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Figure 1: Performance across various supervised LLIE models trained by their original loss func-
tions and our GT-mean loss functions. The performance is consistently improved when the GT-mean
loss functions are adopted. Notably, this improvement is easily attainable, as the use of GT-mean
loss functions is flexible and brings minimal additional computational costs during training.

ABSTRACT

Low-light image enhancement (LLIE) aims to improve the visual quality of im-
ages captured under poor lighting conditions. In supervised LLIE tasks, there
exists a significant yet often overlooked inconsistency between the overall bright-
ness of an enhanced image and its ground truth counterpart, referred to as bright-
ness mismatch in this study. Brightness mismatch negatively impact supervised
LLIE models by misleading model training. However, this issue is largely ne-
glected in current research. In this context, we propose the GT-mean loss, a sim-
ple yet effective loss function directly modeling the mean values of images from
a probabilistic perspective. The GT-mean loss is flexible, as it extends existing
supervised LLIE loss functions into the GT-mean form with minimal additional
computational costs. Extensive experiments demonstrate that the incorporation of
the GT-mean loss results in consistent performance improvements across various
methods and datasets.

1 INTRODUCTION

Low-light image enhancement (LLIE) is a crucial task in computer vision, aiming to improve the
overall quality of images captured under poor lighting conditions (Li et al., 2022; Liu et al., 2021a).
The primary objective of training a supervised LLIE model, denoted as f(+), is to map a low-light
image x to an enhanced image f(x), subjecting to the constraint that f(x) should resemble the
ground truth (GT) image y as much as possible. Under this paradigm, a well-trained LLIE model
is expected to improve brightness while suppressing other degeneration factors commonly existed
in low-light images, such as noise (Lu & Jung, 2022; Wei et al., 2020; Moseley et al., 2021), color
distortion (Yan et al., 2024; Zhang et al., 2022), and others (Zhou et al., 2022; 2021).

In supervised LLIE tasks, the inconsistency between f(z) and y in terms of the overall brightness
widely exists. In this paper, we refer to this widespread yet overlooked phenomenon as brightness
mismatch. It can be simply represented as the inequality between the average brightness of f(x) and
y, i.e., E[f(z)] # E[y]. We find that this phenomenon can lead to biases in computing loss values
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and evaluating visual quality, therefore negatively impacting the training phase and the evaluation

phase of LLIE research.

Impact on Evaluation. Tradi-
tional metrics like PSNR can be
biased by brightness mismatch.
In Figure 2, we provide a typi-
cal example that the two modi-
fied images with vastly different
visual quality still receive similar
PSNR values. The primary rea-
son for this inaccurate evaluation
is that brightness mismatch dom-
inates the PSNR values. This
example indicates that traditional
metrics, especially those directly
based on pixel values, can be less
comprehensive for evaluating vi-
sual quality at the presence of
brightness mismatch.

Impact on Training. Brightness
mismatch poses a risk of mis-
leading model training. Table
1 illustrates that the low-quality
noisy image is more likely to re-
ceive smaller loss values com-
pared to the high-quality scaled
image when tradition loss func-
tions are employed. This exam-
ple demonstrates that brightness
mismatch can create an inac-
curate association between loss
value and visual quality during
training. Grounded in the loss
minimization paradigm, LLIE
models are optimized to produce
enhanced images with lower loss
values, even if their visual qual-
ity is not guaranteed. This incor-
rect association can negatively
impact model training, leading to
less satisfying results.

Which one is better? A
PSNR:18. 569 PSNR:18.149
__GT-mean PSNR:18.554 GT-mean PSNR:co

—N
B
Scaled image (GT x 0.8) /

-

5 o
Original image (GT) N

Figure 2: A comparison between the noisy image (obtained
via by removing some Fourier high-frequency components and
adding Gaussian noise) and the scaled image (the original im-
age’s brightness scaled by a factor of 0.8). Taking a zoomed-in
view, it is obvious that the scaled image exhibits significantly
better quality. However, the PSNR values of the two images are
comparable, posing challenges to this most commonly used met-
ric for evaluating LLIE’s performance. In the contrary, their GT-
mean PSNR values present huge difference, aligning with the
true condition. For the scaled image, GT-mean PSNR is com-

puted as PSNR(%GT x 0.8, GT), resulting in an in-

finite PSNR value (In practice, PSNR usually has a pre-defined
upper bound. In this figure, we strictly follow the mathametical
definition of PSNR for demonstration purposes).

Table 1: Loss values from the original losses and their GT-mean
versions from the modified images from Figure 2. The exper-
iment reveals an unintended behavior in the original loss func-
tions, where most of them assign lower loss values to the low-
quality image while assigning higher loss values to the high-
quality image. The GT-mean loss functions, in contrast, suc-
cessfully address this issue by correctly assigning lower loss val-
ues to the high-quality image and higher loss values to the low-
quality image. The lower value between the noisy image and
the scaled image is underlined.X indicating cases where the loss
incorrectly identifies the noisy image as having better quality,
and v indicating cases where the model correctly identifies the
scaled image as the better one.

Loss type ‘ Loss ‘ - Loss valu§
Noisy image  Scaled image (x0.8)

Ly loss 0.0912 X 0.1175

Tradition loss Lo loss 0.0138 X 0.0153
’ Perceptual loss 5.6388 0.1119 v/

Smooth L loss 0.0069 X 0.0076
GT-mean L loss 0.0915 0.0193 v
GT-mean loss GT-mean Lo loss 0.0138 0.0025 v
GT-mean Perceptual loss 5.6466 0.0184 v
GT-mean Smooth L; loss 0.0069 0.0012 v

As for model evaluation, (Wang et al., 2022a; Zhou et al., 2023; Jinhui et al., 2023; Yan et al.,
2024) introduced GT-mean metrics to avoid the negative effects brought by brightness mismatch.
The new evaluation metrics extend the original ones by aligning the average brightness of E[y| and
E[f(x)] in advance. Specifically, the enhanced image is firstly rescaled as % f () to ensure that
the evaluation is based on exactly the same average brightness. For example, the GT-mean PSNR
metric can be obtained through PSN R(M f(x),y). From Figure 2, we can see that the GT-

B[f ()]
mean PSNR of the scaled image approaches infinity, showing the ideal fidelity between the scaled
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image and GT after excluding brightness mismatch. Therefore, GT-mean metrics have the potential
of cooperating with the original metrics for a comprehensive performance evaluation.

