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GT-MEAN LOSS: A SIMPLE YET EFFECTIVE SOLU-
TION FOR BRIGHTNESS MISMATCH IN LOW-LIGHT IM-
AGE ENHANCEMENT

Anonymous authors
Paper under double-blind review

(a) LOLv1 (b) LOLv2 real (c) LOLv2 synthetic

Figure 1: Performance across various supervised LLIE models trained by their original loss func-
tions and our GT-mean loss functions. The performance is consistently improved when the GT-mean
loss functions are adopted. Notably, this improvement is easily attainable, as the use of GT-mean
loss functions is flexible and brings minimal additional computational costs during training.

ABSTRACT

Low-light image enhancement (LLIE) aims to improve the visual quality of im-
ages captured under poor lighting conditions. In supervised LLIE tasks, there
exists a significant yet often overlooked inconsistency between the overall bright-
ness of an enhanced image and its ground truth counterpart, referred to as bright-
ness mismatch in this study. Brightness mismatch negatively impact supervised
LLIE models by misleading model training. However, this issue is largely ne-
glected in current research. In this context, we propose the GT-mean loss, a sim-
ple yet effective loss function directly modeling the mean values of images from
a probabilistic perspective. The GT-mean loss is flexible, as it extends existing
supervised LLIE loss functions into the GT-mean form with minimal additional
computational costs. Extensive experiments demonstrate that the incorporation of
the GT-mean loss results in consistent performance improvements across various
methods and datasets.

1 INTRODUCTION

Low-light image enhancement (LLIE) is a crucial task in computer vision, aiming to improve the
overall quality of images captured under poor lighting conditions (Li et al., 2022; Liu et al., 2021a).
The primary objective of training a supervised LLIE model, denoted as f(·), is to map a low-light
image x to an enhanced image f(x), subjecting to the constraint that f(x) should resemble the
ground truth (GT) image y as much as possible. Under this paradigm, a well-trained LLIE model
is expected to improve brightness while suppressing other degeneration factors commonly existed
in low-light images, such as noise (Lu & Jung, 2022; Wei et al., 2020; Moseley et al., 2021), color
distortion (Yan et al., 2024; Zhang et al., 2022), and others (Zhou et al., 2022; 2021).

In supervised LLIE tasks, the inconsistency between f(x) and y in terms of the overall brightness
widely exists. In this paper, we refer to this widespread yet overlooked phenomenon as brightness
mismatch. It can be simply represented as the inequality between the average brightness of f(x) and
y, i.e., E[f(x)] ̸= E[y]. We find that this phenomenon can lead to biases in computing loss values
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and evaluating visual quality, therefore negatively impacting the training phase and the evaluation
phase of LLIE research.

Impact on Evaluation. Tradi-
tional metrics like PSNR can be
biased by brightness mismatch.
In Figure 2, we provide a typi-
cal example that the two modi-
fied images with vastly different
visual quality still receive similar
PSNR values. The primary rea-
son for this inaccurate evaluation
is that brightness mismatch dom-
inates the PSNR values. This
example indicates that traditional
metrics, especially those directly
based on pixel values, can be less
comprehensive for evaluating vi-
sual quality at the presence of
brightness mismatch.

Which one is better?

Noisy image Scaled image (GT × 0.8)Original image (GT)

PSNR:18. 569
GT-mean PSNR:18.554

PSNR:18.149
GT-mean PSNR:∞

Figure 2: A comparison between the noisy image (obtained
via by removing some Fourier high-frequency components and
adding Gaussian noise) and the scaled image (the original im-
age’s brightness scaled by a factor of 0.8). Taking a zoomed-in
view, it is obvious that the scaled image exhibits significantly
better quality. However, the PSNR values of the two images are
comparable, posing challenges to this most commonly used met-
ric for evaluating LLIE’s performance. In the contrary, their GT-
mean PSNR values present huge difference, aligning with the
true condition. For the scaled image, GT-mean PSNR is com-
puted as PSNR( E[GT ]

E[GT×0.8]GT × 0.8, GT ), resulting in an in-
finite PSNR value (In practice, PSNR usually has a pre-defined
upper bound. In this figure, we strictly follow the mathametical
definition of PSNR for demonstration purposes).

Table 1: Loss values from the original losses and their GT-mean
versions from the modified images from Figure 2. The exper-
iment reveals an unintended behavior in the original loss func-
tions, where most of them assign lower loss values to the low-
quality image while assigning higher loss values to the high-
quality image. The GT-mean loss functions, in contrast, suc-
cessfully address this issue by correctly assigning lower loss val-
ues to the high-quality image and higher loss values to the low-
quality image. The lower value between the noisy image and
the scaled image is underlined.✗ indicating cases where the loss
incorrectly identifies the noisy image as having better quality,
and ✓ indicating cases where the model correctly identifies the
scaled image as the better one.

Loss type Loss Loss value
Noisy image Scaled image (×0.8)

Tradition loss

L1 loss 0.0912 ✗ 0.1175
L2 loss 0.0138 ✗ 0.0153
Perceptual loss 5.6388 0.1119 ✓
Smooth L1 loss 0.0069 ✗ 0.0076

GT-mean loss

GT-mean L1 loss 0.0915 0.0193 ✓
GT-mean L2 loss 0.0138 0.0025 ✓
GT-mean Perceptual loss 5.6466 0.0184 ✓
GT-mean Smooth L1 loss 0.0069 0.0012 ✓

Impact on Training. Brightness
mismatch poses a risk of mis-
leading model training. Table
1 illustrates that the low-quality
noisy image is more likely to re-
ceive smaller loss values com-
pared to the high-quality scaled
image when tradition loss func-
tions are employed. This exam-
ple demonstrates that brightness
mismatch can create an inac-
curate association between loss
value and visual quality during
training. Grounded in the loss
minimization paradigm, LLIE
models are optimized to produce
enhanced images with lower loss
values, even if their visual qual-
ity is not guaranteed. This incor-
rect association can negatively
impact model training, leading to
less satisfying results.

As for model evaluation, (Wang et al., 2022a; Zhou et al., 2023; Jinhui et al., 2023; Yan et al.,
2024) introduced GT-mean metrics to avoid the negative effects brought by brightness mismatch.
The new evaluation metrics extend the original ones by aligning the average brightness of E[y] and
E[f(x)] in advance. Specifically, the enhanced image is firstly rescaled as E[y]

E[f(x)]f(x) to ensure that
the evaluation is based on exactly the same average brightness. For example, the GT-mean PSNR
metric can be obtained through PSNR( E[y]

E[f(x)]f(x), y). From Figure 2, we can see that the GT-
mean PSNR of the scaled image approaches infinity, showing the ideal fidelity between the scaled
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image and GT after excluding brightness mismatch. Therefore, GT-mean metrics have the potential
of cooperating with the original metrics for a comprehensive performance evaluation.

