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Abstract

Deploying reinforcement-learning (RL) controllers in robotics, industry, and health
care is blocked by two coupled obstacles: reward misspecification (informal goals
are hard to encode as a safe numeric signal) and data-hungry exploration. We tackle
these issues with a two-stage framework that begins from a reward-free dataset of
expert demonstrations and refines the policy online using preference-based human
feedback. We give the first principled analysis of this two-stage paradigm. In our
work, we formulate a unified algorithm that (i) clones demonstrations offline to
obtain a safe warm-start policy and (ii) fine-tunes it online with preference-based
RL, integrating the two signals through an uncertainty-weighted objective. Then,
we derive regret bounds that shrink with the demonstration counts and reflect
reduced uncertainty.

1 Introduction

Deploying reinforcement-learning (RL) [Sutton and Barto,|2018] systems on physical robots, indus-
trial processes, and health-care problems remains notoriously difficult for two intertwined reasons.
First, reward misspecification: even experienced domain experts often find it hard to translate informal
task goals into a numeric signal that is simultaneously accurate and safe [Leike et al., 2018]]. Second,
exploration is both risky and data-hungry [Dulac-Arnold et al., 2019]: a policy that begins from
scratch can damage hardware, or user trust, long before it gathers enough experience to learn anything
useful. Recent applied works [Nair et al.| 2020, |Kostrikov et al., 2022, [Tang et al.|[2025| |Park et al.,
Tirinzoni et al., 2025] alleviate these issues by pre-training policies offline and fine-tuning them with
online RL, but such methods assume direct access to (or observation of) the true reward, an assumption
that rarely holds in practice. A more realistic strategy is to start with a reward-free corpus of expert
behavior and allow the experts to refine that behavior online. The refinement signal can take several
forms: explicit numeric rewards from an operator, pairwise comparisons of trajectories, or scalar
ratings that train a reward model for RL from human feedback (RLHF). Variants of this idea already
power modern dialogue agents such as ChatGPT, which first imitate curated demonstrations of desir-
able responses and are then fine-tuned via RLHF on preference-derived rewards [Ouyang et al., 2022].
Similar approaches reach near-expert scores in Atari and MuJoCo by combining brief expert play with
thousands of comparison queries [Christiano et al., 2017], or recover usable rewards for real-robot
manipulation by ranking tele-operated clips before on-hardware fine-tuning [[Brown et al., 2020].

This paper formalizes a principled two-stage procedure: offline demonstrations supply a safe warm
start, while lightweight online feedback repairs the blind spots of the behavioral-cloning policy.
Merging these two information sources yields both higher sample efficiency and stronger safety
guarantees. Demonstrations guide the agent away from dangerous or hard-to-reach regions of state
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space, so exploration seldom visits unsafe states. Theoretically, when the offline data already explain
many state—action pairs, regret bounds shrink because the set of plausible optimal policies is greatly
reduced. Pragmatically, preference queries remain easy to elicit even when explicit rewards are not,
which lets non-technical stakeholders participate in the corrective loop. We conclude by detailing our
contributions:

* We develop a novel policy confidence set framework based on Hellinger distances between
trajectory distributions. By separating the policy and transition components of the MLE
objective, we extend [Foster et al.| [2024]’s framework to obtain distribution-level guarantees.
This confidence set (Theorem[3) is geometrically interpretable as a Hellinger ball in trajectory
distribution space while providing a corresponding constraint on allowable policies. Its
radius decreases with the offline sample size, effectively leveraging demonstration data to
restrict the policy search space. The approach generalizes to various policy and transition
model classes through appropriate covering number arguments.

* We adapt the online preference-based learning framework to leverage our offline estimation
components, resulting in BRIDGE (Algorithm|[I). By constraining policy comparisons to
our confidence set and initializing with the MLE transition estimate, our analysis yields
a regret bound (Theorem |§) that exhibits optimal v/T" dependence while demonstrating
how offline data reduces online regret. The bound contains terms that explicitly diminish
with increasing offline sample size n, and importantly, for any fixed horizon T, as n —
00, the regret approaches zero. This theoretical result confirms that high-quality offline
demonstrations can dramatically improve online learning efficiency, creating a principled
bridge between imitation learning and preference-based fine-tuning.

2 Related work

Behaviour Cloning (BC). BC reformulates RL as supervised learning on expert (state, action) pairs,
pioneered by road-following systems like ALVINN [Pomerleau, |1988|]. Recent theoretical advances
by [Foster et al. [2024] establish horizon-free sample complexity bounds under deterministic policies
and sparse rewards. Other algorithms such as DAgger [Ross et al., [2011] mitigate the covariate
shift during deployment through iterative expert corrections, achieving no-regret guarantees [Ross
et al., 2011]. Our method inherits BC’s simplicity but circumvents DAgger’s need for ongoing expert
availability through preference-based refinement.

Online RL with Offline datasets The paradigm of initializing policies through offline pre-training
followed by online fine-tuning has gained considerable traction, mirroring successes in supervised
learning. Early contributions in this domain include model-based algorithms tailored for hybrid
settings, such as the work by|Ross and Bagnell [2012]. After that, |Xie et al. [2021]] studied this hybrid
RL setting and showing that offline data does not yield statistical improvements in tabular MDPs.
This is different from our result, due to our expert’s data. Recently have been proposed empirical RL
algorithms designed to be effective in both offline and online contexts, aiming to facilitate seamless
offline-to-online fine-tuning [Rajeswaran et al.| {2017, |Hester et al.,|[2018, |Nair et al., [2018, Vecerik
et al.| 2017, [Lee et al., 2022| Ball et al.| |2023]. On the more theoretical side Song et al.| [2023],
Wagenmaker and Pacchiano| [2023]], [Tang et al.| [2023]] proposes statistical approaches to efficiently
combine offline and online datasets. Although these methods are related to our work, they assume
access to numeric rewards during fine-tuning. Our approach eliminates this, assuming access to an
expert trajectories dataset and preference-based online feedback.

