
Under review as a conference paper at ICLR 2025

MAMBA NEURAL OPERATOR: WHO WINS? TRANS-
FORMERS VS. STATE-SPACE MODELS FOR PDES

Anonymous authors
Paper under double-blind review

ABSTRACT

Partial differential equations (PDEs) are widely used to model complex physical
systems, but solving them efficiently remains a significant challenge. Recently,
Transformers have emerged as the preferred architecture for PDEs due to their
ability to capture intricate dependencies. However, they struggle with represent-
ing continuous dynamics and long-range interactions. To overcome these limita-
tions, we introduce the Mamba Neural Operator (MNO), a novel framework that
enhances neural operator-based techniques for solving PDEs. MNO establishes a
formal theoretical connection between structured state-space models (SSMs) and
neural operators, offering a unified structure that can adapt to diverse architec-
tures, including Transformer-based models. By leveraging the structured design
of SSMs, MNO captures long-range dependencies and continuous dynamics more
effectively than traditional Transformers. Through extensive analysis, we show
that MNO significantly boosts the expressive power and accuracy of neural oper-
ators, making it not just a complement but a superior framework for PDE-related
tasks, bridging the gap between efficient representation and accurate solution ap-
proximation.

1 INTRODUCTION

Partial differential equations (PDEs) describe various real-world phenomena, such as heat trans-
fer (Heat Equation), fluid dynamics (Navier-Stokes), and biological systems (Reaction-Diffusion).
While analytical solutions are sought, many PDEs—like the Navier-Stokes equations—lack closed-
form solutions, making them computationally intensive to solve. Numerical methods, such as finite
element, finite difference (Mehra et al., 2010), and spectral methods, discretise these equations but
involve trade-offs between computational cost and accuracy. Coarser grids reduce computational
load but sacrifice precision, while finer grids increase both accuracy and computational expense. Re-
cent advancements in deep learning have changed techniques for solving PDEs. Physics-Informed
Neural Networks (PINNs) (Raissi et al., 2019; Mattey and Ghosh, 2021) integrate governing equa-
tions and boundary conditions into the loss function, but often struggle with generalisation and
require retraining for changes in coefficients. Neural operators (Bhattacharya et al., 2021; Kovachki
et al., 2023), on the other hand, learn mappings between function spaces, offering a mesh-free,
data-driven approach that generalises better across different PDE instances.

Operator learning has gained traction with models like DeepONet (Lu et al., 2019) and the Fourier
Neural Operator (FNO) (Li et al., 2020a), which achieved state-of-the-art performance. These mod-
els learn input-output mappings to approximate complex operators, similar to sequence-to-sequence
problems. Transformers (Vaswani, 2017) have become a go-to architecture for PDEs (Cao, 2021; Li
et al., 2022a; Bryutkin et al., 2024) due to their ability to capture long-range dependencies. How-
ever, their quadratic complexity limits efficiency for tasks such as long-time integration. To over-
come this, efficient variants like Galerkin attention (Cao, 2021) reduce computational cost to linear
scaling. While these models improve efficiency, they trade off model capacity by approximating the
self-attention mechanism, potentially reducing accuracy for tasks that need precise attention. More-
over, Transformers face challenges with PDEs due to limited context windows, inefficiency with
continuous data, and high memory usage, making them less effective for capturing dependencies
over continuous domains and high-resolution grids.

1



Under review as a conference paper at ICLR 2025

While Transformers are popular for PDE modelling, they have limitations in handling continuous
data and high-resolution grids. An emerging alternative is State-Space Models (SSMs) (Gu et al.,
2021; 2022), which offer better scalability, reduced memory usage, and improved handling of long-
range dependencies in continuous domains compared to Transformers. In particular, Mamba (Gu
and Dao, 2023) is a novel way designed to effectively capture long-range dependencies, handle
continuous data efficiently, and reduce memory consumption in sequence-to-sequence problems.
Although Transformers dominate applications like foundational models and computer vision, the
use of SSMs—especially Mamba—for neural operators in PDEs remains underexplored, and their
theoretical connections and potential advantages are yet to be fully understood.

Contributions. We introduce the concept of Mamba Neural Operator (MNO), which provides a
novel perspective applicable to Transformer-based techniques for PDEs. Unlike closely related
works, we offer a formal theoretical connection between Mamba and Neural Operators, demon-
strating its advantages for PDEs. MNO addresses key challenges in PDE modelling by leveraging
its structured state-space design to capture long-range dependencies and continuous dynamics more
effectively than Transformers. Our particular contributions are as follows.

8We introduce the concept of the Mamba Neural Operator (MNO), where we underline:

– Mamba Neural Operator expands the SSM framework into a unified neural operator ap-
proach, making it adaptable to diverse architectures, including any Transformer-based
model.

– Unlike existing related works, we provide a theoretical understanding that shows how neu-
ral operator layers share a comparable structural framework with time-varying SSMs, of-
fering a new perspective on their underlying principles.

8We evaluate MNO on various architectures and PDEs, showing through systematic analysis that
Mamba enhances the expressive power and accuracy of neural operators. This indicates that Mamba
is not just a complement to Transformers, but a superior framework for PDE-related tasks, bridging
the gap between efficient representation and accurate solutions.

