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Abstract

Deploying reinforcement-learning (RL) controllers in robotics, industry, and health2

care is blocked by two coupled obstacles: reward misspecification (informal goals3

are hard to encode as a safe numeric signal) and data-hungry exploration. We tackle4

these issues with a two-stage framework that begins from a reward-free dataset of5

expert demonstrations and refines the policy online using preference-based human6

feedback. We give the first principled analysis of this two-stage paradigm. In our7

work, we formulate a unified algorithm that (i) clones demonstrations offline to8

obtain a safe warm-start policy and (ii) fine-tunes it online with preference-based9

RL, integrating the two signals through an uncertainty-weighted objective. Then,10

we derive regret bounds that shrink with the demonstration counts and reflect11

reduced uncertainty.12

1 Introduction13

Deploying reinforcement-learning (RL) [Sutton and Barto, 2018] systems on physical robots, indus-14

trial processes, and health-care problems remains notoriously difficult for two intertwined reasons.15

First, reward misspecification: even experienced domain experts often find it hard to translate informal16

task goals into a numeric signal that is simultaneously accurate and safe [Leike et al., 2018]. Second,17

exploration is both risky and data-hungry [Dulac-Arnold et al., 2019]: a policy that begins from18

scratch can damage hardware, or user trust, long before it gathers enough experience to learn anything19

useful. Recent applied works [Nair et al., 2020, Kostrikov et al., 2022, Tang et al., 2025, Park et al.,20

Tirinzoni et al., 2025] alleviate these issues by pre-training policies offline and fine-tuning them with21

online RL, but such methods assume direct access to (or observation of) the true reward, an assumption22

that rarely holds in practice. A more realistic strategy is to start with a reward-free corpus of expert23

behavior and allow the experts to refine that behavior online. The refinement signal can take several24

forms: explicit numeric rewards from an operator, pairwise comparisons of trajectories, or scalar25

ratings that train a reward model for RL from human feedback (RLHF). Variants of this idea already26

power modern dialogue agents such as ChatGPT, which first imitate curated demonstrations of desir-27

able responses and are then fine-tuned via RLHF on preference-derived rewards [Ouyang et al., 2022].28

Similar approaches reach near-expert scores in Atari and MuJoCo by combining brief expert play with29

thousands of comparison queries [Christiano et al., 2017], or recover usable rewards for real-robot30

manipulation by ranking tele-operated clips before on-hardware fine-tuning [Brown et al., 2020].31

This paper formalizes a principled two-stage procedure: offline demonstrations supply a safe warm32

start, while lightweight online feedback repairs the blind spots of the behavioral-cloning policy.33

Merging these two information sources yields both higher sample efficiency and stronger safety34

guarantees. Demonstrations guide the agent away from dangerous or hard-to-reach regions of state35
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space, so exploration seldom visits unsafe states. Theoretically, when the offline data already explain36

many state–action pairs, regret bounds shrink because the set of plausible optimal policies is greatly37

reduced. Pragmatically, preference queries remain easy to elicit even when explicit rewards are not,38

which lets non-technical stakeholders participate in the corrective loop. We conclude by detailing our39

contributions:40

• We develop a novel policy confidence set framework based on Hellinger distances between41

trajectory distributions. By separating the policy and transition components of the MLE42

objective, we extend Foster et al. [2024]’s framework to obtain distribution-level guarantees.43

This confidence set (Theorem 5) is geometrically interpretable as a Hellinger ball in trajectory44

distribution space while providing a corresponding constraint on allowable policies. Its45

radius decreases with the offline sample size, effectively leveraging demonstration data to46

restrict the policy search space. The approach generalizes to various policy and transition47

model classes through appropriate covering number arguments.48

• We adapt the online preference-based learning framework to leverage our offline estimation49

components, resulting in BRIDGE (Algorithm 1). By constraining policy comparisons to50

our confidence set and initializing with the MLE transition estimate, our analysis yields51

a regret bound (Theorem 9) that exhibits optimal
p
T dependence while demonstrating52

how offline data reduces online regret. The bound contains terms that explicitly diminish53

with increasing offline sample size n, and importantly, for any fixed horizon T , as n !54

1, the regret approaches zero. This theoretical result confirms that high-quality offline55

demonstrations can dramatically improve online learning efficiency, creating a principled56

bridge between imitation learning and preference-based fine-tuning.57

2 Related work58

Behaviour Cloning (BC). BC reformulates RL as supervised learning on expert (state, action) pairs,59

pioneered by road-following systems like ALVINN [Pomerleau, 1988]. Recent theoretical advances60

by Foster et al. [2024] establish horizon-free sample complexity bounds under deterministic policies61

and sparse rewards. Other algorithms such as DAgger [Ross et al., 2011] mitigate the covariate62

shift during deployment through iterative expert corrections, achieving no-regret guarantees [Ross63

et al., 2011]. Our method inherits BC’s simplicity but circumvents DAgger’s need for ongoing expert64

availability through preference-based refinement.65

Online RL with Offline datasets The paradigm of initializing policies through offline pre-training66

followed by online fine-tuning has gained considerable traction, mirroring successes in supervised67

learning. Early contributions in this domain include model-based algorithms tailored for hybrid68

settings, such as the work by Ross and Bagnell [2012]. After that, Xie et al. [2021] studied this hybrid69

RL setting and showing that offline data does not yield statistical improvements in tabular MDPs.70

This is different from our result, due to our expert’s data. Recently have been proposed empirical RL71

algorithms designed to be effective in both offline and online contexts, aiming to facilitate seamless72

offline-to-online fine-tuning [Rajeswaran et al., 2017, Hester et al., 2018, Nair et al., 2018, Vecerik73

et al., 2017, Lee et al., 2022, Ball et al., 2023]. On the more theoretical side Song et al. [2023],74

Wagenmaker and Pacchiano [2023], Tang et al. [2023] proposes statistical approaches to efficiently75

combine offline and online datasets. Although these methods are related to our work, they assume76

access to numeric rewards during fine-tuning. Our approach eliminates this, assuming access to an77

expert trajectories dataset and preference-based online feedback.78

Prior imitation-only approaches lack robustness outside the demonstration manifold; offline RL79

fine-tuning usually demands ground-truth rewards. Our work bridges these gaps by (i) proving that80

demonstration coverage plus a modest preference-query budget yields sharper high-probability regret81

bounds, and (ii) showing empirically that preference-guided exploration fixes blind spots with far82

fewer risky interactions than pure online RL.83

3 Problem formulation84

We address the challenge of learning optimal policies by combining information from two com-85

plementary sources: offline expert demonstrations and online preference feedback. In this hybrid86

learning paradigm, we first leverage a dataset D of trajectories collected from an expert policy to87

2



establish strong priors over the policy space. Then, we strategically utilize these priors to guide88

an online preference-based learning process, where an expert provides binary feedback comparing89

pairs of trajectories. This framework enables us to efficiently narrow the search space using offline90

demonstrations while refining our understanding of the expert’s underlying preference model through91

targeted online queries. We aim to quantify how knowledge from offline demonstrations translates to92

improved regret bounds in the online preference learning phase.93

Finite MDP Setting (Reward Free). Consider a finite-horizon Markov Decision Process (MDP)94

defined by the tuple M = (S,A, P,H), where S is a finite state space, A is a finite action space,95

H 2 N is the horizon length, and P = {Ph}h2[H] represents the time-dependent transition dynamics,96

with Ph(·|s, a) denoting the probability distribution over next states given state-action pair (s, a)97

at step h. A policy ⇡ = {⇡h}h2[H] consists of a collection of mappings ⇡h : S ! �(A), where98

�(A) is the probability simplex over actions. A trajectory ⌧ = {(sh, ah)}h2[H] is a sequence of99

state-action pairs generated by executing a policy ⇡ in the environment following dynamics P . We100

denote the space of all possible trajectories as T . We assume the trajectories have a continuous101

distribution with respect to counting or Lebesgue measure. For ease of notation, we will write P⇡

P
for102

the density function of the trajectory distribution induced by policy ⇡ and dynamics P .103

Offline demonstrations. We assume access to an offline dataset DH

n
= {⌧i}i2[n] consisting of n104

independent trajectories of length H , where each ⌧i ⇠ P⇡
⇤

P⇤ . This represents an imitation learn-105

ing framework where trajectories are generated by an expert policy ⇡⇤ interacting with the true106

environment dynamics P ⇤.107

Online preference queries. We formalize preference-based learning through feature embeddings108

and a probabilistic preference model [Christiano et al., 2017, Saha et al., 2023]. For each trajectory109

⌧ 2 T , we assume the existence of a trajectory embedding function � : T ! Rd that is known110

to the learner. This creates a natural complementarity between our learning phases: while offline111

demonstrations provide raw trajectories that directly capture expert behavior, the embedding function112

transforms these complex sequences into a structured representation space that facilitates preference113

learning. The trajectory embedding function � serves a critical purpose in our framework by enabling114

meaningful preference comparisons that would be difficult to perform on raw trajectories. This115

embedding approach provides a versatile framework that can accommodate various types of trajectory116

information. The flexibility of this representation allows our method to adapt to different domains and117

preference structures without changing the underlying learning algorithm. A policy ⇡ and dynamics118

P induce a distribution over trajectories, allowing us to define the policy embedding as the expected119

feature representation: �P (⇡) = E⌧⇠P⇡

P
[�(⌧)].120

In our work, we adopt two commonly used assumptions: bounded trajectory embeddings [Saha et al.,121

2023, Parker-Holder et al., 2020b] and bounded weight vectors [Filippi et al., 2010, Faury et al.,122

2020].123

Assumption 3.1 (Bounded features). For all ⌧ 2 T , the feature embeddings are bounded: k�(⌧)k2 124

B for some known constant B <1.125

Assumption 3.2 (Bounded weights). There exists an unknown weight vector w⇤
2 {v 2 Rd : kvk2 126

W} where the bound W <1 is known.127

Definition 1. The degree of non-linearity of the sigmoid � over the parameter space (denoting the128

first derivative of � by �0) is given by129

 := sup
x2BB(d),w2BS(d)

1

�0(w>x)
.

We model the preference feedback through a Bradley-Terry model. Given two trajectories ⌧1 and ⌧2,130

the binary preference outcome o1,2 ⇠ Ber(P ) is modeled as:131

P(⌧1 � ⌧2) = P(o1,2 = 1|⌧1, ⌧2) = �(h�(⌧1)� �(⌧2), w
⇤
i),

where �(x) = (1 + e�x)�1 is the logistic function. This formulation corresponds to a latent utility132

model where the inner product h�(⌧), w⇤
i represents the utility of trajectory ⌧ .133

From this model, we derive a score function for trajectories s(⌧) = h�(⌧), w⇤
i and extend it to134

policies as sP (⇡) = E⌧⇠P⇡

P⇤ [s(⌧)], where P ⇤ are the true transition dynamics. The preference135

between two policies ⇡1 and ⇡2 can now be written as follows: P(⇡1 � ⇡2) = �(h�P (⇡1) �136
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�P (⇡2), w⇤
i). This represents an expected preference over the distribution of trajectories, and137

captures the average preference when comparing behaviors induced by different policies.138

Offline estimation quality. For the offline phase, we measure the quality of estimation using139

distributional distance metrics in the space of trajectory distributions. Specifically, we will construct140

confidence sets in the form of Hellinger balls around our estimated density policy and dynamics.141

Notably, the Hellinger distance relates directly to the L2 norm between square-root densities, enabling142

a geometric interpretation of our confidence sets as Euclidean balls in the space of density embeddings,143

with computational advantages over alternative divergences. The precise construction of these144

confidence sets and their properties will be detailed in the Section 4.145

Online regret. We quantify our online learning phase’s performance through regret measurement. In146

each round t 2 [T ] of online learning, the agent selects policies ⇡1
t

and ⇡2
t
, receives binary preference147

feedback ot 2 {0, 1}, and accumulates regret measured against the optimal policy. We specifically148

use the pseudo-regret with respect to the policy class ⇧ as in Saha et al. [2023]:149

Rpsr
T

:= max
⇡2⇧

TX

t=1

[2�P
⇤
(⇡)� �P

⇤
(⇡1

t
)� �P

⇤
(⇡2

t
)]>w⇤

2
=

TX

t=1

2sP
⇤
(⇡⇤)� (sP

⇤
(⇡1

t
) + sP

⇤
(⇡2

t
))

2
,

where ⇡⇤ := argmax⇡2⇧ s(⇡).1 All our performance guarantees will be expressed in terms of the150

MDP parameters (state space size |S|, action space size |A|, horizon length H), offline data quantity151

n, online interaction rounds T , and confidence level � of the offline estimation - establishing a direct152

connection between offline data quality and online learning efficiency.153

Notation. We denote [H] = {1, . . . , H} for H 2 N. For probability distributions P,Q, H2(P,Q) is154

the squared Hellinger distance and TV(P,Q) the total variation distance. We denote Bd

2(R) := {x 2155

Rd : kxk2  R} for the Euclidean ball of radius R, and for any x 2 Rd, we define x⌦2 := xx> as156

the outer product.157

4 Bridging offline behavioral cloning and online preference-based feedback158

Our framework leverages offline expert demonstrations to improve the efficiency of online preference159

learning. The key insight is that we can use maximum likelihood estimation (MLE) on the offline160

dataset DH

n
to construct confidence sets in the policy space that likely contain the expert policy. This161

approach has two important features: First, by using Hellinger distance, we obtain confidence sets that162

correspond to Euclidean norm balls in the space of square-root densities, providing a geometrically163

intuitive interpretation. The radius of this ball shrinks at a rate of O(1/
p
n) with offline sample size,164

establishing a quantifiable relationship between offline data quantity and online learning efficiency.165

Second, we develop a technique to make this confidence set computable using only observed data,166

despite the theoretical formulation involving unknowns.167

When we restrict the online phase of BRIDGE to sample only policies from this confidence set, we168

significantly reduce the number of expert preference queries needed compared to algorithms without169

offline data access. This hybrid approach effectively trades offline demonstrations for reduced online170

expert interaction. Geometrically, our confidence set has a clear interpretation as a Hellinger ball in171

the space of trajectory distributions. However, when mapped to the policy space, it forms a more172

complex shape due to the nonlinearity of the inverse functional mapping from distribution metrics to173

policy parameters. Figure 1 explains the relation between these quantities. In the rest of this section,174

we formally explain how BRIDGE uses offline behavioral cloning data to warm-start an online175

preference-based learning process.176

4.1 Offline behavioral cloning and uncertainty estimators177

We apply maximum likelihood estimation (MLE) on the offline dataset DH

n
of expert trajectories to178

obtain separate estimators ⇡̂, P̂ for the optimal policy and transition model respectively. We then179

derive a confidence set around the estimated optimal policy ⇡̂, which constrains the policy search180

space in the second, online preference-based learning part of our method. Relevant corollaries and181

their proofs are presented in Appendix B. We start by making a standard realizability assumption.182

1Saha et al. [2023] showed that the standard preference-based regret formulation is equivalent up to constant
factors, when B,W  1.
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�
H2

⇣
P⇡

P̂
,P⇡̂

P̂

⌘
 R ⇧

Offline Estimation Online Preference Learning

R C
⇡⇤ ⇡⇤ ⇡1

⇡2

⇡1
� ⇡2

C

P(T ) = {P⇡

P
}
⇡2⇧,P2P C := Constraint Policy Set Expert Preferences

Figure 1: Framework overview: Offline estimation using dataset DH

n
constructs a confidence set as

a Hellinger ball in trajectory distribution space (left), which translates to a constraint set in policy
space containing ⇡⇤. This constraint set is then handed to the online preference learning phase (right),
where policies are sampled from within this set and presented to the expert for preference feedback.

Assumption 4.1 (Realizability). The optimal policy belongs to the policy class, ⇡⇤
2 ⇧, and the true183

transition function belongs to the transition class, P ⇤
2 P .184

Policy estimation via log-loss Behavior Cloning. We define the log-loss behavioral cloning estimator185

as:186

⇡̂ = argmax
⇡2⇧

X

i2[n]

X

h2[H]

log(⇡h(a
i

h
|si

h
)). (1)

We characterize the estimation error in terms of the Hellinger distance between trajectory distributions187

in Corollary 20 in Appendix B.3, using concentration results by [Foster et al., 2024], cf. Appendix B.1.188

Transition model estimation via Maximum Likelihood Estimation (MLE). Similarly, we define189

the MLE transition estimator as:190

P̂ = argmax
P2P

X

i2[n]

X

h2[H]

✓
log[P (si

h+1|s
i

h
, ai

h
)]

◆
. (2)

We describe the transition estimation quality in Corollary 24 in Appendix B.3.2, using maximum191

density likelihood concentration results by Foster et al. [2024].2192

Policy confidence set construction. We start by defining the concentrability coefficient, usely defined193

in offline RL literature [Chen and Jiang, 2019].194

Definition 2 (Concentrability Coefficient).

