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ABSTRACT

The effectiveness of collective decision-making is often challenged by the
bounded rationality and inherent stochasticity of individual agents. We investi-
gate this by analyzing how to aggregate decisions from n experts, each receiving
a private signal about an unknown state. Assuming signals are conditionally inde-
pendent and identically distributed, we depart from the fully rational paradigm and
model expert behavior using quantal response—a stochastic choice model captur-
ing bounded rationality. Within a minimax regret framework, we show that major-
ity voting is the optimal robust aggregator when individual rationality falls below
a certain threshold. Interestingly, such groups can outperform perfectly rational
agents, as their decision randomness encodes weak but informative signals lost
in deterministic behavior. We validate these findings using large language models
(LLMs), which naturally exhibit quantal response via their temperature parameter.
Aggregating moderately stochastic LLM outputs significantly improves accuracy
on complex reasoning tasks, highlighting bounded rationality not as a limitation,
but as a potential strength in collective intelligence.

1 INTRODUCTION

The market is very up and down. Your finger hovers over the BUY/SELL button. Seeking guidance,
you consult two experts. Mia, renowned for her perfectly rational analysis, advises: “Sell.” John,
known for his sharp instincts but less predictable approach, urges: “Buy it. Trust me.” Obviously,
you should follow rational Mia. But what if you could consult multiple Mias or Johns?

Let’s frame this formally. Suppose we are deciding whether to BUY (X = 1) or SELL (X = 0) a
stock, where the true state ω is either rise (ω = 1) or fall (ω = 0). The utility function is defined
as u(X,ω) = 1 if X = ω, and u(X,ω) = −1 otherwise. We have two types of experts: Mia,
who embodies perfect rationality, and John, who exhibits bounded rationality. Both receive private
signals S ∈ {0, 1} that provide noisy information about the future state. Their decisions depend on
the expected utility of buying conditioning on private signals, denoted by E[u(1, ω) | S], and follow
a quantal response function (McKelvey and Palfrey, 1995):

Buy Probability = Pr[X = 1︸ ︷︷ ︸
buy

| E[u(1, ω) | S] = v︸ ︷︷ ︸
expected utility of buying is v

] =
eλ·E[u(1,ω)|S]∑

x∈{0,1} e
λ·E[u(x,ω)]

=
eλv

e−λv + eλv
=

1

1 + e−2λv

Let φλ(v) = 1
1+e−2λv . φλ(v) is the probability of buying given the advisor’s expected payoff from

buying (X = 1) is v, with a rationality parameter λ. In this scenario, “good” and “bad” signals
correspond to expected payoffs of v = −0.2 (still bad, but less severe) and v = −1 (strongly avoid),
respectively. Mia (Perfectly Rational, λ→ ∞) always follows strict logic—if v < 0, she never buys;
if v > 0, she always buys. John’s (Bounded Rational, λ = 2.5) decisions are probabilistic—even
when v suggests “don’t buy,” he might still take a chance.

Mia, the perfectly rational expert, makes the “correct” choice every time—and earns an average
utility of 0.5. John, who sometimes gambles against the odds, earns slightly lower at 0.43.
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Figure 1: Comparison of rational (Mia) vs. bounded-rational (John) decision-making through uni-
fied quantal response functions.

Now, what if you ask a bunch of Mias and a bunch of Johns? Let’s say each expert gets a private
signal conditionally independent on the underlying state. Interestingly, after perfectly combining a
team’s judgments, a team of Mias stays at 0.5 (always right, but never better), while a team of Johns
actually improves to 0.51—outperforming the perfect experts. Why? Because John’s occasional
“mistakes” add information for the group’s collective wisdom to uncover deeper truths.

Our example shows how imperfect experts can outperform perfect ones - but there’s a catch. To
perfectly combine a team’s judgments, you’d need to know their signal structures-joint distribution
over signals and state. In reality, we almost never have this complete picture. This leads to our core
question: How can we combine expert decisions effectively without knowledge of signal structures?
Can imperfect experts still outperform perfect ones in this scenario?

This drives our research into robust aggregation methods that work without perfect information. We
use a “worst-case scenario” framework. We assess different methods for combining opinions by
evaluating their maximum “regret”—how much worse they could be compared to the best possible
method if we did know everything (Arieli et al., 2018; 2023; Levy and Razin, 2022; De Oliveira
et al., 2021). Surprisingly, within this framework, we find that simply using majority vote works
best when experts aren’t perfectly rational and exhibit sufficiently bounded rationality. Interestingly,
majority vote isn’t the best when all experts are perfectly rational. Furthermore, imperfect experts,
when their opinions are simply tallied by majority vote, can actually do better than perfect experts
whose opinions are combined using the most sophisticated techniques.

This advantage of bounded rationality aligns with observations in artificial intelligence: large lan-
guage models (LLMs) exhibit similar quantal response behavior through their ‘temperature’ param-
eter. Lower temperatures produce deterministic, Mia-like outputs, while higher temperatures induce
John-like stochasticity. Just as in human groups, lower-temperature outputs may yield individu-
ally accurate responses, but higher-temperature outputs—when aggregated—leverage informational
diversity to achieve superior collective decisions.
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1.1 SUMMARY OF RESULTS

We study the aggregation of decisions from groups of boundedly rational experts modeled through
quantal response functions. We consider experts receiving private signals that are conditionally in-
dependent and identically distributed (i.i.d.) given the true state. Our main contributions in Section 3
are as follows:

• Optimal Robust Aggregator: We prove majority voting is optimally robust for groups
whose rationality falls below a threshold dependent on group size (Section A.2).

• Bounded Rationality Advantage: For a single expert (n = 1), rationality maximizes
aggregation outcomes. However, with multiple experts (n ≥ 2), bounded rationality can
outperform perfect rationality (Section A.3). Generalizing beyond specific scenario, nu-
merical experiments (Figure 5) show that moderately bounded rational experts consistently
achieve lower worst-case regret than fully rational experts.

These theoretical insights rely on a dimension reduction result: any quantal response report struc-
ture under conditional independence can equivalently be represented by a simplified three-signal
structure, significantly reducing analytical complexity.

In Section 4, we empirically validate our theoretical predictions using large language models (LLMs)
as experts. The ‘temperature’ parameter, which adjusts randomness, naturally corresponds to quantal
response behavior.

• Quantal Response in LLMs: Empirical analysis confirms LLMs exhibit quantal response
behavior, with logistic regression aligning closely with theoretical models (Figure 2).

• Empirical Aggregation Advantage: Using LLMs with varied temperatures (t ∈
{0, 0.5, 1}) and aggregating decisions via majority voting with groups of size n = {1, 3, 5},
we conduct two experiments: traditional box-ball tasks and multi-choice mathematical
questions. Results confirm that bounded-rational experts with moderate temperature (e.g.,
t = 0.5) collectively outperform purely rational experts (t = 0) for n ≥ 3, even in non-
binary settings (Figure 3).

Overall, our findings reveal that following the majority decisions of moderately irrational experts
is effective, highlighting benefits of bounded rationality. This insight impacts fields such as crowd-
sourcing, AI ensembles, economic decision-making, and product design, where incorporating di-
verse and less rational inputs can yield superior outcomes.

1.2 RELATED WORK

Information Aggregation and Robustness. Information aggregation—the process of combin-
ing multiple information sources into a collective decision—is a fundamental area in economics
(Forsythe and Lundholm, 1990) and artificial intelligence (Breiman, 1996; Dietterich, 2000). Tra-
ditional models often assume perfect rationality, where experts make optimal decisions based on
complete information (Winkler, 1981; Arieli et al., 2018; 2023). However, practical scenarios fre-
quently involve experts deviating from perfect rationality due to cognitive limitations, biases, and
inherent stochasticity (Simon, 1990; Tversky et al., 1982; McKelvey and Palfrey, 1995). This neces-
sitates robust information aggregation methods that can handle inputs under uncertain information
structures and non-idealized behaviors.

Robust information aggregation has been explored extensively, addressing challenges in synthesiz-
ing probabilistic predictions (forecast aggregation) and binary choices (decision aggregation) under
various forms of uncertainty, such as conditional independence (Arieli et al., 2018), unknown corre-
lation structures (Levy and Razin, 2022; De Oliveira et al., 2021), and adversarial inputs (Guo and
Kong, 2024). Previous work in robust aggregation, particularly in relation to decision aggregation,
has investigated optimal strategies for symmetric scenarios (Arieli et al., 2023), two-expert cases
(Pan et al., 2024), and the sufficiency of signal dimensions (Guo and Kong, 2024). While these
studies often focus on rational or adversarial agents, models like quantal response (McKelvey and
Palfrey, 1995; 1998) better capture real-world bounded rationality through stochastic choice rules.
Such models have found applications across economics (Goeree et al., 2002), political science (Go-
eree et al., 2016), and social systems (Hoppe and Schmitz, 2013).
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Our work advances robust decision aggregation by specifically incorporating the framework of quan-
tal response models. Unlike previous studies primarily focused on rational experts or different forms
of uncertainty, we demonstrate that three signals suffice for robust aggregation within this bounded
rationality framework through geometric and matrix analysis. Furthermore, we highlight scenarios
where such bounded rationality can paradoxically benefit robust aggregation outcomes.

Bounded Rationality Models. Bounded rationality captures deviations from optimal decisions
due to cognitive limitations. Quantal response models (McKelvey and Palfrey, 1995) formalize
these stochastic behaviors. Recent work explores Bayesian persuasion under bounded rationality
(Feng et al., 2024) and benefits of biases like base rate neglect (Kong et al., 2024).

Though bounded rationality appears in mechanism design (Braverman et al., 2018), information de-
sign (Yu et al., 2024), and robust decision-making (Gan et al., 2023), prior research focuses primar-
ily on associated challenges. In contrast, we identify scenarios where bounded rationality enhances
aggregation outcomes.

Temperature Control in Aggregation Tasks. Temperature parameters in LLMs control random-
ness, influencing task performance. Previous research found minimal effects in precision tasks
(Renze and Guven, 2024), proposed adaptive temperatures for code generation (Zhu et al., 2024),
and investigated creativity-coherence trade-offs (Peeperkorn et al., 2024). Differently, we link tem-
perature to behavioral economics, demonstrating its beneficial role in robust aggregation scenarios.

2 MODEL SETUP

We consider a binary state Ω = {0, 1} with a known prior probability µ = Pr[ω = 1] ∈ [0, 1].

There is one decision maker (DM) and n experts indexed by i = 1, . . . , n. Each expert i observes
a private signal Si ∈ S, drawn from a set of possible signals S, about the true state ω. The joint
distribution of the state and signals is called the signal structure θ ∈ ∆(Ω × Sn). The set of all
possible signal structures is Θ.

To capture scenarios such as aggregating multiple responses from a large language model—where
each response is independently and identically generated from the same input—we focus on signal
structures where signals are conditionally independent and identically distributed (c.i.i.d.) given the
state ω. Formally, this means:

Pr[S1 = s1, . . . , Sn = sn | ω = w] =

n∏
i=1

Pr[Si = si | ω = w],

with the conditional distribution Pr[Si = s | ω = w] identical across all experts. The set of all such
c.i.i.d. signal structures is denoted by Θciid. This setting is standard and describes situations where
each expert independently observes information about the state. Additionally, since experts are
anonymous from the DM’s perspective, the DM treats each expert’s signal distribution as identical.

Each expert i, after observing the private signal Si, reports a binary decision Xi ∈ X = {0, 1} to
the DM. The utility for both DM and experts depends on correctly identifying the state:

u(X,ω) =

{
1 X = ω

−1 X ̸= ω
.

This common payoff aligns their incentives towards correct decisions.

Experts choose their decisions probabilistically according to a quantal response function, reflecting
bounded rationality. Let p = Pr[ω = 1 | Si = si] be an expert’s posterior belief after observing
signal si. The expected utility of choosing Xi ∈ {0, 1} is:

E[u(Xi, ω) | Si] = (2Xi − 1)(2p− 1) ∈ [−1, 1].

Recall the quantal response function φλ : [−1, 1] → [0, 1], with rationality level λ ≥ 0, is given by
the logistic (softmax) form:

φλ(v) =
1

1 + e−2λv
, v ∈ [−1, 1].

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Note that φλ is equivalent to the softmax layer in large language models, showing the similarity
between quantal response in decision theory and softmax outputs in machine learning. Replacing
v = E[u(Xi = 1, ω) | Si] = 2p− 1, the expert’s decision probability becomes:

ψλ(p) = φλ(2p− 1) =
1

1 + e2λ(1−2p)
, p ∈ [0, 1].

Note that φλ and ψλ are equivalent representations; for convenience, we use ψλ throughout the
remainder of this paper.

The function ψλ increases with p. When λ = 0, decisions are random; as λ→ ∞, decisions become
deterministic:

ψλ→∞(p) =


1 p > 0.5

0.5 p = 0.5

0 p < 0.5

.

Given a signal structure θ and response function ψλ, the report structure θ̂ ∈ ∆(Ω×Xn) describes
the joint distribution of the state and experts’ reports. The mapping rep(θ, ψλ) = θ̂ defines the set
of c.i.i.d. report structures:

Θ̂ciidλ = {θ̂ : ∃θ ∈ Θciid, rep(θ, ψλ) = θ̂}.

2.1 DECISION AGGREGATION

The DM aggregates experts’ decisions anonymously based only on the number of experts X =∑n
i=1Xi reporting 1. An aggregator function f : {0, . . . , n} → [0, 1] represents the DM’s mixed

strategy, where f(x) is the probability the DM guesses state ω = 1 given x reports of 1.

The utility for aggregator f under report structure θ̂ is:

U(f, θ̂) =

n∑
x=0

Pr
θ̂
[X = x](2 Pr

θ̂
[ω = 1 | X = x]− 1)(2f(x)− 1).

Omniscient Aggregator. An ideal benchmark, the omniscient aggregator maximizes expected
utility knowing the true report structure θ̂:

optθ̂(x) =


1, Prθ̂[ω = 1 | X = x] > 0.5

0.5, Prθ̂[ω = 1 | X = x] = 0.5

0, Prθ̂[ω = 1 | X = x] < 0.5

.

Optimal Robust Aggregator. When facing uncertainty about θ̂, the DM aims to minimize worst-
case regret, defined as the difference in utility between an aggregator f and the omniscient aggrega-
tor:

R(f, θ̂) = U(optθ̂, θ̂)− U(f, θ̂).

The optimal robust aggregator solves the min-max problem:

optΘ̂ ∈ argmin
f

max
θ̂∈Θ̂

R(f, θ̂),

thus ensuring robustness under uncertainty.