The issue of model training under brightness mismatch has largely been ignored in existing super-
vised LLIE research, despite some indirect solutions that do not primarily address this problem.
For example, (Chen et al., 2018; Yang et al., 2021; Wu et al., 2022; Ma et al., 2023) designed
multiple sub-networks to decouple brightness from other factors and optimized them separately.
Nevertheless, the divide-and-conquer roadmap inevitably complicates the model design, as well as
introducing significant computational overhead.

Inspired by the GT-mean metrics, we propose a simple yet effective loss function, called GT-mean
loss, through explicitly modeling brightness mismatch in its construction. The loss dynamically bal-
ances its focus during training. For example, when f(x) and y are close, the loss function becomes
unaware of brightness mismatch, and drives the model to focus more on optimizing various imaging
factors except overall brightness. Therefore, the loss is able to eliminate the negative impact caused
by brightness mismatch during training, facilitating LLIE models to comprehensively improve vi-
sual quality in a more effective way. The use of this loss function is straightforward, as it directly
extends any existed loss function that requires the enhanced image f(x) and its GT counterpart as
inputs. The GT-mean loss is highlighted in the following aspects:

• Simplicity: The construction of the GT-mean loss is both theoretically and practically
straightforward. Its underlying mechanism is easy to understand, and its implementation is
uncomplicated.

• Flexibility: The GT-mean loss is highly flexible. For instance, the L1 loss can be directly
extended into the L1 GT-mean version. This character makes adopting the GT-mean loss a
universal choice for supervised LLIE models to upgrade their loss functions.

• Low Cost: Using the GT-mean loss introduces minimal overhead during training (approx-
imately doubling the original loss computation). It is negligible compared to the overall
model optimization process.

• Effectiveness: Extensive experiments have demonstrated that the GT-mean loss consis-
tently improves model performance across a wide range of supervised LLIE methods (as
shown in Figure 1).

2 BACKGROUND

2.1 SUPERVISED LLIE FRAMEWORK

In a supervised low-light image enhancement (LLIE) framework, the objective is to learn a mapping
function f that transforms a low-light image x into an enhanced image f(x) that closely approxi-
mates the ground truth y. This is typically achieved by minimizing a loss function that penalizes the
differences between f(x) and y, driving the model to produce outputs that have good visual quality
as in ground truth images. Various loss functions can be applied for this task. Commonly used loss
functions, such as the L1 loss, are primarily adopted to minimize pixel-wise differences between the
input image and the ground truth, ensuring the model generates accurate reconstructions.

2.2 LOSS FUNCTIONS FOR LLIE

Loss function is essential in LLIE tasks, as it directs model training. We categorize the loss functions
in LLIE into two groups based on their purposes.

Fidelity Losses. These losses are designed to ensure that the enhanced image f(x) closely resembles
the ground truth y. They operate across various image representations, including pixel space, color
space, frequency domain, and semantic space. For instance, the L1-like loss functions directly
ensure the pixel-level fidelity (Li et al., 2022; Liu et al., 2021a). Loss functions focused on color
representation often use color histogram-based metrics (Yan et al., 2024), while others preserve
fidelity at the frequency domain (Wang et al., 2023a; Huang et al., 2022). Additionally, some loss
functions aim to maintain fidelity at higher representation levels, such as the perceptual loss (Johnson
et al., 2016). Recently, some novel loss functions have emerged that subtly utilize fine-grained
semantic information (Liang et al., 2023; Wu et al., 2023). Among these, pixel-level loss functions
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are indispensable for image reconstruction. However, their effectiveness may be compromised by
brightness mismatch.

Prior-Based Losses. These losses integrate domain-specific prior knowledge into LLIE models,
aiming to maximize the use of available information. Typical examples are the Retinex-based meth-
ods(Zhang et al., 2019; Wei et al., 2018; Chen et al., 2018; Yang et al., 2021; Wu et al., 2022; Ma
et al., 2023; Fu et al., 2023a), which are founded on the Retinex theory that an image is composed
of illumination map and reflectance map. Specific loss functions are employed to penalize the lo-
cally smooth properties of illumination map and the lightness-insensitive properties of reflectance
map. These loss functions are closely linked to specific model architectures and their underlying
assumptions, limiting their generalizability. Furthermore, for unsupervised LLIE models that lack
GT images for training, prior-based loss functions are essential for guiding model optimization.
However, these loss functions can be less robust. For example, ZeroDCE (Li et al., 2021) builds an
exposure control loss function with a hard threshold, which may result in over-exposure.

To pursue comprehensive visual quality enhancement, LLIE models tend to incorporate multiple loss
functions. While this strategy can lead to improved results, it also increases the burden of model
design and hyperparameter tuning. More importantly, as the existing loss functions overlook the
brightness mismatch factor, the fundamental challenges brought by this factor remain unaddressed.

Our GT-mean loss is designed to directly address the issues caused by brightness mismatch. We
argue that the primary goal of LLIE is to improve visibility while simultaneously suppressing other
degenerated factors. Therefore, loss functions specifically designed for supervised LLIE should be
sensitive to brightness mismatch and as concise as possible. To this end, we introduce brightness
mismatch into the construction of GT-mean loss, and design a mechanism that dynamically balances
the importance of optimizing for brightness and other image quality factors during training.

𝑦

𝑓(𝑥)

𝑾 𝒊𝒔 𝒐𝒃𝒕𝒂𝒊𝒏𝒆𝒅 𝒕𝒉𝒓𝒐𝒖𝒈𝒉 𝑬𝒒. 𝟓

𝔼 𝑓 𝑥 ∗ 𝑞(β)

𝔼 𝑦 ∗ 𝑝(𝛼)

𝛼 ∼ 𝑁 1, 𝜎𝛼
2

𝛽 ∼ 𝑁(1, 𝜎𝛽
2)

𝑳𝑮𝑻 𝑓 𝑥 , y = 𝑾 ∗ 𝐿 𝑓 𝑥 , 𝑦 + 1 − 𝑾 ∗ 𝐿
𝔼 𝒚

𝔼 𝒇 𝒙
∗ 𝑓 𝑥 , 𝑦

𝑐𝑙𝑖𝑝

Figure 3: Illustration of the GT-mean loss construction. The average brightness values, E[y] and
E[f(x)], are modeled as random variables Ẽ[y] = αE[y] and Ẽ[f(x)] = βE[f(x)], where α ∼
N (1, σ2

α) and β ∼ N (1, σ2
β). The right side of the figure exemplifies the distributions p(Ẽ[y]) and

q(Ẽ[f(x)])] for both images. The GT-mean loss LGT combines the original loss L(f(x), y) with a
brightness-adjusted loss L

(
E[y]

E[f(x)]f(x), y
)

, weighted by W .

