniques, such as Program of Thought502

(PoT) Chen et al. (2023), Chain of Table(Wang503

et al., 2024a), Binder(Cheng et al.), Dater Ye et al.504

(2023b), and Plan and Solve Wang et al. (2023),505

aim to handle complex queries. However, these506

methods fall short when detailed query plans are507

needed. The complexity of tasks involving multiple508

steps, conditional logic, and dependencies cannot509

be captured by direct prompting alone. Each query510

introduces unique variables, making strategies like511

PoT fails for complex reasoning.512

For example, a query requiring the join of three513

large tables with specific conditions cannot be ef-514

fectively handled by PoT, which may only generate515

simple steps like "select from Table A" or "filter Ta-516

ble B." These methods fail to capture the necessary517

logic for combining tables or handling multiple518

joins and nested queries. Such complexity requires519

a carefully constructed query plan, which direct520

prompting cannot produce.521

The core issue is the complexity of the underly-522

ing query plans. PoT may generate query plans, but523

they struggle with complex operations like joins,524

aggregations, and nested subqueries, which de-525

mand precise sequencing and optimization. Re-526

search, particularly by Akioyamen et al. (2024),527

argues that query planning requires structured ap-528

proaches like SQL to manage these complexities,529

reinforcing that simpler prompting strategies are530

insufficient for intricate query reasoning.531

6.2 Challenges with Symbolic Approach532

Despite advancements in symbolic representation,533

several challenges remain in improving model reli-534

ability and performance:535

1. SQL Query Inconsistencies The model of-536

ten misuses SQL constructs, such as over-relying537

on LIMIT 1 when multiple answers are needed538

"List all the formats in which Carolina Marín has 539

won medals?" or adding redundant joins that slow 540

execution "How many tournaments did Michael 541

Phelps win in 2008?". It also misaligns query ob- 542

jectives, failing to handle aggregates or GROUP BY 543

clauses properly "What are the medal counts for 544

each athlete in the Olympics?". 545

2. Temporal and Positional Reasoning Errors 546

The model struggles with temporal and positional 547

reasoning, often hallucinating columns or misin- 548

terpreting data "At what age did Michael Phelps 549

win his most recent Olympic Gold Medal?". It 550

also misaligns aggregations over time "Which ath- 551

lete had the most consistent medal wins over 552

the last decade?" and hierarchical relationships 553

"Which was Michael Phelps’ most recent tourna- 554

ment medal?". 555

3. Nested and Conditional Logic Challenges 556

Errors occur in nested and conditional logic, such 557

as incorrect use of WITH clauses "Which event had 558

the shortest duration between P. V. Sindhu’s medal 559

wins?" or failing to respect conditions "List all 560

tournaments where Carolina Marín won a medal 561

after 2015?". The model also mishandles multi- 562

field responses "List the medal type, location, and 563

year for Hugo Calderano’s wins.". 564

4. Aggregates, Joins, and Dependencies The 565

model struggles with nested aggregates, non- 566

standard joins, and dependency tracking. It fails to 567

construct valid joins "Which format had the high- 568

est number of gold medals in 2020?" or align de- 569

pendencies in complex queries "Which medal did 570

Michael Phelps win in the same tournament as 571

his fastest recorded swim?". It also ignores group- 572

level constraints, leading to overgeneralized results 573

"Which city hosted the most gold-medal-winning 574

tournaments for P. V. Sindhu?". 575

5. Inconsistencies and Robustness Issues In- 576

consistent query structures lead to variable results 577

for similar tasks "How old was Hugo Calderano 578

when he won his first medal?" vs. "At what age 579

did Michael Phelps win his most recent Olympic 580

Gold Medal?". The model struggles with entity dis- 581

ambiguation "List all the medals won by Michael 582

Phelps in the Olympic Games?" and overlooks 583

edge cases "How many medals has an athlete 584

with no wins received?". Ranking logic is of- 585

ten mishandled, such as ignoring ordering require- 586

ments "Which city hosted the most tournaments in 587

2019?". 588
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7 Comparison with Related Work589

Temporal reasoning in LLMs is an evolving field590

intersecting with advancements in tabular reason-591

ing, logic, and symbolic methods. Our work ad-592

vances this area by introducing the TEMPTABQA-593

C dataset for detailed evaluation of temporal rea-594

soning in tabular contexts. Key advancements in595

related areas are discussed below.596

Tabular Reasoning. The application of LLMs to597

semi-structured tabular data has been widely stud-598

ied across tasks like question answering, semantic599

parsing, and table-to-text generation (Chen et al.,600

2020; Gupta et al., 2020; Zhang et al., 2020; Zhang601

and Balog, 2020). Models such as TAPAS (Herzig602

et al., 2020), TaBERT (Yin et al., 2020), and TAB-603

BIE (Iida et al., 2021) enhance table comprehen-604

sion by combining tabular and textual embeddings,605

while methods like Table2vec (Zhang et al., 2019)606

and TabGCN (Pramanick and Bhattacharya, 2021)607

explore alternative tabular representations to im-608

prove inference.609

Recent studies have introduced symbolic reason-610

ing for structured tables with predefined schemas611

(Cheng et al., 2023; Ye et al., 2023a; Wang et al.,612

2024b), enabling more effective navigation of struc-613

tured data. Our work builds on these advancements614

by using SQL-based symbolic reasoning to address615

temporal queries in semi-structured tabular datasets.616

TEMPTABQA-C further contributes by offering617

a fine-grained evaluation framework for temporal618

reasoning across diverse data characteristics.619

Temporal Reasoning. Temporal reasoning is620

central to question answering and event-centric621

tasks, with datasets like TIME-SENSITIVEQA622

(Chen et al., 2021) and TORQUE (Ning et al.,623

2020) addressing time-sensitive comprehension in624

text, and TEMPQA-WD (Neelam et al., 2022) and625

CRONQUESTIONS (Saxena et al., 2021) focus-626

ing on temporal links in knowledge graphs. Mod-627

els like CRONKBQA (Saxena et al., 2021) further628

enhance performance by incorporating temporal629

reasoning during training.630

Our work extends these efforts to structured tab-631

ular datasets. While datasets such as TempTabQA632

(Gupta et al., 2023) and TRAM (Wang and Zhao,633

2024) tackle similar challenges, TEMPTABQA-C634

advances the field by introducing counterfactual635

reasoning, scalable table sizes, and diverse ques-636

tion difficulties, offering a broader framework for637

evaluating temporal reasoning.638

Logical Reasoning and Symbolic Approaches 639

Logical reasoning frameworks like LOGIC-LM 640

(et al., 2023b) and neurosymbolic methods such 641

as LINC (et al., 2023c) demonstrate the bene- 642

fits of incorporating symbolic reasoning to en- 643

hance logical inference in LLMs. These ap- 644

proaches use external tools to handle complex logi- 645

cal tasks, enabling modular and interpretable rea- 646

soning pipelines. Similarly, auto-formalization 647

techniques like NL2FOL (et al., 2023a) convert 648

natural language inputs into structured symbolic 649

representations, improving reasoning accuracy. 650

Building on these paradigms, our SQL-based 651

symbolic representation focuses on temporal rea- 652

soning within tabular contexts, converting natural 653

language queries into executable SQL to enable 654

structured reasoning with scalability and precision. 655

Positioned at the intersection of tabular reasoning, 656

temporal reasoning, and symbolic methods, our 657

work introduces the TEMPTABQA-C dataset—a 658

comprehensive benchmark for evaluating LLM ca- 659

pabilities. This dataset includes original and coun- 660

terfactual splits, varying table sizes, and questions 661

of diverse difficulty levels, seamlessly integrating 662

with the SQL-based reasoning approach to advance 663

structured temporal reasoning in LLMs 664

7.1 Conclusion 665

This work investigates temporal tabular ques- 666

tion answering with LLMs, tackling key chal- 667

lenges in counterfactual robustness, data sensi- 668

tivity, and question complexity. We introduced 669

TEMPTABQA-C , a controlled benchmark de- 670

signed for systematic evaluations. By combining 671

symbolic intermediate representations with adap- 672

tive few-shot prompting, our approach leverages 673

database schemas and SQL query generation to 674

address the limitations of direct prompting. 675

Our experiments demonstrate that symbolic rep- 676

resentations improve generalization, counterfactual 677

robustness, and scalability, especially when han- 678

dling larger tables. Additionally, adaptive prompt- 679

ing enhances reasoning for complex queries. Im- 680

mediate future work can focus on incorporating 681

stronger baselines, conducting detailed error anal- 682

ysis, and exploring fine-tuning techniques. A 683

deeper analysis of the results will further illumi- 684

nate the strengths and limitations of the approach. 685

TEMPTABQA-C lays a strong foundation for ad- 686

vancing structured temporal reasoning in LLMs 687

and encourages future efforts to develop inter- 688

pretable and robust temporal reasoning AI systems. 689
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Limitations690