2 RELATED WORK

Data-Driven PDEs. Recent advances in fluid dynamics and solving PDEs have led to architec-
tures modelling continuous-time solutions and multiparticle dynamics (Kochkov et al., 2021; Lusch
et al., 2018). Physics-informed models now offer solutions in unsupervised and semi-supervised
settings (Raissi et al., 2019; Li et al., 2020a). These models typically encode spatial data and evolve
over time, utilising methods like convolutional layers (Ronneberger et al., 2015; Wiewel et al., 2019)
symbolic neural networks (Udrescu and Tegmark, 2020), and residual networks (He et al., 2016).
Finite element methods (FEM), including Galerkin and Ritz, are also integrated into learning frame-
works (Chen et al., 2021).

Neural Operators. Neural operators, such as the Graph Neural Operator (Li et al., 2020b) and
Fourier Neural Operator (Li et al., 2020a), excel at learning mappings in infinite-dimensional spaces,
particularly by leveraging techniques like graph structures or transformations in Fourier space. The
Fourier Neural Operator (FNO) and its variations, including the incremental, factorised, adaptive
FNO, and FNO+ (Zhao et al., 2022; Tran et al., 2021; Guibas et al., 2021) have shown exceptional
performance in both speed and accuracy. Their key advantage lies in their ability to maintain dis-
cretisation invariance, which sets them apart in many applications. DeepONet (Lu et al., 2019) pi-
oneered the nonlinear operator approximation using separate networks for inputs and query points,
while extensions like MIONet handle multiple inputs (Jin et al., 2022). Challenges like irregular
grids are being addressed through grid mapping and subdomain partitioning (Li et al., 2022b; Wen
et al., 2022) though scalability for diverse inputs remains a key focus.

Transfomers for PDEs. The Transformer model (Vaswani, 2017) stands out due to its distinctive
features, primarily its use of attention mechanisms to model the relationships among input elements.
Initially, it was developed for NLP, and attention mechanisms have been adapted to PDEs, providing
flexible and efficient mappings between function spaces. Galerkin attention (Cao, 2021) introduced
linear complexity to reduce computational costs, inspiring further developments like GNOT (Hao
et al., 2023) and OFormer (Li et al., 2022a), which achieve state-of-the-art results. Additionally,

2



Under review as a conference paper at ICLR 2025

graph-based Transformers have also been explored to capture complex interactions in irregular do-
mains (Bryutkin et al., 2024).

State-Space Models for PDEs & Comparison to Ours. Initial studies on SSMs for PDEs,
like MemNO (Buitrago Ruiz et al., 2024), explored combining FNO with S4 but were restricted to
low-resolution or noisy inputs. In contrast, we introduce the Mamba Neural Operator, which gener-
alises the SSM framework to neural operators, making it compatible with any architecture, including
Transformers. Our approach extends the theoretical foundations for broad applicability to any PDE
family, highlighting Mamba’s effectiveness in diverse scenarios. At the time of our submission,
the work of that (Hu et al., 2024) proposed integrating state-space models into neural operators for
dynamical systems. While related, our work differs significantly, their approach focuses on dynam-
ical systems and tests only on ordinary differential equations (ODEs), whereas we target parametric
partial differential equations (PDEs). Additionally, we provide a theoretical understanding show-
ing that neural operator layers share a comparable structural framework with time-varying SSMs,
demonstrating alignment between hidden space updates and the iterative process in neural operators.

3 MAMBA NEURAL OPERATOR

This section details the theoretical underpinning and practicalities of the Mamba Neural Operator.
We outline its design, key components, and operational mechanisms, explaining how it efficiently
models partial differential equations by leveraging structured state-space models (SSMs).

3.1 PROBLEM STATEMENT

We consider parametric partial differential equations (PDEs) defined on a domain Ω ⊂ Rn, param-
eterised by θ ∈ S ⊂ Rp, where θ is sampled from a distribution w. The general form of the PDE
is:

P ∶ P ×Ω ×W ×Rm × . . . ×Rm → Rℓ, Ω ⊂ Rn,W ⊂ Rm,

P (θ, x, u, ∂x1u, . . . , ∂xnu, . . . , ∂
β1
x1
⋯∂βn

xn
u) = 0,

(1)

where the unknown function u ∶ Ω → V solves P . The multi-index β = (β1, . . . , βn), with ∣β∣ =
∑n

i=1 βi, determines the differentiation orders. If time is involved, Ω reduces to T ⊂ R≥0 and Ω ⊂
Rn−1. To ensure well-posedness, initial and boundary conditions must hold:

u(x,T0) = u0(x), x ∈ Ωθ, u(x, t) = ub(x), x ∈ ∂Ωθ, t ∈ T , (2)

for x ∈ Ωθ and t ∈ T , where u0 and ub are the initial and boundary conditions, respectively. Assume
Ω,P, V are Banach spaces, and there exists an analytic solution operator: O ∶ P × Ω × Rm × . . . ×
Rm×Rℓ×Rℓ → V.Our aim is to design a neural network S̃µ ∶ (θ, u0, ub)↦ u that approximates this
operator, with µ as the network’s parameters. Given a dataset (θ(n), u(n))n = 1N , where θ(n) and
u(n) correspond to the system’s discretised parameters, we simplify the notation as θ(n) = θ(x(n))
and u(n) = u(x(n)).

