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Abstract
Diffusion models for discrete data have gained
increasing interest lately. Recent methods use an
autoregressive formulation, but where the gener-
ation order is random. In this work, we turn our
attention to the distribution of the generation order.
Instead of using a uniform distribution over all
possible orders, we propose to limit the distribu-
tion for facilitating learning the generative model,
while still keeping the benefit of not having to rely
on a fixed generation order. We empirically show
how limiting the generation order can improve the
generative performance in generating molecular
graphs.

1. Introduction
Diffusion models (Sohl-Dickstein et al., 2015; Ho et al.,
2020; Song & Ermon, 2019) have undoubtedly received
much attention lately. Although initial work mostly focused
on continuous data, recent work has also considered dif-
fusion models for discrete data (Hoogeboom et al., 2021;
Austin et al., 2021; Hoogeboom et al., 2022a).

The recently proposed Autoregressive Diffusion Model
(ARDM) (Hoogeboom et al., 2022a) essentially generate
data in an autoregressive manner. However, the order in
which data is generated is not fixed, but drawn uniformly for
all possible permutations of the data elements. This means
that the model has to learn all these potential orderings at
the same time, which could be argued to be a drawback
(Shih et al., 2022). On the other hand, for some types of
data, such as graphs, there is not a straightforward way to
define a fixed order. In our work, we therefore propose to
use a non-uniform distribution over the permutation of the
data elements, with the intention of reducing the number of
generation orders that the model has to learn, while keeping
the property of not having to rely on finding a fixed order
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for generation. The idea of not using a completely random
order is explored also with MAC (Shih et al., 2022), but
we have a different focus: while MAC focuses on order
agnostic likelihood evaluation, we focus on generative ca-
pabilities. Additionally, MAC still relies on the existence
of some form of canonical order, which is then maximally
reduced under the constraint that all marginals should still
be attainable. Contrary to this, we further restrict the sup-
port over possible permutations to cut away those that are
deemed to be unfavorable from a generative perspective.

To test this new approach, we turn to the task of generating
graphs (Li et al., 2018; Chen et al., 2021; Vignac et al.,
2023). We apply an implicit distribution over the ordering
by defining a generative process where a new node can only
be generated once edges between all generated nodes have
been assigned, and we show how this approach improves
over a uniform distribution over orderings in generating
molecular graphs.

2. Background
Let x ∈ {0, 1, . . . }D be a D-dimensional discrete random
vector with probability mass function p(x). In an autore-
gressive setting, the log-likelihood factorizes as

log p(x) =

D∑
t=1

log p(xt|x<t), (1)

where x<t = (x1, x2, . . . , xt−1). We can easily sample
from the model using D steps of ancestral sampling.

Order Agnostic Autoregressive Models (OA-ARM) (Uria
et al., 2014) generate data in an autoregressive manner. How-
ever, the order is not fixed, but a random variable which is
drawn from the set of all permutations SD of the indices
{1, . . . , D}. The log-likelihood of a sample, given the per-
mutation σ, is written

log p(x|σ) =
D∑
t=1

log p(xσ(t)|xσ(<t)), (2)

where σ(< t) := {σ(i) : i < t}. This is analogous to
Equation (1), but the order of elements is determined by σ.
In this setting, the (unconditional) log-likelihood log p(x)
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simply becomes an expectation over all permutations,

log p(x) = logEσ [p(x|σ)] . (3)

Autoregressive Diffusion Models (ARDM) (Hoogeboom
et al., 2022a) put the OA-ARM in a diffusion model set-
ting. In principle, these models are trained by sampling a
permutation σ, a timestep t and then masking out all ele-
ments at indices k ∈ σ(≥ t) (e.g, assigning them to a new
class ”mask”). The model is then trained simultaneously for
all permutations that share the same first t indices by hav-
ing the model predict all the potential next elements xσ(t).
Mathematically, it is a maximization of

log p(x) ≥ Eσ

D∑
t=1

log p(xσ(t)|xσ(<t))

= EσD · Et log p(xσ(t)|xσ(<t))

= D · EtEσ(<t)Eσ(t)|σ(<t) log p(xσ(t)|xσ(<t)).

(4)

The two outer expectations are approximated by sampling
an index t uniformly on {1, . . . , D} and a random permuta-
tion σ ∈ SD from some predefined order distribution (e.g.,
uniform) and only keeping the first t− 1 elements σ(< t).
When using a uniform distribution over all permutations, we
can compute the inner-most expectation exactly, according
to

1

D − t+ 1

∑
k∈σ(≥t)

log p(xk|xσ(<t)),

i.e., an average over all masked elements.