3 METHOD

In Section 3.1, we present the formulation of the GT-mean loss. In Section 3.2, we detail the crucial
component of this loss function. Section 3.3 summarizes the features of the proposed loss.
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3.1 GT-MEAN LOSS

In general, the GT-mean loss LGT (f(x), y) can be regarded as an extension of the existing loss
L(f(x), y) used for LLIE. To deal with the issues arising from brightness mismatch, the key
to constructing LGT (f(x), y) is matching the average brightness of f(x) and y. Furthermore,
LGT (f(x), y) is designed to retain the form and effectiveness of the original loss L(f(x), y). As
illustrated in Figure 3, LGT (f(x), y) is formulated as follows:

LGT (f(x), y) = W · L(f(x), y) + (1−W ) · L
(

E[y]
E[f(x)]

f(x), y

)
, (1)

where E[y]
E[f(x)] is a scaling factor for aligning the average brightness of f(x) and y. The weight

W ∈ [0, 1] balances the two terms in LGT . It is noted that the choice of L(·) is is arbitrary, provided
that it accepts f(x) and y as inputs.

The primary strength of the GT-mean loss lies in its ability to dynamically balance the model’s focus
during training. In early stages, when the difference between p(Ẽ[y]) and q(Ẽ[f(x)]) is significant,
W is expected to approach 1 to make the first term L(f(x), y) dominate the overall loss function.
This behavior ensures that the GT-mean loss resembles the original loss L(f(x), y), prioritizing
improvements in overall image quality. As the training progresses and p(Ẽ[y]) and q(Ẽ[f(x)])
becomes closer, W decreases to a smaller value. This trend shifts the emphasis of the overall loss
function toward the second term L

(
E[y]

E[f(x)]f(x), y
)

, ensuring f(x) and y are compared under the
condition of average brightness alignment. In this stage, GT mean loss mainly compares the image
differences at the same mean brightness to avoid the negative effect of brightness mismatch, thus
maintaining effective model training. From this mechanism, it is clear that W plays a crucial role,
which will be discussed in detail in the following subsection.

3.2 WEIGHT DESIGN

3.2.1 PROBABILISTIC MODELING ON AVERAGE BRIGHTNESS

Instead of modeling the average brightness E[·] as a fixed value, we represent it as a random variable,
motivated by two key considerations. First, probabilistic modeling aligns well with the characteris-
tics of human brightness perception. According to the Contrast Sensitivity Function (Robson, 1966;
Bühren, 2018), human vision is highly sensitive to local contrasts, such as edges, textures, and inten-
sity changes, but much less sensitive to a minor shift of E[·]. As long as local contrast remains intact,
such minor shifts are unlikely to affect the human perception on visual quality, especially when E[·]
is relatively high. Second, probabilistic modeling enhances the control of our loss function during
training. It allows us to estimate W using common metrics like the Kullback-Leibler divergence or
the Wasserstein distance. This facilitates a smooth weighting between the two terms in Eq. 1 with-
out causing abrupt changes. Consequently, the loss exhibits good continuity as parameters change
and has flat regions around its minima.

Based on these considerations, we regard E[·] as an observation from a random variable Ẽ[·] obeying
the Gaussian distribution. Specifically, Ẽ[y] can be represented as:

Ẽ[y] = αE[y], α ∼ N (1, σ2
α), (2)

where α determines the probability distribution type of Ẽ[y], and σ2
α defines its spread. Therefore,

we have p(Ẽ[y]) = N (µy, σ
2
y), with µy = E[y] and σy = σαE[y].

Similarly, E[f(x)] can be also seen as an observation from Ẽ[f(x)], represented as:

Ẽ[f(x)] = βE[f(x)], β ∼ N (1, σ2
β), (3)

where β determines the probability distribution type of Ẽ[f(x)], and σ2
β defines its spread. Similarly,

we have q(Ẽ[f(x)]) = N (µfx, σ
2
fx), with µfx = E[f(x)] and σfx = σβE[f(x)].

5
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3.2.2 ESTIMATION OF W

We measure the difference between p(Ẽ[y]) and q(Ẽ[f(x)]) to estimate W based on the Kullback-
Leibler (KL) divergence. Instead of calculating DKL(p(Ẽ[y])||q(Ẽ[f(x)])) directly, we build
an intermediate Gaussian distribution N (µm, σ2

m), and compute its distance to N (µy, σ
2
y) and

N (µfx, σ
2
fx), respectively. Based on this, the weight W can be estimated as:

W =
1

2
DKL(N (µy, σ

2
y)||N (µm, σ2

m)) +
1

2
DKL(N (µfx, σ

2
fx)||N (µm, σ2

m)), (4)

where µm =
µy+µfx

2 , σ2
m =

σ2
y+σ2

fx

2 . Given the Gaussian distribution, Eq. 4 has an analytic solution
(proof provided in Appendix A):

W =
1

2

[
log

σm

σy
+

σ2
y + (µy − µm)2

2σ2
m

− 1

2

]
+

1

2

[
log

σm

σfx
+

σ2
fx + (µfx − µm)2

2σ2
m

− 1

2

]
. (5)

Finally, a clipping operation is applied to W to restrict its value within [0, 1].

In supervised LLIE, the enhanced image f(x) should closely resemble the ground truth image y.
Consequently, we assume that the shape of p(Ẽ[y]) and q(Ẽ[f(x)]) are similar. Based on this as-
sumption, we equate σ2

α and σ2
β , setting them both to σ2. In our experiments, we empirically set

σ as 0.1 for all the comparisons. In Section 4.3, we delve deeper into the influence of σ on the
performance of LLIE.

3.3 DISCUSSION OF THE GT-MEAN LOSS

In application, flexibility is the primary advantage of the GT-mean loss, as it is independent of the
model architecture and only requires the enhanced image f(x) and the ground truth y as inputs.
Therefore, the GT-mean loss can be used in any supervised LLIE method by simply extending its
supervised loss function into the GT-mean version.

The GT-mean loss is also highly efficient. Compared to the original loss, it doubles the computation,
and W is estimated with an analytical solution. Despite there is some extra computation overhead,
the overall increase introduced by the GT-mean loss is negligible throughout the training process.

4 EXPERIMENT

4.1 DATASETS AND SETTINGS

Datasets. We conducted experiments on both paired and unpaired datasets to evaluate our loss. For
paired datasets, we used LOLv1 (Chen et al., 2018), LOLv2-real (Yang et al., 2021), and LOLv2-
syn (Yang et al., 2021). Specifically, the LOLv1 dataset includes 485 training images and 15 testing
images. The LOLv2-real dataset includes 689 training images and 100 testing images. The LOLv2-
synthetic dataset includes 900 training images and 100 testing images. For unpaired datasets, we
chose DICM (Lee et al., 2013), VV (Vonikakis et al., 2018), NPE (Wang et al., 2013), MEF (Ma
et al., 2015), and LIME (Guo et al., 2017) as the test sets.

Evaluation Metrics. For the paired datasets, we used the normal evaluation metrics PSNR (Peak
Signal-to-Noise Ratio) and SSIM (Structural Similarity Index) (Wang et al., 2004), along with GT-
mean PSNR and GT-mean SSIM, to assess the effectiveness of the methods based on GT-mean
loss.