3 THEORETICAL RESULTS

This section introduces theoretical results for decision aggregation under bounded rationality. We
focus on a setting where experts receive signals that are independent and identically distributed
conditioning on the world state (c.i.i.d.).
Theorem 3.1 (Main Theorem). Consider a group of experts with c.i.i.d. signal structures Θciid

and quantal responses with rationality parameter λ.

5
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1. Optimal Robust Aggregator. When λ ≤ g(n), majority voting fmaj is the optimal robust
aggregator:

max
θ̂∈Θ̂ciid

λ

R(fmaj , θ̂) = min
f

max
θ̂∈Θ̂ciid

λ

R(f, θ̂)

using the decision rule:

fmaj(x) =


0, x < n/2

1/2, x = n/2

1, x > n/2

The threshold function g(n) is defined as the supremum of the set of λ values that satisfy a
specific inequality for all q0 and q1 within a given range. Formally,

g(n) = sup

{
λ

∣∣∣∣ ∀q0, q1 such that ψλ(0) ≤ q0 ≤ q1 ≤ 0.5, the following inequality holds:

(q1(1− q1))
⌊n−1

2 ⌋(1− 2q1)

ψλ(1)− q1
≤ (q0(1− q0))

⌊n−1
2 ⌋(1− 2q0)

ψλ(1)− q0
× 2λ+ ln(1− q0)− ln(q0)

2λ− ln(1− q0) + ln(q0)

}
For n ≤ 2, majority voting remains optimal for any finite λ, that is, the threshold is infinity
g(n) = ∞.

2. Bounded Rationality Advantage. While perfect rationality (λ → ∞) maximizes single-
expert performance (n = 1), the group exhibits a different behavior:

• For all n ≥ 2, there exist θ∗ ∈ Θciid and finite λ∗ such that under θ∗, the optimal
utility with bounded rationality level λ∗ strictly exceeds that with perfect rationality:

max
f

U (f, rep (θ∗, ψλ∗)) > max
f

U (f, rep (θ∗, ψ∞))

• For all n > 2, this advantage of bounded rationality holds for majority voting:

U
(
fmaj , rep (θ∗, ψλ∗)

)
> max

f
U (f, rep (θ∗, ψ∞))

In the above theorem, Θ̂ciidλ denotes the set of joint distributions over reported decisions induced
by the c.i.i.d. signal structures Θciid through the quantal response function ψλ, i.e., Θ̂ciidλ =
rep(Θciid, ψλ). The terms ψλ(0) and ψλ(1) represent the probabilities of reportingXi = 1 when the
posterior Pr[ω = 1 | Si] is 0 or 1, respectively. The inequality that defines g(n) illustrates that, in
expectation, reporting 1 is optimal when exactly

⌊
n−1
2

⌋
experts report 0, based on the combination

of the two symmetric report structures parameterized by q0 and q1.

Proof Sketch of Theorem 3.1 The proof is structured in three main steps, which is shown in
Section A. We first simplify the problem space, then establish the optimality of majority voting, and
finally, demonstrate the advantage of bounded rationality.

1. Dimension Reduction. Our first step addresses the primary challenge: the min-max op-
timization is over an infinite-dimensional and intractable space of signal structures. To
make the problem solvable, we reduce its dimensionality. The reduction uses the fact that
an expert’s report depends only on their posterior belief, not the original high-dimensional
signal. We encode each posterior s ∈ [0, 1] as a point on a curve in R3. The set of all
possible report structures then forms the convex hull of this curve. We proved a key geo-
metric lemma that no four points on this curve are coplanar. This property, combined with
Carathéodory’s theorem, proves that any report structure can be represented by a simple
signal structure with at most three posteriors: {0, p, 1}. This simplifies the problem to a
manageable three-parameter space.

2. Optimality of Majority Voting. Using this simplified representation, we show why ma-
jority voting becomes optimal. The intuition is that bounded rationality regularizes the
space of report structures. Fully rational experts can produce extreme structures favoring
complex, non-monotonic aggregators. In contrast, bounded rationality smooths this space,

6
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and we prove that when λ ≤ g(n), the simple majority vote becomes the optimal robust
aggregator. To establish this, we prove a condition called pairwise optimality: for any
symmetric pair of structures, majority voting minimizes their combined regret. We then
show this implies global minimax optimality. The threshold g(n) is the largest λ for which
pairwise optimality holds for all possible report structures.

3. Bounded Rationality Advantage. Finally, we explain the counterintuitive result that
bounded rationality can outperform perfect rationality in a group setting (n ≥ 2). While
perfect rationality is best for a single expert, the randomness from bounded rationality in-
troduces valuable diversity in a group. It allows weak but useful signals, which might be
lost when fully rational experts all report the same decision, to influence the collective
outcome. The proof is by construction. We design a signal structure θ∗ where perfectly
rational experts unanimously report 0, yielding a utility of 0.5. We then show that with a
finite rationality level λ∗, their reports become stochastic. This variation, while noisy, is
informative, allowing an aggregator to achieve a utility strictly greater than 0.5. For n > 2,
we show that simple majority voting is sufficient to gain this advantage.

Numerical Study. To complement our theoretical analysis, we conducted numerical simulations
to illustrate the key results. As shown in Figure 5, we computed the worst-case regret for both
majority voting and the optimal robust aggregator. The results confirm that for rationality levels
λ ≤ g(n), the regrets are identical, verifying that majority voting (fmaj) is indeed the optimal
robust aggregator. The plots also reveal that this threshold is a sufficient but not strictly necessary
condition, as majority voting can remain optimal for some λ > g(n). However, for larger groups
(e.g., n = 5) and high rationality, a more complex aggregator outperforms the majority rule. The
U-shaped curve of the worst-case regret illustrates that choosing an appropriate, bounded level of
rationality can be more effective than pursuing perfect rationality. This highlights that a moderate
degree of ”noise” or uncertainty can be beneficial for group decision-making.

4 EMPIRICAL RESULTS

In this section, we describe two sets of studies designed to address the following two key research
questions:

1. Do the responses of large language model (LLM) conform to quantal response theory?
2. How do the number of experts (LLM instances) and their rationality (temperature) affect

the aggregation results, and how should these parameters be set to optimize performance?

These questions guide the study setup. We simulate individual expert decisions by querying a large
language model (LLM) and using the single response as the expert’s choice. To simulate the con-
ditionally independent and identically distributed (c.i.i.d.) nature of expert decisions, we generate
multiple responses to the same query independently.

To balance performance and cost, we selected gpt-4o-mini as the model and used API for querying.

4.1 BAYESIAN DECISION-MAKING STUDY

The first study examines whether LLM responses follow quantal response theory in a Bayesian
decision framework.

Study Design We use the standard belief-updating task Phillips and Edwards (1966); Grether
(1980) as the Bayesian Decision-Making Study. Specifically, large language models (LLMs) are
tasked with inferring which of two boxes was selected based on the observed color of a ball drawn
from the chosen box. The left box (ω = 1) and the right box (ω = 0) contain red and blue balls
in different proportions. The prior probability of selecting the left box is µ = Pr[ω = 1], and the
task is to infer the selected box based on the observed signal, Si. The model is queried under three
temperature settings (0, 0.5, and 1) to assess the impact of model rationality on decision-making.
By discretization, we get 400 scenarios. Each scenario is repeated 20 times to capture stochastic
variability, and the decision proportion is calculated as the empirical probability of choosing the left
box across all repetitions. The details are provided in Section B.

7
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Examining the Quantal Response Logistic regression analysis was conducted to test whether
the decision-making behavior of the LLM adheres to the quantal response model. The dependent
variable is the model’s decision proportion, while the independent variable is the posterior belief
derived from the Bayesian framework. To ensure symmetry in the logistic regression, a symmetric
processing approach was applied: for each observation (posterior, proportion), a corresponding sym-
metric observation (1-posterior, 1-proportion) was added. This transformation effectively doubled
the dataset, expanding from 400 observations to 800, with each temperature condition. The regres-
sion coefficient λ corresponds to the rationality level in the quantal response, with higher values
suggesting more deterministic responses and lower values reflecting increased randomness.

The results of the logistic regression, visualized in Figure 2, reveal a clear trend. As the tempera-
ture increases, the coefficient λ decreases, signifying a transition from more deterministic to more
probabilistic decision-making. Specifically, λ ranges from a value close to infinity (λ → ∞) at a
temperature of 0.0, to 13.25 at 0.5, and further to 8.93 at 1.0. These results are statistically signifi-
cant, as evidenced by z-values far exceeding the critical threshold of ±1.96 (for a 95% confidence
level) and p-values effectively equal to 0 for all settings. These findings indicate that LLMs exhibit
probabilistic decision-making consistent with the quantal response theory. A detailed summary of
the regression results is provided in the appendix (see Table 1).
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Figure 2: Logistic Regression Results Across Temperatures. The plots illustrate the relation-
ship between posterior probability (x-axis) and decision proportion (y-axis) at three temperature
settings (t = 0.0, 0.5, 1.0). Each gray dot represents a specific scenario, showing the decision pro-
portion of GPT-4o-mini for that scenario. The fitted quantal response curve (orange line) represents
the model’s predicted behavior, with the fitted coefficient λ quantifying the rationality of decision-
making. Specifically, λ→ ∞ at t = 0.0, λ = 13.25 at t = 0.5, and λ = 8.93 at t = 1.0. The results
demonstrate increased randomness as temperature rises, aligning with the quantal response model’s
predictions.

4.2 MULTIPLE-CHOICE QUESTION ANSWERING STUDY

The second study investigates the behavior of large language models (LLMs) when tasked with
multiple-choice question answering, using the MathQA dataset (Amini et al., 2019). This study
focuses on understanding the efficacy of plurality vote aggregation for problems involving multiple
options and evaluates performance under varying levels of model rationality and the number of
experts.

Study Design We evaluate aggregation performance by querying the model with 500 randomly
selected questions from the MathQA dataset, under three temperature settings (t = 0.0, 0.5, 1.0).
For each question, we generate 20 responses. Because the questions offer more than two options, we
use plurality voting (fplu), a generalization of majority voting. This involves selecting the option
with the highest frequency among the sampled responses. In the event of a tie, the aggregator
randomly chooses among the tied options. Bootstrapping is used to assess aggregation robustness,
repeated 1000 times for each temperature and expert group size (n = 1, 3, 5). Accuracy is the
proportion of correct aggregated answers. The details are provided in Section B.

Evaluate Performance of Aggregators The performance of aggregation methods is evaluated un-
der different temperature settings (t = 0.0, 0.5, 1.0) and varying numbers of experts (n = 1, 3, 5).
Specifically, we examine majority voting (fmaj) in the Bayesian Decision-Making Study and plu-
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Figure 3: Performance of Majority/Plurality Voting Aggregation. Panel (a) presents the expected
utility of the majority-vote aggregator (fmaj) in the Bayesian decision-making task, where different
temperature settings (t = 0.0, 0.5, 1.0) and numbers of experts (n = 1, 3, 5) are evaluated. Panel
(b) shows the accuracy of the plurality-vote aggregator (fplu) when applied to the multiple-choice
question answering task using the MathQA dataset. In both panels, error bars represent the standard
error of the mean (SEM), which quantifies the uncertainty in the estimated mean. Both studies
show the same pattern: increasing the number of experts (n) improves aggregation performance.
When n = 1, higher temperature (t) decreases performance due to increased randomness. When
n ≥ 3, higher temperature improves performance as diversity enhances aggregation effectiveness.
These results highlight that while randomness degrades individual decisions, it benefits collective
decision-making when properly aggregated, which aligns with our theoretical findings.

rality voting (fplu) in the Multiple-Choice Question Answering Study using the MathQA dataset.
We use only odd values for n to avoid ties.

Across both studies (Figure 3), when n = 1, the expected utility is generally lower due to lack of
decision diversity. Deterministic expert behavior (t = 0.0) yields slightly higher utility compared
to stochastic settings (t ≥ 0.5), indicating that with only one expert, randomness negatively impacts
decision reliability. However, when n = 3, 5, the utility of majority (plurality) voting interestingly
increases with higher temperatures. This outcome aligns with our theoretical predictions, suggest-
ing that randomness can enhance aggregation performance by providing additional informational
diversity. Additionally, we evaluate a simple random follow rule, which performs equivalently to
majority voting with n = 1, and find its performance consistently inferior or equal to majority voting
with larger groups.

These findings align closely with theoretical expectations and ensemble learning literature, em-
phasizing the value of aggregating multiple stochastic responses from LLMs to improve decision
accuracy.

5 DISCUSSION AND FUTURE WORK

This paper shows that bounded rationality plays a crucial role in shaping decision aggregation. Ma-
jority voting reaches minimax optimality when group rationality λ is below a critical threshold
(g(n)). In particular, experts with moderate levels of stochastic behavior (λ < ∞) sometimes
outperform perfectly rational experts. This phenomenon can be explained theoretically in a ro-
bust aggregation framework and is observed empirically in large language models (LLMs), where
temperature-controlled randomness improves the accuracy of aggregated decision. These results
suggest that introducing imperfections may enhance collective intelligence.

While these findings offer practical implications for domains such as investment (where “noisy”
retail investors are common) and AI ensembles (where temperature diversity can be optimized),
several assumptions require relaxing for real-world applications. Our current framework assumes
conditionally independent and identically distributed (i.i.d.) experts, neglecting potential correla-
tions and adversarial conditions. Furthermore, the homogeneous rationality model does not account
for groups with diverse rationality. Future research should address signal dependencies through
graph-based aggregation methods and explore the impact of heterogeneous rationality on decision-
making, including real-world testing in critical areas like medical diagnostics.

9
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A PROOFS FOR SECTION 3

A.1 DIMENSION REDUCTION

To prove Section 3, the primary challenge is to reduce the complexity of the signal space. Since, by
definition of the response function, the report depends only on the posterior given λ, we can slightly
reduce complexity by grouping signals that yield identical posteriors. We use Sθ to denote the set of
signals that can be received by each expert under θ. The above observation is formalized as follows:

Observation A.1 (Signal Grouping). Let Sθ = {s(1), s(2), . . . , s(m)} be the signal set of the signal
structure θ ∈ Θciid. For any two signals s(j), s(k) ∈ Sθ with identical posteriors, i.e.,

Pr[ω = 1 | Si = s(j)] = Pr[ω = 1 | Si = s(k)],

we define a new signal s(j∨k) representing the event Si = s(j) or Si = s(k). That is,

Si = s(j∨k) ⇐⇒ Si = s(j) or Si = s(k).