The issue of model training under brightness mismatch has largely been ignored in existing super-
vised LLIE research, despite some indirect solutions that do not primarily address this problem.
For example, (Chen et al., 2018; Yang et al., 2021; Wu et al., 2022; Ma et al., 2023) designed
multiple sub-networks to decouple brightness from other factors and optimized them separately.
Nevertheless, the divide-and-conquer roadmap inevitably complicates the model design, as well as
introducing significant computational overhead.

Inspired by the GT-mean metrics, we propose a simple yet effective loss function, called GT-mean
loss, through explicitly modeling brightness mismatch in its construction. The loss dynamically bal-
ances its focus during training. For example, when f(z) and y are close, the loss function becomes
unaware of brightness mismatch, and drives the model to focus more on optimizing various imaging
factors except overall brightness. Therefore, the loss is able to eliminate the negative impact caused
by brightness mismatch during training, facilitating LLIE models to comprehensively improve vi-
sual quality in a more effective way. The use of this loss function is straightforward, as it directly
extends any existed loss function that requires the enhanced image f(z) and its GT counterpart as
inputs. The GT-mean loss is highlighted in the following aspects:

» Simplicity: The construction of the GT-mean loss is both theoretically and practically
straightforward. Its underlying mechanism is easy to understand, and its implementation is
uncomplicated.

* Flexibility: The GT-mean loss is highly flexible. For instance, the L; loss can be directly
extended into the L; GT-mean version. This character makes adopting the GT-mean loss a
universal choice for supervised LLIE models to upgrade their loss functions.

* Low Cost: Using the GT-mean loss introduces minimal overhead during training (approx-
imately doubling the original loss computation). It is negligible compared to the overall
model optimization process.

 Effectiveness: Extensive experiments have demonstrated that the GT-mean loss consis-
tently improves model performance across a wide range of supervised LLIE methods (as
shown in Figure 1).

2 BACKGROUND

2.1 SUPERVISED LLIE FRAMEWORK

In a supervised low-light image enhancement (LLIE) framework, the objective is to learn a mapping
function f that transforms a low-light image x into an enhanced image f(x) that closely approxi-
mates the ground truth y. This is typically achieved by minimizing a loss function that penalizes the
differences between f(x) and y, driving the model to produce outputs that have good visual quality
as in ground truth images. Various loss functions can be applied for this task. Commonly used loss
functions, such as the L, loss, are primarily adopted to minimize pixel-wise differences between the
input image and the ground truth, ensuring the model generates accurate reconstructions.

2.2 LoSs FUNCTIONS FOR LLIE

Loss function is essential in LLIE tasks, as it directs model training. We categorize the loss functions
in LLIE into two groups based on their purposes.

Fidelity Losses. These losses are designed to ensure that the enhanced image f(x) closely resembles
the ground truth y. They operate across various image representations, including pixel space, color
space, frequency domain, and semantic space. For instance, the L;-like loss functions directly
ensure the pixel-level fidelity (Li et al., 2022; Liu et al., 2021a). Loss functions focused on color
representation often use color histogram-based metrics (Yan et al., 2024), while others preserve
fidelity at the frequency domain (Wang et al., 2023a; Huang et al., 2022). Additionally, some loss
functions aim to maintain fidelity at higher representation levels, such as the perceptual loss (Johnson
et al.,, 2016). Recently, some novel loss functions have emerged that subtly utilize fine-grained
semantic information (Liang et al., 2023; Wu et al., 2023). Among these, pixel-level loss functions
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are indispensable for image reconstruction. However, their effectiveness may be compromised by
brightness mismatch.

Prior-Based Losses. These losses integrate domain-specific prior knowledge into LLIE models,
aiming to maximize the use of available information. Typical examples are the Retinex-based meth-
ods(Zhang et al., 2019; Wei et al., 2018; Chen et al., 2018; Yang et al., 2021; Wu et al., 2022; Ma
et al., 2023; Fu et al., 2023a), which are founded on the Retinex theory that an image is composed
of illumination map and reflectance map. Specific loss functions are employed to penalize the lo-
cally smooth properties of illumination map and the lightness-insensitive properties of reflectance
map. These loss functions are closely linked to specific model architectures and their underlying
assumptions, limiting their generalizability. Furthermore, for unsupervised LLIE models that lack
GT images for training, prior-based loss functions are essential for guiding model optimization.
However, these loss functions can be less robust. For example, ZeroDCE (Li et al., 2021) builds an
exposure control loss function with a hard threshold, which may result in over-exposure.

To pursue comprehensive visual quality enhancement, LLIE models tend to incorporate multiple loss
functions. While this strategy can lead to improved results, it also increases the burden of model
design and hyperparameter tuning. More importantly, as the existing loss functions overlook the
brightness mismatch factor, the fundamental challenges brought by this factor remain unaddressed.

Our GT-mean loss is designed to directly address the issues caused by brightness mismatch. We
argue that the primary goal of LLIE is to improve visibility while simultaneously suppressing other
degenerated factors. Therefore, loss functions specifically designed for supervised LLIE should be
sensitive to brightness mismatch and as concise as possible. To this end, we introduce brightness
mismatch into the construction of GT-mean loss, and design a mechanism that dynamically balances
the importance of optimizing for brightness and other image quality factors during training.

Visualization of brightness distributions p(E[y]) and q(E[f(x)])
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Figure 3: Illustration of the GT-mean loss construction. The average brightness values, E[y] and
E[f(z)], are modeled as random variables E[y] = oE[y] and E[f(z)] = BE[f(z)], where v ~
N(1,02) and 8 ~ N(1,03). The right side of the figure exemplifies the distributions p(E[y]) and
q(E[f(x)])] for both images. The GT-mean loss L combines the original loss L( f (), y) with a

brightness-adjusted loss L (Eﬁ[g])] f(x), y) weighted by W.

