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Abstract

Portfolio construction is the science of balancing reward and risk; it is at the core of modern
finance. In this paper, we tackle the question of optimal decision-making within a Bayesian
paradigm, starting from a decision-theoretic formulation. Despite the inherent intractability
of the optimal decision in any interesting scenarios, we manage to rewrite it as a saddle-point
problem. Leveraging the literature on variational Bayes (VB), we propose a relaxation of
the original problem. This novel methodology results in an efficient algorithm that not only
performs well but is also provably convergent. Furthermore, we provide theoretical results
on the statistical consistency of the resulting decision with the optimal Bayesian decision.
Using real data, our proposal significantly enhances the speed and scalability of portfolio
selection problems. We benchmark our results against state-of-the-art algorithms, as well
as a Monte Carlo algorithm targeting the optimal decision.

1. Introduction

Portfolio construction (or selection) is a fundamental problem in modern finance (Markowitz,
1952; Merton, 1972), involving the strategic allocation of capital across multiple assets
to achieve an optimal tradeoff between risk and return. As financial markets grow in
complexity, designing robust portfolios that effectively account for market uncertainty has
become increasingly critical. Traditional approaches, such as Markowitz’s mean-variance
optimization (Markowitz, 1952), have provided a foundational framework for portfolio
construction but are now facing challenges in modern finance problems. Markets are
becoming increasingly dynamic, with non-Gaussian asset returns, and, in some cases, small
dataset sizes. This has led to suboptimal performance in real-world scenarios (see discussions
in Benichou et al. (2016)). Formally, the mean-variance framework of a portfolio of d assets
can be stated as choosing weights δ from a decision set1 D ⊂ Rd by solving

argmax
δ∈D

δTµ s.t. δTΣδ ≤ λ , (1)

where µ ∈ Rd is the mean of observations, Σ ∈ Rd×d its covariance matrix, and λ is a
risk tolerance parameter. Extensive research has focused on improving this framework by
addressing key challenges, such as incorporating higher-order moments of return distributions

1. For example, we might consider the d-dimensional simplex as a decision set, D = ∆d := {δ = (δi)i∈[d] ∈
Rd : δi ≥ 0 ∀i ∈ [d] ,

∑d
i=1 δi = 1}.
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(Harvey et al., 2010), introducing robust optimization techniques (Ismail and Pham, 2019),
and refining covariance matrix estimation from noisy data (Benichou et al., 2016; Bun et al.,
2017; Agrawal et al., 2022; Benaych-Georges et al., 2023). The Markowitz portfolio provides
a systematic approach to balancing return and risk, and despite its limitations, continues to
serve as a hard-to-beat benchmark.

Beyond variance-focused methods, utility-based portfolio construction considers an
investor’s subjective perception of risk and reward, allowing for a nuanced approach to
decision-making that can address concerns such as tail risks or other features not captured
by variance alone. A particularly useful utility function in this context is the exponential
utility function with risk parameter λ > 0, defined as

uλ : (y, δ) 7→ 1

λ
(1− e−λy⊤δ) , (2)

which has the following remarkable property: when returns are Normally distributed,
maximizing the expected exponential utility is equivalent to the mean-variance optimization
in (1) (Merton, 1969),

argmax
δ∈D

Ey∼N (µ,Σ) [uλ(y, δ)] ⇐⇒ argmax
δ∈D

{
µ⊤δ − λδ⊤Σδ

}
.

This equivalence establishes a strong link between the mean-variance theory and utility-based
approaches, making the latter a compelling alternative for capturing investor preferences
(Gerber and Pafum, 1998). However, this equivalence does not hold beyond Normally
distributed returns, since the expected utility function cannot be computed in closed-form.
Despite recent advances on this problem (Luxenberg and Boyd, 2024), the general problem
of decision in the face of uncertainty remains. Specifically, beyond point estimates, we need
a reliable estimator of the mean and covariance (µ,Σ) of the recorded historical time series.

Notations. For an arbitrary probability space (Θ, TΘ, π) where Θ is a Polish space, we
denote asM(Θ) the set of probability distributions on Θ. Throughout this paper, π denotes
a generic probability distribution, where its probability space will be clear from context. Sd
is the set of squared positive definite matrices of size d. For a probability distribution π and
a random variable θ, Eρ [θ] denotes the expectation of θ when θ ∼ ρ. The Kullback-Leibler
(KL) divergence between two probability distributions π1 and π2 is denoted K(π1, π2). For a
random variable θ and a measure π, we use the infinitesimal notation π(dθ), generalizing
the notation π(θ = ·) when Θ is countable.

2. Problem Setting

We consider a supervised learning setting where we have access to n observations Hn =
(Yt)t∈[n], where each Yt ∈ Rd. We assume that (Yt)t is the realization of a stochastic process
parameterized by an unknown parameter θ∗, (Yt)t ∼ Pθ∗ . We do not make any additional
assumption on Pθ∗ for now. We define a probability space (Θ, TΘ) associated with θ and
express our initial uncertainty about this parameter through a prior distribution π0.

Building on the discussions in Section 1, we formalize our portfolio construction problem
in the lens of Bayesian decision theory (Robert, 2007, Chapter 2). The Bayesian decision
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δ∗ with respect to a utility function u is the decision δ ∈ D that maximises the posterior
expected utility (or Bayesian risk),

δ∗ = argmax
δ∈D

∫
Rd
u(Yn+1, δ)π(dYn+1 |Hn) , (3)

where π(dYn+1 |Hn) is the posterior predictive distribution of new (unseen) observation Yn+1.
Note that δ∗ is a function of Hn, δ

∗ = δ∗(Hn), but this dependency is omitted to simplify
notation. Under the particular choice of exponential utility (2), we can rewrite (3) as

δ∗ = argmin
δ∈D

∫
Rd
e−λδ⊤Yn+1π(dYn+1 |Hn) , (4)

for a given λ > 0 fixed by the user. One major challenge in Bayesian modelling is the lack
of closed-form solutions for posterior predictive distributions, except for simple statistical
models (e.g. Gaussian model with deterministic covariance). Hence, directly computing (4)
in closed-form is generally infeasible. While various methods exist to numerically compute
this integral (e.g. Monte-Carlo estimates), they tend to be computationally expensive,
particularly in high-dimensional spaces. We address this in the following section by rewriting
the objective function as a saddle point. We then make use of the same relaxation as in
Variational Bayes (VB; Jordan et al., 1999) to approximate the inner optimisation.

3. Exponential Utility Maximization as a Saddle-Point Optimization

3.1. Main Observation

Our main contribution is to show that maximizing an exponential utility function is equivalent
to solving a saddle-point optimization problem. We believe that the following result may
be of independent interest to anyone seeking to maximize an exponential utility for various
applications.

Theorem 1 The optimal Bayesian decision (4) can be written as a saddle-point,

δ∗ = argmin
δ∈D

max
ρ∈M(Rd×Θ)

{−K(ρ, π̃n) + Zδ} , (5)

where πn is the posterior distribution over the joint parameter (y, θ) ∈ Rd ×Θ, π̃n is defined

as dπ̃n = e−λδ
⊤Yn+1

Eπn
[
e−λδ

⊤Yn+1
]dπn and Zδ = −Eπn

[
e−λδ⊤Yn+1

]
is a term that does not depend on

ρ.

The proof of Theorem 1 relies on a well-known change-of-measure (Donsker and Varadhan,
1983) on the log of the exponential utility. We also introduce the risk function RM over all
probability measures;

∀δ ∈ D, RM(δ) = sup
ρ∈M(Rd×Θ)

{−K(ρ, π̃n) + Zδ} ,

and δ∗ is the decision that minimizes the risk RM.
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3.2. Variational Bayes Approximation of δ∗

Computing π̃n is challenging because the normalization constant Eπn

[
e−λδ⊤Yn+1

]
is in-

tractable for non-conjugate models (for which it is equivalent to computing the integral (4)).
We now demonstrate how the min-max formulation in (5) can be leveraged to enable the
use of VB approximation.

Maximization over a subspace of measures. Fix an arbitrary decision δ ∈ D. Since
Zδ does not depend on ρ, the distribution that solves the maximum writes2

ρ∗(δ) := argmin
ρ∈M(Rd×Θ)

K(ρ, π̃n) , (6)

where we emphasize that ρ∗ depends on δ since π̃n does. VB approximations instead
solve a restriction of (6): we define a family of measures F ⊆ M(Rd × Θ) for which the
restricted problem (6) over this family is considered tractable. For example, the mean-field
family (Parisi and Shankar, 1988; Bishop, 2006) assumes independence between parameters:
assuming Θ factorizes as a product of K ≥ 1 subspaces, Θ =

∏K
i=1Θi, the mean-field family

of (Rd,Θ) is defined as

F
(
Rd ×Θ

)
=

{
ρ ∈M(Rd ×Θ) : ρ(d(Yn+1, θ)) = ρy(dYn+1)

K∏
i=1

ρi(dθi) :

ρy ∈M(Rd), ρi ∈M(Θi) ∀i ∈ [K]

}
.

Notice that F does not make any assumption on the form of the distributions ρy or (ρi)i’s,
but only relies on the factorisation assumption and the underlying statistical model. We
denote by ρ̂VB the Mean-field variational approximation of ρ∗, that is,

ρ̂VB(δ) = argmin
ρ∈F(Rd×Θ)

K(ρ, π̃n) . (7)

Since we deal with a parametric underlying statistical model, ρ̂VB is also parametric. The
main advantage of using F is that ρ̂VB can be computed numerically since it is the solution
of a fixed-point equation.

Proposition 2 The variational distribution is written as ρ̂VB = ρy ⊗K
j=1 ρj, where for any

δ ∈ D we have

log ρy(dYn+1) ∝ Eρ1,...ρK

[
log e−λδ⊤Yn+1π(Yn+1, θ,Hn)

]
log ρj(dθj) ∝ Eρy ,ρ−j

[
log e−λδ⊤Yn+1π(Yn+1, θ,Hn)

]
,

where for any j ∈ [K], Eρ−j [·] denotes the expectation with respect to the measures
(ρi)i∈[K]\{j}.

The proof of the previous equation is provided in Appendix D, and is a direct consequence
of a well-known result for Mean-field variational inference (Chapter 10; Bishop, 2006).

2. The negative sign is omitted for now but we will plug it in the final objective function.
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Minimization over decisions. Once we found the variational approximation ρ̂VB for a
given δ, we define the corresponding variational decision δ̂VB by just plugging ρ̂VB into (5),

δ̂VB = argmin
δ∈D

RF (δ) , (8)

where we introduced the objective function δ 7→ RF (δ),

RF (δ) = sup
ρ∈F(Rd×Θ)

{−K(ρ, π̃n) + Zδ} = −K(ρ̂VB(δ), π̃n) + Zδ . (9)

Note that RF can be seen as an approximation of the risk function RM, where for all δ ∈ D,
RF (δ) ≤ RM(δ). Then, one key observation is that once we computed ρ̂VB, we don’t have
to compute Zδ because

−K(ρ̂VB(δ), π̃n) + Zδ = −Eρ̂VB
[log(ρ̂VB)]− λδ⊤Eρ̂VB

[Yn+1] + Eρ̂VB
[log πn] + C ,

where C does not depend on δ, and hence (9) can be computed in closed-form. Since ρ̂VB

depends on δ, optimizing with respect to δ requires to alternate Gradient-descent steps on
(9) with adjustment steps (7) in the following way:

i) Gradient-Descent step. We perform one step of gradient descent with a constant
step-size η,

δ̂(k+1) ← δ̂(k) − η∇δRF (δ̂
(k)
VB) .

ii) Adjustment step.We recompute the variational distribution ρ̂VB solution to (5) for
the decision δ̂(k+1). The pseudo-code of our general method (denoted as VB-Portfolio)
is shown in Algorithm 1. In the following section, we will introduce specific statistical
models to which this algorithm can be applied.

