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Abstract
Wasserstein Generative Adversarial Networks (WGANs) are the popular generative
models built on the theory of Optimal Transport (OT) and the Kantorovich duality.
Despite the success of WGANs, it is still unclear how well the underlying OT
dual solvers approximate the OT cost (Wasserstein-1 distance, W1) and the OT
gradient needed to update the generator. In this paper, we address these questions.
We construct 1-Lipschitz functions and use them to build ray monotone transport
plans. This strategy yields pairs of continuous benchmark distributions with the
analytically known OT plan, OT cost and OT gradient in high-dimensional spaces
such as spaces of images. We thoroughly evaluate popular WGAN dual form
solvers (gradient penalty, spectral normalization, entropic regularization, etc.) using
these benchmark pairs. Even though these solvers perform well in WGANs, none
of them faithfully compute W1 in high dimensions. Nevertheless, many provide
a meaningful approximation of the OT gradient. These observations suggest that
these solvers should not be treated as good estimators of W1, but to some extent
they indeed can be used in variational problems requiring the minimization of W1.

The Wasserstein-1 distance [3] (W1) is a popular loss function to learn generative models. It has
numerous advantages compared to the vanilla GAN loss [15]. For example, W1 is correctly defined if
the distributions’ supports differ [2]. Besides, it correlates with the sample quality, provides improved
stability of the optimization process and does not suffer from the vanishing gradients issue [3, M4].

Generative models which employ W1 as the loss to update the generator are called the Wasserstein
GANs (WGANs). To compute W1, they use its variational approximation based on the Kantorovich
duality [20] and the Optimal Transport (OT) theory [52, 47]. Since the introduction of the original
WGANs with the weight clipping method [3], a lot of alternative techniques (neural dual OT solvers)
to compute W1 have been proposed: gradient penalties [17, 39, 54], entropic regularization [46],
architectural constraints [35, 1], batch-based methods [31, 29], maximin methods [38, 23], etc.

Despite the popularity of WGANs, it still remains unclear to what extent their success is connected to
OT and W1 rather than, e.g., to a good choice of regularization [49, M7]. Due to the limited amount
of pairs of distributions with known W1, it is challenging to evaluate existing dual OT solvers.

Contributions. We develop a generic methodology based on the transport rays (M3.1) to evaluate
dual OT solvers for the Wasserstein-1 distance (W1). Our main contributions are as follows:

∗Equal contribution.
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• We use 1-Lipschitz functions to construct pairs of continuous distributions that we use as a
benchmark with analytically-known OT cost, map and gradient for W1 transport (M3.2, M3.3).

• We use these benchmark distributions to evaluate (M4) popular WGAN dual OT solvers (M2) in
high-dimensional spaces, including the spaces of 32× 32 CIFAR-10 images, 64× 64 CelebA faces.

Related works [32, 49] consider discrete distributions and show that some solvers fail to estimate W1.
In contrast to them, we study how well the solvers compute the gradient of W1 (OT gradient), as it
is the OT gradient which is used to update the generator in WGANs, not the value of W1. We use
continuous distributions since in the discrete case the OT gradient may be ill-defined (M1).

Notation. We work in the RD space that is endowed with the Euclidean norm || · ||2. We use µL

to denote the Lesbegue measure on RD. For a measurable map T : RD → RD, we denote the
associated pushforward operator by T♯. We consider Borel probability distributions P,Q on RD with
finite first moments. We use Π(P,Q) to denote the set of probability distributions on RD × RD with
marginals P and Q (transport plans). All the integrals are computed over RD, if not stated otherwise.
We write ||f ||L ≤ C if f : RD → R is C-Lipschitz.

1 Background on Optimal Transport
Primal Formulation. For distributions P,Q, the Monge’s formulation of the Wasserstein-1 (W1)
distance, i.e., OT with the distance cost function ∥x− y∥2, is given by (Figure 1a)

W1(P,Q)
def
= min

T♯P=Q

∫
||x− T (x)||2dP(x), (1)

where min is taken over measurable functions T : RD → RD (transport maps) that map P to Q. The
optimal T ∗ is called the optimal transport map (OT map). Note that (1) is not symmetric, and this
formulation does not allow for mass splitting, i.e., for some P,Q, there is no map T that satisfies
T♯P = Q [40, Remark 2.4]. Thus, Kantorovich [20] proposed the following relaxation (Figure 1b):

W1(P,Q)
def
= min

π∈Π(P,Q)

∫
RD×RD

||x− y||2dπ(x, y), (2)

where min is taken over transport plans π∈Π(P,Q). The optimal π∗∈Π(P,Q) is called the optimal
transport plan (OT plan). If π∗=[idRD , T ∗]♯P for some map T ∗ : RD → RD, then T ∗ minimizes
formulation (1). In general, there might exist more than one OT plan π∗ or OT map T ∗.