C(⇡̂,⇡⇤) = sup
t2[H]

sup
(s,a)2S⇥A:d⇡⇤,t

P⇤ (s,a)>0

d⇡̂,t
P⇤(s, a)

d⇡
⇤,t

P⇤ (s, a)
.

Intuitively, this coefficient measures how much the state-action visitation distribution of policy ⇡̂ can195

deviate from that of the expert policy ⇡⇤ under the true dynamics P ⇤. To bound this quantity, we196

make the following standard assumption [Levine et al., 2020, Chen and Jiang, 2019] about minimum197

state-action visitation:198

Assumption 4.2 (Minimum Visitation Probability). There exists a constant �min > 0 such that for199

all state-action-time tuples with non-zero probability under the optimal policy, that ensures that all200

relevant state-action pairs have a minimum positive probability under the expert policy.201

min
(s,a,t):d⇡⇤,t

P⇤ (s,a)>0
d⇡

⇤
,t

P⇤ (s, a) � �min. (3)

Given this assumption, we can derive a deterministic bound on the concentrability coefficient:202

2Note that while we present results specifically for tabular, stochastic and stationary transitions, our framework
readily adapts to other transition model classes by deriving appropriate covering number bounds using the
general results in Appendix B.
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Lemma 3 (Concentrability Coefficient Bound). Consider a policy estimator ⇡̂ satisfying203

H2(P⇡̂

P⇤ ,P⇡
⇤

P⇤)  R.

Then, under Assumption 4.2, the concentration coefficient is bounded by204

C(⇡̂,⇡⇤)  1 +
2
p
R

�min

.

This bound is key to our approach: it allows us to replace the unknown concentrability coefficient with205

a deterministic upper bound that depends only on our policy estimation error and the minimum vis-206

itation probability. We can now construct a practical confidence set as shown in the following lemma:207

Lemma 4 (Offline Policy Confidence Set). Assume the following events hold:208

E1 :=

⇢
H2(P⇡̂

P⇤ ,P⇡
⇤

P⇤)  R1(�1)

�
, such that Prob(E1) � 1� �1,

E2 :=

⇢
H2(P⇡

⇤

P̂
,P⇡

⇤

P⇤)  R2(�2)

�
, such that Prob(E2) � 1� �2.

Then, under Assumption 4.2, the policy set209

⇧offline
1��

:=

⇢
⇡ :

q
H2(P⇡

P̂
,P⇡̂

P̂
) 

p
R1 +

p
R2 ·

✓
1 +

s✓
1 +

2
p
R1

�min

◆
·H

◆�

is a confidence set of level 1� � = 1� (�1 + �2), i.e.,210

Prob(⇡⇤
2 ⇧offline

1��
) � 1� (�1 + �2).

The key insight is that the concentrability coefficient now appears as a deterministic term in the211

confidence set radius, allowing us to construct a practical confidence region using only quantities that212

can be computed from offline data, along with our domain knowledge about the minimum visitation213

probability. This confidence set will be central to our online learning phase, providing a principled214

way to constrain the policy search space. By combining our tabular setting results from Corollaries 20215

and 24 with the concentrability coefficient bound under Assumption 4.2, we can derive an explicit216

formula for the confidence set radius:217

Theorem 5 (Offline Confidence Set Radius). Under the setting described above and Assumption 4.2,218

with �1 = �2 = �/2 and defining219

↵ :=
p
4 · |S| · log(|A| · 2/�),

� :=
p
4 · |S|2 · |A| · log(nH · 2/�).

The policy set220

⇧offline
1��

:=

⇢
⇡ :

q
H2(P⇡

P̂
,P⇡̂

P̂
)  Radius

�
,

is a confidence set of level 1� � containing ⇡⇤ with probability at least 1� �, where221

Radius =
↵
p
n
+

�
p
n
·

 
1 +

s

H ·

✓
1 +

2↵

�min ·
p
n

◆!
.

This result provides the fundamental connection between offline data and online learning efficiency:222

the confidence set radius scales as O(1/
p
n) with the offline sample size n. This inverse square root223

dependence means that as we collect more offline expert demonstrations, the confidence set shrinks,224

constraining the online policy search space more tightly. Since our online regret bounds will directly225

depend on the size of this confidence set, this establishes a quantifiable trade-off between offline data226

collection and online preference query efficiency, a key contribution of our work.227
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4.2 Online preference-based learning228

In this section, we present how BRIDGE uses behavioral cloning estimation to guide online229

preference-based learning. Although we adapted the algorithm from Saha et al. [2023], our offline-to-230

online approach can be applied to other preference-based RL algorithms beyond BRIDGE.231

Our online preference learning follows Saha et al. [2023], who adapted generalized linear models232

from parametric bandits [Filippi et al., 2010, Faury et al., 2020] to the preference-based RL setting.233

As in Saha et al. [2023] we compute a regularized maximum likelihood estimator wMLE

t
to learn234

the preference weight vector w⇤ from pairwise comparisons. However, since wMLE

t
may not satisfy235

assumption 3.2, as in Saha et al. [2023] we define the data matrix Vt, which approximates the Fisher236

Information Matrix (the negative expected Hessian of the log-likelihood):237

Vt = �Id +
t�1X

`=1

(�(⌧1
`
)� �(⌧2

`
))⌦2, gt(w) =

t�1X

l=1

�
�
h�(⌧1

l
)� �(⌧2

l
),wi

� �
�(⌧1

l
)� �(⌧2

l
)
�
+ �w.

Then, the projected parameter, a constrained version of wMLE

t
, is given by238

wproj

t
= arg min

w2W
kg(w)� g(w)MLE

t
kVt

. (4)

This matrix Vt serves dual purposes: defining a confidence ellipsoid Ct(�) = {w : kw�wproj

t
kVt
239

2�t(�)} containing w⇤ with high probability, shaped by the likelihood curvature, and guiding240

exploration by quantifying uncertainty through k·kV�1
t

, prioritizing directions with sparse information.241

This approach can be further strengthened by relating the empirical norm k · kVt
to an expected242

norm k · kVt
, where Vt = �Id +

P
t�1
`=1(�

P̂t(⇡1
`
) � �P̂t(⇡2

`
))⌦2. It can be shown that k · kVt

is243

approximately equivalent to k · kVt
up to terms depending on the confidence bonus.244

Our key contribution is connecting the offline estimation with the online learning process through245

two mechanisms: (i) leveraging the offline data to make a first estimation of the transition model,246

and (ii) constructing an initial dataset of policies that are plausible with the expert data. We refer the247

reader to (Appendix C) for a detailed explanation of the likelihood-based mechanisms inspired by248

online binary bandits that underpin this approach.249

Transition Model Integration. We leverage our offline MLE transition estimate as the initialization250

for online learning. In the tabular setting, the MLE for transition probabilities from Eq. (2) is251

equivalent to a count-based estimator. As we collect online data, we update this estimator to combine252

both offline and online counts:253

P̂t(s
0
|s, a) =

Noff(s0, s, a) +Nt(s0, s, a)

Noff(s, a) +Nt(s, a)
,

where Noff(s0, s, a) counts transitions from state-action pair (s, a) to state s0 in the offline dataset,254

Noff(s, a) counts visits to (s, a), and Nt(s0, s, a) and Nt(s, a) are the corresponding counts from the255

first t rounds of online interaction. We define our adapted bonus incorporating both offline and online256

data as:257

B̂t(⇡, ⌘, �) = E⌧⇠P⇡

P̂t

2

4
X

h2[H]

min

 
2⌘, 4⌘

s
Uh

Noff(sh, ah) +Nt(sh, ah)

!3

5 ,

where Uh = H log(|S||A|)+log
⇣

6 log(Noff(sh,ah)+Nt(sh,ah))
�

⌘
. This adapts the bonus structure from258

Chatterji et al. [2021] to leverage our combined offline-online transition estimator.259

Remark 6. This integration approach, while effective, has potential for further improvement. First,260

it does not fully leverage the independence structure of the offline dataset, which could lead to tighter261

concentration bounds. Second, potential distribution shifts between offline and online phases are not262

explicitly modeled. These refinements represent promising directions for future research, though our263

primary focus remains on policy fine-tuning rather than optimal transition modeling.264

Feature Moment Bounds. We constrain policy selection to our offline-derived confidence set265

⇧offline
1��

(⇧). This enables us to bound the difference between expected feature representations of266

policies, which directly impacts the uncertainty quantification in our online learning phase.267
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Algorithm 1 BRIDGE: Bounded Regret with Imitation Data and Guided Exploration

1: Input: DH

n
, T

2: Estimate P̂ via MLE (Equation (2)) and compute confidence set ⇧offline
1��

(Theorem 5)
3: Initialize P̂1  P̂ , V1  �Id . Initialize model and data matrix
4: for t = 1, . . . , T do
5: Compute wproj

t
via constrained MLE (Equation (4))

6: Define policy set ⇧t based on ⇧offline
1��

and wproj
t

(Lemma 8)
7: (⇡1

t
,⇡2

t
) argmax⇡1,⇡22⇧t

{�t · k�P̂t(⇡1)� �P̂t(⇡2)k
V

�1
t

+ B̂t(⇡1, 2WB, �0) + B̂t(⇡2, 2WB, �0)}

8: Sample trajectories ⌧1
t
⇠ P⇡

1
t

P̂t

, ⌧2
t
⇠ P⇡

2
t

P̂t

and obtain preference ot = I(⌧1
t
� ⌧2

t
)

9: Update matrix: Vt+1  Vt + (�P̂t(⇡1
t
)� �P̂t(⇡2

t
))⌦2 and model P̂t+1

10: end for
11: return Best policy from ⇧T using final weight estimate wproj

T

Lemma 7 (Feature Moment Bounds). Let X be a random variable on measurable space (X , X̃ )268

and f : X ! Rd be a bounded function such that kf(x)k2  B < 1 for all x 2 X . For269

probability distributions P,Q that are absolutely continuous with respect to the Lebesgue measure, if270

H2(P,Q)  R, then271

kEX⇠P [f(X)]� EX⇠Q[f(X)]k2  2
p
2 ·B ·

p

R.

This lemma provides a crucial connection between the Hellinger distance of trajectory distributions272

and the distance between their expected feature representations (embeddings) by setting f = �. In273

our preference-based learning framework, we apply this result to bound the elements of the expected274

feature covariance matrix Vt. The trace tr(Vt) =
P

t0<t
k�(⇡t

0

1 )��(⇡
t
0

2 )k
2
2 represents total variance,275

which Lemma 7 controls via our confidence set construction.276

At the start of our online learning process (t = 0), for policies ⇡0
1 and ⇡0

2 that belong to our offline-277

derived confidence set ⇧offline
1��

from Theorem 5, the Hellinger distance between their induced trajectory278

distributions is bounded by the confidence set radius. Applying Lemma 7 with f = �, our trajectory279

embedding function, we obtain:280

k�P̂0(⇡0
1)� �P̂0(⇡0

2)k2  4
p
2 ·B · O

✓
1
p
n

◆
.

This result has profound implications for our regret analysis. By constraining policies to our281

confidence set, we effectively control the variance of feature differences, allowing us to replace the282

naive bound k�P̂t(⇡t

1) � �P̂t(⇡t

2)k2  2B with our tighter bound that decreases with the offline283

sample size n. As online learning progresses, the transition model P̂t improves through additional284

data collection. Importantly, this improvement in the transition model only strengthens our bound.285

The exact form of this improvement depends on the concentration properties of the online estimator286

and will be formalized in our final regret proof.287

Based on these bounds, we can now define a policy confidence set that contains the optimal policy ⇡⇤288

with high probability while accounting for both estimation uncertainty and exploration bonuses:289

Lemma 8 (Online Policy Confidence Set). Let ⇧t be the set of policies defined as290

⇧t :=
�
⇡ 2 ⇧offline

1��

�� 8⇡0
2 ⇧offline

1��
:

⌦
�P̂t(⇡)� �P̂t(⇡0), wproj

t

↵
+ �t · k�

P̂t(⇡)� �P̂t(⇡0)k
V

�1
t

+ B̂t(⇡, 2WB, �0) + B̂t(⇡
0, 2WB, �0) � 0

 
,

where �0 = �

8`3|A||S| . With probability at least 1� �, the optimal policy ⇡⇤ remains in ⇧t for all t 2291

[T ], where � has been scaled appropriately via union bound to account for the separate probabilistic292

events in the offline confidence set, transition model estimation, and parameter estimation components.293

The confidence radius multiplier �t is provided in the appendix.294

The complete algorithm is described in Algorithm 1.295
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4.3 Theoretical guarantees296

We can now state the following regret bound for BRIDGE. The proof is shown in Appendix D.297

Theorem 9 (Regret Bound with Offline-Enhanced Exploration). Let n be the number of offline298

demonstrations with minimum visitation probability �min > 0 for state-action pairs. With probability299

at least 1� �, the regret of BRIDGE is bounded by300

RT  2 · �T|{z}
Term 1

·

vuuut
T · log

✓
1 +

Õ

✓
B2 ·H · |S|2 ·min

�
T

n
, ln(T )

 
+

T ·|S|·B2·
p

|A|·H
p
n·�min

◆

d

◆

| {z }
Term 2

+ Õ

 
H|S|

s
|A|TH

n · �min
+

H5/2WB
p
T

p
n · �min

+H2WB ·

p

T ·
|S|

1/2
|A|

1/4

n1/4

!

| {z }
Term 3

,

where301

�T = Õ

 
(+BW )

p
d log(T ) +H2WB|S| ·

s

min

⇢
log(T ),

T

n · �min

�
+
p

HWB

!
,

and we have set ✏ = 1
T

to optimize the bound.302

From this regret bound we can observe that as n ! 1 with fixed �min > 0: (i) Term 1 ap-303

proaches Õ((+BW )
p
d log(T ) +

p
HWB); (ii) Term 2, the logarithm, approaches log(1) = 0;304

(iii) in Term 3, all components approach zero. The overall regret bound exhibits a
p
T de-305

pendence as in Saha et al. [2023]. However, this results in a regret bound that can be made306

arbitrarily small with sufficiently high-quality offline data, changing the complexity of regret307

analysis without having access to an offline expert dataset. This result helps in closing the308

gap between empirical results in applying RL in real-world scenarios and theoretical works.309

Figure 2: Performance comparison
of our new algorithm with offline
BC [Foster et al., 2024] and online
PbRL Saha et al. [2023]. The dot-
ted red and green lines are the ex-
pected return of the optimal and BC
policies respectively.