3 METHOD

In Section 3.1, we present the formulation of the GT-mean loss. In Section 3.2, we detail the crucial
component of this loss function. Section 3.3 summarizes the features of the proposed loss.
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3.1 GT-MEAN LOSS

In general, the GT-mean loss L7 (f(z),y) can be regarded as an extension of the existing loss
L(f(x),y) used for LLIE. To deal with the issues arising from brightness mismatch, the key
to constructing Ler(f(2),y) is matching the average brightness of f(x) and y. Furthermore,
Lar(f(z),y) is designed to retain the form and effectiveness of the original loss L(f(x),y). As
illustrated in Figure 3, Ler(f (), y) is formulated as follows:

Lar(f(e)n) =W L))+ (1= W) L (gol o)), <1>

where % is a scaling factor for aligning the average brightness of f(z) and y. The weight

W € [0, 1] balances the two terms in L. It is noted that the choice of L(-) is is arbitrary, provided
that it accepts f(z) and y as inputs.

The primary strength of the GT-mean loss lies in its ability to dynamically balance the model’s focus

during training. In early stages, when the difference between p(E[y]) and ¢(E[f(x)]) is significant,
W is expected to approach 1 to make the first term L(f(x),y) dominate the overall loss function.
This behavior ensures that the GT-mean loss resembles the original loss L(f(z),y), prioritizing

improvements in overall image quality. As the training progresses and p(E[y]) and q(E[f(z)])
becomes closer, W decreases to a smaller value. This trend shifts the emphasis of the overall loss

function toward the second term L ( % f(a), y), ensuring f(x) and y are compared under the

condition of average brightness alignment. In this stage, GT mean loss mainly compares the image
differences at the same mean brightness to avoid the negative effect of brightness mismatch, thus
maintaining effective model training. From this mechanism, it is clear that W plays a crucial role,
which will be discussed in detail in the following subsection.

3.2 WEIGHT DESIGN

3.2.1 PROBABILISTIC MODELING ON AVERAGE BRIGHTNESS

Instead of modeling the average brightness [E[] as a fixed value, we represent it as a random variable,
motivated by two key considerations. First, probabilistic modeling aligns well with the characteris-
tics of human brightness perception. According to the Contrast Sensitivity Function (Robson, 1966;
Biihren, 2018), human vision is highly sensitive to local contrasts, such as edges, textures, and inten-
sity changes, but much less sensitive to a minor shift of E[-]. As long as local contrast remains intact,
such minor shifts are unlikely to affect the human perception on visual quality, especially when E[:]
is relatively high. Second, probabilistic modeling enhances the control of our loss function during
training. It allows us to estimate W using common metrics like the Kullback-Leibler divergence or
the Wasserstein distance. This facilitates a smooth weighting between the two terms in Eq. 1 with-
out causing abrupt changes. Consequently, the loss exhibits good continuity as parameters change
and has flat regions around its minima.

Based on these considerations, we regard E[-] as an observation from a random variable IE[] obeying

the Gaussian distribution. Specifically, E[y] can be represented as:

Ely] = aE[y], a~N(1,02), 2)

where a determines the probability distribution type of E[y], and o2 defines its spread. Therefore,

we have p(E[y]) = N (uy, 07), with p1,, = E[y] and o, = 0, E[y].
Similarly, E[f ()] can be also seen as an observation from E[f(z)], represented as:
E[f(2)] = BE[f(x)], f~N(1,08), 3)

where /3 determines the probability distribution type of IE[ f(z)], and 0[23 defines its spread. Similarly,

we have ¢(E[f (2)]) = N (pz,03,), with pp, = E[f(x)] and 05, = o5E[f(2)].
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3.2.2 ESTIMATION OF W

We measure the difference between p(E[y]) and ¢(E[f(x)]) to estimate W based on the Kullback-

Leibler (KL) divergence. Instead of calculating Dx . (p(E[y])||q(E[f(z)])) directly, we build
an intermediate Gaussian distribution N (g, 02,), and compute its distance to N(u,,02) and

Y
N (psa, a?z), respectively. Based on this, the weight W can be estimated as:

1 1
W = 2D (W (ty, 02) N (i, 02)) + 5 Dkt N (s 03, N (ims02)), - ()

2 2
; or+o
where [, = 7’”2‘”1,02 =y e

poly . Given the Gaussian distribution, Eq. 4 has an analytic solution
(proof provided in Appendix A):

1
+ =

Om 05 + (/Ly - .uM)Q 1
o A o l 5

02 + x T m2 1
Om + fx (lu’f K ) _ . (5)

Otz 202, 2

log

1
w=_ |1
2 %75, 202, 2

Finally, a clipping operation is applied to W to restrict its value within [0, 1].

In supervised LLIE, the enhanced image f(z) should closely resemble the ground truth image y.

Consequently, we assume that the shape of p(E[y]) and q(E[f(x)]) are similar. Based on this as-
sumption, we equate o2 and a%, setting them both to 0. In our experiments, we empirically set
o as 0.1 for all the comparisons. In Section 4.3, we delve deeper into the influence of o on the
performance of LLIE.

3.3 DISCUSSION OF THE GT-MEAN LOSS

In application, flexibility is the primary advantage of the GT-mean loss, as it is independent of the
model architecture and only requires the enhanced image f(x) and the ground truth y as inputs.
Therefore, the GT-mean loss can be used in any supervised LLIE method by simply extending its
supervised loss function into the GT-mean version.

The GT-mean loss is also highly efficient. Compared to the original loss, it doubles the computation,
and W is estimated with an analytical solution. Despite there is some extra computation overhead,
the overall increase introduced by the GT-mean loss is negligible throughout the training process.

4 EXPERIMENT

4.1 DATASETS AND SETTINGS

Datasets. We conducted experiments on both paired and unpaired datasets to evaluate our loss. For
paired datasets, we used LOLv1 (Chen et al., 2018), LOLv2-real (Yang et al., 2021), and LOLv2-
syn (Yang et al., 2021). Specifically, the LOLv1 dataset includes 485 training images and 15 testing
images. The LOLv2-real dataset includes 689 training images and 100 testing images. The LOLv2-
synthetic dataset includes 900 training images and 100 testing images. For unpaired datasets, we
chose DICM (Lee et al., 2013), VV (Vonikakis et al., 2018), NPE (Wang et al., 2013), MEF (Ma
etal., 2015), and LIME (Guo et al., 2017) as the test sets.