Algorithm 1 VB-Portfolio: Portfolio Construction with Variational Bayes.

Input: Dataset Hn, Prior π0 on θ, initial decision guess δ̂(0), decision space D.
for k = 1, . . . , do

while Not converging do
ρ̂VB ← T (ρ̂VB) where T is the fixed-point operator defined in Theorem 14 for GW
model, Theorem 16 for AR model, Theorem 18 for GP model.

end

δ̂(k+1) ← ProjD

(
δ̂(k) − αk∇δRF (δ̂

(k))
)
, where RF is defined in Theorem 15 for GW

model, Theorem 17 for AR model and Theorem 19 for GP model.
end

Return δ̂(∞) = δ̂VB.

Convexity properties of the objective function. An important property of the
objective function (9) is that it enjoys remarkable properties such as convexity and smoothness.
Therefore, applying Projected Gradient Descent on δ 7→ RF (δ), where the projection set D
is compact and convex ensures that the iterates (δ̂(k))k will converge to an optimal point
with value RF(δ̂VB), that is, RF(δ̂

(k)) →k RF(δ̂VB) at rate O(1/k). We state formally
these results in Theorem 3. These properties will also play a crucial role in establishing the
statistical convergence of δ̂VB.
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Statistical guarantees of Variational Bayes. The restriction of the variational for-
mulation to a smaller set of measures introduces a bias in the resulting decisions. There is
a growing literature studying the statistical properties of variational Bayes approximation
(Alquier et al., 2016; Wang and Blei, 2019; Alquier and Ridgway, 2020; Yang et al., 2020;
Ray and Szabó, 2022; Huix et al., 2024). Those results are not directly transferable to our
problem because we do not only require the convergence of the approximate measure but
the convergence with respect to the argmin of the objective function; we show that our VB
algorithm converges asymptotically with respect to the sample size n (see Section 4).

4. Theoretical Guarantees

In this section, we assume that D is compact and convex, as is the case when D = ∆d,
the standard simplex. We introduce the notation δ̂(k) for the result of our algorithm after
k iterations of Algorithm 1. Under the formal conditions stated below, we establish the
following two key theoretical results. Complete proofs are given in Appendix C.

4.1. Numerical Convergence

We begin by addressing the convergence of our algorithm, which relies on the convexity and
smoothness properties of the objective function RF .

Proposition 3 (Properties of RF) For a fixed dataset size n, δ 7→ RF (δ) is convex and
smooth. Let L denote the smoothness constant of RF . Using Gradient descent with a step
size of η = 1/L and initial point δ̂(0) ensures

RF (δ̂
(k))−RF (δ̂VB) ≤

2L

k − 1
∥δ̂(0) − δ̂VB∥2 .

4.2. Statistical Consistency

Next, we establish asymptotic consistency results as the sample size n → +∞, focusing
on the behaviour of the decision δ̂VB. For this, we introduce an assumption regarding the
asymptotic behaviour of the fixed-point equation.

assumption 1:
As the sample size n→ +∞, the variational distribution converges pointwise,

∀δ ∈ D , ρ̂VB(δ)
n→+∞−−−−−→ ρ̂∞(δ),

where ρ̂∞ is solution to the asymptotic fixed-point operator: denoting Tn the fixed point
operator defined in Theorem 2, for any δ ∈ D, if Tn(ρ̂VB(δ)) = ρ̂VB(δ) then the operator
T∞ = limn→+∞ Tn satisfies T∞(ρ̂∞(δ)) = ρ̂∞(δ).

Next we derive asymptotic consistency of the variational decision δ̂VB under this assumption.

Theorem 4 (Consistency of the variational decision) Under both GW (10) and AR
(11) models, the variational decision converges almost surely to the Markovitz decision in D,

δ̂VB
a.s.−−−−−→

n→+∞
argmin

δ∈D

{
1

2
δ⊤Σ̂−1

∞ δ − λδ⊤µ̂∞
}
.
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where Σ̂∞ and µ̂∞ are the empirical estimates of the covariance matrix and mean vector,
respectively, in the limit as n→ +∞.

5. Conclusion

We showed that Bayesian optimal decision for exponential utility can be interpreted as
a saddle-point problem. We developed a computationally efficient algorithm based on
variational Bayes with provable convergence guarantees, demonstrating its effectiveness in
real-world portfolio optimization problems.

Maximizing exponential utility functions. Our min-max formulation (Theorem 1)
provides a versatile framework for scenarios where the expected utility lacks a closed-form
solution. This methodology not only bridges theoretical and practical domains but also holds
promise for broader applications, particularly in areas like reinforcement learning (Marthe
et al., 2024), where exponential utility functions are pivotal for navigating decision-making
under uncertainty.

Beyond Gradient-Descent. Although our objective function is convex and smooth,
leveraging advanced optimization techniques could unlock further potential. Techniques
such as Nesterov’s acceleration (Nesterov et al., 2018) and mirror-descent-based methods
(Nemirovski, 2004) for saddle-point optimization present opportunities to enhance conver-
gence rates and scalability. These methods could prove especially beneficial for portfolio
construction in high-dimensional settings.
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Appendix A. Application to Specific Statistical Models

So far, Algorithm 1 remained theoretical since we do not introduce assumptions on the
statistical model Pθ∗ yet, i.e. we derived a general algorithm that holds for any parametric
statistical model Pθ∗ . We now introduce relevant statistical models in the context of finance,
where the core problem is to estimate the mean of investment returns, and the correlation
between these returns. For all these models, we derive the corresponding fixed-point operator
and the objective function RF in closed form in Appendix D.

A.1. Gaussian-Wishart (GW)

For this model, observations (returns) are assumed independent and Normally distributed
with unknown mean µ and precision Λ; putting a Gaussian prior on the mean and a Wishart
prior on the precision matrix,

Yt |µ,Λ
i.i.d.∼ N (µ,Λ−1) ∀t ∈ N

µ ∼ N (µ0,Λ
−1
0 ) , Λ ∼ W(ν0, ψ0) . (10)

Since we put prior on both mean and covariance θ = (µ,Λ), this model does not have closed-
form moments for its joint posterior distribution π(d(µ,Λ) |Hn), so we cannot compute
the integral (4) directly. The full expression of the fixed-point operator in Theorem 2 for
this model is derived in Theorem 14, along with the corresponding objective function RF
detailed in Theorem 15.

A.2. Autoregressive Model (AR)

The non-dynamic model defined in Equation (10) is rather conservative, as it assumes no
autocorrelation in returns, treating them as independent across time. While this simplifies
learning and estimation, it overlooks the temporal dependencies often present in financial
data such as market trends. Ignoring these patterns may limit the model’s capacity to
capture the true structure of returns. To circumvent this limitation, we introduce a model
that incorporates a dynamic in the observations. We first outline a few definitions.

Definition 5 (Matrix normal distribution (Quintana, 1987)) We say that X ∈ Rd×d

follows a matrix normal distribution with mean parameterM ∈ Rd×d, row-variance U ∈ Rd×d

and column variance V ∈ Rd×d and denote X ∼MN (M,U, V ) if and only if

vec(X) ∼ N (vec(M), V ⊗ U) ,

where we define vec(A) as the concatenated vector in Rmn of a matrix A ∈ Rm×n, vec(A) =
(A1, · · ·An).

In this model, we arbitrarily3 set the initial value Y0 ∼ δy with y ∈ Rd. Then, the model
writes

Yt |Yt−1,Γ,Λ ∼ N (ΓYt−1,Λ) ∀t ∈ N∗

Γ ∼MN (M0, U0, V0) , Λ ∼ W(ν0, ψ0) . (11)

The full expression of the fixed-point operator in Theorem 2 for this model is derived in
Theorem 16, along with the corresponding objective function RF detailed in Theorem 17.

3. This first observation can be set thanks to previously collected data, which may be available in practice.
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A.3. Gaussian Process Model (GP)

Gaussian processes (GPs; Williams and Rasmussen, 2006) can model the correlations between
returns without assuming a specific functional form, making them particularly well-suited
for environments with non-linear dependencies. We first define formally multivariate GPs.

Definition 6 (Multivariate Gaussian process (MGP) (Chen et al., 2020)) f follows
a multivariate Gaussian process with mean function µ : R → R, row variance function
k : R2 → R and column variance Ω, and we denote f(·) ∼ MGP(µ(·), k(·, ·),Ω), if,

for every set of points {1, . . . ,m} with m any integer, we have
(
f(t1)

⊤, . . . , f(tm)⊤
)⊤ ∼

MN (Mm
0 ,Σ

m
0 ,Ω), where [Mm

0 ]ij = µ(ti)j and [Σm
0 ]ij = k(ti, tj).

Putting a multivariate GP prior on the mean returns µ, the GP model is defined as

Yt |µ(·),Λ ∼ N (µ(t),Λ−1) ∀t ∈ N (12)

µ(·) ∼MGP(µ0(·),K0(·),Ω0), Λ ∼ W(ν0, ψ0) ,

where we emphasise that at time step t, µ(t) ∈ Rd (i.e. (Yt)t≥1 is a multivariate stochastic
process). We will use specific kernel functions K0 in numerical experiments. The full
expression of the fixed-point operator in Theorem 2 for this model is derived in Theorem 18,
and the corresponding objective function RF in Theorem 19.

Remark 7 (Computing the gradient ∇δRF) For the objective functions presented in
Theorems 15, 17 and 19, we use automatic differentiation techniques to compute their
gradients (Bradbury et al., 2018).

Appendix B. Numerical Experiments

B.1. Experiments on Real-world Dataset

Dataset. We use financial indices associated with the G20 member countries, spanning the
period from 2012 to 2024; these data are publicly available4. These indices are chosen over
individual stock prices to minimize selection and survivorship biases. We apply Exponential
Moving Averages (EMA) (Brockwell and Davis, 2002) with 8 different scales to each index
and compute the corresponding EMA for all indices. The EMA-transformed signals are
then aggregated by averaging across scales, producing dataset with d = 8 experts, where
each column represents the averaged EMA signal at a specific scale, capturing smoothed
trends across the indices. Monthly observations are extracted from this transformed dataset,
yielding three different settings of increasing sample sizes: (n, d) = (12, 8) (Setting 1),
(n, d) = (48, 8) (Setting 2), and (n, d) = (84, 8) (Setting 3).

Baselines. We compare our algorithm, VB-Portfolio, instantiated with models (10), (11)
and (12) against several baseline portfolios. The first is the Equal Weights portfolio (EW,
also called the 1/d portfolio), which assigns uniform weights to all assets: δ̂EW = 1

d1d. We

also consider the Markowitz portfolio (Mwz), as described in Equation (1), δ̂Mwz =
1
λ Σ̂

−1
n µ̂n.

Additionally, a more refined approach is to regularize the covariance matrix estimate, which

4. https://finance.yahoo.com/markets/world-indices/
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is particularly advantageous in data-poor regimes. The Ledoit-Wolf method (Ledoit and
Wolf, 2003) employs a shrinkage technique to stabilize the sample covariance matrix by
combining it with a structured target matrix, typically a scaled identity matrix. The
resulting shrunk covariance matrix is defined as Σ̂LW

n = (1 − α)Σ̂n + αId, where α is the
shrinkage intensity. Notably, the optimal value of α can be explicitly computed, as derived
in Ledoit and Wolf (2003). This adjustment balances bias and variance, resulting in a
better-conditioned estimator for high-dimensional settings. We define the corresponding

Markowitz-based portfolio as δ̂LWMtz = 1
λ

(
Σ̂LW
n

)−1
µ̂n. Finally, we compare our approach

against a state-of-the-art method, the Exponential Utility for Gaussian Mixtures (EGM),
which maximizes the exponential utility under a Gaussian mixture model assumption for
returns (Luxenberg and Boyd, 2024).