Prior imitation-only approaches lack robustness outside the demonstration manifold; offline RL
fine-tuning usually demands ground-truth rewards. Our work bridges these gaps by (i) proving that
demonstration coverage plus a modest preference-query budget yields sharper high-probability regret
bounds, and (i) showing empirically that preference-guided exploration fixes blind spots with far
fewer risky interactions than pure online RL.

3 Problem formulation

We address the challenge of learning optimal policies by combining information from two com-
plementary sources: offline expert demonstrations and online preference feedback. In this hybrid
learning paradigm, we first leverage a dataset D of trajectories collected from an expert policy to
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establish strong priors over the policy space. Then, we strategically utilize these priors to guide
an online preference-based learning process, where an expert provides binary feedback comparing
pairs of trajectories. This framework enables us to efficiently narrow the search space using offline
demonstrations while refining our understanding of the expert’s underlying preference model through
targeted online queries. We aim to quantify how knowledge from offline demonstrations translates to
improved regret bounds in the online preference learning phase.

Finite MDP Setting (Reward Free). Consider a finite-horizon Markov Decision Process (MDP)
defined by the tuple M = (S, A, P, H), where S is a finite state space, A is a finite action space,
H € Nis the horizon length, and P = { P}, };,c[z] represents the time-dependent transition dynamics,
with Pp,(-|s,a) denoting the probability distribution over next states given state-action pair (s, a)
at step h. A policy m = {mj, },cm) consists of a collection of mappings 7, : S — A(A), where
A(.A) is the probability simplex over actions. A trajectory 7 = {(s5, an)}ne[n) is a sequence of
state-action pairs generated by executing a policy 7 in the environment following dynamics P. We
denote the space of all possible trajectories as 7. We assume the trajectories have a continuous
distribution with respect to counting or Lebesgue measure. For ease of notation, we will write P%, for
the density function of the trajectory distribution induced by policy 7 and dynamics P.

Offline demonstrations. We assume access to an offline dataset DY = {7;};[,) consisting of n

independent trajectories of length H, where each 7; ~ ]P’}**. This represents an imitation learn-
ing framework where trajectories are generated by an expert policy 7* interacting with the true
environment dynamics P*.

Online preference queries. We formalize preference-based learning through feature embeddings
and a probabilistic preference model [[Christiano et al., 2017, Saha et al.||[2023]. For each trajectory
T € T, we assume the existence of a trajectory embedding function ¢ : 7 — R? that is known
to the learner. This creates a natural complementarity between our learning phases: while offline
demonstrations provide raw trajectories that directly capture expert behavior, the embedding function
transforms these complex sequences into a structured representation space that facilitates preference
learning. The trajectory embedding function ¢ serves a critical purpose in our framework by enabling
meaningful preference comparisons that would be difficult to perform on raw trajectories. This
embedding approach provides a versatile framework that can accommodate various types of trajectory
information. The flexibility of this representation allows our method to adapt to different domains and
preference structures without changing the underlying learning algorithm. A policy 7 and dynamics
P induce a distribution over trajectories, allowing us to define the policy embedding as the expected
feature representation: ¢* () = Erpy [¢(7)].

In our work, we adopt two commonly used assumptions: bounded trajectory embeddings [Saha et al.|
2023] Parker-Holder et al., 2020b|] and bounded weight vectors [Filippi et al.| 2010, Faury et al.,
2020].

Assumption 3.1 (Bounded features). Forall T € T, the feature embeddings are bounded: ||¢(7)]|2 <
B for some known constant B < oc.

Assumption 3.2 (Bounded weights). There exists an unknown weight vector w* € {v € R : ||lv|y <
W} where the bound W < oo is known.

Definition 1. The degree of non-linearity of the sigmoid o over the parameter space (denoting the
first derivative of o by o') is given by

1
K= sup —_
xEBp(d),weBg(d) UI(WTX)

We model the preference feedback through a Bradley-Terry model. Given two trajectories 7; and 72,
the binary preference outcome 07,2 ~ Ber(P) is modeled as:

P(m1 = 72) = P(o1,2 = 1|11, 72) = o ((B(71) — B(72), w™)),

where o(z) = (1 + e~*)~! is the logistic function. This formulation corresponds to a latent utility
model where the inner product (¢ (7), w*) represents the utility of trajectory 7.

From this model, we derive a score function for trajectories s(7) = (¢(7), w*) and extend it to
policies as s¥' (1) = E;~pr, [s(7)], where P~ are the true transition dynamics. The preference

between two policies 7; and 75 can now be written as follows: P(m; = m) = o({¢F (1) —
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¢T (), w*)). This represents an expected preference over the distribution of trajectories, and
captures the average preference when comparing behaviors induced by different policies.

Offline estimation quality. For the offline phase, we measure the quality of estimation using
distributional distance metrics in the space of trajectory distributions. Specifically, we will construct
confidence sets in the form of Hellinger balls around our estimated density policy and dynamics.
Notably, the Hellinger distance relates directly to the L2 norm between square-root densities, enabling
a geometric interpretation of our confidence sets as Euclidean balls in the space of density embeddings,
with computational advantages over alternative divergences. The precise construction of these
confidence sets and their properties will be detailed in the Section[4]

Online regret. We quantify our online learning phase’s performance through regret measurement. In
each round ¢ € [T of online learning, the agent selects policies 7} and 72, receives binary preference
feedback o; € {0, 1}, and accumulates regret measured against the optimal policy. We specifically
use the pseudo-regret with respect to the policy class II as in|Saha et al. [2023]:

T 120P" () — Pr (k) — P (m2)] Tw* T 9sP" (n* — (s (x}) + 877 (=2
29" () — ¢ () — ¢ (m7)] :Z()(() (7))

I 2 2 ’
i t=1

where 7% := arg max ey s(ﬂ') All our performance guarantees will be expressed in terms of the
MDP parameters (state space size |S|, action space size |.4|, horizon length H), offline data quantity
n, online interaction rounds 7", and confidence level § of the offline estimation - establishing a direct
connection between offline data quality and online learning efficiency.