(a) Monge’s OT formulation (1). (b) Kantorovich’s OT formulation (2).

Figure 1: Monge’s and Kantorovich’s OT fomulations of the Wasserstein-1 distance (W1).

Dual formulation. For distributions P,Q, the dual formulation of W1 is given by [52, Thm. 5.10]:

W1(P,Q) = max
f⊕g≤||·||2

∫
f(x)dP(x) +

∫
g(y)dQ(y), (3)

where max is taken over f, g : RD → R satisfying f(x) + g(y) ≤ ∥x− y∥2 for all x, y ∈ RD. By

using the c-transform f c(y)
def
= min

x∈RD
{||x− y||2 − f(x)} [52, M5], one rewrites (3) as

W1(P,Q) = max
f

∫
f(x)dP(x) +

∫
f c(y)dQ(y). (4)

In accordance with [52, Case 5.16], dual form (4) can be further restricted to 1-Lipschitz functions.
In this case, it holds f c(y) = −f(y) [52, Case 5.4], and the alternative duality formula for W1is

W1(P,Q) = max
||f ||L≤1

∫
f(x)dP(x)−

∫
f(y)dQ(y). (5)

In WGAN literature [17, 2], function f is typically called the critic (or discriminator). In OT literature
[52, 47, 51], functions f , f c, g are commonly refered as the (Kantorovich) potentials.
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Figure 2: The anti-gradient −∇f∗(x) shows
where to move the mass of each x = Gα(z)
to make the generated Pα closer to Q in W1.

Optimal transport in GANs. Derivatives of W1 are
used implicitly in generative modeling [3, 39, 35, 17,
38, 46, 48, 28] that incorporates W1 loss, in which
case P = Pα is a parametric distribution and Q is
the data distribution. Typically, Pα = Gα♯S is the
distribution generated from a fixed latent distribution
S by a generator network Gα. The goal is to find
parameters α that minimize W1(Pα,Q) via gradient
descent. The loss function for the generator is:

W1(Pα,Q)=

∫
z

f∗(Gα(z))dS(z)−
∫
f∗(y)dQ(y),

where f∗ is the optimal potential in (5). The loss
derivative (Figure 2) is given by [13, Eq. 3]:

∂W1(Pα,Q)

∂α
=

∫
z

JαGα(z)
T∇f∗(Gα(z)

)
dS(z),

where JαGα(z)
T is the transpose of the Jacobian matrix of Gα(z) w.r.t. parameters α. This result

still holds without assuming the potentials are fixed [3, Theorem 3] by the envelope theorem [33].

In practice, the optimal potential f∗ is unknown. Therefore, WGANs approximate it with a network
fθ : RD → R (potential) by maximizing (5), (4) or (3) via the stochastic gradient ascent (SGA). This
is usually associated with evaluating the W1 loss. However, note that the loss value plays no role in
generator updates. Only the gradient ∇f∗ of the potential is needed. We call it the OT gradient. We
use a generic phrase OT solver to refer to any algorithm which is capable of recovering ∇f∗.

Quantitative evaluation of OT solvers. Existing solvers are typically tested as the loss in WGANs
without evaluating the actual OT performance. The quality of the generated samples is evaluated by
standard metrics such as FID [18] or IS [45]. These metrics do not provide understanding about the
quality of the solver itself since they depend on components of the model that are not related to OT.

In [41, 32, 49], the authors use discrete P,Q to show that some solvers imprecisely compute W1.
Their approach is not applicable to evaluation of the OT gradient, as ∇f∗ is ill-defined in the discrete
case. For example, when P = δ0, Q = δ1, it holds that f∗ = −[x]+ is an optimal potential, but it is
not even differentiable at x = 0 = Supp(P). The existence of the OT gradient is studied, e.g., in [19].

2 Neural Dual Solvers for the Wasserstein-1 Distance
Our proposed benchmark is useful for testing any OT solver that computes ∇f∗ or W1. We evaluate
only neural solvers which are based on (5), (4), or (3) and used in WGANs. We provide an overview
of these methods below. We group them by the dual formulations which they use.
Most solvers approximate the potential by a network fθ : RD → R and learn it via maximizing (5)
with SGA on batches from P,Q. The main challenge is to enforce the 1-Lipschitz constraint for fθ.
⌊WC⌋ In [3], the space Θ of parameters is restricted to a compact, e.g., to a hypercube [−c, c]dim θ.
With mild assumptions on the architecture, fθ is provably Lipschitz continuous with some unknown
constant C, i.e., ||fθ||L ≤ C. The main practical issue is tuning the boundary c of the set.