Evaluation Metrics. For the paired datasets, we used the normal evaluation metrics PSNR (Peak
Signal-to-Noise Ratio) and SSIM (Structural Similarity Index) (Wang et al., 2004), along with GT-
mean PSNR and GT-mean SSIM, to assess the effectiveness of the methods based on GT-mean
loss.

For the unpaired datasets, we utilized three commonly used no-reference metrics, NIQE (Natu-
ral Image Quality Evaluator)(Mittal et al., 2013), BRISQUE (Blind/Referenceless Image Spatial
Quality Evaluator)(Mittal et al., 2012), and PI (Perceptual Index)(Blau et al., 2018), to evaluate the
performance.

Baselines. Seven supervised LLIE models were chosen as baselines. Their loss functions are shown
in Table 2:
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Table 2: Baselines and Their Loss Functions

Method Loss Function

Restormer (Zamir et al., 2022) L loss

RetinexFormer (Cai et al., 2023) L loss

LLFormer (Wang et al., 2023b) Smooth L, loss (Girshick, 2015)

MIRNet (Zamir et al., 2020) Charbonnier loss (Barron, 2019)

Uformer (Wang et al., 2022b) Charbonnier loss

SNR-Aware (Xu et al., 2022) Charbonnier loss, perceptual loss (Johnson et al., 2016)
CID-Net (Yan et al., 2024) L loss, edge loss (Seif & Androutsos, 2018), perceptual loss

Implementation Details. To retrain the baselines equipped with GT-mean loss functions, we fol-
lowed the their official settings, which can be found in Appendix C.

Table 3: Comparison on the Paired Datasets. + denotes the improvement of performance. The bold
denotes the best among all the listed methods.

Complexity LOLv1 LOLv2-real LOLy2-synthetic ‘
Methods ! Normal GT-mean Normal GT-mean Normal GT-mean
Params/M _ FLOPS/G PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
RetinexNet (Chen et al., 2018) 0.84 58747 16774 0419 18915 0427 16.097 0.401 18323 0447 17137 0.762 19.099 0774
RUAS (Liu et al., 2021b) 0.003 083 16.405 0.500 18.654 0518 15326 0.488 19.061 0510 13765 0.638 16.584 0719
2 11435 61.01 17480 0.651 20003 0.691 18,640 0.675 21434 0.675 16572 0.774 19.493 0825
0.59 0075 14350 0445 21350 0.585 17590 0721 20190 0.745 18.040 0.800 2173 0854
0075 483 14861 0.559 21.880 0.640 16059 0.580 19771 0671 17712 0815 21.463 0.848
233 53.26 - - - - 20060 0.850 2.627 0873 22050 0910 24641 0922
033 2081 19510 0.736 23526 0.755 19.885 0.778 24025 0503 - - - -
- - 21521 0.768 24231 0781 20850 0724 25447 0.796
025 15732 21680 0774 24700 0794 22562 0.803 27626 0832
- - 22861 0.689 24710 0.705 - - -
009 528 23382 0.808 25.275 0815 23499 0.824 27248 0836 - - - -
- - . . - - 22347 0.847 27353 0872 24644 0920 27.605 0931
- - 20620 0834 25299 0.846 - - - - - - - -
LEDNet(Zhou 707 35.92 20627 0823 25470 0.846 19.938 0827 27814 0870 23709 0914 27.367 0928
NeRCo(Yang et al 23.30 - 22946 0.785 25742 0799 - - - - - - - -
FECNet(H ) 0.5 - 23443 0821 25885 0.836
MAXIM(Tu et al., 2022) 14.1 216 23,435 0.864 27.555 0877 - - - - - -
Uformer (Wang et al., 2022b) 520 » 18218 0771 22325 0810 14941 0.760 22148 0831 24693 0932 27438 0941
Uformer with GT-mean loss (ours) 18915(+0.697) 0795 (+0.023)  22.854(+0.529) 0.830+0.019) | 16.103(+1.162) 0.792(+0.032) 23.989(+1.841) 0.858(+0.026) | 25.319+0.626) 0.940(+0.007) 28.683(+1245) 0.948(+0.007)
MIRNet(Zanmir et al., 2020) 176 55 21512 0.788 24968 0.800 21.648 0810 26712 0827 22059 0.894 25274 0.908
MIRNet with GT-mean loss (ours) 217800:0268)  0.804(0016)  25.596(+0.628) 0818(:0.018) | 22.050:0402) 0.8300+0.021) 26.769(+0.057) 0.846(:0.019) | 22576+0.517) 0906(:0011)  26215(+0.941)  0.918(:0.010)
RetinexFormer(Cai et al., 2023) 153 1557 23830 0.832 26312 0.844 21272 0.841 27650 0877 25.281 0.928 28827 0.939
RetinexFormer with GT-mean loss (ours) 24.561:0731)  0.834(+0.003)  26.586(+0.274) 0.849(:0.005) | 21.810+0.538) 0.852:0011) 2843740787 0.879(:0.002) | 25.583(+0299) 0933(:0.005) 29.261(+0.43)  0.944(:0.005)
Restormer(Zamir et al., 2022) 2613 14425 2718 0.830 26375 0.848 20235 0.841 28.159 0.880 26288 0.944 30,570 0955
Restormer with GT-mean loss (ours) 23313(:0595) 083760007 26743(:0368)  0.855:0.007) | 20.717(:0.48)  0.845(:0.004)  28.4400+0281)  0.884(:0.004) | 26.630040342)  0.946(+0.002)  3LO0L0.431)  0.957(:0.002)
LLFormer(Wang et al., 2023b) 2iss s 23.007 0.805 25762 0823 21.308 0.803 27.052 0828 24195 0918 27.862 0930
LLFormer with GT-mean loss (ours) 23.847(:0840)  08300+0.025)  26.769(+1.007) 0.846(+0.023) | 22.291(+0.983)  0.844(+0.041) 28.334(+1282)  0.870(+0.420) | 25.15240.957) 0.932:+0.014) 29.266(+1.404) 0.945(+0.015)
SNR-Aware(Xu et al., 2022) 401 2635 23.005 0824 26373 0843 21103 0839 26971 0.866 24173 0924 27.756 0937
SNR-Aware with G loss (ours) 23.992(:0988)  0836(+0.012)  26.942(+0.569) 0.853(+0.009) | 21350(:0.247) 0.844(:0.005) 27.7400+0.770) 0.875(:0.010) | 24.301(+0.128) 0.933(+0.009) 28.525(+0.769) 0.945(+0.008)
CID-Net(Yan et al., 2024) 158 257 23809 0857 2715 0876
CID-Net with GT-mean loss (ours) 2512241313 0.865(:0.008)  28.108(:0.393)  0.878(+0.002)