Notation. We denote [H] = {1,..., H} for H € N. For probability distributions P, Q, H?(P, Q) is
the squared Hellinger distance and TV (P, Q) the total variation distance. We denote BS(R) := {z €
R : ||z||2 < R} for the Euclidean ball of radius R, and for any = € R?, we define 2®2 := zx T as
the outer product.

4 Bridging offline behavioral cloning and online preference-based feedback

Our framework leverages offline expert demonstrations to improve the efficiency of online preference
learning. The key insight is that we can use maximum likelihood estimation (MLE) on the offline
dataset D’ to construct confidence sets in the policy space that likely contain the expert policy. This
approach has two important features: First, by using Hellinger distance, we obtain confidence sets that
correspond to Euclidean norm balls in the space of square-root densities, providing a geometrically
intuitive interpretation. The radius of this ball shrinks at a rate of O(1//n) with offline sample size,
establishing a quantifiable relationship between offline data quantity and online learning efficiency.
Second, we develop a technique to make this confidence set computable using only observed data,
despite the theoretical formulation involving unknowns.

When we restrict the online phase of BRIDGE to sample only policies from this confidence set, we
significantly reduce the number of expert preference queries needed compared to algorithms without
offline data access. This hybrid approach effectively trades offline demonstrations for reduced online
expert interaction. Geometrically, our confidence set has a clear interpretation as a Hellinger ball in
the space of trajectory distributions. However, when mapped to the policy space, it forms a more
complex shape due to the nonlinearity of the inverse functional mapping from distribution metrics to
policy parameters. Figure[I|explains the relation between these quantities. In the rest of this section,
we formally explain how BRIDGE uses offline behavioral cloning data to warm-start an online
preference-based learning process.

4.1 Offline behavioral cloning and uncertainty estimators

We apply maximum likelihood estimation (MLE) on the offline dataset DX of expert trajectories to
obtain separate estimators 7, P for the optimal policy and transition model respectively. We then
derive a confidence set around the estimated optimal policy 7, which constrains the policy search
space in the second, online preference-based learning part of our method. Relevant corollaries and
their proofs are presented in Appendix |B] We start by making a standard realizability assumption.

!Saha et al.|[2023] showed that the standard preference-based regret formulation is equivalent up to constant
factors, when B, W < 1.
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Figure 1: Framework overview: Offline estimation using dataset D constructs a confidence set as
a Hellinger ball in trajectory distribution space (left), which translates to a constraint set in policy
space containing 7*. This constraint set is then handed to the online preference learning phase (right),
where policies are sampled from within this set and presented to the expert for preference feedback.

Assumption 4.1 (Realizability). The optimal policy belongs to the policy class, 7* € 11, and the true
transition function belongs to the transition class, P* € P.

Policy estimation via log-loss Behavior Cloning. We define the log-loss behavioral cloning estimator
as:

F = argmax _Z > log(ma(aj|sh))- (1

We characterize the estimation error in terms of the Hellinger distance between trajectory distributions
in Corollary[20]in Appendix B.3] using concentration results by [[Foster et al.|2024], cf. Appendix[B.I]

Transition model estimation via Maximum Likelihood Estimation (MLE). Similarly, we define
the MLE transition estimator as:

_argmaxz Z <log 3h+1|s;’l,aﬁl)]>. )

We describe the transition estimation quallty in Corollary [_4111 Appendix [B.3.2, using maximum
density likelihood concentration results by [Foster et al. [2024]

Policy confidence set construction. We start by defining the concentrability coefficient, usely defined
in offline RL literature [Chen and Jiang, 2019].

Definition 2 (Concentrability Coefficient).
Ayt
C(x,7) = sup sup #.
te[H] (s,a)ESX.A:d}r,:t(s,a)>U dP* (57 a)

Intuitively, this coefficient measures how much the state-action visitation distribution of policy 7 can
deviate from that of the expert policy 7* under the true dynamics P*. To bound this quantity, we
make the following standard assumption [Levine et al.|[2020, |Chen and Jiang, |2019] about minimum
state-action visitation:

Assumption 4.2 (Minimum Visitation Probability). There exists a constant V., > 0 such that for
all state-action-time tuples with non-zero probability under the optimal policy, that ensures that all
relevant state-action pairs have a minimum positive probability under the expert policy.

min - dp.'(s,0) > Ymin- 3)
(s,a,t):d;*’t(s,a)>0

Given this assumption, we can derive a deterministic bound on the concentrability coefficient:

2Note that while we present results specifically for tabular, stochastic and stationary transitions, our framework
readily adapts to other transition model classes by deriving appropriate covering number bounds using the
general results in Appendix E}
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Lemma 3 (Concentrability Coefficient Bound). Consider a policy estimator 7 satisfying
H?(P}.,P}.) < R.
Then, under Assumption the concentration coefficient is bounded by

2vR

Ymin

Clir,m*) <1+

This bound is key to our approach: it allows us to replace the unknown concentrability coefficient with
a deterministic upper bound that depends only on our policy estimation error and the minimum vis-
itation probability. We can now construct a practical confidence set as shown in the following lemma:

Lemma 4 (Offline Policy Confidence Set). Assume the following events hold:
E, = {HQ( AP < Rl(él)}, such that  Prob(E;) > 1 — 6§y,

Ey = {HQ(]P’TP*,IP’}Bi) < R2(52)}, such that  Prob(Es) > 1 — 0s.