⌊GP⌋ The authors of [17] prove that with mild assumptions on the OT plan π∗, the equation
||∇f∗(z)||2 = 1 holds almost surely for z = tx+(1− t)y with (x, y) distributed as the OT plan π∗

and t ∼ Uniform[0, 1]. Thus, they softly penalize f for being not 1-Lipschitz and optimize

W1(P,Q) ≈ max
f

{∫
f(x)dP(x)−

∫
f(y)dQ(y)− λR(f)

}
, λ > 0. (6)

The gradient penalty RGP(f) equals
∫
(||∇f(r)||2 − 1)2dµ(r), where µ is the distribution of a

random variable r = xt + (1− t)y with t ∼ Uniform[0, 1] and (x, y) ∼ P×Q (as π∗ is unknown).
In [34], it is proved that (6) with R = RGP is a specific OT formulation called congested OT.

⌊LP⌋ In [39], the authors show that RGP(f) suffers from instabilities and high magnitudes. They
introduce the Lipschitz penalty RLP(f) =

∫
(max{0, ||∇f(r)||2 − 1})2dµ(r) resolving the issues.
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⌊SN⌋ In [35], the authors optimize (5) and use the power iteration method [14] to normalize the
weight matrices of linear layers of net fθ by their spectral norms. This provably makes f globally
Lipschitz continuous, which does not hold for [17, 39] which are based on the soft penalization (6).

⌊SO⌋ The authors of [1] claim that spectral normalization negatively affects the expressiveness of the
network. They propose to ortho-normalize weight matrices and use GroupSort activations [5]. Such
networks fθ are 1-Lipschitz and universally approximate 1-Lipschitz functions [1, M4].

Below we overview methods based on (4) or (3) which do not require enforcing 1-Lipschitz continuity
for the potential. Unlike the above-mentioned methods, they mostly require 2 neural networks.

⌊LS⌋ In [46, 48, 12, 6], the authors optimize the following unconstrained regularized form (3):

W1(P,Q) ≈ max
f,g

{∫
f(x)dP(x) +

∫
g(y)dQ(y)−R(f, g)

}
, (7)

where R(f, g) is the entropic or quadratic regularizer [46, Eq.5] which softly penalizes the potentials
f, g for disobeying f ⊕ g ≤ || · ||2. In practice, f, g are neural networks fθ, gω : RD → R.

⌊MM:B⌋ The authors of [31, 32] expand the dual formulation (4) with the c-transform:

W1(P,Q) = max
f

{∫
f(x)dP(x) +

∫
min
x∈RD

[∥x− y∥2 − f(y)]dQ(y)

}
. (8)

During optimization, they restrict the inner minimization to the current mini-batch from P. This leads
to overestimation of the inner problem’s solution since the minimum is taken over a restricted subset.
Recently, a more tricky version of this approach appeared [27, M3]. We call it ⌊MM:Bv2⌋.

⌊MM⌋ In [38], the authors use a saddle point formulation equivalent to (8):

W1(P,Q) = max
f

∫
f(x)dP(x) + min

H

∫ [
∥H(y)− y∥2 − f(H(y))

]
dQ(y), (9)

where the minimization is performed over functions H : RD → RD. The authors use neural networks
fθ and Hω to parametrize the potential and the minimizer of the inner problem (mover). To train θ, ω,
the authors apply stochastic gradient ascent/descent (SGAD) over mini-batches from P,Q.

⌊MM:R⌋ One may also recover the OT gradient ∇f∗ from the OT map T ∗. Consider the form

W1(P,Q) = max
g

min
T

∫ [
∥T (x)− x∥2 − g(T (x))

]
dP(x) +

∫
g(y)dQ(y), (10)

which is a reversed [23] version of (9), i.e., the roles of P,Q are swapped and T : RD → RD. For
some optimal saddle points (g∗, T ∗) of (10) it holds that mover T ∗ is an OT map [25, Lemma 4],
[11, Lemma 2], [50], [8]. With mild assumptions on P,Q, one may recover T ∗ and use the identity
∇f∗(x) = x−T∗(x)

∥x−T∗(x)∥2
[7, M1] to obtain the OT gradient from T ∗.

3 Constructing Benchmark Distributions for Dual Solvers
In this section, we develop a generic methodology to construct pairs (P,Q) with computable ground
truth OT plan, OT cost and OT gradient. Our approach is inspired by the insights about OT plans
in [47, M3.1], [16], [7, M3-7]. In M3.1, we give the required preliminaries. In M3.2, we provide our
method to build benchmark pairs. We construct them in M3.3. The proofs are given in Appendix A.