3. Method
3.1. Non-uniform order distribution

In the formulation of ARDMs, the model has to learn to
generate via all possible generation orders, which could
arguably be a difficult task. On the other hand, some data
does not have an obvious canonical order, and being able to
generate in an arbitrary order is therefore desirable.

As a middle ground, we propose a formulation where the dis-
tribution over the permutations σ is not uniform, but could
be task-specific with the aim of facilitating the learning of
the generative model. For example, we could formulate the
distribution of p(σ) itself in an autoregressive manner,

p(σ) =

D∏
t=1

p(σ(t)|σ(< t)). (5)

However, as can be seen in Equation (4), training an ARDM
includes sampling from p(σ(< t)). In the uniform case,

Figure 1. Illustration of the non-uniform (top) and uniform (bot-
tom) generation order for an undirected graph without self-
connections. A solid black line indicates that the node/edge has
been generated, dashed gray means it is not generated, and dot-
ted red means it has not been generated, but there is a supported
generation order where the node/edge is the t:th element to be
generated.

this can be done efficiently since it simply corresponds to
sampling indices without replacement. Although it is in
principle possible to sample from p(σ(< t)) also in the gen-
eral autoregressive case in Equation (5), this would require
sampling trajectories of σ at each training iteration, which
inevitably would slow down training. However, as we will
show later, we can construct non-uniform distributions over
σ that are efficient to sample from.

3.2. Non-uniform order distribution for graphs

As a concrete example when a non-uniform distribution
over the generation orders σ could be beneficial, we turn
our focus to generation of graphs. This is a case where the
autoregressive formulation with a fixed order does not work
without further considerations, as there is no way to number
nodes and edges in graphs consistently. Therefore, learning
to generate in any, or at least multiple, orders is desirable.

Consider a (directed or undirected) graph with discrete node
and edge attributes. As we do not know which nodes that are
connected beforehand, we consider generating a complete
graph but with one potential edge attribute being ”no edge”.
This effectively allows us to generate the structure of the
graph simultaneously with its node and edge attributes. This
means that we have to generate up to n+ n2 univariate vari-
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Table 1. Evaluation metrics on the QM9 dataset, when explicitly modeling hydrogens. The numbers for DiGress (Vignac et al., 2023) are
from the original publication, and as we have not included any extra spectral features in our model, we compare with DiGress with and
without these features.

MODEL VALIDITY (%) UNIQUENESS (%) ATOM STABLE (%) MOLECULE STABLE (%)

DIGRESS W/O EXTRA FEATURES 92.3 97.9 97.3 66.8
DIGRESS W/ EXTRA FEATURES 95.4 97.6 98.1 79.8
ARDM-UNIF 86.2 99.0 93.6 30.5
ARDM-NSES 86.2 98.9 95.0 38.4
ARDM-NESN 95.1 98.9 94.6 44.2

ables, where n is the number of nodes in the graph1. If we do
this uniformly and do not distinguish nodes and edges, we
can sample an order σ ∼ U

(
S{1,...,n}

⋃
({1,...,n}×{1,...,n})

)
(uniformly from all permutations over all nodes and edges).
However, this means that the model has to learn to gener-
ate, e.g., an edge between two nodes that have not yet been
assigned any attributes.

For graphs, we think that it is not necessary to learn to
generate in any order, but only a subset of orders. One such
subset of orders that we propose is that nodes are generated
in a uniformly random order, but before generating a new
node, all edges between the latest generated node and all
the other generated nodes are generated (similar to (Li et al.,
2018)), also in a uniform order. This process, compared
with the uniform order, is illustrated in Figure 1. We call
this distribution over permutations σ Node-Edges-Node, or
NEsN for short.

Sampling As mentioned before, in the training of
ARDMs, we are relying on being able to sample from the
marginal distribution of a subset of the permutation order,
which if being done autoregressively according to Equa-
tion (5) would require t sampling steps to obtain σ(< t),
and then determine p(σ(t)|σ(< t)).

However, for NEsN, we do not need to do this autoregres-
sively. After sampling t, we uniformly sample a random
permutation of the nodes, σV , determine the index i of the
latest sampled node (based on t), and sample a permutation
of the edges that connect node i with the already generated
nodes, σE,i. We can then mask all nodes in σV (> i), all
edges coming in and out of masked nodes, and a subset of
the edges in σE,i, depending on t.

An algorithm for sampling the full order σ is presented in
Appendix B.