By grouping such signals, we construct a new signal structure θ′ with a smaller signal set that
induces the same report structure as θ:

∀λ > 0, rep(θ, ψλ) = rep(θ′, ψλ).

After grouping signals with identical posteriors, we establish a one-to-one correspondence between
signals and posteriors. This allows us to represent each signal by its corresponding posterior value.
For instance, a signal s where Pr[ω = 1 | Si = s] = 0.8 can be represented simply as 0.8.

Now, let’s define a 3-signal space signal structure, denoted Θ3ciid. This structure comprises signal
structures where the signal set contains at most three distinct posteriors:

Θ3ciid =
{
θ ∈ Θciid | ∃p ∈ (0, 1) such that Sθ ⊆ {0, p, 1}

}
.

As defined, any θ ∈ Θ3ciid has a signal set Sθ containing at most three elements, each representing
a posterior. At most one of these posteriors, p, can lie strictly between 0 and 1; the others must be 0
and 1. We can parameterize each signal structure θ ∈ Θ3ciid with three values: p, γ0, and γ1. These
parameters define the joint distribution:

Si = 0 Si = p Si = 1

θ
ω = 0 γ0 γ1(1− p) 0
ω = 1 0 γ1p 1− γ0 − γ1

This 3-signal space structure represents a significant simplification compared to the general signal
space. The following lemma will demonstrate the sufficiency of considering only this simplified
structure.
Lemma A.2 (Dimension Reduction). For all quantal response rationality levels λ > 0, the report
structure induced by the 3-signal space structure is equivalent to that induced by the general signal
space. Formally:

rep(Θ3ciid, ψλ) = Θ̂ciidλ

We now formalize the dimension reduction technique that allows us to compress the signal space.

Proof Sketch of theorem A.2.

The proof consists of three main steps:

1. 3-Dimensional Encoding of Signal and Report Structures.
We begin by encoding signal structures and report structures into a 3-dimensional space.
Under the response function ψλ, each signal s ∈ [0, 1] corresponds to a point

v(s) =(s, ψλ(s), sψλ(s))

=(Pr[ω = 1 | Si = s],Pr[Xi = 1 | Si = s],Pr[Xi = 1, ω = 1 | Si = s])
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in three-dimensional space. Here, ψλ(s) = Pr[Xi = 1 | Si = s] represents the probability
of taking action 1 given posterior s, while sψλ(s) = Pr[Xi = 1, ω = 1 | Si = s] represents
the joint probability of taking action 1 and the action matching the true state of the world.
As s varies over the interval [0, 1], this mapping traces out a curve, which we denote by C,
in the three-dimensional space.
Each report structure also corresponds to a point in three-dimensional space:

v(θ̂) = (Pr[ω = 1],Pr[Xi = 1],Pr[Xi = 1, ω = 1]).

Critically, the point corresponding to a report structure θ̂ = rep(θ, ψλ) is a convex combi-
nation of the points corresponding to the signals in the signal set Sθ of θ. Consequently, all
possible report structures correspond to points within the convex hull of the curve C.
Thus, to establish the equivalence of report structures induced by the 3-signal space and
the general signal space, it suffices to show that their respective convex hulls are equiva-
lent. Specifically, we must demonstrate that any point v(θ̂) within the convex hull of C
can be expressed as a convex combination of at most three points v(0),v(p),v(1) on C,
corresponding to signals of 0, p, and 1, for some p ∈ [0, 1].

2. No Four Points Coplanar.
To prove this, we need the following key result: no four points on the curve C are
coplanar. We establish this by considering a 4x4 matrix where each row takes the form
[1, s, ψλ(s), sψλ(s)] for four values of s : a < b < c < d. Assuming ψλ(p) is the quantal
response function, we demonstrate that the determinant of this matrix maintains a consis-
tent sign (either always positive or always negative) regardless of the values of a, b, c, d,
which implies the result.

3. Representing Any Report Structure v(θ̂) with v(0),v(p),v(1).
Using the “no four points coplanar” result, and by repeatedly applying it along with the
intermediate value theorem (Rudin et al., 1964), we first establish a preliminary result: any
point on the line segment connecting two points v(j),v(k) on C can be expressed as a
convex combination of at most three points v(0),v(p),v(1) on C, corresponding to signals
0, p, and 1 for some p ∈ [0, 1]. We then extend this result to encompass any point in the
convex hull of C through an iterative reduction argument.

Proof of theorem A.2.

3-Dimensional Encoding of Signal and Report Structures.

We need to first analyze the relationship between the report structure and the signal structure.

To analyze the report structure θ̂ of a specific expert, we observe that three quantities can uniquely
determine a report structure of expert i: Prθ̂[ω = 1], Prθ̂[Xi = 1], and Prθ̂[Xi = 1, ω = 1]. These
three quantities can be considered as a point in R3. We define v(θ̂) as the point in R3 corresponding
to θ̂. Formally,

v(θ̂) = (Pr
θ̂
[ω = 1],Pr

θ̂
[Xi = 1],Pr

θ̂
[Xi = 1, ω = 1])

Using this perspective, we can establish the connection between the signal structure and the report
structure. Consider a signal s ∈ [0, 1] with posterior Pr[ω = 1 | Si = s] = s. We represent this
signal as a point in R3 using the following coordinates:
v(s) = (s, ψ(s), sψ(s))

= (Pr[ω = 1 | Si = s], ψ(Pr[ω = 1 | Si = s]),Pr[ω = 1 | Si = s]ψ(Pr[ω = 1 | Si = s])).

This point represents the report structure when only this specific signal s is considered. Here,
Pr[ω = 1 | Si = s] is the posterior probability that the true state is ω = 1 given the signal
s, ψ(Pr[ω = 1 | Si = s]) is the probability that the expert reports 1 given this posterior, and
Pr[ω = 1 | Si = s]ψ(Pr[ω = 1 | Si = s]) is the joint probability that ω = 1 and the expert reports
1.

Given the signal Si = s, the state ω and the decision Xi are conditionally independent. This
conditional independence allows us to express the overall report structure as a linear combination of
the points corresponding to different signals.

13
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Lemma A.3. For corresponding signal structure θ and report structure θ̂, the point of report struc-
ture θ̂ for expert i can be represented as a convex combination of the points corresponding to the
individual signals S in the signal structure θ. That is,

v(θ̂) =
∑
s∈Sθ

Pr
θ
[Si = s]v(s)

Proof of theorem A.3. Let θ be the corresponding signal structure of θ̂, and Sθ be the set of all
possible signals s that expert i can receive. The probability of receiving signal s is denoted by
Prθ[Si = s]. The three quantities defining the overall report structure can be expressed as expecta-
tions over these points:

• Prθ̂[ω = 1] is the expected posterior probability:

Pr
θ̂
[ω = 1] =

∑
s∈Sθ

Pr
θ
[Si = s] Pr

θ
[ω = 1 | Si = s].

• Prθ̂[Xi = 1] is the expected reporting probability:

Pr
θ̂
[Xi = 1] =

∑
s∈Sθ

Pr
θ
[Xi = 1, Si = s]

=
∑
s∈Sθ

Pr
θ
[Si = s]ψ(Pr

θ
[ω = 1 | Si = s]).

• Prθ̂[Xi = 1, ω = 1] is the expected joint probability:

Pr
θ̂
[Xi = 1, ω = 1] =

∑
s∈Sθ

Pr
θ
[Xi = 1, Si = s, ω = 1]

=
∑
s∈Sθ

Pr
θ
[Si = s] Pr[Xi = 1, ω = 1 | Si = s]

=
∑
s∈Sθ

Pr
θ
[Si = s] Pr

θ
[ω = 1 | Si = s] Pr[Xi = 1 | Si = s]

(Conditional Independence)

=
∑
s∈Sθ

Pr
θ
[Si = s] Pr

θ
[ω = 1 | Si = s]ψ(Pr

θ
[ω = 1 | Si = s]).

Each of these expectations is a weighted sum of the corresponding coordinates of the points v(s) in
R3, with weights given by the probabilities Prθ[Si = s]. Thus, the point of report structure v(θ̂) is
a convex combination of the points v(s).

v(θ̂) =
∑
s∈Sθ

Pr
θ
[Si = s]v(s)

Define curve C be the set of all points of signals in R3, that is, C = {(s, ψ(s), sψ(s)) | s ∈ [0, 1]}.
Let conv(C) be the convex hull of curve C. Since the point of report structure can be represented as
a convex combination of the points in C, conv(C) is the set of all valid report structures.

According to Carathéodory (1911)’s theorem, in R3, any point inside the convex hull of a set can be
represented as a convex combination of at most 4 points from the set. Thus, we only need 4 signals
to represent all report structures. However, in the next subsection, we will further prove that when
ψ(s) is a quantal response function, the signal structures in Θ3ciid can express all report structures.

No Four Points Coplanar.

Then we prove that, given λ > 0, there are no four points coplanar in the curve C =
{(s, ψλ(s), sψλ(s)) | s ∈ [0, 1]}. Formally,

14
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Lemma A.4. Given λ > 0, any four different points on
v(s) = (s, ψλ(s), sψλ(s)), (s ∈ [0, 1])

are not coplanar.

Proof of theorem A.4. Let M(a, b, c, d) =

1 a ψλ(a) aψλ(a)
1 b ψλ(b) aψλ(b)
1 c ψλ(c) aψλ(c)
1 d ψλ(d) aψλ(d)

 .

We need to prove ∀a, b, c, d, 0 ≤ a < b < c < d ≤ 1,
det(M(a, b, c, d)) > 0.

Let β = 4λ, u = d− c, v = c− b, w = b− a ,

h(x) =

{
β, x = 0
eβx−1

xe
βx
2

, x > 0
, g(x) =

{
lnβ, x = 0

ln(eβx − 1)− lnx, x > 0
,

Then we have
det(M(a, b, c, d)) > 0

⇐⇒ e2(2a+2b+2c+2d−2)λ
∏

(1 + e2λ(1−2a)) det(M(a, b, c, d)) > 0

⇐⇒ (d− c)(b− a)(edβ − eaβ)(ecβ − ebβ) > (d− a)(c− b)(edβ − ecβ)(ebβ − eaβ)

⇐⇒ uw(e(u+v+w)β − 1)(evβ − 1) > v(u+ v + w)(ewβ − 1)(euβ − 1)evβ

⇐⇒ h(v)h(u+ v + w) > h(u)h(w)

When x > 0, we define t = βx > 0.

Then
f ′(x) > 0

⇐⇒ β

2
xe

3βx
2 +

β

2
xe

βx
2 − e

3βx
2 + e

βx
2 > 0

⇐⇒ βxeβx + βx− 2eβx + 2 > 0

⇐⇒ tet + t− 2et + 2 > 0

⇐⇒
+∞∑
k=2

tk(k − 2)

k!
> 0

Then we know h(u+ v+w) > h(u+w) and h(v) > h(0) = β. Since limx→0+ h(x) = g(0), h(x)
is continuous when x ≥ 0. Because ∀x ≥ 0, h(x) > 0,

h(v)h(u+ v + w) > h(u)h(w)

⇐=h(u+ w)h(0) ≥ h(u)h(w)

⇐⇒ ln(h(u+ w)) + ln(h(0)) ≥ ln(h(u)) + ln(h(w))

⇐⇒ g(u+ w) + g(0) ≥ g(u) + g(w)

Since limx→0+ g(x) = g(0), g(x) is continuous when x ≥ 0. When x > 0, we define m = βx > 0.

Then
g′′(x) > 0

⇐⇒ 1

x2
− β2eβx

(eβx − 1)2
> 0

⇐⇒ (em − 1)2 > m2em

⇐⇒ em + e−m − 2 > m2

⇐⇒
+∞∑
k=2

2m2k

(2k)!
> 0

Then we know g(x) is convex on [0,+∞). So g(u+ w) + g(0) ≥ g(u) + g(w), which means that
the theorem is proved.
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Representing Any Report Structure v(θ̂) with v(0),v(p),v(1).

In the following theorems A.5 and A.6, we will first show that for any convex combination of two
points on the curve, the resulting point can be expressed as a convex combination of the points
v(0),v(p),v(1).

Lemma A.5. When ψλ(p) is a continuous function such that no four distinct points on the curve
C = {(s, ψ(s), sψ(s)) | s ∈ [0, 1]} are coplanar. Then, ∀0 < p1 < p2 < 1, 0 ≤ q ≤ 1, s.t.

qv(p1) + (1− q)v(p2),v(p),v(0),v(1) are coplanar. (1)

There is only one p ∈ [0, 1] satisfies eq. (1), and p ∈ [p1, p2]

Proof of theorem A.5. Let M(a, b, c, d) =

1 a ψλ(a) aψλ(a)
1 b ψλ(b) aψλ(b)
1 c ψλ(c) aψλ(c)
1 d ψλ(d) aψλ(d)

 .

Since no four distinct points in the curve C = {(s, ψ(s), sψ(s)) | s ∈ [0, 1]} are coplanar, we have
for all distinct a, b, c, d ∈ [0, 1], with 0 ≤ a < b < c < d ≤ 1, that the determinant of the matrix
M(a, b, c, d) is constant in sign:

det(M(a, b, c, d)) > 0 or det(M(a, b, c, d)) < 0.

This means that the determinant is either always positive or always negative.

Then we define h(x) = q det(M(0, p1, x, 1)) + (1 − q) det(M(0, p2, x, 1)). The signs of h(x) on
the intervals [0, p1] and [p2, 1] are opposite. According to the Intermediate Value Theorem Rudin
et al. (1964), because h(x) is continuous on [0, 1] and h(p1) × h(p2) ≤ 0, there exists p ∈ [p1, p2]
satisfies h(p) = 0. Then qv(p1)+(1−q)v(p2),v(p),v(0),v(1) are coplanar. If there exists another
p′ ̸= p satisfies eq. (1), then v(p),v(0),v(1),v(p′) are coplanar, which is impossible.

Lemma A.6. Let 0 < p1 < p2 < 1 and 0 ≤ q ≤ 1. Then there exist functions p, x, y, z : R3 → R
such that the following conditions hold:

qv(p1) + (1− q)v(p2) = x(p1, p2, q)v(p(p1, p2, q)) + y(p1, p2, q)v(0) + z(p1, p2, q)v(1),

with x(p1, p2, q) + y(p1, p2, q) + z(p1, p2, q) = 1, that is,

qv(p1) + (1− q)v(p2),v(p(p1, p2, q)),v(0),v(1) are coplanar.