3.1 Ray Monotone Transport Plans and 1-Lipschitz Functions
Let u : RD → R be a 1-Lipschitz function. Recall that due to the Rademacher’s theorem, u is
differentiable µL-almost everywhere. For every x, y ∈ RD satisfying u(x) − u(y) = ∥x − y∥2 it
holds that u is affine on the segment [x, y], i.e., u(z) = tu(x)+(1−t)u(y) for z = tx+(1−t)y with
t ∈ [0, 1] [47, Lemma 3.5]. Moreover, u is differentiable at all z ∈ (x, y) and ∇u(z) = x−y

∥x−y∥2
[47,

Lemma 3.6]. Following [47, Definition 3.7], we call a transport ray any non-trivial (different from
a singleton) segment [x, y] such that u(x)− u(y) = ∥x− y∥2, which is maximal for the inclusion
among segments of this form. The unit vector x−y

∥x−y∥2
is called the direction of a transport ray. Two

transport rays can only intersect at their boundary points [46, Corollary 3.8]. In general, not all points
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(a) Samples x ∼ P. (b) 1-Lipshitz potential
u : RD → R.

(c) Transport rays for x
and map y = T (x).

(d) Pushforward samples
y = T (x) ∼ Q.

Figure 3: Our methodology to construct benchmark pairs (P,Q). An example with (D,N) = (2, 4).
We pick a distribution P and a MinFunnel function u : RD → R (11). To sample y ∼ Q, we get
x ∼ P, compute its transport ray and move x along the ray with the u-ray monotone map T (12).

belong to transport rays. For example, for the function u(x) = 1
2x there are no transport rays at all.

In Figures 3c and 9, we provide examples of transport rays for 1-Lipschitz functions u in D = 2.

For a 1-Lipschitz function u : RD → R, we say that a transport plan π ∈ Π(P,Q) is u-ray monotone
(decreasing) if u(x) − u(y) = ∥x − y∥2 holds π-almost surely for x, y ∈ RD. The idea of the
definition is that such plans distribute the probability mass of x ∼ P among y ∈ RD such that y = x
(no mass movement) and/or y which lie on the same transport ray as x but below x, i.e., u(y) < u(x).
If x is not contained in a transport ray, then π(y|x) = δx, i.e., π necessarily does not move x.

Proposition 1 (Ray monotone transport plans are optimal). Let π ∈ Π(P,Q) be a u-ray monotone
transport plan for a 1-Lipschitz function u. Then it is an optimal plan between P,Q. Besides, u is an
optimal potential, i.e., it attains the maximum in dual formulation (5).

For a distribution P, we say that distribution Q is a u-ray-forward of P if there exists a measurable
function T : RD → RD satisfying T♯P = Q and u(x)− u

(
T (x)

)
= ∥x− T (x)∥2 holds P-almost

surely for all x ∈ RD. We say that such a T is a u-ray-monotone transport map from P to Q. Note
that the deterministic plan π = [idRD , T ]♯P is u-ray monotone. We have the following corollary:

Corollary 1 (Ray monotone transport maps are optimal). Let T be a u-ray monotone transport map
from P to Q. Then the plan π = [idRD , T ]♯P is optimal and T is an OT map from P to Q.
In M3.2 below, we derive our recipe to construct benchmark pairs (P,Q) such that Q is a u-ray-
forward of P with user-defined u and analytically known T . In such pairs P is accessible by samples
and is also possible to sample from Q by pushing x ∼ P forward by T . Since T is an OT map, the
ground truth OT cost is W1(P,Q) =

∫
∥x−T (x)∥2dP(x). It admits unbiased Monte Carlo estimates

from samples x ∼ P. Moreover, with mild assumptions (M3.3), ∇u is the unique OT gradient. Our
benchmark pairs can be used to test how well OT solvers recover W1 and the OT gradient.

3.2 Method to Construct Benchmark Pairs
Let u be a known 1-Lipschitz function. We aim to find its transport rays and construct a u-ray-forward
map T and distribution Q = T♯P (for a given P) for testing dual OT solvers. First, we describe the
parametric class of 1-Lipschitz functions u which we employ in our benchmark. Second, we explain
how to compute the transport rays of u. Finally, we explain how to define u-ray monotone maps.

Part 1. Parameterizing 1-Lipschitz functions. Inspired by the distance representation of optimal
potentials [16], as u : RD → R, we employ the following 1-Lipschitz MinFunnel functions:

u(x)
def
= min

n
{un(x)} = min

n
{∥x− an∥2 + bn} , (11)

where an ∈ RD and bn ∈ R are the parameters. Each funnel un(x) = ∥x− an∥2 + bn has
∥∇un(x)∥2 = 1 when x ̸= an. Thus, u is also 1-Lipschitz as it is their minimum. Note that
for µL-almost every x it holds that u is differentiable at x and ∥∇u(x)∥2 = 1.