Then, under Assumption the policy set

H'l’ﬂ”g’e::{ﬂ H2(PT P \ﬁ+\/>< \/<1+2m>.H)}

’Ymin

is a confidence set of level 1 —§ =1 — (61 + J2), i.e

Prob(r* € IP) > 1 — (8; + d2).

The key insight is that the concentrability coefficient now appears as a deterministic term in the
confidence set radius, allowing us to construct a practical confidence region using only quantities that
can be computed from offline data, along with our domain knowledge about the minimum visitation
probability. This confidence set will be central to our online learning phase, providing a principled
way to constrain the policy search space. By combining our tabular setting results from Corollaries 20|
and 24 with the concentrability coefficient bound under Assumption we can derive an explicit
formula for the confidence set radius:

Theorem 5 (Offline Confidence Set Radius). Under the setting described above and Assumption[4.2)
with 61 = do = §/2 and defining

o= +/4-1S| - log(]A] - 2/5),
B:=/4-]S|?-|A| -log(nH -2/5).

The policy set
H({ﬁzige — {7r : HZ(]}D}TE.’IP?ED) < RadiuS},

is a confidence set of level 1 — § containing 7* with probability at least 1 — §, where

Radiuszjﬁ+\/ﬁﬁ-<l+\/H-<l+m)>.

This result provides the fundamental connection between offline data and online learning efficiency:
the confidence set radius scales as O(1/4/n) with the offline sample size n. This inverse square root
dependence means that as we collect more offline expert demonstrations, the confidence set shrinks,
constraining the online policy search space more tightly. Since our online regret bounds will directly
depend on the size of this confidence set, this establishes a quantifiable trade-off between offline data
collection and online preference query efficiency, a key contribution of our work.
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4.2 Online preference-based learning

In this section, we present how BRIDGE uses behavioral cloning estimation to guide online
preference-based learning. Although we adapted the algorithm from Saha et al. [2023], our offline-to-
online approach can be applied to other preference-based RL algorithms beyond BRIDGE.

Our online preference learning follows |Saha et al. [2023], who adapted generalized linear models
from parametric bandits [Filippi et al., 2010, [Faury et al.,|2020] to the preference-based RL setting.
As in|Saha et al. [2023] we compute a regularized maximum likelihood estimator w~¥ to learn
the preference welght vector w* from pairwise comparisons. However, since w/L£ may not satisfy
assumption 3.2, as in[Saha et al. [2023] we define the data matrix V;, which approximates the Fisher
Information Matrix (the negative expected Hessian of the log-likelihood):

-1 t—1
Vi =rMa+ Y (6(r7) — ¢(72) %% ge(w) = >0 ((¢(7) — (77), w)) (¢(7') — $(77")) + Aw.
=1 =1
Then, the projected parameter, a constrained version of w1 ¥ is given by
wi" = arg min [lg(w) — g(w){"F |y, “)

This matrix V; serves dual purposes: defining a confidence ellipsoid C;(6) = {w : [|[w—w?"" |y,

2k/3:()} containing w* with high probability, shaped by the likelihood curvature, and guldlng
exploration by quantifying uncertainty through ||- ||V_ , prioritizing directions with sparse information.

This approach can be further strengthened by relatlng the empirical norm || - ||y, to an expected
norm || - ||z, where V; = kMg + Y ")” Y(@P(r}) — ¢ (2))®2. It can be shown that || - ||y, is
approximately equivalent to || - |57, up to terms depending on the confidence bonus.

Our key contribution is connecting the offline estimation with the online learning process through
two mechanisms: (i) leveraging the offline data to make a first estimation of the transition model,
and (ii) constructing an initial dataset of policies that are plausible with the expert data. We refer the
reader to (Appendix |C)) for a detailed explanation of the likelihood-based mechanisms inspired by
online binary bandits that underpin this approach.

Transition Model Integration. We leverage our offline MLE transition estimate as the initialization
for online learning. In the tabular setting, the MLE for transition probabilities from Eq. is
equivalent to a count-based estimator. As we collect online data, we update this estimator to combine
both offline and online counts:

Pi(s'|s,a) = Nott(s', 5,a) + Ni(8', 5, )

Notr(s,a) + Ne(s,a ’

where Ny (s', s,a) counts transitions from state-action pair (s, a) to state s’ in the offline dataset,
Nost(8, a) counts visits to (s, a), and N¢(s', s,a) and Ny (s, a) are the corresponding counts from the
first ¢ rounds of online interaction. We define our adapted bonus incorporating both offline and online
data as:

~ Uh
B 8) = Erpr in | 27,4
t(7ra777 ) Pjst Z e ( N n\/NOff(Sh,axh) +Nt(8h7ah)>

he[H]

where Uy, = H log(|S||A) +log <6log(N““(s“’“§)+Nt(“”“a’”)) . This adapts the bonus structure from
Chatterji et al.| [2021] to leverage our combined offline-online transition estimator.

Remark 6. This integration approach, while effective, has potential for further improvement. First,
it does not fully leverage the independence structure of the offline dataset, which could lead to tighter
concentration bounds. Second, potential distribution shifts between offline and online phases are not
explicitly modeled. These refinements represent promising directions for future research, though our
primary focus remains on policy fine-tuning rather than optimal transition modeling.