For the unpaired datasets, we utilized three commonly used no-reference metrics, NIQE (Natu-
ral Image Quality Evaluator)(Mittal et al., 2013), BRISQUE (Blind/Referenceless Image Spatial
Quality Evaluator)(Mittal et al., 2012), and PI (Perceptual Index)(Blau et al., 2018), to evaluate the
performance.

Baselines. Seven supervised LLIE models were chosen as baselines. Their loss functions are shown
in Table 2:
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Table 2: Baselines and Their Loss Functions
Method Loss Function
Restormer (Zamir et al., 2022) L1 loss
RetinexFormer (Cai et al., 2023) L1 loss
LLFormer (Wang et al., 2023b) Smooth L1 loss (Girshick, 2015)
MIRNet (Zamir et al., 2020) Charbonnier loss (Barron, 2019)
Uformer (Wang et al., 2022b) Charbonnier loss
SNR-Aware (Xu et al., 2022) Charbonnier loss, perceptual loss (Johnson et al., 2016)
CID-Net (Yan et al., 2024) L1 loss, edge loss (Seif & Androutsos, 2018), perceptual loss

Implementation Details. To retrain the baselines equipped with GT-mean loss functions, we fol-
lowed the their official settings, which can be found in Appendix C.

Table 3: Comparison on the Paired Datasets. + denotes the improvement of performance. The bold
denotes the best among all the listed methods.

Methods
Complexity LOLv1 LOLv2-real LOLv2-synthetic

Normal GT-mean Normal GT-mean Normal GT-mean
Params/M FLOPs/G PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

RetinexNet (Chen et al., 2018) 0.84 587.47 16.774 0.419 18.915 0.427 16.097 0.401 18.323 0.447 17.137 0.762 19.099 0.774
RUAS (Liu et al., 2021b) 0.003 0.83 16.405 0.500 18.654 0.518 15.326 0.488 19.061 0.510 13.765 0.638 16.584 0.719
EnlightenGAN (Jiang et al., 2021) 114.35 61.01 17.480 0.651 20.003 0.691 18.640 0.675 21.434 0.675 16.572 0.774 19.493 0.825
3DLUT (Zeng et al., 2022) 0.59 0.075 14.350 0.445 21.350 0.585 17.590 0.721 20.190 0.745 18.040 0.800 22.173 0.854
ZeroDCE (Li et al., 2021) 0.075 4.83 14.861 0.559 21.880 0.640 16.059 0.580 19.771 0.671 17.712 0.815 21.463 0.848
Sparse (Yang et al., 2021) 2.33 53.26 - - - - 20.060 0.850 23.627 0.873 22.050 0.910 24.641 0.922
PairLIE (Fu et al., 2023b) 0.33 20.81 19.510 0.736 23.526 0.755 19.885 0.778 24.025 0.803 - - - -
Night Enhancment (Jin et al., 2022) - - 21.521 0.768 24.231 0.781 20.850 0.724 25.447 0.796 - - - -
CUE(Zheng et al., 2023) 0.25 157.32 21.680 0.774 24.700 0.794 22.562 0.803 27.626 0.832 - - - -
MTFE(Park et al., 2023) - - 22.861 0.689 24.710 0.705 - - - - - - - -
IAT(Cui et al., 2022) 0.09 5.28 23.382 0.808 25.275 0.815 23.499 0.824 27.248 0.836 - - - -
FourLLIE(Wang et al., 2023a) - - - - - - 22.347 0.847 27.353 0.872 24.644 0.920 27.605 0.931
Bread(Guo & Hu, 2022) - - 20.620 0.834 25.299 0.846 - - - - - - - -
LEDNet(Zhou et al., 2022) 7.07 35.92 20.627 0.823 25.470 0.846 19.938 0.827 27.814 0.870 23.709 0.914 27.367 0.928
NeRCo(Yang et al., 2023) 23.30 - 22.946 0.785 25.742 0.799 - - - - - - - -
FECNet(Huang et al., 2022) 0.15 - 23.443 0.821 25.885 0.836 - - - - - - - -
MAXIM(Tu et al., 2022) 14.1 216 23.435 0.864 27.555 0.877 - - - - - - - -

Uformer (Wang et al., 2022b)
5.29 12

18.218 0.771 22.325 0.810 14.941 0.760 22.148 0.831 24.693 0.932 27.438 0.941
Uformer with GT-mean loss (ours) 18.915(+0.697) 0.795 (+0.023) 22.854(+0.529) 0.830(+0.019) 16.103(+1.162) 0.792(+0.032) 23.989(+1.841) 0.858(+0.026) 25.319(+0.626) 0.940(+0.007) 28.683(+1.245) 0.948(+0.007)

MIRNet(Zamir et al., 2020)
31.76 785

21.512 0.788 24.968 0.800 21.648 0.810 26.712 0.827 22.059 0.894 25.274 0.908
MIRNet with GT-mean loss (ours) 21.780(+0.268) 0.804(+0.016) 25.596(+0.628) 0.818(+0.018) 22.050(+0.402) 0.830(+0.021) 26.769(+0.057) 0.846(+0.019) 22.576(+0.517) 0.906(+0.011) 26.215(+0.941) 0.918(+0.010)

RetinexFormer(Cai et al., 2023)
1.53 15.57

23.830 0.832 26.312 0.844 21.272 0.841 27.650 0.877 25.281 0.928 28.827 0.939
RetinexFormer with GT-mean loss (ours) 24.561(+0.731) 0.834(+0.003) 26.586(+0.274) 0.849(+0.005) 21.810(+0.538) 0.852(+0.011) 28.437(+0.787) 0.879(+0.002) 25.583(+0.299) 0.933(+0.005) 29.261(+0.434) 0.944(+0.005)

Restormer(Zamir et al., 2022)
26.13 144.25

22.718 0.830 26.375 0.848 20.235 0.841 28.159 0.880 26.288 0.944 30.570 0.955
Restormer with GT-mean loss (ours) 23.313(+0.595) 0.837(+0.007) 26.743(+0.368) 0.855(+0.007) 20.717(+0.482) 0.845(+0.004) 28.440(+0.281) 0.884(+0.004) 26.630(+0.342) 0.946(+0.002) 31.001(+0.431) 0.957(+0.002)

LLFormer(Wang et al., 2023b)
24.55 22.52

23.007 0.805 25.762 0.823 21.308 0.803 27.052 0.828 24.195 0.918 27.862 0.930
LLFormer with GT-mean loss (ours) 23.847(+0.840) 0.830(+0.025) 26.769(+1.007) 0.846(+0.023) 22.291(+0.983) 0.844(+0.041) 28.334(+1.282) 0.870(+0.420) 25.152(+0.957) 0.932(+0.014) 29.266(+1.404) 0.945(+0.015)

SNR-Aware(Xu et al., 2022)
4.01 26.35

23.005 0.824 26.373 0.843 21.103 0.839 26.971 0.866 24.173 0.924 27.756 0.937
SNR-Aware with GT-mean loss (ours) 23.992(+0.988) 0.836(+0.012) 26.942(+0.569) 0.853(+0.009) 21.350(+0.247) 0.844(+0.005) 27.740(+0.770) 0.875(+0.010) 24.301(+0.128) 0.933(+0.009) 28.525(+0.769) 0.945(+0.008)

CID-Net(Yan et al., 2024)
1.88 7.57

23.809 0.857 27.715 0.876 - - - - - - - -
CID-Net with GT-mean loss (ours) 25.122(+1.313) 0.865(+0.008) 28.108(+0.393) 0.878(+0.002) - - - - - - - -

4.2 QUANTITATIVE RESULTS

Paired Datasets. We present the performance of the GT-mean loss on the three paired datasets
in Table 3.1 We use two normal evaluation metrics, PSNR and SSIM, along with their GT-mean
counterparts (GT-mean PSNR and GT-mean SSIM).