And the following inequalities hold:

x(p1, p2, q) ≥ 0, y(p1, p2, q) ≥ 0, z(p1, p2, q) ≥ 0.

Proof of theorem A.6. We first prove that x(p1, p2, q) ≥ 0.

To show x(p1, p2, q) ≥ 0, we define p0(q) = p(p1, p2, q) and x0(q) = x(p1, p2, q). Consider the
function:

h(s, q) = q det(M(0, p1, s, 1)) + (1− q) det(M(0, p2, s, 1)).

Since h(p0(q), q) = 0 and h(s, q) is continuous on [0, 1]2, we have: for any q∗

lim
q→q∗

h(p0(q), q) = h( lim
q→q∗

p0(q), q
∗) = 0.

This implies limq→q∗ p0(q) = p0(q
∗),which means p0 is continuous.

Next, we can express x0(q) as:

x0(q) =

det

(
v(0)

qv(p1) + (1− q)v(p2)
v(1)

)

det

(
v(0)

v(p0(q))
v(1)

) .
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Since the determinant in the denominator is non-zero for distinct p1 and p2, x0(q) is continuous
on [0, 1]. Given that x0(0) = 1 and x0(1) = 1, if x0(q) < 0 for some q ∈ (0, 1), by the In-
termediate Value Theorem (Rudin et al., 1964), there exists t such that x0(t) = 0. This leads to
v(0),v(p1),v(p2),v(1) being coplanar, contradicting the condition.

Next, we will prove y(p1, p2, q) ≥ 0.

When q = 0, we have p(p1, p2, q) = p2, x(p1, p2, q) = 1, and y(p1, p2, q) = z(p1, p2, q) = 0.
When q = 1, we have p(p1, p2, q) = p1, x(p1, p2, q) = 1, and y(p1, p2, q) = z(p1, p2, q) = 0.

For 0 < q < 1, we consider the case that p1 = 0 in eq. (1), then p = p2.

So we can define p(0, p2, q) = p2, x(0, p2, q) = 1 − q, y(0, p2, q) = q, z(0, p2, q) = 0,
and we have ∀0 ≤ p1 < p2 < 1, 0 < q < 1, ∃p, x, y, z : R3 → R, s.t. qv(p1) +
(1 − q)v(p2) = x(p1, p2, q)v(p(p1, p2, q)) + y(p1, p2, q)v(0) + z(p1, p2, q)v(1), x(p1, p2, q) +
y(p1, p2, q) + z(p1, p2, q) = 1

Then we fix q and p2 and define:

p0(p1) = p(p1, p2, q), y0(p1) = y(p1, p2, q).

We then analyze the function:

h(s, p1) = q det(M(0, p1, s, 1)) + (1− q) det(M(0, p2, s, 1)).

Since h(p0(p1), p1) = 0 and h(s, p1) is continuous, we have:

lim
p1→p′1

h(p0(p1), p1) = h( lim
p1→p′1

p0(p1), p
′
1) = 0.

This implies limp1→p′1
p0(p1) = p0(p

′
1),which means p0 is continuous.

We can express y0(p1) as:

y0(p1) =

det

(
qv(p1) + (1− q)v(p2)

v(p0(p1))
v(1)

)

det

(
v(0)

v(p0(p1))
v(1)

) .

Thus, y0(p1) is continuous on [0, 1). Given that y0(0) = q > 0, if y0(p1) < 0 for some p1 ∈ (0, 1),
then by the Intermediate Value Theorem (Rudin et al., 1964), there exists t such that y0(t) = 0. This
leads to v(p),v(p1),v(p2),v(1) being coplanar, contradicting the condition.

Finally, we will prove z(p1, p2, q) ≥ 0.

When q = 0, we have p(p1, p2, q) = p2, x(p1, p2, q) = 1, and y(p1, p2, q) = z(p1, p2, q) = 0.
When q = 1, we have p(p1, p2, q) = p1, x(p1, p2, q) = 1, and y(p1, p2, q) = z(p1, p2, q) = 0.

For 0 < q < 1, we consider the case that p2 = 1 in eq. (1). Then p = p1.

So we can define p(p1, 1, q) = p2, x(p1, 1, q) = q, y(p1, 1, q) = 0, z(p1, 1, q) = 1 − q
,and we have ∀0 < p1 < p2 ≤ 1, 0 < q < 1, ∃p, x, y, z : R3 → R, s.t.qv(p1) +
(1 − q)v(p2) = x(p1, p2, q)v(p(p1, p2, q)) + y(p1, p2, q)v(0) + z(p1, p2, q)v(1), x(p1, p2, q) +
y(p1, p2, q) + z(p1, p2, q) = 1

Then we fix q and p1 and define:

p0(p2) = p(p1, p2, q), z0(p2) = z(p1, p2, q).

We analyze the function:

h(s, p2) = q det(M(0, p1, s, 1)) + (1− q) det(M(0, p2, s, 1)).

Since h(p0(p2), p2) = 0 and h(s, p2) is continuous, we have:

lim
p2→p′2

h(p0(p2), p2) = h( lim
p2→p′2

p0(p2), p
′
2) = 0.
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This implies limp2→p′2
p0(p2) = p0(p

′
2),which means p0 is continuous.

We can express z0(p2) as:

z0(p2) =

det

(
v(0)

v(p0(p2))
qv(p1) + (1− q)v(p2)

)

det

(
v(0)

v(p0(p2))
v(1)

) .

This shows that z0(p2) is continuous on [0, 1). Given that z0(0) = 1 − q > 0, if z0(p2) < 0 for
some p2 ∈ (0, 1), then by the Intermediate Value Theorem (Rudin et al., 1964), there exists t such
that z0(t) = 0. This leads to v(p),v(p1),v(p2),v(1) being coplanar, contradicting the condition.

Thus, we conclude that x(p1, p2, q) ≥ 0, y(p1, p2, q) ≥ 0, z(p1, p2, q) ≥ 0.

Finally, we can prove that rep(θ, ψλ) = θ̂, where θ ∈ Θ3ciid and θ̂ ∈ Θ̂ciidλ , defines a bijection
between the sets Θ3ciid and Θ̂ciidλ . We first verify the surjectivity of the mapping:

∀θ̂ ∈ Θ̂ciidλ , ∃θ ∈ Θ3ciid such that rep(θ, ψ) = θ̂,

⇐⇒ ∀θciid ∈ Θciid, ∃θ3ciid ∈ Θ3ciid such that rep(θ3ciid, ψ) = rep(θciid, ψ),

⇐⇒ ∀θciid ∈ Θciid, ∃θ3ciid ∈ Θ3ciid such that ∀i ∈ [n],∑
s∈Sθ

Pr
θciid

[Si = s]v( Pr
θciid

[ω = 1 | Si = s]) =
∑

s∈{0,pi,1}

Pr
θ3ciid

[Si = s]v( Pr
θ3ciid

[ω = 1 | Si = s]).

In order to establish surjectivity, we first show that every signal set can be reduced to a canonical
form, as captured in the following lemma.

Lemma A.7 (Canonical Form Transformation). Let

Sθ = {s(1), s(2), . . . , s(m)}

be a finite set of signals. Then there exists an iterative transformation that maps Sθ to the canonical
signal set {0, p, 1} with

Pr
θ
[ω = 1 | Si = 0] = 0 and Pr

θ
[ω = 1 | Si = 1] = 1.

Moreover, this transformation preserves the equivalence of the corresponding point, that is,
m∑
j=1

Pr[Si = s(j)]v
(
Pr[ω = 1 | Si = s(j)]

)
=

∑
s∈{0,p,1}

Pr[Si = s]v
(
s
)
,

Proof of theorem A.7. We prove the lemma by describing an iterative procedure that transforms Sθ
into the canonical form {0, p, 1}.

• Step 1 (Group Identical Posteriors):
For any two signals s(j) and s(k) in Sθ satisfying

Pr[ω = 1 | Si = s(j)] = Pr[ω = 1 | Si = s(k)],

Recall theorem A.1, we can group these signals by summing their marginal probabilities.
Thus, without loss of generality, we may assume that every signal in Sθ corresponds to a
unique posterior probability.

• Step 2 (Select and Replace a Pair of Intermediate Signals):
Choose two distinct signals s(j) and s(k) with posterior probabilities

0 < Pr[ω = 1 | Si = s(j)] < Pr[ω = 1 | Si = s(k)] < 1.
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Define
pj := Pr[ω = 1 | Si = s(j)] and pk := Pr[ω = 1 | Si = s(k)].

By applying Lemma A.6, there exists a unique intermediate value p∗ ∈ [pj , pk] and non-
negative coefficients x, y, z (satisfying x + y + z = Pr[Si = s(j)] + Pr[Si = s(k)] ) such
that

Pr[Si = s(j)]v(pj) + Pr[Si = s(k)]v(pk) = xv(p∗) + y v(0) + z v(1).

In this step, the pair {s(j), s(k)} is replaced by a new composite signal corresponding to the
intermediate value p∗, while the signals corresponding to 0 and 1 remain intact.

• Step 3 (Iterate Until Canonical Form Is Achieved):
Replace the pair {s(j), s(k)} in Sθ with the new set of signals {0, p∗, 1} (noting that the
signals corresponding to 0 and 1 may already exist in Sθ). Since each replacement reduces
the number of signals with posterior probabilities strictly between 0 and 1, and because Sθ
is finite, this iterative process terminates after finitely many steps. The final signal set will
therefore be in the canonical form

{0, p, 1},
where p is the unique intermediate posterior (if any) between 0 and 1.

This completes the proof.

theorem A.7 demonstrates that for every report structure θ̂ ∈ Θ̂ciidλ there exists an equivalent signal
structure structure θ ∈ Θ3ciid satisfying

rep(θ, ψλ) = θ̂.

Thus, the mapping is surjective.

Next, we verify the injectivity of the mapping:

∀θ, θ′ ∈ Θ3ciid, rep(θ, ψ) = rep(θ′, ψ) =⇒ θ = θ′.

Since Prθ[ω = 1 | Si = 0] = Prθ′ [ω = 1 | Si = 0] = 0 and Prθ[ω = 1 | Si = 1] = Prθ′ [ω = 1 |
Si = 1] = 1, we have

rep(θ, ψ) = rep(θ′, ψ)

⇐⇒
∑

si∈{0,p,1}

Pr
θ
[Si = si]v(Pr

θ
[ω = 1 | Si = si]) =

∑
si∈{0,p,1}

Pr
θ′
[Si = si]v(Pr

θ′
[ω = 1 | Si = si])

⇐⇒
∑

si∈{0,p,1}

Pr
θ
[Si = si]v(Pr

θ
[ω = 1 | Si = si])−

∑
si∈{0,p,1}

Pr
θ′
[Si = si]v(Pr

θ′
[ω = 1 | Si = si]) = 0

⇐⇒ (Pr
θ
[Si = 0]− Pr

θ′
[Si = 0])v(0) + (Pr

θ
[Si = 1]− Pr

θ′
[Si = 1])v(1)

+ Pr
θ
[Si = p]v(Pr

θ
[ω = 1 | Si = p])− Pr

θ′
[Si = p]v(Pr

θ′
[ω = 1 | Si = p]) = 0

⇐⇒
{
Prθ[Si = 0]− Prθ′ [Si = 0] = 0

Prθ[Si = 1]− Prθ′ [Si = 1] = 0

∧
({

v(Prθ′ [ω = 1 | Si = p]) = v(Prθ′ [ω = 1 | Si = p])

Prθ[Si = p]− Prθ′ [Si = p] = 0
∨
{
Prθ′ [Si = p] = 0

Prθ[Si = p] = 0

)
⇐⇒ θ = θ′

Together, these results confirm that θ̂ = rep(θ, ψλ) is both injective and surjective, thereby defining
a bijection between Θ3ciid and Θ̂ciidλ .

Thus we proved
rep(Θ3ciid, ψλ) = Θ̂ciidλ
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A.2 OPTIMAL ROBUST AGGREGATOR

We start to identify the optimal aggregator when experts exhibit bounded rationality. We prove that
the simple majority voting is the optimal robust aggregator under certain conditions. In particular,
for a given number of experts n, when the rationality level λ is below a certain threshold g(n), the
majority voting fmaj minimizes the regret. The threshold function g(n) (for n = 3 to 20) visualized
in fig. 4.

3 5 7 9 11 13 15 17 19
n

0

1

2

3
2.64

1.74
1.38

1.18 1.04 0.95 0.87 0.81 0.77

g(n)

Figure 4: Threshold g(n) vs. Group Size n (n = 3 to 20) The plot begins at n = 3 because
when n ≤ 2, the majority voting is always the optimal robust aggregator, independent of λ. For
n ∈ [3, 20], g(n) decreases with increasing n, with every even n satisfying g(n) = g(n− 1). These
properties indicate that as group size grows, the bounded rationality threshold becomes stricter,
representing a lower rationality level to preserve the optimality of the majority voting rule.

Proof Sketch of theorem 3.1: Optimal Robust Aggregator.

The proof consists of two main steps:

1. Pairwise Optimality of Majority Voting.
We aim to show fmaj is the optimal solution to the following optimization problem under
certain conditions:

fmaj ∈ argmin
f

max
θ̂∈Θ̂ciid

R(f, θ̂).

A direct approach to showing the worst-case regret optimality of the majority voting, fmaj ,
would involve maximizing over the entire space of possible report structures. To avoid
this global maximization, we will employ approaches that consider each signal structure
individually.
One such approach would be to prove the stronger condition that fmaj is universally op-
timal, meaning fmaj ∈ argminf R(f, θ̂) for all report structures θ̂ ∈ Θ̂ciid. While this
would immediately imply worst-case regret optimality, fmaj is not, in fact, universally
optimal.
Instead, we establish a weaker, yet sufficient, condition. We prove that, under certain
conditions, for any pair of symmetric signal structures θ and θ′ within the restricted set
Θ3ciid, fmaj minimizes the sum of expected regret:

fmaj ∈ argmin
f

(R(f, rep(θ, ψλ)) +R(f, rep(θ′, ψλ))) .

We then demonstrate how this pairwise optimality implies the desired worst-case regret
optimality of fmaj , effectively avoiding the need to maximize over the entire space of
signal structures.

2. Regret Minimization Condition and Threshold Derivation.
First, we expand the formula R(f, rep(θ, ψλ)) + R(f, rep(θ′, ψλ)) so that we can analyze
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each term of f(x) separately. Then we proved fmaj minimizes the sum of the expected
regret if and only if

Pr
θ̂

[
ω = 1

∣∣∣∣ X =

⌊
n− 1

2

⌋]
≤ 0.5,

where X is the number of experts reporting 1. This further simplifies the question. Finally,
we derive the threshold function g(n) given the above condition. We prove that when
λ ≤ g(n), the majority voting minimizes the sum of the expected regret under the pair of
signal structures {θ, θ′}.