Proposition 2 (MinFunnels are universal approximators of 1-Lipschitz functions on compact sets).
Let S ⊂ RD be a compact set and f∗ : S → R be a 1-Lipschitz function. Then for every ϵ > 0 there
exists N and {an, bn}Nn=1 such that function (11) satisfies sup

x∈S
|u(x)− f∗(x)| ≤ ϵ.
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(a) The pair with N = 64, D = 4. (b) The pair with N = 4, D = 32.

Figure 4: Visualization of constructed high-dimensional benchmark pairs.
In each pair, we show random samples projected onto 2 principal components of Q.

The proposition is included only for completeness of the exposition and is not principal for our
construction. We do not aim to approximate a specific f∗ by u. In practice, we found that simply
picking a random MinFunnel u and using it to construct a benchmark pair is reasonable (M3.3).

Part 2. Computing the transport rays. MinFunnels are practically very convenient as the transport
ray for a given x ∈ RD can be analytically computed in O(ND) time, see our proposition below.

Proposition 3 (Transport rays of a MinFunnel). Consider MinFunnel (11) function u : RD → R
with n distinct centers an such that for all n1 ̸= n2 it holds that ∥an1

− an2
∥2 ̸= |bn1

− bn2
|. Let

x ∈ RD be a point such that u is differentiable at x. Then ray(x) = [am, x+ r · v], where

m
def
= argmin

n
{un(x)} ; v

def
=

x− am
∥x− am∥2

; r
def
= min

n
rn ∈ R ∪ {+∞},

and rn
def
= 1

2

[
∥an−x∥2

2−|u(x)−bn|2
][(

u(x)−bn

)
−⟨v,x−an⟩

] for n ̸= m and rm
def
= +∞. Here in the definition of r the min

is taken only over n for which rn > 0 and rn ≥ bn − um(x). Also, for c ∈ R we define c/0=+∞.

The condition on an, bn is imposed to avoid inconvenient cases when the center of a funnel lies on
some another funnel. In practice, we compute the transport rays for a batch of points x with tensor
operations. We provide an example of transport rays of a random MinFunnel u in Figure 9.

Part 3. Defining the ray monotone map. Let P be a distribution on RD and u be a MinFunnel. We
aim to construct a u-ray monotone map T : RD → RD and define a distribution Q = T♯P.

If ∇u(x) does not exist, we define T (x) = x (the set of such points is µL-negligible). Otherwise,
since u is a MinFunnel, we have ∥∇u(x)∥2 = 1. Thus, the u-ray forward map T may take any value
T (x) ∈ [x0, x], where x0 is the left (lower) endpoint of ray(x) = [x0, x1]. According to the analysis
in M3.1, any (measurable) map T defined by this principle is u-ray monotone. For such a map T one
may put Q = T♯P. As a result, for the pair (P,Q), function T is an OT map (Corollary 1), possibly
non-unique. Thus, the ground truth W1(P,Q) can be estimated from samples x ∼ P.

As we are also interested in testing how well OT dual solvers recover the OT gradient ∇f∗, we
need this gradient to exist and be P-unique. From Proposition 1 we know that f∗ = u is an optimal
potential. However, it is not necessarily unique (up to a constant). For example, in the trivial case
T (x) ≡ x and P = Q, any 1-Lipschitz f∗ is optimal and ∇f∗ is not unique. We show that with mild
assumptions on P, T, u, the gradient can be designed to be unique and match ∇u(x).

Proposition 4 (Uniqueness of the OT gradient). Let P be absolutely continuous and let u : RD → R
be 1-Lipschitz. Let T be a u-ray-monotone map for which T (x) ̸= x holds P-almost surely, i.e., it
moves every piece of mass of P. Define Q = T♯P. Then for every optimal f∗ which maximizes (5)
the equality ∇f∗(x) = ∇u(x) holds P-almost surely, i.e., the OT gradient ∇u is P-unique.

3.3 Benchmark Pairs
We use our methodology (M3.2) to construct high-dimensional (D = 2, 22, . . . , 27) benchmark pairs
and benchmark pairs on the space of 64× 64 RGB images of celebrity faces (D = 12288).

For convenience, we use absolutely continuous P supported on a hypercube S = [−B,B]D ⊂ RD.
In particular, for points x ∈ S, we consider transport rays truncated to S, i.e., ray(x) ∩ S. We
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(a) Samples from the pair with (N, p) = (1, 10). (b) Samples from the pair with (N, p) = (16, 100).

(c) Samples x ∼ P
(synthetic celebrity faces).

(d) Samples y ∼ Q = T♯P
(N = 1 funnel).

(e) Samples y ∼ Q = T♯P
(N = 16 funnels).