3.2 PRELIMINARIES: MAMBA

Transformers are the leading architecture for many state-of-the-art techniques for PDEs, with pre-
liminaries introduced in Appendix A. In this section, we outline the background on State Space
Sequence models (SSM). Structured State Space (S4) models introduce a new approach in deep
learning sequence modelling, incorporating elements from Recurrent Neural Networks (RNNs),
Convolutional Neural Networks (CNNs), and classical state space models. These models are in-
spired by control theory, where the process involves mapping an input sequence u(t) ∈ RL to an
output sequence y(t) ∈ RL through a hidden latent state h(t) ∈ RN . The core mechanism of State
Space Models (SSMs) is formulated using linear first-order ordinary differential equations, enabling
efficient handling of temporal data, which reads:

h′(t) = Ah(t) +Bu(t), y(t) = Ch(t) +Du(t), (3)

where A ∈ CN×N and B,C ∈ CN . Mamba, a more advanced variant of SSMs, refines this for-
mulation by incorporating efficient state space parameterisation and selection mechanisms. Unlike

3



Under review as a conference paper at ICLR 2025

earlier models such as S4, which uses bilinear method, Mamba adopts zero-order holds, allowing
it to handle larger hidden states and longer sequences more effectively. This makes Mamba partic-
ularly well-suited for complex sequence modeling tasks, such as natural language processing and
time-series analysis.

3.3 STATE SPACE MODELS DISCRETISATION FOR PDES

State Space Models (SSMs) have emerged as a strong alternative to Transformers in deep learning.
While Transformers dominate in areas like foundational models and computer vision, the application
of SSMs, particularly the Mamba architecture, to neural operators for PDEs is still underexplored.

We start by demonstrating that the discretisation of S6 (Mamba) is equivalent to the well-known Eu-
lar method when the Taylor series expansion is applied. Mamba utilises zero-order holds, resulting
in the following discretisation, which reads:

A = exp(∆A), B = (∆A)−1 (exp(∆A) − I) ⋅∆B. (4)

Discretisation of SSM. To incorporate the SSM into deep learning frameworks, we need to
transform the continuous-time SSM into a discrete formulation. This is done by expressing the
continuous-time system as an ordinary differential equation (ODE) and then solving it numerically.
As discussed in (Liu et al., 2024), the discrete SSM reads:

ha+1 = eA∆a(ha +BaUae
−A∆a∆a)

= eA∆aha +Ba∆aua = Āaha + B̄aua,
(5)

where ∆ is the time step size, and Āa = eA∆a and B̄ = Ba∆a are the discretised system matrices.
In the S6 model, we define Ã = e∆A and B̃ = (∆A)−1(e∆A − I) ⋅∆B. By applying sampling in Ã,
we have Ā = Ã. For B̃, applying the sampling process yields to:

B̃ = (∆A)−1(e∆A − I) ⋅∆B = (∆A)−1(I +∆A +O(∆2) − I) ⋅∆B
= (∆A)−1(∆A +O(∆2)) ⋅∆B =∆B(Drop O(∆2)) = B̄

(6)

Thus, we have shown that our discretisation method is equivalent to the zero-order hold method,
where Ā = Ã and B̄ = B̃.
Proposition 1. The zero-order hold discretisation method, as in (4), is equivalent to the Euler
method in SSM when the Taylor series expansion of the exponential function is truncated to its
first-order term.

Proof. In SSM, if we define the matrices as Â = I +∆A and B̂ =∆B. Then the discretised form of
the state update can be written as:

h(t +∆t) = Âh(t) + B̂u(t) = (I +∆A)h(t) +∆Bu(t)
= h(t) +∆(Ah(t) +Bu(t)) = h(t) +∆h′(t).

(7)

which implies it is a first order eular method. It is straightforward to show that Ã = Â since Ã =
eA∆ = I +A∆+O(∆2) = I +A∆ = I +A∆ = Â. Similarly, we observe that B̃ = B̄ = B̂. Therefore,
the discretisation used in the SSM method can be replaced with the zero-order hold method by
substituting Â = Ã and B̂ = B̃, we get:

h(t +∆t) = Âh(t) + B̂u(t) = Ãh(t) + B̃u(t)
= (e∆A)h(t) + ((∆A)−1(e∆A − I) ⋅∆B)u(t) = (I +∆A +O(∆2)h(t) + (∆B)u(t)
= (I +∆A)h(t) + (∆B)u(t) = h(t) +∆Ah(t) +∆Bu(t)
= h(t) +∆(Ah(t) +Bu(t)) = h(t) +∆h′(t).

(8)

This shows that the zero-order hold discretisation method is equivalent to the Euler method, as both
yield the same discrete update formula.

4



Under review as a conference paper at ICLR 2025

Figure 1: (A) Illustration of Mamba Neural Operator. Input image patches are processed by fol-
lowing two distinct scanning paths (referred to as Bidirectional -Scan). Each sequence generated
from these paths is passed through separate S6 blocks/ Cross S6 Blocks for independent processing.
Afterwards, the outputs from the S6 blocks / Cross S6 Blocks are combined to form a feature map,
resulting in the final output (Bidirectional-Merge). (B) and (C) are the detailed block of the S6 Block
and Cross S6 Block respectively. The detail network architecture and definition of Cross S6 Block
can be found in Appendix A.

Why is Proposition 1 important for PDEs? Proposition 1, which establishes the equivalence
between the Zero-Order Hold (ZOH) method and the Euler method, is crucial for understanding
Mamba’s performance in solving partial differential equations (PDEs). This equivalence demon-
strates that ZOH can be viewed as a more generalised and accurate variant of the Euler method.
Specifically, while the Euler method is derived by applying the Taylor series expansion and trun-
cating it at the first order, the ZOH method retains additional higher-order terms from the Taylor
series, making it inherently more accurate. This distinction has significant implications when solv-
ing PDEs. Higher-order methods like ZOH provide better approximations of a system’s behaviour
without requiring excessively small step sizes ∆, which are often necessary for the Euler method to
achieve a similar level of accuracy. Smaller step sizes can result in increased computational cost and
potential numerical instability. By utilising ZOH’s higher-order accuracy, the Mamba architecture
can handle a wide range of step sizes, ensuring both stability and convergence without compromising
precision.