4.2 QUANTITATIVE RESULTS

Paired Datasets. We present the performance of the GT-mean loss on the three paired datasets
in Table 3. We use two normal evaluation metrics, PSNR and SSIM, along with their GT-mean
counterparts (GT-mean PSNR and GT-mean SSIM).

Among the seven baseline models, it is evident that the GT-mean loss consistently improves per-
formance across all evaluation metrics, regardless of the type of the originally loss function. These
results validate the effectiveness and flexibility of our GT-mean loss. The visual comparisons of
paired datasets are provided in Appendix E. We note that using the GT-mean loss obviously does not
alter the computational efficiency (in terms of FLOPs and Params) during the inference stage. Fur-
thermore, considering the minimal additional computational overhead introduced during the training
stage, the advantages provided by the GT-mean loss are easily attainable for supervised LLIE meth-
ods.

In addition to evaluating the selected baselines using GT-mean loss, Table 3 presents the perfor-
mance of several previous LLIE methods. The objective is to demonstrate that GT-mean PSNR
and GT-mean SSIM can serve as valuable complementary evaluation metrics for a comprehensively
assessment of LLIE model performance. We can see that some methods, e.g., Bread and LEDNet,
exhibit less satisfying PSNR and SSIM performance but achieve good performance when evaluated
with GT-mean PSNR and GT-mean SSIM, showing the competitiveness of these methods. Since the
GT-mean metric ensures that both images are compared at the same brightness level, it reduces the
impact of brightness mismatch on the evaluation, placing greater emphasis on other visual quality
factors, such as noise reduction and color distortions. In this context, we recommend reporting both
GT-mean and normal metrics for a thorough performance evaluation, which will aid researchers in
conducting in-depth analyses of how their models address the low-light image degradation factors.

1<_ in Table 3 indicates that these methods do not report the results or the officially released code does not
work.
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Moreover, as shown in Appendix B, the GT-mean metrics can also be used to determine the optimal
stopping point during training, helping to prevent premature termination of the training process.

Table 4: Comparison on the Unpaired Datasets. —(+) denotes the improvement(reduction) of per-
formance. Note that all the models were trained on the LOLv2-synthetic dataset.

Method DICM MEF LIME NPE vV AVG

NIQE| BRISQUE, PI, | NIQE| BRISQUE, PI, | NIQE| BRISQUE, PI | NIQE, BRISQUE, PI, | NIQE| BRISQUE, PI, | NIQE| BRISQUE, PI,
Restormer 322 9.11 241 366 1681 297 | 366 1507 291 347 1831 268 | 329 298 257 | 346 16.46 270
Restormer with GT-mean loss (ours) 318 8.79 236 | 363 1711 285 | 363 17.11 291 | 345 1849 268 | 33 2205 256 | 34400 16270)  2670)
MIRNET 382 1721 264 | 367 260 32| 423 1666 332 | 347 1680 261 | 364 1973 257 377 18.62 287
MIRNET with GT-mean loss (ours) 320 1195 232 | 3.60 2206 319 | 433 1895 330 | 350 1724 262 | 371 1971 261 | 3670 17980 2810)
Retinexformer 323 9.99 237 | 386 1508 304 | 388 1359 298| 338 1616 262 | 273 1451 327 | 342 13.87 286
Retinexformer with GT-mean loss (ours) | 3.21 1017 237] 382 1537 308 | 384 1378 285 | 337 1672 263 | 277 1567 324 | 34000 1434 2.830)
SNR 6.07 3248 453| 427 2717 373 | 606 3418 467 | 647 36.41 483 | 1152 7197 922| 688 41.64 539
SNR with GT-mean loss (ours) 6.12 3211 455 | 426 2672 370 | 611 3462 467 | 646 3643 484 1155 7806 923 | 690  41.590) 539
Uformer 308 845 238 | 372 1363 287 | 3.66 1145 281 | 340 1596 267 | 270 1602 320 | 331 13.10 279
Uformer with GT-mean loss (ours) 312 729 230 | 369 1264 288 | 364 1231 277 | 338 1636 265 | 270 1658 319 | 33000 13.040)  2760)
LLformer 326 1504 245 375 2116 293 | 401 1708 294 | 332 1502 262 316 1232 243 350 16.13 268
LLformer with GT-mean loss (ours) 3.05 1106 236 | 3.65 1960 290 | 407 1645 297 | 333 1243 265 | 299 1042 233 | 3410 13990)  2.640)

Unpaired Datasets. Table 4 presents the model performance across five unpaired dataset. Com-
pared with the baseline performance, using GT-mean loss demonstrates superior or comparable
results in most cases in terms of the three non-reference evaluation metrics. The findings on these
unpaired datasets empirically highlight the generalization capability of GT-mean loss, as using this
loss still yields performance improvements when tested on unseen images. For visual comparison,
we randomly selected two images for each baseline, which can be found in Appendix E.
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Figure 4: The effect of different o on model performance.

