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Abstract

Ensuring synthesizability remains a major chal-
lenge in generative small molecule design. While
recent developments in synthesizable molecule
generation have demonstrated promising results,
they are largely confined to 2D molecular graph
space, limiting their ability to perform geometry-
based conditional generation. In this work, we
present SYNCOGEN, a single framework with
simultaneous masked graph diffusion and flow
matching for synthesizable molecule generation.
SYNCOGEN samples from the joint distribution
of molecular building blocks, chemical reactions,
and atomic coordinates. To train the model, we
curated SYNSPACE, a dataset containing over
600K synthesis-aware building block graphs and
3.3M conformers. We show that SYNCOGEN
achieves state-of-the-art performance on uncondi-
tional small molecule graph and conformer gen-
eration, and the model delivers competitive per-
formance in zero-shot in linker design. Overall,
our multimodal formulation represents a foun-
dation for future applications enabled by non-
autoregressive molecular generation, including
analogue expansion, lead optimization, and direct
structure conditioning.

1. Introduction

Generative models significantly enhance the efficiency of
chemical space exploration in drug discovery by directly
sampling molecules with desired properties. However, a key
bottleneck in their practical deployment is low synthesizabil-
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ity—generated molecules are often difficult or impossible
to produce in the laboratory (Gao & Coley, 2020). Ad-
dressing this limitation has recently become an active area
of research. In particular, several template-based methods
(Koziarski et al., 2024; Cretu et al., 2024; Seo et al., 2024,
Gainski et al., 2025; Gao et al., 2024; Jocys et al., 2024,
Swanson et al., 2024) have been proposed to better reflect
the chemical synthesis process. These approaches typically
operate on representations akin to synthesis graphs, which
abstract away the underlying 3D molecular structure. As a
result, they are unable to access geometric information con-
tained in molecular conformations when guiding generation
toward molecules that exhibit desirable properties.

A promising alternative for molecular design involves
spatial modeling at the atomic level. Inspired by advances
in protein structure prediction (Yang et al., 2025; Campbell
et al., 2024; Wang et al., 2025) and the development of
generative frameworks such as diffusion and flow matching,
recent work has focused on directly sampling 3D atomic co-
ordinates of small molecules (Hassan et al., 2024; Jing et al.,
2023; Fan et al., 2024). These methods learn to generate
spatially meaningful, property-aligned conformations along
with molecular graphs. The ability to model atomic struc-
ture directly increases the expressivity of these approaches,
enabling applications such as pocket-conditioned generation
(Lee & Cho, 2024), scaffold hopping (Torge et al., 2023;
Yoo et al., 2024), molecular optimization (Morehead &
Cheng, 2024), and analog discovery (Sun et al., 2025).
However, integrating synthesizability constraints into these
models remains a major challenge, and most existing 3D
generative approaches do not address this issue.

This work aims to bridge the gap between 3D molecular
generation and synthetic feasibility by introducing SYNCoO-
GEN (Synthesizable Co-Generation), a generative model
capable of directly sampling highly synthesizable molecules
in 3D coordinate space (Figure 1). Our main contributions
are as follows:

* Generative Framework: We propose a novel genera-
tive framework that combines masked graph diffusion
with flow matching to jointly sample from the distribu-
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tion over building block-level reaction graphs and 3D
atomic coordinates, unifying structure- and synthesis-
aware modeling.

* Molecular Dataset: We curate and release a new
dataset SYNSPACE comprising 622,766 synthesizable
molecules represented as building block-level reaction
graphs, along with 3,360,908 associated low-energy
conformations. Compared to existing synthon-based
datasets, ours enables the training of models that gener-
ate more readily synthesizable molecules and directly
suggest streamlined synthetic routes.

* Empirical Validation: We demonstrate that SYNCO-
GEN outperforms existing methods in 3D molecule gen-
eration, all while modelling the reaction steps. As a
multimodal model, SYNCOGEN can further predict con-
formations or generate discrete graphs. Lastly, SYNCO-
GEN performs zero-shot conditional molecular genera-
tion tasks such as linker design, highlighting its applica-
bility for drug-discovery.

2. Background and Related Work

Flow Matching. Given two distributions pg and p;, and
an interpolating probability path p; such that p;—¢g = po
and p;—1 = p;, flow matching (Lipman et al., 2023) aims
to learn the underlying vector field w,; that generates p;.
Directly regressing u; with a parametric version vg is un-
fortunately not possible as wu; is typically not known in
closed form. Instead, flow matching defines a conditional
probability path p;|; and its corresponding vector field wuy; .
The marginal vector field u; can then be learnt with vy by
regressing against u,|; with the CFM objective:
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Masked Discrete Diffusion Models. Consider a clean
data-point X ~ pqaa, Where x is represented as a one-hot
encoding over K categories. Discrete diffusion models
(Austin et al., 2021; Sahoo et al., 2024) map the com-
plex data distribution pga, to a simpler distribution via
a Markov process, with absorbing (or masked) diffusion
being the most common. In the masked diffusion frame-
work, the forward interpolation process (¢ )¢c[o,1] With the
associated noise schedule (v );co,1] results in marginals
q(z¢|x) = Cat(z+; axx + (1 — a)m), where z; and m de-
note intermediate latent variables and the one-hot encoding
for the special [MASK] token, respectively. The correspond-
ing posterior can be derived as:
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In the reverse process, one typically estimates pg(zs|z;),
whose optimal form matches Equation (2):
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Sahoo et al. (2024) include two modifications to xy, namely
zero-masking probabilities and carry-over unmasking,
leading to improved likelihoods. We also use this in this
work.

3D Molecular Generation. Several recent works (Irwin
et al., 2025; Le et al., 2023; Vignac et al., 2023; Huang
et al., 2023; Dunn & Koes, 2024) tackle the problem of
unconditional molecular structure and atomic co-generation
by sampling from the joint distribution over atom types and
coordinates. However, like all models that generate atomic
coordinates directly, they lack the ability to constrain the
design space to molecules accessible via synthetic chemistry.
A concurrent work (Shen et al., 2025) recently explored the
use of generated 3D structures to guide GFlowNet policies
in designing the graph of synthon-based linear molecules,
although it does not focus on the quality of the structures.

Synthesizable Molecule Generation. Beyond directly
optimizing synthesizability scores (Liu et al., 2022; Guo &
Schwaller, 2025) — which are often unreliable — the predom-
inant approach to ensuring synthetic accessibility involves
modifying generative models to incorporate reaction tem-
plates. Early methods explored autoencoders (Bradshaw
etal., 2019; 2020), genetic algorithms (Gao et al., 2021), and
reinforcement learning (Gottipati et al., 2020; Horwood &
Noutahi, 2020). More recently, GFlowNet-based (Koziarski
etal., 2024; Cretu et al., 2024; Seo et al., 2024; Gainski et al.,
2025) and transformer-based (Gao et al., 2024; Jocys et al.,
2024) methods have gained prominence. Synthesizability-
aware generative models have already shown practical utility
in biological discovery tasks (Swanson et al., 2024). How-
ever, most existing methods only generate molecular graphs
and do not produce 3D structures.

3. Dataset

Training a synthesizability-aware co-generation model re-
quires a dataset of easily synthesizable molecules in an
appropriate format. In addition to atomic coordinates, this
includes a graph-based representation from which plausible
synthetic pathways can be inferred. A common approach is
to use synthons—theoretical structural units that can be com-
bined to form complete molecules. While widely adopted
(Baker et al., 2024; Grigg et al., 2025; Medel-Lacruz et al.,
2025), synthon-based representations do not guarantee the
existence of a valid synthesis route, and do not directly pro-
vide one even if it exists. Moreover, they lack the flexibility
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Figure 1. SYNCOGEN is a simultaneous masked graph diffusion and flow matching model that generates synthesizable molecules in 3D
coordinate space. Each node corresponds to a building block and edges encode for chemical reactions. Note that nodes are not necessarily

linear and that the leaving groups are not displayed.

to constrain the reaction space, which is often critical when
prioritizing high-yield, high-reliability reactions or operat-
ing within the limits of automated synthesis platforms such
as self-driving labs (Abolhasani & Kumacheva, 2023).

Alternatively, many synthesis-aware generators employ ex-
ternal reaction simulators, such as RDKit, to glue building
blocks iteratively. While convenient, such black-box steps
offer no fine-grained control when a reagent has multiple
reaction centers, distinct atoms or atom sets that can each
serve as the specific site of bond formation or cleavage in a
coupling reaction. They also do not define atom—atom map-
pings between reactants and products, making it impossible
to trace product atoms back to their parent building blocks,
which in turn complicates edge assignment in building block
graph generation.

To overcome these limitations, we curate a new dataset
SYNSPACE comprising pairs of building block-level reac-
tion graphs by constructing atom-level and building block-
level graphs directly. We then calculate corresponding 3D
coordinate tensors for each graph using semi-empirical
methods (Bannwarth et al., 2019). See Figure 2 for an
overview of the data creation process.

3.1. SYNSPACE: Graph Generation

We begin by constructing a vocabulary of 93 commercially
available, low-cost building blocks and 19 high-yield reac-
tion templates. This vocabulary is adapted from the col-
lection proposed by Koziarski et al. (2024), retaining reac-
tions that (1) ensure all product atoms originate from the
two input reagents, and (2) involve at most one leaving
group per reagent. We emphasize these are not only fea-
sible chemistries, but rather simple and efficient reactions
with readily-available building blocks that can enable rapid

multi-synthesis.

We procedurally generate the SYNSPACE from this vo-
cabulary by iteratively attaching building block graphs at
their respective reaction centers with compatible chemical
reaction templates, described in detail in Appendix A.2. Us-
ing this approach, we obtain 622,766 building block and
reaction graphs, each constructed from 2 to 4 sequential re-
actions. For each resulting molecule, we generate multiple
low-energy conformations and retain their atomic coordi-
nates, with a total of 3,360,908 conformations. We will
make the SYNSPACE publicly available.

Note: Injectivity. Many commercially available building
blocks contain multiple reaction centers, each compatible
with a different set of corresponding reaction centers on
other building blocks. In this way, a building block-level
reaction graph G, = (X, FE) is not fully specified when
edges are parametrized by the reaction alone. To achieve
an injective correspondence, we therefore label edges from
node i to j > 4 by the triple

“

€ij = (T’, Uivvj)a

where 7 is the coupling reaction and (v;, v;) are the partici-
pating reaction centers on the source and destination blocks,
respectively. Strictly speaking, distinct stereoisomers that
differ only in post-coupling chirality collapse to the same
(X, F) representation, but this granularity suffices for the
scope of the current work.