Prior parameters. For all models, the Wishart prior is set as ν0 = d and ψ0 =
1
ν0
Σ̂−1
n ,

where Σ̂n is the empirical estimate of covariance matrix. For the GW model, we set the
prior mean as the empirical mean, µ0 = µ̂n and Σ0 = Id. For the AR model, we set
M0 as the MLE estimate of the transition matrix Γ obtained via linear regression on the

observations Hn, M0 =
(∑n

t=1 YtY
⊤
t−1

) (∑n
t=1 YtY

⊤
t

)−1
. We set the row-covariance U0 and

column-covariance V0 as identities. For the GP model (12), we choose a Radial basis function

kernel parameterized by γ i.e. ∀t1, t2, kγ(t1, t2) = exp
(
(t1−t2)2

2γ2

)
, and tune γ trough

Gradient-based optimization (with respect to marginal likelihood). We set the mean function
to 0 and the prior column variance as Ω0 = Id. The hyperparameter choices are discussed in
Appendix F.

Results (Cumulative wealth and regret). For each allocation strategy, we compute
the out-of-sample cumulative wealth, δ⊤

∑
y∈Etest y (Etest are observations of the testing

set, i.e. observations from 2013 for Setting 1, from 2016 for Setting 2 and from 2018 for
Setting 3). To enable a fair comparison across strategies with varying levels of risk, we
rescale each cumulative wealth by its standard deviation. This risk-adjusted rescaling is a
standard convention in portfolio construction literature. Additionally, we plot the strategy
corresponding to allocating all mass on the best index in hindsight, defined as the index
with the highest cumulative wealth at the end of the testing horizon. To further assess
performance, we plot the cumulative regret for each strategy against this best index in
hindsight, that is, the difference between the cumulative wealth of the best index in hindsight
and the one of the given strategy. We rescale this cumulative difference by its standard
deviation. Results are displayed in Figure 1, and show that while VB-Portfolio(GW)
exhibits performance comparable to the Markowitz-based portfolio, VB-Portfolio, when
instantiated with both the AR and GP models, outperforms the other strategies overall.
This superior performance suggests that these models are particularly effective at adapting
to evolving market conditions.

Sharpe Ratios Comparison. The Sharpe ratio (Sharpe, 1966, 1994) is a widely used
metric for assessing the risk-adjusted performance of investment strategies. It is defined as the
ratio of the mean return to the standard deviation, quantifying the return per unit of risk. Let
µ̂test(δ) denotes the mean return of strategy δ over the testing set, and σ̂test(δ) its standard
deviation. The annualized Sharpe ratio is then computed as SR(δ) =

√
12µ̂test(δ)/σ̂test(δ).
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Figure 1: Cumulative wealth (row 1) and cumulative regret with respect to best index in
hindsight (row 2) in 3 settings. For each strategy, we rescale the cumulative plot by the
standard deviation of the returns.

Table 1: Out-of-sample annualized Sharpe ratios of each portfolio for different settings.

Allocation Strategy
Annualized Sharpe Ratio

Setting 1 Setting 2 Setting 3

algVB (GW) 0.59 0.77 1.03
algVB (AR) 0.88 0.90 1.16
algVB (GP) 0.90 0.90 1.12
Markowitz 0.31 0.77 1.03
Markowitz (LW) 0.63 0.77 1.11
Equal Weights 0.52 0.52 0.74
EGM 0.80 0.80 1.05

This metric facilitates meaningful comparisons across strategies by highlighting those that
deliver higher returns relative to risk. As illustrated in Table 1, VB-Portfolio(AR) achieves
the highest Sharpe ratio overall, closely followed by VB-Portfolio(GP). Both methods
consistently outperform traditional approaches, such as the Markowitz portfolio, particularly
in Settings 1 and 2, where the smaller sample sizes lead to less stable estimates for the
other strategies. These findings underscore the robustness of the proposed methods in data-
poor environments, demonstrating that Bayesian approaches are well-suited to regularizing
estimates and mitigating the impact of limited training data.

B.2. Numerical Consistency

To assess the consistency of our approximation δ̂VB to δ∗, we use a gradient descent-based
algorithm that leverages Markov Chain Monte Carlo (MCMC) sampling to estimate the
gradient of the objective function.

Approximating the objective function. First, we want to approximate the integral (4)
for any δ ∈ D;

RM(δ) =

∫
Y
e−λδ⊤Yn+1π(dYn+1 |Hn) ≈

1

M

M∑
m=1

e−λδ⊤y(k) ,

14
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where (y(k))k∈[M ] are M samples from the predictive posterior distribution π(· |Hn). This
can be done with the Gibbs sampling algorithm (Geman and Geman, 1984): in fact, by
remarking that

π(dYn+1 |Hn) =

∫
Θ
π(dYn+1 | θ)π(dθ |Hn) ,

and since we now how to sample from the conditional posterior π(dθi |θ−i, Hn), we can
generate M samples (θ(m))m≤M from the joint posterior distribution π(dθ |Hn). From this

sequence, we can now sample from the distribution π̆(dYn+1) ∝ e−λδ⊤Yn+1π(dYn+1 | Hn)
conditionally on one sample θ(k), by drawing a sample y(k) from the distribution

π̆k(dYn+1) ∝ e−λ⊤Yn+1π(dYn+1; θ
(k)) ,

resulting in a sequence of M samples (y(k))k∈[M ].

Approximating the gradient ∇δR. By Leibniz rule, we have

∇δRM(δ) = −λ
∫
Y
Yn+1

e−λδ⊤Yn+1π(dYn+1 | Hn)∫
Y e

−λδ⊤Yn+1π(dYn+1 | Hn)
= −λEπ̆ [Yn+1] ,

for which we can approximate by

∇δRM(δ) ≈ −λ 1

M

M∑
k=1

z(k) , where z(k) ∼ π̆k(·) .

The pseudo-code of this MCMC algorithm is shown in Algorithm 2. We instantiate
this algorithm for GW and AR model in Appendix E, where we provide in particular the
expressions of the conditional posteriors and π̌.

Algorithm 2 MCMC-Portfolio: Portfolio Construction with Markov Chain Monte-Carlo.

Input: Dataset Hn, initial decision δ̂
(0), number of Monte-Carlo samples M , risk parameter

λ, step-size η.
while Not converging do

Get M samples (θ(k))k∈[M ] from Gibbs sampler.

For all k ∈ [M ], sample z(k) ∼ π̆k.
δ̂(k+1) ← ProjD

(
δ̂(k) + ηλ 1

M

∑
k∈[M ] z

(k)
)

end

Return δ̂(∞) = δ̂MCMC.

Consistency with synthetic data. To evaluate the numerical consistency of our method,

we show that E
[
∥δ̂MCMC − δ̂VB∥2

]
converges to 0 as the sample size n grows. We generate

synthetic datasets for both GW model and AR model with d = 30. For the GW model,
we randomly set each component of the true mean return, µ∗i , according to a uniform
distribution, µ∗i ∼ U([0, 1]), and use an identity covariance matrix, Σ∗ = Id. For the AR

15



Nguyen Ridgway Vernade

50 90 150 200
Dataset size n

0.00

0.05

0.10

0.15

0.20

0.25

Ex
pe

ct
ed

 sq
ua

re
d 

no
rm

GW model AR model

Figure 2: Expected 2-norm E
[
∥δ̂MCMC − δ̂VB∥2

]
as a function of dataset size n for both the

GW and AR(1) models. Each point represents the average over 50 iterations, with error bars
indicating one standard deviation to represent the confidence interval. The dimensionality
of the data is fixed at d = 30.

model, the true transition matrix Γ∗ is set to a diagonal matrix with values evenly spaced
from 0.6 to 0.99, while the covariance matrix is Σ∗ = 0.1Id. We generate datasets of varying
sizes, with n ranging from 50 to 200. For the GW model, we simulate data according to
(10), and for the AR model, we follow (11). For each dataset, we compute the decision
vector using both VB-Portfolio and MCMC-Portfolio, where the Gibbs sampler is run for

M = 20,000 iterations. We compute E
[
∥δ̂MCMC − δ̂VB∥2

]
, where the expectation is taken

over 50 repetitions with newly generated datasets.
Figure 2 illustrates the relationship between this expected norm difference and the

dataset size n. As n increases, we observe that the difference between the two decision
methods diminishes, confirming the numerical consistency of VB-Portfolio with respect to
MCMC-Portfolio as the sample size grows.

Appendix C. Complete Proofs

C.1. Proof of Theorem 1

Proof (Theorem 1) By rewriting (4),

δ∗ = argmin
δ∈D

∫
Rd
e−λδ⊤Yn+1π(dYn+1 |Hn)

(i)
= argmin

δ∈D
log

∫
Rd
e−λδ⊤Yn+1π(dYn+1 |Hn)

(ii)
= argmin

δ∈D
log

∫
Rd×Θ

e−λδ⊤Yn+1 π(d(Yn+1, θ) |Hn)︸ ︷︷ ︸
:=πn((d(Yn+1,θ))

,

where in (i) we took the log in front of the objective function, and in (ii) we marginalized
out θ conditionally on Hn (since

∫
Θ π(d(Yn+1, , θ) |Hn) = π(dYn+1 |Hn)). Applying the

Donsker-and-Varadhan change-of-measure (Donsker and Varadhan, 1983) on h : x 7→ −λδ⊤x
gives

δ∗ = argmin
δ∈D

sup
ρ∈M(Rd×Θ)

{
−λδ⊤Eρ [Yn+1]−K(ρ, πn)

}
. (13)
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We next have to show that the expression inside the supremum can be expressed as a KL
divergence (up to an additive constant that does not depend on ρ); we observe that for any
δ ∈ D,

−λδ⊤Eρ [Yn+1] = −
∫
Rd×Θ

log
1

e−λδ⊤Yn+1
ρ(d(Yn+1, θ))

and therefore, by introducing the probability measure π̃n defined as dπ̃n = e−λδ
⊤Yn+1

Eπn
[
e−λδ

⊤Yn+1
]dπn,

we have

− λδ⊤Eρ [Yn+1]−K(ρ, πn) = −
∫
Rd×Θ

log

(
dρ

dπ̃n
(Yn+1, θ)

)
ρ(d(Yn+1, θ)) + Zδ = −K(ρ, π̃n) + Zδ .

(14)

Combining (13) with (14), we can rewrite the Bayes optimal decision as

δ∗ = argmin
δ∈D

sup
ρ∈M(Rd×Θ)

{−K(ρ, π̃n) + Zδ} ,

where the supremum is indeed achieved for ρ = π̃n.

C.2. Auxiliary Lemmas

Lemma 8 The mean-field space F(Rd ×Θ) is closed in the space of probability measures
M.