Figure 5: Visualization of random samples from our constructed Celeba images benchmark pairs.
In the last three plots, we show distributions projected to 2 principal components of P.

construct the u-ray monotone map T : RD → RD by the following principle. Let [x0, x1] ⊂ S be the
truncated transport ray of u for x ∈ S. We pick a parameter p > 1 and define the map T as follows:

T (x)
def
=

[
∥x− x0∥2
∥x0 − x1∥2

]p
x0 +

(
1−

[
∥x− x0∥2
∥x0 − x1∥2

]p)
x1. (12)

This is a power function, i.e., if a ray is parametrized as [0, 1], it moves the mass along the ray by
t 7→ tp. Since P-almost all the points in S belong to (truncated) rays, we have T (x) ̸=x on S.

High-dimensional benchmark pairs. In dimensions D = 2, 22, . . . , 27, we put P to be the standard
uniform distribution on S = [−2.5, 2.5]D. In each dimension D, we consider N = 4, 16, 64, 256
funnels and pick random parameters an ∼ Uniform([−2.5, 2.5]D) and bn ∼ N (0, 0.1). For this
initialization of an, bn, the assumptions of Proposition 3 hold with probability 1. The random seed
is hardcoded. We use p = 8. For the case D = 2, N = 4, we visualize the input distribution P,
the function u, the constructed map T and the output distribution Q = T♯P in Figure 3. We show
examples of constructed (P,Q) for higher dimensions in Figure 4.

Images benchmark pairs for CIFAR-10 and Celeba. As P we consider the synthetic distributions of
generated 32× 32 RGB images (D = 3072) and 64× 64 RGB images (D = 12288). To generate
these images, we use the WGAN-QC [28] generator model trained on CIFAR-10 [26] and Celeba [30]
datasets, respectively. For CIFAR-10, we train WGAN-QC by using its publicly available code.2 For
Celeba, we pick a readily available pre-trained generator from the related Wasserstein-2 benchmark3

[23, M4.1]. To make P absolutely continuous, we add the Gaussian noise with axis-wise σ = 0.01.
Then we truncate the distribution to S = [−1.1, 1.1]D, i.e., we reject samples which are out of S . We
construct two benchmark pairs per each dataset (Figures 5, 6) with (N, p) = (1, 10), (16, 100) and
an ∼ Uniform([−1., 1.]D), bn ∼ N (0, 0.1).

In both high-dimensional and images pairs (P,Q), the input P is an absolutely continuous distribution
supported on a hypercube S. By the design, the distribution P is accessible by random samples. To
sample from Q, we first sample x ∼ P, then compute its transport ray (Proposition 3), truncate it to
S , and produce y = T (x) ∼ Q by (12). The sampler for Q outputs only y, i.e., information about u,
T , x is hidden from the user and employed only when estimating the ground truth W1(P,Q) or ∇u.

2https://github.com/harryliew/WGAN-QC
3https://github.com/iamalexkorotin/Wasserstein2Benchmark
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(a) Samples from the pair with (N, p) = (1, 10). (b) Samples from the pair with (N, p) = (16, 100).

(c) Samples x ∼ P
(synthetic CIFAR-10 images).

(d) Samples y ∼ Q = T♯P
(N = 1 funnel).

(e) Samples y ∼ Q = T♯P
(N = 16 funnels).

Figure 6: Visualization of random samples from our constructed CIFAR-10 images benchmark pairs.
In the last three plots, we show distributions projected to 2 principal components of P.

Reversed pairs. Doing preliminary tests, we found that for solvers it is more challenging to compute
the OT gradient for pair (Q,P) rather than (P,Q). In particular, in our images benchmark, the
pair (Q,P) reflects the practical WGAN scenario better. Indeed, in WGANs, the solvers move the
generated distribution (bad images, Q in our construction) to the real distribution (good images, P).
Recall that Q = T♯P, where T is a differentiable bijection (12) along the (truncated) transport rays
of a MinFunnel u. As a result, Q is absolutely continuous and the OT gradient for the reverse (Q,P)
is Q-unique (Proposition 4). For this pair, the optimal potential is −u and its gradient is −∇u. To
conclude, in all the experiments, we feed the reverse pair (P,Q) := (Q,P) to OT solvers in view.