Feature Moment Bounds. We constrain policy selection to our offline-derived confidence set
I19™ine(TT). This enables us to bound the difference between expected feature representations of
policies, which directly impacts the uncertainty quantification in our online learning phase.
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Algorithm 1 BRIDGE: Bounded Regret with Imitation Data and Guided Exploration

: Input: D2, T
. Estimate P via MLE (Equation @) and compute confidence set H‘l’f_ﬁige (Theoremlél)

1

2

3: Initialize ]31 — ]3, Vi« My > Initialize model and data matrix
4: fort=1,...,T do

5 Compute w?™ via constrained MLE (Equation dé_ll))

6 Define policy set IT, based on TI9™2¢ and 1P (Lemma

7

(my, 77) = argmaxm reer, {7 - @7 (71) — 67 (72) g

+ By(n',2W B, §') + By(n2,2W B, §')}
1 2
8  Sample trajectories 7 ~ P, 77 ~ P’ and obtain preference o; = I(7} > 777)
t . t . .
9:  Update matrix: Vi1 < V; + (6T (7}) — ¢T* (72))®2 and model P,

10: end for

11: return Best policy from Iz using final weight estimate w5

Lemma 7 (Feature Moment Bounds). Let X be a random variable on measurable space (X, X)
and f : X — R? be a bounded function such that ||f(z)||s < B < oo forall x € X. For
probability distributions P, Q) that are absolutely continuous with respect to the Lebesgue measure, if
H?(P,Q) < R, then

IEx~p[f(X)] - Ex~olf (X))l < 2v2- B- VR.

This lemma provides a crucial connection between the Hellinger distance of trajectory distributions
and the distance between their expected feature representations (embeddings) by setting f = ¢. In
our preference-based learning framework, we apply this result to bound the elements of the expected
feature covariance matrix V. The trace tr(V;) = >, , p(rt)—(xt )||2 represents total variance,
which Lemma 7] controls via our confidence set construction.

At the start of our online learning process (t = 0), for policies 7§ and 7 that belong to our offline-
derived confidence set I1$™2¢ from Theorem@ the Hellinger distance between their induced trajectory
distributions is bounded by the confidence set radius. Applying Lemma[7|with f = ¢, our trajectory
embedding function, we obtain:

2 2 1
Por0y — o (2|l <4vV2-B-O [ — ).
lp7 (77) — 6™ (x9)l|2 < 4v2 Tn
This result has profound implications for our regret analysis. By constraining policies to our
confidence set, we effectively control the variance of feature differences, allowing us to replace the

naive bound || ¢ (1) — ¢ (xt)||2 < 2B with our tighter bound that decreases with the offline

sample size n. As online learning progresses, the transition model P; improves through additional
data collection. Importantly, this improvement in the transition model only strengthens our bound.
The exact form of this improvement depends on the concentration properties of the online estimator
and will be formalized in our final regret proof.

Based on these bounds, we can now define a policy confidence set that contains the optimal policy 7*
with high probability while accounting for both estimation uncertainty and exploration bonuses:

Lemma 8 (Online Policy Confidence Set). Let I1; be the set of policies defined as
II; := {77 S H‘l’ﬁzige |V7r' S Ht{/}jlge :
(o7 (m) = o™ ("), w]™) + 3¢ - 67 (m) = 67 (n) |-
+ By(m,2W B, &) + By(n',2WB,8') > 0},

where §' = W. With probability at least 1 — 8, the optimal policy 7 remains in 11, for all t €

[T, where § has been scaled appropriately via union bound to account for the separate probabilistic
events in the offline confidence set, transition model estimation, and parameter estimation components.
The confidence radius multiplier v, is provided in the appendix.

The complete algorithm is described in Algorithm I}
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4.3 Theoretical guarantees

We can now state the following regret bound for BRIDGE. The proof is shown in Appendix D.

Theorem 9 (Regret Bound with Offline-Enhanced Exploration). Let n be the number of offline
demonstrations with minimum visitation probability vy, > 0 for state-action pairs. With probability
at least 1 — 6, the regret of BRIDGE is bounded by

~ . T|S|-B2-+/|A|-H

Rr <2 ~p - T'log(1+ )

—~— d

Term 1

Term 2
_ TH H5/2 BT 1/2 1/4
+0 <H|S| ATH | HPWBVT | oy 7 ISIZART 1'“4' :
T+ Ymin /T Ymin nl/4
Term 3
where

yr =0 ((FH— BW)+/dlog(T) + H*WB|S| - \/min {log(T)7 p—— } + vHWB) ,

and we have set € = % to optimize the bound.

From this regret bound we can observe that as n — oo with fixed Vi, > 0: (1) Term 1 ap-
proaches O((k + BW)y/dlog(T) + vV HW B); (ii) Term 2, the logarithm, approaches log(1) = 0;
(iii) in Term 3, all components approach zero. The overall regret bound exhibits a /7' de-
pendence as in Saha et al. [2023]. However, this results in a regret bound that can be made
arbitrarily small with sufficiently high-quality offline data, changing the complexity of regret
analysis without having access to an offline expert dataset. This result helps in closing the
gap between empirical results in applying RL in real-world scenarios and theoretical works.