Proof Consider any sequence (ρi)i∈N in F(Rd ×Θ) that has a limit inM(Rd ×Θ). Then
for any i ∈ N, ρi can be factorized as

ρi(d(y, θ)) = ρiy(dy)
K∏
k=1

ρik(dθk) ,

where we recall that we assume that Θ factorizes as a product of K subspaces, Θ =
∏K

k=1Θk.
Then limit of (ρi)i exists by construction, and

lim
i→+∞

ρi(d(y, θ)) = lim
i→+∞

(
ρiy(dy)

K∏
k=1

ρik(dθk)

)
= lim

i→+∞
ρiy(dy)

K∏
k=1

lim
i→+∞

ρik(dθk) ∈ F(R×Θ) ,

which proves that the limit of any convergent sequence in F(Rd × Θ) has its limit in
F(Rd ×Θ), and hence F(R×Θ) is closed inM.
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C.3. Proof of Theorem 3

For any δ ∈ D and any measurable h in Rd ×Θ, h 7→ g(h) = supρ∈M(Y×Θ)(⟨h, ρ⟩ − K(ρ, π))
is a convex map since it is defined as the Fenchel-Legendre transformation of ρ 7→ K(ρ, πn),
with ρ ∈ M(Y × Θ) (and the space of probability measures M(Y × Θ) is a convex set).
Thus, we also have that the map h 7→ g̃(h) = supρ∈F(Y×Θ)(⟨h, ρ⟩ − K(ρ, π)) is convex since
for any probability measure ρ ∈M(Y ×Θ), h 7→ ⟨h, ρ⟩ −K(ρ, π) is convex (as a linear map)
and g̃ is the pointwise supremum of a family of convex function (the supremum conserves
convexity (Boyd and Vandenberghe, 2004)). Taking h as hδ(y) = −λδ⊤y and remarking
that it is a convex function with respect to δ for a given λ > 0 shows that RF is convex:
indeed, by composition of convex functions, g̃(hδ(y)) is convex with respect to δ, and so
RF(δ) = g̃(hδ(y)). Moreover, ρ 7→ K(ρ, πn) is strongly convex on the space of probability
measuresM(Rd ×Θ), and hence g is smooth (as a convex conjugate of a strongly convex
function). Hence, RF is also smooth by composition (with the same arguments as above for
the convexity).

The convergence rate mentioned follows directly from the classical results of gradient
descent applied to convex, smooth functions (see, for instance, Bach (2024, Chapter 5)).

C.4. Proof of Theorem 4

The first step involves interchanging the limit and the argmin over δ ∈ D, allowing us to
express it as:

lim
n→+∞

argmin
δ∈D

RF (δ) ≜ argmin
δ∈D

lim
n→+∞

RF (δ) .

This step △ is non-trivial because the argmin function is a set, necessitating the use of
general regularity conditions. Additionally, RF is defined implicitly as a supremum over a
space of measures. The second step involves analyzing limn→+∞RF (δ), for which we know
how to proceed based on the statistical model introduced in Appendix A.

C.4.1. Inverting Limit and Argmin

We rely on Rockafellar and Wets (2009, Theorem 7.33) for this purpose; this strong result
requires to show the two following conditions:

C.1. (RF )n epi-converges to R∗
F , where R∗

F is lower-semi-continuous and proper.

C.2. (RF )n is a lower-semi-continuous and proper sequence.

To show that (RF )n epi-converges, we first establish some general regularity properties of
this sequence, from which the epi-convergence will naturally follow. For any λ > 0 and
n ∈ N, we introduce the functional

fn(δ, ρ) = −λδ⊤Eρ [Yn+1]−K(ρ, πn) . (15)

(RF)n is a uniformly continuous sequence. Since Θ is a Polish space, Rd × Θ
is also a Polish space. According to Billingsley (2013, Th. 1.3),M(Rd ×Θ) is a space of
tight measures. By Prokhorov’s theorem,M(Rd ×Θ) is relatively compact in the weak-*
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topology. Given that F(Rd ×Θ) is closed in F (Theorem 8), it follows that F(Rd ×Θ) is
also compact as a closed subset of a relatively compact space. By the Maximum theorem,
RF is continuous on D. Furthermore, for any ρ ∈ F , the function fn(δ, ρ), as defined in (15),
is linear with respect to δ (since the KL term is independent of δ), making fn uniformly
continuous in δ. Consequently, since RF is continuous on a compact set and fn is uniformly
continuous with respect to δ, we have that for all ρ ∈ F and for any ε > 0, there exists a
γ > 0 such that

∥δ1 − δ2∥ < γ =⇒ |fn(δ1, ρ)− fn(δ2, ρ)| ≤ ϵ ,

and therefore,

∀ε > 0, ∃γ > 0, ∥δ1 − δ2∥ < γ =⇒ |RF (δ1)−RF (δ2)| ≤ sup
ρ∈F
|fn(δ1, ρ)− fn(δ2, ρ)| ≤ ϵ

independently in n, which is the definition of uniform continuity of RF .
(RF)n is epi-convergent sequence. Since RF is uniformly continuous, smooth, and

convex on a compact domain for any n ∈ N (Theorem 3), it follows that RF is uniformly
bounded on this compact space, implying that (RF )n is equicontinuous. Additionally, (RF )n
converges pointwise to a limit R∗

F , as established by Assumption 1. By the Arzelà-Ascoli
theorem, the equicontinuous sequence (RF)n converges uniformly to R∗

F . According to
Rockafellar and Wets (2009, Theorem 7.11), (RF )n epi-converges if and only if it converges
continuously. Since uniform convergence implies continuous convergence, we conclude that
(RF )n is epi-convergent to R∗

F , thereby verifying C.1.
Lower semi-continuity and proper conditions. Since (RF)n is continuous, it is

also lower semi-continuous. Furthermore, because (RF)n converges continuously, R∗
F is

continuous and thus lower semi-continuous as well. To show that any preimage of a set
I ⊂ R (e.g., a closed interval) is compact, note that since RF is continuous, R−1

F (I) is a
closed subset of D. Given that D is compact, R−1

F (I) is a closed subset of a compact space,
and hence compact. The same reasoning applies to R∗

F due to continuous convergence.
Therefore, we have verified C.2.

C.4.2. Asymptotic Objective Function

We now turn our attention to computing limn→+∞RF = R∗
F . Since ρ̂VB converges to

a distribution ρ̂∞, where ρ̂∞ is the fixed point of T∞ (Assumption 1), we can explicitly
compute R∗

F using the known form of RF as a function of n for the statistical models under
consideration. The following lemma formalizes this result.

Lemma 9 For both GW (10) and AR (11) models, we have

∀δ ∈ D , R∗
F (δ) =

1

2
(λδ)⊤Σ̂−1

∞ (λδ)− λδ⊤µ̂∞ ,

where for the GW model we have

µ̂∞ = lim
n→+∞

(
1

n

n∑
t=1

Yt

)
, Σ̂∞ = lim

n→+∞

(
1

n

n∑
t=1

(Yt − µ̂∞) (Yt − µ̂∞)⊤
)
,
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and for the AR model

µ̂∞ = lim
n→+∞

(
n∑

t=1

YtYt−1

)(
n∑

t=1

YtYt

)−1

Y∞ , Σ̂∞ = lim
n→+∞

(
1

n

n∑
t=1

(Yt − µ̂∞) (Yt − µ̂∞)⊤
)
,

which is the corresponding sample mean estimate for the GW and the AR model respectively,
and the corresponding sample covariance estimate. Hence, the asymptotic variational decision
writes

lim
n→+∞

δ̂VB = argmin
δ∈D

{
1

2
(λδ)⊤Σ̂−1

∞ (λδ)− λδ⊤µ̂∞
}
,

i.e. the Markowitz decision in D.

We now prove Theorem 9 for both GW and AR model.

Proof [Proof of Theorem 9 for GW model] Starting from Theorem 14, the asymptotic
operator T∞ is the limit of the operator Tn defined in Theorem 14 when n → +∞ (by
Assumption 1), giving

T∞ : (ξy,Λy, ξµ,Λµ, ψΛ) 7→


ξµ − λ(νψΛ)

−1δ
νψΛ

limn→+∞
(
1
n

∑n
t=1 Yt

)
nνψΛ

limn→+∞
(
n
(
Λ−1
µ + ξµξ

⊤
µ

)
+
∑n

t=1 YtY
⊤
t − 2

∑n
t=1 Ytξ

⊤
µ

)−1

 .

Thanks to Assumption 1, the fixed point of T∞ denoted by (ξ∞y ,Λ
∞
y , ξµ,Λ

∞
µ , ψ

∞
Λ ) satisfies

ξ∞y = µ̂∞ − λΣ̂∞δ

Λ∞
y = Λ̂∞

ξ∞µ = µ̂∞

Λ∞
µ = limn→+∞ nΛ̂∞

ψ∞
Λ =

(∑n
s=1(Yt − µ̂∞)(Yt − µ̂∞)⊤

)−1
,

where

µ̂∞ = lim
n→+∞

(
1

n

n∑
t=1

Yt

)
Σ̂∞ = lim

n→+∞

(
1

n

n∑
t=1

(Yt − µ̂∞) (Yt − µ̂∞)⊤
)
, Λ̂∞ = Σ̂−1

∞ .

Plugging this solution the objective function in Theorem 15 and keeping only terms
depending on δ, the asymptotic objective function writes

R∗
F (δ) = −λδ⊤

(
µ̂∞ − λΣ̂∞δ

)
.
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Proof (Proof of Theorem 9 for AR model) Starting from Theorem 16, the asymptotic
operator T∞ writes

T∞ :
(
ξy,Λy,MΓ, VΓ ⊗ UΓ, ψ

−1
Λ

)
7→


MΓY∞ − λ(νψΛ)

−1δ
νΛψΛ

limn→+∞ (
∑n

t=1 YtYt−1) (
∑n

t=1 YtYt)
−1

limn→+∞
(∑n

t=1 YtY
⊤
t ⊗ νΛψΛ

)−1

limn→+∞

(∑n
t=0 YtY

⊤
t − 2

(∑n
t=1 Yt−1Y

⊤
t

)⊤ (∑n
t=1 YtY

⊤
t

)−1 (∑n
t=1 Yt−1Y

⊤
t

))

 ,

where Y∞ denotes the last observation of the dataset.
Thanks to Assumption 1, the fixed point of T∞ denoted by (ξ∞,Λ∞,M

∞
Γ , (VΓ ⊗ UΓ)

∞, ψ∞
Λ )

satisfy

ξ∞y = µ̂− λΣ̂∞δ

Λ∞
y = Λ̂∞

M∞
Γ = limn→+∞ (

∑n
t=1 YtYt−1) (

∑n
t=1 YtYt)

−1

(VΓ ⊗ UΓ)
∞ = limn→+∞

(∑n
t=1 YtY

⊤
t ⊗

(∑n
t=0 YtY

⊤
t − 2 1

n

(∑n
t=1 Yt−1Y

⊤
t

)⊤ (∑n
t=1 YtY

⊤
t

) (∑n
t=1 Yt−1Y

⊤
t

))−1
)−1

ψ∞
Λ = limn→+∞

(
1
n

(∑n
t=0 YtY

⊤
t − 2 1

n

(∑n
t=1 Yt−1Y

⊤
t

)⊤ (∑n
t=1 YtY

⊤
t

) (∑n
t=1 Yt−1Y

⊤
t

))−1
)
,

where

µ̂∞ = lim
n→+∞

(
n∑

t=1

YtYt−1

)(
n∑

t=1

YtYt

)−1

Y∞ , Σ̂∞ =

n∑
t=0

YtY
⊤
t − 2

1

n

(
n∑

t=1

Yt−1Y
⊤
t

)⊤( n∑
t=1

YtY
⊤
t

)(
n∑

t=1

Yt−1Y
⊤
t

)
Λ̂∞ = (Σ̂∞)−1 .

Plugging this solution to the objective function (Theorem 17) and keeping only terms
depending on δ, the asymptotic objective function writes

lim
n→+∞

R∗
F (δ) = −λδ⊤

(
µ̂∞ − λΣ̂∞δ

)
.

Appendix D. Derivation of VB-Portfolio for Specific Models

Let us begin by introducing some convenient compact notations.

Definition 10 (Kronecker product) Let A ∈ Rn×p and B ∈ Rm×q. Then the kronecker
product between A and B, denoted by A⊗B ∈ Rmn×pq is defined as follows,

A⊗B =


a1,1B . . . a1,pB
a2,1B . . . a2,pB

...
...

...
an,1B . . . an,pB

 .
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Definition 11 (Vectorization operator) Let A ∈ Rn×p, such that

A =

a1,1 . . . a1,p
...

...
...

an,1 . . . an,p

 =
(
a1 . . . ap

)
.

Then, we denote vec(A) the vector of size np such that vec(A) =

a1
...
ap

.