3.4 MAMBA FOR NEURAL OPERATORS

Neural Operators (Li et al., 2020b) aim to learn mappings between function spaces, providing a
framework for solving partial differential equations (PDEs) and other problems involving continuous
functions. It updates the value by an iterative method: i0 → i1 → . . . → iT , where each ij (for
j = 0,1, ..., T − 1) maps to Rdv . Let the input be a(x) and the output be u(x) . The input a, drawn
from set A, is initially lifted to a higher-dimensional representation: v0(x) = P (a(x)) where P is
a local transformation, typically parameterised by a fully-connected neural network. We then apply
iterations to update it → it+1 as defined in Definition 1. The final output: u(x) = Q(vT (x)) is
the result of projecting vT via the transformation: Q ∶ Rdv → Rdu . Each update from it to it+1
involves the integration of a non-local integral operator K and a local nonlinear activation function
σ. One of the main results of this work is establishing the equivalence between neural operators and
the Mamba framework. Therefore, we first introduce fundamental definitions stated in (Li et al.,
2020b) that are essential for demonstrating this relationship.

Definition 1. (Iterative updates): The update from it → it+1 is defined as follows:

it+1(x) ∶= σ (Wit(x) +Kϕ(a)it(x)) , ∀x ∈D, (9)

5



Under review as a conference paper at ICLR 2025

whereK ∶ A×ΘK → L(U(D;Rdv), U(D;Rdv)) represents a mapping to bounded linear operators
on U(D;Rdv), parameterised by ϕ ∈ ΘK . The function W ∶ Rdv → Rdv is a linear transformation,
and σ ∶ R→ R is a nonlinear activation function applied component-wise.

Definition 2. (Kernel integral operator K): Define the kernel integral operator mapping in 1 by

Kϕ(a)it(x) ∶= ∫
D
κϕ(x, y, a(x), a(y))it(y)dy, ∀x, (10)

where κϕ ∶ R2(d+da) → Rdv×dv is a neural network parameterised by ϕ ∈ ΘK .

As mentioned in the previous section, we can be discrete SSM into the form of (5). This repre-
sentation can be rewrite as (Liu et al., 2024): hb = wT ⊙ ha + ∑T

i=1
wT

wi
⊙ (K⊺iVi). We define

V = [V1; . . . ;VT ] ∈ RT×Dv , where Vi = ua+i−1∆a+i−1 ∈ R1×Dv , K = [K1; . . . ;KT ] ∈ RT×Dk ,
where Ki = Ba+i−1 ∈ R1×Dk , and Q = [Q1; . . . ;QT ] ∈ RT×Dk , where Qi = Ca+i−1 ∈ R1×Dk .
We further define w = [w1; . . . ;wT ] ∈ RT×Dk×Dv , where wi = ∏i

j=1 e
A∆a−1+j ∈ RDk×Dv , and

H = [ha; . . . ;hb] ∈ RT×Dk×Dv , where hi ∈ RDk×Dv . Finally, we set Y = [ya; . . . ;yb] ∈ RT×Dv ,
where yi ∈ RDv This formulation indicates that Gated Linear Attention (Yang et al., 2023) is actually
a specific variant of Mamba. We next present our main result is how neural operator layers share a
comparable structural framework with time-varying SSMs, which, to the best of our knowledge, is
established here for the first time.

Proposition 2. The hidden space in time-varying state-space models demonstrates a structural
similarity to neural operator layers.

Proof. We first rewrite the time-varying SSMs (5) as:

hb =wT ⊙ ha +
T

∑
i=1

wT

wi
⊙ (K⊺iVi), (11)

where wT ,wi,Ki,Vi are as defined previously.

To demonstrate that the hidden space update in our Mamba Operator has a similar structural frame-
work to neural operator layers, we assume the shapes of w and h are (T,Dk), represented as vectors.
Our goal is to show that the iterative process in (5) aligns with that of Definition 1. Consider the
first part of Definition 1, represented by Wi(x). We set W = WT and it(x) = ha, where ha is
the hidden state from the previous iteration. We then verify that WT satisfies the properties of a
linear transformation, ensuring consistency with the neural operator framework. We can proved this
as follows: without loss of generality, let us assume that WT = W1 = eA∆a . Next, we apply this
transformation to a vector x and check the conditions for linearity: T (x + y) = T (x) + T (y) and
T (ax) = aT (x). By applying the Taylor expansion to eA∆a , then we get I+A∆a+O(∆2

a). To show
that T (x + y) = T (x) + T (y), it suffices to demonstrate: eA∆a(x1 + x1) = eA∆a(x1) + eA∆a(x2),
we have:

eA∆a(x1 + x1) = (I +A∆a +O(∆2
a)(x1 + x2) = I(x1 + x2) +A∆a(x1 + x2) +O(∆2

a)(x1 + x2)
= Ix1 +A∆a(x1) +O(∆2

a)(x1)Ix2 +A∆a(x2) +O(∆2
a)(x2)

= (I +A∆a +O(∆2
a))(x1) + (I +A∆a +O(∆2

a))(x2)
= eA∆a(x1) + eA∆a(x2)

(12)
This shows T (x + y) = T (x) + T (y). For the second condition, we want to show T (αx) = αT (x),
which is equivalent to demonstrating that eA∆a(αx) = αeA∆ax, we get:

eA∆a(αx) = (I +A∆a +O(∆2
a))(αx) = Iαx +A∆aαx +O(∆2

a)αx
= α(Ix +A∆ax +O(∆2

a)x) = α(eA∆ax)
(13)

Thus, we have shown that eA∆a satisfies the two conditions, and hence it is a linear transformation.
This shows the update in hidden space is the same as neural operator.

