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Disentangled-Multimodal Privileged Knowledge Distillation for
Depression Recognition with Incomplete Multimodal Data

Anonymous Author(s)

ABSTRACT
Depression recognition (DR) using facial images, audio signals, or
language text recordings has achieved remarkable performance.
Recently, multimodal DR has shown improved performance over
single-modal methods by leveraging information from a combi-
nation of these modalities. However, collecting high-quality data
containing all modalities poses a challenge. In particular, these
methods often encounter performance degradation when certain
modalities are either missing or degraded. To tackle this issue, we
present a generalizable multimodal framework for DR by aggregat-
ing feature disentanglement and privileged knowledge distillation.
In detail, our approach aims to disentangle homogeneous and het-
erogeneous features within multimodal signals while suppressing
noise, thereby adaptively aggregating the most informative compo-
nents for high-quality DR. Subsequently, we leverage knowledge
distillation to transfer privileged knowledge from complete modali-
ties to the observed input with limited information, thereby signifi-
cantly improving the tolerance and compatibility. These strategies
form our novel Feature Disentanglement and Privileged knowledge
Distillation Network for DR, dubbed Dis2DR. Experimental eval-
uations on AVEC 2013, AVEC 2014, AVEC 2017, and AVEC 2019
datasets demonstrate the effectiveness of our Dis2DR method. Re-
markably, Dis2DR achieves superior performance even when only
a single modality is available, surpassing existing state-of-the-art
multimodal DR approaches AVA-DepressNet by up to 9.8% on the
AVEC 2013 dataset.

CCS CONCEPTS
• Applied computing→ Health informatics.

KEYWORDS
Multimodal; Depression Recognition; Knowledge Distillation; Af-
fective Computing

1 INTRODUCTION
Depression recognition (DR) has made significant progress with
signals derived from facial images [46], speech audio [65], and
language semantics [58]. Features extracted from these modalities
have shown associations with depression disorder. Consequently,
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Figure 1: (a) An illustration depicts the challenge of recog-
nizing depression using incomplete multimodal data. Red
blocks highlight missing information in the modalities. (b)
A depiction showcases the heterogeneous content from dif-
ferent modalities, represented as primary RGB colors. Com-
pound and white colors represent homogeneous information
from combined modalities.

recent studies have focused on leveraging the combination of mul-
timodal signals to improve DR performance. In multimodal DR re-
search, there is a particular emphasis on multimodal fusion, which
has been proven effective in utilizing complementary information
from multiple modalities rather than relying on a single modality
[34, 36]. This evolution enables the possibility of non-contact de-
pression screening, achievable through a multimedia file with facial
video recordings and voice recordings during speech. However,
real-world scenarios of DR often present the following challenges,
which hinder further improvement of multimodal DR:

i) Modality Degradation. The information within a single modal-
ity is occasionally of varying quality. In some instances, certain
content may be missing. For example, eye tracking data may be
lost while other features remain intact. Alternatively, content may
be compromised by external factors, resulting in degraded quality.
For instance, head movements may disrupt the accuracy of facial
feature extraction, while background noise can diminish speech
feature quality. The interference is common in input signals and
can inherently impact DR performance.

ii) Modality Incompleteness.Multimedia information frequently
suffers from modality incompleteness, which may arise from fea-
ture detection failures, face out of frame, or speechless moment,
resulting in the partial information existence. Such occurrences
may manifest even during the data collection and training phases,
and the absence of information can result in sparse content, and
adversely impact the convergence of the model during training.

To address the aforementioned challenges, this study introduces
a novel Feature Disentanglement and Privileged Knowledge Distilla-
tion Network for DR (Dis2DR). The Dis2DR framework aims to
enhance the model’s generalization across modalities by effectively
balancing the utilization of both homogeneous and heterogeneous
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multimodal information. This approach reduces the model’s re-
liance on specific modalities and mitigates the impact of modality
degradation during DR. During knowledge distillation, the teacher
model leverages full input as privileged knowledge, while the stu-
dent model characterizes complete distribution with partial input
and learnable privileged knowledge, thus enabling it to learn ef-
fectively in such settings. This method is well-suited to address
modality incompleteness challenges commonly encountered in DR
settings. Specifically, this work comprises the following compo-
nents:

i) Dis2DR encompasses a fundamental disentangling DR model
and associated constraints for the disentanglement of multimodal
information, with the objective of separating depression-related
multimodal homogeneous and heterogeneous features, and modal-
ity noise from the input data. This disentanglement process aug-
ments the representation capacity of multimodal features while
diminishing interference from irrelevant information in the DR
task. Subsequently, depression-related features are projected onto
a low-dimensional latent space, from which depression severity
scores are predicted.

ii) The process of feature disentanglement heavily relies on in-
terdependence across modalities, which can lead to a performance
drop if certain modalities are degraded. Dis2DR addresses this by
having the teacher model learn disentanglement using rich content
under full modality input as privileged knowledge, then distilling
this knowledge to the student model, which handles incomplete
input. This ensures representations of disentangled features while
learning modality-independent representations in student model,
enhancing the generalization representation between modalities,
resulting in robust DR performance in scenarios where input modal-
ities are degraded or missing.

iii) The experiment demonstrates that feature disentanglement
in Dis2DR enhances the homogeneity of inter-modality depression-
related content while effectively separating heterogeneous infor-
mation, both of which are important to DR. Moreover, utilizing
privileged knowledge distillation enhances DR performance by im-
proving the generalization of modalities, especially in scenarios
involving incomplete modalities, even when only a single modality
is available.