3.2. SYNSPACE: Conformation Generation

For each molecular graph, 50 initial conformers were gen-
erated with the ETKDG (Riniker & Landrum, 2015) al-
gorithm (RDKit implementation). These structures were
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Figure 2. Graphical overview of SYNSPACEcreation process. Highly synthesizable molecules are procedurally constructed by sampling
synthesis pathways from a predefined set of building blocks and reactions. Starting from an initial building block, a reaction center, a
compatible reaction, and a suitable reactant are selected. This process is iteratively repeated for a fixed number of reaction steps. After the
final structure is assembled, multiple low-energy 3D conformations are generated.

energy-minimised using the MMFF94 force field, and all
conformers within 10 kcal/mol of the global minimum were
retained. The resulting geometries were then re-optimised
with the semi-empirical GFN2-xTB (Bannwarth et al., 2019)
method, after which the same 10 kcal/mol energy threshold
was applied. At every stage, redundant structures were re-
moved by geometry-based clustering (RMSD < 1.5). This
workflow yields, on average, 5.4 distinct conformers per
graph. Relative to exhaustive approaches such as CREST
(Pracht et al., 2024), the workflow is several orders of mag-
nitude faster; despite occasionally omitting some conforma-
tions, the retained structures are diverse and reproduce the
bond-length, bond-angle, and dihedral-angle distributions
observed in CREST-derived datasets (see Section 5.1).

4. Methods

Notation. Let B be the building-block vocabulary and R
the set of reaction templates, with cardinalities B := |B|
and R := |R|. We write N for the maximum number of
building blocks that any molecule in the training set can
contain, and M for the maximum number of atoms in a
single building block. For each block b € B we denote its
set of reaction-center atoms by V(b); the global maximum
of these counts i8 Vipax := maxpeg|V(b)|.

Hence tensor shapes contain factors such as B + 1 (to
accommodate the masked token mx in X), RV2  + 2
(to accommodate the no-edge and masked tokens A\g and
TE), together with the bounds N and M introduced above.
For any coordinate tensor C' and binary mask S we de-
fine the mask-weighted centroid and its centered version by

Cg:= Eggcj C:=0C-0Cs.

SYNCOGEN. SYNCOGEN is a masked-diffusion genera-
tor for building block-level reaction graphs and coordinates.
Each molecule is represented by a triple (X, F, C') where

X € {0, 1}V*IBl+1 encodes the sequence of building-block
identities, £ € {0, 1}V *N*IRIViiaxt2 Jabels the coupling
reaction (and centers) between every building block pair,
and C € RNXM>3 gtores all atomic coordinates. We de-
scribe the parameterization of graphs (X, E) in detail in Ap-
pendix B.1. Training combines two diffusion schemes: 1) a
discrete absorbing process on (X, E) using the categorical
forward kernel of Sahoo et al. (2024), and 2) a continuous,
visibility-aware process on C' whose endpoints are (i) a
rototranslationally-aligned isotropic Gaussian and (ii) a re-
centered ground truth, considering all "visible" atoms in the
prior.

In this section, we outline the most important compo-
nents of the training and sampling procedures of SYNCO-
GEN. Specifically, this includes the model architecture (Sec-
tion 4.1), noising schemes (Section 4.2), training-time con-
straints (Section 4.3), and sampling procedure (Section 4.4).

4.1. Model Architecture

At each timestep t, SYNCOGEN predicts building block

logits L;X, LE and a shifted coordinate estimate C’Ot The
total loss is the weighted sum of the cross-entropy term
Legraph on (X, E), the masked coordinate MSE term Lsk,
and the short-range pairwise distance term Lp,ir (see Ap-
pendix B.3 for the training algorithm and Appendix B.11
for loss details). We implement a modified version of SEM-
LAFLOW (Irwin et al., 2025), a SE(3) equivariant archi-
tecture originally designed for all-atom molecular design,
as the principal backbone to generate both coordinates and
graphs. As SEMLAFLOW handles atom and atom-level
bond representations as both inputs and outputs, we define
additional building-block-to-atom featurization protocols
(Appendix B.2) and atom-to-building-block output layers
(Appendix B.5).
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4.2. Noising Schemes

Graph Noising. Following Sahoo et al. (2024), we cor-
rupt true graphs (X, Eg) using the posterior described in
Section 2. In practice, as all true edge matrices Fy are
symmetric, we symmetrize the sampled probabilities for
the noising and denoising of F; correspondingly (see Ap-
pendix B.6).

Coordinate Noising. For any time ¢ where X; contains a
masked building block, we lack the information necessary
to disregard any of its M possible atoms as padding. For
this reason, we design a visibility mask S; that considers
all M atoms for each noised coordinate at time ¢ as valid.
We then center the prior by its visibility-masked centroid
Cy = 01 —Cig,. Here, all atoms a € supp(S;) \ supp(Sp)
are potentially valid at time ¢, but represent padding indices
in the true molecule.

We thus must construct and interpolate a data-prior pair
(C1, Cy) that contains a consistent number of valid atoms
|S¢| by which both C, and C; are centered. To handle atoms
that do not appear in Cj, we record their points in C’l, re-
center Cj by the same visibility-masked centroid, then copy
the atoms to their respective indices in Cj. This process is
formalized in Section 4.2.

Here, A; is the set of all atom indices a that constitute true
atoms in Xg. Essentially, we task the model with rearrang-
ing the true atoms while disregarding padding by learning
to fix padding atoms in place. Note that S; = Sy for all ¢
where X; contains no masked building blocks.

Algorithm 1 PAIRDATA (Cy, Sy, C1, t, X;)

Input: Cj (clean coordinates), Sy (atom mask), C (prior
sample), t € [0, 1], X; (partially masked nodes)
Output: Co (re-centered ground truth), C; (interpolated
noisy coords)
Dy« {i| X¢[i] #7x}
Sili,a] < 1[i ¢ Dy Va € Aj]
01 +— Ch — Cl S
Cy + ZEROTENSOR()
for all (i,a) do
if So[i,a] = 1 then
éo[i,a} — Co[i, (1] — (let
else if S;[i, a] = 1 then
Co[i, (l} — 4 [Z, a]
end if
end for
C G~ (1—t)Co+tCy
: return (Co, Cy)

> denoised blocks
> visibility

> dummy atom

— =
s AN A AR AR

[ —
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Note: Non-Equivariance. This process results in data
pairings where both Cjy and C; are properly centered ac-

cording to atoms that are possibly valid at time ¢. It is
important to note that under this scheme, while the model
is SE(3)-equivariant with respect to the system defined
by the partial mask S, it is not equivariant with respect
to the orientation of the molecule itself unless Df = @,
as the presence and temporary validity of masked dummy
atoms offsets the true atom centering and thus breaks both
translational and rotational equivariance.

Flexible Atom Count. Most 3D de novo molecule gener-
ation methods requires the specification of the number of
atoms. Because the prior of SYNCOGEN is over building
blocks, we naturally handle flexible number of atoms during
generation and model any excessive atoms as ghost atoms.

4.3. Training-time Constraints

SYNCOGEN inherits various training-time simplifications
from MDLM (Sahoo et al., 2024), including zero masked
logit probabilities and carry-over logit unmasking. In addi-
tion to these, we implement the following:

1. No-Edge Diagonals. We set the diagonals of all edge
logit predictions LY to no-edge, as no building block
has a coupling reaction-induced bond to itself.

2. Edge Count Limit. Let

ky = Zl§i<j§n ]l[Et[i»ja ] ¢ {WEv)‘E}]> (&)

be the number of unmasked true edges in the upper
triangle of E,. If ky = n — 1, we have the correct
number of edges for a molecule containing n building
blocks and therefore set all remaining edge logits to Ag.

3. Compatibility Masking. Assume that for some F; an
edge entry is already denoised, E,[i, j, -] = (r,vi,v;),
meaning that building block ¢ reacts with building block
Jj via reaction r and centers v; € V(X;), v; € V(Xj).
Define the sets of center-matched reagents

B2, := {b € B (b,v) matches reagent A inr}, ©
Bfu :={b € B (b,v) matches reagent B in r}.

For every node slot i (resp. j) we construct a
| B]-dimensional binary mask

Xi,k = ]l[bk S B;L}vi],
Xk = 1o, € BE, ], )

k=1,...,|B|
so that the soft-max for X,[s, -] (resp. X;[j,]) is eval-
uated only over the 1-entries of X; (resp. X;). Anal-
ogously, once a node identity X;[j] = b is denoised,

incoming edge channels (4, j) with j > 4 are masked to
reactions e = (r, v;,v;) such that b € BZ, .
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Put simply, we restrict logits to disallow loops, to impose
the a limit on the number of edges, and to better ensure
the selection of chemically compatible building blocks and
reactions.

4.4. Sampling

Sampling begins by drawing a building block count n ~
Cat(7fag ), setting the node and edge tensors to the masked
tokens, Xi[i,]] = 7x, Eili,j,] = wg for every 0 <
i,j < N, and padding all (i > n) rows/columns with the
no—edge token Ag. The initial coordinates are an isotropic
Gaussian C; ~ N(0, )N *M>3_ From this state the sam-
pler walks backwards in diffusion time, and at each step it
(i) recenters the current coordinates by the visibility mask
S; derived from X, (ii) generates node, edge and coordi-
nate predictions with the trained model, (iii) applies the
single-parent edge constraint (Section 4.4), (iv) draws the
next discrete state, and (v) updates coordinates by an Eu-
ler step. After a deterministic pass at t = 0 we calculate
(Xo, EO) = argmaxy, LE[- -+ | k] center the coordinates a
final time, yielding the molecule ()A(o7 Fy, é’o). Complete
line-by-line pseudocode is provided in Appendix B.4. Addi-
tionally, we find inference annealing (see Appendix D.1) to
minorly improve performance at sampling time.

Constraint-Aware Edge Pruning. By construction, a
molecule containing n connected building blocks contains
exactly n — 1 edges, and fragment j > 0 has a unique
parent i < j. Consequently, let E} € [0, 1]”X”X|R‘Vr§ax
be the soft-max edge probabilities produced at step t. The
routine below resolves the unique parent for every building
block column 7 > 0 and returns a probability tensor E~§

with exactly one non—zero entry per column.

Algorithm 2 SAMPLEEDGES (Ej, n)

Input: edge probabilities E

Output: pruned probabilities £,

: Eé ~—0

:forj=1ton—1do
(ij’ej) ~ Cat({Eé[i,j,e] | 0<i< J})
Eflij, j,ej] 1

end for

return £

AN AN A e

E} is then symmetrized and fed to the discrete reverse sam-
pler described in Appendix B.6.