310

4.4 Numerical simulations311

We provide initial simulation results based on a practical imple-312

mentation of our algorithm. As baselines we used Foster et al.313

[2024]’s behavioral cloning (BC) and Saha et al. [2023]’s PbRL314

algorithms (for which no implementations are publicly avail-315

able). We used the StarMDP and Gridworld environments316

described in Pace et al. [2024]. Appendix F gives more details317

on our experiments. Figure 2 shows that with as little as 2318

offline, optimal trajectories, BRIDGE prunes the policy set and319

converges to the optimal policy faster than PbRL.320

5 Conclusions321

We present BRIDGE, a novel algorithm for fine-tuning BC322

policies using online PbRL. Our approach is motivated by the323

practical challenges of deploying RL in real-world settings,324

where reward specification is difficult and exploration is risky.325

By combining these two feedbacks, we construct confidence326

sets that constrain the policy space and guide safe, sample-327

efficient learning. We provide the first theoretical regret bound328

for this hybrid learning paradigm, showing that offline data329

reduces regret through a shrinking uncertainty radius. Our anal-330

ysis builds on recent advances in BC and PbRL, and crucially331

integrates them into a unified regret framework with provable332

benefits. Our work opens new directions for interactive learn-333

ing systems that can safely and efficiently improve with human334

input, even in the absence of explicit reward signals.335
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A Simplified Setup for Understanding Regret Analysis469

In this section, we propose an analysis of the regret under a simplified setting: The underlying470

dynamic P ⇤ is known. This idea is to help the reader understand how the construction of the471

confidence set over the policies from the offline learning estimation helps to reduce the number of472

policies to draw from in the online learning setting, without being overwhelmed by the estimation of473

the transitions. In this setting, it is then clear what part of our methods applies to the policies. The474

goal is to prepare the reader for the proof of our algorithm BRIDGE in Appendix D.475

Offline Estimation

Lemma 10: Offline Policy Confi-
dence Set
- Defines the set of policies ⇧Offline

1��

- Corollary 20 =) Contains true
policy ⇡⇤ w.p. 1� �

Online Estimation

Lemma 11: Optimal Policy Con-
tainment
- Ellipsoid CI Lemma 30
- Change of norm Lemma 31
- Conditioned on Lemma 10
=)

- Ensures ⇡⇤
2 ⇧t for all rounds t

- Combines offline confidence with
online estimation

Algorithm 2: BRIDGE (Known
Model)
- Starts with offline confidence set
- Computes policy set ⇧t at each
round
- Selects maximally informative pol-
icy pairs

Regret Analysis

Lemma 13: Feature Difference
Bound
- Leverage Distributional Dist.
Lemma 49

Theorem 14: Regret Analysis
- Final bound: Õ(� ·

q
log(1 + T ·|S|

n·d ))

Key Insight:
- Algorithm leverages offline data to reduce explo-
ration cost
- With sufficient offline data, regret becomes con-
stant
- Feature dimension d amplifies offline data value
- Bridges gap between offline imitation and online
preference learning

Figure 3: Proof Overview for BRIDGE Algorithm with Known Dynamics
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A.1 Setup for Known Dynamics476

A.1.1 Offline Estimation with Known Dynamics477

Assume we get the offline data DH

n
= {⌧i}i2[n]. The underlying object describing the trajectories478

is a Finite MDP Reward Free setting as in the main paper. Assume that the set of possible policies479

is stationary and deterministic. Then under the fact that the underlying dynamic is known, the480

confidence set from Theorem 5 reduces to the following, by direct application of Corollary 20, i.e.,481

setting the radius around the MLE estimate ⇡MLE from Equation (7).482

We formalize this into the following lemma:483

Lemma 10 (Offline Policy Confidence Set under Known Dynamics). Let ⇡̂ be the log-loss BC484

estimator defined in Equation (7).485

The policy set486

⇧Offline
1��

:=

⇢
⇡ : H(P⇡

P⇤ ,P⇡̂

P⇤) 

r
6 · |S| · log(|A| · ��1)

n

�

contains ⇡⇤ with probability at least 1� �.487

Proof. Note that by symmetry488

H(P⇡
⇤

P⇤ ,P⇡̂

P⇤) = H(P⇡̂

P⇤ ,P⇡
⇤

P⇤)

Then the result follows from Corollary 20.489

A.1.2 Online Learning with Known Dynamics490

Here we adapt our algorithm BRIDGE to the setting with known dynamics. This means we adapt491

the approach from Saha et al. [2023] under known dynamics to constrain the set of policies to choose492

from to our confidence set described in the previous section.493

First, since the transitions are known, we define for this section:494

�P
⇤
(⇡) := �(⇡) = E⌧⇠P⇡

P⇤ [�(⌧)]

We also define the expected data matrix V
P

⇤

t
under the true transition dynamics P ⇤ as follows (see495

Appendix C for an overview of results about data matrices):496

V
P

⇤

t
= �Id +

t�1X

`=1

�
�(⇡1

`
)� �(⇡2

`
)
��
�(⇡1

`
)� �(⇡2

`
)
�>

Then we define the set of policies to draw from as:497

⇧t :=
�
⇡ 2 ⇧Offline

1��

�� 8⇡0
2 ⇧Offline

1��
:

⌦
�(⇡)� �(⇡0),wproj

t

↵
+ �t · k�(⇡)� �(⇡0)k

(V
P⇤
t

)�1 � 0
 

where �t := 2�t(�) + ↵d,T (�) and ↵d,T (�) is defined as in Lemma 31.498

Lemma 11 (Optimal Policy Containment). Conditioned on Ew⇤ \ E
V

P⇤
T

\ Eoffline where:499

• Ew⇤ is the event defined in Lemma 30500

• E
V

P⇤
T

is the event defined in Lemma 31501

• Eoffline := {⇡⇤
2 ⇧Offline

1��
}502

then503

⇡⇤
2 ⇧t 8t 2 [T ]
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Proof. This follows directly from Lemma 2 in Saha et al. [2023]. We adapt the probability parameter504

� to account for the additional condition that ⇡⇤
2 ⇧Offline

1��
, which holds with probability at least 1� �505

according to Lemma 28.506

We now present the adapted version of BRIDGE for the known transition model:507

Algorithm 2 BRIDGE: Bounded Regret with Imitation Data and Guided Exploration (Known
Model)

1: Input: Offline dataset DH

n
, time horizon T , true dynamics P ⇤

2: Compute confidence set ⇧Offline
1��

using Lemma 10

3: Initialize V
P

⇤

1  �Id . Initialize data matrix
4: for t = 1, . . . , T do
5: Compute wproj

t
via constrained MLE (Equation (4))

6: Define policy set ⇧t based on ⇧Offline
1��

and wproj
t

7: (⇡1
t
,⇡2

t
) argmax⇡1,⇡22⇧t

{k�(⇡1)� �(⇡2)k
(V

P⇤
t

)�1}

8: Sample trajectories ⌧1
t
⇠ P⇡

1
t

P⇤ , ⌧2
t
⇠ P⇡

2
t

P⇤ and obtain preference ot = I(⌧1
t
� ⌧2

t
)

9: Update matrix: V
P

⇤

t+1  V
P

⇤

t
+ (�(⇡1

t
)� �(⇡2

t
))(�(⇡1

t
)� �(⇡2

t
))>

10: end for
11: return Best policy from ⇧T using final weight estimate wproj

T

A.2 Regret Analysis: BRIDGE (Known Model)508

We now present a regret analysis of the BRIDGE algorithm under known transition. We start by509

stating the following lemma:510

Lemma 12. The regret of BRIDGE under known dynamic is upper bounded as follow:511

RT  4 · (�T (�) + ↵T,d(�)) ·
X

t2[T ]
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t
)� �(⇡2

t
)k

(V
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)�1

Proof. For ease of notation we define �⇤,1� := �(⇡⇤) � �(⇡1). First we bound the instantenous512

regret513
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Lemma 31
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Then notice that choosing ⇡1
t
,⇡2

t
as argmax together with the fact that ⇡⇤

2 ⇧t Lemma 11 yield514
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t
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t
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Next using the fact that ⇡1
t
,⇡2

t
,⇡⇤
2 ⇧t we have the following constraints515
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t
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)�1 � 0 i 2 {1, 2}
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yielding516

2rt  (2�t(�) + ↵T,d(�))k�
1,2�k
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Hence517

RT =
X

t2[T ]

rt  2 · �T (�) + ↵T,d(�)) ·
X
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(V

P⇤
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The remaining step in our analysis is to bound the term:519

X

t2[T ]

k�(⇡1
t
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t
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����
(V
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)�1

A simple approach would be to use Assumption 3.2, which states that the feature map � is bounded520

in `2-norm by B. However, our offline confidence set construction in Lemma 10 provides a more521

powerful result: policies in our set have distributions that are close not only in Hellinger distance but522

also in the resulting feature expectations.523

This is precisely why we formulated our confidence set constraint using the square root of the squared524

Hellinger distance - it yields a bound on the L2 norm of distribution differences. Through Lemma 49,525

we can translate bounds on Hellinger distance into bounds on the difference of feature expectations526

in the `2-norm.527

We formalize this connection in the following lemma:528

Lemma 13 (Feature Difference Bound Under Offline Constraints - Corrected). For policies ⇡1
t
,⇡2

t
2529

⇧Offline
1��

selected by our algorithm at each round t 2 [T ], the sum of feature differences measured in530

the data matrix norm is bounded as:531
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where d is the feature dimension, B is the feature norm bound, |S| and |A| are the state and action532

space sizes, and n is the number of offline samples.533
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then notice the inequality535
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We have for the determinant:538
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Using linearity of trace:539
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Applying the corrected bound from Lemma 49:540
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Hence:542
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Since det(V0) = �d, the first logarithmic term cancels out:543

log


det(V

P
⇤

t+1)

det(V0)

�
= d · log

✓
1 +

192B2t|S| log(|A| · ��1)

n · d · �

◆

Therefore:544
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Taking the square root:545
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Theorem 14 (Regret Analysis for BRIDGE under Known Model). Let �  1/e and � � B


. Then,547

with probability at least 1� �, the expected regret of Algorithm 2 is bounded by:548
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In asymptotic notation, this becomes:549
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where the probability parameter � accounts for the events550

Ew⇤ ! Lemma 30

E
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! Lemma 31
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1��
} ! Lemma 10

Remark 15. This result demonstrates a significant improvement over Saha et al. [2023]’s bound551

of O
⇣⇣

W
p
B +WB

⌘
d log(TB/�)

p
T
⌘

. The key advantage lies in the term
q
log(1 + T |S|

n
),552

which approaches zero as n!1, potentially yielding constant regret.553

A.3 Practical Regret Analysis with Fixed Offline Data554

For a fixed offline dataset of size n, our regret bound scales with horizon T as:555
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where � = (W
p
B +WB)d log(TB/�). This bound reveals three distinct regimes:556

1. Small T Regime (T |S|⌧ n · d): Using log(1 + x) ⇡ x for small x:557
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2. Transition Regime (T |S| ⇡ n · d):558

RT = O(�) = O
⇣
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B +WB)d log(TB/�)
⌘

3. Large T Regime (T |S|� n · d):559

RT = O
⇣
� ·

p
log(T )

⌘

These regimes highlight two key insights: (1) with sufficient offline data (n = ⌦(T |S|
d

)), regret560

dramatically improves from O(
p
log(T )) to O(1) in the dependence on T ; and (2) feature dimension561

d amplifies the value of offline data, allowing the same regret reduction with
p
d times less data. This562

explains why high-dimensional problems may benefit more significantly from offline data.563

As n increases, regret transitions from logarithmic (O(log(T ))) to sublinear (O(
p

T/n)) and even-564

tually approaches O(1) when n� T |S|
d

. In the limiting case where n!1, exploration becomes565

unnecessary, and regret is bounded only by statistical error in the offline estimation.566
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B Offline estimation567

B.1 Maximum Likelihood for Density Estimation568

In this section, we present Maximum Likelihood Estimation (MLE) for density estimation that forms569

the foundation of our concentration results. While these results are presented more extensively in570

Foster et al. [2024], we include them here for completeness and readability.571

The analysis of MLE relies on standard concentration techniques following the well-established work572

of van de Geer [2000] and Zhang [2006], enhanced by new Freedman-type concentration inequalities573

developed in Foster et al. [2024] (Appendix B).574

The key proof strategy connects MLE analysis to information-theoretic measures via Rényi575

divergence of order 1/2. Specifically, the approach bounds expressions of the form �n ·576

log(Ez⇠g⇤ [e
1
2 log(g(z)/g⇤(z))]), which equals n

2 ·D1/2(gkg
⇤). This term is bounded using Freedman-577

type inequalities for adapted sequences, which provide high-probability bounds of the form578 P
T

0

t=1� log(Et�1[e�Xt ]) 
P

T
0

t=1 Xt + log(��1). When combined with union bounds over "-579

nets, this yields tight concentration results for the entire function class. The approach also leverages580

connections to Hellinger distance through the identity H2(g, g⇤) = 1�
R p

g(z)g⇤(z)dz, providing581

geometrically interpretable guarantees.582

To handle infinite classes, we introduce a tailored notion of covering number for log-loss:583

Definition 16 (Log-Covering Number). For a class G ⇢ �(X ), the class G0
⇢ X is an ✏�cover if584

for all g 2 G, there exists g0 2 G
0 such that 8x 2 X585

log(g(x)/g0(x))  ✏

The size of such cover is defined by Nlog(G, ✏).586

Consider the data Dn = {xi}i2[n] consisting of i.i.d copies of x ⇠ g⇤ where g⇤ 2 �(X ). We have a587

class G ✓ �(X ) that may or may not contain g⇤. The density MLE estimator is defined as588

ĝ = argmax
g2G

X

i2[n]

log(g(xi)) (5)

Lemma 17 (Maximum Likelihood Estimator Bound). The maximum likelihood estimator in Eq. Equa-589

tion (5) has that with probability at least 1� �,590

H2(ĝ, g⇤)  inf
">0

⇢
6 log(2Nlog(G, ")/��1)

n
+ 4"

�
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log(1 +D�2(g⇤kg))

In particular, if G is finite, the maximum likelihood estimator satisfies591

H2(ĝ, g⇤) 
6 log(2|G|/��1)

n
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g2G
log(1 +D�2(g⇤kg))

Note that the term infg2G log(1 +D�2(g⇤kg)) corresponds to misspecification error, and is zero if592

g⇤ 2 G.593

B.2 MLE Objective of Dataset of Independent Trajectories594

Given a data set of reward free trajectories DH

n
= {⌧i}i2[H] of n trajectories of length H where595

{⌧i} ⇠i.i.d ⌧ ⇠ P⇡
⇤

P⇤ . The distribution P⇡
⇤

P⇤ is assumed to be continuous w.r.t to Lebesque measure.596

It is characterized by the policy density ⇡ = {⇡i}i2[H] 2 ⇧ and the stationary transition density597

P = P where ⇧,P characterize the policy and transition density spaces. The log-likelihood of the598

set with for a policy ⇡ and a transition P reads:599
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P
}⇡2⇧,P2P for the dataset DH

n
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B.3 Concentration Bounds601

In this section we provide concentration bounds for the MLE estimators of the policies and the602

transition model, as well as for our notion of concentrability coefficient. The important takeaway603

is that the control of the error, i.e., the decay of these concentration bounds depends only on values604

known to the user, which will allow us to compute confidence policy sets based on these bounds.605

B.3.1 Policy estimation606

Define the log-loss behavioral cloning estimator for dataset DH

n
as described in B.2 as607

⇡̂ = argmax
⇡2⇧

X

i2[n]

X

h2[H]

log(⇡h(a
i

h
|si

h
)) (7)

which is from Equation (6) equivalent to performing maximum density estimation over the density608

class {P⇡

P⇤}⇡2⇧. Similar to definition 16 [Foster et al., 2024] define the following609

Definition 18 (Policy Covering Number). For a class ⇧ ⇢ {⇡h : S ! �(A)}, we say that610

⇧0
⇢ {⇡h : S ! �(A)} is an ✏�cover if for all ⇡ 2 ⇧ there exists ⇡0

2 ⇧0 such that611

log
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 ✏ 8(s, a, h) 2 S ⇥A⇥ [H]

We denote the size of the smallest such cover as Npol(⇧, ✏)612

We state the following theorem from [Foster et al., 2024, Appendix C]:613

Theorem 19 (Generalization bound for logloss-BC). The Logloss BC estimator Eq:7 satisfies with614

probability � 1� �615
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in particular, if ⇧ is finite616

H2(P⇡̂

P⇤ ,P⇡
⇤
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6 · log(2 · |⇧| · ��1)

n

Proof. See [Foster et al., 2024, Appendix C].617

Corollary 20 (Deterministic Stationary Tabular Policies). If ⇧ = ⇧D

S
i.e the set of deterministic618

tabular policies the log-loss BC estimator Eq 7 has that with probability at least 1� �619

H2(P⇡̂

P⇤ ,P⇡
⇤

P⇤) 
6 · |S| · log(|A| · ��1)

n

Proof. We have |⇧D

S
| = |A|

|S|620

In the case we don’t have deterministic but stochastic policies, we need to determine log(Npol(⇧S , ✏)).621

This can be accomplished using a discretization argument, where we create a finite ✏-net that622

approximates the continuous space of stochastic policies within the desired error tolerance.623

B.3.2 Transition model estimation624

Here we can give a similar argument as for the policy log loss BC estimator. We define the following625

estimator626

P̂ = argmax
P2P
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i2[n]

HX
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)]
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(8)

which is from Eq. 6 equivalent to performing maximum density estimation over the density class627

{P⇡
⇤

P
}P2P . Similarly, we define the following notion of covering628
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Definition 21 (Stationary Transition Log Covering Number). For a class of stationary transition629

probability functions P ⇢ {P : S ⇥A! �(S)} we define that P 0
⇢ {P : S ⇥A! �(S)} is an630

✏-cover if for all P 2 P there exists P 0
2 P

0 such that631
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We denote the smallest such cover by Ntrans(P, ✏)632

Assumption B.1 (Realisability of Transition). We assume the true transition density to be in the633

model class i.e P ⇤
2 P634

We can now give a similar guarantee as for the log loss policy estimate but for the transition estimate635