6



Under review as a conference paper at ICLR 2025

Secondly, we need to check the second part of Definition 1, which involves showing that:

Kϕ(a)it(x) ∶=
T

∑
i=1

wT

wi
⊙ (K⊺iVi) (14)

has a similar structure.

According to Definition 2, it suffices to demonstrate that: ∫D κϕ(x, y, a(x), a(y))it(y)dy =
∑T

i=1
wT

wi
⊙ (K⊺iVi). We assume the kernel κϕ can be decomposed into a finite sum of separa-

ble basis functions: κϕ(x, y, a(x), a(y)) = ∑T
i=1 ωiφi(x)ψi(y) such that ωi is learnable weights for

each basis function. and Basis functions capturing interactions between x and y. Then we substitute
it into the integral such that : ∫D∑

T
i=1 ωiφi(x)ψi(y)vt(y)dy = ∑T

j=1 ωi ∫D φi(x)ψi(y)vt(y)dy.
We further discretise the domain D into T points {yi}Ti=1 with corresponding weights ∆y. The
integral becomes Kϕ(a)it(x) ≈ ∑T

i=1 ωi∑T
j=1 φi(x)ψi(yj)it(yj)∆y. We represent φi(x) as vec-

tor Ki and the input it(yi) as vector Vi: Ki = [φi(x), φi(x), . . . , φi(x)]⊺ ∈ R1×Dk , Vi =
[ψi(y1)it(y1)∆y, . . . , ψi(yT )it(yT )∆y]⊺ ∈ R1×Dk . If we further factorise ωi as wT

wi
, where wT

is a hyperparameter and wi represents a set of parameters to be learned, we obtain the update:
Kϕ(a)it(x) ∶= ∑T

i=1
wT

wi
⊙ (K⊺iVi). Consequently, the neural operator layer shares a comparable

structural framework with time-varying SSMs, demonstrating that the hidden space update in these
models aligns with the iterative process in neural operator layers.

4 EXPERIMENTS AND DISCUSSION

In this section, we thoroughly describe the implementation setup and present experimental results to
validate Mamba Neural Operators along with Transformers.

4.1 DATASET DESCRIPTION & IMPLEMENTATION PROTOCOL

8 PDEs Selection. We utilise datasets from PDEBench (Takamoto et al., 2022), a publicly available
benchmark for partial differential equations (PDEs). We focus on three PDEs representing both
stationary and time-dependent problems: Darcy Flow, Shallow Water 2D (SW2D), and Diffusion
Reaction 2D (DR2D). All simulations are performed on a uniform grid. Detailed information about
the datasets is provided in the Appendix.

8 Implementation & Evaluation Protocol. As Transformers have become the go-to architecture
for PDE modelling and serve as the primary counterpart to SSM models, we selected three state-of-
the-art Transformers as our baselines: GNOT (Hao et al., 2023), Galerkin Transformer (G.T.) (Cao,
2021), and OFormer (Li et al., 2022a). To achieve a fair comparison between Transformers and
Mamba, we integrated the S6 block and Cross S6 block to replace self-attention and cross-attention
in each model, creating modified versions of the original architectures. All three experimental meth-
ods initially adopt a linear attention mechanism as described in their original publications, while we
evaluated two configurations for each of them: an implementation with standard softmax attention
mechanism (w/S.A.) and a Mamba-enhanced implementation (our Mamba Neural Operator princi-
ple) (w/Mamba). All experiments were conducted on a single NVIDIA RTX 4090 GPU with 24GB
of memory to ensure consistent and fair comparison conditions. Three metrics including Root Mean
Squared Error (RMSE), Normalised RMSE (nRMSE), and Relative L2 Norm (RL2) were utilised
for evaluation.

4.2 CHOSE YOUR WINNER: TRANSFORMER VS. MAMBA FOR PDES

We begin by evaluating the performance of Transformers, their variants, and Mamba on the Darcy
Flow dataset, as presented in Table 1. The results demonstrate that incorporating Mamba con-
sistently improves performance across all metrics and models. For GNOT, while the RMSE re-
mains close, the nRMSE and RL2 values are reduced, indicating that Mamba effectively refines
predictions. The G.T. sees the most significant enhancement, with the RMSE dropping by 40%
when Mamba is used. This suggests that Mamba’s design addresses the shortcomings of traditional
Galerkin-type attention in capturing complex PDE dynamics. For OFormer, Mamba not only retains

7



Under review as a conference paper at ICLR 2025

Table 1: Quantitative comparison on Darcy Flow (β = 1) across three methods with linear attention
(original version), softmax attention and Mamba. The performance is measured in terms of Root
Mean Squared Error (RMSE), Normalised RMSE (nRMSE), and Relative L2 Norm (RL2), with the
best-performing results highlighted.