Proof of theorem 3.1: Optimal Robust Aggregator.

Pairwise Optimality of Majority Voting.

Consider the following symmetric signal structures θ, θ′ ∈ Θ3ciid with n experts

Si = 0 Si = p Si = 1

θ
ω = 0 (1− µ)(1− p0) (1− µ)p0 0
ω = 1 0 µp1 µ(1− p1)

θ′
ω = 0 µ(1− p1) µp1 0
ω = 1 0 (1− µ)p0 (1− µ)(1− p0)

Let p = µp1
µp1+(1−µ)p0 . We define{

q0 = Pr[Xi = 1 | ω = 0] = (1− p0)ψλ(0) + p0ψλ(p),

q1 = Pr[Xi = 1 | ω = 1] = (1− p1)ψλ(1) + p1ψλ(p),

and we have the joint distribution of the two report structures

Xi = 0 Xi = 1

θ̂
ω = 0 (1− µ)(1− q0) (1− µ)q0
ω = 1 µ(1− q1) µq1

θ̂′
ω = 0 µq1 µ(1− q1)
ω = 1 (1− µ)q0 (1− µ)(1− q0)

Since the signal structures θ, θ′ are odd symmetric, we have

U(optθ̂, θ̂) = U(optθ̂′ , θ̂
′).

Thus, to find the best response to {θ, θ′}, minimizing the regret is equivalent to maximizing the
utility, i.e.,

argmin
f

max
θ̂∈{θ,θ′}

R(f, θ̂)

= argmin
f

max
θ̂∈{θ,θ′}

U(optθ, θ̂)− U(f, θ̂)

= argmax
f

min
θ̂∈{θ,θ′}

U(f, θ̂)

Then, we need to prove fmaj is the best response to {θ, θ′}, that is,

min
θ∈{θ,θ′}

U(fmaj , θ̂) = max
f

min
θ̂∈{θ,θ′}

U(f, θ̂).

Regret Minimization Condition and Threshold Derivation.
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We consider maxf (U(f, θ̂) + U(f, θ̂′)).

U(f, θ̂) + U(f, θ̂′) =

n∑
x=0

(
(2f(x)− 1)Pr

θ
[X = x, ω = 1] + (1− 2f(x)) Pr

θ
[X = x, ω = 0]

)

+

n∑
x=0

(
(2f(x)− 1)Pr

θ′
[X = x, ω = 1] + (1− 2f(x)) Pr

θ′
[X = x, ω = 0]

)

=1 + 2

n∑
x=0

(
n

x

)
f(x)

(
(µqx1 (1− q1)

n−x + (1− µ)qn−x0 (1− q0)
x

− (1− µ)qx0 (1− q0)
n−x − µqn−x1 (1− q1)

x)
)

Next, we will prove that when fmaj maximize the utility, majority voting is an optimal robust
aggregator. Specially, since θ and θ′ are odd symmetric, we have U(fmaj , θ̂) = U(fmaj , θ̂′). Thus
we can prove

Lemma A.8. If for any signal structure θ ∈ Θ3ciid, the majority voting fmaj satisfy

fmaj ∈ argmax
f

(U(f, θ̂) + U(f, θ̂′)).

Then the majority voting fmaj is a best response to Θciid, i.e.,

fmaj ∈ argmax
f

min
θ∈Θciid

U(f, θ̂).

Proof of theorem A.8.

min
θ∈{θ,θ′}

U(f, θ̂) ≤ U(f, θ̂) + U(f, θ′)

2

=⇒ max
f

min
θ∈{θ,θ′}

U(f, θ̂) ≤ max
f

(U(f, θ̂) + U(f, θ′))

2

=⇒ max
f

min
θ∈{θ,θ′}

U(f, θ̂) ≤ U(fmaj , θ̂) + U(fmaj , θ′)

2

=⇒ max
f

min
θ∈{θ,θ′}

U(f, θ̂) ≤ min
θ∈{θ,θ′}

U(fmaj , θ̂)

=⇒ max
f

min
θ∈{θ,θ′}

U(f, θ̂) = min
θ∈{θ,θ′}

U(fmaj , θ̂)

=⇒ U(optθ̂, θ̂)−max
f

min
θ∈{θ,θ′}

U(f, θ̂) = U(optθ̂, θ̂)− min
θ∈{θ,θ′}

U(fmaj , θ̂)

=⇒ max
f

min
θ∈{θ,θ′}

R(f, θ̂) = min
θ∈{θ,θ′}

R(fmaj , θ̂)

=⇒ fmaj ∈ argmin
f

max
θ∈{θ,θ′}

R(f, θ̂)
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Finally, we prove that when λ < g(n), the best response to Θciid is fmaj .

∀θ, max
θ∈Θciid

R(f, θ̂) ≥ max
θ∈{θ,θ′}

R(f, θ̂)

=⇒ ∀θ,min
f

max
θ∈Θciid

R(f, θ̂) ≥ min
f

max
θ∈{θ,θ′}

R(f, θ̂)

=⇒ ∀θ,min
f

max
θ∈Θciid

R(f, θ̂) ≥ R(fmaj , θ̂)

=⇒ min
f

max
θ∈Θciid

R(f, θ̂) ≤ max
θ∈Θciid

R(fmaj , θ̂)

=⇒ min
f

max
θ∈Θciid

R(f, θ̂) = max
θ∈Θciid

R(fmaj , θ̂)

=⇒ fmaj ∈ argmax
f

min
θ∈Θciid

U(f, θ̂)

Let f∗ ∈ argmaxf (U(f, θ̂) +U(f, θ̂′)); T (x) = µqx1 (1− q1)
n−x + (1− µ)qn−x0 (1− q0)

x − (1−
µ)qx0 (1− q0)

n−x − µqn−x1 (1− q1)
x; we have

f∗(x) =


0, T (x) < 0,

any value in [0, 1], T (x) = 0,

1, T (x) > 0.

Note that µqx1 (1− q1)
n−x + (1− µ)qn−x0 (1− q0)

x and (1− µ)qx0 (1− q0)
n−x + µqn−x1 (1− q1)

x

are odd symmetric with respect to the midpoint i = n
2 . Thus, we have

fmaj ∈ argmax
f

(U(f, θ̂) + U(f, θ̂′))

if and only if for all integer x < n
2 , the inequality

µqx1 (1− q1)
n−x + (1− µ)qn−x0 (1− q0)

x ≤ (1− µ)qx0 (1− q0)
n−x + µqn−x1 (1− q1)

x

holds.

To formalize this condition, we begin with the following lemma.

Lemma A.9. If q0 ≤ q1, then fmaj ∈ argmaxf (U(f, θ̂) + U(f, θ̂′)) iff the following inequality
holds:

µ(q1(1− q1))
⌊n−1

2 ⌋(1− 2q1) ≤ (1− µ)(q0(1− q0))
⌊n−1

2 ⌋(1− 2q0).

Proof of theorem A.9. To establish the equivalence between the condition in the lemma and the
statement fmaj ∈ argmaxf , we need to prove the equivalence of

For all integer i <
n

2
, µqx1 (1−q1)n−x+(1−µ)qn−x0 (1−q0)x ≤ (1−µ)qx0 (1−q0)n−x+µqn−x1 (1−q1)x

and
µ(q1(1− q1))

⌊n−1
2 ⌋(1− 2q1) ≤ (1− µ)(q0(1− q0))

⌊n−1
2 ⌋(1− 2q0).

Let I(n) =
{
1, n is odd
2, n is even

, then we have

µ(q1(1− q1))
⌊n−1

2 ⌋(1− 2q1) ≤ (1− µ)(q0(1− q0))
⌊n−1

2 ⌋(1− 2q0)

⇐⇒ µ(q1(1− q1))
⌊n−1

2 ⌋((1− q1)
I(n) − q

I(n)
1 ) ≤ (1− µ)(q0(1− q0))

⌊n−1
2 ⌋((1− q0)

I(n) − q
I(n)
0 )

⇐⇒ µq
⌊n−1

2 ⌋
1 (1− q1)

⌈n+1
2 ⌉ + (1− µ)q

⌈n+1
2 ⌉

0 (1− q0)
⌊n−1

2 ⌋

≤ (1− µ)q
⌊n−1

2 ⌋
0 (1− q0)

⌈n+1
2 ⌉ − µq

⌈n+1
2 ⌉

1 (1− q1)
⌊n−1

2 ⌋

⇐⇒

µq
n
2
1 (1− q1)

n
2 ( 1−q1q1

− 1−q1
q1

) ≤ (1− µ)q
n
2
0 (1− q0)

n
2 ( 1−q0q0

− q0
1−q0 ) n is even

µq
n
2
1 (1− q1)

n
2 (
√

1−q1
q1

−
√

1−q1
q1

) ≤ (1− µ)q
n
2
0 (1− q0)

n
2 (
√

1−q0
q0

−
√

q0
1−q0 ) n is odd
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When i < n
2 , 0 < q0 ≤ q1 ≤ 0.5, we define t0 = 1−q0

q0
, t1 = 1−q1

q1
, s = n

2 − i. We know
1 ≤ t1 ≤ t0. And

µqx1 (1− q1)
n−x + (1− µ)qn−x0 (1− q0)

x ≤ (1− µ)qx0 (1− q0)
n−x + µqn−x1 (1− q1)

x

⇐⇒ µq
n
2
1 (1− q1)

n
2 (ts1 − t−s1 ) ≤ (1− µ)q

n
2
0 (1− q0)

n
2 (ts0 − t−s0 ) (5)

When n is even, we know 0 < µq
n
2
1 (1− q1)

n
2 (t1 − t−1

1 ) ≤ (1− µ)q
n
2
0 (1− q0)

n
2 (t0 − t−1

0 ).

Since

ts1 − t−s1

t1 − t−1
1

=

s∑
k=1

t2k−s−1
1

=
1

2

s∑
k=1

(t2k−s−1
1 + ts+1−2k

1 )

≤1

2

s∑
k=1

(t2k−s−1
0 + ts+1−2k

0 )

=

s∑
k=1

t2k−s−1
0

=
ts0 − t−s0

t0 − t−1
0

eq. (5) holds.

When n is odd, we know 0 < µq
n
2
1 (1− q1)

n
2 (t

1
2
1 − t

− 1
2

1 ) ≤ (1− µ)q
n
2
0 (1− q0)

n
2 (t

1
2
0 − t

− 1
2

0 ). Since

ts1 − t−s1

t
1
2
1 − t

− 1
2

1

=

2s∑
k=1

t
k−s− 1

2
1

=
1

2

s∑
k=1

(t
k−s− 1

2
1 + t

−k+s+ 1
2

1 )

≤1

2

s∑
k=1

(t
k−s− 1

2
0 + t

−k+s+ 1
2

0 )

=

s∑
k=1

t
k−s− 1

2
0

=
ts0 − t−s0

t
1
2
0 − t

− 1
2

0

eq. (5) holds.

When 0.5 ≤ q0 ≤ q1 ≤ 1, we use (µ, q0, q1) to replace (1 − µ, 1 − q1, 1 − q0). The equation is
completely the same.

When q0 ≤ 0.5 ≤ q1, we have

∀i < n

2
,

{
µqx1 (1− q1)

n−x ≤ µqn−x1 (1− q1)
x

(1− µ)qn−x0 (1− q0)
x ≤ (1− µ)qx0 (1− q0)

n−x

=⇒ ∀i < n

2
, µqx1 (1− q1)

n−x + (1− µ)qn−x0 (1− q0)
x ≤ (1− µ)qx0 (1− q0)

n−x + µqn−x1 (1− q1)
x
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And let i = ⌊n−1
2 ⌋, we have

µqx1 (1− q1)
n−x + (1− µ)qn−x0 (1− q0)

x ≤ (1− µ)qx0 (1− q0)
n−x + µqn−x1 (1− q1)

x

=⇒ µq
⌊n−1

2 ⌋
1 (1− q1)

⌈n+1
2 ⌉ + (1− µ)q

⌈n+1
2 ⌉

0 (1− q0)
⌊n−1

2 ⌋

≤ (1− µ)q
⌊n−1

2 ⌋
0 (1− q0)

⌈n+1
2 ⌉ − µq

⌈n+1
2 ⌉

1 (1− q1)
⌊n−1

2 ⌋

Thus, the condition always holds.

The above lemma characterizes the condition under which the majority voting is the optimal ro-
bust aggregator in terms of the quantities q0 and q1. In order to connect these conditions with the
parameter λ, we now provide a reduction result.

Lemma A.10. Given n, λ, we have

∀µ, p0, p1 ∈ [0, 1], µ(q1(1− q1))
⌊n−1

2 ⌋(1− 2q1) ≤ (1− µ)(q0(1− q0))
⌊n−1

2 ⌋(1− 2q0)

⇐⇒ ∀q0, q1 such that ψλ(0) < q0 ≤ q1 ≤ 0.5, the following inequality holds:

(q1(1− q1))
⌊n−1

2 ⌋(1− 2q1)

ψλ(1)− q1
≤ (q0(1− q0))

⌊n−1
2 ⌋(1− 2q0)

ψλ(1)− q0
× 2λ+ ln(1− q0)− ln(q0)

2λ− ln(1− q0) + ln(q0)

Proof of theorem A.10. Since q0 ≤ ψλ(p) ≤ q1, it follows that q0 > q1 is impossible.

Consider the case when q0 < 0.5 < q1. We have the following inequalities:

{
µ(q1(1− q1))

⌊n−1
2 ⌋(1− 2q1) ≤ 0 ≤ (1− µ)(q0(1− q0))

⌊n−1
2 ⌋(1− 2q0),

(q1(1−q1))⌊
n−1
2

⌋(1−2q1)
ψλ(1)−q1 ≤ 0 ≤ (q0(1−q0))⌊

n−1
2

⌋(1−2q0)
ψλ(1)−q0 × 2λ+ln(1−q0)−ln(q0)

2λ−ln(1−q0)+ln(q0)
.

Next, we consider the case when q0 ≤ q1 ≤ 0.5 or 0.5 ≤ q0 ≤ q1. Define the following:

µ′ = 1− µ, p′0 = p1, p′1 = p0, p′ =
µ′p′1

µ′p′1 + (1− µ′)p′0
,

q′0 = (1− p′0)ψλ(0) + p′0ψλ(p
′), q′1 = (1− p′1)ψλ(1) + p′1ψλ(p

′).