Remark 12 Using Theorem 5, the AR model (11) is equivalent to the following formulation,

Yt |Yt−1,Γ,Λ ∼ N (ΓYt−1,Λ) ∀t ∈ N∗

vec(Γ) ∼ N (vec(M0), V0 ⊗ U0) , Λ ∼ W(ν0, ψ0) .

Proposition 13 (Properties of vec operator) xx

• vec(AXB) = (B⊤ ⊗A)vec(X).

• Tr(ABC) = vec(A⊤)⊤(I ⊗B)vec(C).

• Tr(A⊤BCD⊤) = vec(A)⊤(D ⊗B)vec(C).

We refer to Quintana (1987) for the proofs of these results.

D.1. General Fixed-Point Equation (Proof of Theorem 2)

This proof is a direct application of Bishop (Chapter 10; 2006) to our problem; we have an

additional risk term e−λδ⊤y, which modifies the computation of the complete joint distribution.

We recall that π̃n is the probability distribution defined as dπ̃n = e−λδ
⊤Yn+1

Eπn
[
e−λδ

⊤Yn+1
]dπn. Then

for any ρ ∈M, we have

K(ρ, π̃n) = log π(Hn)− E(ρ) + logZδ ,

where

E(ρ) =

∫
Y×Θ

log

(
e−λδ⊤Yn+1π (Yn+1, θ,Hn)

ρ(Yn+1, θ)

)
ρ(d(Yn+1, θ)) .

E(ρ) is called the evidence lower bound (ELBO), and is the only term that depends on
ρ. Hence, minimizing ρ 7→ K(ρ, π̃n) is equivalent at maximizing ρ 7→ E(ρ). Then, for any
ρ ∈ F , we have

E(ρ) =

∫
Y×Θ

(
log
(
e−λδ⊤Yn+1π (Yn+1, θ,Hn)

)
− log ρy(Yn+1)−

K∑
i=1

ρi(θi)

)
ρy(dYn+1)

K∏
i=1

ρi(dθi) .

(16)
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Keeping terms that depend on θj only and applying Fubini theorem, we have

E(ρ) ∝θj

∫
Θj

∫
Y×Θ\Θj

e−λδ⊤Yn+1π (Yn+1, θ,Hn) ρy(dYn+1)
K∏
i ̸=j

ρi(dθi)

 ρj(dθj)−
∫
Θj

log ρj(dθj)ρj(dθj) .

The maximizer of ρ 7→ E(ρ) with respect to each of the θi’s can be derived (by computing
the Lagragian of (16) (Jordan et al., 1999)), and we can show that the maximum is reached
when

∀j ∈ [K] , log ρj(dθj) ∝ exp

∫
Y×Θ\Θj

e−λδ⊤Yn+1π (Yn+1, θ,Hn) ρy(dYn+1)
K∏
i ̸=j

ρi(dθi)

 ,

(17)

which can be seen as the expectation of e−λδ⊤Yn+1π (Yn+1, θ,Hn) taken with respect to
all parameters θi with measure ρi except θj . The main advantage of using mean-field
assumption is that (17) yields to a natural algorithm where we update successively each ρi’s
until stabilization.

D.2. VB-Portfolio for the Gaussian-Wishart Model

We start by deriving the fixed-point equation, and then we derive the corresponding objective
function RF .

Lemma 14 (Solution of (7) under Gaussian-Wishart model) Under the stationary
Gaussian-Wishart model (10), for any δ ∈ D, the corresponding variational distribution ρ̂VB

can be factorised as follows,

ρ̂VB(d(Yn+1, µ,Λ)) = ρy(dYn+1)ρµ(dµ)ρΛ(dΛ) ,

where ρy(dYn+1) = N (dYn+1; ξy,Λ
−1
y ), ρµ(dµ) = N (dµ; ξµ,Λ

−1
µ ) and ρΛ(dΛ) =W(dΛ; νΛ, ψΛ).

Moreover, the variational parameters (ξy,Λy, ξµ,Λµ, νΛ, ψΛ) satisfy a fixed-point equation
Tn(ξy,Λy, ξµ,Λµ, νΛ, ψΛ) = (ξy,Λy, ξµ,Λµ, νΛ, ψΛ), where Tn is given as follows:

Tn : (ξy,Λy, ξµ,Λµ, νΛ, ψΛ) 7→



ξµ − λ
νΛ
ψ−1

Λ δ

νΛψΛ

1
n+1

(
νΛψΛ + 1

n+1
Λ0

)−1
(
νΛψΛ

(
ξy +

∑
t∈[n] Yt

)
+ Λ0µ0

)
(n+ 1)νΛψΛ + Λ0

n+ ν0 + 1(
Λ−1
y + ξyξ

⊤
y + (n+ 1)(Λ−1

µ + ξµξ
⊤
µ ) +

∑
t∈[n] YtY

⊤
t − 2(ξy +

∑
t∈[n] Yt)ξ

⊤
µ ) + ψ−1

0

)−1


.

Proof We first express π̃n independently of the underlying statistical model;

π̃n(Yn+1, µ,Λ) ∝ e−λδ⊤Yn+1π(Yn+1, µ,Λ |Hn)

∝ e−λδ⊤Yn+1π(Hn |Yn+1, µ,Λ)π(Yn+1, µ,Λ)

∝ e−λδ⊤Yn+1π(Hn |Yn+1, µ,Λ)π(Yn+1 |µ,Λ)π0(µ,Λ) , (18)
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where the first equation follows from the definition of π̃n in Theorem 1 and the second
equation follows from Bayes rule. Since the model (10) involves n i.i.d. observations
conditionally on the parameters, (18) gives

π̃n(Yn+1, µ,Λ) ∝ e−λδ⊤Yn+1π(Hn |Yn+1, µ,Λ)π(Yn+1 |µ,Λ)π0(µ,Λ)

∝ e−λδ⊤Yn+1

(
n∏

t=1

N (Yt;µ,Λ
−1)

)
N (Yn+1;µ,Λ

−1)N (µ;µ0,Λ
−1
0 )W(Λ; ν0, ψ0) .

By Theorem 2, we can compute each variational distribution ρy, ρµ and ρ∗Λ:

log ρy(Yn+1) ∝Yn+1 Eρµ,ρΛ [log π̃n(Yn+1, µ,Λ)]

∝ Eρµ,ρΛ

[
−1

2

(
2λδ⊤Yn+1 + (Yn+1 − µ)⊤Λ(Yn+1 − µ)

)]
∝ −1

2

(
Y ⊤
n+1EρΛ [Λ]Yn+1 − 2Y ⊤

n+1

(
EρΛ [Λ]Eρµ [µ]− λδ

))
,

which gives, by completing the Gaussian square with respect to the variable Yn+1,

ρYn+1(dYn+1) = N (Yn+1; ξy,Λ
−1
y ) (19)

where ξy = Eρµ [µ]− λ (EρΛ [Λ])−1 δ

Λy = EρΛ [Λ] .

For the mean variational distribution ρµ,

log ρµ(µ) ∝µ Eρy,ρΛ

[
log

(
n∏

t=1

N (Yt;µ,Λ
−1)N (Yn+1;µ,Λ

−1)N (µ;µ0,Λ
−1
0 )

)]

∝ −1

2

(
µ⊤EρΛ

[Λ]µ− 2µ⊤EρΛ
[Λ]EρYn+1

[Yn+1] + nµ⊤EρΛ
[Λ]µ− 2µ⊤EρΛ

[Λ]

n∑
t=1

Yt + µ⊤Λ0µ− 2µ⊤Λ0µ0

)

∝ −1

2

(
µ⊤ (EρΛ [Λ] + nEρΛ [Λ] + Λ0)µ− 2µ⊤

(
EρΛ [Λ]EρYn+1

[Yn+1] + EρΛ [Λ]

n∑
t=1

+Λ0µ0

))
,

which gives, by completing the Gaussian square with respect to the variable µ,

ρµ(dµ) = N (dµ; ξµ,Λ
−1
µ )

where ξµ = ((n+ 1)EρΛ [Λ] + Λ0)
−1

(
EρΛ [Λ]

(
EρYn+1

[Yn+1] +

n∑
t=1

)
+ Λ0µ0

)
Λµ = (n+ 1)EρΛ [Λ] + Λ0 .
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Finally, for the precision variational distribution ρΛ,

log ρΛ(Λ) ∝Λ EρYn+1
,ρµ

[
log

(
n∏

t=1

N (Yt;µ,Λ
−1)N (Yn+1;µ,Λ

−1)W(Λ; ν0, ψ0)

)]

∝ EρYn+1
,ρµ

[
−1

2

n∑
t=1

(Yt − µ)Λ(Yt − µ) +
n

2
log |Λ| − 1

2
(Yn+1 − µ)⊤Λ(Yt − µ)

]

+
1

2
log |Λ|+ ν0 − d+ 1

2
log |Λ| − 1

2
Tr(ψ−1

0 Λ)

∝ EρYn+1
,ρµ

[
− 1

2

(
EρYn+1

[
Tr(Yn+1Y

⊤
n+1Λ)

])
− 2Eρµ [µ]

⊤ ΛEρYn+1
[Yn+1] + EρYn+1

[
Tr(µµ⊤Λ)

]
+Tr(

n∑
t=1

YtY
⊤
t Λ)− 2Eρµ

[
Tr(µ

n∑
t=1

Y ⊤
t Λ)

]
+ Eρµ

[
nTr(µµ⊤Λ)

]
+Tr(ψ−1

0 Λ) +
1

2
log |Λ|

+
n

2
log |Λ|+ ν0 − d− 1

2
log |Λ|

]
∝ −1

2
Tr

((
EYn+1

[
Yn+1Y

⊤
n+1

]
+ Eρµ

[
µµ⊤

]
− 2EρYn+1

[Yn+1]Eρµ [µ]
⊤ +

n∑
t=1

YtY
⊤
t − 2

n∑
t=1

YtEρµ [µ]
⊤

+ nEρµ

[
µµ⊤

]
+ ψ−1

0

)
Λ

)
+

1

2
(n+ ν0 − d− 1) log |Λ| .

Identifying the corresponding terms with a Wishart distribution yields to

ρµ(dΛ) =W(dΛ; νΛ, ψΛ)

where νΛ = n+ d+ 1

ψ−1
Λ = EYn+1

[
Yn+1Y

⊤
n+1

]
+ Eρµ

[
µµ⊤

]
− 2EρYn+1

[Yn+1]Eρµ [µ]
⊤ +

n∑
t=1

YtY
⊤
t − 2

n∑
t=1

YtEρµ [µ]
⊤

+ nEρµ

[
µµ⊤

]
+ ψ−1

0 .

Lemma 15 (Objective function under stationary Gaussian-Wishart model) Fir
any δ ∈ D, let (ξy,Λy, ξµ,Λµ, νΛ, ψΛ) be the parameters of the corresponding variational
distribution ρ̂VB under the stationary Gaussian-Wishart model (10). Then, the objective
function can be written as

RF (δ) = −
νΛ
2
Tr

∑
t∈[n]

YtY
⊤
t − 2

∑
t∈[n]

Yt + ξy

 ξ⊤µ + (n+ 1)(Λ−1
µ + ξµξ

⊤
µ ) + Λ−1

y + ξyξ
⊤
y + ψ−1

0

ψΛ


− 1

2
Tr
(
(Λ−1

µ + ξµξ
⊤
µ )Λ0

)
+ ξ⊤µ Λ0µ0 +

1

2
(n+ ν0 + 1) log det(ψΛ)

− 1

2

(
log det(Λy) + log det(Λµ)

)
− λδ⊤ξy .