Theorem 22 (Generalisation Bound for MLE Transition Estimator). The MLE transition estimator636

of Eq 8 satisfies with probability at least 1� �637
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Proof. Given a valid ✏-cover of P from definition 21 we have638

log

✓
P⇡

P

P⇡

P 0

◆
=

HX

h=1

log

✓
P (sh+1|sh, ah)

P 0(sh+1|sh, ah)

◆
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this means that we get a valid ✏ ·H cover for the trajectory density class. The bound follow be a639

direct application of Lemma 17.640

Lemma 23 (Transition Covering Number: Stationary Tabular Stochastic Transitions). For a class of641

stationary transition probability functions P ⇢ {P : S ⇥A! �(S) where |S ⇥A| is finite (tabular642

MDP), the ✏-cover from Definition 21 satatisfies:643
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Proof. The proof follow a standard geometric discretization argument for finite class of function (see644

Chapter 5 Wainwright [2019]) . For a given ✏ > 0 we construct a geometric grid:645

G✏ =
�
�, � · exp(✏/2), � exp(✏), � exp(3✏/2), . . . , � exp(k✏/2)

 

where � > 0 is the minimum probability and k is chosen such that the grid represents a discretization646

of the continuous interval [0, 1] i.e647

� exp(k✏/2) =) k �
2 log(1/�)

✏

Thus the grid size is at most:648

|G✏| 

⇠
2 log(1/�)
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⇡
+ 1

For each state action pairs (a, s) define P (si|s, a) = pi for i 2 |S|. Note that for the first 1, . . . , |S|�1649

there exist qi := P 0(si|s, a) 2 G✏ that satisfies by construction650

exp(�✏/2) 
pi
qi
 exp(✏/2)

For the last state i = |S|, we need to determine q|S| close enough to p|S|.651

Let define Sq :=
P|S�1|

i
qi and Sp :=

P|S�1|
i

pi we have the constraint652

p|S| = 1� Sp

q|S| = 1� S � q

From the bound on the first 1� |S| elements we have653

Sq exp(�✏/2)  Sp  Sq exp(✏/2)
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For the ratio of the last probability654

p|S|

q|S|
=

1� Sp

1� Sq

we have the following condition such that we have p|S|
q|S|
� exp(�✏)655
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Similarly for the upper bound we have the condition656
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,

exp(✏)� 1

exp(✏)� exp(�✏/2)

�

By Taylor approximation this boils down to658

Sq 
2

3
Hence we select only the combination of points that satisfies659

2

3
 Sq  1� �

It remains to count the number of point we have in our cover i.e the first |S � 1| that satisfies our660

constrains661

(number of grid points)|S�1|
 |G✏|

|S|�1


✓⇠
2 log(1/�)

✏

⇡
+ 1

◆|S|�1

Across all state action pair and taking the logarithm662

log(Ntrans(P, ✏))  |S||A|(S � 1) log

✓⇠
2 log(1/�)

✏

⇡
+ 1

◆

choosing � = O(✏) yield the result.663

Corollary 24 (Stochastic, stationary, tabular transition setting). For finite |S ⇥A| (tabular setting)664

and assuming the transition density class to be stochastic and stationary we have with probability at665

least 1� �666

H2(P⇡
⇤

P̂
,P⇡

⇤

P⇤)  O

✓
|S|

2
|A| log(nH��1)

n

◆

where for the theoretical optimal constant Ctheory ⇡ 6667

Proof. From our lemma on the covering number of transition functions, we have:668

logNtrans(P, "/H)  |S||A|(|S|� 1) log

✓
H

"
+ 1

◆

For large H

"
, we can approximate:669

log

✓
H

"
+ 1

◆
⇡ log

✓
H

"

◆

Substituting this into our bound:670

H2(P⇡
⇤

P̂
,P⇡

⇤

P⇤)  inf
">0

(
6 log(2) + 6|S||A|(|S|� 1) log

�
H

"

�
+ 6 log(��1)

n
+ "

)

= inf
">0

⇢
6 log(2) + 6D log(H)� 6D log(") + 6 log(��1)

n
+ "

�
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where D = |S||A|(|S|� 1) for brevity.671

To find the optimal ", we differentiate with respect to " and set to zero:672

d

d"


6 log(2) + 6D log(H)� 6D log(") + 6 log(��1)

n
+ "

�
= �

6D

n"
+ 1 = 0

) "opt =
6D

n
=

6|S||A|(|S|� 1)

n

Substituting this optimal value back:673

H2(P⇡
⇤

P̂
,P⇡

⇤

P⇤) 
6 log(2) + 6D log(H)� 6D log

�
6D
n

�
+ 6 log(��1)

n
+

6D

n

=
6 log(2) + 6D log(H)� 6D log(6D) + 6D log(n) + 6 log(��1) + 6D

n

=
6 log(2) + 6 log(��1) + 6D log

�
nH

6D

�
+ 6D

n

For large state spaces where |S|� 1 ⇡ |S|, and defining D̃ = |S|
2
|A|, this becomes:674

H2(P⇡
⇤

P̂
,P⇡

⇤

P⇤) 
6 log(2) + 6 log(��1) + 6D̃ log

⇣
nH

6D̃

⌘
+ 6D̃

n

For large n and D̃, the dominant term is 6D̃ log(nH)
n

, and we can combine the logarithmic terms to675

get:676

H2(P⇡
⇤

P̂
,P⇡

⇤

P⇤) = O

✓
|S|

2
|A| log(nH��1)

n

◆

Note that the constant 6 appears in the full derivation. This completes the proof.677

B.3.3 Concentrability Coefficient Upper Bound678

Definition 25 (Concentrability Coefficient). We define the following quantity as the "concentrability679

coefficient":680

C(⇡̂,⇡⇤) = sup
t2[H]

sup
(s,a)2S⇥A:d⇡⇤,t

P⇤ (s,a)>0

d⇡,t
P⇤(s, a)

d⇡
⇤,t

P⇤ (s, a)

which measures the maximum ratio between the state-action distributions induced by policies ⇡̂ and681

⇡⇤ under the true dynamics P ⇤.682

Assumption B.2 (Minimum Visitation Probability). There exists a constant �min > 0 such that for683

all state-action-time tuples with non-zero probability under the optimal policy:684

min
(s,a,t):d⇡⇤,t

P⇤ (s,a)>0
d⇡

⇤
,t

P⇤ (s, a) � �min

Lemma 26 (Concentrability Coefficient Bound). Consider a policy estimator ⇡̂ satisfying685

H2(P⇡̂

P⇤ ,P⇡
⇤

P⇤)  R

Then, under Assumption 4.2, the concentration coefficient is bounded by:686

C(⇡̂,⇡⇤)  1 +
2
p
R

�min

Proof. We will proceed by upper bounding the numerator using the condition on the Hellinger687

distance followed by lower bounding with concentration the denominator.688

For the upper bound note that689
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sup
a,s

|d⇡̂,t
P⇤ � d⇡

⇤
,t

P⇤ | = 2 · TV (d⇡̂,t
P⇤ , d

⇡
⇤
,t

P⇤ )

Recalling that the state-action distribution d⇡,t
P⇤(s, a) is the marginal distribution of the trajectory690

distribution at time step t. Explictly:691

d⇡,t
P⇤(s, a) =

Z

⌧�t

P⇡

P⇤(⌧) d⌧�t =: P⇡

P⇤(st = s, at = a)

where ⌧�t denotes all time steps in the trajectory except for time t, and P⇡

P⇤(⌧) is the probability of692

trajectory ⌧ under policy ⇡ and dynamics P ⇤.693

Hence694

TV (d⇡̂,t
P⇤ , d

⇡
⇤
,t

P⇤ ) = 2 · TV (P⇡̂

P⇤(st = s, at = a),P⇡
⇤

P⇤(st = s, at = a))

 2 · TV (P⇡̂

P⇤ ,P⇡
⇤

P⇤)

 2 ·
q
H2(P⇡̂

P⇤ ,P⇡⇤
P⇤)  2

p

R

together with695

By Assumption 1, we have a lower bound on the minimum state-action visitation probability:696

min
(s,a,t):d⇡⇤,t

P⇤ (s,a)>0
d⇡

⇤
,t

P⇤ (s, a) � �min

Finally, we combine the upper bound on the numerator and the lower bound from Assumption 1 to697

get 8(a, s, t) s.t d⇡
⇤
,t

P⇤ (a, s) > 0:698

C(⇡̂,⇡⇤) = 1 +
sup

a,s,t
|d⇡̂,t

P⇤(s, a)� d⇡
⇤
,t

P⇤ (s, a)|

infa,s,t d
⇡⇤,t
P⇤ (s, a)

 1 +
2
p
R

infa,s,t d
⇡⇤,t
P⇤ (s, a)

 1 +
2
p
R

�min

This completes the proof, giving us a deterministic bound on the concentration coefficient that depends699

on the Hellinger distance between trajectory distributions and the minimum visitation probability of700

the optimal policy.701

B.3.4 Confidence Set Construction702

In this section we will derive a distributional confidence set on the trajectory space in the form of a703

hellinger ball, accounting for the error of the MLE density estimates ⇡̂ and P̂ . We start by presenting704

the following in between result705

Lemma 27 (Technical Results). Assume finite state and action pair: S ⇥A . The following upper706

bound is true 8⇡ 2 ⇧ with ⇡⇤ being the true policy and P ⇤, P̂ being the true and estimated transition707

models:708

H2(P⇡

P̂
,P⇡

P⇤)  H · C(⇡,⇡⇤) ·H2(P⇡
⇤

P̂
,P⇡

⇤

P⇤)

where709

C(⇡,⇡⇤) = sup
t2[H]

sup
(s,a)2S⇥A:d⇡⇤,t

P⇤ (s,a)>0

d⇡,t
P⇤(s, a)

d⇡
⇤,t

P⇤ (s, a)

Proof. We derive the proof in three steps:710

711
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Step 1.

H2(P⇡

P̂
,P⇡

P⇤) 
X

t2[H�1]

E(st,at)⇠d
⇡,t

P⇤


H2

✓
P̂ (·|st, at), P

⇤(·|st, at)

◆�

Step 2.

E(st,at)⇠d
⇡,t

P⇤


H2

✓
P̂ (·|st, at), P

⇤(·|st, at)

◆�
 C(⇡,⇡⇤) · E

(st,at)⇠d
⇡⇤,t

P⇤


H2

✓
P̂ (·|st, at), P

⇤(·|st, at)

◆�

Step 3.

H2(P⇡
⇤

P̂
,P⇡

⇤

P⇤) �
1

H
· E

(st,at)⇠d
⇡⇤,t

P⇤


H2

✓
P̂ (·|st, at), P

⇤(·|st, at)

◆�

Proof Step 1:712

713

H2(P⇡

P̂
,P⇡

P⇤) = 1�

Z

T
1� µ0(s0)

H�1Y

t=0

⇡(at|st)
q
P̂ (st+1|at, st)P ⇤(st+1|st, at)d⌧

= 1�

Z

T
p⇡
P⇤(⌧) ·

µ0(s0)
Q

H�1
t=0 ⇡(at|st)

q
P̂ (st+1|at, st)P ⇤(st+1|st, at)

µ0(s0)
Q

H�1
t=0 ⇡(at|st)P ⇤(st+1|st, at)

d⌧

= 1�

Z

T
p⇡
P⇤(⌧) ·

H�1Y

t=0

s
P̂ (st+1|st, at)

P ⇤(st+1, st, at)
d⌧

Next define for ease of notation :714

↵t(st+1, at, st) :=

s
P̂ (st+1|st, at)

P ⇤(st+1, st, at)

�t(st, at) :=

Z

s0

q
P̂ (st+1|st, at)P ⇤(st+1, st, at)ds

0 =

Z

s0
P ⇤(s0|st, at) · ↵t(s

0, st, at)ds
0

Notice that �t is a BC coefficient i.e715

1� �t(st, at) = H2
�
P̂ (·|st, at), P

⇤(·|st, at)
�

Using notation above:716

H2(P⇡

P̂
,P⇡

P⇤) = 1� E⌧⇠P⇡

P⇤

H�1Y

t=0

↵t(st+1, st, at)

�

Using conditional expectation (law of iterated expectation) we change the distribution in the expecta-717

tion from P⇡

P⇤ to the so called state-action distribution d⇡,t
P⇤ . To show this argument we show it for718

state action pair (a0, s0, s1). The rest follows by using the same idea:719

E⌧⇠P⇡

P⇤

H�1Y

t=0

↵t(st+1, st, at)

�
= Es0,a0


Es1|s0,a0


↵0(s1, s0, a0)

�
· Ea1[⌧[2:H�1]|s1

H�1Y

t=1

↵t(st+1, st, at)

��

=

Z

s0,a0

µ0(s0) · ⇡1(a0|s0)

Z

s1

P ⇤(s1|s0, a0) · ↵0(s1, s0, a0)

· Ea1[⌧[2:H�1]|s1

H�1Y

t=1

↵t(st+1, st, at)

�

=

Z

s0,a0

µ0(s0) · ⇡1(a0|s0) · �0(s0, a0) ·


””

�
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Notice that720

µ0(s0) · ⇡1(a0|s0) =

Z
p⇡
P⇤d⌧[1:H�1] =: d⇡,0

P⇤ (s0, a0) Marginal over (s0, a0)

Hence using a recursiv argument we have721

H2(P⇡

P̂
,P⇡

P⇤) = 1� E⌧⇠P⇡

P⇤

H�1Y

t=0

↵t(st+1, st, at)

�

= 1�
H�1Y

t=0

E
d
⇡,t

P⇤


�t(st, at)

�

Usinge the fact that722

1�
Y

i

xi 

X

i

(1� xi) 8xi 2 [0, 1]

and by the fact that �t 2 [0, 1]8t we have723

H2(P⇡

P̂
,P⇡

P⇤) 
H�1X

t=0

E
d
⇡,t

P⇤
(1� �t(st, at))

=
H�1X

t=0

E
d
⇡,t

P⇤


H2

�
P̂ (·|st, at), P

⇤(·|st, at)
��

Proof Step 2:724

725

E(st,at)⇠d
⇡,t

P⇤
[H2(P̂ (·|st, at), P

⇤(·|st, at))] =
X

s,a

d⇡,t
P⇤(s, a) ·H2(P̂ (·|s, a), P ⇤(·|s, a))

=
X

s,a

d⇡,t
P⇤(s, a)

d⇡
⇤,t

P⇤ (s, a)
· d⇡

⇤
,t

P⇤ (s, a) ·H2(P̂ (·|s, a), P ⇤(·|s, a))

=
X

s,a

d⇡,t
P⇤(s, a)

d⇡
⇤,t

P⇤ (s, a)
· d⇡

⇤
,t

P⇤ (s, a) ·H2(P̂ (·|s, a), P ⇤(·|s, a))

By definition of the concentrability coefficient:726

C(⇡,⇡⇤) = sup
t2[H]

sup
(s,a)2S⇥A:d⇡⇤,t

P⇤ (s,a)>0

d⇡,t
P⇤(s, a)

d⇡
⇤,t

P⇤ (s, a)

Therefore:727

d⇡,t
P⇤(s, a)

d⇡
⇤,t

P⇤ (s, a)
 C(⇡,⇡⇤) 8t 8(s, a) where d⇡

⇤
,t

P⇤ � 0

Proof Step 3:728

Starting from our previous expression:729

H2(P⇡
⇤

P̂
,P⇡

⇤

P⇤) = 1�
H�1Y

t=0

E
d
⇡⇤,t

P⇤
[�t(st, at)]

Let’s denote730

xi := 1� �i(si, ai) = H2(P̂ (·|si, ai), P
⇤(·|si, ai))

Using the fact that (1� x)  e�x for all x, we have:731

HY

i=1

(1� xi)  exp

 
�

HX

i=1

xi

!