1Here, we assume that the number of nodes n has already been
sampled, which can be done by, e.g., sampling from the marginal
distribution of n over the training data. In principle, we then
condition also on n, but omit this for simplicity.

Algorithm 1 One training step, NEsN
Input: Data sample x, parameters θ, learning rate α
Output: Updated model parameters θ′

Sample σV ∼ U (Sn)
Sample i ∼ U (1, n), number of nodes to keep unmasked
Calculate m := #edges between node σV (i) and nodes
σV (< i)
Sample p ∼ U (1, . . . ,m), number of edges between
σV (i) and σV (< i) to keep unmasked
if p ̸= m then

Sample σE,i uniformly among edges between node i
and nodes σV (< i)
Set deterministically σE,j , ∀j ∈ σ(< i)
Compute L as in Equation (7)

else
Set deterministically σE,j ∀j ∈ σV (≤ i)
Compute L as in Equation (6)

end if
θ′ = θ +∇θL

3.3. Loss function when using non-uniform distribution

With this non-uniform order, the inner-most expectation
Eσ(t)|σ(<t) log p(xσ(t)|xσ(<t)) in Equation (4) will not re-
sult in a sum over all masked elements as in the uniform
case. Instead, assume that i nodes have been generated,
and with some abuse of notation, let xi denote node i, and
x(i,j) the edge between node i and j. Then, there are two
possibilities:

• All edges between generated nodes are already gen-
erated, and the next step is to generate a node. The
expectation then becomes

1

#σV (> i)

∑
k∈σV (>i)

log p(xk|xσ(<t)). (6)

• Not all, but p < #σE,i edges between the i:th node and
the other already generated nodes have been generated.
The next step is then to generate a new edge, and the
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expectation becomes

1

#σE,i(> p)

∑
(k,l)∈σE,i(>p)

log p(x(k,l)|xσ(<t)). (7)

In other words, the expectation is either over all unmasked
nodes, or over all unmasked edges that connect the i:th
node and the already generated nodes. An algorithm for
a single training step as we have implemented it can be
found in Algorithm 1, and some more comments on this
implementation can be found in Appendix A.

4. Connection to denoising diffusion
The derivation of the proposed method relies on an autore-
gressive formulation, akin to Uria et al. (2014) and Hooge-
boom et al. (2022a). Hoogeboom et al. (2022a) has shown a
connection between the ARDM formulation and denoising
diffusion model with absorbing state noise (Austin et al.,
2021) by establishing that ARDMs are equivalent to ab-
sorbing state noise in continuous time. The destructive
process (which usually is an integral part of a diffusion
model, but does not have a prominent role in ARDMs) re-
duces to finding times τi when each variable xi decays into
the absorbed/masked state. These time steps will then trans-
late into an order of the variables, and ARDMs model the
reverse absorbing process. As noted in their discussion,
the (destructive) order will become uniform, and hence, the
reverse (generative) order will also be uniform.

To connect our proposed ARDM with non-uniform genera-
tion order to denoising diffusion we view this from a slightly
different perspective. Note that a diffusion model can be
thought of as defining a joint distribution over trajectories
q(x(0:T )), where x(0) denotes an actual data sample and x(t)

increasingly ”noisy” samples. Typically, this is defined as a
Markovian stochastic processes starting at the data distribu-
tion: q(x(0:T )) = q(x(0))

∏T
t=1 q(x

(t) | x(t−1)). However,
it is also possible to define the distribution over trajectories
using a non-Markovian factorization, as

q(x(0:T )) = q(x(0))q(x(T ))

T−1∏
t=1

q(x(t−1) | x(t),x(0)),

i.e., as a reverse-time diffusion bridge between a final noisy
sample x(T ) and a data sample x(0). Next, as in standard
diffusion models we define a generative Markovian process,
yielding a joint distribtuion over trajectories

p(x(0:T )) = p(x(T ))

T−1∏
t=0

p(x(t−1) | x(t),x(0)),

and train the model by minimizing the Kullback–Leibler
divergence DKL(q(x

(0:T ))∥p(x(0:T ))).

In our auto-regressive setting, we have T = D, x(T ) a
completely masked (null) state, and q(x(t−1) | x(t),x(0)) a
distribution which unmasks one element of x(t−1). Thus,
the distribution over orders in which elements are unmasked
can be matched between the augmented data distribution q
and the generative distribution p, effectively opening up for
non-uniform generation orders. Doing so, it can be shown
that the KL-based objective is equivalent to the objective
proposed above from an autoregressive perspective.