5. Experiments
5.1. De Novo 3D Molecule Generation

We first study SYNCOGEN in unconditional molecule gen-
eration jointly with 3D coordinates and reaction graphs. We
evaluate SYNCOGEN against several recently published all-
atom generation frameworks which produce 3D coordinates,
including SemlaFlow (Irwin et al., 2025), EQGAT-Diff (Le
et al., 2023), MiDi (Vignac et al., 2023), JODO (Huang
et al., 2023), and FlowMol (Dunn & Koes, 2024). To iso-
late modelling from data effects, we retrain SemlaFlow on
SYNSPACEfor the same number of epochs as SYNCOGEN.

For each model, we sample 1000 molecules and compute
stringent metrics capturing chemical soundness, synthetic
accessibility, conformers quality, and distributional fidelity.
Pertaining to the molecular graph, we report the RDKit
sanitization validity (Valid.) and retrosynthetic solve rate
(AiZynthFinder (Genheden et al., 2020) (AiZyn.) and Syn-
theseus (Maziarz et al., 2025) (Synth.)). For the generated
conformers, we compute the median non-bonded interac-
tion energies per atom via the forcefield method GFN-FF
and the semiempirical quantum chemistry method GFN2-
xTB (Bannwarth et al., 2019; Spicher & Grimme, 2020), as
well as PoseBusters (Buttenschoen et al., 2024) validity rate
(PB Vali.). We also evaluate the diversity (Div.) as average
pairwise Tanimoto similarity, novelty (Nov.) as the percent-
ages of candidates not appearing in the training set, and the
Fréchet ChemNet Distance (Preuer et al., 2018) (FCD) on
the distance between generated samples and the training
distribution. Details on how the metrics are computed can
be found in the Appendix.

The results are presented in Table 1. For chemical reason-
ableness, we see that SYNCOGEN generates almost entirely
valid molecules. Our generation process mimics a multi-step
reaction pathway, and as a result our molecules are signif-
icantly more synthesizable compared to baseline methods.
Because AiZynthFinder and Syntheseus solve only 50-70
% of known drug-like molecules, our 50-72 % scores likely
underestimate true synthesizability.

For structural reasonableness, the generated conformers
reproduce the overall energy distributions and have very
favorable non-covalent interaction energies as evaluated by
relatively accurate computational chemistry methods, es-
pecially when compared to the baseline methods (Table 1
and Figure 3). This is also evident by the lack of structural
changes upon further geometric relaxation (Figure 9). The
low non-bonded energies indicate SYNCOGEN learns to
sample many intramolecular interactions, also seen with
our example samples ( Figure 8). Quantitatively, 87% of
these conformers pass PoseBusters pose plausibility checks.
Furthermore, SYNCOGEN reproduce the delicate data dis-
tribution of bond lengths, angles, and dihedrals (Figures 3
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Table 1. Comparison of generative methods. 1/| indicate that higher/lower is better.

Primary metrics Secondary metrics

Group Method Valid. + AiZyn. 1 Synth. + GEN-FF | xTB-2 | PB Val. 1 ECD | Div. 1 Nov. 1

Rxns & coords SYNCOGEN 96.7 50 72 301 091 872 291 0.78 93.9
SEMLAFLOW 933 38 36 596 -072 872 721 085 996
SEMLAFLOW w. SYNSPACE  72.0 27 48 327  -080 603 295 0.80 93.0
EQGAT-diff 859 37 24 489 073 789 675 0.86 99.5

Atoms & coords MiDi 744 33 31 490 074 630 600 0.85 99.6
JODO 91.1 38 31 472 074 841 422 085 994
FlowMol-CTMC 89.5 24 25 591  -068 693 130 0.86 99.8
FlowMol-Gaussian 48.3 6 8 424 071 307 210 0.86 99.7

Table 2. Ablations studies. We incrementally remove inference
annealing, auxiliary losses, self-conditioning, scaled-noise, and
constraints to see the performance difference. All results shown are
at 50 epochs rather than 100 epochs in Table 1. See Sections 4.3
and 4.4, (Appendices B.3, B.9 and B.11).

Method Valid.  GFN-FF |

Base 93.5 4.871
- Inference annealing 93.5 4.933
- Auxiliary losses 85.3 5.194
- Self-conditioning 69.0 6.424
- Scaled noise 70.4 5.091
- Constraints 42.4 67.006

and 7). For example, SYNCOGEN generates fewer sp>C-
sp?N bonds that are too short, captures peaky bond angle
distributions (sp3C-sp3C-sp3N), and replicate the broad
dihedral angle distribution of the flexible sp>C-sp>C-sp>C-
sp3C while still covering the rigid dihedral angles (e.g.,
sp3C-sp?C-sp?C-sp?C). Wasserstein-1 distances and JSD
can be found in Appendix D.3, and additional plots on other
bond lengths/angles/dihedrals can be found in Figure 7.

Training-, sampling-time and architectural ablations are
presented in Table 2 and Appendix D.1. The largest per-
formance enhancement originates froom constraints and
self-conditioning with other training/sampling details also
contributing. The performance gap between SYNCOGEN
and SemlaFlow retrained on our dataset underscores that
our training procedure — rather than the architecture or
dataset — is the primary driver of performance. The multi-
modal can further perform other tasks; for example, given
randomly assembled molecules from the reaction graph,
SYNCOGEN can perform zero-shot conformer generation
at a quality similar to ETKDG as implemented in RDKit
(Table 4).

Finally, SYNCOGEN captures the training distribution as
indicated by the low FCD, while generally producing novel
molecules. The generated samples have slightly lower diver-
sity as a trade-off of using a (limited) set of reaction building
blocks. All generated samples are unique.

5.2. Molecular Inpainting for Fragment Linking

To demonstrate the practical usefulness of SYNCOGEN, we
study fragment linking (Bancet et al., 2020) to design easily-
synthesizable analogues of hard-to-make drugs. Fragment
linking in drug design enables the construction of potent
molecules by connecting smaller fragments that are known
to bind distinct regions of a target site. We formulate frag-
ment linking as a molecular inpainting task, where we fix
the identity and coordinates of two fragments in a known
ligand and sample its missing parts consistent with both
geometry and reaction grammar.

As a case study, we pick several FDA-approved, hard-to-
synthesize small-molecules with experimental crystal struc-
tures, each bound to a different target protein. These ligands
contains a match for at least two of our building blocks.
At sampling time, we condition on the substructure match
by keeping fixed fragments denoised and replacing their
coordinates with the corresponding linearly interpolated
configuration at each time step ¢ (see Appendix B.13 for
details).

We evaluate our generated molecules using AutoDock Vina
(Figure 4). SYNCOGEN consistently produces molecules
with docking scores on par with or better than the native lig-
and while satisfying constraints on the presence of specific
building blocks. Crucially, unlike existing approaches, it
also guarantees a streamlined synthetic route by design (Ta-
ble 6). Sample synthetic pathways are shown in Figure 10.
The proof-of-concept inpainting setup is directly applica-
ble for tasks such as scaffold hopping or the generation of
synthesizable analogs.

Lastly, we emphasize using SYNCOGEN in this way does
not require any retraining, and unlike previous methods
(Schneuing et al., 2024; Igashov et al., 2024) the model links
fragments using building blocks and reactions to ensure the
synthesizability of the designs. We benchmarked SYNCoO-
GEN against the state-of-the-art, purpose-built fragment-
linking model DiffLinker (Igashov et al., 2024), and the



SYNCOGEN: Synthesizable 3D Molecule Generation via Joint Reaction and Coordinate Modeling

SynCoGen EQGAT-Diff FlowMol-CTMC - SynSpace
SemlaFlow-retrained MiDi FlowMol-Gauss === Geom-Drugs GFN-FF
SemlaFlow JODO
Geom-Drugs
sp2C~sp2N sp3C-sp2C-sp2C-sp2C
a) P P b) P P : 2 2 C)
0
SynSpace
25
20 300° 60°
2z
215 2
s 2
o}
10 o
5
240° 120°
0
12 13 14 15 16 17
Length /A
180°
s s
s ®
‘; ‘; 0 5 10 15 20 25
< < Energy / kcal mol-*
1.2 13 14 15 16 17 0 50 100 150 200 250 300 350
Bond length / A Dihedral / ©
GFN2-xTB
d) sp3C-sp3C-sp3N e) sp3C-sp3C-sp3C-sp3C f)
0° 0° — . Geom-Drugs
- AN SynSpace
300° 60° 300° 60°
> O :
‘@
c
o}
[a]

240° 120° 240°

180° 180°

A w. data
A w. data

0 50 100 150 200 250 0 50 100 150 200 250 300 350

Angle /® Dihedral / °

-1.2 -10 -08 -06 -04 -0.2 0.0
Energy / kcal mol-*

Figure 3. Conformer energy and angle and bond length distribution comparisons. a) Bond lengths, b) bond angles, c¢) and d) dihedral
angles, e) average per-atom GFN2-xTB non-covalent interaction energies and f) average per-atom GFN-FF non-bonded interaction
energies. Comparison to baseline generative models and the kernel density estimation of the training data are shown as differences or as

solid lines.

retrosynthesis solve rate for DiffLinker is 0% where as it is
58-79% for SYNCOGEN (Table 6) .

6. Conclusion

In this work, we introduced SYNCOGEN, a generative
model for synthesizable 3D molecular design. To sup-
port training, we curated a new dataset of highly synthe-
sizable molecules paired with low-energy 3D conforma-
tions. SYNCOGEN achieves state-of-the-art performance
on standard 3D generation benchmarks, while uniquely en-
abling direct reconstruction of synthesis pathways. We also
showed its practical utility in molecular inpainting for easily-
synthesizable analog design and scaffold hopping.

While SYNCOGEN marks a significant step toward
synthesizability-aware 3D generation, it also opens several
directions for future work. Currently, the model is trained
unconditionally to produce valid conformations. Future

extensions could incorporate property-conditioned genera-
tion—either through guided optimization or direct condi-
tioning on binding pockets to design high-affinity ligands.
One limitation of the current approach is the relatively con-
strained set of reactions and building blocks, which could be
expanded to cover a broader chemical space. Nonetheless,
curated reaction vocabularies may remain advantageous in
contexts like automated or high-throughput synthesis.

References

Abolhasani, M. and Kumacheva, E. The rise of self-driving
labs in chemical and materials sciences. Nature Synthesis,
2(6):483-492, 2023.