Proof From Theorem 14, we found that the variational distribution for the GW model can
be written as

ρ̂VB(d(Yn+1, µ,Λ)) = N (Yn+1; : ξy,Λ
−1
y )N (µ; ξµ,Λ

−1
µ )W(Λ; νΛ, ψΛ) .
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Starting from the definition of RM, we have, for any δ ∈ D,

RM(δ) = −Eρy [log ρy(Yn+1)]− Eρµ [log ρµ(µ)]− EρΛ [log ρΛ(Λ)]− λδ⊤Eρy [Yn+1]

+ Eρ̂VB
[log π (Yn+1, µ,Λ |Hn)] + C ,

where C is a constant that does not depend on δ. We now aim at computing each of these
terms. One can easily verify that

− Eρy [log ρy(Yn+1)] ∝δ −
1

2
log |Λy| − Eρµ [log ρµ(µ)] ∝δ −

1

2
log |Λµ| −EρΛ [log ρΛ(Λ)] ∝δ

d+ 1

2
log |ψΛ| .

Moreover,

Eρ̂VB
[log π(Yn+1, µ,Λ |Hn)] ∝δ Eρ̂VB

[
log

n∏
t=1

N (Yt;µ,Λ
−1)

]
+ Eρ̂VB

[
logN (Yn+1;µ,Λ

−1)
]

+ Eρ̂VB

[
logN (µ;µ0,Λ

−1
0 )
]
+ Eρ̂VB

[logW(Λ; ν0, ψ0] .

We can compute each of these terms exactly the same way we did in the proof of Theorem 14,
and combining these with the terms above give the desited expression.

D.3. VB-Portfolio for the AR Model

Lemma 16 (Solution of (7) under AR(1) model) Under AR model (11), for any
δ ∈ D, the corresponding variational distribution ρ̂VB can be factorised as follows,

ρ̂VB(d(Yn+1,Γ,Λ)) = ρy(dYn+1)ρΓ(d(vec(Γ)))ρΛ(dΛ) ,

where ρy(dYn+1) = N (dYn+1; ξy,Λ
−1
y ), ρΓ(d(vec(Γ))) = N (d(vec(Γ)); vec(MΓ), VΓ ⊗ UΓ),

ρΛ(dΛ) =W(dΛ; νΛ, ψΛ). Moreover, the variational parameters ϕ = (ξy,Λy, vec(MΓ), VΓ ⊗
UΓ, νΛ, ψΛ) satisfy a fixed-point equation Tn(ϕ) = ϕ, where Tn is given as follows:

Tn : ϕ 7→



MΓYn − λ
νΛ
ψ−1
Λ δ

νΛψΛ

(VΓ ⊗ UΓ)
[
(Id ⊗ νΛψΛ) vec(

∑n
t=1 YtY

⊤
t−1 + ξyY

⊤
n ) + (V−1

0 ⊗ U−1
0 )vec(M0)

]
(∑n

t=0 YtY
⊤
t ⊗ νΛψΛ + V−1

0 ⊗ U−1
0

)−1

n + ν0 + 1

ψ−1
0 + ξyξ

⊤
y + Λ−1

y +
∑n

t=1 YtY
⊤
t − 2MΓ

(∑
t∈[n] Yt−1Y

⊤
t + Ynξ

⊤
y

)
+MΓ

∑n
t=0 YtY

⊤
t M⊤

Λ +
∑d2

i=1 σivec
−1(ui)

(∑n
t=0 YtY

⊤
t

)
vec−1(ui)

⊤


,

where (σi, ui)i∈[d] is the spectral decomposition of VΛ ⊗ UΛ.

Proof First, we write π̃n by remarking

π̃n(Yn+1,Γ,Λ) ∝ e−λδ⊤Yn+1π(Yn+1,Γ,Λ |Hn)

∝ e−λδ⊤Yn+1π(Hn |Yn+1,Γ,Λ)π(Yn+1,Γ,Λ)

∝ e−λδ⊤Yn+1π(Hn |Yn+1,Γ,Λ)π(Yn+1 |Γ,Λ)π0(Γ,Λ) , (20)

On behalf of (11), (20) becomes

π̃n(Yn+1,Γ,Λ) ∝ e−λδ⊤Yn+1

(
n∏

t=1

N (Yt; ΓYt−1,Λ
−1)

)
π(Yn+1; ΓYt,Λ

−1)MN (Γ;M0, U0, V0)W(Λ; ν0, ψ0) .
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Keeping only terms that depend on the variable Yn+1,

log ρy(Yn+1) ∝Yn+1 EρΓ,ρΛ

[
log
(
e−λδ⊤Yn+1N (Yn+1; ΓYn,Λ

−1)
)]

∝ −λδ⊤Yn+1 −
1

2

(
Y ⊤
n+1EρΛ [Λ]Yn+1 − 2Y ⊤

n+1EρΛ [Λ]EρΓ [Γ]Yn

)
∝ −1

2

(
Y ⊤
n+1EρΛ [Λ]Yn+1 − 2Y ⊤

n+1 (EρΛ [Λ]EρΓ [Γ]Yn − λδ)
)
,

which gives, by completying the Gaussian square with respect tp Yn+1,

ρy(dYn+1) = N (dYn+1; ξy,Λ
−1
y )

where ξy = EρΓ [Γ]
(
Yn − λEρΓ [Γ]

−1 EρΛ [Λ]−1 δ
)

Λy = EρΛ [Λ] .

For the variational distribution with respect to Γ,

log ρΓ(Γ) ∝Γ EρYn+1
,ρΛ

[
log

(
n∏

t=1

N (Yt; ΓYt−1,Λ
−1)N (Yn+1; ΓYn,Λ

−1)MN (Γ;M0, U0, V0)

)]

∝ −1

2

n∑
t=1

(Yt − ΓYt−1)
⊤EρΛ [Λ] (Yt − ΓYt−1)︸ ︷︷ ︸
(1)

−1

2
EρYn+1

[
(Yn+1 − ΓYn)

⊤EρΛ [Λ] (Yn+1 − ΓYn)
]

︸ ︷︷ ︸
(2)

−1

2
(vec(Γ)− vec(M0))

⊤ (V0 ⊗ U0)
−1 (vec(Γ)− vec(M0))︸ ︷︷ ︸

(3)

.

(1) ∝Γ −
1

2

n∑
t=1

(
(ΓYt−1)

⊤EρΛ [Λ] ΓYt−1 − 2Y ⊤
t EρΛ [Λ] ΓYt−1

)
∝ −1

2

(
Tr

(
Γ⊤EρΛ [Λ] Γ

n∑
t=1

Yt−1Y
⊤
t−1

)
− 2Tr

(
n∑

t=1

Yt−1Y
⊤
t EρΛ [Λ] Γ

))

∝ −1

2

vec(Γ)⊤

(
n∑

t=1

Yt−1Y
⊤
t−1 ⊗ EρΛ [Λ]

)
vec(Γ)− 2vec

(
n∑

t=1

YtY
⊤
t−1

)⊤

(Id ⊗ EρΛ [Λ])vec(Γ)

 ,

where the last line follows from Theorem 13. We can show with the exact same arguments
that

(2) ∝Γ −
1

2

(
vec(Γ)⊤

(
YnY

⊤
n ⊗ EρΛ [Λ]

)
vec(Γ)− 2vec

(
EρYn+1

[Yn+1]Y
⊤
n−1

)⊤
(Id ⊗ EρΛ [Λ])vec(Γ)

)
,

and for the third term,

(3) ∝ −1

2

(
vec(Γ)⊤ (V0 ⊗ U0)

−1 vec(Γ)− 2vec(Γ)⊤ (V0 ⊗ U0)
−1 vec(M0)

)
.
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Adding (1), (2) and (3) and completing the corresponding Gaussian squares gives

log ρΓ(dΓ) = N (dvec(Γ); ξΓ,Λ
−1
Γ )

where ΛΓ =

n∑
t=0

YtY
⊤
t ⊗ EρΛ [Λ] + V −1

0 ⊗ U−1
0

ξΓ = Λ−1
Γ

(
(Id ⊗ EρΛ [Λ])

(
vec

(
n∑

t=1

YtY
⊤
t−1

)
+ EρYn+1

[Yn+1]Y
⊤
n

)
+ (V −1

0 ⊗ U−1
0 )vec(M0)

)
.

The variational distribution with respect to Λ requires more efforts:

log ρΛ(Λ) ∝Λ EρYn+1
,ρΓ

[
log

n∏
t=1

N (Yt; ΓYt−1,Λ
−1)N (Yn+1; ΓYn,Λ

−1)W(Λ; ν0, ψ0)

]

∝ EρYn+1
,ρΓ

[
−1

2

n∑
t=1

(Yt − ΓYt−1)
⊤Λ(Yt − ΓYt−1)−

1

2
(Yn+1 − ΓYn)

⊤Λ(Yn+1 − ΓYn−1)

]

+
n+ ν0 − d− 1

2
log |Λ| − 1

2
Tr(Λψ−1

0 )

∝ −1

2
Tr

Λ

(
EρΓ

[
n∑

t=1

(Yt − ΓYt−1)(Yt − ΓYt−1)
⊤

]
+ EρYn+1

,ρΓ

[
(Yn+1 − ΓYn)(Yn+1 − ΓYn)

⊤]+ ψ−1
0

)
︸ ︷︷ ︸

(⋆)


+
n+ ν0 − d− 1

2
log |Λ| .

where we refer to the proof in Theorem 14 for the computation in the second line. Then
term inside the trace writes

(⋆) =

n∑
t=1

YtY
⊤
t +

n∑
t=1

EρΓ

[
ΓYt−1Yt−1Γ

⊤]− EρΓ
[Γ]

n∑
t=1

Yt−1Y
⊤
t −

n∑
t=1

YtY
⊤
t−1EρΓ

[Γ]
⊤
+ ψ−1

0

+ EρYn+1

[
Yn+1Y

⊤
n+1

]
+ EρΓ

[
ΓYnYnΓ

⊤]− EρΓ [Γ]YnEρYn+1
[Yn+1]

⊤ − EρYn+1
[Yn+1]YnΓ

⊤

=

n∑
t=1

YtY
⊤
t +

n∑
t=1

EρΓ

[
ΓYt−1Yt−1Γ

⊤]− EρΓ [Γ]

n∑
t=1

Yt−1Y
⊤
t −

n∑
t=1

YtY
⊤
t−1EρΓ [Γ]

⊤

+ EρYn+1
[Yn+1]EρYn+1

[Yn+1]
⊤
+ covρYn+1

(Yn+1) + EρΓ

[
ΓYnYnΓ

⊤]− EρΓ
[Γ]YnEρYn+1

[Yn+1]
⊤

− EρYn+1
[Yn+1]YnΓ

⊤ .
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The main difficulty here is to compute the term related to
∑n

t=1 EρΓ

[
ΓYt−1Yt−1Γ

⊤]+
EρΓ

[
ΓYnYnΓ

⊤] =∑n
t=0 EρΓ

[
ΓYtYtΓ

⊤]; extracting this term gives

Tr

(
Λ

n∑
t=0

EρΓ

[
ΓYtYtΓ

⊤
])

= EρΓ

[
Tr

(
Γ⊤ΛΓ

n∑
t=0

YtY
⊤
t

)]

= EρΓ

[
vec(Γ)⊤

(
n∑

t=0

YtY
⊤
t ⊗ Λ

)
vec(Γ)

]

= Tr

((
n∑

t=0

YtY
⊤
t ⊗ Λ

)
EρΓ

[
vec(Γ)vec(Γ)⊤

])

= Tr

((
n∑

t=0

YtY
⊤
t ⊗ Λ

)
vec(EρΓ [vec(Γ)])vec(EρΓ [vec(Γ)])

⊤

)
︸ ︷︷ ︸

(1)

+Tr

((
n∑

t=0

YtY
⊤
t ⊗ Λ

)
covρΓ (vec(Γ))

)
︸ ︷︷ ︸

(2)

.