27



By the second-order Taylor expansion of the exponential function:732

exp

 
�

HX

i=1

xi

!
 1�

HX

i=1

xi +
1

2

 
HX

i=1

xi

!2

Since xi  1 for all i, we know that
P

H

i=1 xi  H , which gives us:733

1

2

 
HX

i=1

xi

!2


H

2

HX

i=1

xi

Therefore:734

H2(P⇡
⇤

P̂
,P⇡

⇤

P⇤) �
HX

i=1

xi �
1

2

 
HX

i=1

xi

!2

�

HX

i=1

xi �
H

2

HX

i=1

xi

=

✓
1�

H

2

◆ HX

i=1

xi

For the bound H2(P⇡
⇤

P̂
,P⇡

⇤

P⇤) � 1
H

P
H

i=1 xi to hold, we need:735

✓
1�

H

2

◆ HX

i=1

xi �
1

H

HX

i=1

xi

This is satisfied when:736

HX

i=1

xi 
2(H � 1)

H

This condition is typically met for good estimators where Hellinger distances are small. For large H ,737

the bound approaches 2.738

Under this condition, we can establish:739

H2(P⇡
⇤

P̂
,P⇡

⇤

P⇤) �
1

H

H�1X

t=0

E
(st,at)⇠d

⇡⇤,t

P⇤
[H2(P̂ (·|st, at), P

⇤(·|st, at))]

740

Lemma 28 (Policy Density Confidence Set). Assume the following events hold:741

E1 :=

⇢
H2(P⇡̂

P⇤ ,P⇡
⇤

P⇤)  R1(�1)

�
, such that P (E1) � 1� �1,

E2 :=

⇢
H2(P⇡

⇤

P̂
,P⇡

⇤

P⇤)  R2(�2)

�
, such that P (E2) � 1� �2,

where ⇡̂ and P̂ are estimators of the policy and the transition dynamics, respectively.742

Then, under Assumption 4.2, the policy set743

C1�� :=

⇢
⇡ :

q
H2(P⇡

P̂
,P⇡̂

P̂
) 

p
R1 +

p
R2 ·

✓
1 +

s✓
1 +

2
p
R1

�min

◆
·H

◆�

is a confidence set of level 1� � = 1� (�1 + �2), i.e.,744

P (⇡⇤
2 ⇧offline

1��
) � 1� (�1 + �2).
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Proof. For ease of notation, let us define:745
q

H2(P⇡1
P1
,P⇡2

P2
) =: k(⇡1, P1)� (⇡2, P2)k

with k · k := k · kL2(µ(R))

We can then decompose by the triangle inequality:746

k(⇡⇤, P̂ )� (⇡̂, P̂ )k  k(⇡⇤, P̂ )� (⇡⇤, P ⇤)k+ k(⇡⇤, P ⇤)� (⇡̂, P ⇤)k+ k(⇡̂, P ⇤)� (⇡̂, P̂ )k

From Lemma 27, we have:747

k(⇡̂, P ⇤)� (⇡̂, P̂ )k 
p

C(⇡̂,⇡⇤) ·H · k(⇡⇤, P̂ )� (⇡⇤, P ⇤)k

From Assumption 4.2 and our concentrability coefficient bound, we have:748

C(⇡̂,⇡⇤)  1 +
2
p
R1

�min

From event E1, we have:749

k(⇡⇤, P ⇤)� (⇡̂, P ⇤)k 
p

R1

From event E2, we have:750

k(⇡⇤, P̂ )� (⇡⇤, P ⇤)k 
p

R2

Then, assuming events E1 \ E2 hold jointly, with probability at least 1� (�1 + �2), we have:751

k(⇡⇤, P̂ )� (⇡̂, P̂ )k 
p

R1 +
p

R2 ·

✓
1 +

s✓
1 +

2
p
R1

�min

◆
·H

◆

Hence, by construction, the set:752

⇧offline
1��

(⇧) :=

⇢
⇡ 2 ⇧ : k(⇡, P̂ )� (⇡̂, P̂ )k 

p
R1 +

p
R2 ·

✓
1 +

s✓
1 +

2
p
R1

�min

◆
·H

◆�

contains ⇡⇤ with probability at least 1� (�1 + �2).753

B.4 Performance Guarantees754

We apply our method of constructing confidence sets based on distributional guarantees for maximum755

likelihood density estimation to the tabular reinforcement learning setting with state space S and756

action space A. We consider deterministic stationary tabular policies (⇧ = ⇧D

S
) and stochastic757

stationary tabular transitions, though the method is versatile to other settings with appropriate758

adaptation of the corresponding covering numbers (cf. Definitions 18 and 21).759

Let ⇡̂ be the log-loss BC estimator (Equation (1)) of the true policy ⇡⇤, and P̂ be the MLE estimator760

(Equation (2)) of the true transition model P ⇤. The concentration bounds for these estimators are,761

with probability at least 1� �1 and 1� �2 respectively:762

H2(P⇡̂

P⇤ ,P⇡
⇤

P⇤)  R1 =
4 · |S| · log(|A| · ��1

1 )

n
(Corollary 20)

H2(P⇡
⇤

P̂
,P⇡

⇤

P⇤)  R2 =
4 · |S|2 · |A| · log(nH��1

2 )

n
(Corollary 24)

Additionally, we make the following assumption about the minimum visitation probability under the763

optimal policy:764

Assumption B.3 (Minimum Visitation Probability). There exists a constant �min > 0 such that for765

all state-action-time tuples with non-zero probability under the optimal policy:766

min
(s,a,t):d⇡⇤,t

P⇤ (s,a)>0
d⇡

⇤
,t

P⇤ (s, a) � �min
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Under this assumption, the concentrability coefficient is bounded by:767

C(⇡̂,⇡⇤)  1 +
2 ·
p
R1

�min

Theorem 29 (Policy Confidence Set). Under the setting described above and Assumption B.3, with768

�1 = �2 = �/2 and defining769

↵ :=
p
4 · |S| · log(|A| · 2/�)

� :=
p
4 · |S|2 · |A| · log(nH · 2/�)

The policy set770

⇧offline
1��

:=

⇢
⇡ :

q
H2(P⇡

P̂
,P⇡̂

P̂
) 

p
R1 +

p
R2 ·

✓
1 +

s✓
1 +

2
p
R1

�min

◆
·H

◆�

is a confidence set of level 1 � � containing ⇡⇤ with probability at least 1 � �. The radius of this771

confidence set is explicitly:772

Radius =
↵
p
n
+

�
p
n
·

 
1 +

s

H ·

✓
1 +

2↵

�min ·
p
n

◆!

Proof. The proof follows directly from Lemma 28 by applying our bounds on H2(P⇡̂

P⇤ ,P⇡
⇤

P⇤) and773

H2(P⇡
⇤

P̂
,P⇡

⇤

P⇤), along with our bound on the concentrability coefficient from Assumption B.3. Setting774

�1 = �2 = �/2 and substituting the appropriate values gives us the result.775

C Online Estimation776

The underlying setting is described in the Section Problem Setup777

C.1 Elliptical Confidence Set778

For completeness and to make our paper self-contained, we provide a brief overview of the online779

preference-based learning approach used in our method. The formulation presented in this section780

closely follows the work of Saha et al. [2023] and Faury et al. [2020], with adaptations to our781

specific setting. We include this background to help the reader understand the elliptical confidence782

set construction that forms a foundation for our theoretical analysis.783

In the logistic model, a natural way of computing an estimator wt of w⇤ given trajectory pairs784

{(⌧1
`
, ⌧2

`
)}t�1

`=1 and preference feedback values {o`}t�1
`=1 is via maximum likelihood estimation. At785

time t the regularized log-likelihood (or negative cross-entropy loss) of a parameter w can be written786

as:787

L
�

t
(w) =

t�1X

`=1

⇣
o` log(�(h�(⌧

1
`
)� �(⌧2

`
)i,wi))�

�

2
kwk22

+(1� o`) log
�
1� �(h�(⌧1

`
)� �(⌧2

`
),wi)

�
,

where � > 0 is a regularization parameter. The function L
�

t
is strictly concave for � > 0. The max-788

imum likelihood estimator ŵMLE
t

can be written as ŵMLE
t

= argmaxw2Rd L
�

t
(w). Unfortunately,789

ŵMLE
t

may not satisfy the boundedness Assumption 1, so we instead make use of a projected version790

of ŵMLE
t

. Following Faury et al. [2020], and recalling Assumption 1, we define a data matrix and a791

transformation of ŵMLE
t

given by792

Vt = �Id +
t�1X

`=1

�
�(⌧1

`
)� �(⌧2

`
)
��
�(⌧1

`
)� �(⌧2

`
)
�>

gt(w) =
t�1X

`=1

�(h�(⌧1
`
)� �(⌧2

`
),wi)

�
�(⌧1

`
)� �(⌧2

`
)
�
+ �w
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Then, the projected parameter, along with its confidence set, is given by793

wProj

t
= argmin

w s.t. kwkW

kgt(w)� gt(ŵ
MLE
t

)kV�1
t

Ct(�) = {w s.t. kw �wP

t
kVt
 2�t(�)}

where �t(�) =
p
�W +

q
log(1/�) + 2d log

�
1 + tB2

�d

�
. We restate a bound by Faury et al. [2020]794

that shows the probability of w⇤ being in Ct(�) for all t � 1 can be lower bounded.795

Lemma 30 (Confidence Set Coverage). Let � 2 (0, 1] and define the event that w⇤ is in the confidence796

interval Ct(�) for all t 2 N:797

Ew⇤ = {8t � 1,w⇤ 2 Ct(�)}.

Then P(Ew⇤) � 1� �.798

Proof. This follows from Faury et al. [2020] with a slight modification to account for our bounded799

feature assumption.800

This elliptical confidence set construction, which has its roots in generalized linear bandits [Filippi801

et al., 2010, Faury et al., 2020], forms a critical component of our online learning algorithm. By802

maintaining and updating these confidence sets as new preference data is collected, our algorithm can803

efficiently balance exploration and exploitation to identify the optimal policy. The confidence bounds804

ensure that with high probability, the true reward parameter lies within our constructed set throughout805

the learning process, which is essential for the regret guarantees we derive in the following sections.806

C.2 Norm Relation Between Data Matrices807

For completeness, we restate key results from Saha et al. [2023] concerning the relationships between808

various data matrices that arise in our analysis. These results are included to ensure the appendix is809

self-contained and to provide context for our subsequent analysis. The full proofs of these results can810

be found in the original paper.811

Saha et al. [2023] establishes relationships between three key matrices:812

• Vt - The empirical data matrix constructed from observed trajectories813

• V
P

⇤

t
- The expected data matrix under the true transition dynamics P ⇤814

• V t - The expected data matrix under the estimated transition dynamics P̂t815

These matrices are defined as follows:816

Vt = �Id +
t�1X

`=1

�
�(⌧1

`
)� �(⌧2

`
)
��
�(⌧1

`
)� �(⌧2

`
)
�>

V
P

⇤

t
= �Id +

t�1X

`=1

�
�(⇡1

`
)� �(⇡2

`
)
��
�(⇡1

`
)� �(⇡2

`
)
�>

V t = �Id +
t�1X

`=1

�
�P̂`(⇡1

`
)� �P̂`(⇡2

`
)
��
�P̂`(⇡1

`
)� �P̂`(⇡2

`
)
�>

Where �(⇡) represents the expected feature vector under policy ⇡ and the true transition dynamics817

P ⇤, while �P̂t(⇡) represents the expected feature vector under policy ⇡ and the estimated transition818

dynamics P̂t.819

Saha et al. [2023] introduces a precision event that relates the empirical matrix VT to the expected820

matrix V
P

⇤

T
:821

E
V

P⇤
T

= {V
P

⇤

T
� 2VT + 84B2d log((1 + 2T )/�)Id}
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Under this event, they establish the following bound:822

Lemma 31 (Adapted from Saha et al. [2023] Corollary 1). Under Assumption 1, conditioned on823

event Ew⇤ \ E
V

P⇤
T

, for any t 2 [T ]824

kw⇤
�wL

t
k
V

P⇤
t

 4�t(�) + ↵d,T (�),

where ↵d,T (�) = 20BW
p
d log(T (1 + 2T )/�). Furthermore, if �  1/e, then P(Ew⇤ \ E

V
P⇤
T

) �825

1� � � � log2 T .826

Additionally, Saha et al. [2023] relates norms based on the matrix V
P

⇤

t
with those based on V t:827

Lemma 32 (Adapted from Saha et al. [2023] Lemma 3). Let E0 be the event that for all t 2 N,828

kwproj
t
�w⇤kV t


p
2kwproj

t
�w⇤k

V
P⇤
t

+

vuut
t�1X

`=1

4

✓
B̂`

✓
⇡, 2WB,

�0

8`3|A||S|

◆◆2

+
1

t

where �0 = �

(1+4W )d and ✏ = 1
2�+4B2t↵

. Then P
�
E0

�
� 1� �.829

Note that the bonus function B̂ is defined in Lemma 33830

These norm relations from Saha et al. [2023] are essential in our regret analysis, as they allow us to831

relate confidence bounds across different probability spaces and to bound the regret of our algorithm.832

833

C.3 Transition Estimation and Bonus Terms834

Note that the offline estimator of the transition probabilities based on the log-loss MLE in Equation (2),835

when the state-action space is discrete, is equivalent to the following count-based estimator (derivable836

using a simple Lagrange multiplier argument):837

P̂offline(s
0
|s, a) =

Noffline(s0|s, a)

Noffline(s, a)
where838

Noffline(s, a) :=
X

i2[n]

X

h2[H]

I{si
h
= s, ai

h
= a}

Noffline(s
0
|s, a) :=

X

i2[n]

X

h2[H]

I{si
h+1 = s0, si

h
= s, ai

h
= a}

This equivalence allows us to initialize the online estimation process with the count estimator from839

the offline data (see line 3 in Algorithm 1), yielding the combined estimator for the transition model:840

P̂t(s
0
|s, a) :=

Noffline(s0|s, a) +Nt(s0|s, a)

Noffline(s, a) +Nt(s, a)
(9)

From this estimator, we adapt two key lemmas from Chatterji et al. [2021] that will define our notion841

of bonus terms.842

Lemma 33 (Moment Transition Difference Error). Consider the transition count estimator P̂t from843

Equation (9). Further assume the trajectory data follows a martingale structure adapted to the844

natural filtration of the problem. For any fixed policy ⇡ 2 ⇧ and any scalar function f : T ! R845

such that |f(⌧)| < ⌘, with probability at least 1� � for all t 2 N:846

EP⇡

P⇤ [f(⌧)]� EP⇡

P̂t

[f(⌧)]  EP⇡

P̂t

2

4
X

h2[H]

⇠t
sh,ah

(⌘, �)

3

5 =: B̂t(⇡, ⌘, �)

where847

⇠t
sh,ah

(⌘, �) := min

0

B@2⌘, 4⌘

vuutH log(|S| · |A|) + log
⇣

6 log(Nt(sh,ah)+Noffline(sh,ah))
�

⌘

Nt(sh, ah) +Noffline(sh, ah)

1

CA

The term B̂t(⇡, ⌘, �) serves as our "bonus" term.848
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Proof. Our combined estimator incorporates both online data (adapted to the natural filtration) and849

offline data (assumed i.i.d.). We can artificially treat the offline data as though it were adapted to the850

natural filtration as well, by considering it as "past" observations. This allows us to directly apply the851

proof methodology from Chatterji et al. [2021] (Lemma B.1) to our combined count estimator.852

The key insight is that the martingale structure of the estimation error is preserved when combining853

offline and online counts, with the benefit of reduced variance due to the increased denominator854

(Nt(sh, ah) + Noffline(sh, ah)). This directly translates to tighter confidence bounds compared to855

using only online data.856

We now present a stronger version of the lemma that holds uniformly for all policies ⇡.857

Lemma 34 (Uniform Moment Transition Difference Error). Consider the transition count estimator858

P̂t from Equation (9). Further assume the trajectory data follows a martingale structure adapted to859

the natural filtration of the problem. For any scalar function f : T ! R such that |f(⌧)| < ⌘ and860

for any ✏ > 0, with probability at least 1� � for all t 2 N and all ⇡ 2 ⇧:861

EP⇡

P̂t

[f(⌧)]� EP⇡

P⇤ [f(⌧)]  EP⇡

P⇤

2

4
X

h2[H]

⇠
t

sh,ah
(⌘, �, ✏)

3

5

| {z }
=:Bt(⇡,⌘,�,✏)

+✏

where862

⇠
t

sh,ah
(⌘, �, ✏) := min

0

B@2⌘, 4⌘

vuutH log(|S| · |A|) + |S| log
⇣l

4⌘H
✏

m⌘
+ log

⇣
6 log(Nt(sh,ah)+Noffline(sh,ah))

�

⌘

Nt(sh, ah) +Noffline(sh, ah)

1

CA

Proof. The proof follows by applying similar techniques as in Lemma 33, but with additional care to863

ensure uniformity across all policies.864

As before, we can artificially treat the offline data as adapted to the natural filtration. The uniform865

convergence over the policy class ⇧ is achieved by applying a covering argument and the union866

bound, following the methodology in Chatterji et al. [2021] (Lemma B.2). The additional term867

|S| log
⇣l

4⌘H
✏

m⌘
appears due to this covering, which introduces an ✏-discretization of the policy868

space.869

The combined offline and online counts in the denominator (Nt(sh, ah) +Noffline(sh, ah)) provide870

tighter uniform confidence bounds compared to using online data alone.871

To provide further intuition, we elaborate on the meaning and significance of the terms B̂t and Bt872

introduced in the previous lemmas. In reinforcement learning literature, these would be referred to as873

the "empirical bonus" and "true bonus," respectively. Both terms quantify the concentration of our874

estimators around their true values.875

The empirical bonus B̂t(⇡, ⌘, �) represents the expected sum of state-action-level uncertainty terms876