2 RELATEDWORKS
2.1 Depression Recognition
In DR with single modality inputs, visual information typically
includes facial Action Units, pose, and gaze [48]. Facial images [67]
or video frames [35] are commonly used for end-to-end recogni-
tion. In audio analysis, acoustic feature-based approaches [32] are
prevalent, often combined with deep learning models [37]. For text
inputs, language features are preprocessed using word embeddings
[58] or deep embeddings [50], with linguistic features directly re-
flecting emotion tendencies. Approaches for DR with multimodal
signals typically entail combining multimodal inputs, utilizing a
variety of handcrafted features [24], or features extracted by deep
learning model [25]. Some approaches emphasize the importance
of integrating text [45] and substantial fusion processing [62, 63] to
achieve optimal performance. However, many multimodal method-
ologies rely heavily on manually crafted features, often overlooking

potential failures in feature detection, such as facial motion blur-
ring or silent sections in speech. Such oversights could significantly
affect the effectiveness of DR when certain contents or modalities
are absent. Furthermore, subsequent research fails to explore the
interplay between different modalities, limiting the comprehensive
utilization of modality information by the model.

2.2 Feature disentanglement
Disentangled representation learning, as highlighted in previous
research [6], aims to constrain features to disentangle independent
factors within the data. A well-designed disentangled representa-
tion aligns with the semantic structure of the data. In facial recog-
nition, typical disentanglement factors include identity, pose, and
emotion information [30, 47]. In multimodal emotion recognition
tasks, disentangling of multimodal features has been explored using
techniques like graph distillation [29]. Typically, modality informa-
tion is disentangled into modality-invariant and modality-specific
subspaces [60]. However, the specific disentangling strategy em-
ployed varies significantly depending on the attributes of the task
at hand. In the context of DR, our study is the first to propose a
disentangled representation framework specifically tailored to de-
pression disorder. This framework considers both homogeneous
and heterogeneous depression-related multimodal features, mark-
ing a novel contribution to the field.

2.3 Incomplete Multimodal Learning
Incomplete multimodal learning, a critical area of research within
multimodal machine learning, addresses scenarios where certain
modalities degrade, a common issue in real-world settings. While
one effective strategy involves identifying a low-dimensional sub-
space shared by all modalities, maximizing their correlation [2,
22, 56], this methodology may overlook the complementary na-
ture of heterogeneous modalities, potentially leading to suboptimal
outcomes. Instead, a more promising approach is to explicitly re-
cover missing modalities using available ones. For example, deep
models [10, 53] or cross-modality recovery strategies with cycle
consistency loss [39, 64] can be employed for this purpose. How-
ever, many of these approaches require substantial full-modality
data, which is often lacking in DR datasets due to their limited size
and presence of missing modalities. Some methodologies involve
utilizing main and complementary modalities for learning using
privileged information [3, 7, 20], but subsequent approaches focus
on treating entire modalities as privileged information, requiring
high availability of the required modality during teacher model
training. In the context of DR, modalities may be incomplete even
within the training data, posing a challenge to the effective utiliza-
tion of learning using privileged information. We aim to explore
the application of privileged information in incomplete modalities
for the DR task, marking a novel contribution to the field.

3 THE PROPOSED METHOD
The overall structure of Dis2DR is illustrated in Fig. 2 (a), which con-
sists of a teacher model and a student model engaged in multimodal
privileged knowledge distillation. In the teacher model, the input
undergoes processing by the Incomplete Modality Interaction (IMI)
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Figure 2: The overall architecture of Dis2DR. (a) The multimodal privileged knowledge distillation process between the teacher
and student models. During inference, only partial inputs are used with the student model. (b) An illustration of the IMI model.
(c) The pipeline of IMI sub-module for feature disentanglement.

module, responsible for disentangling. Through this process, ho-
mogeneous, heterogeneous, and noise multimodal representations
are obtained by interacting across modalities and enforcing con-
straints imposed by the designed loss functions. Subsequently, the
representation undergoes compression and reconstruction via an
encoder-decoder structure comprising the extraction and squeeze
(ES) layer and the reconstruction (REC) layer. The latent embed-
dings 𝐹𝑒𝑚 is then utilized for deriving the DR score. Leveraging the
encoder-decoder structure facilitates the self-supervised pretrain-
ing of Dis2DR using a large multimodal dataset, thus mitigating
the challenge of small DR datasets for deep learning.

The student model adopts an identical architecture to the teacher
model, with the goal of minimizing disparities and aligning knowl-
edge between the two models. This alignment facilitates seamless
knowledge transfer from the teacher to the student. Subsequently,
the teacher and student models engage in multimodal privileged
knowledge distillation, ensuring the effective transmission of in-
formation. The student model then proceeds to learn disentangled
representations under incomplete modalities, thereby improving
the generalization of modality information.

In order to enable students to learn from missing or degraded
multimodal data, we carefully prepare the data fed to the teacher
network and the student network. The teacher network is trained on
data with more comprehensive multimodal features, representing
privileged knowledge. Meanwhile, the student network is exposed
to data with less information, simulating real incomplete multi-
modal inputs, and benefiting from supervision provided by the

teacher model. This setup enables the student to effectively adapt
to scenarios where modalities are missing or degraded.