4 Evaluation of Dual Solvers and Discussion
In this section, we evaluate WGAN dual OT solvers (M2) on our constructed benchmark (M3).
Technical details of the implemetation are given in Appendix B. The code is written in PyTorch
framework and is publicly available together with all the constructed benchmark distributions at

https://github.com/justkolesov/Wasserstein1Benchmark

Metrics. For W1, we do not use any specific metric but simply report obtained Ŵ1 and the ground
truth W1. To quantify the recovered gradient ∇f̂ , we use L2 and cosine similarity metrics [23, M4.2]:

L2(∇f̂ ,∇f∗)
def
= ∥∇f̂ −∇f∗∥2L2 ; cos(∇f̂ ,∇f∗)

def
=

⟨∇f̂ ,∇f∗⟩L2

∥∇f̂∥L2 · ∥∇f∗∥L2

, (13)

where ⟨∇f1,∇f2⟩L2
def
=

∫
⟨∇f1(x),∇f2(x)⟩dP(x), ∥∇f∥2L2

def
= ⟨∇f1,∇f2⟩L2 and ∇f∗ is the

ground truth OT gradient. The L2 metric compares the gradients ∇f̂ ,∇f∗ as elements of the
space L2(P) of quadratically integrable w.r.t. P functions. The cosine compares their directions
regardless of the magnitude (Figure 13). To estimate the metrics, we use 213 samples x∼P.

⌊DOT⌉ For completeness, we add the empirical (batched) OT [9, 10, 36, 37] to evaluation. For
batches X ∼ P, Y ∼ Q, we use Ŵ1(X,Y ) computed by a discrete solver as an estimate of W1(P,Q).
The solver can be combined with the automatic differentiation to approximate ∇f∗ on the batch X .

High-dimensional pairs. We test the solvers and report the estimated W1 value and metrics (13) in
Tables 9, 10, 11 (Appendix C). We use fully-connected nets as potentials fθ, gω and movers Tθ, Hω

(in the maximin solvers). In Figure 7, we show the potentials learned by solvers for D = 2, N = 4.
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(a) ⌊WC⌉. (b) ⌊GP⌉. (c) ⌊LP⌉. (d) ⌊SN⌉. (e) ⌊SO⌉.

(f) ⌊LS⌉. (g) ⌊MM:B⌉. (h) ⌊MM:Bv2⌉. (i) ⌊MM⌉. (j) ⌊MM:R⌉.

Figure 7: Surfaces of potentials fθ learned by OT solvers on the pair with D = 2, N = N .
For ⌈MM:R⌋ we plot (minus) second potential −gω as the solver does not compute the first one.

The ground truth optimal potential is in Figure 3b.

As Table 11 shows, all the solvers randomly over/underestimate W1, typically with notable error.
Consequently, none of the solvers can be viewed as precise estimators of the OT cost. Thus, our
discussion below primarily focuses on the estimation of the OT gradient needed in WGANs.
Original ⌊WC⌉ leads to a pathological value surface of the learned potential (Figure 7a), which is far
from the ground truth. This agrees with the claims of [17, M3]. Despite this, even in high dimensions
the cos metric is positive (Table 9a), i.e., the recovered gradient correlates with the OT gradient.
Popular ⌊GP⌉ notably improves upon ⌊WC⌉ and provides higher cos values (Table 9b). According
to the results, its modification ⌊LP⌉ does not provide any major improvement (Table 9c).
Surprisingly, ⌊SN⌉ performs worse than ⌊GP⌉ and is comparable to ⌊WC⌉ in cos metric (Table
9d). We presume that this happens since the spectral norm negatively affects the expressive power
of the neural net [1]. Even when D = 2 (Figure 7d), ⌊SN⌉ fails to recover the optimal potential.
⌊SO⌉ replaces spectral norm with orthogonalization and uses GroupSort activations which improve
performance. The solver scores higher cos values (Table 9e) which are comparable to ⌊GP⌉.
Solver ⌊LS⌉ recovers biased potential since (7) is the duality formula for regularized OT which yields
biased optimal potentials (Table 9f). The bias is huge for large D,N when the benchmark pairs are
complex. This is analogous to results for the same solver in the Wasserstein-2 (W2) benchmark [23].
Batch-based ⌊MM:B⌉ suffers from the bias in high dimensions (Table 9g) due to the overestimation of
the value of the inner problem in (8). Note that cos metric values are even negative in high dimensions.
The same is reported in the W2 benchmark [23]. ⌊MM-Bv2⌉ uses a more tricky optimization scheme
and yields high cos values (Table 9h). It captures the direction of the OT gradient but extremely
overestimates its magnitude, see high values of L2 in Table 10h.
Maximin solvers ⌊MM⌉, ⌊MM:R⌉ perform comparably to ⌊GP⌉, ⌊SO⌉, ⌊LP⌉, see Tables 9i, 9j.
However, their training takes longer and sometimes diverges as it solves a saddle point problem. This
agrees with the W2 benchmark [23, M4.3]. Using these solvers in GANs is not easy as it yields a
challenging min-max-min optimization problem. Importantly, ⌊MM:R⌉ recovers the OT map which
can itself be used as a generative model (outside the context of GANs) in computer vision tasks. Here
we refer the reader to the recent neural optimal transport (NOT) methods [25, 24, 4, 22, 11, 44, 8].