4.3 EFFECT OF THE PARAMETER o

To investigate the influence of o, we conducted experiments on LOLv1 using RetinexFormer (Cai
et al., 2023) trained with GT-mean L, loss under different o values. We selected 10 different o
values, running each setting three times for consistency. Notably, 0 = 0 represents a special case
where the GT-mean L, loss degrades to the original L; loss. For every 1,000 (1K) iterations in the
150K iterations, we calculated mean and variance of the normal PSNR and GT-mean PSNR values,
shown in Figure 4 for demonstrating the trend during training. In the early stages (as can be seen
in Figure 4 (a) and (c)), the curve tendencies under different o settings are similar. Considering the
curve with o = 0 closely resembles the original L; loss, we can empirically verify that the GT-
mean loss at the early stage behaves like the original L, loss. In contrast, as shown in the zoomed-in
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views of the last 30K iterations (Figure 4 (b) and (d)), we observe that all settings become stable,
and the settings with non-zero o consistently perform better than ¢ = 0. This observation shows
that the GT-mean loss diverges significantly from the original L; loss in the late training stage.
The second term in Eq.1 allows the GT-mean loss to continuously improve model performance. In
addition, the experiment shows that the choice of o value is open. As o measures the spread of the
random variable E[-] deviating from the observed average image brightness E[-] in our modeling, we
recommend using a small value, such as 0 = 0.1 for real world application.

4.4 FURTHER ANALYSIS ON THE GT-MEAN LOSS

In this experiment, we further investigate the difference between the original loss and the GT-mean
loss. Specifically, we randomly selected a batch of low-light images (batchsize = 8) and their cor-
responding ground truth images. These images were enhanced using RetinexFormer to produce
enhanced outputs f(z). To simulate the varying brightness, we introduced a unified scaling factor
7 ranging from O to 3, simulating the progression of the enhanced images 7 - f(x) from dark to
bright. This experiment setting simulates how the loss value varies under different brightness levels,
facilitating us to investigate the loss curve with respect to the brightness variation only.

00 05 10 15 2.0 25 30 00 05 10 15 20 25 30 00 o5 10 15 20 25 30
Scaling Factor n Scaling Factor scaling Factor

(a) Ly loss curve (b) GT-mean L1 loss curves (c) Curves of the weight W

Figure 5: Loss curves and weight curves for analyzing the effectiveness of the GT-mean loss.

Based on the above experimental design, we present the curve of the original L; loss (Figure 5(a)),
and the curves of the GT-mean L, loss under different o values (Figure 5(b)). The difference be-
tween them is that the use of the GT-mean loss clearly produces basins around = 1. In another
word, the GT-mean loss produces small-gradient region with regard to brightness around n = 1,
of which the range is controlled by o. From an optimization perspective, since the gradients with
respect to brightness become smaller, the optimization along the direction of brightness adjustment
is in turn slowed down. Based on this characteristic, in real-world model training, the GT-mean

L loss enables LLIE models to focus on other important degeneration factors, when p(E[y]) and

q(E[f(x)])] become closer. In contrast, the original Ly loss is less capable of decoupling the opti-
mization with respect to brightness and other visual quality factors.

Additionally, Figure 5(c) presents the weight curves that correspond to Figure 5(b), demonstrating
how the GT-mean L, loss behaves with regard to weight variation. As 7 approaches 1, the weight
W rapidly decreases, indicating that the second term in Eq.1 begins to dominate the loss function,
confirming the mechanism of our loss. Notably, as ¢ increases, W starts to drop at smaller values of
71, meaning that the second term in Eq.1 takes over earlier in the optimization process. This behavior

aligns with the design of o, which controls the spread of E[.].

5 CONCLUSION

In this paper, we propose the GT-mean loss to advance research on supervised low-light image en-
hancement (LLIE) methods. The GT-mean loss enables the model training process to circumvent
the misleading issue caused by brightness mismatch, thereby comprehensively addressing the var-
ious degeneration factors in low-light images. Due to its simple construction, the GT-mean loss
can be easily adopted by existing supervised LLIE methods, imposing minimal additional computa-
tional overhead during training. Experiments across various supervised LLIE methods consistently
demonstrate the effectiveness of the proposed loss. While the estimation of the weight 1 remains



Under review as a conference paper at ICLR 2025

an open problem, we plan to explore various IV -estimation strategies to potentially unlock even
greater performance gains in LLIE models.

Additionally, we encourage the LLIE research community to adopt GT-mean metrics as a comple-
ment to traditional evaluation metrics. By incorporating traditional metrics alongside their GT-mean
extensions, researchers can gain a comprehensive perspective on assessing the visual quality, thereby
facilitating the development of more effective LLIE techniques.
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A PROOFS

Lemma 1. Let p(z) = N(p1,01) and q(z) = N(p2,02). According to the definition of KL
divergence, we have:

Dii(p.q) = E, (log {jgf;";) = [pe)togateyde + [ ple) ogp(e) da
= log% + 215 (o7 + (11 — p2)?) — %

Proof. The KL divergence expression for two normal distributions can be written as:

Drcr(p,q) = /p(x) .1Og@exp ((m—uz)Q 3 (37—/;1)2) d
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We expand (X — p2)? as follows:
(X = p2)® = (X = pn + p1 — p2)? = (X — 1) +2(X — 1) (1 — po) + (11 — pio)?
Taking the expectation under p, we get:
Ep [(X = 12)?] = Ep [(X = p11)?] +2(p1 — p12) By [X — pua] + (111 — pi2)?
Since E,, [X — u1] = 0, this simplifies to:
B, (X = p2)®] =By [(X — 1)?] + (1 — p2)? = 0 + (11 — p2)”

Now substituting this back into Eq. 6:

1
Dict(p.g) =log 7% + 5 5 (ot (- m2)?) — 5 ™
o3 2
This concludes the proof. O
Lemma 2. Let p(x) = N (u1,01) and g(z) = N (u2, 02). According Eq.5, we have:
L[ om  of+(u—pm)® 1] 11 om 03+ (p2—pm)® 1
W= 2 log Zm 4 it =)™ L Ly 0w o e )™ L g
st 22, 2] Ta 8, T 22, 2 ®
where i, = 172 o2 = 7"%2'”5.
We proof Eq.8 can be written as
L(p —p2)? 1, (of+0)
Vel W V| , 9
4 o2 +o02 toos 20109 2

where Eq.9 is also the closed form of the Bhattacharyya distance after two one-dimensional Gaus-
sian distributions (Kashyap, 2019).
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Proof. We can extend the first term in Eq.8 as:

1 logg—m—&—of—’_(ul_ﬂm)?—l-zlloga—m 1 ot + (1 — pim)?
21 7 o1 202, ]2 o1 2 202,
Similarly, the second term can be extended as:
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Combine this two term, we have:
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Due to pt,, = % o2 = U%JQFUS, Eq.12 can be written as:
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This concludes the proof.
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B GT-MEAN METRIC FOR TRAINING GUIDANCE

In low-light image enhancement (LLIE) training, determining the optimal number of iterations is
challenging due to fluctuating performance and the risk of overfitting. Here, we demonstrate how
the GT-mean metric can assist in identifying the optimal stopping point.