3.1 Structure of Teacher Model
The input of the DR model in Dis2DR consists of a combination
of audio, visual, and text data. Specifically, 𝐼𝑡

𝐴
, 𝐼𝑡
𝑉
, 𝐼𝑡
𝑇
represent the

teacher model inputs from audio, visual, and text, respectively.
Similarly, 𝐼𝑠 represent the student model inputs from each modality.

For training the basic DR model, it need to calculate the loss
function of the following part: 1) the error of DR prediction L𝑠

between the ground truth depression score and predicted one; 2)
the loss function L𝑣𝑎𝑒 for the latent embeddings; 3) the loss of
IMI L𝐼𝑀𝐼 during feature disentangling. In the following, each loss
functions are presented in detail.

For the L𝑠 , the sum of Mean Absolute Error (MAE) and Root
Mean Square Error (RMSE) between the ground truth label 𝑦 and
predicted score 𝑦 from 𝑁 samples is calculated, as the goal of DR:

L𝑠 =
1
𝑁

𝑁∑︁
𝑖=1

|𝑦𝑖 − 𝑦𝑖 | +

√√√
1
𝑁

𝑁∑︁
𝑖=1

(𝑦𝑖 − 𝑦𝑖 )2, (1)

The L𝑣𝑎𝑒 contains the reconstruction error between the input
multimodal feature and the reconstructed feature. In formulation,
L𝑣𝑎𝑒 can be written as:

L𝑣𝑎𝑒 =
1
𝑁

𝑁∑︁
𝑖=1

(𝐹𝑖 − 𝐹𝑖 )2 −
1
2
× (2𝑙𝑜𝑔𝜎 + 1 − 𝜎2 − 𝜇2). (2)

In the following section, we present the details of L𝐼𝑀𝐼 .
3
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3.2 Incomplete Modality Interaction
In this case, 𝐼𝐴 ∈ R𝑡,𝑓𝑎 consists of several audio feature sets with a
total dimension of 𝑓𝑎 that are merged along the feature axis. The
same applies to 𝐼𝑉 , while 𝐼𝑇 comprises solely the text embedding
as the only feature set. The IMI first extracts and standardizes the
temporal series of the input with𝑀𝑎 ,𝑀𝑣 and𝑀𝑡 , representing the
corresponding feature extraction layers. For𝑀𝑎 and𝑀𝑣 , they have
sublayers denoted as𝑀 [𝑖 ] for processing the 𝑖-th feature set from
the modality, and then aggregate the cumulative result.

The multimodal features can be processed using three IMI sub-
modules to disentangle the homogeneous components 𝐹ℎ𝑜 , het-
erogeneous information 𝐹ℎ𝑒 and the noise counterpart 𝐹𝑛 . The
corresponding IMI submodules are denoted as 𝐼𝑀𝐼ℎ𝑜 , 𝐼𝑀𝐼ℎ𝑒 , 𝐼𝑀𝐼𝑛 ,
respectively. For simplicity of understanding, the illustration of IMI
is shown in Fig. 2 (b), (c). In the IMI submodule, the Transformer
block is used for feature extraction. In 𝐼𝑀𝐼ℎ𝑜 , all modalities utilize
the same Transformer. Each modality contributes its primary repre-
sentation and a modality token (using the first temporal dimension)
to generate the multimodal feature 𝐹ℎ𝑜 . In 𝐼𝑀𝐼ℎ𝑒 , each Transformer
receives not only the primary multimodal representation but also
the corresponding 𝐹ℎ𝑜 specific to that modality. The 𝐼𝑀𝐼𝑛 module
receives single-modality information and predicts by corresponding
Transformers. The modality tokens of 𝐹ℎ𝑜 , 𝐹ℎ𝑒 , and 𝐹𝑛 are selected
and concatenated, as shown in Fig. 2 (c).

To constrain 𝐹ℎ𝑜 , 𝐹ℎ𝑒 , 𝐹𝑛 , specific loss functions are designed.
Firstly, we propose the Depression Level Contrastive (DLC) loss,
aiming to ensure consistent representation within the same depres-
sion levels and diverse representation across different levels. This
is achieved by minimizing similarity for similar depression levels
and maximizing it for distinct levels within each sample. The DLC
loss between 𝑁 samples is formulated as:

L𝑑𝑙𝑐 = [(1 − |𝑦𝑖 − 𝑦 𝑗 |) cos(𝐹𝑖 , 𝐹 𝑗 )

+ |𝑦𝑖 − 𝑦 𝑗 |max(𝜆𝑑𝑙𝑐 · |𝑦𝑖 − 𝑦 𝑗 | − cos(𝐹𝑖 , 𝐹 𝑗 ), 0)]𝑁𝑖,𝑗=1
, (3)

where 𝑦 represents the corresponding normalized label of samples,
𝑐𝑜𝑠 (·) represents the cosine similarity. The margin 𝜆𝑑𝑙𝑐 is set to 30.