We demonstrated the effectiveness of our approach691

through extensive experiments in English. How-692

ever, extending the study to a multilingual context693

could reveal its applicability across diverse lan-694

guages. While our work focuses on simple, entity-695

centric tables, real-world datasets are often more696

complex, such as hierarchical or multi-relational697

tables. Future research should explore these more698

intricate structures to expand the method’s utility.699

Our experiments assume static tables, yet many700

real-world scenarios involve dynamic data, such701

as streaming or frequently updated tables. Adapt-702

ing the method to handle evolving datasets would703

enhance its practical relevance. Additionally, the704

approach does not leverage external domain knowl-705

edge, which could complement symbolic reasoning706

and broaden its applications.707

The dataset may also exhibit inherent biases,708

such as domain-specific or entity-centric con-709

straints, limiting generalizability. Future datasets710

should aim for greater diversity to better reflect711

real-world scenarios. Finally, due to computational712

constraints, we did not fine-tune models on the713

TEMPTABQA-C dataset. Future work should ad-714

dress this limitation by exploring fine-tuning on715

larger datasets and evaluating the approach in more716

resource-intensive and dynamic settings for a com-717

prehensive assessment.718

Ethics Statement719

We are deeply committed to upholding the highest720

ethical standards in research and publication. To721

ensure transparency and reproducibility, we will722

publicly release our code, enhanced evaluation set,723

and detailed documentation, enabling the research724

community to validate, reproduce, and build upon725

our work. By sharing our resources, we aim to726

foster collaboration and accountability within the727

computational linguistics field.728

Our methodology reflects a commitment to the729

responsible and fair use of tools and techniques,730

with all claims grounded in rigorously validated ex-731

perimental results. To address the stochastic nature732

of black-box models, we maintained a fixed temper-733

ature throughout our experiments, ensuring consis-734

tent outcomes. AI tools were employed responsibly735

during the writing process, with careful oversight736

to prevent bias or inaccuracies. We provide com-737

prehensive details about annotations, dataset splits,738

models, and prompting methods to ensure full re-739

producibility and empower researchers to evaluate 740

our work rigorously. 741

Recognizing the importance of inclusivity and 742

fairness, we acknowledge that our dataset may 743

carry inherent biases, such as domain-specific or 744

entity-centric limitations. While we strive for broad 745

applicability, future iterations will prioritize greater 746

diversity to enhance fairness and generalizability. 747

By adhering to these principles, we aim to advance 748

knowledge in computational linguistics while pro- 749

moting ethical and responsible research practices 750

that emphasize transparency, equity, and repro- 751

ducibility. 752
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8 Appendix905

8.1 Examples:906

8.1.1 Example 1:907

Q. Which Olympic year marked Michael Phelps’908

record for the most gold medals won?909

910

Steps for SQL Reasoning911

Step 1: Start with the infobox table of Michael912

Phelps’ medals913

Medal Year Event
Gold 2008 Beijing 100 m butterfly
Gold 2008 Beijing 200 m medley
Gold 2004 Indianapolis 200 m freestyle
Silver 2002 Yokohama 4×200 m freestyle

914

Step 2: Transform the data (all swimmer infoxes)915

into a relational schema and organize it into916

structured database tables for efficient querying.917

918 Database Schema:919
Athlete Table:920
+-------------+----------------+921
| Column | Description |922
+-------------+----------------+923
| athlete_id | Primary Key |924
| name | Athlete Name |925
+-------------+----------------+926
Tournament Table:927
+----------------+------------------------+928
| Column | Description |929
+----------------+------------------------+930
| tournament_id | Primary Key |931
| athlete_id | Foreign Key (Athlete) |932
| name | Tournament Name |933
+----------------+------------------------+934
Format Table:935
+----------------+----------------------------+936
| Column | Description |937
+----------------+----------------------------+938
| format_id | Primary Key |939
| tournament_id | Foreign Key (Tournament) |940
| name | Event Name |941
+----------------+----------------------------+942
Medal Table:943
+-------------+----------------------------+944
| Column | Description |945
+-------------+----------------------------+946
| medal_id | Primary Key |947
| format_id | Foreign Key (Format) |948
| type | Medal Type |949
| year | Year of Achievement |950
| location | Medal Location |951
+-------------+----------------------------+952
PersonalInformation Table:953
+----------------+-----------------------------+954
| Column | Description |955
+----------------+-----------------------------+956
| info_id | Primary Key |957
| athlete_id | Foreign Key (Athlete) |958
| birth_year | Birth Year |959
| birth_month | Birth Month |960
| birth_day | Birth Day |961
+----------------+-----------------------------+962

963

Step 3: Write the SQL Query 964

The following query retrieves the year with the 965

most gold medals: 966

WITH gold_medal_counts AS ( 967
SELECT m.year , COUNT(m.medal_id) AS 968

gold_medals 969
FROM Medal m 970
JOIN Format f ON m.format_id = f.format_id 971
JOIN Tournament t ON f.tournament_id = t. 972

tournament_id 973
JOIN Athlete a ON t.athlete_id = a.athlete_id 974
WHERE a.name = 'Michael Phelps ' 975

AND m.type = 'MedalGold ' 976
GROUP BY m.year 977

) 978
SELECT year 979
FROM gold_medal_counts 980
WHERE gold_medals = ( 981

SELECT MAX(gold_medals) 982
FROM gold_medal_counts 983

); 984

Step 4: Execute the Query 985

The query outputs the year with the highest number 986

of gold medals. 987

Final Result: 2008 988

Direct Reasoning with Chain-of-Thought 989

(CoT): 990

To perform direct reasoning using Chain-of- 991

Thought (CoT), LLM arrange the medal in year 992

and count the number of gold medals per year from 993

the table: 994

Year 2008: 995
- 100 m butterfly (Gold) 996
Total: 1 gold medals 997

998
Year 2004: 999
- 200 m freestyle (Gold) 1000
- 200 m medley (Gold) 1001
Total: 2 gold medal 1002

1003
Year 2002: 1004
- 4x200 m freestyle (Silver) 1005
Total: 0 gold medals 1006

Answer (CoT Reasoning): 2004 has the most gold 1007

medals with a count of 2. 1008

However, due to direct reasoning errors or omis- 1009

sions, it misinterpret the complex table, and hence 1010

CoT fails whereas Symbolic succeed. 1011

8.1.2 Example 2: 1012

Q. Does Emma Weyant have more Bronze Medals 1013

than Gold Medals ? 1014

1015

Steps for SQL Reasoning 1016

Step 1: Start with the infobox table of Emma 1017

Weyant’s medals. 1018

Step 2: Transform the data (all swimmer in- 1019

foboxes) into a relational schema and organize 1020

11



Figure 2: Emma Weyant’s Medal Infobox

it into structured database tables for efficient1021

querying.1022

1023 Database Schema:1024
Athlete Table:1025
+-------------+----------------+1026
| Column | Description |1027
+-------------+----------------+1028
| athlete_id | Primary Key |1029
| name | Athlete Name |1030
+-------------+----------------+1031

1032
Tournament Table:1033
+----------------+------------------------+1034
| Column | Description |1035
+----------------+------------------------+1036
| tournament_id | Primary Key |1037
| athlete_id | Foreign Key (Athlete) |1038
| name | Tournament Name |1039
+----------------+------------------------+1040