Empirical ⌊DOT⌉ provides precise estimates of W1 (Table 11k) and the OT gradient (Table 9k) only
in small dimensions. In high dimensions, it intolerably overestimates W1; its gradient is almost
orthogonal to the ground truth (cos ≲ 0). This is due to the exponential (in D) sample complexity of
DOT [53]. Thus, (unregularized) DOT is an imprecise estimator of W1 or the OT gradient in high D.

Images pairs. Here we do not consider ⌊SO⌉ as its authors do not provide convolutional architectures
with GroupSort and orthonormalization. We use DCGAN [42] as potentials fθ, gω. In ⌊MM⌉ and
⌊MM:R⌉, the movers Tθ, Hω are UNets [43]. The evaluation results on Celeba benchmark pairs are
given in Tables 6, 7, 8 and on CIFAR-10 benchmark pairs – in Tables 3, 4, 5 (Appendix C).

9



⌊WC⌉ ⌊GP⌉ ⌊LP⌉ ⌊SN⌉ ⌊SO⌉ ⌊LS⌉ ⌊MM:B⌉ ⌊MM:Bv2⌉ ⌊MM⌉ ⌊MM:R⌉ ⌊DOT⌉

cos
HD

IMG -

L2
HD

IMG -

W1

HD

IMG -

Table 1: The summary of WGAN dual OT solvers’ performance in cos, L2 and W1 metrics on our
high-dimensional (HD) and images (IMG) benchmark pairs. For details, see Appendix C.

Surprisingly, our images benchmark pairs turned to be simpler than some high-dimensional bench-
mark pairs. Although (P,Q) are absolutely continuous and supported on [−1.1, 1.1]D, their actual
probability mass is still concentrated around small low-dimensional sub-manifold of data. We suppose
that this is one of the causes for the reasonable performance of most solvers. In particular, we see that
even ⌊DOT⌉, ⌊LS⌉, ⌊MM:B⌉ score cos > 0 in images benchmark pairs, although they struggled to
produce good results on high-dimensional pairs.

Solvers ⌊GP⌉, ⌊LP⌉, ⌊MM:R⌉ provide very high cos > 0.9 (Table 6). However, only ⌊MM:R⌉
provides precise approximation of ∇f∗ in L2 norm (Table 7). Interestingly, maximin ⌊MM⌉ diverges
on our images benchmark pairs (tuning the hyper-parameters did not help). Similar to the evaluation
in high-dimensional pairs, ⌊WC⌉ and ⌊SN⌉ show moderate cos > 0, but its value is notably smaller
than that of the top-performing methods. Solver ⌊MM:Bv2⌉ demonstrates meaningful estimate of
W1 (Table 8). Nevertheless, its recovered gradient is almost orthogonal to the ground truth (cos ≈ 0,
see Table 6), and the values of L2 metric are extremely high (Table 7).

5 Discussion

Our methodology creates pairs of continuous distributions with known ground truth OT cost and
gradient, filling the missing gap of benchmarking W1 dual solvers. This development allows us to
evaluate the OT performance of WGAN dual methods. The experimental results are summarized in
Table 1. Our evaluation shows that these solvers should not be considered as meaningful estimators
of W1 as they exhibit large error. However, the OT gradient recovered by these solvers shows positive
cos with ground truth. This suggests that most methods could still be used to minimize W1 in
variational problems, e.g., Wasserstein GANs.

Computational complexity. Evaluation of all the OT solvers on our high-dimensional and images
benchmark pairs takes less than 50 hours on a single GPU GTX 1080ti (11 GB VRAM).

Potential Impact. Our benchmark distributions can be used to evaluate future dual OT solvers in
high-dimensional spaces, a crucial step to improve the transparency and replicability of OT and
WGAN-related research. We expect our benchmark to become a standard benchmark for W1 optimal
transport as part of the ongoing effort of advancing computational OT.

Limitations (benchmark). We rely on MinFunnels as optimal Kantorovich potentials to generate
benchmark pairs. Also, we limit our pairs to be absolutely continuous distributions. It is unclear
whether our benchmark sufficiently reflects the real-world scenarios in which the WGAN solvers are
used. Nevertheless, our methodology is generic and can be used to construct new benchmark pairs.

Limitations (evaluation). We evaluate how well the OT solvers compute OT cost and gradient but do
not assess their performance in GAN settings. Studying this question is a promising future research
avenue which could help to develop new OT-based methods for generative modeling.

ACKNOWLEDGEMENTS. The work was supported by the Analytical center under the RF Government
(subsidy agreement 000000D730321P5Q0002, Grant No. 70-2021-00145 02.11.2021).
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