For 𝐹ℎ𝑜 , the goal is to ensure that multimodal features contain
homogeneous information. This entails each sample having a rep-
resentation reflecting individual homogeneity in depression symp-
toms, accomplished by minimizing similarity between modalities
in features from the same sample with an inter-sample constraint.
The loss function Lℎ𝑜 combines this objective with the DLC loss,
formulated as:

Lℎ𝑜 = L𝑑𝑙𝑐 +
∑︁

𝑝,𝑞∈{𝑎,𝜈,𝑡 }

[
cos(𝐹𝑝

ℎ𝑜𝑖
, 𝐹

𝑞

ℎ𝑜𝑖
)
]𝑁
𝑖=1

. (4)

Similarly, 𝐹ℎ𝑒 should contain heterogeneous representations
among different modalities within a depression sample, highlight-
ing the diverse information across modalities for characterizing
individuals with depression. The objective aims to maximize the
similarity of multimodal features from one sample. The loss func-
tion Lℎ𝑒 can be formulated as:

Lℎ𝑒𝑠 = L𝑑𝑙𝑐 +
∑︁

𝑝,𝑞∈{𝑎,𝜈,𝑡 }

[
max(𝜆ℎ𝑒 − cos(𝐹𝑝

ℎ𝑒𝑖
, 𝐹

𝑞

ℎ𝑒𝑖
), 0)

]𝑁
𝑖=1

, (5)

where the margin 𝜆ℎ𝑒 is set to 10.

To maximize the distinction between 𝐹ℎ𝑜 and 𝐹ℎ𝑒 , ensuring they
represent features with minimal redundancy, the loss L𝑜𝑟𝑡ℎ is de-
signed to maintain their orthogonality, and can be expressed as:

L𝑜𝑟𝑡ℎ =
(
𝐹ℎ𝑜𝑖 𝐹ℎ𝑒𝑖

⊺ )𝑁
𝑖=1 . (6)

For 𝐹𝑛 , the L𝑛 emphasizes the contrastive representation across
modalities, ensuring that each modality has its own distinct noise
representation, while remaining consistent within one modality
regardless of the depression levels. The L𝑛 is formulated as:

L𝑛 =
[
cos(𝐹𝑛𝑖 , 𝐹𝑛 𝑗

)
]𝑁
𝑖,𝑗=1+

∑︁
𝑝,𝑞∈{𝑎,𝑣,𝑡 }

[
max(𝜆𝑛 − cos(𝐹𝑝𝑛𝑖 , 𝐹

𝑞
𝑛𝑖 ), 0)

]𝑁
𝑖=1

,

(7)
where the margin 𝜆𝑛 is set to 10.

Overall, the L𝐼𝑀𝐼 can be presented as

L𝐼𝑀𝐼 = Lℎ𝑜 + Lℎ𝑒 + L𝑛 + 0.1 · L𝑜𝑟𝑡ℎ . (8)

3.3 Multimodal Privileged Knowledge
Distillation

We utilize the teacher model learned with full modalities informa-
tion to provide privileged knowledge for the student model learned
with incomplete information. Compared to directly fine-tuning the
teacher with incomplete modality, distillation to the student can of-
fer stable, highly accurate supervision during the student-training
procedure under incomplete inputs, preventing the model from
forgetting. We choose to distill the key parts of the model, which
contain the IMI, ES, and REC layers.

We design the following loss function to distill privileged knowl-
edge based on the teacher’s DR performance. The lower the error
of the teacher model on a particular sample, the higher the tem-
perature to distill the corresponding knowledge to the student. For
each layer, the distillation function is denoted as:

L𝑘𝑑 =
∑︁
𝑗

[ (
1 − |𝑦 − 𝑦𝑡 |

)
· |𝐹𝑠𝑗 − 𝐹 𝑡𝑗 |

]
. (9)

𝑦𝑡 represents the output of the teacher, which is used as a tempera-
ture to control the strength of distillation, avoiding the influence of
teacher misguidance. 𝐹 𝑗 represents the feature obtained from the
IMI, ES, and REC layers.

4 EXPERIMENTS
4.1 Datasets
In our experiments, we utilize the following datasets:
AVEC 2013 [55]: Within this dataset, there are 150 video snippets
featuring 82 distinct participants, specifically designated for the
validation and testing stages of our research endeavor.
AVEC 2014 [54]: Consisting of 300 video segments featuring con-
tributions from 83 participants, both AVEC 2013 and AVEC 2014
capture interactions in a human-computer setting. The ratings,
evaluated using the Beck Depression Inventory-II (BDI) [5], span
from 0 to 63. Videos from these datasets are utilized for training,
validation, and testing according to the official partitioning.
AVEC 2017 [44]: In AVEC 2017, a collection of 189 samples from
distinct individuals is involved. The severity of depression for each
individual is gauged based on the self-reported PHQ-8 scores [28].

4
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Table 1: The depression score and corresponding level of the
datasets.

BDI-II score Level PHQ-8 score Level

0–13 Minimal 0–4 None
14–19 Mild 5–9 Mild
20–28 Moderate 10–14 Moderate
29–63 Severe 15–19 Moderately severe

20–24 Severe

Video frames are dissected into various features, including Action
Units (AU) and facial landmarks. Simultaneously, audio recordings
are captured at a sample rate of 16kHz, with the AVEC 2017 dataset
comprising extracted audio features such as formants and Funda-
mental Frequency (F0). Meanwhile the dialog transcript of each
individual is recorded.
AVEC 2019 [43]: AVEC 2019 constitutes an extension of AVEC
2017, encompassing a sample size of 275 instances. Notably, the
facial landmark feature is omitted, while new deep features such as
VGG and DenseNet features are incorporated into the AVEC 2019
dataset.
CMDC [68]: This dataset comprises 52 samples from healthy in-
dividuals and 26 samples from patients with depression. It encom-
passes transcripts, speech audio files, and, in some cases, records
of facial visual features.
VoxCeleb2 [9]: The VoxCeleb2 dataset is a large-scale speaker
recognition dataset that contains over 1 million utterances attrib-
uted to 6,112 celebrities. These utterances are extracted from videos
uploaded to YouTube. The dataset serves as a robust foundation for
pretraining. In our study, we focus on extracting both facial and
audio features from this dataset for pretraining the Dis2DR.