Abramson, J., Adler, J., Dunger, J., Evans, R., Green, T.,
Pritzel, A., Ronneberger, O., Willmore, L., Ballard, A. J.,
Bambrick, J., Bodenstein, S. W., Evans, D. A., Hung, C.-
C., O’Neill, M., Reiman, D., Tunyasuvunakool, K., Wu,



SYNCOGEN: Synthesizable 3D Molecule Generation via Joint Reaction and Coordinate Modeling

a) Referiv!t §_ Fixed fragments :‘..(;}
I y\"’\ ';, o< @4 \;

by ] 4 ) \ 4 %Y

Y 7 4 D

A &

CUNr Q\

>

v Y ‘{’4‘)

lx L=
A

_Density

Vina: -6.68, SA: 3.30 Vina: -7.32, SA: 3.73

Vina: -7.28, SA: 3.85 (1) Vina: -6.26, SA: 3.48

Reference Fixed fragments

“l

D Q. & 4 -
7 ~ ] 2 =

v‘v»“:} e /\‘ e \;’ ~ N7 4 T

/@ /&/ Vv

K oy
‘ o~ S

F o f};{
¥ = » N =
W 4

Density  _

Vina: -8.56, SA: 4.19

Vina: -9.84, SA: 3.37 Vina: -9.26, SA: 3.53

NTRE A_F HN
r

Reference Fixed fragments 'y s
5 | Lk | :
| x L) N 531
3 - > ~ e - 20
[, 5 S { //i\ Q\“T,AQ \b\ [ '\nﬁ 8
A 3 o
Vina: -6.09, SA: 2.95 Vina: -6.99, SA: 2.70 Vina: -6.96, SA: 3.31 Vina: -6.31, SA: 2.86
b \V4 VRN
) OH L o o L Y c)
B ) ° v o
O+ o N — . I_Br + § ,O
N_F
N
LF

R

AN

HN

Figure 4. Molecular inpainting. a) We perform fragment linking starting from three experimentally identified ligands in the PDB. Starting
fragments are substructure matches with building blocks used by our model. We show three examples of linkers generated by SYNCOGEN
per structure and their computed Vina scores. b) Proposed synthesis pathway for molecule (1) sampled from our model and c) structure of
(1) docked onto PDB 7n7x using AlphaFold3 compared against the PDB ligand.

Z., Zemgulyté, A., Arvaniti, E., Beattie, C., Bertolli, O.,
Bridgland, A., Cherepanov, A., Congreve, M., Cowen-
Rivers, A. L., Cowie, A., Figurnov, M., Fuchs, F. B.,
Gladman, H., Jain, R., Khan, Y. A., Low, C. M. R., Per-
lin, K., Potapenko, A., Savy, P., Singh, S., Stecula, A.,
Thillaisundaram, A., Tong, C., Yakneen, S., Zhong, E. D.,
Zielinski, M., Zidek, A., Bapst, V., Kohli, P., Jaderberg,
M., Hassabis, D., and Jumper, J. M. Accurate structure
prediction of biomolecular interactions with AlphaFold 3.
Nature, 630(8016):493-500, June 2024.

Austin, J., Johnson, D. D., Ho, J., Tarlow, D., and Van
Den Berg, R. Structured denoising diffusion models in
discrete state-spaces. Advances in neural information
processing systems, 34:17981-17993, 2021.

Axelrod, S. and Gomez-Bombarelli, R. Geom, energy-
annotated molecular conformations for property predic-
tion and molecular generation. Scientific Data, 9(1):185,
2022.

Baker, F. N., Chen, Z., Adu-Ampratwum, D., and Ning,
X. RLSynC: Offline—online reinforcement learning for
synthon completion. Journal of Chemical Information
and Modeling, 64(17):6723-6735, 2024.

Bancet, A., Raingeval, C., Lomberget, T., Le Borgne, M.,
Guichou, J.-F., and Krimm, I. Fragment linking strategies

for structure-based drug design. Journal of medicinal
chemistry, 63(20):11420-11435, 2020.

Bannwarth, C., Ehlert, S., and Grimme, S. GFN2-xTB—
An accurate and broadly parametrized Self-Consistent
Tight-Binding quantum chemical method with multipole
electrostatics and Density-Dependent dispersion contri-
butions. J. Chem. Theory Comput., 15(3):1652-1671,
March 2019.

Bose, A. J., Akhound-Sadegh, T., Huguet, G., Fatras, K.,
Rector-Brooks, J., Liu, C.-H., Nica, A. C., Korablyov,
M., Bronstein, M., and Tong, A. Se(3)-stochastic flow
matching for protein backbone generation, 2024. URL
https://arxiv.org/abs/2310.02391.

Bradshaw, J., Paige, B., Kusner, M. J., Segler, M., and
Hernandez-Lobato, J. M. A model to search for syn-
thesizable molecules. Advances in Neural Information
Processing Systems, 32, 2019.

Bradshaw, J., Paige, B., Kusner, M. J., Segler, M., and
Hernandez-Lobato, J. M. Barking up the right tree:
an approach to search over molecule synthesis DAGs.
Advances in neural information processing systems, 33:
6852-6866, 2020.

Buttenschoen, M., Morris, G. M., and Deane, C. M. Pose-
busters: Ai-based docking methods fail to generate physi-


https://arxiv.org/abs/2310.02391

SYNCOGEN: Synthesizable 3D Molecule Generation via Joint Reaction and Coordinate Modeling

cally valid poses or generalise to novel sequences. Chem-
ical Science, 15(9):3130-3139, 2024. ISSN 2041-6539.
doi: 10.1039/d3sc04185a.
org/10.1039/D3SC04185A.

Campbell, A., Yim, J., Barzilay, R., Rainforth, T., and
Jaakkola, T. Generative flows on discrete state-spaces:
Enabling multimodal flows with applications to protein
co-design, 2024. URL https://arxiv.org/abs/
2402.04997.

Cretu, M., Harris, C., Roy, J., Bengio, E., and Lio, P. Syn-
FlowNet: Towards molecule design with guaranteed syn-
thesis pathways. arXiv preprint arXiv:2405.01155, 2024.

Dunn, I. and Koes, D. R. Mixed continuous and categorical
flow matching for 3d de novo molecule generation, 2024.
URL https://arxiv.org/abs/2404.197309.

Fan, Z., Yang, Y., Xu, M., and Chen, H. EC-Conf: A
ultra-fast diffusion model for molecular conformation
generation with equivariant consistency. Journal of Chem-
informatics, 16(1):107, September 2024.

Flamary, R., Courty, N., Gramfort, A., Alaya, M. Z., Bois-
bunon, A., Chambon, S., Chapel, L., Corenflos, A., Fatras,
K., Fournier, N., Gautheron, L., Gayraud, N. T., Janati,
H., Rakotomamonjy, A., Redko, I., Rolet, A., Schutz, A.,
Seguy, V., Sutherland, D. J., Tavenard, R., Tong, A., and
Vayer, T. Pot: Python optimal transport. Journal of Ma-
chine Learning Research, 22(78):1-8,2021. URL http:
//Jjmlr.org/papers/v22/20-451.html.

Gainski, P., Boussif, O., Shevchuk, D., Rekesh, A., Parviz,
A., Tyers, M., Batey, R. A., and Koziarski, M. Scal-
able and cost-efficient de novo template-based molecu-
lar generation. In ICLR 2025 Workshop on Generative
and Experimental Perspectives for Biomolecular Design,
2025.

Gao, W. and Coley, C. W. The synthesizability of molecules
proposed by generative models. Journal of chemical
information and modeling, 60(12):5714-5723, 2020.

Gao, W., Mercado, R., and Coley, C. W. Amortized tree gen-
eration for bottom-up synthesis planning and synthesiz-
able molecular design. arXiv preprint arXiv:2110.06389,
2021.

Gao, W, Luo, S., and Coley, C. W. Generative artificial
intelligence for navigating synthesizable chemical space.
arXiv preprint arXiv:2410.03494, 2024.

Genheden, S., Thakkar, A., Chadimov4, V., Reymond, J.-L.,
Engkvist, O., and Bjerrum, E. AiZynthFinder: a fast,
robust and flexible open-source software for retrosyn-
thetic planning. Journal of Cheminformatics, 12(1):70,
November 2020.

URL http://dx.doi.

10

Gottipati, S. K., Sattarov, B., Niu, S., Pathak, Y., Wei, H.,
Liu, S., Blackburn, S., Thomas, K., Coley, C., Tang, J.,
et al. Learning to navigate the synthetically accessible
chemical space using reinforcement learning. In Interna-

tional conference on machine learning, pp. 3668-3679.
PMLR, 2020.

Grigg, T. G., Burlage, M., Scott, O. B., Sydow, D., and
Wilbraham, L. Active learning on synthons for molecular
design. In ICLR 2025 Workshop on Generative and Ex-
perimental Perspectives for Biomolecular Design, 2025.

Guo, J. and Schwaller, P. Directly optimizing for synthesiz-
ability in generative molecular design using retrosynthe-
sis models. Chemical Science, 16(16):6943-6956, 2025.

Hassan, M., Shenoy, N., Lee, J., Stark, H., Thaler, S.,
and Beaini, D. Et-flow: Equivariant flow-matching for
molecular conformer generation. 2024. URL https:
//arxiv.org/abs/2410.22388.

Horwood, J. and Noutahi, E. Molecular design in syntheti-
cally accessible chemical space via deep reinforcement
learning. ACS omega, 5(51):32984-32994, 2020.

Huang, H., Sun, L., Du, B., and Lv, W. Learning joint
2d & 3d diffusion models for complete molecule genera-
tion, 2023. URL https://arxiv.org/abs/2305.
12347.

Igashov, 1., Stirk, H., Vignac, C., Schneuing, A., Satorras,
V. G., Frossard, P., Welling, M., Bronstein, M., and Cor-
reia, B. Equivariant 3d-conditional diffusion model for
molecular linker design. Nature Machine Intelligence,
2024.

Irwin, R., Tibo, A., Janet, J. P., and Olsson, S. Semlaflow
— efficient 3d molecular generation with latent attention
and equivariant flow matching, 2025. URL https://
arxiv.org/abs/2406.07266.

Jing, B., Corso, G., Chang, J., Barzilay, R., and Jaakkola,
T. Torsional diffusion for molecular conformer genera-
tion. 2023. URL https://arxiv.org/abs/2206.
01729.

Jocys, Z., Willems, H. M., and Farrahi, K. Synth-
Former: Equivariant pharmacophore-based generation of
molecules for ligand-based drug design. arXiv preprint
arXiv:2410.02718, 2024.