5. Experiments
We evaluate our proposed method on the QM9 dataset (Wu
et al., 2018). This dataset contains molecules with up to
nine heavy atoms. In our experiment, we explicitly model
hydrogens, resulting in n ≤ 29 atoms for all molecules
in the dataset. We use the same metric as Hoogeboom
et al. (2022b) and Vignac et al. (2023): Validity (fraction of
molecules that are determined valid by RDKit2), Uniqueness
(fraction of the valid molecules that are unique), Atom stable
(fraction of atoms with the correct valency) and Molecule
stable (fraction of molecules where all atoms are stable).

We use an autoregressive model where nodes and edges
are generated in a random order (ARDM-Unif), which we
compare with our proposed order which generates all edges
between generated nodes before generating a new node
(ARDM-NEsN), and one which first generates all nodes,
and then all edges (ARDM-NsEs).

We follow DiGress (Vignac et al., 2023) and use a graph
transformer3 (Dwivedi & Bresson, 2021) which outputs
class logits for the node or edge to be generated. The results
from our experiments, and a comparison with DiGress are
presented in Table 1. In DiGress, they augment their input
data with extra structural and spectral features, e.g., cycle
counts and eigenvalues of the Laplacian. In our case, how-
ever, a noisy graph consists of masked variables (instead
of variables which are of potentially the ”wrong” class as
in DiGress), and we can therefore not compute these ex-
tra features. We therefore compare our model (which does
not use extra features) with DiGress with and without extra
features.

6. Discussion
The results indicate that using a non-uniform generation
order improves the generative capabilities compared to the
uniform distribution. Note in particular that we improve the
validity score, both compared to DiGress without extra fea-
tures, and to the alternative ARDM implementations. Com-

2http://www.rdkit.org
3We have used the implementation from the DiGress repository,

https://github.com/cvignac/DiGress/

http://www.rdkit.org
https://github.com/cvignac/DiGress/


Autoregressive Diffusion Models with non-Uniform Generation Order

pared to Digress with extra features, we have comparable
performance in these metrics. Since the uniqueness score is
computed only for valid molecules, this means that ARDM-
NEsN generates more unique (and valid) molecules in total
than the alternatives. Compared to DiGress, the Molecule
stable metric (fraction of molecules where all atoms have
the correct valency) is still inferior. One thing to notice,
however, is that ARDM requires exactly n + n(n − 1)/2
sampling steps (as the graphs are undirected and without
self-connections). As we sample n from the training data,
E [#steps] = E [n+ n(n− 1)/2] ≈ 176, which can be
compared with DiGress which uses a fixed number of 500
sampling steps (default value in their implementation).

Although in this work we have focused on graphs, one could
think of other applications where a non-uniform generation
order could be implemented. One example we have in mind
is images, where instead of using a fixed order (like a raster-
scan) or a completely random order, we could limit the
order so that the next pixel to be generated has at least one
neighboring pixel that has been already been generated.

7. Conclusion
In this work, we have extended Order-Agnostic Autore-
gressive Diffusion Models by examining the distribution of
generation orders. By not using a uniform distribution over
all possible generation orders, we show initial results on
how this improves the generative capabilities in generating
molecular graphs.
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Algorithm 2 Sampling of σ in NEsN
Input: number of nodes, n
Output: Order σ
Sample node ordering σV uniformly
for i = 2 to n do

Uniformly sample edge ordering σE,i among edges between node i and nodes σV (< i)
end for
Concatenate σV and all σE,i as
σ = (σV (1), σV (2), σE,2, σV (3), σE,3, . . . , σE,n)

Algorithm 3 Generation with NEsN
Input: Model parameters θ, empircal distribution over number of nodes in a graph p̂(n)
Output: A graph x
Sample n ∼ p̂(n)
Sample σ using Algorithm 2
Initialize x
for t = 1 to n2 + n do
xσ(t) ∼ pθ(xσ(t)|xσ(<t))

end for

A. Training algorithm
The training algorithm as we implemented it is presented in Algorithm 1. In this algorithm, when we say ”set deterministi-
cally”, we use the fact that the edges in these ”sub-orders” will all be unmasked, and the exact order they were ”unmasked”
will therefore not matter for the loss. Therefore, there is no need to sample these, and to save computation, they can be set
according to some predefined order.

B. Sampling of an order in NEsN
An algorithm for sampling an order σ in the NEsN formulation can be found in Algorithm 2.

C. Generation algorithm
An algorithm for generating a graph using NEsN is presented inAlgorithm 3.