We utilize all the aforementioned datasets for model training,
while the AVEC datasets are used for our evaluation and final testing.
AVEC 2013 and AVEC 2014 are labeled with BDI-II, whereas AVEC
2017 and AVEC 2019 are labeled with PHQ-8. The corresponding
criteria scores and depression levels are listed in Tab. 1. Initially,
VoxCeleb2 is employed to train the encoder-decoder in the audio-
visual task. Subsequently, we employ the joint set of CMDC and all
the training sets of the AVEC datasets, normalizing the labels to a
range of 0-1 based on their corresponding questionnaire responses.
Due to the availability of official development and testing sets
provided by the AVEC datasets, all ablation studies are conducted
on their corresponding development set, while comparisons with
state-of-the-art methods are performed on the testing set.

4.2 Preprocess
For all datasets, the audio, visual, and text data have been pre-
processed and standardized for input into Dis2DR. Specifically, the
utilized standard visual features include Histogram of Oriented Gra-
dients (HOG) feature (if available), head pose, gaze, AUs, and facial
landmarks with 68 points. The landmarks are aligned according to
the center nose point and resized to a uniform size of 256 along the
axis range. All the features are extracted from the facial images by
OpenFace [4] or reorganized from the provided data in the dataset.
For the audio modality, three sets of features are extracted, com-
prising the COVAREP [15] feature set, as well as Mel-Frequency
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Figure 3: The DR performance using audio (A), visual (V), text
(T), and their combination as input modalities for Dis2DR
w/o and w/ privileged knowledge (P.K.) is illustrated. The
performance metrics are reported on the development set of
AVEC 2014 datasets.

Cepstral Coefficients (MFCC) and eGeMAPS feature set extracted
by OpenSmile [17]. For the text modality, BERT [16] embeddings
are extracted from the transcript as Dis2DR text modality input.
For AVEC 2013 and AVEC 2014, the speaker’s transcript is initially
extracted from raw audio by multilingual Whisper [41], and then
German BERT1 is used to extract the embeddings. For AVEC 2017
and AVEC 2019, the English BERT model2 is utilized. For CMDC,
the Chinese BERT model3 is employed.

4.3 Experiment Settings
In our experiments, the teacher model is firstly pre-trained on
VoxCeleb2 to learn the audio-visual feature representation. In this
step, the loss function is

L𝑝 = L𝐼𝑀𝐼 + L𝑣𝑎𝑒 . (10)

Then, the teacher is further trained with the mixed dataset com-
prising all AVEC datasets and CMDC dataset, with their sample
labels standardized to a range [0, 1]. The training loss is

L𝑡 = 0.01 · L𝑡
𝐼𝑀𝐼 + L𝑡

𝑠 + L𝑡
𝑣𝑎𝑒 . (11)

As for the student model, it is initialized by copying the parame-
ters from the teacher, which is frozen, and then is fine-tuned with
the following loss function:

L𝑠 = 0.01 · L𝑠
𝐼𝑀𝐼 + L𝑠

𝑠 + L𝑠
𝑣𝑎𝑒 + 0.001 · L𝑘𝑑 . (12)

During privileged knowledge distillation in Dis2DR, the input of
the student model is randomly masked along the temporal axis with
stochastic position and length. Consequently, the teacher model
continues to utilize full and complete data as input, which can be
served as the privileged knowledge provider to the student.

All training is conducted on 2 RTX 3090 GPUs using the Adam
optimizer with a learning rate of 0.0002 and a batch size of 16. The
temporal length of the input is set to 600 frames, randomly sam-
pled from the raw training signal. To address misaligned temporal
sampling rates between audio and visual signals, we resample the
clips. Text embedding utilizes the full embedding from a sample
as the text input. During testing, the sample is divided into 10 uni-
formly sized pieces along the temporal length, each comprising
600 frames. The average score across these 10 clips is used as the
model’s prediction.

1German BERT: https://huggingface.co/dbmdz/bert-base-german-uncased
2English BERT: https://huggingface.co/google-bert/bert-base-uncased
3Chinese BERT: https://huggingface.co/google-bert/bert-base-chinese
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Figure 4: The t-SNE analysis displays the disentangled multimodal features from AVEC 2017. Each column presents the
visualization results with the noted modalities available as inputs. A larger-sized dot with a thicker color represents a higher
depression score for the corresponding sample.

4.4 Analysis of Privilleged Knowledge
Distillation

We compare the performance of direct recognition using the stu-
dent model before and after knowledge distilling, representing the
existence and absence of privileged knowledge from Dis2DR for
recognition from incomplete modality, highlighting the necessity
of privileged knowledge distillation. The comparison results are
presented in Fig. 3.