1041
Format Table:1042
+----------------+----------------------------+1043
| Column | Description |1044
+----------------+----------------------------+1045
| format_id | Primary Key |1046
| tournament_id | Foreign Key (Tournament) |1047
| name | Event Name |1048
+----------------+----------------------------+1049

1050
Medal Table:1051
+-------------+----------------------------+1052
| Column | Description |1053
+-------------+----------------------------+1054
| medal_id | Primary Key |1055
| format_id | Foreign Key (Format) |1056
| type | Medal Type |1057
| year | Year of Achievement |1058
| location | Medal Location |1059
+-------------+----------------------------+1060

1061
PersonalInformation Table:1062
+----------------+-----------------------------+1063
| Column | Description |1064
+----------------+-----------------------------+1065
| info_id | Primary Key |1066
| athlete_id | Foreign Key (Athlete) |1067
| birth_year | Birth Year |1068
| birth_month | Birth Month |1069

| birth_day | Birth Day | 1070
+----------------+-----------------------------+ 1071

Step 3: Write the SQL Query 1072

The following query checks whether Emma Weyant 1073

has more Bronze medals than Gold medals: 1074

SELECT CASE 1075
WHEN SUM(CASE WHEN m.type = 'MedalBronze ' 1076

THEN 1 ELSE 0 END) > 1077
SUM(CASE WHEN m.type = 'MedalGold ' THEN 1078

1 ELSE 0 END) 1079
THEN 'Yes' 1080
ELSE 'No' 1081

END AS has_more_bronze_than_gold 1082
FROM Medal m 1083
JOIN Format f ON m.format_id = f.format_id 1084
JOIN Tournament t ON f.tournament_id = t. 1085

tournament_id 1086
JOIN Athlete a ON t.athlete_id = a.athlete_id 1087
WHERE a.name = 'Emma Weyant '; 1088

Step 4: Execute the Query 1089

The query outputs whether Emma Weyant has more 1090

Bronze medals than Gold medals. 1091

Final Result: Yes 1092

Direct Reasoning with Chain-of-Thought 1093

(COT): 1094

Using manual reasoning, the LLM counts the 1095

medals directly from the table: 1096

Gold Medals: 1097
- 2018 Suva: 400 m medley 1098
Total: 1 Gold Medal 1099

1100
Bronze Medals: 1101
- 2018 Suva: 800 m freestyle 1102
- 2022 Budapest: 400 m medley 1103
- 2024 Paris: 400 m medley 1104
Total: 3 Bronze Medals 1105

1106
Final Count: 1107
Gold: 1 1108
Bronze: 3 1109

LLM’s Answer: No Emma Weyant has one Gold 1110

Medal and three Bronze Medals. 1111

Why the LLM’s Answer is Incorrect and Sym- 1112

bolic Reasoning Succeeds: 1113

• Direct Reasoning Errors: The LLM cor- 1114

rectly identifies the count but fails in its logical 1115

comparison, leading to an incorrect conclu- 1116

sion. 1117

• Symbolic Reasoning Accuracy: SQL-based 1118

reasoning explicitly performs the correct com- 1119

parison and produces an unambiguous result. 1120

• Scalability and Consistency: SQL-based 1121

methods remain reliable as data size and com- 1122

plexity grow, unlike manual reasoning. 1123
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Conclusion: Symbolic SQL reasoning eliminates1124

errors inherent in manual reasoning methods like1125

Chain-of-Thought, ensuring precise and reliable1126

results.1127

8.1.3 Example 3:1128

Q. In which city did Yohan Blake win his first1129

medal?1130

Step 1: Start with the infobox table of Yohan1131

Blake’s medals.1132

Yohan Blake’s Medal Record:1133
Olympic Games

Medal Year Event
Gold 2012 London 4×100 m relay
Gold 2016 Rio de Janeiro 4×100 m relay
Silver 2012 London 100 m
Silver 2012 London 200 m

World Championships
Gold 2011 Daegu 100 m
Gold 2011 Daegu 4×100 m relay

Commonwealth Games
Bronze 2018 Gold Coast 100 m
Bronze 2018 Gold Coast 4×100 m relay

World Relays
Gold 2014 Bahamas 4×100 m
Gold 2014 Bahamas 4×200 m
Bronze 2017 Bahamas 4×200 m

World Junior Championships
Gold 2006 Beijing 4×100 m relay
Silver 2008 Bydgoszcz 4×100 m relay
Bronze 2006 Beijing 100 m

Pan American Junior Championships
Silver 2007 São Paulo 100 m
Bronze 2007 São Paulo 4×400 m relay

CAC Junior Championships (U20)
Gold 2006 Port of Spain 100 m
Gold 2006 Port of Spain 200 m
Gold 2006 Port of Spain 4×100 m relay

CARIFTA Games
Gold 2006 Les Abymes 200 m
Gold 2006 Les Abymes 4×100 m relay
Gold 2007 Providenciales 100 m
Gold 2007 Providenciales 4×100 m relay
Gold 2008 Basseterre 100 m

CARIFTA Games
Gold 2005 Bacolet 100 m
Gold 2005 Bacolet 200 m

Continental Cup
Gold 2018 Ostrava 4×100 m

1134

Step 2: Transform the data into a relational schema1135

and organize it into structured database tables for1136

efficient querying (similar to Step 2 in previous1137

examples).1138

Step 3: Write the SQL Query1139

The following query retrieves the location where1140

Yohan Blake won his first medal:1141

SELECT DISTINCT m.location1142
FROM Medal m1143
JOIN Format f ON m.format_id = f.format_id1144
JOIN Tournament t ON f.tournament_id = t.1145

tournament_id1146

JOIN Athlete a ON t.athlete_id = a.athlete_id 1147
WHERE a.name = 'Yohan Blake ' 1148

AND m.year = ( 1149
SELECT MIN(m2.year) 1150
FROM Medal m2 1151
JOIN Format f2 ON m2.format_id = f2.format_id 1152
JOIN Tournament t2 ON f2.tournament_id = t2. 1153

tournament_id 1154
JOIN Athlete a2 ON t2.athlete_id = a2. 1155

athlete_id 1156
WHERE a2.name = 'Yohan Blake ' 1157

); 1158

Step 4: Execute the Query 1159

The query outputs the location where Yohan Blake 1160

won his first medal. 1161

Final Result: Bacolet 1162

Direct Reasoning with Chain-of-Thought 1163

(COT): 1164

Using manual reasoning, the LLM incorrectly iden- 1165

tifies the location as Beijing: 1166

Year 2006: 1167
- Gold: 4x100 m relay (World Junior Championships, Beijing) 1168
- Bronze: 100 m (World Junior Championships, Beijing) 1169
Conclusion: First medal location is Beijing. 1170

LLM’s Answer: Beijing. In 2006, Yohan Blake 1171

won his first medal at the World Junior Champi- 1172

onships in Beijing, where he secured a Gold in the 1173

4x100 m relay and a Bronze in the 100 m. 1174

Why the LLM’s Answer is Incorrect and Sym- 1175

bolic Reasoning Succeeds: 1176

• Direct Reasoning Errors: The LLM over- 1177

looks earlier results from 2005 in the 1178

CARIFTA Games held in Bacolet, where 1179

Yohan Blake won two Gold medals. 1180

• Symbolic Reasoning Accuracy: SQL ex- 1181

plicitly finds the minimum year and correctly 1182

identifies the location associated with the first 1183

medal. 1184

• Consistency and Scalability: Symbolic SQL 1185

reasoning reliably handles large, complex 1186

medal records without omission or error. 1187

Conclusion: Symbolic SQL reasoning eliminates 1188

the errors inherent in Chain-of-Thought reasoning, 1189

ensuring accurate and reliable results. 1190

8.1.4 Example 4: 1191

Q. How many medals did Mayu Matsumoto win in 1192

her twenties? 1193

Step 1: Start with the infobox table of Mayu Mat- 1194

sumoto’s medals. 1195
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Figure 3: Mayu Matsumoto’s Medal Infobox