We observe that q′0 = 1− q1 and q′1 = 1− q0. Thus, we have

∀µ, p0, p1 ∈ [0, 1], if 0.5 ≤ q0 ≤ q1 ≤ ψλ(1),

µ(q1(1− q1))
⌊n−1

2 ⌋(1− 2q1) ≤ (1− µ)(q0(1− q0))
⌊n−1

2 ⌋(1− 2q0)

⇐⇒ ∀q0, q1, µ, p0, p1 ∈ [0, 1], if 0.5 ≤ q0 ≤ q1 ≤ ψλ(1),

µ′(q′1(1− q′1))
⌊n−1

2 ⌋(1− 2q′1) ≤ (1− µ′)(q′0(1− q′0))
⌊n−1

2 ⌋(1− 2q′0)

⇐⇒ ∀µ, p0, p1 ∈ [0, 1], if ψλ(0) ≤ q0 ≤ q1 ≤ 0.5,

µ(q1(1− q1))
⌊n−1

2 ⌋(1− 2q1) ≤ (1− µ)(q0(1− q0))
⌊n−1

2 ⌋(1− 2q0).

Thus, we conclude that

∀µ, p0, p1 ∈ [0, 1], µ(q1(1− q1))
⌊n−1

2 ⌋(1− 2q1) ≤ (1− µ)(q0(1− q0))
⌊n−1

2 ⌋(1− 2q0)

⇐⇒ ∀µ, p0, p1 ∈ [0, 1], if ψλ(0) ≤ q0 ≤ q1 ≤ 0.5,

we have µ(q1(1− q1))
⌊n−1

2 ⌋(1− 2q1) ≤ (1− µ)(q0(1− q0))
⌊n−1

2 ⌋(1− 2q0).

When q0 = ψλ(0), we have µ = 0, p1 = 0, or p0 = 0.

If µ = 0, then

µ(q1(1− q1))
⌊n−1

2 ⌋(1− 2q1) = 0 ≤ (1− µ)(q0(1− q0))
⌊n−1

2 ⌋(1− 2q0).
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If p1 = 0, then q1 = ψλ(1). Thus,

µ(q1(1− q1))
⌊n−1

2 ⌋(1− 2q1) ≤ 0 ≤ (1− µ)(q0(1− q0))
⌊n−1

2 ⌋(1− 2q0).

If p0 = 0, then p = 1 and q1 = ψλ(1). Thus,

µ(q1(1− q1))
⌊n−1

2 ⌋(1− 2q1) ≤ 0 ≤ (1− µ)(q0(1− q0))
⌊n−1

2 ⌋(1− 2q0).

Therefore, when q0 = ψλ(0), we have

µ(q1(1− q1))
⌊n−1

2 ⌋(1− 2q1) ≤ (1− µ)(q0(1− q0))
⌊n−1

2 ⌋(1− 2q0).

Combining all cases, we conclude that

∀µ, p0, p1 ∈ [0, 1], µ(q1(1− q1))
⌊n−1

2 ⌋(1− 2q1) ≤ (1− µ)(q0(1− q0))
⌊n−1

2 ⌋(1− 2q0)

⇐⇒ ∀µ, p0, p1 ∈ [0, 1], if ψλ(0) < q0 ≤ q1 ≤ 0.5,

we have µ(q1(1− q1))
⌊n−1

2 ⌋(1− 2q1) ≤ (1− µ)(q0(1− q0))
⌊n−1

2 ⌋(1− 2q0).

Since ψλ is strictly monotonically increasing on [0, 1], for ψλ(0) < q0 ≤ q1 ≤ 0.5, we know
p ∈ [ψ−1

λ (q0), ψ
−1
λ (q1)], where ψ−1

λ is the inverse function of ψλ. For all ψλ(0) < q0 ≤ q1 ≤ 0.5

and p ∈ [ψ−1
λ (q0), ψ

−1
λ (q1)], let

p1 =
ψλ(1)− q1

ψλ(1)− ψλ(p)
, p0 =

q0 − ψλ(0)

ψλ(p)− ψλ(0)
, µ =

p0p

p0p+ p1(1− p)
.

Then µ, p0, p1 ∈ [0, 1] and 
p = µp1

µp1+(1−µ)p0 ,

q0 = (1− p0)ψλ(0),+p0ψλ(p),

q1 = (1− p1)ψλ(1) + p1ψλ(p).

Therefore, we can conclude that:

∀µ, p0, p1 ∈ [0, 1], µ(q1(1− q1))
⌊n−1

2 ⌋(1− 2q1) ≤ (1− µ)(q0(1− q0))
⌊n−1

2 ⌋(1− 2q0)

⇐⇒ ∀q0, q1 such that ψλ(0) < q0 ≤ q1 ≤ 0.5, the following inequality holds

∀p ∈ [ψ−1
λ (q0), ψ

−1
λ (q1)], µ(q1(1− q1))

⌊n−1
2 ⌋(1− 2q1) ≤ (1− µ)(q0(1− q0))

⌊n−1
2 ⌋(1− 2q0).

Finally, we define h(x) = e2λx−e−2λx

x . Since q0 = (1 − p0)ψλ(0) + p0ψλ(p) and q1 = (1 −
p1)ψλ(1) + p1ψλ(p), we have

p0 =
q0 − ψλ(0)

ψλ(p)− ψλ(0)
, p1 =

ψλ(1)− q1
ψλ(1)− ψλ(p)

.

Then,
p

1− p

=
µp1

(1− µ)p0

=
µ(ψλ(1)− q1)(ψλ(p)− ψλ(0))

(1− µ)(q0 − ψλ(0))(ψλ(1)− ψλ(p))
.

So,
µ

1− µ

=
q0 − ψλ(0)

ψλ(1)− q1
× e2λ(1−p) − e−2λ(1−p)

1− p
× p

e2λp − e−2λp

=
q0 − ψλ(0)

ψλ(1)− q1
× h(1− p)

h(p)
.
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Since h(x) =
∑+∞
k=0

2(2λ)2k+1x2k

(2k+1)! , h is strictly monotonically increasing on [0,+∞). Because ψλ
is strictly monotonically increasing on [0, 1] and q0 ≤ ψλ(p),

µ

1− µ

=
q0 − ψλ(0)

ψλ(1)− q1
× h(1− p)

h(p)

≤q0 − ψλ(0)

ψλ(1)− q1
×
h(1− ψ−1

λ (q0))

h(ψ−1
λ (q0))

=
(ψλ(1)− q0)(2λ− ln(1− q0) + ln q0)

(ψλ(1)− q1)(2λ+ ln(1− q0)− ln q0)
.

Especially, when p = ψ−1
λ (q0),

µ

1− µ
=

(ψλ(1)− q0)(2λ− ln(1− q0) + ln q0)

(ψλ(1)− q1)(2λ+ ln(1− q0)− ln q0)
.

So,

∀µ, p0, p1 ∈ [0, 1], µ(q1(1− q1))
⌊n−1

2 ⌋(1− 2q1) ≤ (1− µ)(q0(1− q0))
⌊n−1

2 ⌋(1− 2q0)

⇐⇒ ∀q0, q1 such that ψλ(0) < q0 ≤ q1 ≤ 0.5, the following inequality holds

∀p ∈ [ψ−1
λ (q0), ψ

−1
λ (q1)], µ(q1(1− q1))

⌊n−1
2 ⌋(1− 2q1) ≤ (1− µ)(q0(1− q0))

⌊n−1
2 ⌋(1− 2q0)

⇐⇒ ∀q0, q1 such that ψλ(0) < q0 ≤ q1 ≤ 0.5, the following inequality holds

(q1(1− q1))
⌊n−1

2 ⌋(1− 2q1)

ψλ(1)− q1
≤ (q0(1− q0))

⌊n−1
2 ⌋(1− 2q0)

ψλ(1)− q0
× 2λ+ ln(1− q0)− ln(q0)

2λ− ln(1− q0) + ln(q0)
.

Lemma A.10 is crucial because it reformulates the condition from Lemma A.9 in terms of the pa-
rameter λ and the transformed quantities ψλ(0) and ψλ(1). This reformulation paves the way for
defining a threshold function g(n) that governs the optimality of the majority voting.

Before generalizing to the case n > 2, we now examine the special scenario when n ≤ 2.

Lemma A.11. Given n ≤ 2 and λ, if q0, q1 satisfy ψλ(0) < q0 ≤ q1 ≤ 1
2 , the following inequality

holds:

(q1(1− q1))
⌊n−1

2 ⌋(1− 2q1)

ψλ(1)− q1
≤ (q0(1− q0))

⌊n−1
2 ⌋(1− 2q0)

ψλ(1)− q0
× 2λ+ ln(1− q0)− ln(q0)

2λ− ln(1− q0) + ln(q0)

Proof of theorem A.11. Recall h(x) =
∑+∞
k=0

2(2λ)2k+1x2k

(2k+1)! in the proof of theorem A.10, h is strictly
monotonically increasing on [0,+∞). Because ψλ is strictly monotonically increasing on [0, 1] and
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q0 ≤ ψλ(p),

µ

1− µ

=
q0 − ψλ(0)

ψλ(1)− q1
× h(1− p)

h(p)

≤q0 − ψλ(0)

ψλ(1)− q1
×
h(1− ψ−1

λ (q0))

h(ψ−1
λ (q0))

=
(ψλ(1)− q0)(2λ− ln(1− q0) + ln q0)

(ψλ(1)− q1)(2λ+ ln(1− q0)− ln q0)

≤ψλ(1)− q0
ψλ(1)− q1

≤0.5− q0
0.5− q1

=
1− 2q0
1− 2q1

Thus we proved µ(1− 2q1) ≤ (1− µ)(1− 2q0).

Lemma A.11 confirms that when there are at most two experts, the transformed inequality always
holds. This simple case is important for understanding the behavior of the system in small dimen-
sions. With these insights, we now turn to the more general case.

Lemma A.12. Given n > 2 and λ, let

g(n) = sup

{
λ

∣∣∣∣ ∀q0, q1 such that ψλ(0) ≤ q0 ≤ q1 ≤ 0.5, the following inequality holds:

(q1(1− q1))
⌊n−1

2 ⌋(1− 2q1)

ψλ(1)− q1
≤ (q0(1− q0))

⌊n−1
2 ⌋(1− 2q0)

ψλ(1)− q0
× 2λ+ ln(1− q0)− ln(q0)

2λ− ln(1− q0) + ln(q0)

}
Then, when λ ≤ g(n), if q0, q1 satisfy ψλ(0) < q0 ≤ q1 ≤ 1

2 , the following inequality holds:

(q1(1− q1))
⌊n−1

2 ⌋(1− 2q1)

ψλ(1)− q1
≤ (q0(1− q0))

⌊n−1
2 ⌋(1− 2q0)

ψλ(1)− q0
× 2λ+ ln(1− q0)− ln(q0)

2λ− ln(1− q0) + ln(q0)

Proof of theorem A.12. Note that the term ψλ(1)−q1
ψλ(1)−q0 · 2λ+ln(1−q0)−ln(q0)

2λ−ln(1−q0)+ln(q0)
is strictly monotonically

decreasing in λ. Therefore, for any λ0 < λ1 < g (n), if the inequality holds for λ = λ1 with
parameters (n, µ, q0, q1), it will also hold for λ = λ0 with the same parameters.

Lemma A.12 introduces the threshold function g(n) for the general case when n > 2. This function
serves as a critical cutoff: as long as λ ≤ g(n), the inequality (and hence the optimality conditions)
established in the previous lemmas will hold.

Collecting the results from Lemmas A.9, A.10, A.11, A.12 and A.8, we conclude that when λ <
g(n) the majority voting fmaj is indeed optimal. This completes the proof.

Numerical Results. To demonstrate the relationship between regret and rationality level λ, we
conducted numerical experiments and calculated the regret of majority voting and optimal robust
aggregator when the number of experts n = 1, 3, 5 and λ is in [0, 5], as shown in Figure 5. Regret is
the maximum regret over all report structures induced by all c.i.i.d. signal structures. The optimal
robust aggregator is computed using an online learning algorithm (Guo et al., 2023).
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Figure 5: Regret Comparison: Majority Voting vs. Optimal Robust Aggregator (Varying Ra-
tionality and Group Size). These plots illustrate the relationship between the rationality level λ
(on the x-axis) and the regret (on the y-axis) for three different group sizes: n = 1, 3, and 5. Regret
is the maximum regret over all report structures induced by all c.i.i.d. signal structures. The solid
curves represent the regret incurred by the majority voting, fmaj , and the optimal robust aggregator,
optΘ̂ciid . The dotted line indicates the threshold function g(n). When the performance of majority
voting matches that of the optimal robust aggregator (i.e., their regrets are equal), majority voting
is optimal. With a single expert, any aggregation rule that follows that expert’s decision, including
majority voting, is trivially optimal. As λ increases, reflecting increased rationality, the regret de-
creases. When n ≥ 3 and λ ≤ g(n), majority voting remains optimal. However, the threshold g(n)
is not tight; majority voting may still be optimal even when λ exceeds g(n). Nevertheless, for n = 5
and sufficiently large λ, majority voting is no longer optimal. Furthermore, as λ increases, the re-
gret of both majority voting and the optimal robust aggregator initially decreases and then increases.
This suggests that a moderate degree of bounded rationality can, in fact, improve aggregation per-
formance.

A.3 BOUNDED RATIONALITY ADVANTAGE

This subsection explores the impact of varying levels of rationality among experts on the aggregation
outcomes. Specifically, we examine whether bounded rationality can sometimes lead to superior
results compared to full rationality.

Proof Sketch of theorem 3.1: Bounded Rationality Advantage.

The proof consists of three main steps:

1. Single Expert Case (n = 1).
In the case of a single expert, the optimal aggregation rule is to follow the expert’s decision
regardless of rationality level λ. Hence, the overall utility of the aggregator is the same as
the expected utility of the expert. Since a single expert attains the highest expected payoff
when behaving in a fully rational manner, it follows that for any signal structure θ ∈ Θciid,
the maximal achievable utility is obtained under full rationality λ→ ∞.

2. Two-Expert Case (n = 2).
When n = 2, we use the example mentioned in the introduction as the specific signal
structure θ∗. Under full rationality (λ → ∞), experts always report the same value (here,
Xi = 0) and the optimal aggregator yields a utility of 0.5. In contrast, when experts exhibit
bounded rationality (with, say, λ = 2.5), their reporting behaviors differ, and we obtain

U
(

optrep(θ∗,ψλ=2.5)
, rep

(
θ∗, ψλ=2.5

))
≈ 0.507674 > 0.5 = U

(
optrep(θ∗,ψλ→∞), rep

(
θ∗, ψλ→∞

))
.