The results demonstrate a significant performance drop in in-
complete modality DR when privileged knowledge is not utilized.
Models with privileged knowledge consistently exhibit lower DR er-
rors compared to those without privileged knowledge, as indicated
by the yellow bars (with privileged knowledge) showing lower er-
rors compared to the cyan bars (without privileged knowledge).
Furthermore, comparing results with and without the text modal-
ity (T, A+T, V+T, A+V+T versus A, V, A+V), Fig. 3 illustrates that
the performance drop is primarily associated with the absence of
the text modality. Particularly, when the text modality is missing,
the drop is more pronounced, followed by a noticeable decline in
performance when the visual modality is absent. After privileged
knowledge distillation, the imbalance in the dependency of DR on
features has decreased. The absence of certain modalities does not
lead to as significant a performance drop as observed without priv-
ileged knowledge. This emphasizes the crucial role of knowledge
distillation in incomplete modality scenarios. It mitigates the heavy
reliance on features across modalities, ensuring high availability
even when certain modalities are degraded or missing.

4.5 Analysis of Disentangled Features
The student model trained in Dis2DR is tested with various types
of inputs to examine the influence of different modalities on the
features using t-SNE for analysis. As depicted in Fig. 4, the 𝐹ℎ𝑜 , 𝐹ℎ𝑒 ,
𝐹𝑛 , 𝐹𝑒𝑚 with different inputs are displayed in rows. Each column
corresponds to a specific input modality. The following trends can
be inferred by the results: i) The visual and text modalities are
deemed more crucial, substantially contributing to performance
improvement. The clustering of 𝐹ℎ𝑜 reveals that the absence of
the text modality has a substantial negative impact on the clus-
ters, followed by the influence of the visual modality. Moreover,
according to the t-SNE results, particularly in cases where only
the audio modality is available, the audio and text modalities ex-
hibit high entanglement. This suggests that the features captured
by 𝐹ℎ𝑜 in the absence of text modality can be "implied" by the ex-
isting audio modality. ii) 𝐹ℎ𝑜 can learn identical representations
between modalities, exhibiting a clear trend that correlates with the
degree of depression. In the multimodal case of 𝐹ℎ𝑜 (the first row
of Fig. 4), samples with higher degrees of depression form tight and
closely clustered groups across modalities, whereas samples with
mild depression exhibit more diverse representations, resulting in
divergence between each modality. iii) 𝐹ℎ𝑒 consistently performs
well in representing heterogeneous information between modali-
ties. Even when a modality is absent, the model still "remembers"
the feature and provides a proper representation of this modality.
iv) 𝐹𝑛 consistently exhibits strong clustering and clear boundaries
even when some modalities are missing. This indicates that the
noise feature represents coherent information within the modality
and remains independent across samples. v) The 𝐹𝑒𝑚 displays a
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Table 2: The DR performance when disabling the correspond-
ing disentangled features in the student model of Dis2DR.

AVEC 2013 AVEC 2014 AVEC 2017 AVEC 2019
MAE↓ RMSE↓ MAE↓ RMSE↓ MAE↓ RMSE↓ MAE↓ RMSE↓

w/o 𝐹ℎ𝑜 & 𝐹ℎ𝑒 7.90 9.82 7.98 9.97 5.17 6.11 5.33 6.20
w/o 𝐹ℎ𝑒 7.10 9.21 6.97 9.10 4.98 5.78 5.01 6.25
w/o 𝐹ℎ𝑜 6.81 7.99 6.82 8.08 4.92 5.39 4.97 5.81
w/o 𝐹𝑛 6.46 7.78 6.19 7.76 4.52 5.35 4.32 5.28
w/ 𝐹ℎ𝑜 , 𝐹ℎ𝑒 , 𝐹𝑛 6.28 7.74 6.14 7.85 4.41 5.28 4.01 5.19

Table 3: The utilized features for distillation and the corre-
sponding DR performance of Dis2DR.

AVEC 2013 AVEC 2014 AVEC 2017 AVEC 2019
MAE↓ RMSE↓ MAE↓ RMSE↓ MAE↓ RMSE↓ MAE↓ RMSE↓

w/ 𝐹𝑛 7.94 9.85 7.52 9.73 5.72 6.89 4.45 5.87
w/ 𝐹𝑒𝑚 7.27 9.26 7.35 9.61 5.72 6.91 4.32 5.61
w/ 𝐹ℎ𝑜 6.81 8.64 6.67 8.56 5.33 5.77 4.24 5.38
w/ 𝐹ℎ𝑒 6.51 8.14 6.43 8.21 5.18 5.68 4.23 5.34
Dis2DR 5.75 7.04 5.12 6.40 3.66 4.44 3.39 4.18
w/o 𝐹𝑛 6.38 7.91 6.27 7.97 5.12 5.46 4.19 5.33
w/o 𝐹𝑒𝑚 6.37 7.86 6.24 8.04 5.12 5.48 4.08 5.35
w/o 𝐹ℎ𝑜 7.35 8.83 7.42 9.07 5.56 6.73 4.43 5.47
w/o 𝐹ℎ𝑒 7.73 9.64 7.61 9.42 5.68 6.77 4.43 5.73

distinguishing trend between samples with low and high degrees
of depression. Samples with higher depression degrees form clear
and tight clusters, while those with lower degrees tend to exhibit
more diffuse clusters. This trend is particularly appeared when the
input modalities increased.

Furthermore, we conduct a quantitative study to assess the in-
fluence of disentangled features for DR performance. To examine
the impact when the features from the IMI are not functioning, we
disable the corresponding loss function calculation during train-
ing, allowing the features to lose their constraints and downgrade
to normal features. The results listed in Tab. 2 indicate that 𝐹ℎ𝑒
contributes the most, followed by 𝐹ℎ𝑜 . Moreover, if both 𝐹ℎ𝑜 and
𝐹ℎ𝑒 are unavailable, it results in the most significant performance
degradation.