Koziarski, M., Rekesh, A., Shevchuk, D., van der Sloot, A.,
Gainski, P., Bengio, Y., Liu, C., Tyers, M., and Batey,
R. RGFN: Synthesizable molecular generation using
GFlowNets. Advances in Neural Information Processing
Systems, 37:46908-46955, 2024.


http://dx.doi.org/10.1039/D3SC04185A
http://dx.doi.org/10.1039/D3SC04185A
https://arxiv.org/abs/2402.04997
https://arxiv.org/abs/2402.04997
https://arxiv.org/abs/2404.19739
http://jmlr.org/papers/v22/20-451.html
http://jmlr.org/papers/v22/20-451.html
https://arxiv.org/abs/2410.22388
https://arxiv.org/abs/2410.22388
https://arxiv.org/abs/2305.12347
https://arxiv.org/abs/2305.12347
https://arxiv.org/abs/2406.07266
https://arxiv.org/abs/2406.07266
https://arxiv.org/abs/2206.01729
https://arxiv.org/abs/2206.01729

SYNCOGEN: Synthesizable 3D Molecule Generation via Joint Reaction and Coordinate Modeling

Le, T., Cremer, J., Noé, F., Clevert, D.-A., and Schiitt,
K. Navigating the design space of equivariant diffusion-
based generative models for de novo 3d molecule genera-

tion, 2023. URL https://arxiv.org/abs/2309.

17296.

Lee, D. and Cho, Y. Fine-tuning pocket-conditioned 3D
molecule generation via reinforcement learning. In /ICLR
2024 Workshop on Generative and Experimental Perspec-
tives for Biomolecular Design, 2024.

Lipman, Y., Chen, R. T. Q., Ben-Hamu, H., Nickel, M., and
Le, M. Flow matching for generative modeling, 2023.
URL https://arxiv.org/abs/2210.02747.

Liu, C.-H., Korablyov, M., Jastrzebski, S., Wtodarczyk-
Pruszynski, P., Bengio, Y., and Segler, M. Retrognn:
fast estimation of synthesizability for virtual screening
and de novo design by learning from slow retrosynthesis
software. Journal of Chemical Information and Modeling,
62(10):2293-2300, 2022.

Maziarz, K., Tripp, A., Liu, G., Stanley, M., Xie, S., Gainski,
P, Seidl, P., and Segler, M. H. S. Re-evaluating ret-
rosynthesis algorithms with syntheseus. Faraday Dis-
cussions, 256:568-586, 2025. ISSN 1364-5498. doi:
10.1039/d4fd00093e. URL http://dx.doi.org/
10.1039/D4FDO0093E.

Medel-Lacruz, B., Herrero, A., Martin, F., Herrero, E.,
Luque, F. J., and Vazquez, J. Synthon-based strategies
exploiting molecular similarity and protein—ligand in-
teractions for efficient screening of ultra-large chemical

libraries. Journal of Chemical Information and Modeling,
2025.

Morehead, A. and Cheng, J. Geometry-complete diffusion
for 3D molecule generation and optimization. Communi-
cations Chemistry, 7(1):150, 2024.

Pracht, P., Grimme, S., Bannwarth, C., Bohle, F., Ehlert,
S., Feldmann, G., Gorges, J., Miiller, M., Neudecker, T.,
Plett, C., Spicher, S., Steinbach, P., Wesotowski, P. A.,
and Zeller, F. Crest—a program for the exploration of
low-energy molecular chemical space. The Journal of
Chemical Physics, 160(11):114110, 03 2024. ISSN 0021-

9606. doi: 10.1063/5.0197592. URL https://doi.

org/10.1063/5.0197592.

Preuer, K., Renz, P., Unterthiner, T., Hochreiter, S., and
Klambauer, G. Fréchet ChemNet distance: A metric for

generative models for molecules in drug discovery. J.
Chem. Inf. Model., 58(9):1736-1741, September 2018.

Riniker, S. and Landrum, G. A. Better informed distance
geometry: Using what we know to improve conformation
generation. J. Chem. Inf. Model., 55(12):2562-2574,
December 2015.

11

Sahoo, S. S., Arriola, M., Schiff, Y., Gokaslan, A., Marro-
quin, E., Chiu, J. T., Rush, A., and Kuleshov, V. Simple
and effective masked diffusion language models, 2024.
URL https://arxiv.org/abs/2406.07524.

Schneuing, A., Harris, C., Du, Y., Didi, K., Jamasb,
A., Igashov, 1., Du, W., Gomes, C., Blundell, T,
Lio, P., Welling, M., Bronstein, M., and Correia, B.
Structure-based drug design with equivariant diffusion
models, 2024. URL https://arxiv.org/abs/
2210.13695.

Seo, S., Kim, M., Shen, T., Ester, M., Park, J., Ahn, S., and
Kim, W. Y. Generative flows on synthetic pathway for
drug design. arXiv preprint arXiv:2410.04542, 2024.

Shen, T., Seo, S., Irwin, R., Didi, K., Olsson, S., Kim,
W. Y., and Ester, M. Compositional flows for 3D
molecule and synthesis pathway co-design. arXiv
preprint arXiv:2504.08051, 2025.

Spicher, S. and Grimme, S. Robust atomistic modeling
of materials, organometallic, and biochemical systems.
Angewandte Chemie International Edition, 59(36):15665—
15673, 2020.

Sun, M., Lo, A., Guo, M., Chen, J., Coley, C. W., and Ma-
tusik, W. Procedural synthesis of synthesizable molecules.
In The Thirteenth International Conference on Learning
Representations, 2025.

Swanson, K., Liu, G., Catacutan, D. B., Arnold, A., Zou, J.,
and Stokes, J. M. Generative Al for designing and validat-
ing easily synthesizable and structurally novel antibiotics.
Nature Machine Intelligence, 6(3):338-353, 2024.

Torge, J., Harris, C., Mathis, S. V., and Lio, P. DiffHopp: A
graph diffusion model for novel drug design via scaffold
hopping. arXiv preprint arXiv:2308.07416, 2023.

Vignac, C., Osman, N., Toni, L., and Frossard, P. Midi:
Mixed graph and 3d denoising diffusion for molecule
generation, 2023. URL https://arxiv.org/abs/
2302.09048.

Wang, C., Alamdari, S., Domingo-Enrich, C., Amini, A. P,,
and Yang, K. K. Toward deep learning sequence—structure
co-generation for protein design. Current Opinion
in Structural Biology, 91:103018, 2025. ISSN 0959-
440X. doi: https://doi.org/10.1016/j.sbi.2025.103018.
URL https://www.sciencedirect.com/
science/article/pii/S0959440X25000363.

Yang, S., Ju, L., Peng, C., Zhou, J., Cai, Y., and Feng,
D. Co-design protein sequence and structure in dis-
crete space via generative flow. Bioinformatics, pp.
btaf248, 04 2025. ISSN 1367-4811. doi: 10.1093/
bioinformatics/btaf248. URL https://doi.org/
10.1093/bioinformatics/btaf248.


https://arxiv.org/abs/2309.17296
https://arxiv.org/abs/2309.17296
https://arxiv.org/abs/2210.02747
http://dx.doi.org/10.1039/D4FD00093E
http://dx.doi.org/10.1039/D4FD00093E
https://doi.org/10.1063/5.0197592
https://doi.org/10.1063/5.0197592
https://arxiv.org/abs/2406.07524
https://arxiv.org/abs/2210.13695
https://arxiv.org/abs/2210.13695
https://arxiv.org/abs/2302.09048
https://arxiv.org/abs/2302.09048
https://www.sciencedirect.com/science/article/pii/S0959440X25000363
https://www.sciencedirect.com/science/article/pii/S0959440X25000363
https://doi.org/10.1093/bioinformatics/btaf248
https://doi.org/10.1093/bioinformatics/btaf248

SYNCOGEN: Synthesizable 3D Molecule Generation via Joint Reaction and Coordinate Modeling

Yoo, K., Oertell, O., Lee, J., Lee, S., and Kang, J. Tur-
boHopp: Accelerated molecule scaffold hopping with
consistency models. Advances in Neural Information
Processing Systems, 37:41157-41185, 2024.

12



SYNCOGEN: Synthesizable 3D Molecule Generation via Joint Reaction and Coordinate Modeling

A. Chemistry Details
A.1. Building Blocks and Reactions

The 93 selected commercial building blocks and their respective reaction centers are shown in Figure 5. For chemical
reactions, we focused on cross coupling reactions to link fragments together. We chose 8 classes of robust reactions, which
can be subdivided into 19 types of reaction templates, see Figure 6. We note that our reaction modelling is simplified. For
example, boronic acids in building blocks (B(OH),) are replaced with boranes (BH;); we do not consider the need for
chemical protection on certain functional groups (e.g. N-Boc); we do not consider directing group effects or stoichiometry
when multiple reaction centers are available. These edge cases are comparably minimal through the careful curation of
building blocks to avoid such infeasible chemical reactions.

A.2. Graph Generation
Helper definitions. We annotate each building block with its reaction center atom indices V(b) C V() and its and each
intrinsic atom-level graph by H(b) := (V(b), L(b)), where V' (b) is the set of atoms in b and L(b) C V/(b) x V (b) is the set

of covalent bonds internal to the block. Each reaction template r is annotated with a Boolean tuple ((14(r), I5(r)) € {0,1}?
describing whether reagent A or reagent B in r, respectively, contains a leaving atom.

Given the current atom graph G, = (V;, L,) and an atom v € V,, of degree 1, the routine UNIQUENEIGHBOR (v) returns
the single atom u € V, such that (u,v) € L,. Throughout the vocabulary, every leaving-group center has exactly one
neighbour.