Step 2: Transform the data into a relational schema1196

and organize it into structured database tables for1197

efficient querying. (similar to Step 2 in previous1198

examples).1199

Step 3: Write the SQL Query1200

The following query calculates how many medals1201

Mayu Matsumoto won between the ages of 20 and1202

29:1203

SELECT COUNT(m.medal_id) AS total_medals1204
FROM Medal m1205
JOIN Format f ON m.format_id = f.format_id1206
JOIN Tournament t ON f.tournament_id = t.1207

tournament_id1208
JOIN Athlete a ON t.athlete_id = a.athlete_id1209
JOIN PersonalInformation pi ON a.athlete_id = pi.1210

athlete_id1211
WHERE a.name = 'Mayu Matsumoto '1212

AND (m.year - pi.birth_year) BETWEEN 20 AND 29;1213

Step 4: Execute the Query1214

The query calculates medals for Mayu Matsumoto1215

won during her twenties (from 2015 to 2024, since1216

she was born in 1995).1217

1218

Final Result: 121219

Direct Reasoning with Chain-of-Thought1220

(COT):1221

Using manual reasoning, the LLM incorrectly cal-1222

culates the total as follows:1223

Mayu Matsumoto, born in 1995, was in her twen-1224

ties from 2015 to 2024. During this period:1225

World Championships: 2 Gold (2018, 2019), 11226

Silver (2021), 2 Bronze (2021, 2022). 1227

Sudirman Cup: 2 Silver (2019, 2021), 1 Bronze 1228

(2023). 1229

Uber Cup: 1 Silver (2020), 1 Bronze (2022). 1230

Asian Championships: 1 Silver (2019), 1 Bronze 1231

(2023). 1232

Total (COT Reasoning): 10 medals. 1233

Trends in the LLM’s Reasoning: 1234

• Incorrect Medal Count for World Champi- 1235

onships: The LLM claims 2 Gold, 2 Silver, 1236

and 1 Bronze, but the infobox shows 2 Gold 1237

(2018, 2019), 1 Bronze (2022), and only 1 1238

Silver (2021). 1239

• Overcounted/Undercounted Totals: The to- 1240

tal medals, when carefully counted, sum to 12, 1241

not 10: 1242

– World Championships: 2 Gold, 1 Sil- 1243

ver, 1 Bronze (Total = 4). 1244

– Sudirman Cup: 2 Silver, 1 Bronze (To- 1245

tal = 3). 1246

– Uber Cup: 1 Silver, 1 Bronze (Total = 1247

2). 1248

– Asian Championships: 1 Silver, 1 1249

Bronze (Total = 2). 1250

– Incorrectly Excluded 2020 Medal: 1251

Asian Team Championships (2020, age 1252

25) is excluded incorrectly. 1253

– Correctly Excluded 2013 Medal: 1254

Asian Junior Championships (2013, age 1255

18) is excluded correctly. 1256

• Temporal Misinterpretation: The LLM fails 1257

to count some of the medals in the 20-29 age 1258

range and fails to sum them accurately. 1259

Symbolic Reasoning Accuracy: 1260

• SQL precisely filters years between 2015 and 1261

2024, ensuring only valid medals are counted. 1262

• Symbolic reasoning eliminates human count- 1263

ing errors and temporal miscalculations. 1264

• The result is accurate: 12 medals. 1265

Conclusion: The LLM’s Chain-of-Thought rea- 1266

soning undercounts Mayu Matsumoto’s medals, 1267

providing an incorrect total of 10 due to miscount- 1268

ing and temporal errors. Symbolic SQL reasoning 1269
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accurately identifies the correct total as 12 medals1270

won during her twenties.1271

8.1.5 Example 5:1272

Q. How many times did Sandra Sánchez win a1273

medal in the World Championships before 2021?1274

Step 1: Start with the infobox table of Sandra1275

Sánchez’s medals.1276

Figure 4: Sandra Sánchez’s Medal Infobox

Step 2: Transform the data into a relational schema1277

and organize it into structured database tables for1278

efficient querying (similar to Step 2 in previous1279

examples).1280

Step 3: Write the SQL Query1281

The following query calculates how many medals1282

Sandra Sánchez won in the World Championships1283

before the year 2021:1284

SELECT COUNT(m.medal_id) AS total_medals1285
FROM Medal m1286
JOIN Format f ON m.format_id = f.format_id1287
JOIN Tournament t ON f.tournament_id = t.1288

tournament_id1289
JOIN Athlete a ON t.athlete_id = a.athlete_id1290
WHERE a.name = 'Sandra Sánchez '1291

AND t.name = 'World Championships '1292
AND m.year < 2021;1293

Step 4: Execute the Query1294

The query outputs the total number of medals1295

Sandra Sánchez won in the World Championships1296

before 2021.1297

1298

Final Result: 2 1299

Direct Reasoning with Chain-of-Thought 1300

(COT): 1301

The LLM incorrectly provides the following rea- 1302

soning: 1303

Sandra Sánchez won a Bronze medal in the World Champi- 1304

onships in 2016, which is before 2021. Therefore, the answer 1305

is 1. 1306

Errors in the LLM’s Reasoning: 1307

• Missed Medal in 2018: While the LLM iden- 1308

tifies the 2016 Bronze medal, it fails to recog- 1309

nize the 2018 Gold medal in Madrid, which 1310

also occurred before 2021. 1311

• Incomplete Temporal Analysis: The LLM 1312

does not account for all relevant years when 1313

performing temporal reasoning, leading to an 1314

undercount of medals. 1315

Symbolic Reasoning Accuracy: 1316

• SQL explicitly filters medals in the World 1317

Championships where the year is less than 1318

2021. 1319

• The query correctly identifies both the 2016 1320

Bronze medal and the 2018 Gold medal, pro- 1321

ducing the accurate total of 2 medals. 1322

• Symbolic reasoning eliminates human over- 1323

sight by systematically querying all relevant 1324

data within the temporal range. 1325

Conclusion: The LLM’s Chain-of-Thought reason- 1326

ing incorrectly counts only 1 medal due to missed 1327

temporal filtering. Symbolic SQL reasoning, by ex- 1328

plicitly querying for medals before 2021, produces 1329

the correct result: 2 medals. 1330

8.2 Result Analysis for all models: 1331

8.2.1 Analysis for GPT-4o: 1332

From Table 8, comparing SQL Adaptive with Di- 1333

rect Adaptive across key aspects, we observe: 1334

• Counterfactual Gap: For Table - Adap- 1335

tive (EMS), the gap between Original (54.92) 1336

and CounterFact (41.70) is 13.22. For SQL 1337

Schema - Adaptive (EMS), the gap reduces to 1338

1.02, indicating improved robustness to coun- 1339

terfactual data. 1340
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• Scalability to Table Size: For Table - Adap-1341