Among the seven baseline models, it is evident that the GT-mean loss consistently improves per-
formance across all evaluation metrics, regardless of the type of the originally loss function. These
results validate the effectiveness and flexibility of our GT-mean loss. The visual comparisons of
paired datasets are provided in Appendix E. We note that using the GT-mean loss obviously does not
alter the computational efficiency (in terms of FLOPs and Params) during the inference stage. Fur-
thermore, considering the minimal additional computational overhead introduced during the training
stage, the advantages provided by the GT-mean loss are easily attainable for supervised LLIE meth-
ods.

In addition to evaluating the selected baselines using GT-mean loss, Table 3 presents the perfor-
mance of several previous LLIE methods. The objective is to demonstrate that GT-mean PSNR
and GT-mean SSIM can serve as valuable complementary evaluation metrics for a comprehensively
assessment of LLIE model performance. We can see that some methods, e.g., Bread and LEDNet,
exhibit less satisfying PSNR and SSIM performance but achieve good performance when evaluated
with GT-mean PSNR and GT-mean SSIM, showing the competitiveness of these methods. Since the
GT-mean metric ensures that both images are compared at the same brightness level, it reduces the
impact of brightness mismatch on the evaluation, placing greater emphasis on other visual quality
factors, such as noise reduction and color distortions. In this context, we recommend reporting both
GT-mean and normal metrics for a thorough performance evaluation, which will aid researchers in
conducting in-depth analyses of how their models address the low-light image degradation factors.

1‘ - ’ in Table 3 indicates that these methods do not report the results or the officially released code does not
work.
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Moreover, as shown in Appendix B, the GT-mean metrics can also be used to determine the optimal
stopping point during training, helping to prevent premature termination of the training process.

Table 4: Comparison on the Unpaired Datasets. −(+) denotes the improvement(reduction) of per-
formance. Note that all the models were trained on the LOLv2-synthetic dataset.

Method DICM MEF LIME NPE VV AVG
NIQE↓ BRISQUE↓ PI↓ NIQE↓ BRISQUE↓ PI↓ NIQE↓ BRISQUE↓ PI↓ NIQE↓ BRISQUE↓ PI↓ NIQE↓ BRISQUE↓ PI↓ NIQE↓ BRISQUE↓ PI↓

Restormer 3.22 9.11 2.41 3.66 16.81 2.97 3.66 15.07 2.91 3.47 18.31 2.68 3.29 22.98 2.57 3.46 16.46 2.70
Restormer with GT-mean loss (ours) 3.18 8.79 2.36 3.63 17.11 2.85 3.63 17.11 2.91 3.45 18.49 2.68 3.3 22.05 2.56 3.44 (-) 16.27(-) 2.67(-)

MIRNET 3.82 17.21 2.64 3.67 22.69 3.22 4.23 16.66 3.32 3.47 16.80 2.61 3.64 19.73 2.57 3.77 18.62 2.87
MIRNET with GT-mean loss (ours) 3.20 11.95 2.32 3.60 22.06 3.19 4.33 18.95 3.30 3.50 17.24 2.62 3.71 19.71 2.61 3.67(-) 17.98(-) 2.81(-)

Retinexformer 3.23 9.99 2.37 3.86 15.08 3.04 3.88 13.59 2.98 3.38 16.16 2.62 2.73 14.51 3.27 3.42 13.87 2.86
Retinexformer with GT-mean loss (ours) 3.21 10.17 2.37 3.82 15.37 3.08 3.84 13.78 2.85 3.37 16.72 2.63 2.77 15.67 3.24 3.40(-) 14.34(+) 2.83(-)

SNR 6.07 32.48 4.53 4.27 27.17 3.73 6.06 34.18 4.67 6.47 36.41 4.83 11.52 77.97 9.22 6.88 41.64 5.39
SNR with GT-mean loss (ours) 6.12 32.11 4.55 4.26 26.72 3.70 6.11 34.62 4.67 6.46 36.43 4.84 11.55 78.06 9.23 6.90(+) 41.59(-) 5.39

Uformer 3.08 8.45 2.38 3.72 13.63 2.87 3.66 11.45 2.81 3.40 15.96 2.67 2.70 16.02 3.20 3.31 13.10 2.79
Uformer with GT-mean loss (ours) 3.12 7.29 2.30 3.69 12.64 2.88 3.64 12.31 2.77 3.38 16.36 2.65 2.70 16.58 3.19 3.30(-) 13.04(-) 2.76(-)

LLformer 3.26 15.04 2.45 3.75 21.16 2.93 4.01 17.08 2.94 3.32 15.02 2.62 3.16 12.32 2.43 3.50 16.13 2.68
LLformer with GT-mean loss (ours) 3.05 11.06 2.36 3.65 19.60 2.90 4.07 16.45 2.97 3.33 12.43 2.65 2.99 10.42 2.33 3.41(-) 13.99(-) 2.64(-)

Unpaired Datasets. Table 4 presents the model performance across five unpaired dataset. Com-
pared with the baseline performance, using GT-mean loss demonstrates superior or comparable
results in most cases in terms of the three non-reference evaluation metrics. The findings on these
unpaired datasets empirically highlight the generalization capability of GT-mean loss, as using this
loss still yields performance improvements when tested on unseen images. For visual comparison,
we randomly selected two images for each baseline, which can be found in Appendix E.
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(a) Normal PSNR curves for 150K iterations

training iteration (×1000)
(b) Normal PSNR curves last 30K iterations
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training iteration (×1000)
(c) GT-mean PSNR curves for 150K iterations

training iteration (×1000)
(d) GT-mean PSNR curves for last 30K iterations

Figure 4: The effect of different σ on model performance.