4.6 Analysis of Features for Distillation
To evaluate the effectiveness of privileged knowledge distillation
on the disentangled features in Dis2DR, we conducted experiments
to distill or disable the distillation of these features during train-
ing. The performance results are presented in Tab. 3. The upper
rows represent Dis2DR with only the listed corresponding feature
distilled, while the lower rows represent the listed corresponding
feature being removed during distillation. It is evident that dis-
tillation of 𝐹ℎ𝑒 has the most significant impact on performance,
followed by 𝐹ℎ𝑜 . Specifically, distillation of only 𝐹ℎ𝑒 leads to a sub-
stantial performance improvement, while the absence of distillation
for 𝐹ℎ𝑒 results in a significant performance drop. A similar trend
is observed for 𝐹ℎ𝑜 , with a smaller impact compared to 𝐹ℎ𝑒 . In
contrast, distillation on 𝐹𝑛 and 𝐹𝑒𝑚 has a lesser impact on perfor-
mance. This conclusion aligns with the trends observed in Tab. 2.
This trend also addresses the question of whether we can directly
fine-tune the teacher model for DR. As the distilled composition
of the network decreases, representing a reduction in privileged

Table 4: Performance comparison when utilizing L𝑜𝑟𝑡ℎ .

AVEC 2013 AVEC 2014 AVEC 2017 AVEC 2019
MAE↓ RMSE↓ MAE↓ RMSE↓ MAE↓ RMSE↓ MAE↓ RMSE↓

w/o L𝑜𝑟𝑡ℎ 7.27 9.81 7.21 9.72 4.92 5.73 4.86 5.93
w/ L𝑜𝑟𝑡ℎ 6.28 7.74 6.14 7.85 4.81 5.28 4.01 5.19

(a) w/ ℒ (b) w/o ℒ

Figure 5: The t-SNE analysis of 𝐹ℎ𝑜 , 𝐹ℎ𝑒 , 𝐹𝑒𝑚 with the adoption
of the orthogonality loss L𝑜𝑟𝑡ℎ on the features from AVEC
2017. In the visualization, a larger-sized dot with a thicker
color represents a higher depression score for the correspond-
ing sample. Additionally, we illustrate the cluster tendency
of the feature points using a blue gradient.

knowledge, the training process tends to shift towards fine-tuning
on incomplete modalities data. It’s evident that the DR performance
deteriorates compared to the Dis2DR method, further emphasizing
the significance of privileged knowledge distillation.

4.7 Analysis of Orthogonality on Features
When designing the 𝐹ℎ𝑜 and 𝐹ℎ𝑒 , we utilize L𝑜𝑟𝑡ℎ to maximize the
distinction in information representation between the two features.
We find that enforcing L𝑜𝑟𝑡ℎ contributes to performance enhance-
ment, as indicated in Tab. 4. Furthermore, we examine the involved
features using t-SNE, as illustrated in Fig 5. It is evident that despite
𝐹ℎ𝑜 and 𝐹ℎ𝑒 being constrained by the contrastive losses Lℎ𝑜 and

7



813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

MM ’24, 28 Oct. - 1 Nov. 2024, Melbourne, Australia Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 5: The comparison of Dis2DR and state-of-the-arts on testing set of AVEC datasets.

(a) AVEC 2013

Modality Method MAE↓ RMSE↓

A

AVEC 2013 Baseline [55] 10.35 14.12
Two-Stage [31] 10.88 14.49
PLSR [32] 9.14 11.19
DCNN [21] 8.20 10.00
Lp-norm [34] 7.48 9.79
SAN-DCNN [66] 7.38 9.65
MAFF [34] 7.14 9.50
MFDS-VAN [37] 7.29 9.43
Dis2DR (A) 7.32 9.56

V

AVEC 2013 Baseline [55] 10.88 13.61
MAFF [34] 7.32 8.97
LQGDNet [46] 6.38 8.20
DepressNet [67] 6.20 8.28
MDN [14] 6.24 7.55
Behavior Primitives [48] 6.16 8.10
STA-DRN [35] 6.15 7.98
Depressioner [33] 6.12 7.49
MSN [13] 5.98 7.90
Dis2DR (V) 6.04 7.50

A-V

A-V System [26] 9.09 11.19
MHH + PLSR [11] - 10.62
CCA [32] 8.72 10.96
Kalman Filter [27] 7.68 9.44
Two-Stage [31] 6.75 8.29
MAFF [34] 6.14 8.16
AVA-DepressNet [36] 6.23 7.99
Dis2DR (A-V) 6.12 7.97

A-V-T Dis2DR 5.72 7.21

(b) AVEC 2014

Modality Method MAE↓ RMSE↓

A

AVEC 2014 Baseline [54] 10.04 12.57
PLSR [24] 9.10 11.30
Fisher Vector [23] 8.40 10.25
DCNN [21] 8.19 10.00
Lp-norm [34] 8.02 9.66
SAN-DCNN [66] 7.94 9.57
MAFF [34] 7.65 9.13
MFDS-VAN [37] 7.33 9.44
Dis2DR (A) 7.63 9.28

V

AVEC 2014 Baseline [54] 8.86 10.86
MAFF [34] 6.43 8.60
DepressNet [67] 6.21 8.39
LQGDNet [46] 6.08 7.84
MDN [14] 6.06 7.65
Depressioner [33] 6.01 7.56
STA-DRN [35] 6.00 7.75
Behavior Primitives [48] 5.95 7.15
MSN [13] 5.82 7.61
Dis2DR (V) 5.92 7.09