A reaction template r is considered compatible with (b;, v) and (5, ) if it queries for first and second reagent substructures
that match (b;, v) and (b, ), respectively.
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Figure 5. List of building blocks, their respective reaééon centers (in red), and their SMILES representation.
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Suzuki aryl bromide
[c:1]-[Br].[c:2]-[B]>>[c:1]-[c:2]

HO,
HO

Suzuki aryl iodide
[c:1]-[1].[c:2]-[B]>>[c:1]-[c:2]

HO,
&)
HO

Amide coupling, primary amine

e

&zl
;
g

—_—

2l
;
g

[C:1](=[0:2])-[Oh].[INh2:3]-[#6&!$(C=[O,N]):4]

>>[C:1](=[0:2])-[Nh:3]-[#6&!$(C=[O,N]):4]

o
R0
R” ~OH Ri

_—

R

Amide coupling, secondary amine

[C:1](=[0:2])-[Oh].[Nh:3](-[#6&1$(C=[O,N]):4])-[#6&!$(C=[O,N]):5]
>>[C:1](=[0:2])[N:3](-[#6&1$(C=[O,N]):4])-[#68&!$(C=[O,N]):5]

0 Re )OL
+ HN .R
RJ\OH R RTONT
Ry
Williamson ether synthesis bromide
[#6:4]-[Ch2:1]-[Br].[#6&!$(C=[O,N]):2]-{Oh:3]
>>[#6:4]-[Ch2:1]-{O:3]-#6&!$(C=[O,N]):2]

HO
S Ay
R Br + R1

_—

R
R o™

B —
Williamson ether synthesis chloride
[#6:4]-[Ch2:1]-[CI].[#6&!$(C=[O,N]):2]-[Oh:3]
>>[#6:4]-[Ch2:1]-[O:3]-[#6&!$(C=[O,N]):2]
HO

R7>C + TR,

R
R o ™

—_—
Williamson ether synthesis iodide
[#6:4]-[Ch2:1]-[I].[#6&!$(C=[O,N]):2]-[Oh:3]
>>[#6:4]-[Ch2:1]-[O:3]-[#6&!$(C=[O,N]):2]

RN+ HO\R A~ ~-Ry
1

R™ O

—_—

Alkyl bromide aromatic N-H alkylation

[#6:4]-[Ch2:1]-[Br].[#6&!$(C=[O,N]):10]-{Nh:2](-[#6&!$(C=[O,
>>[#6:4]-[Ch2:1]-[Nh:2](-[#6&I$(C=[O,N]):20])-[#6&!$(C=[O,

R

A~ HN=X _\N‘X

R”™Br + . X —> S
X X.'X,x

Alkyl iodide aromatic N-H alkylation

[#6:4]-[Ch2:1]-{I].[#6&!$(C=[O,N]):10]-[Nh:2](-[#6&!$(C=[O,N]):20])
>>[#6:4]-[Ch2:1]-[Nh:2](-[#6&1$(C=[O,N]):20])-[#6&!$(C=[O,N]):10]

HN-X R_\N_ X
R cl o+ )& X 5

X Koy X
Alkyl chloride aromatic N-H alkylation

)I\N,R1
H

NJ):20])
N]):10]

Buchwald aryl bromide, secondary amine
[c:1]-[Br].[#6&!$(C=[O,N]):2]-[Nh:3
1>>[c:1]-[Nh:3]-[#6&!$(C=[O,N]):2]

,R2 ,R2
Ods v — O
R4 R
Buchwald aryl bromide, primary amine

[c:11-[Br].[#6&!$(C=[O,N]):2]-[Nh:3]-#6&!$(C=[O,N]):4]
>>[c:1]-[N:3](-[#6&!$(C=[O,N]):4])-#6&!$(C=[O,N]):2]

R4 R
|

Esterification reaction
[C:1](=[O:2])-[Oh].[Oh:3]-[#6&!$(C=[O,N]):4]
>>[C:1](=[0:2])-[O:3]-[#6&!$(C=[O,N]):4]

0 HO 2
J]\ + \R1 D —— R)LO' R

Primary amine sulfonyl chloride substitution
[#6&!$(C=[O,N]):10][Nh2:1].CI-[S:4]([*:7])(=[O:5])=[O:6]
>> [#6&!$(C=[O,N]):10][Nh:1]-[S:4]([*:7])(=[O:5])=[O:6]

Q.0 HN RS

i + . —_— S\ ,R1
R™ ™ R4 4N

Cl O H

Secondary amine sulfonyl chloride substitution
[#6&!$(C=[O,N]):10][Nh:1]([#6&!$(C=[O,N]):20]).CI-[S:4]([*:7])(=[O:5])=[O:6]
>>[#6&!$(C=[O,N]):10][N:1]([#6&!$(C=[O,N]):20])-[S:4]([*:7])(=[O:5])=[O:6]

(0}
O ’Rz R~ i
° & N SN PR
R™ ™ Y O
Cl R, R,

Reductive amination, primary amine and aldehyde
[#6&!$(C=[O,N]):10][Nh2:1].[Ch:2]([#6:3])=[O]
>>[#6&!$(C=[O,N]):10][Nh:1]-[Ch:2]-[#6:3]

o HoN
JU+ 2‘R1

R™ "H

R/\N’R1

H

Reductive amination, secondary amine and aldehyde
[#6&!$(C=[O,N]):10]-[Nh: 1](-[#6&!$(C=[O,N]):20]).[Ch:2]([#6:3])=[O]
>>[#6&!$(C=[O,N]):10]-[N: 1](-[#6&!$(C=[O,N]):20])-[Ch2:2]-[#6:3]

0 Ro ~~,..-Ro
J_ o+ uN — RN
R™ "H R4 R4

Reductive amination, primary amine and ketone
[#6&!$(C=[O,N]):10][Nh2:1].[#6:3][C:2]([#6:4])=[O]
>>[#6&!$(C=[O,N]):10][Nh:1]-[Ch:2]([#6:3])[#6:4]

R
IR

H

—_—

R

Reductive amination, secondary amine and ketone

[#6:4]-[Ch2:1]-[CI].#6&!$(C=[0,N]):10]-[Nh:2](-[#68&!$(C=[O,N]):20]) [#6&!$(C=[O,N]):10][Nh:1]([#68!$(C=[O,N]):20]).[#6:3][C:2]([#6:4])=[O]

>>[#6:4]-[Ch2:1]-[Nh:2](-[#6&I$(C=[O,N]):20])-[#6&!$(C=[O,N]):10]

HN-X R2\
N l \ N-X
RN+ g, X — AN
X X.~X,X

Figure 6. List of chemical reactions used to connect building blocks and their SMARTS representation. Newly formed bonds are

highlighted in pink.

>>[#6&!$(C=[O,N]):10][N:1]([#6&!$(C=[O,N]):20])-[Ch:2]([#6:3])[#6:4]
o) Ro X

)j\ + HN\ _— R)\N’Rz
R™R R B,
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Algorithm 3 Fragment-by-fragment assembly with COUPLE

Inputs: vocab B, reactions R, depth limit 7'

Output: atom graph G, building block graph G = (X, E)
function COUPLE(G,, by, b, 7, (v, 7))

1:
2 append all atoms and bonds of H(b) to G, > 1. Handle leaving groups
3 if[4(r) =1 then > v; leaves in reagent A
4: u; < UNIQUENEIGHBOR(v;)
5: delete atom v; (and its bond) from G,
6: V; — U; > reroute to neighbour
7 end if
8 if [5(r) = 1 then > ¥ leaves in reagent B
9: u¢ < UNIQUENEIGHBOR(?)
10: delete atom v (and its bond) from G,
11: V4 Uy > reroute to neighbour
12: end if
13: add covalent bond between v; and v > 2. Add the cross-bond
14: return G,

15: end function
16: by + UniformPick(B); Gq < H(bo); Gy« (bo)
17: fort =1to T do

18: L + enumerate compatible 5-tuples (b;, v, r, b, 0)
19: if L = @ then break

20: end if

21: (by,v,7,b,¥) < UniformPick(L)

22: e <« (r,v,0)

23: G4 < COUPLE(Gy, b;, b, 7, (v,7))
24: Gy GypU (b Sb)

25: end for

26: return (G,,Gy)

B. Method Details
B.1. Building Block-Level Representations

Let X € {0,1}V*IBI+1 be a one-hot matrix where the i row encodes the identity of the i building block, and let
E € {0, 1}VxNx \RlVfLaﬁ?’ where Vi, = max [V(D)]. A non-zero entry Ejj,.(,, ;) = 1 signals that block 7 (center
v;) couples to block j (center v;) via reaction r. Graphs (X, E) belonging to molecules containing n < N building blocks
are padded to V.

Reserved Channels. We reserve a dedicated masked (absorbing) token in both vocabularies:

mx € {0,118 15 e {0, 1}RI Ve, ()

where 7x (resp. mg) is the one-hot vector whose single 1-entry corresponds to the masked node (resp. edge) channel.
Besides the masked channel we keep a dedicated no-edge channel, encoded by the one-hot vector

Ap € {0, TRl Vaias, )

so every edge slot may take one of three mutually exclusive states: a concrete coupling label, the no-edge token A g, or the
masked token 7.
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B.2. Atom-Level Representations

The SEMLAFLOW (Irwin et al., 2025) architecture propagates and updates invariant and equivariant features at the atom
level. To ensure consistency with this framework, we calculate for each input graph (X, E;) atom-level one-hot atom and
bond features. Crucially, these features must be flexible to arbitrary masking present in X; and E;. With this in mind we set
each atom feature X*°™[i, a] to a concatenation of one-hot encodings

X1 fi,a] = ( Suymii.a) > Wlring(i,a)], La € V(X,)]) € {0,1}°42, (10)

9-way one-hot

where dgym (i, @) is the onehot vector over possible atom types (C, N, O, B, F, Cl, Br, S, [MASK]) and ring(?, a) denotes
whether or not the atom is a member of a ring. Similarly, we calculate the a bond feature matrix

(sordcr(ai, a; ), bond is present,
E?tom[ai7aj] = (11)
05, otherwise.

where dorder (a4, @) is the onehot tensor over possible bond orders (single, double, triple, aromatic, [MASK]) between a;
and a;. E{*°™ is populated by loading the known bonds and respective bond orders within denoised building blocks. If
some building block X; is noised, all edges between its constituent atoms E2°™[; : 4 + M, i : i + M| are set to the masked
one-hot index. For graphs (X}, E}) corresponding to valid molecules in which all nodes and edges are denoised, we simply
obtain the full bond feature matrix from the molecule described by (X, E}).

B.3. Training Algorithm

Algorithm 4 Training step for SYNCOGEN

t ~U(0,1)

(X, Bt) + q:(Xo, Eo)

C1 NN(O, I)

(Co, Ct) < PAIR(CYy, Sp, C1,t, X}) > center and interpolate coordinates (Sec. ??)
(L;txa LtE7 édt) — f@(Xta Et7 C'ta n, t)

L+ E'graph + Lwmsg + l:pair > total loss (Sec. B.11)
00— T]VQE

AN AN R ey

B.4. Sampling Algorithm

Algorithm 5 Sampling procedure for SYNCOGEN

ne~Cat(Tag); (X1, E1) < (mx,7E); Sii,a]l+1[i < n] > draw 7, initialize masks
Ci1~N(0,I); C1+Cy — Cl,Sl > center Gaussian prior by initial mask
for t = 1 down to 0 do

Ci+Cy— Cs,;

(NLt)(a LtE7 éof)<_ f@(Xta Eta éhna t)

LE «+ SAMPLEEDGES(LE  n) > enforce one parent per building block (Sec. ??)
X At ¢ CATSAMPLE (LY ); By ag 4 CATSAMPLE(E{E) > take reverse step (App. B.6)
thAt <—Ct + At(COt — Ct)

(Xt, By, Ct, St) < (Xit—aes Br—ae, Cr—at, St—a¢)
end for
(LX,LE,Cy) + fo(Xo, Ey, Co,n, 0) > final deterministic denoise (t = 0)

TRV XY s

—_
N

Xm—argmaxk Lg([- <kl E’m—argmaxk LE[-- K]; CA'()(—CZ'O — CZ'(),SO
return (X'o, Ey, C’o)

—_
|95}
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B.5. Building Block Logit Predictions

The SEMLAFLOW(Irwin et al., 2025) backbone outputs atom-atom edge features E5*°™ € R X (NM)X(NM)xdesze o
obtain building block-level tensors we apply two parallel 2-D convolutions (one for nodes, one for edges) with stride M,
followed by MLP classifiers that map the pooled features back to their original one-hot vocabularies.