4.3 EFFECT OF THE PARAMETER σ

To investigate the influence of σ, we conducted experiments on LOLv1 using RetinexFormer (Cai
et al., 2023) trained with GT-mean L1 loss under different σ values. We selected 10 different σ
values, running each setting three times for consistency. Notably, σ = 0 represents a special case
where the GT-mean L1 loss degrades to the original L1 loss. For every 1,000 (1K) iterations in the
150K iterations, we calculated mean and variance of the normal PSNR and GT-mean PSNR values,
shown in Figure 4 for demonstrating the trend during training. In the early stages (as can be seen
in Figure 4 (a) and (c)), the curve tendencies under different σ settings are similar. Considering the
curve with σ = 0 closely resembles the original L1 loss, we can empirically verify that the GT-
mean loss at the early stage behaves like the original L1 loss. In contrast, as shown in the zoomed-in
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views of the last 30K iterations (Figure 4 (b) and (d)), we observe that all settings become stable,
and the settings with non-zero σ consistently perform better than σ = 0. This observation shows
that the GT-mean loss diverges significantly from the original L1 loss in the late training stage.
The second term in Eq.1 allows the GT-mean loss to continuously improve model performance. In
addition, the experiment shows that the choice of σ value is open. As σ measures the spread of the
random variable Ẽ[·] deviating from the observed average image brightness E[·] in our modeling, we
recommend using a small value, such as σ = 0.1 for real world application.

4.4 FURTHER ANALYSIS ON THE GT-MEAN LOSS

In this experiment, we further investigate the difference between the original loss and the GT-mean
loss. Specifically, we randomly selected a batch of low-light images (batchsize = 8) and their cor-
responding ground truth images. These images were enhanced using RetinexFormer to produce
enhanced outputs f(x). To simulate the varying brightness, we introduced a unified scaling factor
η ranging from 0 to 3, simulating the progression of the enhanced images η · f(x) from dark to
bright. This experiment setting simulates how the loss value varies under different brightness levels,
facilitating us to investigate the loss curve with respect to the brightness variation only.

(a) L1 loss curve (b) GT-mean L1 loss curves (c) Curves of the weight W

Figure 5: Loss curves and weight curves for analyzing the effectiveness of the GT-mean loss.

Based on the above experimental design, we present the curve of the original L1 loss (Figure 5(a)),
and the curves of the GT-mean L1 loss under different σ values (Figure 5(b)). The difference be-
tween them is that the use of the GT-mean loss clearly produces basins around η = 1. In another
word, the GT-mean loss produces small-gradient region with regard to brightness around η = 1,
of which the range is controlled by σ. From an optimization perspective, since the gradients with
respect to brightness become smaller, the optimization along the direction of brightness adjustment
is in turn slowed down. Based on this characteristic, in real-world model training, the GT-mean
L1 loss enables LLIE models to focus on other important degeneration factors, when p(Ẽ[y]) and
q(Ẽ[f(x)])] become closer. In contrast, the original L1 loss is less capable of decoupling the opti-
mization with respect to brightness and other visual quality factors.

Additionally, Figure 5(c) presents the weight curves that correspond to Figure 5(b), demonstrating
how the GT-mean L1 loss behaves with regard to weight variation. As η approaches 1, the weight
W rapidly decreases, indicating that the second term in Eq.1 begins to dominate the loss function,
confirming the mechanism of our loss. Notably, as σ increases, W starts to drop at smaller values of
η, meaning that the second term in Eq.1 takes over earlier in the optimization process. This behavior
aligns with the design of σ, which controls the spread of Ẽ[·].

5 CONCLUSION

In this paper, we propose the GT-mean loss to advance research on supervised low-light image en-
hancement (LLIE) methods. The GT-mean loss enables the model training process to circumvent
the misleading issue caused by brightness mismatch, thereby comprehensively addressing the var-
ious degeneration factors in low-light images. Due to its simple construction, the GT-mean loss
can be easily adopted by existing supervised LLIE methods, imposing minimal additional computa-
tional overhead during training. Experiments across various supervised LLIE methods consistently
demonstrate the effectiveness of the proposed loss. While the estimation of the weight W remains
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an open problem, we plan to explore various W -estimation strategies to potentially unlock even
greater performance gains in LLIE models.

Additionally, we encourage the LLIE research community to adopt GT-mean metrics as a comple-
ment to traditional evaluation metrics. By incorporating traditional metrics alongside their GT-mean
extensions, researchers can gain a comprehensive perspective on assessing the visual quality, thereby
facilitating the development of more effective LLIE techniques.
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A PROOFS

Lemma 1. Let p(x) = N (µ1, σ1) and q(x) = N (µ2, σ2). According to the definition of KL
divergence, we have:

DKL(p, q) = Ep

(
log

p(x)

q(x)

)
= −

∫
p(x) log q(x) dx+

∫
p(x) log p(x) dx

= log
σ2

σ1
+

1

2σ2
2

(
σ2
1 + (µ1 − µ2)

2
)
− 1

2

Proof. The KL divergence expression for two normal distributions can be written as:

DKL(p, q) =

∫
p(x) · log σ2

σ1
exp

(
(x− µ2)

2

2σ2
2

− (x− µ1)
2

2σ2
1

)
dx

= Ep

[
log

σ2

σ1
+

1

2

(
(X − µ1)

2

σ2
1

− (X − µ2)
2

σ2
2

)]
= log

σ2

σ1
+

1

2σ2
2

Ep

[
(X − µ2)

2 − (X − µ1)
2
]

= log
σ2

σ1
+

1

2σ2
2

Ep[(X − µ2)
2]− 1

2σ2
1

Ep[(X − µ1)
2]

= log
σ2

σ1
+

1

2σ2
2

Ep[(X − µ2)
2]− 1

2
(6)

We expand (X − µ2)
2 as follows:

(X − µ2)
2 = (X − µ1 + µ1 − µ2)

2 = (X − µ1)
2 + 2(X − µ1)(µ1 − µ2) + (µ1 − µ2)

2

Taking the expectation under p, we get:

Ep

[
(X − µ2)

2
]
= Ep

[
(X − µ1)

2
]
+ 2(µ1 − µ2)Ep [X − µ1] + (µ1 − µ2)

2

Since Ep [X − µ1] = 0, this simplifies to:

Ep

[
(X − µ2)

2
]
= Ep

[
(X − µ1)

2
]
+ (µ1 − µ2)

2 = σ2
1 + (µ1 − µ2)

2

Now substituting this back into Eq. 6:

DKL(p, q) = log
σ2

σ1
+

1

2σ2
2

(
σ2
1 + (µ1 − µ2)

2
)
− 1

2
(7)

This concludes the proof.

Lemma 2. Let p(x) = N (µ1, σ1) and q(x) = N (µ2, σ2). According Eq.5, we have:

W =
1

2

[
log

σm

σ1
+

σ2
1 + (µ1 − µm)2

2σ2
m

− 1

2

]
+

1

2

[
log

σm

σ2
+

σ2
2 + (µ2 − µm)2

2σ2
m

− 1

2

]
. (8)

where µm = µ1+µ2

2 , σ2
m =

σ2
1+σ2

2

2 .