We saved RetinexFormer results every 1,000 (1K) iterations and evaluated them using normal met-
rics (PSNR and SSIM) and GT-mean metrics. Figure (a) shows normal metrics, where the PSNR
curve flattens between 60k and 100k iterations, suggesting this as the optimal range. However, in
Figure (b) (GT-mean metrics), the PSNR continues improving beyond 100k iterations, indicating
further gains.

The GT-mean metrics provide consistent results across both PSNR and SSIM, unlike normal met-
rics, which show inconsistencies. This inconsistency in normal metrics could lead to suboptimal
decisions regarding when to stop training. Thus, the GT-mean metric offers a clearer view of model
improvement, helping select better training parameters and preventing premature termination due to
concerns about overfitting.
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— Retinexformer with GT-mean loss (Normal)

— Retinexformer (GT-mean)
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Figure 6: Metric curves during the training process. We evaluated the Normal metric and GT-mean
metric every 1K iterations (out of a total of 150K iterations), with metrics including SSIM and
PSNR.
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C EXPERIMENTAL DETAILS

In this section, we present the experimental setup for each method. Our aim is to ensure consistency
with the official settings for each baseline model while introducing the GT-mean loss to demonstrate
its effectiveness. To ensure fair comparisons, both the baseline models and the ones using GT-mean
loss were trained under identical hardware and software environments, minimizing the effects of
randomness.

Uformer. Both the baseline and the GT-mean loss variant were trained following the experimental
setup for motion deblurring in (Wang et al., 2022b), selected Uformer-T as the backbone model.
The Charbonnier loss used in the baseline was extended to GT-mean loss for the variant.

MIRNet. Both the baseline and the GT-mean loss variant were trained according to the settings
used for the denoising task in (Zamir et al., 2020). In the GT-mean loss variant, the Charbonnier
loss was replaced with the GT-mean loss.

RetinexFormer. For both the baseline and the GT-mean loss variant, we followed the training
settings for LOL datasets in (Cai et al., 2023). The L; loss used in the baseline was extended to
GT-mean loss in the variant.

Restormer. The baseline and the GT-mean loss variant were both trained following the motion
deblurring settings described in (Zamir et al., 2022). The L, loss in the baseline was extended to
GT-mean loss in the variant.

LLFormer. Both the baseline and the GT-mean loss variant were trained according to the settings
for the LOLv1 dataset described in (Wang et al., 2023b). The Smooth L; loss used in the baseline
was extended to GT-mean loss for the variant.

SNR-Aware. The baseline and the GT-mean loss variant were both trained using the settings for for
LOL datasets outlined in (Xu et al., 2022). The Charbonnier loss and perceptual loss used in the
baseline were extended to GT-mean loss in the variant.

CID-Net. Both the baseline and the GT-mean loss variant were trained using the LOLV1 settings
described in (Yan et al., 2024). In the GT-mean loss variant, the Charbonnier loss, edge loss, and
perceptual loss were extended to GT-mean loss.

In summary, for each method, the original loss functions were extended to GT-mean loss, and all
models were trained using consistent settings to ensure a fair comparison.
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We provide additional metrics to demonstrate the effectiveness of GT-mean loss. We have added Q-
Align(Wu et al., 2024) for metric evaluation across all datasets, which includes two metrics: Image
Quality Assessment (IQA) and Image Aesthetic Assessment (IAA), with a range of [0, 5], where
higher values are better. We write it as IQA/IAA.

Additionally, for the paired datasets (as shown in Table.5), we supplement the normal Lpips(Zhang
et al., 2018) and the GT-mean Lpips, where lower values are better. For the unpaired datasets (as
shown in Table.6, we supplement MUSIQ(Ke et al., 2021), where higher values are better. Our
approach achieves consistent improvement across all metrics.

Table 5: Lpips and Q-Align for on the Paired Datasets. For Lpips, |(1) denotes the improve-
ment(reduction) of performance. For Q-Align, 1(/) denotes the improvement(reduction) of per-
formance.

Method LOLv1 LOLv2-real LOLv2-synthetic

Normal Lpips] GT-mean Lpips]  IQA/TAAT | Normal Lpips) GT-mean Lpips)  IQA/TAAT | Normal Lpips| GT-mean Lpips]  IQA/IAAT
RetinexFormer 0.141 0.134 3.317/1.959 0.163 0.152 3.478/2.009 0.064 0.057 3.148/2.114
RetinexFormer with GT-meanloss 0.138) 0.132] 3.331/1.971 1 0.143] 0.134] 3.778/2.048 0.063. 0.056. 3.191/2.144 1
MIRNet 0.222 0.216 2.917/1.745 0.313 0.303 2.598/1.520 0.122 0.114 2.956/2.145
MIRNet with GT-meanloss 0.196, 0.189. 3.039/1.758 1 0.214] 0.208]. 2.924/1.702 1 0.104] 0.094] 3.064/2.1871
LLFormer 0.183 0.178 3.027/1.800 0.248 0.236 2.714/1.590 0.07 0.064 3.102/2.099
LLFormer with GT-meanloss 0.138) 0.133] 3.373/1.9567 0.166. 0.156) 3.206/1.8841 0.058. 0.051] 3.197/2.1301
Restormer 0.128 0.122 3.567/2.032 0.162 0.147 3.478/1.987 0.045 0.039 3.350/2.187
Restormer with GT-meanloss 0.122) 0.117, 3.672/2.0547 0.149, 0.135) 3.554/2.0201 0.041. 0.036). 3.404/2.2181
Uformer 0.212 0.195 3.087/1.946 0.228 0.199 2.882/1.827 0.06 0.055 3.176/2.137
Uformer with GT-meanloss 0.168) 0.157, 3.419/2.049 1 0.180. 0.156/ 3.104/1.880 1 0.049. 0.045] 3.283/2.1771
SNR-Aware 0.164 0.158 3.330/1.893 0.169 0.161 3.354/1.879 0.064 0.058 3.275/2.209
SNR-Aware with GT-meanloss 0.158 0.153] 3.509/1.9137 0.164., 0.154] 3.468/1.889 1 0.057. 0.050]. 3.3261/2.207
CID-Net 0.086 0.079 4.087/2.157
CID-Net with GT-meanloss 0.081 0.075. 4.074./2.1617

Table 6: Musiq and Q-Align for Five unpaired datasets. 1(/) denotes the improvement(reduction) of
performance.