Stride-pooled convolution. Let d.q4. be the latent edge feature dimension. Each stream uses the block

Conv2d(degge — deage, k = M, s = M) % Convad(degge — degge, k = 1, s = 1), (12)

so every M x M atom patch collapses to a single building block entry. This produces
Xp()ol e RBXdcdchN7 Ep()ol e RBXdcdchNXN. (13)
Node head. We flatten X, along its channel axis, concatenate the residual building block one-hot matrix X, and pass

the result through a two-layer MLP to obtain
Lyt e REXNxIBI, (14)

Edge head. We concatenate E,o, with the residual building block-edge one-hot tensor £}, apply an analogous two-layer
MLP, and symmetrise to produce
2
LeEt ERBXNXleR‘Vmax. (15)

Atom Features. The SEMLAFLOW(Irwin et al., 2025) backbone additionally outputs atom-level node features X ;'™ €

REX(NM)xdwa which are incorporated into £5'°™ via a bond refinement message-passing layer. We find that extracting

both building block and edge logits directly from the refined features £5*™ marginally improves performance relative to

separately predicting L, * from X3*™ and L, from Ejto™.
B.6. Discrete Noising Scheme
Following (Sahoo et al., 2024), we adopt an absorbing (masked) state noising scheme for X and Ej:
q(Xt | Xo) = Cat(Xt; OétX() + (1 - Oét)ﬂx), q(Et ‘ Eo) = Cat(Et; OétEO + (1 — Oét)ﬂ'E). (16)

where (a)¢eo,1) is the monotonically decreasing noise schedule introduced in Sec. ??.

Reverse categorical posterior. For node identities we have

Cat(Xs; Xt), Xi #7x,
q(Xs | Xi, Xo) = 1—a, X! 17
Cat(Xs;( as)mx + a ), X;=nmx,
1-— Q¢
and, analogously, for edge labels
Cat(Es; Et), Ey# mE
E, | By, Ey) = 1— ag s EY 18
a(Bs | Ev, o) Cat(ES;( al)wEJra ), Ey=rmg, (19
— oy

where s < t. Equations 17 and 18 are the direct translation of the reverse noising process described by (Sahoo et al., 2024)
into SYNCOGEN’s node—edge representation.
B.7. Noise Schedule Parameterization

Following MDLM (Sahoo et al., 2024), we parameterize the discrete noising schedule via oy = e () where o(t) :
[0,1] — R™. In all experiments, we adopt the linear schedule:

o(t) = omaxt, (19)

where 0.y is a large constant; we use 0., = 108 as in the original MDLM setup.
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Edge Symmetrization. After drawing the upper-triangle entries of the one-hot edge tensor E; in either the forward or
reverse noising process, we enforce symmetry by copying them to the lower triangle:

E,jie = Esije, 0<i<j<mn, ecRV?2

max-*

B.8. Positional Embeddings

Though SEMLAFLOW(Irwin et al., 2025) is permutationally invariant by design with respect to atom positions, SYNCOGEN
dataset molecules require that atom order be fixed and grouped by building block for reconstruction purposes. To enforce
this during training, we intentionally break permutation invariance by generating and concatenating to each input coordinate
sinusoidal positional embeddings representing both global atom index and building block index.

B.9. Hyperparameters

We train SYNCOGEN for 50 epochs with a batch size of 128 and a global batch size of 512. All models are trained with a
linear noise schedule (see Appendix B.7), with the SUBS parameterization enabled. During training, a random conformer
for each molecule is selected, then centered and randomly rotated to serve as the ground-truth coordinates C. All atomic
coordinates are normalized by a constant Z. describing the standard deviation across all training examples. For the pairwise
distance loss Lyqir We set d to 3A, adjusted for normalization. During training, for each recentered input-prior pair (C’l, CO)
we rotationally align C; to Cy. When training with noise scaling and the bond loss time threshold, we set the noise scaling
coefficient to 0.2 , and the time threshold to 0.25, above which bond length losses are zeroed. When training with auxiliary
losses we set the weights for the pairwise, SLDDT, and bond length loss components to 0.4, 0.4, and 0.2, respectively.
Anonymized code can be found at https://anonymous.4open.science/r/SynCoGen-13F7.

B.10. Computational Resources Used

‘We train all models on 2 H100-80GB GPUs.

B.11. Training Losses
Here we define several loss terms that have proved useful for stabilising training on 3-D geometry.

By default, SYNCOGEN is trained with Lysg and Lyp,ir as coordinate losses.
For a prediction (Lg(t7 Lg, C~'0t) = fo( Xy, Ex, Cy,n, t), X§ = softmaX(Lg(t), E} = softmax(Lft):

Graph loss. Let X and Ej be the clean node and edge tensors. Following the MDLM implementation (Sahoo et al.,
2024), we weigh the negative log-likelihood at step ¢ by

A
wy = $7 Aoy =0y — 011, 09=0, (20
exp(oy) — 1

where o is the discrete noise level. The discrete (categorical) loss is then
Legraph = wt(—log X5[Xo] —log E} [EO}), 21

i.e. the cross-entropy between the one-hot ground truth and the predicted distributions for both nodes and edges.

MSE loss. Let Sy € {0, 1}V *M mask the atoms that exist in the clean structure and C; be the noisy coordinates. Denote

Ag, = {(i,a) : Soli,a] = 1}.

1 . .
£MSE - m Z ||CO[7’70’] —C()[Z,(I]H; (22)
Sol (ia)eAs,
Pairwise loss.
Lpir = > Soli,a) So[5.8] (I1Coli. a] — Col3, blll2 — |Cali, a] — Colj, b][12), (23)

(4,0)<(4,b)
”CO [i’a]7C0 [jvb]HZSd
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where d is the distance cut-off for pairwise terms. The default total loss value for the model is therefore

Lsyncocen = Legraph + LmsE + Lpair- 24

Smooth-LDDT loss (Abramson et al., 2024). Let d7; := ||Coli] — Colj]||2 and d}; 4 .= ||Coi] — Co[j]||2 be ground-truth

and predicted inter-atomic distances, respectively. For each pair of atoms within a 15 A cutoff in the reference structure we
compute the per-pair score

4
SLDDT” = EZ ( |dpred — dO |) [7'1, 7'277'377-4] = [057 1, 274] ‘&7

k=1

e

where o(x) = 1/(1 + e~7) is the logistic function. The smooth-LDDT loss averages 1 — sSLDDT;; over all valid pairs,
> 1d); < 15] Soli) So[j] (1 — sLDDT;;)

1<J

Lgopr = (25)

> 1[dy; < 15] Soli] Solj]

1<j

Bond-length loss. Given a set of intra-fragment bonds bonds = {(p, q)} extracted from the vocabulary, we penalise
deviations in predicted bond lengths:

1 .
Lo = o 2 [ICole) = Golll = ol = Colala | 26)
(p,q)€bonds

Self-Conditioning. The modified SEMLAFLOW (Irwin et al., 2025) backbone operates on node and edges features at the
atomic level, but outputs unnormalized prediction logits X, € {0, 1}¥*I8l and Ey € {0, 1}V*N*IRIViwe  We therefore
implement modified self-conditioning for SYNCOGEN that projects previous step graph predictions Xoamd and EOcond to
the shape of X/*°™ and E{***™ using an MLP.

B.12. Conformer generation

We randomly assembled 50 molecules with the reaction graph, and used the standard conformational search iMTD-GC)
in CREST with GFN-FF to find all reference conformers. For both SYNCOGEN and RDKit ETKDG, we sampled 50
conformers per molecule and computed the coverage and matching scores. We used a relatively strict RMSD threshold of
T=0.75.

Formally, COV is defined as:

N
1
—— <
COV = ; Lglan RMSD(m;, g;) < T 27)
where 1[-] is the indicator function, m; are the N generated conformers and g; are the M reference conformers. And MAT
is defined as:

N
1 .
MAT = & Z,l  min, RMSD(m, g;). @8

B.13. Molecular inpainting

For the inpainting experiments in Section 5.2, we keep two fragments D = {D() D)} and their coordinates fixed and
sample the remaining part of the molecule. We follow Algorithm B.4 and initialize the graph prior X; with the one-hot
encoding of the desired fragment ¢ at a specified node index in the graph (decided at random or based on the structure of the
original molecule, so that it matches its scaffold). For each denoised fragment D), we replace its coordinates at each time
t > 0.03 during sampling by

c = a-tCc{ + tc?,
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where C'(()i) and C’{z) are the centered ground-truth and prior coordinates of fragment 7, respectively, and all other fragments
are updated as shown in Algorithm B.4. For any ¢ < 0.03, which for 100 sampling steps amounts for the last three steps in
the path, we follow normal Euler steps as shown in Algorithm B.4 to allow a refinement of the fixed coordinates in line with
the rest of the predicted ones for the rest of the fragments. We empirically observed that this led to molecules with lower
average energies.

C. Baseline comparisons.

For all baselines we sampled 1000 molecules with random seeds on an A100 GPU and reported averaged results over three
runs.

SemlaFlow We evaluated SemlaFlow using the sampling script in the official codebase on GitHub'. We reported results
for a model trained on the GEOM(Axelrod & Gomez-Bombarelli, 2022) dataset (by sampling from the checkpoints
provided in the repository) and from a model trained on our dataset (see Table 1). We trained SemlaFlow using the default
hyperparameters for 150 epochs on a single conformer per molecule.

EQGAT-diff, MiDi, JODO, FlowMol We evaluated EQGAT-diff, Midi, JODO, using their official implementations
provided on GitHub”. We modified the example sampling script to save molecules as outputted from the reverse sampling,
without any post-processing. For MiDi, we evaluated the uniform model. For FlowMol, both CTMC and Gaussian models
were evaluated and reported.

D. Extended results and discussion
D.1. Sampling Ablations

By default, SYNCOGEN implements a linear noise schedule and samples for 100 timesteps. To evaluate the effect of step
count and noise schedule choice on performance, we provide experiments with step count decreased to 50 and 20, as well as
modified noising to follow a loglinear and geometric schedule. All results listed subsequently can be assumed to use the
default noise schedule and step count.