DARCYFLOWMETHOD TYPE RMSE↓ nRMSE↓ RL2↓
GNOT (Hao et al., 2023) Galerkin 0.0070 0.0485 0.0370

w/S.A. Softmax 0.0061 0.0394 0.0299
w/Mamba (MNO) Mamba 0.0061 0.0367 0.0297
G.T. (Cao, 2021) Galerkin 0.0188 0.2027 0.1261

w/S.A. Softmax 0.0103 0.1050 0.0648
w/Mamba (MNO) Mamba 0.0061 0.0382 0.0286

OFormer (Li et al., 2022a) Normalised 0.0054 0.0253 0.0242
w/S.A. Softmax 0.0066 0.0324 0.0323

w/Mamba (MNO) Mamba 0.0054 0.0244 0.0241

Table 2: Quantitative comparisons on Shallow Water 2D (SW2D) and Diffusion Reaction 2D
(DR2D) across three methods with linear attention (original version) and Mamba. The performance
is measured in terms of Root Mean Squared Error (RMSE), Normalised RMSE (nRMSE), and
Relative L2 Norm (RL2), with the best-performing results highlighted in green.

SW2D DR2DMETHOD TYPE RMSE↓ nRMSE↓ RL2↓ RMSE↓ nRMSE↓ RL2↓
GNOT (Hao et al., 2023) Galerkin 0.0026 0.0025 0.0027 0.0567 0.6953 0.7233

w/Mamba (MNO) Mamba 0.0023 0.0022 0.0024 0.0060 0.0811 0.0570
G.T. (Cao, 2021) Galerkin 0.0037 0.0035 0.0038 0.0083 0.1259 0.0723

w/Mamba (MNO) Mamba 0.0013 0.0013 0.0014 0.0012 0.0183 0.0099
OFormer (Li et al., 2022a) Normalised 0.0020 0.0020 0.0021 0.0177 0.2681 0.1559

w/Mamba (MNO) Mamba 0.0021 0.0021 0.0022 0.0123 0.1712 0.1134

the strong baseline performance but also achieves improvements across all metrics. The reduction in
RL2 indicates that Mamba’s mechanism is better at mapping the solution space of PDEs with higher
precision. Mamba also demonstrates an enhanced ability to capture the complex spatial correlations
inherent to Darcy Flow more effectively.

GNOT

P
re

di
ct

io
n

E
rr

or

GNOT w/S.A. GNOT w/Mamba (MNO)

Figure 2: Results of prediction map and error map
of the GNOT across three versions: Galerkin at-
tention, Softmax attention, and Mamba.

On the SW2D dataset, Mamba consistently
outperforms the original Transformer mod-
els across all metrics. GNOT with Mamba
achieves a lower RMSE and RL2, demonstrat-
ing Mamba’s ability to capture complex flow
dynamics. The G.T. shows the most signif-
icant improvement, with RMSE of 65% re-
duction—highlighting Mamba’s superior capa-
bility in accurately representing the system’s
behaviour. For OFormer, Mamba maintains
comparable values but increases the RL2. On
the DR2D dataset, the Mamba-enhanced mod-
els exhibit even more substantial gains. The
G.T. sees a dramatic reduction in RMSE and
RL2, showing Mamba’s strength in handling
the complex dynamics.

The results across all datasets demonstrate a clear advantage of the Mamba Neural Operator over
Transformer architectures for PDEs. While Transformers are effective at capturing dependencies
and patterns, Mamba’s specialised attention mechanisms provide a more understanding of the com-
plex dynamics involved. By leveraging its unique cross-attention and self-attention blocks, Mamba
not only achieves lower error rates but also enhances the stability and precision of predictions, par-
ticularly in highly nonlinear systems. These results suggest that Mamba enhances the expressive
power and accuracy of neural operators, indicating that it is not just a complement to Transformers

8



Under review as a conference paper at ICLR 2025

GNOT 
(Galerkin
Attention)

∆
Lo

g 
A

m
pl

it
ud

e

GNOT
(Softmax
Attention)

GNOT 
(Mamba
MNO)

FrequencyFrequency

∆
Lo

g 
A

m
pl

it
ud

e

∆
L
og

 A
m
pl

it
ud

e

Frequency

Figure 3: Fourier analysis comparing three GNOT versions: Galerkin attention, Softmax attention,
and Mamba. The ∆ log amplitude shows how each model handles frequency components. We
calculate the change by comparing the log amplitude at the center (0.0 π) and boundary frequencies
(1.0 π). For clarity, only half-diagonal components of the 2D Fourier-transformed feature maps are
shown.

∆
Lo

g 
A

m
pl

it
ud

e

Normalised Depth

GNOT 
(Galerkin Attention)

GNOT
(Softmax Attention)

Normalised Depth

GNOT 
(Mamba MNO)

Normalised Depth

Figure 4: ∆ log amplitudes for Galerkin attention, Softmax attention, and Mamba. Gray regions
indicate the operator, and white regions show MLP. Mamba shows a more stable response across
frequencies.

but a superior framework for PDE-related tasks, bridging the gap between efficient representation
and accurate solution approximation.

We further validate Mamba’s potential through visualisations, as shown in Figure 2. The predic-
tion and error maps reveal that Mamba consistently outperforms all Transformer variants, delivering
more accurate solutions with lower error across challenging regions. Mamba handles fine details,
particularly in capturing sharp gradients and subtle variations that standard attention mechanisms
often miss. Compared to the Galerkin and Softmax attention Transformer models, Mamba reduces
error propagation and improves spatial coherence. More Visualization result can be seen in Ap-
pendix C.

4.3 WHY THE WINNER WINS: BREAKING DOWN MAMBA’S WIN

We aim to explore why Mamba outperforms Transformers by examining the frequency response of
feature maps. This analysis helps us understand how each model handles high-frequency signals
and evaluate its ability to maintain stability and robustness. The results in Figure 3 compare the
frequency response of three GNOT variants: Galerkin attention, Softmax attention, and Mamba.
The Galerkin version shows a sharp decline in high-frequency components, indicating underfitting
and loss of fine details. The Softmax version retains more high frequencies but risks instability
and noise sensitivity. Mamba, on the other hand, demonstrates a balanced suppression of high-
frequency signals, maintaining stability and robustness. The change in log amplitude across the
frequency range is more uniform, indicating that Mamba effectively balances between capturing
necessary high-frequency information and filtering out noise. This controlled response across the
spectrum highlights why Mamba is better suited for PDEs.