We proof Eq.8 can be written as

W =
1

4

(µ1 − µ2)
2

σ2
1 + σ2

2

+
1

2
log

(
σ2
1 + σ2

2

2σ1σ2

)
, (9)

where Eq.9 is also the closed form of the Bhattacharyya distance after two one-dimensional Gaus-
sian distributions (Kashyap, 2019).
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Proof. We can extend the first term in Eq.8 as:

1

2

[
log

σm

σ1
+

σ2
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2σ2
m

− 1

2
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=

1

2
log
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4
. (10)

Similarly, the second term can be extended as:

1
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2
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=
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2
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Combine this two term, we have:
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+
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Due to µm = µ1+µ2

2 , σ2
m =

σ2
1+σ2

2

2 , Eq.12 can be written as:
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This concludes the proof.
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B GT-MEAN METRIC FOR TRAINING GUIDANCE

In low-light image enhancement (LLIE) training, determining the optimal number of iterations is
challenging due to fluctuating performance and the risk of overfitting. Here, we demonstrate how
the GT-mean metric can assist in identifying the optimal stopping point.

We saved RetinexFormer results every 1,000 (1K) iterations and evaluated them using normal met-
rics (PSNR and SSIM) and GT-mean metrics. Figure (a) shows normal metrics, where the PSNR
curve flattens between 60k and 100k iterations, suggesting this as the optimal range. However, in
Figure (b) (GT-mean metrics), the PSNR continues improving beyond 100k iterations, indicating
further gains.

The GT-mean metrics provide consistent results across both PSNR and SSIM, unlike normal met-
rics, which show inconsistencies. This inconsistency in normal metrics could lead to suboptimal
decisions regarding when to stop training. Thus, the GT-mean metric offers a clearer view of model
improvement, helping select better training parameters and preventing premature termination due to
concerns about overfitting.

SS
IM

P
SN

R

Best resultBest result

training iteration (×1000) training iteration (×1000)

(a) Normal metric curves

SS
IM

P
SN

R

Best result Best result

training iteration (×1000) training iteration (×1000)

(b) GT-mean metric curves

Figure 6: Metric curves during the training process. We evaluated the Normal metric and GT-mean
metric every 1K iterations (out of a total of 150K iterations), with metrics including SSIM and
PSNR.
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C EXPERIMENTAL DETAILS

In this section, we present the experimental setup for each method. Our aim is to ensure consistency
with the official settings for each baseline model while introducing the GT-mean loss to demonstrate
its effectiveness. To ensure fair comparisons, both the baseline models and the ones using GT-mean
loss were trained under identical hardware and software environments, minimizing the effects of
randomness.

Uformer. Both the baseline and the GT-mean loss variant were trained following the experimental
setup for motion deblurring in (Wang et al., 2022b), selected Uformer-T as the backbone model.
The Charbonnier loss used in the baseline was extended to GT-mean loss for the variant.

MIRNet. Both the baseline and the GT-mean loss variant were trained according to the settings
used for the denoising task in (Zamir et al., 2020). In the GT-mean loss variant, the Charbonnier
loss was replaced with the GT-mean loss.

RetinexFormer. For both the baseline and the GT-mean loss variant, we followed the training
settings for LOL datasets in (Cai et al., 2023). The L1 loss used in the baseline was extended to
GT-mean loss in the variant.

Restormer. The baseline and the GT-mean loss variant were both trained following the motion
deblurring settings described in (Zamir et al., 2022). The L1 loss in the baseline was extended to
GT-mean loss in the variant.

LLFormer. Both the baseline and the GT-mean loss variant were trained according to the settings
for the LOLv1 dataset described in (Wang et al., 2023b). The Smooth L1 loss used in the baseline
was extended to GT-mean loss for the variant.

SNR-Aware. The baseline and the GT-mean loss variant were both trained using the settings for for
LOL datasets outlined in (Xu et al., 2022). The Charbonnier loss and perceptual loss used in the
baseline were extended to GT-mean loss in the variant.

CID-Net. Both the baseline and the GT-mean loss variant were trained using the LOLv1 settings
described in (Yan et al., 2024). In the GT-mean loss variant, the Charbonnier loss, edge loss, and
perceptual loss were extended to GT-mean loss.

In summary, for each method, the original loss functions were extended to GT-mean loss, and all
models were trained using consistent settings to ensure a fair comparison.
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D MORE QUANTITATIVE RESULTS

We provide additional metrics to demonstrate the effectiveness of GT-mean loss. We have added Q-
Align(Wu et al., 2024) for metric evaluation across all datasets, which includes two metrics: Image
Quality Assessment (IQA) and Image Aesthetic Assessment (IAA), with a range of [0, 5], where
higher values are better. We write it as IQA/IAA.

Additionally, for the paired datasets (as shown in Table.5), we supplement the normal Lpips(Zhang
et al., 2018) and the GT-mean Lpips, where lower values are better. For the unpaired datasets (as
shown in Table.6, we supplement MUSIQ(Ke et al., 2021), where higher values are better. Our
approach achieves consistent improvement across all metrics.

Table 5: Lpips and Q-Align for on the Paired Datasets. For Lpips, ↓(↑) denotes the improve-
ment(reduction) of performance. For Q-Align, ↑(↓) denotes the improvement(reduction) of per-
formance.

Method
LOLv1 LOLv2-real LOLv2-synthetic

Normal Lpips↓ GT-mean Lpips↓ IQA/IAA↑ Normal Lpips↓ GT-mean Lpips↓ IQA/IAA↑ Normal Lpips↓ GT-mean Lpips↓ IQA/IAA↑
RetinexFormer
RetinexFormer with GT-meanloss

0.141 0.134 3.317/1.959 0.163 0.152 3.478/2.009 0.064 0.057 3.148/2.114
0.138↓ 0.132↓ 3.331/1.971 ↑ 0.143↓ 0.134↓ 3.778/2.048 ↑ 0.063↓ 0.056↓ 3.191/2.144 ↑

MIRNet
MIRNet with GT-meanloss

0.222 0.216 2.917/1.745 0.313 0.303 2.598/1.520 0.122 0.114 2.956/2.145
0.196↓ 0.189↓ 3.039/1.758 ↑ 0.214↓ 0.208↓ 2.924/1.702 ↑ 0.104↓ 0.094↓ 3.064/2.187↑

LLFormer
LLFormer with GT-meanloss

0.183 0.178 3.027/1.800 0.248 0.236 2.714/1.590 0.07 0.064 3.102/2.099
0.138↓ 0.133↓ 3.373/1.956↑ 0.166↓ 0.156↓ 3.206/1.884↑ 0.058↓ 0.051↓ 3.197/2.130↑

Restormer
Restormer with GT-meanloss

0.128 0.122 3.567/2.032 0.162 0.147 3.478/1.987 0.045 0.039 3.350/2.187
0.122↓ 0.117↓ 3.672/2.054↑ 0.149↓ 0.135↓ 3.554/2.020↑ 0.041↓ 0.036↓ 3.404/2.218↑

Uformer
Uformer with GT-meanloss

0.212 0.195 3.087/1.946 0.228 0.199 2.882/1.827 0.06 0.055 3.176/2.137
0.168↓ 0.157↓ 3.419/2.049 ↑ 0.180↓ 0.156↓ 3.104/1.880 ↑ 0.049↓ 0.045↓ 3.283/2.177↑

SNR-Aware
SNR-Aware with GT-meanloss

0.164 0.158 3.330/1.893 0.169 0.161 3.354/1.879 0.064 0.058 3.275/2.209
0.158↓ 0.153↓ 3.509/1.913↑ 0.164↓ 0.154↓ 3.468/1.889 ↑ 0.057↓ 0.050↓ 3.326↑/2.207 ↓

CID-Net
CID-Net with GT-meanloss

0.086 0.079 4.087/2.157
0.081↓ 0.075↓ 4.074↓/2.161↑

Table 6: Musiq and Q-Align for Five unpaired datasets. ↑(↓) denotes the improvement(reduction) of
performance.