100 — Online PbRL
— BRIDGE

4.4 Numerical simulations

We provide initial simulation results based on a practical imple-
mentation of our algorithm. As baselines we used [Foster et al.
[2024]’s behavioral cloning (BC) and [Saha et al. [2023]’s PbRL
algorithms (for which no implementations are publicly avail- 0
able). We used the StarMDP and Gridworld environments

described in[Pace et al.|[2024]]. Appendix [F]gives more details !
on our experiments. Figure [2/ shows that with as little as 2

offline, optimal trajectories, BRIDGE prunes the policy set and o
converges to the optimal policy faster than PbRL. %

Number of policies in 11,

5 Conclusions

% of optimal reward

We present BRIDGE, a novel algorithm for fine-tuning BC
policies using online PbRL. Our approach is motivated by the
practical challenges of deploying RL in real-world settings, o T OnlePort
where reward specification is difficult and exploration is risky. T

By combining these two feedbacks, we construct confidence )
sets that constrain the policy space and guide safe, sample- Figure 2: Performance comparison
efficient learning. We provide the first theoretical regret bound of our new algorithm with ofﬂme
for this hybrid learning paradigm, showing that offline data BC [Foster et al.,[2024] and online
reduces regret through a shrinking uncertainty radius. Our anal- PbRL|Saha et al. [2_023]~ The dot-
ysis builds on recent advances in BC and PbRL, and crucially ted red and green 11ne§ are the ex-
integrates them into a unified regret framework with provable pected return of the optimal and BC
benefits. Our work opens new directions for interactive learn- policies respectively.

ing systems that can safely and efficiently improve with human

input, even in the absence of explicit reward signals.

5 10 12 14
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A Simplified Setup for Understanding Regret Analysis

In this section, we propose an analysis of the regret under a simplified setting: The underlying
dynamic P* is known. This idea is to help the reader understand how the construction of the
confidence set over the policies from the offline learning estimation helps to reduce the number of
policies to draw from in the online learning setting, without being overwhelmed by the estimation of
the transitions. In this setting, it is then clear what part of our methods applies to the policies. The
goal is to prepare the reader for the proof of our algorithm BRIDGE in Appendix D,

Offline Estimation

Lemma [10: Offline Policy Confi-
dence Set

- Defines the set of policies I19ne
- Corollary 20 = Contains true
policy 7* w.p. 1 —6

Online Estimation

b

e )
Lemma [IT: Optimal Policy Con- ( - )
tainment Algorithm 2: BRIDGE (Known
- Ellipsoid CI Lemma Model)
- Change of norm Lemma [3T] - Starts with offline confidence set
- Conditioned on Lemma [10] - Computes policy set II; at each
E— round
- Ensures 7* € II; for all rounds ¢ - Selects maximally informative pol-
- Combines offline confidence with icy pairs
online estimation L J
& J
Regret Analysis
( = 0 -
Lemma [13: Feature Difference .
Bound Theorem [14} I}egret Analysis
- Leverage Distributional Dist. - Final bound: O(T" - {/log(1 + 7;"3‘ )
Lemma
& J
( 7

Key Insight:

- Algorithm leverages offline data to reduce explo-
ration cost

- With sufficient offline data, regret becomes con-

stant

- Feature dimension d amplifies offline data value

- Bridges gap between offline imitation and online
preference learning

- J

Figure 3: Proof Overview for BRIDGE Algorithm with Known Dynamics
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A.1 Setup for Known Dynamics
A.1.1 Offline Estimation with Known Dynamics

Assume we get the offline data DX = {7i}ie[n)- The underlying object describing the trajectories
is a Finite MDP Reward Free setting as in the main paper. Assume that the set of possible policies
is stationary and deterministic. Then under the fact that the underlying dynamic is known, the
confidence set from Theorem 5 reduces to the following, by direct application of Corollary 20} i.e.,
setting the radius around the MLE estimate 7,z from Equation .

We formalize this into the following lemma:

Lemma 10 (Offline Policy Confidence Set under Known Dynamics). Let 7 be the log-loss BC
estimator defined in Equation (7).

The policy set
o X 6-1S|-1 .51
e .~ {W:H( T, 3;*)<\/ 5] loa(}A )}

n

contains T with probability at least 1 — 6.

Proof. Note that by symmetry
H( ;*7 T;*):H( 7hTP*? g*)
Then the result follows from Corollary 20} O

A.1.2 Online Learning with Known Dynamics

Here we adapt our algorithm BRIDGE to the setting with known dynamics. This means we adapt
the approach from Saha et al.|[2023]] under known dynamics to constrain the set of policies to choose
from to our confidence set described in the previous section.

First, since the transitions are known, we define for this section:

ot (m) i= ¢(m) = Erpr, [¢(7)]

. =P” .. .
We also define the expected data matrix V', under the true transition dynamics P* as follows (see
Appendix |C|for an overview of results about data matrices):

. t—1
Vi =L+ S (6(nh) — o)) (o(m) — o(n2))
=1

Then we define the set of policies to draw from as:
IM; := {71' € Tr9ffine |V7T’ € Tr¢fMine .
(¢(m) = o), wi™) + - [ é(m) = S(n)| ey 2 0}

where 7 1= 253;(6) 4+ 4,7 (8) and g (6) is defined as in Lemma 31]
Lemma 11 (Optimal Policy Containment). Conditioned on F,,~ N EVP* N Eopgine where:
P )

o E~ is the event defined in Lemma
. EV;* is the event defined in Lemmalﬂ'

o
* Eypine == {7" € Hljfgw

then

eIl VtelT]
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s04 Proof. This follows directly from Lemma 2 in|Saha et al.|[2023]. We adapt the probability parameter
505 & to account for the additional condition that 7* € 17", which holds with probability at least 1 — §
s06 according to Lemma O

507 We now present the adapted version of BRIDGE for the known transition model:

Algorithm 2 BRIDGE: Bounded Regret with Imitation Data and Guided Exploration (Known
Model)

1: Input: Offline dataset ]D)f , time horizon T', true dynamics P*

2: Compute confidence set 19 ysing Lemmal&'

3: Initialize Vi + kAL, > Initialize data matrix
4: fort=1,...,Tdo

5: Compute w;"™ via constrained MLE (Equation dﬂl))