tive (EMS), the gap between Large (48.88)1342

and Small (73.92) tables is 25.04. For SQL1343

Schema - Adaptive (EMS), the gap decreases1344

significantly to 1.07, demonstrating better1345

scalability to large table sizes.1346

• Question Complexity: For Table - Adaptive1347

(EMS), the performance on Easy, Medium,1348

and Hard questions is 74.38, 63.91, and 54.17,1349

respectively. For SQL Schema - Adaptive1350

(EMS), the performance improves to 79.831351

(Easy), 73.57 (Medium), and 66.32 (Hard),1352

showing better handling of increasing ques-1353

tion complexity.1354

• Adaptive Few-Shot Effectiveness: For Orig-1355

inal data, SQL Schema - Adaptive (EMS:1356

68.04) outperforms Table - Adaptive (EMS:1357

54.92), highlighting the benefit of adaptive1358

prompting in achieving higher accuracy.1359

These results demonstrate that SQL Adaptive con-1360

sistently outperforms Direct Adaptive by reduc-1361

ing the counterfactual gap, improving scalability1362

to large tables, and enhancing performance across1363

question complexities.1364

8.2.2 Analysis for GPT-4o Mini:1365

From Table 9, comparing SQL Adaptive with Ta-1366

ble Adaptive across key aspects, we observe:1367

• Counterfactual Gap: For Table - Adap-1368

tive (EMS), the gap between Original (48.79)1369

and CounterFact (35.48) is 13.31. For SQL1370

Schema - Adaptive (EMS), the gap reduces1371

significantly to 3.65 (Original: 68.69, Counter-1372

Fact: 65.24), indicating improved robustness1373

to counterfactual data.1374

• Scalability to Table Size: For Table - Adap-1375

tive (EMS), the gap between Large (39.96)1376

and Small (64.80) tables is 24.84. For SQL1377

Schema - Adaptive (EMS), the gap reduces1378

to 3.30 (Large: 65.43, Small: 68.77), demon-1379

strating better scalability to large table sizes.1380

• Question Complexity: For Table - Adap-1381

tive (EMS), the scores for Easy, Medium, and1382

Hard questions are 63.16, 52.07, and 44.49,1383

respectively. For SQL Schema - Adaptive1384

(EMS), the performance improves to 76.871385

(Easy), 70.41 (Medium), and 63.13 (Hard),1386

showcasing better handling of increasing ques-1387

tion complexity.1388

• Adaptive Few-Shot Effectiveness: For Orig- 1389

inal data, SQL Schema - Adaptive (EMS: 1390

68.69) significantly outperforms Table - 1391

Adaptive (EMS: 48.79), highlighting the su- 1392

perior accuracy achieved with symbolic rea- 1393

soning and adaptive prompting. 1394

These results clearly show that SQL Adaptive con- 1395

sistently outperforms Table Adaptive, with smaller 1396

counterfactual and table size gaps, and better per- 1397

formance across question complexity levels. 1398

8.2.3 Analysis for Gemini 1.5 Flash: 1399

From Table 10, comparing SQL Adaptive with 1400

Table Adaptive, we observe: 1401

• Counterfactual Gap: For Table - Adaptive 1402

(EMS), the gap between Original (52.90) and 1403

CounterFact (42.91) is 9.99. In comparison, 1404

for SQL Schema - Adaptive (EMS), the gap 1405

is reduced to 2.78 (Original: 65.49, Coun- 1406

terFact: 62.71), indicating significantly im- 1407

proved robustness to counterfactual data. 1408

• Scalability to Table Size: For Table - Adap- 1409

tive (EMS), the gap between Large (41.02) 1410

and Small (66.25) tables is 25.23. For SQL 1411

Schema - Adaptive (EMS), the gap reduces 1412

to 4.23 (Large: 69.30, Small: 73.53), showcas- 1413

ing SQL’s superior handling of larger tables. 1414

• Question Complexity: For Table - Adap- 1415

tive (EMS), the scores for Easy, Medium, and 1416

Hard questions are 65.76, 55.95, and 45.92, 1417

respectively. For SQL Schema - Adaptive 1418

(EMS), the scores improve to 76.26 (Easy), 1419

73.72 (Medium), and 63.12 (Hard), highlight- 1420

ing better performance as question complexity 1421

increases. 1422

• Adaptive Few-Shot Effectiveness: For Orig- 1423

inal data, SQL Schema - Adaptive (EMS: 1424

65.49) outperforms Table - Adaptive (EMS: 1425

52.90), demonstrating the effectiveness of 1426

adaptive few-shot prompting with symbolic 1427

reasoning. 1428

These observations show that SQL Adaptive sig- 1429

nificantly reduces the counterfactual gap, scales 1430

better with large tables, and consistently achieves 1431

higher accuracy across all question complexities 1432

compared to Table Adaptive. 1433
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8.2.4 Analysis for Gemini 1.5 Pro:1434

From Table 11, comparing SQL Adaptive with1435

Table Adaptive, we observe:1436

• Counterfactual Gap: For Table - Adap-1437

tive (EMS), the gap between Original (53.48)1438

and CounterFact (44.19) is 9.29. For SQL1439

Schema - Adaptive (EMS), the gap is reduced1440

to 0.16 (Original: 65.29, CounterFact: 65.13),1441

showcasing excellent robustness to counter-1442

factual data.1443

• Scalability to Table Size: For Table - Adap-1444

tive (EMS), the gap between Large (41.86)1445

and Small (67.27) tables is 25.41. For SQL1446

Schema - Adaptive (EMS), the gap reduces1447

significantly to 2.88 (Large: 72.43, Small:1448

75.31), demonstrating better scalability with1449

large tables.1450

• Question Complexity: For Table - Adap-1451

tive (EMS), the scores for Easy, Medium, and1452

Hard questions are 66.26, 56.47, and 46.74,1453

respectively. For SQL Schema - Adaptive1454

(EMS), the scores improve to 75.86 (Easy),1455

71.47 (Medium), and 59.24 (Hard), highlight-1456

ing superior handling of increasing question1457

complexity.1458

• Adaptive Few-Shot Effectiveness: For Orig-1459

inal data, SQL Schema - Adaptive (EMS:1460

65.29) significantly outperforms Table -1461

Adaptive (EMS: 53.48), demonstrating the1462

clear benefits of symbolic reasoning combined1463

with adaptive few-shot prompting.1464

These results clearly highlight that SQL Adaptive1465

consistently reduces counterfactual gaps, scales1466

better with table size, and improves performance1467

across question complexities compared to Table1468

Adaptive.1469

8.2.5 Analysis for Llama 3.1 70B:1470

From Table 12, comparing SQL Adaptive with1471

Table Adaptive, we observe:1472

• Counterfactual Gap: For Table - Adap-1473

tive (EMS), the gap between Original (53.63)1474

and CounterFact (39.20) is 14.43. For SQL1475

Schema - Adaptive (EMS), the gap reduces1476

to 0.55 (Original: 64.36, CounterFact: 63.81).1477

SQL Adaptive is clearly more robust to coun-1478

terfactual data.1479

• Scalability to Table Size: For Table - Adap- 1480

tive (EMS), the gap between Large (46.65) 1481

and Small (68.07) tables is 21.42. For SQL 1482

Schema - Adaptive (EMS), the gap remains 1483

smaller at 1.98 (Large: 66.91, Small: 68.89), 1484

showing better performance scalability with 1485

table size. 1486

• Question Complexity: For Table - Adap- 1487

tive (EMS), the scores for Easy, Medium, and 1488

Hard questions are 69.40, 59.76, and 52.85, 1489

respectively. For SQL Schema - Adaptive 1490

(EMS), the scores are 77.19 (Easy), 67.65 1491

(Medium), and 60.92 (Hard), showing a con- 1492

sistent improvement across complexities. 1493

• Adaptive Few-Shot Effectiveness: For Orig- 1494

inal data, SQL Schema - Adaptive (EMS: 1495

64.36) performs significantly better than Ta- 1496

ble - Adaptive (EMS: 53.63), confirming the 1497

benefit of symbolic reasoning with adaptive 1498

few-shot prompting. 1499

Overall, SQL Adaptive demonstrates clear im- 1500

provements over Table Adaptive in counterfac- 1501

tual robustness, scalability to table size, and per- 1502

formance across question complexity levels. The 1503

observed gaps in Table Adaptive remain substan- 1504

tial, especially for counterfactual and large table 1505

scenarios. 1506

8.2.6 Analysis for Mixtral 8x7B: 1507

From Table 13, comparing SQL Adaptive with 1508

Table Adaptive, we observe: 1509

• Counterfactual Gap: For Table - Adap- 1510

tive (EMS), the gap between Original (37.54) 1511

and CounterFact (30.62) is 6.92. For SQL 1512

Schema - Adaptive (EMS), the gap remains 1513

comparable at 4.16 (Original: 25.09, Counter- 1514

Fact: 20.89). Here, SQL Adaptive does not 1515

demonstrate a significant improvement. 1516

• Scalability to Table Size: For Table - Adap- 1517

tive (EMS), the gap between Large (34.94) 1518

and Small (47.72) tables is 12.78. For SQL 1519

Schema - Adaptive (EMS), the gap is still 1520

notable at 7.03 (Large: 24.54, Small: 33.57). 1521

While smaller, it indicates that SQL Adaptive 1522

does not scale as effectively here. 1523

• Question Complexity: For Table - Adap- 1524

tive (EMS), the scores for Easy, Medium, and 1525

Hard questions are 50.96, 38.46, and 35.74, 1526
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respectively. For SQL Schema - Adaptive1527