We additionally follow FoldFlow to implement inference annealing, a time-dependent scaling on Euler step size that was
found to empirically improve designability results (Bose et al., 2024). In our experiments, we multiply the Euler step size at
time ¢ by 5¢, 10¢, and 50¢.

We find that noising and de-noising building blocks according to a linear noise schedule generally achieves the best
performance, which during inference sees most unmasking occur in the final steps. An aggressive denoising schedule for the
discrete fragments yield in significantly worse validity (Geometric and Loglinear). Nevertheless, inference annealing that
marginally speeds up discrete denoising can slightly improve discrete generation validity. As a sanity check to evaluate
whether simultaneous generation is still necessary for good performance using SYNCOGEN, we evaluate an inference
configurations where all building blocks are noised until a single final prediction step (FinalOnly)where we find performance
using the default parameters to be superior.

"https://github.com/rssrwn/semla-£flow/, available under the MIT License

https://github.com/jule-c/eqgat_diff/, https://github.com/cvignac/MiDi, https://github.
com/GRAPH-0/J0DO, https://github.com/Dunni3/FlowMol, available under the MIT License
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Table 3. Sampling ablations. Results are averaged over 1000 generated samples except retrosynthesis solve rate (out of 100). All results
shown are at 50 epoches rather than 100 epoches in Table 1.

Primary metrics Secondary metrics
Method Valid. 7 AiZyn. 1 Synth. 1 GFN-FF | xXTB-2 | PB Val. 1 Div. 1 Nov. T
Linear-100 (Default) 93.5 55 70 4933  -0.92 783  0.79 94.1
Linear-20 824 56 68 5.102  -0.91 713 0.78 949
Linear-50 92.0 50 65 4.890 -091 789 0.78 93.6
Geometric-100 48.2 61 68 5206 -0.84 72.0 0.80 91.7
Loglinear-100 60.3 56 64 5.182 -0.87 70.1  0.80 91.7
Annealing-5¢ 94.7 52 58 5.001 -0.93 79.1 0.78 94.1
Annealing-10¢ 93.5 42 68 4.870  -0.91 82.8 0.78 942
Annealing-50¢ 85.1 51 64 4972  -0.82 86.7 0.76 94.6
FinalOnly 69.7 39 68 5260  -0.92 70.1  0.76 94.1

D.2. Metrics
We here describe metric computation details that are absent in the main text.

For synthesizability evaluation, we used the public AiZynthFinder and Syntheseus models. Due to the speed of these models,
we only evaluate 100 randomly sampled generated examples. For AiZynthFinder, we used the USPTO policy, the Zinc
stock, and we extended the search time to 800 seconds with an iteration limit of 200 seconds. For Syntheseus, we used
the LocalRetro model with Retro* search under default settings, with Enamine REAL strict fragments as the stock. We
additionally appended our building blocks as the stock but found no meaningful difference in solved rates, presumably as
most of our building blocks are already in the utilized stock. We note that we replaced all boranes with boronic acids due to
simplifications made in our modelling (see Appendix A.2).

For energy evaluation, all results are from single-point calculations. For GFN-FF, we report the total energy minus the bond
energies (equivalent to the sum of angle, dihedral, bond repulsion, electrostatic, dispersion, hydrogen bond, and halogen
bond energies) as the intramolecular non-bond energies, and average it over number of atoms. For GFN2-xTB, we report
the dispersion interaction energies as the intramolecular non-covalent energies. We note that the total energies and bonded
energies follow very similar trends. We note that MMFF94 energies are not parameterized for boron; therefore, we report
them only for the Wasserstein distances in Appendix D.3 and inpainting task in Table 6. Figures 3 and 7 show distributions
obtained from 1,000 molecules generated by each generative method, along with 50,000 subsampled molecules from their
respective training datasets. Gaussian kernel density estimation (bandwidth = 0.15) was used for linear distributions, while
von Mises kernel density estimation (x = 25) was applied for circular distributions. Wasserstein-1 distances (computed
linearly for lengths and energies, and on the circle for angles and dihedrals) were calculated using the Python Optimal
Transport Package (Flamary et al., 2021).

D.3. De novo 3D molecule generation

Additional sample molecules and their synthetic pathways can be found in Figures 8 and 10. We further took a subset
of random molecules and performed GFN2-xTB geometry optimization, and find that our generated samples closely
recapitulates the optimized geometries (Figure 9).

Table 4. Comparison of mean coverage (COV) and matching accuracy (MAT) for RDKit ETKDG and zero-shot generation using
SYNCOGEN.

Method COV (%) 1 MAT (Z\) 4
RDKit 0.692 0.657
SYNCOGEN 0.614 0.693
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Figure 7. Additional conformer bond length, angle, ane dihedral distribution comparisons. a-b) Bond lengths, c-d) bond angles, e-f)
dihedral angles. Comparison to baseline generative models and the kernel density estimation of the training data are shown as differences

or as solid lines.
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Figure 8. Additional randomly sampled molecules from SYNCOGEN.
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Figure 9. A subset of randomly sampled molecules from SYNCOGEN and further optimized by GFN2-xTB until convergence. Alignment
RMSD is shown below the molecular structures.
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Table 5. Wasserstein-1 distance (1) and Jensen—Shannon divergence (JSD) for the generative models (lower is better). For bond lengths,
angles, and dihedrals, we computed the average W; and JSD for the top 10 prevalent lengths/angles/dihedrals. Comparisons are made to
the respective training set.

(a) Bond dihedrals (b) Bond angles (c) Bond lengths
Method Wy JSD Method Wy JSD Method Wy JSD
SynCoGen 7.01 0.29 SynCoGen 1.36  0.22 SynCoGen 0.0171 0.34
SemlaFlow-retrained 6.50 0.22 SemlaFlow-retrained 1.64 0.28 SemlaFlow-retrained 0.0320 0.48
SemlaFlow 7.76 0.28 SemlaFlow 1.18 0.21 SemlaFlow 0.0200 0.38
EQGAT-Diff 8.48 0.29 EQGAT-Diff 1.37 0.16 EQGAT-Diff 0.0039 0.13
MiDi 9.32 0.38 MiDi 141 0.21 MiDi 0.0142 0.31
JODO 547 0.31 JODO 0.59 0.12 JODO 0.0034 0.12
FlowMol-CTMC 13.69 0.35 FlowMol-CTMC 1.90 024 FlowMol-CTMC 0.0089 0.20
FlowMol-Gauss 18.85 0.46 FlowMol-Gauss 3.68 0.30 FlowMol-Gauss 0.0152 0.28
(d) xtb-2 non-covalent £/ (e) GFN-FF non-bonded F (f) MMFF total E/
Method W1 JSD Method Wi JSD Method Wi JSD
SynCoGen 0.0838 0.33  SynCoGen 1.37 028 SynCoGen 6.59 0.089
SemlaFlow-retrained 0.0125 0.16 SemlaFlow-retrained 1.09 0.22 SemlaFlow-retrained 54.63 0.22
SemlaFlow 0.0249 0.16 SemlaFlow 1.52 0.16 SemlaFlow 69.56 0.24
EQGAT-Diff 0.0073 0.12 EQGAT-Diff 1.69 0.18 EQGAT-Diff 4.80 0.076
MiDi 0.0084 0.14 MiDi 1.80 0.19 MiDi 19.00 0.11
JODO 0.0031 0.11 JODO 1.33 0.12 JODO 22.07 0.11
FlowMol-CTMC 0.0605 0.26 FlowMol-CTMC 1.53 0.17 FlowMol-CTMC 4195 0.15
FlowMol-Gauss 0.0322 0.19 FlowMol-Gauss 2.13 0.17 FlowMol-Gauss 26.96 0.14

D.4. Molecular inpainting experiments

Three protein-ligand complexes (PDB IDs 7N7X?3, 51.2S* and 3NDX?) were selected for molecular inpainting of the ligand
structures. Note that for 3ANDX, we substituted the protein file with that from PDB entry 4EYR for docking, because of
the corrupted 3NDX PDB protein file — nontheless both entries contain the same protease and ligand, just in a different
conformation. These ligands were chosen because they are prominent FDA-approved drugs, and that they are typically
challenging to synthesize but the key functional groups are present in our building blocks. Specifically, 3NDX contains
ritonavir, a prominent HIV protease inhibitor on World Health Organization’s List of Essential Medicines; SL2S contains
abemaciclib, a anti-cancer kinase inhibitor that is amongst the largest selling small molecule drug; 7N7X contains berotralstat,
a recently approved drug that prevents hereditary angioedema.

In addition to the experiments in Section 5.2, we evaluate our model’s conditional sampling performance — within the
fragment linking framework — against the state-of-the-art model DiffLinker (Igashov et al., 2024). We emphasize that while
DiffLinker is trained for fragment linking, our model performs zero-shot fragment linking without any finetuning. For
both models the size of the linker was chosen so that it matches that of the original ligand: 2 extra nodes were sampled
for SYNCOGEN and 15 linking atoms for DiffLinker in the case of 5L2S, while 3 extra nodes and 25 linking atoms
were sampled for 3NDX and 7N7X. We specified leaving groups (for SYNCOGEN) and anchor points (for DiffLinker)
so that the fragments are linked at the same positions as in the ligand. Results are shown in Table 6. We note that no
retrosynthetic pathways were found for the molecules in DiffLinkers, while SYNCOGEN models synthetic pathways and
synthetic pathways can be easily drawn, with examples for 3NDX shown in Figure 10. Additionally SYNCOGEN achieves
100% connectivity as it uses reaction-based assembly, whereas DiffLinker can sample disconnected fragments.

*https://www.rcsb.org/structure/7N7X
*https://www.rcsb.org/structure/5L2S
Shttps://www.rcsb.org/structure/3NDX
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Table 6. Molecular inpainting task. Results are averaged over 1000 generated samples except retrosynthesis solve rate (out of 100).

Method Target AiZyn.1 Synth.?1 Valid. T Connect.t MMFF | GFN-FF | xTB-2| Diversity T PB Val. 1
S5L2S 0 0 95.8 95.09 14.22 7.52 -0.95 0.60 493

DiffLinker =~ 3NDX 0 0 93.7 81.86 20.01 8.49 -1.03 0.81 35.0
TN7X 0 0 95.8 74.65 20.51 7.99 -1.09 0.78 375
5L2S 73 79 57.6 100 10.11 6.77 -0.78 0.62 27.3

SYNCOGEN 3NDX 72 58 46.9 100 12.80 6.58 -0.86 0.64 32.0
INTX 53 69 50.6 100 4.243 6.60 -0.80 0.67 56.1
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Figure 10. Synthetic pathways for molecules generated in the molecular inpainting task for target 3ANDX/4EYR. The final product is
shown in blue, the inpainted fragments are shown in red.
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