Figure 4 shows the ∆ log magnitudes across the normalised depth for the Galerkin attention, Soft-
max attention, and Mamba versions of GNOT. The Galerkin and Softmax versions exhibit sharp

9



Under review as a conference paper at ICLR 2025

Table 3: Comparisons with different
query positions using nRMSE.

METHOD Query Positions
Identical Diagonal

OFormer 0.0253 0.0318
w/S.A. 0.0324 0.0382

w/Mamba 0.0244 0.0314

Table 4: Comparisons with different dataset sizes using
nRMSE.

METHOD Dataset Sizes
9K 5K 2K 1K

GNOT 0.0485 0.0567 0.0777 0.1174
w/S.A. 0.0394 0.0400 0.0526 0.0776

w/Mamba 0.0367 0.0376 0.0481 0.0617

fluctuations, indicating instability and inconsistent feature extraction at different depths. In con-
trast, Mamba maintains a steady and flat profile, reflecting robust and stable feature extraction. The
gray and white bands indicate the alternating roles of the operator and NLP components, further
emphasising Mamba’s balanced performance across layers, making it ideal for handling complex
PDEs.

4.4 ABLATION STUDY: FINAL BATTLES, WINNER TAKES ALL

Mamba vs. Transformers in Misalignment: A Battle for Query Positioning. Table 3 compares
nRMSE performance across two query scenarios: Identical positions (input and query points are
the same) and Diagonal positions (shifted inputs creating a mismatch). Experiments are done using
Darcy Flow. While prior work shows that Transformers handle inconsistent input-query positions
well (Li et al., 2022a), our results demonstrate a clear advantage of Mamba in both configurations.
For Identical query positions, Mamba version achieves the lowest error, outperforming OFormer and
its softmax variant, demonstrating Mamba’s superior ability to capture relationships when input and
query points are perfectly aligned. For Diagonal query positions, where inputs and queries are mis-
aligned, Mamba achieves the best performance compared to OFormer and its variant, demonstrating
its superior ability to generalise under spatial shifts.

Scaling Down Without Sacrifice: A Battle for Resilience with Limited Data. Table 4 com-
pares nRMSE performance across different dataset sizes for GNOT, GNOT with softmax attention
(w/ S.A.), and GNOT with Mamba. Experiments are carried out using Darcy Flow. As dataset size
decreases, Mamba consistently achieves the lowest error, demonstrating superior performance and
robustness in data-scarce scenarios. For instance, with the smallest dataset (1K), Mamba achieves an
nRMSE of 0.0617, significantly lower than GNOT’s and GNOT w/ S.A.’s, showcasing its resilience
and generalisation capability even with limited data. This highlights Mamba’s efficiency in learn-
ing meaningful representations with fewer data points, making it a powerful choice for real-world
applications where data availability is a constraint.

5 CONCLUSION

We have introduced the concept of the Mamba Neural Operator (MNO), a framework that rede-
fines how neural operators approach PDEs by integrating structured state-space models. Unlike
closely related works, we formalise this connection by providing a theoretical understanding that
demonstrates how neural operator layers share a comparable structural framework with time-varying
SSMs, offering a fresh perspective on their underlying principles. Experimental results show that
MNO significantly enhances the expressive power and accuracy of neural operators across various
architectures and PDEs. This indicates that MNO is not merely a complement to Transformers, but
a superior framework for PDE-related tasks, bridging the gap between efficient representation and
precise solution approximation.

REFERENCES

Kaushik Bhattacharya, Bamdad Hosseini, Nikola B Kovachki, and Andrew M Stuart. Model reduc-
tion and neural networks for parametric pdes. The SMAI journal of computational mathematics,
7:121–157, 2021. 1

10



Under review as a conference paper at ICLR 2025

Andrey Bryutkin, Jiahao Huang, Zhongying Deng, Guang Yang, Carola-Bibiane Schönlieb, and An-
gelica Aviles-Rivero. Hamlet: Graph transformer neural operator for partial differential equations.
arXiv preprint arXiv:2402.03541, 2024. 1, 3

Ricardo Buitrago Ruiz, Tanya Marwah, Albert Gu, and Andrej Risteski. On the benefits of memory
for modeling time-dependent pdes. arXiv e-prints, pages arXiv–2409, 2024. 3

Shuhao Cao. Choose a transformer: Fourier or galerkin. Advances in neural information processing
systems, 34:24924–24940, 2021. 1, 2, 7, 8

Zejun Chen, Ameya D Jagtap, and George Em Karniadakis. Continuous galerkin neural networks
for variational problems. Proceedings of the Royal Society A, 477(2253):20210130, 2021. 2

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023. 2

Albert Gu, Isys Johnson, Karan Goel, Khaled Saab, Tri Dao, Atri Rudra, and Christopher Ré. Com-
bining recurrent, convolutional, and continuous-time models with linear state space layers. Ad-
vances in neural information processing systems, 34:572–585, 2021. 2

Albert Gu, Karan Goel, Ankit Gupta, and Christopher Ré. On the parameterization and initialization
of diagonal state space models. Advances in Neural Information Processing Systems, 35:35971–
35983, 2022. 2