Method
DICM MEF LIME NPE VV AVG

MUSIQ ↑ IQA/IAA↑ MUSIQ↑ IQA/IAA↑ MUSIQ↑ IQA/IAA↑ MUSIQ↑ IQA/IAA↑ MUSIQ↑ IQA/IAA↑ MUSIQ↑ IQA/IAA↑
RetinexFormer
RetinexFormer with GT-meanloss

57.398 3.800/2.740 56.17 3.111/2.323 57.262 3.111/2.323 60.507 3.673/2.699 37.513 3.471/2.154 53.770 3.438/2.458
57.247 3.805/2.773 56.633 3.273/2.423 57.374 3.273/2.423 60.682 3.706/2.719 37.654 3.517/2.166 53.918↑ 3.490/2.498↑

MIRNet
MIRNet with GT-meanloss

52.467 3.111/2.337 47.399 2.860/2.088 54.837 2.860/2.088 58.641 3.285/2.374 54.566 2.955/2.162 53.582 2.991/2.203
53.188 3.295/2.375 47.611 2.747/2.058 55.776 2.747/2.058 58.718 3.366/2.428 54.891 3.120/2.215 54.037↑ 3.069/2.225↑

LLFormer
LLFormer with GT-meanloss

56.642 3.379/2.526 53.335 2.836/2.102 55.671 2.836/2.102 59.824 3.445/2.551 60.885 3.067/1.955 57.271 3.079/2.225
57.038 3.521/2.571 53.842 2.946/2.152 55.83 2.946/2.152 60.044 3.580/2.605 60.858 3.137/1.997 57.522↑ 3.178/2.268↑

Restormer
Restormer with GT-meanloss

58.525 3.885/2.800 56.528 3.267/2.466 58.461 3.267/2.466 61.031 3.781/2.735 37.919 3.710/2.264 54.493 3.572/2.536
58.604 3.913/2.821 56.522 3.380/2.521 58.124 3.380/2.521 60.971 3.820/2.769 38.29 3.712/2.255 54.502↑ 3.607/2.559↑

Uformer
Uformer with GT-meanloss

58.084 3.832/2.788 56.177 3.040/2.343 57.698 3.040/2.343 61.31 3.657/2.716 36.235 3.557/2.249 53.901 3.453 /2.500
58.981 3.910/2.837 56.641 3.118/2.416 58.2 3.118/2.416 61.704 3.707/2.731 36.695 3.563/2.231 54.444↑ 3.505/2.528↑

SNR-Aware
SNR-Aware with GT-meanloss

47.025 2.971/2.144 48.685 2.646/1.967 49.216 2.646/1.967 46.441 2.938/2.131 23.186 2.904/1.839 42.911 2.798/2.005
47.43 3.067/2.180 48.78 2.712/1.973 49.008 2.712/1.973 46.602 2.956/2.113 23.853 3.001/1.848 43.135↑ 2.861/2.012↑
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E QUALITATIVE RESULTS

(a) Input and GT (b) LLformer (c) MIRNet

(d) Retinexformer (e) SNR (f) Restormer

(g) Uformer (h) CIDNet

Figure 7: Visual comparison on LOLv1 test dataset. Each set of images is divided into two parts: (a)
shows the input image on top and the ground truth (GT) image below; (b)-(h) display the baseline
results on top and the corresponding GT-mean loss results below. Overall, the method using GT-
mean loss exhibits closer colors and less noise. Additionally, a zoomed-in region is provided for each
image to better compare the fine details between the baseline and GT-mean loss-enhanced versions.
The methods based on GT-mean loss consistently achieve more accurate colors from (b) to (h).
Furthermore, noise is significantly reduced in (b) and (d), and other methods exhibit comparable
quality compared to the baseline.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

(a) Input and GT (b) LLformer (c) MIRNet

(d) Retinexformer (e) SNR (f) Restormer

(g) Uformer

Figure 8: Visual comparison on LOLv2-real test dataset. Each set of images is divided into two
parts: (a) display the input image on top and the ground truth (GT) image below; (b)-(g) display the
baseline results on top and the corresponding GT-mean loss results below. Overall, the method using
GT-mean loss exhibits closer colors and less noise. Additionally, a zoomed-in region is provided
for each image to better compare the fine details between the baseline and GT-mean loss-enhanced
versions. The methods based on GT-mean loss achieve more accurate colors consistently from (b)
to (g). Moreover, noise is significantly reduce in (b), (d), (e), and (g), and other methods exhibit
comparable quality to the baseline.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

(a) Input and GT (b) LLformer (c) MIRNet (d) Retinexformer

(e) SNR-aware (f) Restormer (g) Uformer

Figure 9: Visual comparison on LOLv2-Synthetic test dataset. Each set of images is divided into two
parts: (a) shows the input image on top and the ground truth (GT) image below; (b)-(g) display the
baseline results on top and the corresponding GT-mean loss results below. Additionally, a zoomed-in
region is provided for each image to better compare the fine details between the baseline and GT-
mean loss-enhanced versions. The methods based on GT-mean loss achieve more accurate colors,
except for (f), where the image quality is also comparable to the original.
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Image1 MIRNet Ours

Image2 MIRNet Ours

Image3 RetinexFormer Ours

Image4 RetinexFormer Ours

Image5 SNR-aware Ours

Image6 SNR-aware Ours
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Image7 Uformer Ours

Image8 Uformer Ours

Image9 Restormer Ours

Image10 Restormer Ours

Image11 LLformer Ours

Image12 LLformer Ours

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Image13 CIDNet Ours
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Figure 10: Visual comparison on five unpaired datasets. We selected two image in each baseline to
compare. GT-mean loss enhances dark details and color to a suitable interval, which is better than the
corresponding baseline. Specifically, the methods based on GT-mean loss achieve better exposure
control in images 2-3, 8, and 10-13, enhancing the details in the dark areas to an appropriate level,
while the baseline exhibits artifacts and color distortion due to overexposure in these images. In
images 4 (The road in the lower left corner), 9(the roof), and 14(the palette), methods based on GT-
mean loss provide more accurate colors. Additionally, methods based on GT-mean loss significantly
suppress artifacts in images 1 and 5-8.
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