This establishes that for n = 2 bounded rationality can lead to improved outcomes.
3. Extension to n > 2 Experts.

Finally, we extend the argument to larger number of experts under θ∗. Still, under full ra-
tionality (λ→ ∞), experts always report the same value and the optimal aggregator yields
a utility of 0.5. For odd n, we prove that the majority voting yields a utility strictly greater
than 0.5 when experts exhibit bounded rationality. For even n, we show that the expected
utility of majority voting remains the same as in the odd case (n − 1). Combining these
two parts, we conclude that when n ≥ 2, bounded rationality leads to superior aggregation
performance compared to full rationality.
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Proof of theorem 3.1: Bounded Rationality Advantage.

Single Expert Case (n = 1).

We begin by handling the n = 1 case.

Lemma A.13. For n = 1, for any signal structure θ ∈ Θciid and any rationality level λ, it holds
that

max
f

U (f, rep (θ, ψλ)) ≤ U
(
fmaj , rep (θ, ψλ→∞)

)
.

Proof of theorem A.13. For n = 1 the aggregator f depends solely on the report Xi of the single
expert. For any signal structure θ, we have

U (f, rep (θ, ψλ)) = Erep(θ,ψλ) u(f(Xi), ω)

=
∑
si∈Sθ

(
2Pr
θ
[f(Xi) = 1 | Si = si]− 1

)(
2Pr
θ
[ω = 1 | Si = si]− 1

)
Pr
θ
[Si = si]

≤
∑
si∈Sθ

∣∣∣∣2Prθ [ω = 1 | Si = si]− 1

∣∣∣∣Prθ [Si = si].

Recall that the response function of a rational expert is

ψλ→∞(p) =


1, p > 1

2 ,

0.5, p = 1
2 ,

0, p < 1
2 ,

and the majority voting is given by
fmaj(x) = x.

Thus, the utility of fmaj under rational is

U
(
fmaj , rep (θ, ψλ→∞)

)
=
∑
si∈Sθ

(
2ψλ→∞

(
Pr
θ
[ω = 1 | Si = si]

)
− 1

)(
2Pr
θ
[ω = 1 | Si = si]− 1

)
Pr
θ
[Si = si]

=
∑
si∈Sθ

∣∣∣∣2Prθ [ω = 1 | Si = si]− 1

∣∣∣∣Prθ [Si = si].

This immediately yields the desired inequality.

Two-Expert Case (n = 2).

Next, we consider the case n = 2. Define the signal structure θ∗ with the following joint distribution:

Si = 0 Si = 1

θ∗
ω = 0 3

8
3
8

ω = 1 0 1
4

so that
Pr[ω = 1 | Si = 0] = 0, Pr[ω = 1 | Si = 1] =

2

5
.

Under absolute rationality (λ → ∞), the experts always report Xi = 0 and the optimal aggregator
(which, in this example, is the majority voting) yields

U
(
opt∞, rep(θ∗, ψλ→∞)

)
= 0.5.

When experts are bounded rational with λ∗ = 5, the report distributions differ. In the case n = 2,
letting

q0 = Pr[Xi = 1 | ω = 0] =
1

2 + 2e5
+

1

2 + 2e
, q1 = Pr[Xi = 1 | ω = 1] =

1

1 + e
,
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and choosing the aggregator

optλ∗(x) =

{
0, x ≤ 1,

1, x = 2,

one obtains

U
(

optλ∗ , rep(θ∗, ψλ=2.5)
)
≈ 0.507674 > U

(
opt∞, rep(θ∗, ψλ→∞)

)
.

This shows that for n = 2,

max
f

U (f, rep (θ∗, ψλ=2.5)) > max
f

U (f, rep (θ∗, ψλ→∞)) .

Extension to n > 2 Experts.

Finally, we consider the case when n > 2. When n is odd, the following lemma holds

Lemma A.14. When n is odd, we have

U
(
fmaj , rep(θ∗, ψλ=λ∗)

)
> 0.5

Proof.

U
(
fmaj , rep(θ∗, ψλ=λ∗)

)
=

n∑
x=0

(
2fmaj(x)− 1

)
(Pr[ω = 1, X = x]− Pr[ω = 0, X = x])

=

⌊n−1
2 ⌋∑

x=0

(Pr[ω = 0] (Pr[X = x | ω = 0]− Pr[X = n− x | ω = 0])

− Pr[ω = 1] (Pr[X = x | ω = 1]− Pr[X = n− x | ω = 1]))

=

⌊n−1
2 ⌋∑

x=0

(
n

x

)(
0.75

(
qx0 (1− q0)

n−x − qn−x0 (1− q0)
x
)

− 0.25
(
qx1 (1− q1)

n−x − qn−x1 (1− q1)
x
))

= 0.75

⌊n−1
2 ⌋∑

x=0

(
n

x

)
qx0 (1− q0)

n−x −
⌊n−1

2 ⌋∑
x=0

(
n

x

)
qn−x0 (1− q0)

x


− 0.25

⌊n−1
2 ⌋∑

x=0

(
n

x

)
qx1 (1− q1)

n−x −
⌊n−1

2 ⌋∑
x=0

(
n

x

)
qn−x1 (1− q1)

x


= 0.5 + 0.25

⌈n−1
2 ⌉∑

x=0

(
n

x

)
qn−x1 (1− q1)

x +

⌊n−1
2 ⌋∑

x=0

(
n

x

)
qn−x1 (1− q1)

x


− 0.75

⌈n−1
2 ⌉∑

x=0

(
n

x

)
qn−x0 (1− q0)

x +

⌊n−1
2 ⌋∑

x=0

(
n

x

)
qn−x0 (1− q0)

x

 .

When n is odd, we have
⌈
n−1
2

⌉
=
⌊
n
2

⌋
= n−1

2 , and the expression becomes:
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U
(
fmaj , rep(θ∗, ψλ=λ∗)

)
= 0.5 +

n−1
2∑

x=0

(
n

x

)(
0.5qn−x1 (1− q1)

x − 1.5qn−x0 (1− q0)
x
)

= 0.5 +

n−1
2∑

x=0

(
n

x

)
(0.5q21(1− q1)

(
qn−2x−1
1 (1− q1)

x−1
)

− 1.5q20(1− q0)
(
qn−2x−1
0 (1− q0)

x−1
)
)

≥ 0.5 +

n−1
2∑

x=0

(
n

x

)(
0.5q21(1− q1)− 1.5q20(1− q0)

)
qn−x−1
0 (1− q0)

x−1

> 0.5. (since 0.5q21(1− q1)− 1.5q20(1− q0) > 0)

And when n is even, the expected utility of the majority voting is equal to the case when there are
n− 1 experts:

Lemma A.15. Let n be even, and let θ̂n−1 ∈ Θ̂ciid denote the report structure with n − 1 experts,
and θ̂n ∈ Θ̂ciid denote the report structure with n experts. If the joint distribution of θ̂n−1 and θ̂n
for a certain expert is identical, then the utility of the majority voting remains the same. Formally,
we have:

∀xi, w ∈ {0, 1}, Pr
θ̂n−1

[Xi = xi, ω = w] = Pr
θ̂n

[Xi = xi, ω = w]

=⇒ U(fmaj , θ̂n−1) = U(fmaj , θ̂n)

Since n − 1 is odd, and theorem A.14 have already proven that the utility is greater than 0.5 when
the number of experts is odd, it follows that the utility is also greater than 0.5 when n is even.

Proof of theorem A.15. Let

{
µ = Prθ̂n [ω = 1], q0 = Prθ̂n [Xi = 1 | ω = 0],

q1 = Prθ̂n [Xi = 1 | ω = 1].
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And we have

U(fmaj , θ̂n)

=

n∑
x=0

(
2fmaj(x)− 1

)(
Pr
θ̂n

[ω = 1, X = x]− Pr
θ̂n

[ω = 0, X = x]

)

=

⌊n−1
2 ⌋∑

x=0

(
Pr
θ̂n

[ω = 0]

(
Pr
θ̂n

[X = x | ω = 0]− Pr
θ̂n

[X = n− x | ω = 0]

)
− Pr

θ̂n

[ω = 1]

(
Pr
θ̂n

[X = x | ω = 1]− Pr
θ̂n

[X = n− x | ω = 1]

))

=1− 2µ+ µ

2

n
2 −1∑
x=0

(
n

x

)
qn−x1 (1− q1)

x +

(
n
n
2

)
q

n
2
1 (1− q1)

n
2


− (1− µ)

2

n
2 −1∑
x=0

(
n

x

)
qn−x0 (1− q0)

x +

(
n
n
2

)
q

n
2
0 (1− q0)

n
2


=1− 2µ+ µ

2qn1 + 2

n
2 −1∑
x=1

((
n− 1

x

)
+

(
n− 1

x− 1

))
qn−x1 (1− q1)

x + 2

(
n− 1
n
2 − 1

)
q

n
2
1 (1− q1)

n
2


− (1− µ)

2qn0 + 2

n
2 −1∑
x=1

((
n− 1

x

)
+

(
n− 1

x− 1

))
qn−x0 (1− q0)

x + 2

(
n− 1
n
2 − 1

)
q

n
2
0 (1− q0)

n
2


=1− 2µ+ µ

2

n
2 −1∑
x=0

(
n− 1

x

)
qn−x1 (1− q1)

x + 2

n
2∑

x=1

(
n− 1

x− 1

)
qn−x1 (1− q1)

x


− (1− µ)

2

n
2 −1∑
x=0

(
n− 1

x

)
qn−x0 (1− q0)

x + 2

n
2∑

x=1

(
n− 1

x− 1

)
qn−x0 (1− q0)

x


=1− 2µ+

2

n
2 −1∑
x=0

(
n− 1

x

)(
µqn−x−1

1 (1− q1)
x − (1− µ)qn−x−1

0 (1− q0)
x
)

=

⌊n−2
2 ⌋∑

x=0

(
Pr
θ̂n−1

[ω = 0]

(
Pr
θ̂n−1

[X = x | ω = 0]− Pr
θ̂n−1

[X = n− 1− x | ω = 0]

)

− Pr
θ̂n−1

[ω = 1]

(
Pr
θ̂n−1

[X = x | ω = 1]− Pr
θ̂n−1

[X = n− 1− x | ω = 1]

))
=U(fmaj , θ̂n−1)

Thus, we have shown that when n > 2,

U(fmaj , rep(θ∗, ψλ=λ∗)) > max
f

U(f, rep(θ∗, ψλ→∞)).

Numerical Results. To further substantiate our theoretical findings, we performed numerical sim-
ulations to assess the performance of two aggregation methods on report structure rep(θ∗, ψλ): the
majority voting (fmaj) and the omniscient aggregator (optrep(θ∗,ψλ)

). These simulations explore
how their utility varies with the rationality level λ and the number of experts n. The results are
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Figure 6: Utility Comparison: Majority Voting vs. Omniscient Aggregator (Varying Ratio-
nality and Group Size) The utility comparison is performed under the specific signal structure θ∗,
illustrated in the introduction. Under full rationality (λ → ∞), the maximum achievable utility is
0.5. For n = 1, the omniscient aggregator maintains a constant utility of 0.5, while the majority
voting converges to 0.5 as λ → ∞. For n = 2, the omniscient aggregator achieves a utility greater
than 0.5 for certain values of λ. Majority voting yields the same utility for n = 1 and n = 2. How-
ever, this omniscient aggregator requires knowledge of the signal structure, whereas the majority
voting does not. For n = 3, the benefits of bounded rationality become more apparent. The majority
voting, which requires no knowledge of the signal structure, can exceed a utility of 0.5, reaching its
peak performance at intermediate values of λ.

summarized in fig. 6. These numerical results support our theoretical conclusions. In particular,
under the specific signal structure θ∗ and when n ≥ 2, they demonstrate that bounded rationality
can enhance the decision-making performance, enabling the aggregators to surpass the maximum
utility of 0.5 attainable under full rationality.

B DETAILED STUDY SETUP FOR SECTION 4

B.1 LICENSES AND TERMS OF USE

MathQA Dataset The MathQA dataset (Amini et al., 2019) is publicly available under the Apache
License 2.0. It can be accessed at https://huggingface.co/datasets/allenai/
math_qa.

GPT-4o-mini Model The GPT-4o-mini-2024-07-18 model used in this study is provided by Ope-
nAI. Its usage is governed by OpenAI’s Terms of Use and Service Terms, available at https:
//openai.com/policies/terms-of-use and https://openai.com/policies/
service-terms/, respectively.

B.2 BAYESIAN DECISION-MAKING STUDY

Study Design The Bayesian Decision-Making Study is framed as follows: There are two boxes,
the left box (ω = 1) and the right box (ω = 0), each containing red and blue balls in specific
proportions. In the right box (ω = 0), the proportion of red balls is Pr[Si = r | ω = 0], and the
proportion of blue balls is Pr[Si = b | ω = 0]. Similarly, in the left box (ω = 1), the corresponding
proportions are Pr[Si = r | ω = 1] and Pr[Si = b | ω = 1]. A box is selected randomly with a prior
probability µ = Pr[ω = 1] of choosing the left box. A ball is then drawn from the chosen box, and
its observed color, Si ∈ {r, b}, represents the signal, where Si = r denotes a red ball and Si = b a
blue ball. The task is to infer which box was selected based on the observed signal Si, the provided
prior Pr[ω = 1] and the conditional probabilities Pr[Si | ω].
Because the number of scenarios we can query is finite, the probabilities are discretized as follows:
the prior probability Pr[ω = 1], the probability of observing a red ball given the left box Pr[Si = r |
ω = 1], and the probability of observing a red ball given the right box Pr[Si = r | ω = 0] are each
expressed as fractions with N = 5 as the denominator. Specifically, these probabilities take values
from the set {0/N, 1/N, 2/N, . . . , N/N}. This discretization creates a set of decision-making tasks
that span a range of prior and conditional probabilities. After removing the illegal and impossible
cases, we have a total of 400 possible discretized scenarios.
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The study utilizes the gpt-4o-mini model as the expert decision-maker. The model is queried under
three distinct temperature settings {0, 0.5, 1}, each representing different levels of rationality. A
Chain of Thought (CoT) prompting strategy is employed, requiring the model to explain its rea-
soning before delivering a binary decision (“L” for the left box, Xi = 1, or “R” for the right box,
Xi = 0). To capture variability in the model’s stochastic behavior, each decision-making scenario is
repeated 20 times for each temperature setting. The decision proportion for given scenario and tem-
perature is defined as the empirical probability of choosing the left box (“L”) across all repetitions.