6:  Define policy set IT; based on I and w}™

7. (7, m) < argmaxm, wzent{||¢( ) = o) ey}

2

8: Sample tra]ectorles Tt ~ IP’ P 72 ~ P}, and obtain preference o; = (7} = 77)
9:  Update matrix: Vi ; -V, + ((r}) — o(x2))(@(x}) — d(x?))T
10: end for

11: return Best policy from Il7 using final weight estimate wh:!

s08  A.2 Regret Analysis: BRIDGE (Known Model)

509 We now present a regret analysis of the BRIDGE algorithm under known transition. We start by
s10  stating the following lemma:

511 Lemma 12. The regret of BRIDGE under known dynamic is upper bounded as follow:
Ry <4-(Br(0) + ara(8) - Y llé(m) =0T ey

te[T)

stz Proof. For ease of notation we define 6*1¢ := ¢(7*) — ¢(n!). First we bound the instantenous
513 regret

2,,,t <6* 1¢’ > <5*,2¢7 w*>
< (5 W) (52, W)+ — W (na*’wn(v;*)l - ||6*’2¢||(V5*)1>

<5 o) 4 (7, W) + 2n0) + ana(0) - (1516l g, 1576l e,
Lemma[31]
st Then notice that choosing 7}, 77 as arg max together with the fact that 7* € II; Lemmall 1] yield

210 < (6710, wE) (0726, (265400) + ara(@)) - (19201 -, )

515 Next using the fact that 7}, 77, 7* € II; we have the following constraints

<5i7*¢7throj> +'7t||6*’i¢||(vf’*)—1 Z 0 1€ {1’2}

& (070, wi™) < 3|6 ¢l re i€ {1,2)
s16  yielding
2ry < (26:(0) + 0<T,d(5))||51’2¢||(75*)_1 < 4(2B7(0) + ar,a(9)) - H51’2¢||(Vf*)_1
517 Hence

Ry =Y 1 <2-Br(6) +ara(d)) - Y 6" 201l e

te[T] te([T]
518 O
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536

537

The remaining step in our analysis is to bound the term:

S o) — oDl ey = 3

te[T] te[T]

v

A simple approach would be to use Assumption which states that the feature map ¢ is bounded
in {5-norm by B. However, our offline confidence set construction in Lemma |10 provides a more
powerful result: policies in our set have distributions that are close not only in Hellinger distance but
also in the resulting feature expectations.

This is precisely why we formulated our confidence set constraint using the square root of the squared
Hellinger distance - it yields a bound on the Lo norm of distribution differences. Through Lemma 49]
we can translate bounds on Hellinger distance into bounds on the difference of feature expectations
in the ¢5-norm.

We formalize this connection in the following lemma:

Lemma 13 (Feature Difference Bound Under Offline Constraints - Corrected). For policies 7rtl, wf €

H?ﬂﬁ g"e selected by our algorithm at each round t € [T, the sum of feature differences measured in
the data matrix norm is bounded as:

> o) — ol )II(—P* 1§\/2d-log< 19232T|3\1§g()|\A\ 5 1))

te(T]

and |A| are the state and action

space sizes, and n is the number of offline samples.

Proof. First note

> l6(m) = o) reya < T3 o) = o)

te[T) te[T]

then notice the inequality

u<2log(l+u) u>1 = Z||512¢|\ ey S 2 Zlog1+||§12¢|\ )
te[T] te[T]

Using the definition of Vf ) , we have
Vi = A Lixa+ 3 (8(r}) — $(x2) (9(m)) — p(x2))”
1€[t]
— V! +(6(m)) — $(m2))(d(m)) — p(a2))T
— (e (I T () — ) () — ()T (T *>1/2) Wy

Using properties of determinant:

7P*

det(V) = det(V, ) - det(I +(V; ) 7/2((r}) = o(n2)(@(m}) = o(xE)T (V] )H/2)
= det(V, ) - (1+[[6(r}) = () |2;r- )
= det(Vp) - [T 0+ llo(rd) = o(x2)2e )

s€E(t]
&

det(V
lg[det(;/;rl} S tog(1 + 9(h) — 62 e, )

s€t]
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538

539

540

541

542

543

544

545

546

‘We have for the determinant:

*

—P 1 —r \*
det(Vy ) = [ xi < <d ~Tr{Vt+1})
i€[d]

Using linearity of trace:

Te{Viny} = T 4+ 3 Tr{(6(nh) — o(x2) () — 6(x2)7}

s€(t]

=d- 2+ ) ll¢(m) — d(m)l3

s€(t]

Applying the corrected bound from Lemma 49}

l6(rd) — S22 < (V2 B B2 PRL))?

<8B?%.

24-|S]

log(|A]-671)

n

_ 192B%[S|log(|A] -0 1)

n

Using this tighter bound in our trace calculation:

Te{Vi,} <d- A+t

zd)\<1

Hence:

192B2|S|log(|A| - 67 1)

_|_

n

192B2%t|S| log(|A| - 5—1))

n-d-\

__p~ —p*
log [det(vtﬂ)} <d-log <Tr{‘;t+1}>

det(Vo)

do10g<)\(1

—dolog()\)+d~log(

n

N 192B%¢|S|log(|A] - 671)
cd- A

Since det (V) = A%, the first logarithmic term cancels out:

7P*
det(V
log [G(H)] =d-log (1+

192B%t|S|log(JA] - 1)
1+
n-d-\

192B2%t|S|log(|A| - 671)

n-d-\ )

det(Vp)
Therefore:
det(VP* )
Y = (x2)||* e <2-log | ——TEL
2 llotm) Ol ey = Og[ det (Vo)
te[T)
2 51
< 2d-log (14 2B IS log(| Al -67)
n-d-\