⇠t
sh,ah

(⌘, �) under the estimated transition model P̂t. Importantly, this term can be directly computed877

from observed data.878

In contrast, the true bonus Bt(⇡, ⌘, �, ✏) represents the expected sum of uncertainty terms879

⇠
t

sh,ah
(⌘, �, ✏) under the true transition model P ⇤. This term cannot be directly computed as it880

depends on the unknown true model.881

For our regret analysis, we need to relate these two quantities. The following lemma provides a882

crucial connection, showing that the empirical bonus B̂t can be bounded in terms of the true bonus883

Bt uniformly across all policies ⇡.884

Lemma 35 (Relationship Between Empirical and True Bonus Terms). Let ⌘, ✏ > 0. For all policies885

⇡ 2 ⇧ simultaneously and for all t 2 N, with probability at least 1� �:886

B̂t(⇡, ⌘, �)  2Bt(⇡, 2H⌘, �, ✏) + ✏
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Proof. Define the function f : T ! R as:887

f(⌧) :=
X

h2[H]

⇠t
sh,ah

(⌘, �)

By construction, B̂t(⇡, ⌘, �) = EP⇡

P̂t

[f(⌧)]. Since ⇠t
sh,ah

(⌘, �)  2⌘ for all state-action pairs, we888

have |f(⌧)|  2⌘H .889

Applying Lemma 34 with this f(⌧) and the bound 2⌘H:890

EP⇡

P̂t

[f(⌧)]� EP⇡

P⇤ [f(⌧)]  EP⇡

P⇤

2

4
X

h2[H]

⇠
t

sh,ah
(2⌘H, �, ✏)

3

5+ ✏

By definition, the right-hand side equals Bt(⇡, 2H⌘, �, ✏) + ✏. Therefore:891

B̂t(⇡, ⌘, �) = EP⇡

P̂t

[f(⌧)]

 EP⇡

P⇤ [f(⌧)] +Bt(⇡, 2H⌘, �, ✏) + ✏

From Lemma 33, we know that:892

EP⇡

P⇤ [f(⌧)]  EP⇡

P̂t

[f(⌧)] + B̂t(⇡, ⌘, �) = B̂t(⇡, ⌘, �) + B̂t(⇡, ⌘, �) = 2B̂t(⇡, ⌘, �)

This gives us:893

B̂t(⇡, ⌘, �)  2B̂t(⇡, ⌘, �) +Bt(⇡, 2H⌘, �, ✏) + ✏

) �B̂t(⇡, ⌘, �)  Bt(⇡, 2H⌘, �, ✏) + ✏

) B̂t(⇡, ⌘, �)  Bt(⇡, 2H⌘, �, ✏) + ✏

Therefore, the lemma statement follows.894

This lemma is instrumental for our regret analysis as it allows us to work with Bt instead of B̂t. The895

advantage is that Bt involves expectations with respect to the true transition model P ⇤, which makes896

it more amenable to theoretical analysis. By establishing this relationship, we effectively account for897

the transition estimation error and can focus on controlling the difference between empirical and true898

moments, which is a more tractable problem in our analytical framework.899

C.4 Policy Set ⇧t and Proof Lemma 8900

Recall that we define the policy set ⇧t to draw from in line 7 of Algorithm 1 as901

⇧t :=
�
⇡ 2 ⇧offline

1��

�� 8⇡0
2 ⇧offline

1��
:

⌦
�P̂t(⇡)� �P̂t(⇡0), wproj

t

↵
+ �t · k�

P̂t(⇡)� �P̂t(⇡0)k
V

�1
t

+ B̂t(⇡, 2WB, �0) + B̂t(⇡
0, 2WB, �0) � 0

 

where ⇧offline
1��

is derived in Theorem 5. The radius �t is defined as902

�t =
p
2(4�t(�) + ↵d,T (�)) + 2

vuut
t�1X

`=1

✓
B̂`

✓
⇡, 2WB,

�0

8`3|A||S|

◆◆2

+
1

t

Then Lemma 8 state that with high probability, ⇡⇤
2 ⇧t 8t 2 [T ]903

Proof of Lemma 8. We begin by conditioning on the following events:904

• Eoffline = {⇡⇤
2 ⇧offline

1��
} from Theorem 5905
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• Ew⇤ from Lemma 31 (confidence set for w⇤)906

• E
V

P⇤
T

from Lemma 31 (relation for data matrices)907

• E0 from Lemma 32 (estimated norm relation)908

• E3 from Lemma 33 (bounds on the bonus terms B̂t)909

By the union bound, these five events hold simultaneously with probability at least 1� 5�.910

By the optimality condition, we have:911

0  h�(⇡⇤)� �(⇡0), w⇤
i = hEP⇡⇤

P⇤
�(⌧)� EP⇡0

P⇤
�(⌧), w⇤

i

Then, by event E3 and defining f(⌧) := h�(⌧), w⇤
i, we have from Assumption 3.2 that |f(⌧)| 912

2WB, which yields:913

h�P̂t(⇡⇤)� �P̂t(⇡0), w⇤
i+ B̂t(⇡

⇤, 2WB, �/|A|
|S|) + B̂t(⇡

0, 2WB, �/|A|
|S|)

where the probability parameter accounts for any ⇡0
2 ⇧, which covers the case of the offline914

confidence set being the whole policy space (i.e., not having enough offline data for learning).915

Next, we bound the term:916

h�P̂t(⇡⇤)� �P̂t(⇡0), w⇤
i = h�P̂t(⇡⇤)� �P̂t(⇡0), wproj

t
i+ h�P̂t(⇡⇤)� �P̂t(⇡0), w⇤

� wproj
t
i

 h�P̂t(⇡⇤)� �P̂t(⇡0), wproj
t
i+ k�P̂t(⇡⇤)� �P̂t(⇡0)k

V
�1
t

· kwproj
t
� w⇤

k
V t

We can now use event E0:917
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t
� w⇤

k
V t

p
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t
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V
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+ 2

vuut
t�1X
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✓
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8`3|A||S|
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+
1

t

Using events Ew⇤ \ E
V

P⇤
T

, we get:918
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t
� w⇤

k
V t

p
2(4�t(�) + ↵d,T (�)) + 2

vuut
t�1X

`=1

✓
B̂`

✓
⇡, 2WB,

�0

8`3|A||S|

◆◆2

+
1

t
=: �t

Putting these results together yields that ⇡⇤
2 ⇧t for all t 2 N under the event Eoffline.919

The probability of this event is at least 1� 5� by the union bound of all the events we conditioned on.920

By rescaling � 7! �/5, we obtain the desired result with probability at least 1� �.921

C.5 Regret Bound922

In this section, we provide a lemma as an intermediate step toward the full proof of the regret analysis923

of BRIDGE. This lemma separates the upper bound on the regret into three distinct terms, each of924

which we further analyze in Appendix D.925

Lemma 36 (Regret Analysis). Under the following events:926

• Eoffline = {⇡⇤
2 ⇧offline

1��
} from Theorem 5927

• Ew⇤ from Lemma 31 (confidence set for w⇤)928

• E
V

P⇤
T

from Lemma 31 (relation for data matrices)929

• E0 from Lemma 32 (estimated norm relation)930

• E3 from Lemma 33 (bounds on the bonus terms B̂t)931
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the regret of BRIDGE Algorithm 1 is upper bounded by:932

RT  2 · �T|{z}
Term 1

·

s
T
X

t2[T ]

k�P̂t(⇡1
t
)� �P̂t(⇡2

t
)k

V
�1
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| {z }
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+
X

i2{1,2}

X

t2[T ]

B̂t(⇡
i

t
, 4WB, �)

| {z }
Term 3

where933
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p
2(4 · �T (�) + ↵d,T (�)) +

1

T
+ 4

s X

i2{1,2}

X

t2[T ]

BT (⇡i
t
, 4HWB, �, ✏)2 + 96T ✏HWB

and934

• ↵d,T (�) = 20BW
p
d log(T (1 + 2T )/�)935

• �T (�) =
p
�W +

q
log(1/�) + 2d log

�
1 + TB2

�d

�
.936

Proof. We start by writing937
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t
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Then, by Lemma 33, we have with probability at least 1� � for each of the following:938
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By the union bound, with high probability:939
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Next, we observe that:940
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Conditioning on the joint event E0 \ Ew⇤ \ E
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Using Lemma 33 again, the following holds with high probability:942
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Putting everything together yields:943
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Under the event ⇡⇤
2 ⇧t from Lemma 8 and using the fact that ⇡1
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Hence, the regret is:945
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Note that by Lemma 33, with high probability:946
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Plugging this into �t yields:947

�t 
p
2(4�t(�) + ↵d,T (�)) +

1

t

+ 4

vuut
t�1X

`=1

B2
t
(⇡1

t
, 4HSB, �0

t
, ✏) +B2

t
(⇡2

t
, 4HSB, �0

t
) + 96(t� 1)HWB 8t

This completes the proof of the claimed result.948

D Regret Analysis: Theorem 9949

In this section, we present the complete regret analysis of our BRIDGE algorithm. We recommend950

that readers first review Appendix A, where we analyze a simplified setting in which the dynamics951

are assumed to be known. This simplified case captures the core idea of our approach: constraining952

the set of policies considered during online preference learning using a confidence interval derived953

from offline behavioral cloning estimation (see ??).954

The key difference in the present analysis is that we now incorporate the estimation of the transition955

model. Specifically, we first estimate the transition model offline and then use this estimate as the956

starting point for online transition estimation. This approach reduces the error due to transition957

uncertainty by a factor of O(1/
p
n), which is the same rate of improvement we achieve for the policy958

estimation through behavioral cloning. As we will show, this allows our algorithm to effectively959

leverage offline demonstrations to reduce both sources of uncertainty, resulting in substantially960

improved regret bounds.961

Theorem 37 (Regret Bound with Offline-Enhanced Exploration). Let n be the number of offline962

demonstrations with minimum visitation probability �min > 0 for state-action pairs. With probability963

at least 1� �, the regret of the algorithm is bounded by:964
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and we have set ✏ = 1
T

to optimize the bound.966

From Lemma 36, we analyze the three key terms in our regret bound: the confidence multiplier (Term967

1), the logarithmic determinant ratio (Term 2), and the bonus function summation (Term 3). Each968

term is examined in detail in the following subsections.969
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D.1 Term 1: Asymptotic bound970

We derive an asymptotic bound for Term 1 in Theorem 37 via Lemma 38. The auxiliary lemmata971

used in the proof of Lemma 38 are found in Appendix D.1.1.972

Lemma 38. The asymptotic bound on �T can be expressed as:
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Proof. We analyze each term in the expression for �T separately.973
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For �T (�), we have:977
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For a fixed confidence parameter �, this simplifies to:979
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This term is O( 1
T
) and becomes negligible for large T compared to other terms.981
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Using the provided lemma on the sum of squared bonus terms, Lemma 41:983
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For the second term inside the square root:984
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Therefore:985
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Step 4: Combine all terms986

Combining all terms from Steps 1-3, we get:987
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Expressing this with Õ notation to hide logarithmic factors:988
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989

D.1.1 Term 1 asymptotic bound: auxiliary lemmata for Lemma 38990

Lemma 39 (Offline-Enhanced Bonus Term Bound). Let n be the number of offline demonstrations,991

with a minimum visitation probability �min > 0 for state-action pairs visited by the expert policy ⇡⇤.992

Then, with probability at least 1� 2�0, the sum of squared bonus terms satisfies:993
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where |Sreach| is the number of state-action pairs with non-zero visitation probability under the expert994

policy.995

Proof. Step 1: Express Modified Bonus Terms with Offline Data. We define our modified bonus996

term to incorporate offline data:997
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Step 2: Express the Sum of Squared Bonus Terms. Following Pacchiano’s structure but with our999

modified bonus terms:1000
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Step 3: Rearrange to Account for Offline Data. The key insight: With offline data, we need to1001

adjust the indices of summation. For each state-action pair, we’ve already observed it Noff(s, a) times1002

in the offline dataset. Therefore:1003
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where t0 represents the total count (offline + online).1004

Step 4: Simplify Using Common Term. For clarity and following Saha et al. [2023] approach, let’s1005

define:1006

V = H log(|S||A|H) + |S| log

✓
4⌘H

✏

◆
+ log

✓
6 log(HT )

�0

◆

For sufficiently large t0, the min is dominated by the second term:1007
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Step 7: Apply Jensen’s Inequality. We know
P

s,a
NT+1(s, a) = TH (total state-action visits in1013

online learning).1014

By Jensen’s inequality and the concavity of log(1 + x):1015
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For unreachable states, we can use Pacchiano’s original bound, but these contribute negligibly to1018

regret as optimal policies don’t visit them.1019

Step 8: Final Bound. Substituting back:1020
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Substituting V and accounting for approximation constants:1021
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This completes our proof, showing explicitly how offline data (through n) and minimum visitation1022

probability �min reduce the bound on bonus terms, thereby reducing regret.1023

Lemma 40 (Offline-Enhanced Squared Bonus Term Bound). Let ⌘, ✏ > 0 and �, �0 2 (0, 1). Let n be1024

the number of offline demonstrations with minimum visitation probability �min > 0 for state-action1025
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Proof. We follow Saha et al. [2023] proof structure, beginning with the martingale analysis and then1028

applying our offline-enhanced bounds.1029

Observe that the bonus terms can be expressed as:1030
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Using Jensen’s inequality (as in the original proof):1031
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Following the martingale analysis of Pacchiano, we define:1032
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Applying the Uniform Empirical Bernstein Bound (as in the original proof), we get:1035
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Therefore, with high probability for i 2 {1, 2}:1036
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Combining for both policies, with probability 1� 2�0:1037
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Now, using Lemma 39, we have:1038
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Substituting this bound and combining terms:1040
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Expanding V :1041
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1042

Lemma 41 (Asymptotic Bound for Offline-Enhanced Squared Bonus Terms). With n offline demon-1043

strations and minimum visitation probability �min, the sum of squared bonus terms is bounded1044

as:1045
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where Õ(·) hides logarithmic factors in H , |S|, |A|, ��1, and ✏�1, as well as constant factors.1046

Proof. We start from the detailed bound of Lemma 40:1047
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Analyzing each term:1048

Step 1: First term analysis. The first term is:1049
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Since log log(T ) grows extremely slowly, and we’re using Õ notation which hides logarithmic factors,1050

this term is dominated by Õ(⌘2H2).1051

Step 2: Second term analysis. For the second term, we have:1052
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Within the factor V , the dominant term is |S| log
⇣l

4⌘H
✏

m⌘
since it scales with |S|. Therefore,1054

asymptotically:1055

V = Õ(|S|)
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Upper bounding |Sreach|  |S| as requested, the second term becomes:1056
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Step 3: Analysis of log
⇣
1 + T

n·�min

⌘
. We need to consider different regimes for this logarithmic1057
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Case 3: Large offline dataset (n · �min � T )1061

Here we can use the approximation log(1 + x) ⇡ x for small x:1062
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Combining these cases, we can express the behavior of this term as:1063
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Step 4: Combining all terms. The first term Õ(⌘2H2) is dominated by the second term when1064

|S| > 1 and T is non-trivial. Therefore, our final asymptotic bound is:1065
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This bound correctly captures how the offline data affects the regret across different regimes. For1066

small n relative to T , we recover a bound similar to the standard one with log(T ). For large enough1067

n, the bound improves to T

n·�min
, showing a linear reduction in the bound as n increases.1068

D.2 Term 2: Asymptotic bound1069

We derive an asymptotic bound for Term 2 in Theorem 37 via Lemma 42. The auxiliary lemma used1070

in the proof of Lemma 42 is found in Appendix D.2.1.1071

Lemma 42 (Upper Bound on Term 2). The term 2 has the following asymptotic result1072
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with the most important part, as n!1 i.e the offline data set goes to1 the asymptotic regret is1073

log(1) = 01074

Proof. We follow standard argument from Lattimore and Szepesvári [2020].1075

We start with the inequality1076
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Using the definition of V̄t we have1077
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This expression behaves differently depending on the relationship between T and n:1089
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A unified bound that works across all regimes is:1092
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D.2.1 Term 2 asymptotic bound: auxiliary Lemma for Lemma 421095