Temperature Coefficients (λ) Standard Errors (SE) z-values (z) p-values (p)
0.0 ∞ - - -
0.5 26.49 10.23 2.59 <0.001
1.0 17.86 5.44 3.28 <0.001

Table 1: Logistic regression results for different temperature settings. The regression coefficient
λ, corresponding to the rationality level in the quantal response: higher λ values indicate more deter-
ministic behavior, while lower values suggest increased randomness. For the case with temperature
0.0, the observed perfect determinism in choices leads to complete separation in the logistic regres-
sion, resulting in theoretically infinite coefficients. The standard error (SE) reflects the precision
of λ, with smaller values indicating greater accuracy. z-values and p-values confirm the statistical
significance of the findings.

B.3 MULTIPLE-CHOICE QUESTION ANSWERING STUDY

Dataset Description The MathQA dataset (Amini et al., 2019) is a collection of complex math-
ematical reasoning problems presented as multiple-choice questions. Each problem consists of a
problem statement and a set of five options (A,B,C,D,E), with one correct answer. The dataset
is designed to test logical reasoning, arithmetic, algebra, and other mathematical concepts, making
it a challenging benchmark for evaluating LLMs. For this study, we use a subset of 5000 MathQA
problems to ensure computational feasibility, focusing on tasks that require probabilistic reasoning
and decision-making.

Study Design To evaluate LLM performance, we deploy the following experimental setup. The
LLM is queried under three distinct temperature settings (t = 0.0, 0.5, 1.0) to simulate varying
levels of rationality. For each question, the model generates 20 responses per temperature setting.
Because the questions offer more than two options, we use plurality voting (fplu), a generalization
of majority voting. This involves selecting the option with the highest frequency among the sampled
responses. In the event of a tie, the aggregator randomly chooses among the tied options.

Bootstrapping To assess the robustness of aggregation, we perform bootstrapping by randomly
sampling n responses (without replacement) from the 20 generated responses per question. This
bootstrapping procedure is repeated 1000 times for each combination of temperature setting t and
expert group size n = 1, 3, 5. Accuracy is defined as the proportion of aggregated answers that
match the ground truth, with error bars representing the standard error of the mean across bootstrap
iterations.

An Example We present an example in our study of how increasing temperature (i.e., adding
randomness) counterintuitively increases expected accuracy. In our study, we ask gpt-4o-mini the
following MathQA question.

“An alloy of copper and zinc contains copper and zinc in the ratio 3:5. Another alloy contains copper
and zinc in the ratio 6:2. In what ratio should the two alloys be mixed to achieve equal proportions
of copper and zinc?” The options are “1 : 2”, “2 : 2”, “2 : 5”, “2 : 6”, “2 : 7”.

At t = 0.0 (deterministic mode), after querying LLM, 19/20 responses selecting the incorrect option
B (“2 : 2”). Consequently, plurality voting always selects the incorrect option B. However, at
t = 1.0, 4/20 responses correctly identify A (“1 : 2”) Despite most responses being incorrect (16/20
chose B), the increased variance allows the aggregation to sometimes identify the correct answer.

35



1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

One possible explanation is ambiguity in the question regarding the order of the mixing ratio (first
alloy to second, or second to first). In deterministic mode (t = 0.0), the LLM frequently calculates
the correct 2:1 ratio (first to second), but then fails to select the ground truth answer of 1:2. Some
responses even explicitly justify this error, stating, “However, since the options provided do not
include 2:1, we will look for the closest match. The closest option to 2:1 is **B) 2:2**, which
represents equal proportions.”.

However, the increased randomness in stochastic mode (t = 1.0) allows the LLM to exhibit greater
“intelligence.” Some responses cleverly recognize the intended meaning, acknowledging the dis-
crepancy and stating, “None of the options list a ratio of 2:1 directly. There is no exact match, but
the closest option that can relate to 2 is option A: 1:2 if we consider it in context of inverse.” This
suggests that the added randomness enables the LLM to explore a wider range of interpretations
and, in some cases, deduce the correct answer despite the question’s ambiguity. See the Section C.2
for more details.

C PROMPTS FOR LLMS

This section provides detailed descriptions of the prompts employed in our studies with Large Lan-
guage Models (LLMs). These prompts are used to assess various aspects of hallucination detection,
including prior answer generation, semantic clustering, and posterior answer generation. Our inten-
tion is to provide transparency and reproducibility for our method and those we compare against,
particularly in terms of how LLMs interact with different prompt structures.

These prompts were developed specifically for use in studies described in the main body of the
paper. While they have been designed to provide effective results, we note that they may still be
open to refinement for further improvements in performance and reliability.
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C.1 BAYESIAN DECISION-MAKING STUDY

User Prompt

### Scenario:
You are given two boxes of balls. Each box contains 100 balls,

which can be either red or blue. A box is selected at random,
and one ball is drawn from the selected box. However, the
identity of the selected box is not revealed.

You are provided with the following information:
- Left Box contains {left_red} red balls and {left_blue} blue balls

.
- Right Box contains {right_red} red balls and {right_blue} blue

balls.
- The probability of selecting the Left Box is {left_probability}%.
- The probability of selecting the Right Box is {right_probability

}%.

### Question:
If the ball drawn is {color}, which box has been selected?

Please first briefly show the calculations in the <reason></reason>
section, and then provide your final answer in the <answer></

answer> section.
Your answer in <answer></answer> should **strictly** be a single

uppercase letter: "L" for the Left Box or "R" for the Right Box.
No additional text, no explanations.

Your response must contain <answer></answer> section with a
definitive answer of either "L" or "R" in it.

Example response:
<reason># Briefly show your calculations here, using the provided

information.</reason>
<answer># A single uppercase letter: L or R</answer>
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Example Input

### Scenario:
You are given two boxes of balls. Each box contains 100 balls,

which can be either red or blue. A box is selected at random,
and one ball is drawn from the selected box. However, the
identity of the selected box is not revealed.

You are provided with the following information:
- Left Box contains 100 red balls and 0 blue balls.
- Right Box contains 50 red balls and 50 blue balls.
- The probability of selecting the Left Box is 20.0%.
- The probability of selecting the Right Box is 80.0%.

### Question:
If the ball drawn is red, which box has been selected?

Please first briefly show the calculations in the <reason></reason>
section, and then provide your final answer in the <answer></

answer> section.
Your answer in <answer></answer> should **strictly** be a single

uppercase letter: "L" for the Left Box or "R" for the Right Box.
No additional text, no explanations.

Your response must contain <answer></answer> section with a
definitive answer of either "L" or "R" in it.

Example response:
<reason># Briefly show your calculations here, using the provided

information.</reason>
<answer># A single uppercase letter: L or R</answer>
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Example Output

<reason>To find the probability of selecting each box given that a
red ball is drawn, we can use Bayes’ theorem.

Let:
- \( P(L) = 0.2 \) (probability of selecting the Left Box)
- \( P(R) = 0.8 \) (probability of selecting the Right Box)
- \( P(\text{Red} | L) = 1 \) (probability of drawing a red ball

from the Left Box)
- \( P(\text{Red} | R) = 0.5 \) (probability of drawing a red ball

from the Right Box)

Using the law of total probability, we calculate \( P(\text{Red})
\):

\[
P(\text{Red}) = P(\text{Red} | L) \cdot P(L) + P(\text{Red} | R) \

cdot P(R) = 1 \cdot 0.2 + 0.5 \cdot 0.8 = 0.2 + 0.4 = 0.6
\]

Now, we can find \( P(L | \text{Red}) \) using Bayes’ theorem:
\[
P(L | \text{Red}) = \frac{P(\text{Red} | L) \cdot P(L)}{P(\text{Red

})} = \frac{1 \cdot 0.2}{0.6} = \frac{0.2}{0.6} = \frac{1}{3}
\]

Similarly, we find \( P(R | \text{Red}) \):
\[
P(R | \text{Red}) = \frac{P(\text{Red} | R) \cdot P(R)}{P(\text{Red

})} = \frac{0.5 \cdot 0.8}{0.6} = \frac{0.4}{0.6} = \frac{2}{3}
\]

Since \( P(R | \text{Red}) > P(L | \text{Red}) \), it is more
likely that the Right Box was selected if a red ball is drawn.</
reason>

<answer>R</answer>

C.2 MULTIPLE-CHOICE QUESTION ANSWERING STUDY

We first provide the template of prompt, then we provide the example input and two example outputs.
The input and outputs correspond to the example in Section B.3.
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User Prompt of Math

### Scenario:
Please review the following math question carefully:

### Question:
{question_str}

### Options:
{options_str}

### Instructions:
1. Provide your step-by-step calculations using your math knowledge

, enclosed within <reason></reason> tags.
2. Select the best answer from the options provided, and place the

uppercase letter of your final answer within <answer></answer>
tags.

Please ensure your reasoning clearly supports the selected answer
and that your final answer is one of the provided options. If
none of the options are precisely correct, choose the closest
one.

Example response:
<reason># Your reasoning and calculations go here</reason>
<answer># A single uppercase letter: the option you choose</answer>
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Example Input

### Scenario:
Please review the following math question carefully:

### Question:
an alloy of copper and zinc contains copper and zinc in the ratio 3

: 5 . another alloy of copper and zinc contains copper and zinc
in the ratio 6 : 2 . in what ratio should the two alloys be

mixed so that the resultant alloy contains equal proportions of
copper and zinc ?

### Options:
A) 1 : 2
B) 2 : 2
C) 2 : 5
D) 2 : 6
E) 2 : 7

### Instructions:
1. Provide your step-by-step calculations using your math knowledge

, enclosed within <reason></reason> tags.
2. Select the best answer from the options provided, and place the

uppercase letter of your final answer within <answer></answer>
tags.

Please ensure your reasoning clearly supports the selected answer
and that your final answer is one of the provided options. If
none of the options are precisely correct, choose the closest
one.

Example response:
<reason># Your reasoning and calculations go here</reason>
<answer># A single uppercase letter: the option you choose</answer>

41



2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

Example Output When t Equals 0

<reason>
Let’s denote the first alloy (with a copper to zinc ratio of 3:5)

as Alloy A and the second alloy (with a copper to zinc ratio of
6:2) as Alloy B.

1. **Determine the composition of Alloy A:**
- The total parts in Alloy A = 3 (copper) + 5 (zinc) = 8 parts.
- Copper in Alloy A = 3/8 of the total weight.
- Zinc in Alloy A = 5/8 of the total weight.

2. **Determine the composition of Alloy B:**
- The total parts in Alloy B = 6 (copper) + 2 (zinc) = 8 parts.
- Copper in Alloy B = 6/8 = 3/4 of the total weight.
- Zinc in Alloy B = 2/8 = 1/4 of the total weight.

3. **Let the weights of Alloy A and Alloy B be x and y respectively
.**
- The total copper from both alloys = (3/8)x + (3/4)y.
- The total zinc from both alloys = (5/8)x + (1/4)y.

4. **Set the equation for equal proportions of copper and zinc:**
\[
(3/8)x + (3/4)y = (5/8)x + (1/4)y
\]

5. **Clear the fractions by multiplying through by 8:**
\[
3x + 6y = 5x + 2y
\]

6. **Rearranging gives:**
\[
3x - 5x + 6y - 2y = 0 \implies -2x + 4y = 0 \implies 2x = 4y \

implies x/y = 4/2 = 2/1
\]

7. **Thus, the ratio of Alloy A to Alloy B is 2:1.**
- This means we need to mix Alloy A and Alloy B in the ratio of

2:1.

Since the question asks for the ratio of the two alloys, we can
express this as 2:2 (which simplifies to 1:1) or 2:1. However,
since the options provided do not include 2:1, we will look for
the closest match.

The closest option to 2:1 is **B) 2:2**, which represents equal
proportions.

Therefore, the final answer is:
</reason>
<answer>B</answer>
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Example Output When t Equals 1

<reason>To solve the problem, we need to first determine the
composition of each alloy in terms of copper and zinc.

1. **First Alloy (Ratio 3:5)**:
- The total parts in the first alloy = 3 + 5 = 8 parts.
- Copper in the first alloy = (3/8) * 100% = 37.5%
- Zinc in the first alloy = (5/8) * 100% = 62.5%

2. **Second Alloy (Ratio 6:2)**:
- The total parts in the second alloy = 6 + 2 = 8 parts.
- Copper in the second alloy = (6/8) * 100% = 75%
- Zinc in the second alloy = (2/8) * 100% = 25%

Let’s denote the first alloy as A (copper 37.5%, zinc 62.5%) and
the second alloy as B (copper 75%, zinc 25%). We want to mix
these two alloys in the ratio x:y such that the resultant alloy
has equal proportions of copper and zinc.

We will express the copper and zinc contents in the resultant
mixture:

- Copper from A = \(x \times 0.375\)
- Zinc from A = \(x \times 0.625\)

- Copper from B = \(y \times 0.75\)
- Zinc from B = \(y \times 0.25\)

The total copper content in the mixture (A + B) is:
\[
\text{Total Copper} = 0.375x + 0.75y
\]

The total zinc content in the mixture (A + B) is:
\[
\text{Total Zinc} = 0.625x + 0.25y
\]

We want these two quantities to be equal:
\[
0.375x + 0.75y = 0.625x + 0.25y
\]

Rearranging this equation, we get:
\[
0.375x - 0.625x + 0.75y - 0.25y = 0
\]
\[
-0.25x + 0.5y = 0
\]
\[
0.5y = 0.25x
\]
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Example Output When t Equals 1

\[
y = 0.5x
\]

So, the ratio of \(x : y\) can be written as \(x : 0.5x\) or
simplifying gives:

\[
x : y = 2 : 1
\]

This means we need to mix the alloys in a ratio of 2:1 (2 parts of
A for every 1 part of B).

Now, we should see which option matches this finding:
- None of the options list a ratio of 2:1 directly. There is no

exact match, but the closest option that can relate to 2 is
option A: 1:2 if we consider it in context of inverse.

Since the required ratio of the alloys results in copper and zinc
being equal, let’s interpret the problem in inverse terms as it
signifies that for choosing A and B:

To maintain a balance of ratios, the best option that reflects
appropriate mixing is **option A** which provides a guideline
for consideration, perhaps in taking more from the second one (
due to its higher concentration of copper).

So, based on this reasoning:
</reason>
<answer>A</answer>
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