The first trace term of the last line writes

(1) = EρΓ [vec(Γ)]⊤
(

n∑
t=0

YtY
⊤
t ⊗ Λ

)
EρΓ [vec(Γ)] = Tr

(
EρΓ [Γ]⊤ ΛEρΓ [Γ]

n∑
t=0

YtY
⊤
t

)
= Tr

(
ΛEρΓ [Γ]

n∑
t=0

YtY
⊤
t EρΓ [Γ]⊤

)
,

while the second term gives,

(2) = Tr

( n∑
t=0

YtY
⊤
t ⊗ Λ

)
d2∑
i=1

σiuiu
⊤
i

 ,

where we denote (σi, ui)
d2

i=1 the spectral decomposition of the covariance matrix covρΓ (vec(Γ)).
Then we have

(2) =
d2∑
i=1

σiu
⊤
i

(
n∑

t=0

YtY
⊤
t ⊗ Λ

)
ui =

d2∑
i=1

σiTr

(
vec−1(ui)

⊤Λvec−1(ui)
n∑

t=0

YtY
⊤
t

)

=

d2∑
i=1

σiTr

(
Λvec−1(ui)

n∑
t=0

YtY
⊤
t vec−1(ui)

⊤

)
.
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Combining all these yields to

ρΛ(dΛ) =W(dΛ; νΛ, ψΛ)

where νΛ = n+ d+ 1

ψΛ = ψ−1
0 +

n∑
t=1

YtY
⊤
t + EρYn+1

[Yn+1]EρYn+1
[Yn+1]

⊤ + covρYn+1
(Yn+1)− EρΓ [Γ]YnEρYn+1

[Yn+1]
⊤

− EρYn+1
[Yn+1]YnEρΓ [Γ]

⊤ − EρΓ [Γ]
n∑

t=1

Yt−1Y
⊤
t −

n∑
t=1

YtY
⊤
t−1EρΓ [Γ]

⊤

+ EρΓ [Γ]
n∑

t=0

YtY
⊤
t EρΓ [Γ]

⊤ +
d2∑
i=1

σivec
−1(ui)

n∑
t=0

YtY
⊤
t vec−1(ui)

⊤ .

We next derive the corresponding objective function.

Lemma 17 (Objective function under AR model) For any δ ∈ D, let (ξy,Λy,MΓ, VΓ⊗
UΓ, νΛ, ψΛ) the parameters of the corresponding variational distribution ρ̂VB under the AR
model (11). Then, the objective function can is written as

RF (δ) = −
νΛ
2
Tr

((
ψ−1
0 + ξyξ

⊤
y + Λ−1

y +
n∑

t=1

YtY
⊤
t − 2MΓ

(
n∑

t=1

Yt−1Y
⊤
t + Ynξ

⊤
y

)
M⊤

Λ +MΛ

n∑
t=0

YtY
⊤
t M

⊤
Λ +

d2∑
i=1

σivec
−1(ui)

n∑
t=0

YtY
⊤
t vec−1(ui)

⊤
)
ψΛ

)
− 1

2
Tr
(
(V −1

0 ⊗ U−1
0 )

(
vec(MΛ)vec(MΛ)

⊤ + VΛ ⊗ UΛ

))
+ vec(MΛ)

⊤ (V0 ⊗ U0)
−1 vec(M0) +

1

2
(n+ ν0 + 1) log det(ψΛ)−

1

2
log det(Λy)

− 1

2
log det(VΛ ⊗ UΛ)− λδ⊤ξy .

Proof From Theorem 18, we found that the variational distribution for the AR model can
be written as

ρ̂VB(d(Yn+1,Γ,Λ)) = N (dYn+1; ξy,Λ
−1
y )N (d(vec(Γ)); vec(MΓ), VΓ ⊗ UΓ)W(dΛ; νΛ, ψΛ) .

Starting again from the definition of RM, we have, for any δ ∈ D,

RM(δ) ∝δ −Eρy [log ρy(Yn+1)]− EρΓ [log ρΓ(Γ)]− EρΛ [log ρΛ(Λ)]− λδ⊤Eρy [Yn+1]

+ Eρ̂VB
[log π (Yn+1,Γ,Λ |Hn)] ,

where

− Eρy [log ρy(Yn+1)] ∝δ −
1

2
log |Λy| − EρΓ [log ρΓ(Γ)] ∝δ −

1

2
log |VΛ ⊗ UΛ|

− EρΛ [log ρΛ(Λ)] ∝δ
d+ 1

2
log |ψΛ| .
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Moreover,

Eρ̂VB
[log π(Yn+1,Γ,Λ |Hn)] ∝δ Eρ̂VB

[
log

n∏
t=1

N (Yt; ΓYt−1,Λ
−1)

]
+ Eρ̂VB

[
logN (Yn+1; ΓYn,Λ

−1)
]

+ Eρ̂VB
[logMN (Γ;M0, U0, V0)] + Eρ̂VB

[logW(Λ; ν0, ψ0] .

We can compute each of these terms exactly the same way we did in the proof of Theorem 16,
and combining these with the terms above give the desited expression.

D.4. VB-Portfolio for the Gaussian Process Model

Lemma 18 (Solution of (7) under Gaussian-process Wishart model) Under GP
model (10), for any δ ∈ D, the corresponding variational distribution ρ̂VB can be factorised
as follows,

ρ̂VB(d(Yn+1, µ,Λ)) = ρy(dYn+1)ρµ(dµ)ρΛ(dΛ) ,

where ρy(dYn+1) = N (dYn+1; ξy,Λ
−1
y ), ρµ(dµ) = MGP(dµ;mµ(·), kµ(·),Ωµ), ρΛ(dΛ) =

W(dΛ; νΛ, ψΛ). At time step n+1, the variational parameters ϕn+1 = (ξy,Λy,m
1:n+1
µ , (Ωµ⊗

Kµ)
1:n+1, νΛ, ψΛ) satisfy a fixed-point equation Tn(ϕn+1) = ϕn+1, where Tn is given as

follows:

Tn : ϕ 7→



mµ(n + 1) − λ
νΛ
ψ−1
Λ δ

νΛψΛ

(Ωµ ⊗Kµ)
((
In+1 ⊗ νΛψΛ

)
vec(Y ) +

(
Ω−1

0 ⊗K−1
0

)
vec(M0)

)
(
In+1 ⊗ νΛψΛ + Ω−1

0 ⊗K−1
0

)−1

ν0 + n + 1

ψ−1
0 + ξyξ

⊤
y + Λ−1

y +
∑

t∈[n] YtY
⊤
t − 2

∑
t∈[n]mµ(t)Y⊤

t − 2mµ(n + 1)ξ⊤y +
∑n+1

t=1 mµ(t)mµ(t)⊤ +
∑n+1

t=1 Cov(µ(t), µ(t))


.

Proof First, we write π̃n as

π̃n(Yn+1, µ,Λ) ∝ e−λδ⊤Yn+1π(Yn+1, µ,Λ |Hn)

∝ e−λδ⊤Yn+1π(Hn |µ,Λ)π(Yn+1 |µ,Λ)π0(µ,Λ)

∝ e−λδ⊤Yn+1

n∏
t=1

N (Yt;µ(t),Λ
−1)N (Yn+1;µ(t+ 1),Λ−1)MGP(µ;µ0(·),K0,Ω0)W(Λ; ν0, ψ0) .

First, the variational distribution ρy can be derived as

log ρy(Yn+1) ∝Yn+1 Eρµ,ρΛ

[
log e−λδ⊤Yn+1N (Yn+1;µ(t+ 1),Λ−1)

]
∝ Eρµ,ρΛ

[
−λδ⊤Yn+1 −

1

2
(Yn+1 − µ(t+ 1))⊤ Λ (Yn+1 − µ(t+ 1))

]
∝ −1

2

(
Y ⊤
n+1ΛYn+1 − 2Y ⊤

n+1

(
EρΛ [Λ]Eρµ [µ(t+ 1)]− λδ

))
∝ logN

(
Yn+1; ξy,Λ

−1
y

)
.
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The variational distribution ρy can be derived by deploying the GP prior on the indices
{1, . . . n+ 1};

log ρµ(µ)

∝µ Eρy ,ρΛ

[
log

n∏
t=1

N (Yt;µ,Λ
−1)N (Yn+1;µ,Λ

−1)MGP(µ;µ0(·),K0,Ω0)

]

∝ Eρy ,ρΛ

[
− 1

2

n∑
t=1

(Yt − µ(t))⊤ Λ (Yt − µ(t))

− 1

2
(Yn+1 − µ(n+ 1))⊤ Λ (Yn+1 − µ(n+ 1))− 1

2
µ⊤
1:n+1

(
Ω0 ⊗K1:n+1

0

)−1
µ1:n+1

]
,

where we define µ1:n+1 as the concatenated vector (µ(1), . . . , µ(n+ 1)) of size (n+ 1)× d,
and K1:n+1

0 as the matrix of size (n+ 1, n+ 1) whose entries are K0(i, j) for i, j ∈ [n+ 1].
Then we have

log ρµ(µ) ∝µ −
1

2

( n∑
t=1

µ(t)⊤EρΛ
[Λ]µ(t)− 2

n∑
t=1

µ(t)⊤EρΛ
[Λ]Yt + µ(n+ 1)⊤EρΛ

[Λ]µ(n+ 1)

− 2µ(n+ 1)⊤EρΛ
[Λ]Eρy

[Yn+1] + µ1:n+1

(
Ω0 ⊗K1:n+1

0

)−1 − 2µ1:n+1

(
Ω0 ⊗K1:n+1

0

)−1
µ1:n+1

)
∝ −1

2

(
µ⊤

1:n+1

(
In+1 ⊗ EρΛ

[Λ] +
(
Ω0 ⊗K1:n+1

0

)−1
)
µ1:n+1

− 2µ1:n+1

((
Ω0 ⊗K1:n+1

0

)−1
µ0,1:n+1 + (In+1 ⊗ EρΛ [Λ])Y1:n+1

))
,

where we define µ0,1:n+1 as the concatenated vector (µ0(1), . . . , µ0(n+ 1)), and Y1:n+1

the concatenated vector (Y1, . . . , Yn, ξy). Therefore, we have

log ρµ(µ) ∝ logMGP(µ;mµ(·),Ωµ,Kµ) ,

where we define the mean function and covariance functions on indices {1, . . . n+ 1},

m1:n+1
µ =

(
Ωµ ⊗K1:n+1

µ

) ((
Ω0 ⊗K1:n+1

0

)−1
µ0,1:n+1 + (In+1 ⊗ EρΛ [Λ])Y1:n+1

)
(
Ωµ ⊗K1:n+1

µ

)−1
=
(
In+1 ⊗ EρΛ [Λ] +

(
Ω0 ⊗K1:n+1

0

)−1
)
.

Finally, the variational distribution ρΛ can be derived as

log ρΛ(Λ) ∝Λ Eρy ,ρµ

[
n∏

t=1

N (Yy;µ(t),Λ
−1)N (Yn+1;µ(n+ 1),Λ−1)W(Λ; ν0, ψ0)

]

∝ Eρy ,ρµ

[
−1

2

n∑
t=1

(Yt − µ(t))⊤ Λ (Yt − µ(t))−
1

2
(Yn+1 − µ(n+ 1))⊤ Λ (Yn+1 − µ(n+ 1))

]
︸ ︷︷ ︸

(∗)

− 1

2
Tr(Λψ−1

0 ) +
ν0 + n− d− 1

2
log |Λ| .
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The term inside the expectation gives

(∗) ∝Λ −
1

2
Tr

(
Λ

( n∑
t=1

YtY
⊤
t − 2

n∑
t=1

Eρµ [µ(t)]Y
⊤
t +

n∑
t=1

Eρµ

[
µ(t)µ(t)⊤

]
+ Eρy

[
Yn+1Y

⊤
n+1

]
− 2Eρy [Yn+1]Eρµ [µ(n+ 1)] + Eρµ

[
µ(n+ 1)µ(n+ 1)⊤

]))
∝ −1

2
Tr

(
Λ

( n∑
t=1

YtY
⊤
t − 2

n∑
t=1

mµ(t)Y
⊤
t +

n+1∑
t=1

mµ(t)mµ(t) + ξyξ
⊤
y + Λ−1

y − 2ξymµ(n+ 1)

+
n+1∑
t=1

Cov(µ(t), µ(t))

))
.