(EMS), the scores are lower at 26.78 (Easy),1528

46.55 (Medium), and 21.56 (Hard). SQL1529

Adaptive fails to outperform Table Adaptive1530

for Easy and Hard questions, only improving1531

slightly on Medium questions.1532

• Adaptive Few-Shot Effectiveness: For Orig-1533

inal data, SQL Schema - Adaptive (EMS:1534

25.09) is significantly lower than Table -1535

Adaptive (EMS: 37.54), indicating poor per-1536

formance overall.1537

Overall, Table Adaptive clearly outperforms SQL1538

Adaptive in most metrics for Mixtral 8x7B. SQL1539

Adaptive struggles with counterfactual robustness,1540

scalability to table size, and performance across1541

question complexities.1542

8.2.7 Analysis for SQL Coder 70B:1543

Since this is a code-based model, we only evaluate1544

baselines related to code generation and exclude1545

text generation baselines. From Table 14, we ob-1546

serve the following for SQL Schema:1547

• Counterfactual Gap: For SQL Static1548

(EMS), the gap between Original (51.90) and1549

CounterFact (48.64) is 3.26. For SQL Adap-1550

tive (EMS), the gap reduces to 2.38 (Original:1551

55.88, CounterFact: 53.50), demonstrating1552

improved robustness with adaptive few-shot1553

prompting.1554

• Scalability to Table Size: For SQL Static1555

(EMS), the gap between Large (62.28) and1556

Small (59.53) tables is 2.75. For SQL Adap-1557

tive (EMS), the gap is slightly larger at 4.221558

(Large: 63.17, Small: 58.95), showing minor1559

regression in scalability.1560

• Question Complexity: For SQL Static1561

(EMS), the scores for Easy, Medium, and1562

Hard questions are 75.82, 43.39, and 50.63,1563

respectively. For SQL Adaptive (EMS), the1564

scores improve for Medium (58.38) and Hard1565

(51.74) questions but slightly decrease for1566

Easy (63.93), indicating uneven performance1567

gains.1568

• Overall Accuracy: For Original data, SQL1569

Adaptive (EMS: 55.88) outperforms SQL1570

Static (EMS: 51.90), highlighting the effec-1571

tiveness of adaptive few-shot prompting for1572

code-specific tasks.1573

Overall, SQL Adaptive demonstrates improved ro- 1574

bustness and accuracy compared to SQL Static, par- 1575

ticularly on counterfactual and medium-complexity 1576

queries, with some inconsistencies in scalability 1577

and easy question performance. 1578

8.2.8 Analysis for Code Llama 70B: 1579

Since this is a code-based model, we only evaluate 1580

baselines related to code generation and exclude 1581

text generation baselines. From Table 15, we ob- 1582

serve the following for SQL Schema: 1583

• Counterfactual Gap: For SQL Static 1584

(EMS), the gap between Original (15.84) and 1585

CounterFact (32.62) is substantial at 16.78, 1586

indicating performance degradation. For SQL 1587

Adaptive (EMS), the gap reduces to 16.53 1588

(Original: 23.53, CounterFact: 40.06). While 1589

there is slight improvement, the gap remains 1590

significant. 1591

• Scalability to Table Size: For SQL Static 1592

(EMS), the gap between Large (29.82) and 1593

Small (41.64) tables is 11.82. For SQL Adap- 1594

tive (EMS), the gap decreases to 10.53 (Large: 1595

37.61, Small: 48.14), indicating modest im- 1596

provements in handling table size. 1597

• Question Complexity: For SQL Static 1598

(EMS), the scores for Easy, Medium, and 1599

Hard questions are 53.42, 41.62, and 38.94, 1600

respectively. For SQL Adaptive (EMS), 1601

the scores improve across all complexities 1602

to 65.16 (Easy), 50.89 (Medium), and 40.61 1603

(Hard), showing clear improvements, particu- 1604

larly for Easy and Medium questions. 1605

• Overall Accuracy: For Original data, SQL 1606

Adaptive (EMS: 23.53) outperforms SQL 1607

Static (EMS: 15.84), demonstrating the bene- 1608

fits of adaptive few-shot prompting for overall 1609

accuracy. 1610

Overall, SQL Adaptive shows moderate improve- 1611

ments over SQL Static, particularly in handling 1612

table size and question complexities, though coun- 1613

terfactual robustness remains a challenge. 1614
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Output Context Adaptive Metric Results Across Categories

Original CounterFact Large Small Easy Medium Hard

Text

- - REMS 23.91 14.12 23.84 25.79 28.67 25.55 23.83
EMS 22.96 12.92 23.05 24.68 27.26 24.06 22.35

Table

zero shots REMS 52.14 41.18 45.24 67.81 72.34 59.43 52.9
EMS 49.7 39.29 43.31 64.56 69.86 57.2 49.02

Static REMS 56.16 43.96 48.96 73.57 73.45 65.39 56.97
EMS 53.95 41.91 46.84 71.11 71.18 63.12 53.35

Adaptive REMS 57.51 43.93 51.41 76.97 76.89 66.00 58.00
EMS 54.92 41.70 48.88 73.92 74.38 63.91 54.17

SQL Schema

zero shots REMS 49.4 47.41 55.99 58.58 63.53 65.20 45.46
EMS 47.27 45.27 54.09 56.14 61.21 63.12 42.02

Static REMS 62.90 61.65 72.01 73.67 80.96 76.27 64.69
EMS 61.36 60.40 70.82 71.93 78.58 75.54 62.62

Adaptive REMS 68.41 67.42 73.42 72.80 79.94 74.55 66.97
EMS 68.04 67.02 73.23 72.16 79.83 73.57 66.32

Table 8: Evaluation Results across multiple datasets for GPT-4o

Output Context Few Shots Metric Results Across Categories

Original CounterFact Large Small Easy Medium Hard

Text

- - REMS 21.48 13.90 20.21 22.75 26.08 22.30 19.03
EMS 20.24 13.02 19.70 21.87 24.84 20.51 17.40

Table

zero shots REMS 49.59 33.52 40.18 63.60 62.07 47.53 43.62
EMS 47.23 31.04 37.73 60.47 59.19 44.58 39.55

Static REMS 49.94 36.94 41.33 66.45 64.23 51.13 47.13
EMS 47.58 34.91 39.03 63.63 61.84 48.32 43.36

Adaptive REMS 51.13 38.37 42.43 67.66 66.10 54.81 48.63
EMS 48.79 35.48 39.96 64.80 63.16 52.07 44.49

SQL Schema

zero shots REMS 39.93 41.28 38.76 48.50 57.45 50.88 34.21
EMS 38.24 39.63 37.36 46.67 55.30 49.51 31.41

Static REMS 57.44 51.18 53.94 66.52 77.57 65.29 57.04
EMS 56.57 50.36 53.16 65.73 75.93 65.29 56.33

Adaptive REMS 68.97 65.40 65.70 69.20 76.98 71.07 63.93
EMS 68.69 65.24 65.43 68.77 76.87 70.41 63.13

Table 9: Evaluation Results for GPT-4o Mini across multiple datasets

Output Context Few Shots Metric Results Across Categories

Original CounterFact Large Small Easy Medium Hard

Text

- - REMS 22.11 15.02 23.88 21.74 27.81 23.23 21.59
EMS 18.69 11.76 19.49 18.93 24.03 19.41 17.30

Table

zero shots REMS 55.17 45.42 42.71 69.88 68.78 56.61 51.18
EMS 48.79 37.61 34.96 61.11 59.15 48.82 39.00

Static REMS 57.46 47.20 46.44 71.89 73.76 61.94 54.99
EMS 50.00 39.08 38.35 62.35 63.16 53.53 42.96

Adaptive REMS 59.09 48.25 47.93 73.17 76.28 64.94 57.83
EMS 52.90 42.91 41.02 66.25 65.76 55.95 45.92

SQL Schema

zero shots REMS 47.27 42.56 46.23 56.45 63.49 59.74 42.09
EMS 39.34 33.45 44.29 53.65 52.96 52.48 34.59

Static REMS 66.43 62.38 71.39 77.20 88.17 79.22 65.04
EMS 57.93 54.43 63.13 70.89 79.54 68.96 58.42