A-V

AVEC 2014 Baseline [54] 7.89 9.89
Fusion System [38] 8.99 10.82
CCA [27] 7.69 9.61
GMM + ELM [59] 6.31 8.12
PLSR + LR [25] 6.14 7.43
M-BAM [8] 5.78 7.47
MAFF [34] 5.21 7.03
AVA-DepressNet [36] 5.32 6.83
Dis2DR (A-V) 5.45 6.61

A-V-T Dis2DR 5.20 6.65

(c) AVEC 2017

Modality Method MAE↓ RMSE↓

A

AVEC 2017 Baseline [44] 5.72 7.78
CNN-GAN [57] 7.32 8.56
AFN [40] 5.67 6.55
LLD + Fisher Vector [51] 5.30 6.34
LSTM [1] 5.13 6.50
Random Forest [52] 5.22 6.17
HATN [65] 4.28 5.66
MFDS-VAN [37] 4.27 5.34
Dis2DR (A) 4.88 5.60

V

AVEC 2017 Baseline [44] 6.12 6.97
HOG-PCA [49] 4.89 6.23
FDR + LDA [42] 4.64 5.98
Dis2DR (V) 4.51 5.88

A-V
AVEC 2017 Baseline [44] 5.66 7.05
AVA-DepressNet [36] 4.62 5.78
Dis2DR (A-V) 4.69 5.49

A-V-T

ANEW + GSR [12] 5.30 6.52
DCNN-DNN [61] 5.16 5.97
A-V-T Hybrid [62] 4.36 5.40
Dis2DR 4.28 5.33

(d) AVEC 2019

Modality Method CCC↑ MAE↓ RMSE↓

A-V AVEC 2019 Baseline [43] 0.111 - 6.37
Dis2DR (A-V) 0.514 4.32 5.35

A-T
BERT-CNN + GCNN [45] 0.403 - 6.11
MS-TDCNN [18] 0.430 4.39 5.91
Dis2DR (A-T) 0.467 4.28 5.34

A-V-T

CubeMLP [50] 0.583 4.37 -
Hierarchical Bi-LSTM [63] 0.442 - 5.50
MFM-Att [19] - - 5.17
Dis2DR 0.608 4.21 5.28

Lℎ𝑒 , the absence of the orthogonal constraint results in suboptimal
differentiation between features (as shown in the clusters in the
first row). Without L𝑜𝑟𝑡ℎ , 𝐹ℎ𝑜 exhibits numerous heterogeneous
representations, which should have depicted homogeneous infor-
mation rather than heterogeneous, as evidenced by the clusters
separating into distinct groups. Additionally, the 𝐹𝑒𝑚 is not well-
clustered and demonstrates a weak correlation with depression
levels, attributable to the suboptimal representations of 𝐹ℎ𝑜 and
𝐹ℎ𝑒 when L𝑜𝑟𝑡ℎ is not enforced.

4.8 Comparison with the State-of-the-Arts
We compare our Dis2DR with state-of-the-art approaches in both
single-modal and multimodal cases. The performance is presented
in Tab. 5. An additional metric, Concordance Correlation Coefficient
(CCC), is compared in AVEC 2019, which denotes the correlation
between the predictions and ground truth. It is formulated as fol-
lows:

CCC =
2𝜌𝑥,𝑦𝜎𝑥𝜎𝑦

𝜎2𝑥 + 𝜎2𝑦 +
(
𝜇𝑥 − 𝜇𝑦

)2 , (13)

where 𝜎𝑥 and 𝜎𝑦 are the standard deviations, 𝜇𝑥 and 𝜇𝑦 are the
mean values. 𝜌𝑥,𝑦 = cov(𝑥,𝑦)/𝜎𝑥𝜎𝑦 where cov is the covariance.

Overall, our Dis2DR achieves the best audio-visual-text multi-
modal DR performance across almost all criteria and across all the
AVEC datasets. Even when only a subset of modalities is used, our
Dis2DR demonstrates highly competitive performance compared to
audio-visual and audio-text approaches on AVEC 2019. In terms of

single modality comparisons, our Dis2DR even surpasses most sin-
gle audio or visual modality approaches. On AVEC 2013 and AVEC
2014 datasets, the audio-visual approach MAFF [34] achieves com-
petitive performance compared to our Dis2DR framework. However,
MAFF experiences significant performance degradation in the vi-
sual modality when considering single-modality approaches. In
contrast, our Dis2DR framework maintains robust performance,
approaching state-of-the-art performance levels even in the visual
modality.

5 CONCLUSION
In this study, we introduce Dis2DR, an innovative framework that
combines disentangled depression-relatedmultimodal features with
a privileged knowledge distillation paradigm for incomplete multi-
modal DR. Through the disentanglement of features into homoge-
neous, heterogeneous, and noise representations, Dis2DR effec-
tively extracts depression-related features from both modality-
specific and modality-invariant content, capturing crucial infor-
mation and suppressing irrelevant content across various modali-
ties. Furthermore, our privileged knowledge distillation approach
leverages missing content as privileged knowledge, facilitating
the generalization of modality information and improving perfor-
mance in incomplete multimodal scenarios. Experimental results
demonstrate Dis2DR’s state-of-the-art performance in DR across
full audio-visual-text modalities, while remaining competitive even
with single or double modalities inputs on established benchmarks.
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