Hence,

log ρΛ(Λ) ∝ logW(Λ; νΛ, ψΛ) ,

where

νΛ = ν0 + n+ 1

ψΛ = ψ−1
0 + ξyξ

⊤
y + Λ−1

y +
∑
t∈[n]

YtY
⊤
t − 2

∑
t∈[n]

mµ(t)Y
⊤
t − 2mµ(n+ 1)ξ⊤y +

n+1∑
t=1

mµ(t)mµ(t)
⊤

+
n+1∑
t=1

Cov(µ(t), µ(t)) .

Lemma 19 (Objective function under Gaussian Process model) For any δ ∈ D,
let (ξy,Λy,m

1:n+1
µ , (Ωµ ⊗Kµ)

1:n+1, νΛ, ψΛ) the parameters of the corresponding variational
distribution ρ̂VB under the GP model (12). Then, the objective function can is written as

RF (δ) = −
νΛ
2
Tr

((
ψ−1
0 + ξyξ

⊤
y + Λ−1

y +
∑
t∈[n]

YtY
⊤
t − 2

∑
t∈[n]

mµ(t)Y
⊤
t − 2mµ(n+ 1)ξ⊤y

+

n+1∑
t=1

mµ(t)mµ(t)
⊤ +

n+1∑
t=1

Cov(µ(t), µ(t))

)
ψΛ

)
− 1

2
Tr
(
Ω⊗Kn+1

0

)−1
(
m1:n+1

µ (m1:n+1
µ )⊤ +Ωµ ⊗Kn+1

µ

)
+ (m1:n+1

µ )⊤
(
Ω0 ⊗Kn+1

0

)−1
µ1:n+1
0 +

1

2
(n+ ν0 + 1) log det(ψΛ)−

1

2

(
log det(Λy) + log det(Ωµ ⊗K1:n+1

µ )
)

− λδ⊤ξy

Proof From Theorem 18, we found that the variational distribution for the AR model can
be written as

ρ̂VB(d(Yn+1, µ,Λ)) = N (dYn+1; ξy,Λ
−1
y )MGP(dµ;mµ(·), kµ(·),Ωµ)W(dΛ; νΛ, ψΛ) ,
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Starting again from the definition of RM, we have, for any δ ∈ D,

RM(δ) ∝δ −Eρy [log ρy(Yn+1)]− Eρµ [log ρΓ(µ)]− EρΛ [log ρΛ(Λ)]− λδ⊤Eρy [Yn+1]

+ Eρ̂VB
[log π (Yn+1, µ,Λ |Hn)] ,

where

− Eρy [log ρy(Yn+1)] ∝δ −
1

2
log |Λy| − Eρµ [log ρµ(µ)] ∝δ −

1

2
log |Ωµ ⊗K1:n+1

µ |

− EρΛ [log ρΛ(Λ)] ∝δ
d+ 1

2
log |ψΛ| .

Moreover,

Eρ̂VB
[log π(Yn+1, µ,Λ |Hn)] ∝δ Eρ̂VB

[
log

n∏
t=1

N (Yt; Γµ(t),Λ
−1)

]
+ Eρ̂VB

[
logN (Yn+1;µ(n+ 1),Λ−1)

]
+ Eρ̂VB

[logMGP(µ;µ0,K0,Ω0)] + Eρ̂VB
[logW(Λ; ν0, ψ0] .

We can compute each of these terms exactly the same way we did in the proof of Theorem 18,
and combining these with the terms above give the desited expression.

Appendix E. Derivation of MCMC-Portfolio for Specific Models

We derive specific instances of Algorithm 2 for both the GW and AR models, with a
particular focus on detailing the form of the conditional posteriors.

E.1. GW Model

The joint parameter posterior π(µ,Λ |Hn) cannot be derived in closed-form, but we have
the following conditional posteriors

π(dµ |Λ, Hn) = N

(
dµ ;

(
Λ +

1

n
Λ0

)−1
(
Λ
1

n

n∑
t=1

Yt +
1

n
Λ0µ0

)
,
1

n

(
Λ +

1

n
Λ0

)−1
)

π(dΛ |µ,Hn) =W (dΛ |µ,Hn) =W

dΛ ; n+ ν0,

(
n∑

t=1

(Yt − µ) (Yt − µ)⊤ + ψ−1
0

)−1
 .

Applying Gibbs sampling with these two conditional posteriors yield to a chain (µ(k),Λ(k))Mk=1.
For a given δ, the distribution π̌k is defined as

π̌k(dYn+1) = N
(
dYn+1;µ

(k) − λΣ(k)δ,Σ(k)
)
.

Hence, the algorithm MCMC-Portfolio(GW) is defined as follows:
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Algorithm 3 MCMC-Portfolio (GW): Portfolio Construction with MCMC for GW model.

Input: Dataset Hn, initial decision δ̂
(0), number of Monte-Carlo samples M , risk parameter

λ, step-size η, initial parameters (µ(0),Λ(0)).
while Not converging do

for k = 1, . . . ,M do

µ(k) ∼ π(dµ |Λ(k−1), Hn) and Λ(k) ∼ π(dΛ |µ(k), Hn).
end

For all k ∈ [M ], sample z(k) ∼ N
(
dYn+1;µ

(k) − λΣ(k)δ,Σ(k)
)
.

δ̂(k+1) ← ProjD

(
δ̂(k) + ηλ 1

M

∑
k∈[M ] z

(k)
)

end

Return δ̂(∞) = δ̂MCMC.

E.2. AR Model

Here again, the joint posterior distribution π(Γ,Λ |Hn) cannot be computed in closed-form;
we can compute the conditional posterior as

π(dΓ | Hn,Λ) ∝ π(Hn | Γ,Λ)π(dΓ)

∝
n∏

t=1

exp

(
−1

2

(
(ΓYt−1)

⊤Λ(ΓYt−1)− 2(ΓYt−1)
⊤ΛYt

))
π(dΓ)

∝ exp

(
−1

2
Tr

(
Γ⊤ΛΓGn − 2Γ⊤Λ

n∑
t=1

YtYt−1

))
π(dΓ)

∝ exp

(
− 1

2

(
vec(Γ)⊤(Gn ⊗ Λ)vec(Γ)− 2vec(Γ)⊤(I ⊗ Λ)vec(

n∑
t=1

YtYt−1)

)

× exp

(
−1

2

(
vec(Γ)⊤(Gn ⊗ Λ)−1vec(Γ)

)
− 2vec(Γ)⊤(V0 ⊗ U0)

−1vec(M0)

))

∝ exp

(
− 1

2

(
vec(Γ)⊤

(
(Gn ⊗ Λ)−1 + (V0 ⊗ U0)

−1
)

− 2Vec(Γ)⊤

(
(I ⊗ Λ)vec(

n∑
t=1

YtYt−1) + (V0 ⊗ U0)
−1vec(M0)

)))
Therefore, we have π(dΓ |Hn,Λ) = N (dvec(Γ) ; µΓ(Λ),ΣΓ(Λ)), where

ΣΓ(Λ) =
(
(Gn ⊗ Λ)−1 + (V0 ⊗ U0)

−1
)−1

µΓ(Λ) = ΣΓ(Λ)

(
(I ⊗ Λ)vec(

n∑
t=1

YtYt−1) + (V0 ⊗ U0)
−1vec(M0)

)
.

We also have the conditional posterior for the precision matrix,

π

dΛ |Γ, Hn) =W(dΛ ; n+ ν0,

(
n∑

t=1

(Yt − ΓYt−1)(Yt − ΓYt−1)
⊤ + ψ−1

0

)−1

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Figure 3: Convergence of variational parameters (ξy, ξµ, ψΛ) with respect to the sample
size n in dimension d = 1 for the GW model. We take 5 different values of δ randomly (5
different colors).

Therefore, we can have samples from the joint posterior distribution π(δ(Γ,Λ) | Hn). For a
given sample k, conditionally on the posterior samples (Γ(k),Λ(k))Mk=1, and the distribution
π̌k is given by

π̆k(dYn+1) ∝ e−λ⊤Yn+1N (dYn+1 ; Γ
(k)Yn, (Λ

(k))−1) ∝ N
(
Yn+1 ; Γ

(k)Yn − λ(Λ(k))−1δ, (Λ(k))−1
)

The algorithm MCMC-Portfolio(AR) can be instantiated as follows:

Algorithm 4 MCMC-Portfolio (AR): Portfolio Construction with MCMC for AR model.

Input: Dataset Hn, initial decision δ̂
(0), number of Monte-Carlo samples M , risk parameter

λ, step-size η, initial parameters (Γ(0),Λ(0)).
while Not converging do

for k = 1, . . . ,M do

Γ(k) ∼ π(dΓ |Λ(k−1), Hn) and Λ(k) ∼ π(dΛ |Γ(k), Hn).
end

For all k ∈ [M ], sample z(k) ∼ N
(
dYn+1; Γ

(k)Yn − λΣ(k)δ,Σ(k)
)
.

δ̂(k+1) ← ProjD

(
δ̂(k) + ηλ 1

M

∑
k∈[M ] z

(k)
)

end

Return δ̂(∞) = δ̂MCMC.

Appendix F. Additional Numerical Experiments

The code is provided in the supplementary material.

F.1. Numerical Discussions on Assumption 1

We evaluate the convergence of the variational parameters as the sample size n increases.
Specifically, we generate synthetic data with dimension d = 1 under the GW model, and
for values of n ∈ [50, 1200], we compute the variational parameters (ξy, ξµ, ψΛ) for different
random values of δ, using the corresponding fixed-point computation. Figure 3 illustrates
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Figure 4: Convergence of the difference RF (δ̂VB)−RF (δ
(k)) with respect to the kth iteration

of the algorithm on the GW model. We repeat the experiment for a different amount of
inner iterations. We set d = 50.

that the variational distribution derived from the fixed-point equation converges to the
variational distribution obtained from the asymptotic fixed-point operator.

F.2. Number of Fixed-point Iterations

We evaluate the difference in the value function, RF (δ̂VB)−RF (δ
(k)), of our algorithm when

applied to the GW model on a synthetic dataset. We set d = 50 and fix n = 200, and examine
the impact of the number of inner iterations performed on the fixed-point computation.
Figure 4 demonstrates that insufficient inner iterations result in non-convergence of the
value function RF (δ̂

(k)), as the supremum in the objective function is not reached.

F.3. Computational Complexities

By employing the mean-field assumption, our algorithm VB-Portfolio simplifies the
optimization problem from a measure-based setting (Equation (5)) to a finite-dimensional
parametric optimization problem. The primary computational burden lies in the inversion
of (d, d) matrices for both the stationary and autoregressive Gaussian-Wishart models,
resulting in a computational complexity of O(d3). In contrast, the Gaussian Process (GP)
model faces scalability challenges, as it requires the inversion of (nd, nd) matrices, leading
to cubic complexity with respect to both dimension d dataset size n. Existing works such as
those proposed by Quinonero-Candela and Rasmussen (2005) aim at reducing this inversion
complexity; we leave this challenging task as future work.

Ethics and Accessibility

Although our work is mainly theoretical, applications can vary depending on the user,
and the same model might have different effects for individual investors, institutions, or
automated systems. Making sure these methods are used in a fair and transparent way, and
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that they are understandable and accessible to a wide range of users, is an important ethical
concern.
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