John Guibas, Morteza Mardani, Zongyi Li, Andrew Tao, Anima Anandkumar, and Bryan Catan-
zaro. Adaptive fourier neural operators: Efficient token mixers for transformers. arXiv preprint
arXiv:2111.13587, 2021. 2

Zhongkai Hao, Zhengyi Wang, Hang Su, Chengyang Ying, Yinpeng Dong, Songming Liu,
Ze Cheng, Jian Song, and Jun Zhu. Gnot: A general neural operator transformer for operator
learning. In International Conference on Machine Learning, pages 12556–12569. PMLR, 2023.
2, 7, 8

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 770–778, 2016. 2

Zheyuan Hu, Nazanin Ahmadi Daryakenari, Qianli Shen, Kenji Kawaguchi, and George Em Kar-
niadakis. State-space models are accurate and efficient neural operators for dynamical systems.
arXiv preprint arXiv:2409.03231, 2024. 3

Pengzhan Jin, Lu Lu, and George Em Karniadakis. Mionet: Multi-input neural operators for function
approximation. Journal of Computational Physics, 2022. 2

Dmitrii Kochkov, Jamie A Smith, Anastassia Alieva, Qing Wang, Michael P Brenner, and Stephan
Hoyer. Machine learning–accelerated computational fluid dynamics. Proceedings of the National
Academy of Sciences, 118(21):e2101784118, 2021. 2

Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Neural operator: Learning maps between function spaces
with applications to pdes. Journal of Machine Learning Research, 24(89):1–97, 2023. 1

Zijie Li, Kazem Meidani, and Amir Barati Farimani. Transformer for partial differential equations’
operator learning. arXiv preprint arXiv:2205.13671, 2022a. 1, 2, 7, 8, 10

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential
equations. In NeurIPS, 2020a. 1, 2

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Neural operator: Graph kernel network for partial differ-
ential equations. arXiv preprint arXiv:2003.03485, 2020b. 2, 5

11



Under review as a conference paper at ICLR 2025

Zongyi Li, Nikola Kovachki, and Andrew Stuart. Fourier neural operator on irregular grids using
subdomain partitioning. Advances in Neural Information Processing Systems (NeurIPS), 2022b.
2

Yue Liu, Yunjie Tian, Yuzhong Zhao, Hongtian Yu, Lingxi Xie, Yaowei Wang, Qixiang Ye, and
Yunfan Liu. Vmamba: Visual state space model. arXiv preprint arXiv:2401.10166, 2024. 4, 6

Lu Lu, Pengzhan Jin, and George Em Karniadakis. Deeponet: Learning nonlinear operators for iden-
tifying differential equations based on the universal approximation theorem of operators. arXiv
preprint arXiv:1910.03193, 2019. 1, 2

Bethany Lusch, J Nathan Kutz, and Steven L Brunton. Deep learning for universal linear embeddings
of nonlinear dynamics. Nature communications, 9(1):1–10, 2018. 2

Revanth Mattey and Susanta Ghosh. A physics informed neural network for time-dependent non-
linear and higher order partial differential equations. arXiv preprint arXiv:2106.07606, 2021.
1

Mani Mehra, Nutan Patel, Rahul Kumar, Theodore E Simos, George Psihoyios, and Ch Tsitouras.
Comparison between different numerical methods for discretization of pdes-a short review. In
AIP Conference Proceedings, volume 1281, page 599, 2010. 1

Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Physics-informed neural networks:
A deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational Physics, 378:686–707, 2019. 1, 2

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedi-
cal image segmentation. MICCAI, pages 234–241, 2015. 2

Makoto Takamoto, Timothy Praditia, Raphael Leiteritz, Daniel MacKinlay, Francesco Alesiani,
Dirk Pflüger, and Mathias Niepert. Pdebench: An extensive benchmark for scientific machine
learning. Advances in Neural Information Processing Systems, 35:1596–1611, 2022. 7

Alasdair Tran, Alexander Mathews, Lexing Xie, and Cheng Soon Ong. Factorized fourier neural
operators. arXiv preprint arXiv:2111.13802, 2021. 2

Silviu-Marian Udrescu and Max Tegmark. Ai feynman: a physics-inspired method for symbolic
regression. Science Advances, 6(16):eaay2631, 2020. 2

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.
1, 2

Yifei Wen, Phuong Tran, Zongyi Li, and Anima Anandkumar. u-fno: An enhanced fourier neural
operator based on u-net architecture. In Advances in Neural Information Processing Systems
(NeurIPS), 2022. 2

Stefan Wiewel, Michael Becher, and Nils Thuerey. Latent space physics: Towards learning the
temporal evolution of fluid flow. Computer Graphics Forum, 38(2):71–82, 2019. 2

Songlin Yang, Bailin Wang, Yikang Shen, Rameswar Panda, and Yoon Kim. Gated linear attention
transformers with hardware-efficient training. arXiv preprint arXiv:2312.06635, 2023. 6

Jiawei Zhao, Robert Joseph George, Zongyi Li, and Anima Anandkumar. Incremental spectral
learning in fourier neural operator. arXiv preprint arXiv:2211.15188, 2022. 2

12


	Introduction
	Related Work
	Mamba Neural Operator
	Problem Statement
	Preliminaries: Mamba
	State Space Models Discretisation for PDEs
	Mamba for Neural Operators

	Experiments and Discussion
	Dataset Description & Implementation Protocol
	Chose Your Winner: Transformer vs. Mamba for PDEs
	Why the Winner Wins: Breaking Down Mamba’s Win
	Ablation Study: Final Battles, Winner Takes All

	Conclusion