Adaptive REMS 72.91 71.67 78.18 81.71 87.06 80.80 74.04
EMS 65.49 62.71 69.30 73.53 76.26 73.72 63.12

Table 10: Evaluation Results for Gemini 1.5 Flash across multiple datasets.
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Output Context Few Shots Metric Results Across Categories

Original CounterFact Large Small Easy Medium Hard

Text

- - REMS 23.37 15.88 24.20 24.08 29.15 26.45 23.38
EMS 19.90 13.45 21.19 20.99 24.94 21.76 18.77

Table

zero shots REMS 54.94 45.40 46.34 69.74 73.26 60.71 57.43
EMS 48.06 37.39 38.98 61.11 62.59 53.24 45.60

Static REMS 59.01 46.87 52.42 72.93 75.72 65.10 60.28
EMS 52.91 39.92 43.86 65.02 65.79 58.53 50.00

Adaptive REMS 60.23 49.04 48.79 73.98 78.04 66.43 59.28
EMS 53.48 44.19 41.86 67.27 66.26 56.47 46.74

SQL Schema

zero shots REMS 49.24 43.56 48.21 57.62 64.42 61.10 43.00
EMS 41.32 35.31 45.87 55.11 54.78 53.79 35.96

Static REMS 67.76 63.63 76.80 82.82 89.33 80.81 66.42
EMS 59.08 55.52 71.32 77.41 80.86 70.33 59.59

Adaptive REMS 73.04 73.58 81.94 84.38 87.31 80.01 71.43
EMS 65.29 65.13 72.43 75.31 75.86 71.47 59.24

Table 11: Evaluation Results for Gemini 1.5 Pro across multiple datasets.

Output Context Few Shots Metric Results Across Categories

Original CounterFact Large Small Easy Medium Hard

Text

- - REMS 17.46 12.74 20.89 18.09 22.31 17.93 17.18
EMS 16.61 12.16 19.89 17.31 21.31 16.96 16.27

Table

zero shots REMS 54.63 39.93 46.10 64.62 70.10 58.31 53.37
EMS 52.60 37.48 44.05 62.57 67.49 56.21 50.35

Static REMS 64.33 48.44 57.27 75.40 79.04 70.23 60.98
EMS 62.46 46.21 55.58 73.68 76.91 67.46 57.44

Adaptive REMS 55.73 41.29 48.48 70.56 71.35 62.54 56.43
EMS 53.63 39.20 46.65 68.07 69.40 59.76 52.85

SQL Schema

zero shots REMS 34.77 31.52 37.08 41.36 45.83 40.81 29.74
EMS 33.56 30.47 36.06 39.77 44.26 39.65 27.54

Static REMS 54.59 47.31 55.38 63.12 68.51 60.83 56.15
EMS 53.81 46.64 54.65 62.22 67.21 60.55 55.63

Adaptive REMS 64.61 64.04 67.40 69.54 77.42 68.01 61.78
EMS 64.36 63.81 66.91 68.89 77.19 67.65 60.92

Table 12: Evaluation Results for Llama 3.1 70B across multiple datasets.

Output Context Few Shots Metric Results Across Categories

Original CounterFact Large Small Easy Medium Hard

Text

- - REMS 17.53 13.52 21.71 20.31 20.38 20.06 19.95
EMS 15.92 12.73 20.82 19.53 19.26 17.75 18.08

Table

zero shots REMS 40.26 32.62 37.58 56.55 54.09 46.27 38.65
EMS 38.06 30.47 35.50 53.33 51.78 43.79 35.05

Static REMS 50.92 42.31 43.17 68.13 64.75 55.80 49.06
EMS 48.79 40.20 40.89 65.03 62.30 53.25 45.62

Adaptive REMS 39.98 33.23 37.68 50.69 53.84 41.02 40.33
EMS 37.54 30.62 34.94 47.72 50.96 38.46 35.74

SQL Schema

zero shots REMS 20.35 15.07 19.30 27.74 21.65 27.19 22.43
EMS 19.90 14.74 18.96 26.55 20.63 27.02 21.56

Static REMS 47.42 41.38 48.78 54.63 69.46 46.22 42.45
EMS 46.02 40.20 47.96 52.98 67.35 45.36 40.61

Adaptive REMS 25.45 21.26 24.72 33.96 26.91 47.24 22.20
EMS 25.09 20.89 24.54 33.57 26.78 46.55 21.56

Table 13: Evaluation Results for Mixtral 8x7B across multiple datasets.
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Output Context Few Shots Metric Results Across Categories

Original CounterFact Large Small Easy Medium Hard

SQL Schema

zero shots REMS 19.59 18.32 20.56 27.60 29.05 20.28 17.29
EMS 18.17 17.02 19.46 26.08 26.78 19.72 15.72

Static REMS 53.20 49.89 63.43 61.01 78.32 43.39 51.88
EMS 51.90 48.64 62.28 59.53 75.82 43.39 50.63

Adaptive REMS 57.10 55.03 64.00 60.55 65.02 60.13 54.07
EMS 55.88 53.50 63.17 58.95 63.93 58.38 51.74

Table 14: Evaluation Results for SQL Coder 70B across multiple datasets

Output Context Few Shots Metric Results Across Categories

Original CounterFact Large Small Easy Medium Hard

SQL Schema

0 REMS 12.37 19.77 13.76 21.31 33.81 25.98 19.19
EMS 12.22 19.46 13.76 21.00 33.47 25.64 18.64

Static REMS 16.53 33.29 29.82 42.04 54.13 41.62 39.09
EMS 15.84 32.62 29.82 41.64 53.42 41.62 38.94

Adaptive REMS 24.02 40.73 38.00 48.56 65.56 51.78 41.63
EMS 23.53 40.06 37.61 48.14 65.16 50.89 40.61

Table 15: Evaluation Results for Code Llama across multiple datasets
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9 SQL Code Generation Prompt1615

# Task Instruction:1616

You will be given a question and your task is to provide the SQL logic to answer a natural language1617

question based on the provided schema. Few Examples of the task will be provided below. Assume that1618

all the data is already inserted into the database.1619

1. Table Schemas:1620

CREATE TABLE Athlete (1621
athlete_id INT AUTO_INCREMENT PRIMARY KEY ,1622
name VARCHAR (100) NOT NULL1623

);1624
CREATE TABLE Tournament (1625

tournament_id INT AUTO_INCREMENT PRIMARY KEY ,1626
athlete_id INT ,1627
name VARCHAR (100) NOT NULL ,1628
FOREIGN KEY (athlete_id) REFERENCES Athlete(athlete_id)1629

);1630
CREATE TABLE Format (1631

format_id INT AUTO_INCREMENT PRIMARY KEY ,1632
tournament_id INT ,1633
name VARCHAR (100) NOT NULL ,1634
FOREIGN KEY (tournament_id) REFERENCES Tournament(tournament_id)1635

);1636
CREATE TABLE Medal (1637

medal_id INT AUTO_INCREMENT PRIMARY KEY ,1638
format_id INT ,1639
type VARCHAR (50) NOT NULL ,1640
year INT ,1641
location VARCHAR (100) NOT NULL ,1642
FOREIGN KEY (format_id) REFERENCES Format(format_id)1643

);1644
CREATE TABLE PersonalInformation (1645

info_id INT AUTO_INCREMENT PRIMARY KEY ,1646
athlete_id INT ,1647
birth_year INT ,1648
birth_month INT ,1649
birth_day INT ,1650
FOREIGN KEY (athlete_id) REFERENCES Athlete(athlete_id)1651