Method I DICM MEF LIME NPE WV AVG

MUSIQT IQA/TAAT | MUSIQT IQA/IAAT | MUSIQT IQA/IAAT | MUSIQT IQA/IAAT | MUSIQT IQA/IAAT | MUSIQT  IQA/IAAT
RetinexFormer 57398  3.800/2740 | 5617  3.111/2323 | 57262 3.111/2323 | 60.507 3.673/2.699 | 37.513 3471/2.154 | 53770  3.438/2.458
RetinexFormer with GT-meanloss | 57.247  3.805/2.773 | 56633  3.273/2.423 | 57374  3.273/2.423 | 60.682 3.706/2.719 | 37.654  3.517/2.166 | 53.9181 3.490/2.4981
MIRNet 52467  3.111/2337 | 47399 2.860/2.088 | 54.837 2.860/2.088 | 58.641 32852374 | 54566 2955/2.162 | 53.582  2.991/2.203
MIRNet with GT-meanloss 53188 3.295/2375 | 47.611  2.747/2.058 | 55776  2.747/2.058 | 58718  3.366/2.428 | 54.891  3.120/2.215 | 54.0371  3.069/2.2251
LLFormer 56.642  3379/2526 | 53335 2.836/2.102 | 55671 2836/2.102 | 59.824 34452551 | 60.885 3.067/1.955 | 57271  3.079/2.225
LLFormer with GT-meanloss 57.038 35212571 | 53.842  2.946/2.152 | 5583 2.946/2.152 | 60.044  3.580/2.605 | 60.858  3.137/1.997 | 57.5221  3.178/2.2681
Restormer 58525  3.885/2.800 | 56.528  3.267/2466 | 58461  3.267/2466 | 61.031 3.781/2735 | 37919 3.710/2264 | 54493  3.572/2.536
Restormer with GT-meanloss 58.604  3.913/2.821 | 56522 3.380/2.521 | 58124  3.380/2.521 | 60.971  3.8202.769 | 3829  3.712/2.255 | 545021  3.607/2.5591
Uformer 58084  3.832/2788 | 56.177 3.040/2343 | 57.698 3.040/2343 | 61.31  3.657/2716 | 36.235 3.557/2.249 | 53901  3.453/2.500
Uformer with GT-meanloss 58981 39102837 | 56641 3.118/2416 | 582  3.118/2416 | 61704 3.707/2.731 | 36.695 3.563/2.231 | 544441 3.505/2.5281
SNR-Aware 47025 29712144 | 48685 2646/1.967 | 49216 2646/1.967 | 46441 2938/2.131 | 23.186 2904/1.839 | 42911  2.798/2.005
SNR-Aware with GT-meanloss 4743 3.067/2.180 | 4878  2712/1.973 | 49.008 2712/1.973 | 46.602 2956/2.113 | 23.853  3.001/1.848 | 43.1357 2.861/2.0121
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(b) LLformer

H S

(g) Uformer

Figure 7: Visual comparison on LOLV1 test dataset. Each set of images is divided into two parts: (a)
shows the input image on top and the ground truth (GT) image below; (b)-(h) display the baseline
results on top and the corresponding GT-mean loss results below. Overall, the method using GT-
mean loss exhibits closer colors and less noise. Additionally, a zoomed-in region is provided for each
image to better compare the fine details between the baseline and GT-mean loss-enhanced versions.
The methods based on GT-mean loss consistently achieve more accurate colors from (b) to (h).
Furthermore, noise is significantly reduced in (b) and (d), and other methods exhibit comparable
quality compared to the baseline.
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(c) MIRNet

(d) Retinexformer

(f) Restormer

(g) Uformer

Figure 8: Visual comparison on LOLv2-real test dataset. Each set of images is divided into two
parts: (a) display the input image on top and the ground truth (GT) image below; (b)-(g) display the
baseline results on top and the corresponding GT-mean loss results below. Overall, the method using
GT-mean loss exhibits closer colors and less noise. Additionally, a zoomed-in region is provided
for each image to better compare the fine details between the baseline and GT-mean loss-enhanced
versions. The methods based on GT-mean loss achieve more accurate colors consistently from (b)
to (g). Moreover, noise is significantly reduce in (b), (d), (e), and (g), and other methods exhibit
comparable quality to the baseline.
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(e) SNR-aware (f) Restormer (g) Uformer

Figure 9: Visual comparison on LOLv2-Synthetic test dataset. Each set of images is divided into two
parts: (a) shows the input image on top and the ground truth (GT) image below; (b)-(g) display the
baseline results on top and the corresponding GT-mean loss results below. Additionally, a zoomed-in
region is provided for each image to better compare the fine details between the baseline and GT-
mean loss-enhanced versions. The methods based on GT-mean loss achieve more accurate colors,
except for (f), where the image quality is also comparable to the original.
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Imagel3

Imagel4 Ours

Figure 10: Visual comparison on five unpaired datasets. We selected two image in each baseline to
compare. GT-mean loss enhances dark details and color to a suitable interval, which is better than the
corresponding baseline. Specifically, the methods based on GT-mean loss achieve better exposure
control in images 2-3, 8, and 10-13, enhancing the details in the dark areas to an appropriate level,
while the baseline exhibits artifacts and color distortion due to overexposure in these images. In
images 4 (The road in the lower left corner), 9(the roof), and 14(the palette), methods based on GT-
mean loss provide more accurate colors. Additionally, methods based on GT-mean loss significantly
suppress artifacts in images 1 and 5-8.
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