Lemma 43 (Bound on Feature Expectation Difference). Let � : T ! Rd with max⌧ k�(⌧)k  B be1096

a feature map, P̂0 be the count-based estimator from n offline trajectories following policy ⇡⇤ under1097

dynamics P ⇤, and P̂t be the combined estimator after t additional online interactions. Then, with1098
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where CT (FT ,⇡,⇡⇤) is the concentration coefficient accounting for distribution shift.1100

Furthermore, when combined with an additional error term of O
�
1
n

�
, the overall bound simplifies to1101

O
�
1
n

�
for all practical regimes.1102

Proof. We divide the proof into several steps:1103

Step 1: Martingale Structure and Concentration Bounds. Let Fi be the �-algebra generated by1104

all information available after i interactions. For each state-action-next-state triplet (s, a, s0), define:1105

Xi(s, a, s
0) = I{si = s, ai = a, si+1 = s0}� P ⇤(s0|s, a) · I{si = s, ai = a}
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This forms a martingale difference sequence with respect to filtration {Fi}
t
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Therefore:1118
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Step 4: Accounting for Visitation Distributions. For precise analysis, we express the counts in1119

terms of visitation frequencies:1120
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Step 5: Feature Expectation Difference. We begin with the telescoping decomposition:1124
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+

2t

(n+ t)2
p
tn

+
t2

(n+ t)2n

◆◆
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For large n and t, the middle term is dominated by the other two, so:1129

kP̂t(·|s, a)� P̂0(·|s, a)k
2
1  O

✓
|S|2 ·

log(|S||A|/�)

H
·

✓
t

(n+ t)2
+

t2

(n+ t)2n

◆◆

Substituting back:1130

k�P̂t(⇡)� �P̂0(⇡)k22  B2
·H2

· CT (FT ,⇡,⇡
⇤)2 ·O

✓
|S|2 ·

log(|S||A|/�)

H
·

✓
t

(n+ t)2
+

t2

(n+ t)2n

◆◆

= O

✓
B2

·H · |S|2 · log(|S||A|/�) · CT (FT ,⇡,⇡
⇤)2 ·

✓
t

(n+ t)2
+

t2

(n+ t)2 · n

◆◆

Step 6: Analysis for Different Regimes. Let’s examine the bound for different regimes:1131

When n� t (dominant offline data):1132

k�P̂t(⇡)� �P̂0(⇡)k22  O

✓
B2

·H · |S|2 · log(|S||A|/�) · CT (FT ,⇡,⇡
⇤)2 ·

t

n2

◆

When t� n (dominant online data):1133

k�P̂t(⇡)� �P̂0(⇡)k22  O

✓
B2

·H · |S|2 · log(|S||A|/�) · CT (FT ,⇡,⇡
⇤)2 ·

1

t

◆

Step 7: Combined with Additional Error Term. When combined with an additional error term of1134

O
�
1
n

�
, we analyze the combined bound by comparing the orders:1135

When t⌧ n (early online learning):1136

t

(n+ t)2
⇡

t

n2
⌧

1

n

t2

(n+ t)2 · n
⇡

t2

n3
⌧

1

n

Therefore, O
�
1
n

�
dominates.1137

When t ⇡ n (balanced regime):1138

t

(n+ t)2
⇡

n

4n2
=

1

4n
= O

✓
1

n

◆

t2

(n+ t)2 · n
⇡

n2

4n2 · n
=

1

4n
= O

✓
1

n

◆

Both terms are O
�
1
n

�
.1139

When t� n (predominantly online learning):1140

t

(n+ t)2
⇡

t

t2
=

1

t

t2

(n+ t)2 · n
⇡

t2

t2 · n
=

1

n

Since t � n, we have 1
t
⌧

1
n

, so the second term 1
n

dominates our derived expression. When1141

combined with an additional error term of O
�
1
n

�
, both terms are of the same order, giving an overall1142

bound of O
�
1
n

�
.1143

D.3 Term 3: Asymptotic bound1144

We derive an asymptotic bound for Term 3 in Theorem 37 via Lemma 44. The auxiliary lemmata1145

used in the proof of Lemma 44 are found in Appendix D.3.1.1146
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Lemma 44 (Asymptotic Bound for Offline-Enhanced Bonus Terms). Let E3 be the event from1147

Lemma 45, which occurs with probability at least 1 � 2�. Then, by setting ✏ = 1
T

, the following1148

asymptotic bound holds:1149

X

t2[T ]

4B̂t(⇡
1
t
, 4SB, �) + 4B̂t(⇡

2
t
, 4SB, �)

 Õ

 
H|S|

s
|A|TH

n · �min
+

H5/2SB
p
T

p
n · �min

+H2SB · T ·

p
log(T ) ·

|S|
1/2

|A|
1/4

n1/4

!

Proof. Starting with the bound from E3:1150

X

t2[T ]

4B̂t(⇡
1
t
, 4SB, �) + 4B̂t(⇡

2
t
, 4SB, �)  ✏T +

X

t2[T ]

8Bt(⇡
1
t
, 8HSB, �, ✏) + 8Bt(⇡

2
t
, 8HSB, �, ✏)

From Lemma 45, we have:1151

X

t2[T ]

8Bt(⇡
1
t
, 8HSB, �, ✏) + 8Bt(⇡

2
t
, 8HSB, �, ✏)

 Õ

 
H|S|

s
|A|TH

n · �min
+

H5/2SB
p
T

p
n · �min

+H2SB · T ·

p
log(T ) ·

|S|
1/2

|A|
1/4

n1/4

!

We set ✏ = 1
T

to optimize the bound, which makes ✏T = 1 = O(1). This constant term is dominated1152

by the other terms for large T .1153

Additionally, setting ✏ = 1
T

affects the log
⇣

32H2
SB

✏

⌘
= log(32H2SB · T ) term inside the bound.1154

This adds a log(T ) factor, which is already absorbed in the Õ notation.1155

Therefore, our final asymptotic bound is:1156

X

t2[T ]

4B̂t(⇡
1
t
, 4SB, �) + 4B̂t(⇡

2
t
, 4SB, �)

 Õ

 
H|S|

s
|A|TH

n · �min
+

H5/2SB
p
T

p
n · �min

+H2SB · T ·

p
log(T ) ·

|S|
1/2

|A|
1/4

n1/4

!

This bound shows three distinct terms scaling with offline data:1157

1. The first term scales as 1p
n

and represents the primary benefit of offline data for covered1158

regions1159

2. The second term also scales as 1p
n

and captures the improved martingale concentration1160

3. The third term scales as 1
n1/4 and accounts for the diminishing probability of encountering1161

uncovered regions1162

For sufficiently large n, the bound improves, but it’s important to note that the third term has a direct1163

linear dependence on T (modulo logarithmic factors). This term dominates for large T unless n1164

scales appropriately with T . Specifically, with n = ⇥(T 4), the third term becomes O(1), and with1165

n = ⇥(T 2), the overall bound becomes O(
p
T log(T )), which is near-optimal.1166

This demonstrates that with sufficient high-quality offline data scaling appropriately with the horizon1167

T , the sum of bonus terms can be made arbitrarily small, fundamentally improving the regret1168

bound.1169
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D.3.1 Term 3 asymptotic bound: auxiliary lemmata for Lemma 441170

Lemma 45 (Offline-Enhanced Bonus Term Summation Bound). Let E3 from Lemma 46 be the event1171

that for all T 2 N:1172
X

t2[T ]

4B̂t(⇡
1
t
, 4WB, �) + 4B̂t(⇡

2
t
, 4WB, �)  ✏T +

X

t2[T ]

8Bt(⇡
1
t
, 8HWB, �, ✏) + 8Bt(⇡

2
t
, 8HWB, �, ✏)

Let n be the number of offline demonstrations with minimum visitation probability �min > 0 for1173

state-action pairs visited by the expert policy. Then, invoking Lemma 46 and Theorem 47, E3 occurs1174

with probability at least 1� 2�, and:1175

X

t2[T ]

8Bt(⇡
1
t
, 8HWB, �, ✏) + 8Bt(⇡

2
t
, 8HWB, �, ✏)

 8
X

t2[T ]

 
H�1X

h=1

⇠(t)
s
1
t,h

,a
1
t,h

(✏, 8HWB, �) +
H�1X

h=1

⇠(t)
s
2
t,h

,a
2
t,h

(✏, 8HWB, �)

!
+ I

where I incorporates the benefit of offline data:1176

I = Õ

 
H5/2WB

p
T

p
n · �min

+H2WB ·

p

T ·
|S|

1/2
|A|

1/4

n1/4

!

with P (Ec) = O

✓
TH ·

q
|S|2|A| log(n)

n

◆
representing the probability that at least one state-action1177

pair encountered during online learning lacks good offline coverage.1178

Furthermore, with probability at least 1� 2�:1179

X

t2[T ]

8Bt(⇡
1
t
, 8HWB, �, ✏) + 8Bt(⇡

2
t
, 8HWB, �, ✏)

 2048HWB

s

H log(|S||A|H) + |S| log

✓
32H2WB

✏

◆
+ log

✓
6 log(HT )

�

◆
· |Sreach| ·

s
T

n · �min

+ Õ

 
H5/2WB

p
T

p
n · �min

+H2WB ·

p

T ·
|S|

1/2
|A|

1/4

n1/4

!

Using Õ notation to hide logarithmic factors and simplifying:1180
X

t2[T ]

8Bt(⇡
1
t
, 8HWB, �, ✏) + 8Bt(⇡

2
t
, 8HWB, �, ✏)

 Õ

 
H|S|

s
|A|TH

n · �min
+

H5/2WB
p
T

p
n · �min

+H2WB ·

p

T ·
|S|

1/2
|A|

1/4

n1/4

!

This bound demonstrates how offline data benefits reinforcement learning through three mechanisms:1181

1. Reducing exploration needs for well-covered regions (first term)1182

2. Improving martingale concentration for covered state-action pairs (second term)1183

3. Decreasing the probability of encountering poorly-covered regions (third term)1184

All terms approach zero as n!1, though at different rates: the first two terms scale as 1p
n

while1185

the third term scales as 1
n1/4 . This confirms that with sufficient high-quality offline data, the entire1186

bound can be made arbitrarily small, fundamentally improving sample complexity in reinforcement1187

learning.1188
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Proof. We follow the structure of the original proof, adapting it to incorporate our offline-enhanced1189

bounds.1190

Step 1: Set up the martingale difference sequences. Consider the martingale difference sequences:1191

{Bt(⇡
1
t
, 8HWB, �, ✏)�

H�1X

h=1

⇠(t)
s
1
t,h

,a
1
t,h

(✏, 8HWB, �)}1
t=1

and1192

{Bt(⇡
2
t
, 8HWB, �, ✏)�

H�1X

h=1

⇠(t)
s
2
t,h

,a
2
t,h

(✏, 8HWB, �)}1
t=1

Each has norm upper bound 32H2WB, since ⇠s,a(✏, ⌘, �)  2⌘ and therefore
P

h
⇠sh,ah

(✏, ⌘, �) 1193

2H⌘.1194

Step 2: Apply anytime Hoeffding inequality with improved bounds. Consider the martingale1195

difference sequences:1196

{Bt(⇡
1
t
, 8HWB, �, ✏)�

H�1X

h=1

⇠(t)
s
1
t,h

,a
1
t,h

(✏, 8HWB, �)}1
t=1

and1197

{Bt(⇡
2
t
, 8HWB, �, ✏)�

H�1X

h=1

⇠(t)
s
2
t,h

,a
2
t,h

(✏, 8HWB, �)}1
t=1

By Lemma 48, which accounts for both covered and uncovered state-action pairs, with probability at1198

least 1� � for all T 2 N simultaneously:1199

X

t2[T ]

8Bt(⇡
1
t
, 8HWB, �, ✏) + 8Bt(⇡

2
t
, 8HWB, �, ✏)

 8
X

t2[T ]

 
H�1X

h=1

⇠(t)
s
1
t,h

,a
1
t,h

(✏, 8HWB, �) +
H�1X

h=1

⇠(t)
s
2
t,h

,a
2
t,h

(✏, 8HWB, �)

!
+ I

where I incorporates our rigorous analysis of martingale concentration with offline data from Lemma1200

48:1201

I = Õ

 
H5/2WB

p
T

p
n · �min

+H2WB ·

p

T ·
|S|

1/2
|A|

1/4

n1/4

!

The second term accounts for the probability P (Ec) = O

✓
TH ·

q
|S|2|A| log(n)

n

◆
that at least one1202

state-action pair encountered during online learning lacks good offline coverage, while maintaining1203

the proper
p
T scaling in the regret bound.1204

Step 3: Apply our offline-enhanced bound. Now, to bound the remaining empirical error terms, we1205

apply Theorem 47. For each policy ⇡i

t
, i 2 {1, 2}:1206

X

t2[T ]

H�1X

h=1

⇠(t)
s
i

t,h
,a

i

t,h

(✏, 8HWB, �)

 64HWB

s

H log(|S||A|H) + |S| log

✓
32H2WB

✏

◆
+ log

✓
6 log(HT )

�

◆

· |Sreach| · 2

s
T

n · �min
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Step 4: Combine the bounds. Summing over both policies:1207

8
X

t2[T ]

 
H�1X

h=1

⇠(t)
s
1
t,h

,a
1
t,h

(✏, 8HWB, �) +
H�1X

h=1

⇠(t)
s
2
t,h

,a
2
t,h

(✏, 8HWB, �)

!

 8 · 2 · 64HWB

s

H log(|S||A|H) + |S| log

✓
32H2WB

✏

◆
+ log

✓
6 log(HT )

�

◆
· |Sreach| · 2

s
T

n · �min

= 2048HWB

s

H log(|S||A|H) + |S| log

✓
32H2WB

✏

◆
+ log

✓
6 log(HT )

�

◆
· |Sreach| ·

s
T

n · �min

Step 5: Express the complete bound. Therefore, with probability at least 1� 2�:1208

X

t2[T ]

8Bt(⇡
1
t
, 8HWB, �, ✏) + 8Bt(⇡

2
t
, 8HWB, �, ✏)

 2048HWB

s

H log(|S||A|H) + |S| log

✓
32H2WB

✏

◆
+ log

✓
6 log(HT )

�

◆
· |Sreach| ·

s
T
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H5/2WB

p
T

p
n · �min

+H2WB ·

p

T ·
|S|

1/2
|A|

1/4

n1/4

!

Using Õ notation to hide logarithmic factors and simplifying:1209

X

t2[T ]

8Bt(⇡
1
t
, 8HWB, �, ✏) + 8Bt(⇡

2
t
, 8HWB, �, ✏)

 Õ

 
H|S|

s
|A|TH

n · �min
+

H5/2WB
p
T

p
n · �min

+H2WB ·

p

T ·
|S|

1/2
|A|

1/4

n1/4

!

This bound demonstrates several key insights:1210

1. Sublinear Regret: All terms scale as
p
T , maintaining the crucial sublinear dependence on the1211

horizon. This ensures that our regret doesn’t grow linearly with T .1212

2. Offline Data Benefits: All terms decrease as n increases, but at different rates:1213

• The first two terms decrease at rate 1p
n

and capture the direct benefit of offline data for1214

state-action pairs with good coverage1215

• The third term decreases at the slower rate of 1
n1/4 and accounts for the diminishing proba-1216

bility of encountering poorly-covered state-action pairs1217

3. Complete Dependence on Offline Data: Unlike traditional online-only bounds, our analysis1218

shows that all components of the regret can be reduced with sufficient offline data.1219

With sufficient high-quality offline data (n ! 1 with fixed �min > 0), all terms approach zero,1220

confirming that offline data can fundamentally change the sample complexity of reinforcement1221

learning.1222

Lemma 46. Let ⌘, ✏ > 0. For all ⇡ simultaneously and for all t 2 N, with probability 1� �,1223

B̂t(⇡, ⌘, �)  2Bt(⇡, 2H⌘, �, ✏) + ✏

Proof. Recall that,1224

B̂t(⇡, ⌘, �) = Es1⇠⇢,⌧⇠P⇡

P̂t

(·|s1)

"
H�1X

h=1

⇠(t)
sh,ah

(⌘, �)

#
.
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Let f : �! R be defined as,1225

f(⌧) =
H�1X

h=1

⇠(t)
sh,ah

(⌘).