);1652

2. Table Descriptions:1653

describe athlete;1654
+------------+--------------+------+-----+---------+----------------+1655
| Field | Type | Null | Key | Default | Extra |1656
+------------+--------------+------+-----+---------+----------------+1657
| athlete_id | int(11) | NO | PRI | NULL | auto_increment |1658
| name | varchar(100) | NO | | NULL | |1659
+------------+--------------+------+-----+---------+----------------+1660
describe personalinformation;1661
+-------------+---------+------+-----+---------+----------------+1662
| Field | Type | Null | Key | Default | Extra |1663
+-------------+---------+------+-----+---------+----------------+1664
| info_id | int(11) | NO | PRI | NULL | auto_increment |1665
| athlete_id | int(11) | YES | MUL | NULL | |1666
| birth_year | int(11) | YES | | NULL | |1667
| birth_month | int(11) | YES | | NULL | |1668
| birth_day | int(11) | YES | | NULL | |1669
+-------------+---------+------+-----+---------+----------------+1670
describe tournament;1671
+---------------+--------------+------+-----+---------+----------------+1672
| Field | Type | Null | Key | Default | Extra |1673
+---------------+--------------+------+-----+---------+----------------+1674
| tournament_id | int(11) | NO | PRI | NULL | auto_increment |1675
| athlete_id | int(11) | YES | MUL | NULL | |1676
| name | varchar(100) | NO | | NULL | |1677
+---------------+--------------+------+-----+---------+----------------+1678
describe format;1679
+---------------+--------------+------+-----+---------+----------------+1680
| Field | Type | Null | Key | Default | Extra |1681
+---------------+--------------+------+-----+---------+----------------+1682
| format_id | int(11) | NO | PRI | NULL | auto_increment |1683
| tournament_id | int(11) | YES | MUL | NULL | |1684
| name | varchar(100) | NO | | NULL | |1685
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+---------------+--------------+------+-----+---------+----------------+ 1686
describe medal; 1687
+-----------+--------------+------+-----+---------+----------------+ 1688
| Field | Type | Null | Key | Default | Extra | 1689
+-----------+--------------+------+-----+---------+----------------+ 1690
| medal_id | int(11) | NO | PRI | NULL | auto_increment | 1691
| format_id | int(11) | YES | MUL | NULL | | 1692
| type | varchar(50) | NO | | NULL | | 1693
| year | int(11) | YES | | NULL | | 1694
| location | varchar(100) | NO | | NULL | | 1695
+-----------+--------------+------+-----+---------+----------------+ 1696

3. Example Data: 1697

Athlete Table 1698
+------------+-----------------+ 1699
| athlete_id | name | 1700
+------------+-----------------+ 1701
| 50 | Carolina Marín | 1702
+------------+-----------------+ 1703
PersonalInformation Table 1704
+---------+------------+------------+-------------+-----------+ 1705
| info_id | athlete_id | birth_year | birth_month | birth_day | 1706
+---------+------------+------------+-------------+-----------+ 1707
| 40 | 50 | 1993 | 6 | 15 | 1708
+---------+------------+------------+-------------+-----------+ 1709
Tournament Table 1710
+---------------+------------+-------------------------------+ 1711
| tournament_id | athlete_id | name | 1712
+---------------+------------+-------------------------------+ 1713
| 281 | 50 | Olympic Games | 1714
| 282 | 50 | World Championships | 1715
| 285 | 50 | European Women | 1716
+---------------+------------+-------------------------------+ 1717
Format Table 1718
+-----------+---------------+------------------+ 1719
| format_id | tournament_id | name | 1720
+-----------+---------------+------------------+ 1721
| 392 | 281 | Women's singles | 1722
| 393 | 282 | Women's singles | 1723
| 396 | 285 | Women's team | 1724
+-----------+---------------+------------------+ 1725
Medal Table 1726
+----------+-----------+-------------+------+----------------+ 1727
| medal_id | format_id | type | year | location | 1728
+----------+-----------+-------------+------+----------------+ 1729
| 692 | 392 | MedalGold | 2016 | Rio de Janeiro | 1730
| 696 | 393 | MedalSilver | 2023 | Copenhagen | 1731
| 706 | 396 | MedalBronze | 2016 | Kazan | 1732
+----------+-----------+-------------+------+----------------+ 1733

Example 1: 1734
Question: Which tournament(s) has Zhang Jike won the most Medals in? 1735

WITH medal_counts AS ( 1736
SELECT t.name AS tournament_name , m.year , COUNT(m.medal_id) AS total_medal_count 1737
FROM Medal m 1738
JOIN Format f ON m.format_id = f.format_id 1739
JOIN Tournament t ON f.tournament_id = t.tournament_id 1740
JOIN Athlete a ON t.athlete_id = a.athlete_id 1741
WHERE a.name = 'Zhang Jike' 1742
GROUP BY t.name , m.year 1743

) 1744
SELECT tournament_name , year 1745
FROM medal_counts 1746
WHERE total_medal_count = ( 1747

SELECT MAX(total_medal_count) 1748
FROM medal_counts 1749

); 1750

Example 2: 1751
Question: In which year(s) did Seo Seung-jae win medals in the Asian Junior Championships? 1752
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SELECT DISTINCT m.year1753
FROM Medal m1754
JOIN Format f ON m.format_id = f.format_id1755
JOIN Tournament t ON f.tournament_id = t.tournament_id1756
JOIN Athlete a ON t.athlete_id = a.athlete_id1757
WHERE a.name = 'Seo Seung -jae'1758

AND t.name = 'Asian Junior Championships ';1759

Example 3:1760
Question: Which was the most current medal win for Dola Banerjee?1761

SELECT m.type , m.year , m.location , f.name AS format_name , t.name AS tournament_name1762
FROM Medal m1763
JOIN Format f ON m.format_id = f.format_id1764
JOIN Tournament t ON f.tournament_id = t.tournament_id1765
JOIN Athlete a ON t.athlete_id = a.athlete_id1766
WHERE a.name = 'Dola Banerjee '1767

AND m.year = (1768
SELECT MAX(m2.year)1769
FROM Medal m21770
JOIN Format f2 ON m2.format_id = f2.format_id1771
JOIN Tournament t2 ON f2.tournament_id = t2.tournament_id1772
JOIN Athlete a2 ON t2.athlete_id = a2.athlete_id1773
WHERE a2.name = 'Dola Banerjee '1774

);1775

Example 4:1776
Question: How many international medals did Rawinda Prajongjai win in 2023?1777

SELECT COUNT(m.medal_id) AS total_medals1778
FROM Medal m1779
JOIN Format f ON m.format_id = f.format_id1780
JOIN Tournament t ON f.tournament_id = t.tournament_id1781
JOIN Athlete a ON t.athlete_id = a.athlete_id1782
WHERE a.name = 'Rawinda Prajongjai '1783

AND m.year = 2023;1784

Example 5:1785
Question: In which year(s) did Huang Dongping win the highest number of medals during their career?1786

SELECT m.year1787
FROM Medal m1788
JOIN Format f ON m.format_id = f.format_id1789
JOIN Tournament t ON f.tournament_id = t.tournament_id1790
JOIN Athlete a ON t.athlete_id = a.athlete_id1791
WHERE a.name = 'Huang Dongping '1792
GROUP BY m.year1793
ORDER BY COUNT(m.medal_id) DESC1794
LIMIT 1;1795

Example 6:1796
Question: In which year(s) did Tomokazu Harimoto win the lowest number of medals during their career?1797

SELECT m.year1798
FROM Medal m1799
JOIN Format f ON m.format_id = f.format_id1800
JOIN Tournament t ON f.tournament_id = t.tournament_id1801
JOIN Athlete a ON t.athlete_id = a.athlete_id1802
WHERE a.name = 'Tomokazu Harimoto '1803
GROUP BY m.year1804
HAVING COUNT(m.medal_id) = (1805

SELECT MIN(medal_count)1806
FROM (1807

SELECT COUNT(m2.medal_id) AS medal_count1808
FROM Medal m21809
JOIN Format f2 ON m2.format_id = f2.format_id1810
JOIN Tournament t2 ON f2.tournament_id = t2.tournament_id1811
JOIN Athlete a2 ON t2.athlete_id = a2.athlete_id1812
WHERE a2.name = 'Tomokazu Harimoto '1813
GROUP BY m2.year1814

) AS yearly_medal_counts1815
);1816

Instructions for Writing Queries:1817

1. If a question can have multiple answers, do not limit the response to only one. Instead, output all possible answers.1818

2. Use the column names as specified in the schema to find the necessary parameters for the query.1819

3. An event is a combination of Tournament, Format, and the corresponding year.1820

4. There are three types of medals in the Medal Table: MedalGold, MedalSilver, MedalBronze.1821
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