It is easy to see that f(⌧) 2 (0, 2⌘H] for all ⌧ 2 �. Therefore, a direct application of Lemma 13 in1226

Saha et al. [2023] implies that with probability at least 1� � and simultaneously for all ⇡, and t 2 N,1227

B̂t(⇡, ⌘, �)  Es1⇠⇢,⌧⇠P⇡(·|s1)

"
H�1X

h=1

⇠(t)
sh,ah

(⌘, �)

#
+Bt(⇡, 2H⌘, �, ✏) + ✏

Since ⇠(t)s,a(✏, ⌘, �) � ⇠(t)s,a(⌘, �) for all ✏ > 0, s, a 2 S ⇥ A and ⇠(t)s,a(✏, ⌘, �) is monotonic in ⌘ we1228

conclude that,1229
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"
H�1X
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H�1X
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#
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"
H�1X

h=1

⇠(t)
sh,ah

(✏, 2H⌘, �)

#

= Bt(⇡, 2H⌘, �, ✏)

Combining these inequalities the result follows.1230

Lemma 47 (Offline-Enhanced Non-Squared Bonus Term Bound). Let n be the number of offline1231

demonstrations with minimum visitation probability �min > 0 for state-action pairs visited by the1232

expert policy. Then, with probability at least 1� �:1233

X

t2[T ]

H�1X

h=1

⇠(t)
st,h,at,h
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s
T
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Proof. We follow the approach shown in the provided image, adapting it to incorporate offline data.1234

Starting with our modified definition of bonus terms that incorporate offline data:1235

⇠(t)
s,a

(✏, ⌘, �) = min

 
2⌘, 4⌘

s
U

Noff(s, a) +Nt(s, a)

!

where U = H log(|S||A|H) + |S| log
⇣

32H2
SB

✏

⌘
+ log

⇣
6 log(t)

�

⌘
. Rewriting the sum by grouping1236

state-action pairs:1237
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s
U
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!

For sufficiently large values of Noff(s, a) + t, the minimum is dominated by the second term:1238

X

s2S

X
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NT+1(s,a)X
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s
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= 32HSB

p

U ·
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1p
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The key adaptation now is to reindex the sum to account for offline visits:1239
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where t0 represents the total count (offline + online). Using the property of the sum of inverse square1240

roots and the minimum visitation assumption:1241

Noff(s,a)+NT+1(s,a)X

t0=Noff(s,a)+1

1
p
t0
 2

p
Noff(s, a) +NT+1(s, a)� 2
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·
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·
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Noff(s, a) 8(s, a) 2 Sreach

Applying Jensen’s inequality:1242

X
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Substituting back:1243
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Expanding U :1244
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This completes the proof.1245

Lemma 48 (Martingale Concentration with Offline Data). Let {Xt}
T

t=1 be the martingale difference
sequence defined as:

Xt = Bt(⇡
i

t
, 8HWB, �, ✏)�

H�1X

h=1

⇠(t)
s
i

t,h
,a

i

t,h

(✏, 8HWB, �)

Let n be the number of offline trajectories with minimum visitation probability �min for state-action1246

pairs visited by the expert policy. Then, with probability at least 1� �:1247

�����
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Xt
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p
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n1/4

!

where the first term captures the direct benefit of offline data for state-action pairs with good coverage,1248

and the second term accounts for the diminishing probability P (Ec) = O

✓
TH ·

q
|S|2|A| log(n)

n

◆
1249

of encountering state-action pairs with insufficient offline coverage.1250
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Proof. We introduce a novel approach that substantially improves upon standard martingale concen-1251

tration bounds by leveraging offline data. We begin by comparing our approach with the standard1252

method used by Pacchiano.1253

Saha et al. [2023]’s Approach (Standard Method): The conventional approach uniformly bounds
each element of the martingale difference sequence:

|Xt| =

�����Bt(⇡
i

t
, 8HWB, �, ✏)�

H�1X

h=1

⇠(t)
s
i

t,h
,a

i

t,h

(✏, 8HWB, �)

�����  32H2WB

This bound is derived by noting that ⇠s,a(✏, ⌘, �)  2⌘, yielding
P

h
⇠sh,ah

(✏, ⌘, �)  2H⌘, and1254

applying triangle inequality. This leads to a martingale concentration term in the regret bound that is1255

O(H2WB
p
T ) and, crucially, does not improve with offline data.1256

Our Improved Approach: We recognize that with offline data, we can obtain substantially tighter1257

bounds by conditioning on appropriate events. This leads to a martingale concentration term that1258

explicitly decreases with offline data, approaching zero as n!1.1259

Step 1: Define data-dependent events and calculate their probabilities.1260

We define two complementary events:1261

• Event E: "All state-action pairs encountered in all T episodes have good offline coverage"1262

(i.e., Noff(s, a) � c · n · �min for some constant c > 0)1263

• Event Ec: "At least one state-action pair encountered lacks good offline coverage"1264

To calculate P (Ec), we leverage our MLE concentration bound for transition models (Corollary 24):

H2(P⇡
⇤

P̂
,P⇡

⇤

P⇤)  O

✓
|S|

2
|A| log(nH��1)

n

◆

The crucial insight is that we can relate this Hellinger distance to the probability of encountering1265

state-action pairs with insufficient offline data. Using the relationship between Hellinger distance,1266

total variation distance, and event probabilities:1267

1. Hellinger distance bounds total variation: TV(P,Q) 
p
2 ·H(P,Q) 2. Total variation bounds1268

event probability differences: |P (A)�Q(A)|  TV(P,Q)1269

Let As,a be the event "state-action pair (s, a) has insufficient offline data coverage." Under the true1270

model P ⇤ and with enough offline data sampled from a policy close to ⇡⇤, the probability P⇡
⇤

P⇤(As,a)1271

is negligible. Therefore:1272

P⇡
⇤

P̂
(As,a)  P⇡

⇤

P⇤(As,a) + TV(P⇡
⇤

P̂
,P⇡

⇤

P⇤)  O(H(P⇡
⇤

P̂
,P⇡

⇤

P⇤))

Using our Hellinger distance bound:

P⇡
⇤

P̂
(As,a)  O

 r
|S|2|A| log(nH��1)

n

!
= pn

By union bound across all T · (H � 1) state-action pairs encountered:

P (Ec)  T · (H � 1) · pn = O

 
TH ·

r
|S|2|A| log(n)

n

!

Key Insight 1: The probability of encountering any state-action pair with insufficient offline coverage1273

decreases as n increases, at a rate of approximately 1p
n

.1274

Step 2: Establish conditional bounds on martingale differences.1275
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Case 1: Under Event E (Good Offline Coverage). When all state-action pairs have good offline1276

coverage:1277

⇠(t)
s,a

(✏, ⌘, �) = min
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!

For sufficiently large n, the second term in the min dominates:1278

⇠(t)
s,a

(✏, ⌘, �)  4⌘

s
U

c · n · �min

= O

 
⌘ ·

p
H · log(|S||A|) + log(1/�)

p
n · �min

!

Therefore, for ⌘ = 8HWB:1279
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= Mn

Case 2: Under Event Ec (At Least One Poorly Covered State-Action). Here, we revert to1280

Pacchiano’s standard bound:1281

|Xt| |E
c
 32H2WB = M

Key Insight 2: Under event E (which occurs with high probability for large n), the martingale1282

differences are much smaller than Pacchiano’s uniform bound, specifically by a factor of 1p
n·�min

.1283

Key Innovation: By conditioning on events E and Ec, we can precisely quantify how the martingale1284

concentration improves with offline data through two mechanisms:1285

1. The magnitude of martingale differences under E scales as 1p
n·�min

1286

2. The probability of event Ec decreases as n increases, at a rate of approximately 1p
n

1287

This conditional analysis is fundamentally different from Pacchiano’s approach, which uses a single1288

worst-case bound regardless of offline data. Our approach precisely captures how offline data reduces1289

both the magnitude of exploration bonuses and the probability of encountering state-action pairs that1290

require large exploration.1291

Step 3: Apply Azuma-Hoeffding inequality conditionally.1292

The Azuma-Hoeffding inequality for bounded martingale differences states that for a martingale
difference sequence {Xt}

T

t=1 with |Xt|  ct almost surely:

P

 �����

TX

t=1

Xt

����� � �

!
 2 exp

 
�

�2

2
P

T

t=1 c
2
t

!

58



Applying this conditionally on event E, where |Xt| Mn for all t:
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Similarly, conditionally on event Ec, where |Xt| M :
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Step 4: Apply the law of total probability.1293

By the law of total probability:1294
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To obtain an overall bound of �, we allocate �/2 to each term.1295

For the first term:1296
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For the second term:1297
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Step 5: Derive the combined bound.1298

For the bound to hold with probability at least 1� �, we need:1299
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Substituting our expressions for Mn and M :1300
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Using our bound on P (Ec):1301
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Step 6: Analyze the asymptotic behavior.1302

Starting with the second term of our bound:
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Step 6.1: Expand the logarithm inside the second term.
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Step 6.2: Extract
p
T from the square root.
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Step 6.3: Analyze the behavior for large n. For large n, the term log
⇣

|S|2|A| log(nH�
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becomes negative because n grows faster than the logarithmic term.1304

Therefore:1305 s
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This gives us:1306

H2WB ·

p

T ·O(
p
log(T )) = Õ(H2WB ·
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Step 6.4: Incorporate P (Ec) correctly. We know that P (Ec) = O
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To properly account for this probability in the bound, we can express the term as:1308
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Step 7: Combine these results for our final bound.1309

We now have two key terms in our bound for martingale concentration:1310
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Simplifying the first term and using Õ notation to hide logarithmic factors:1311
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Therefore, with probability at least 1� �:1312
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This bound reveals several key insights:1313

1. Sublinear Regret: Both terms scale as
p
T , maintaining the crucial sublinear dependence1314

on the horizon. This ensures that our regret doesn’t grow linearly with T .1315

2. Offline Data Benefits: Both terms decrease as n increases, but at different rates:1316

• The first term decreases at rate 1p
n

and captures the direct benefit of offline data for1317

state-action pairs with good coverage1318

• The second term decreases at the slower rate of 1
n1/4 and accounts for the diminishing1319

probability of encountering poorly-covered state-action pairs1320

3. Complete Dependence on Offline Data: Unlike Saha et al. [2023]’s bound, which has1321

an irreducible term independent of offline data, our bound shows that all components of1322

martingale concentration can be reduced with sufficient offline data.1323

4. Different Decay Rates: The different decay rates ( 1p
n

vs. 1
n1/4 ) suggest that the second1324

term will eventually dominate for very large n, setting the ultimate rate at which offline data1325

can improve performance.1326

This confirms that with sufficient high-quality offline data (n!1 with fixed �min > 0), the entire1327

martingale concentration bound approaches zero, eliminating this component of regret entirely.1328

E Auxiliary Mathematical Results1329

E.1 Bridging Offline Confidence Sets and Online Constraints1330

Lemma 49 (Hellinger Ball to Moment Constraints: Linear Embedding). Define a random variable1331

X on (A, Ã).1332

Assume f : A! Rd and kfk1  B <1.1333

Consider two distributions P,Q with densities that are continuous with respect to Lebesgue measure.1334

Further assume:1335

H2(PkQ)  R
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Then1336
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Proof. For the squared norm on first moment, the following holds true1338
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Using the classical result Sason and Verdú [2016] together with our constraint1339

TV (P,Q) 
p
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p

2R

yield the first result.1340

1341

For the covariance we follow a similar approach only for matrices. Define g(x) := f(x)f(x)T then1342
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Using definition of covariance matrix we have1343
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in order to bound the last term we have1344
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F Experiments1346

We compare our algorithm with the log-loss behavioral cloning method of Foster et al. [2024] and the1347

preference-based online learning algorithm of Saha et al. [2023]. We could not find publicly available1348

implementations for either of the two, so we made adaptions to achieve a computable implementation.1349

All experiments were run on an M1 Max CPU with 32GB of RAM, with a wall-clock time of roughly1350

4 seconds per iteration of the online loop. The main computational bottleneck in this implementation1351

is the simulation of trajectories for approximating the expectation within �(⇡), so runtime does not1352

vary significantly between the different environments, if normalized for episode length. Throughout,1353

we use deterministic, tabular policies, i.e., they are represented by a matrix of size S ⇥ A, where1354

each row is a one-hot vector defining the deterministic action taken in that state. The figures shown1355

display results averaged over 30 seeds, with thick lines representing the average and shaded areas the1356

results contained within one standard deviation to either side of the average.1357

Our figures contain two plots. The first displays the (sub)optimality of the current best policy1358

chosen by each online algorithm at each iteration. At the end of an iteration, this policy is chosen1359

as the one from the offline confidence set ⇧offline
1��

which maximizes the learned score function1360

sP (⇡) = E⌧⇠P⇡

P⇤ [h�(⌧),w
proj

t
i]. Its expected reward is simulated and compared to the optimal1361

policy’s in percentage terms. The second plot illustrates the speed at which the algorithms pare down1362

the size of the policy confidence set ⇧t – once the set contains only a single element, we consider the1363

algorithm converged, as that element is the algorithm’s estimate of the optimal policy ⇡⇤.1364

We had to make certain pragmatic adaptations when implementing the algorithms. For BRIDGE,1365

we construct ⇧offline
1��

by taking the offline behavioral cloning policy ⇡̂, and obtaining 100 additional1366

candidate policies via adding noise to ⇡̂’s distribution in a way that ensures the candidate stays1367

within a Hellinger distance of R to ⇡̂. The purely online PbRL baseline instead starts with a ⇧offline
1��

1368

containing 100 random policies.1369

F.1 Environments1370

s1

s4 R = 10

s2

R = 6

s3 R = �1

s0

a0

a1

a0

a1a
3a 2

a 2
a
3

Figure 4: Star MDP. Transition probabilities are 0.7 for all solid arrows, otherwise the action takes
the agent randomly to one of the other states.

StarMDP. We illustrate the transition dynamics underlying the Star MDP in Figure 4. This1371

environment features 5 states and 4 actions a0, a1, a2, a3 that correspond to right, left, up and1372

down respectively. Actions have a probability of 0.7 of success, with an agent being moved to a1373

different, random state with a probability of 0.3. Taking an “impossible” action such as going left1374

in state s4 will result in not moving with probability 1. Episodes have length H = 10 and start from1375

s0. The offline expert’s dataset consists of 2 trajectories.1376

Gridworld. We illustrate the gridworld environment in Figure 5. The environment consists of a1377

4⇥ 4 grid with states associated with different rewards, including a negative-reward region in the1378

top-right corner, a high-reward but unreachable state, and a moderate-reward goal state at the bottom1379

right corner. Each episode has length H and starts in the top-left corner. Each of the four actions (up,1380
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Figure 5: Gridworld environment. Rewards at every state are indicated if non-zero. Transition probabilities are
0.9. Thick lines indicate an obstacle, through which state transitions have probability zero.

left, down, right) has a success probability of 0.8, whereas with probability 0.2 a randomly1381

chosen different action is executed. Action stay remains in the current state with probability 1.1382

Transitions beyond the grid limits or through obstacles have probability zero, with the remainder of1383

the probability mass for each action being distributed among other directions equally.1384

F.2 Additional result on Gridworld1385

We run an experiment in the vein of Figure 2 comparing BRIDGE with Saha et al. [2023] in the more1386

complex Gridworld environment. We measure the degree of optimality of the algorithm at each1387

iteration by comparing the expected reward of the currently selected ‘best’ policy with the expected1388

reward of the true optimal policy (red dotted line). The green dotted line is the expected reward of1389

the BC cloning policy estimated using Foster et al. [2024]. Our algorithm leads to a much faster1390

convergence using the information from the expert’s trajectory dataset.1391

Figure 6: Comparing BRIDGE to Saha et al. [2023] and Foster et al. [2024] in the Gridworld
environment.

F.3 Embeddings1392

The choice of embedding function � has implications on computational complexity and learning1393

speed. Concretely, both a small dimension d and upper bound B for the norm of embedded trajectories1394

are desirable. In the experiments shown we use two embeddings that strike a good balance between1395

dimension, norm bound, and expressiveness. The StarMDP experiments use the identity-short1396

embedding. It is defined as �(⌧) :=
P

tH
(st, at), has a norm upper bound of B =

p
2H and1397

dimension d = |S| + |A|. States and actions are represented as one-hot vectors. The Gridworld1398

experiments use the state-counts embedding. It is defined as �(⌧) :=
P

tH
(st), has a norm1399

upper bound of B = H and dimension d = |S|. States are represented as one-hot vectors.1400

Cf. Pacchiano et al. [2020] and Parker-Holder et al. [2020a] for more possible embedding functions1401

and analyses of their performance in different RL tasks.1402
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