Taking the square root:

S 19(m) = $()l e 0 <

te[T]

\/2d-log (1+

18

192B2T'|S|log(|A| - 6-1)

n-d-\
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Theorem 14 (Regret Analysis for BRIDGE under Known Model). Let § < 1/e and X > % Then,
with probability at least 1 — 0, the expected regret of Algorithm[2]is bounded by:

Ry < (2r07(9) + ad,T(a))\/Qd log (1 | 19282715 log(|A| .51))

n-d-\

In asymptotic notation, this becomes:

T|S
Rr=0 ((W\/HB + W B) dlog(TB/rd), log (1 + |d|)>
n .
where the probability parameter 0 accounts for the events
E,- —  LemmalBQ
Ep —  Lemmal31l
T
Eofine = {m* € H(l)jf?e} —  Lemmall0]

Remark 15. This result demonstrates a significant improvement over Saha et al. [|2023]’s bound
of O ((W\/ kB + WB) dlog(TB//f(S)\/T). The key advantage lies in the term \/log(1 + m)

n
which approaches zero as n — oo, potentially yielding constant regret.

A.3 Practical Regret Analysis with Fixed Offline Data

For a fixed offline dataset of size n, our regret bound scales with horizon 7' as:

Rr=0 (F-\/log <1+?§|>>

where I' = (W+/kB + W B)dlog(T B/kd). This bound reveals three distinct regimes:

1. Small T’ Regime (T'|S| < n - d): Using log(1 + ) ~ z for small x:

RT:O<P.m>:O<F-\/T~%)

2. Transition Regime (T'|S| =~ n - d):

Rr=0()=0 ((WWTB + WB)dlog(TB/mS))

3. Large T Regime (T|S| > n - d):

Ry =0 (F~ \/log(T))

These regimes highlight two key insights: (1) with sufficient offline data (n = Q(%)), regret

dramatically improves from O(4/log(T")) to O(1) in the dependence on T'; and (2) feature dimension

d amplifies the value of offline data, allowing the same regret reduction with v/d times less data. This
explains why high-dimensional problems may benefit more significantly from offline data.

As n increases, regret transitions from logarithmic (O (log(7"))) to sublinear (O(1/1'/n)) and even-
tually approaches O(1) when n >> %. In the limiting case where n — oo, exploration becomes

unnecessary, and regret is bounded only by statistical error in the offline estimation.
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B Offline estimation

B.1 Maximum Likelihood for Density Estimation

In this section, we present Maximum Likelihood Estimation (MLE) for density estimation that forms
the foundation of our concentration results. While these results are presented more extensively in
Foster et al.|[2024], we include them here for completeness and readability.

The analysis of MLE relies on standard concentration techniques following the well-established work
of van de Geer [2000] and |Zhang| [2006], enhanced by new Freedman-type concentration inequalities
developed in [Foster et al.|[2024] (Appendix B).

The key proof strategy connects MLE analysis to information-theoretic measures via Rényi
divergence of order 1/2. Specifically, the approach bounds expressions of the form —n -
log(E, g+ [e2 lo8(9(2)/9"(2))]) | which equals 5 - D1/2(gllg*). This term is bounded using Freedman-
type inequalities for adapted sequences, which provide high-probability bounds of the form
23:1 —log(E;_1[e=*t]) < Zthl X; + log(6~1). When combined with union bounds over &-
nets, this yields tight concentration results for the entire function class. The approach also leverages

connections to Hellinger distance through the identity H?(g,¢*) = 1 — [ \/g(z)g*(z)dz, providing
geometrically interpretable guarantees.

To handle infinite classes, we introduce a tailored notion of covering number for log-loss:

Definition 16 (Log-Covering Number). For a class G C A(X), the class G' C X is an e—cover if
forall g € G, there exists ¢ € G' such thatVx € X

log(g(x)/g'(x)) <€
The size of such cover is defined by Niog (G, €).

Consider the data D,, = {x; };c[n] consisting of i.i.d copies of  ~ g* where g* € A(X’). We have a
class G C A(X) that may or may not contain g*. The density MLE estimator is defined as

§ = argmax > log(g(w:)) )
i€[n]
Lemma 17 (Maximum Likelihood Estimator Bound). The maximum likelihood estimator in Eq. Equa-
tion (5) has that with probability at least 1 — 6,

o . 61og(2N10g(G,€) /671
H*(g,g") < inf { -

e>0

) + 45} +2 125 log(1 4 D,2(g"l9))
g

In particular, if G is finite, the maximum likelihood estimator satisfies

6log(2|G|/6~1
12(3,9%) < DRI g it tog(1 + Dye(97l1)
g

Note that the term inf 4cg log(1 + D,2(g*||g)) corresponds to misspecification error, and is zero if
g eq.
B.2 MLE Objective of Dataset of Independent Trajectories

Given a data set of reward free trajectories D = {7i}ie[m) of n trajectories of length H where

{1} ~iia T~ IP”[;*. The distribution IP’}** is assumed to be continuous w.r.t to Lebesque measure.
It is characterized by the policy density 7 = {7;};cz] € II and the stationary transition density
P = P where I, P characterize the policy and transition density spaces. The log-likelihood of the
set with for a policy 7 and a transition P reads:

Z log [P(si) - m(af,s1) ] Plsilsior ajr)ms(ajls))]

16 [n] 1<j<H

The maximum likelihood objective over the density class {P%} 11, pep for the dataset D

argﬂerﬁlz}sxe Z Z <10g7fz J|5 ) ZZ(log j+1|3]a m) (6)

i€[n] jE[H] i€[n] j=0
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B.3 Concentration Bounds

In this section we provide concentration bounds for the MLE estimators of the policies and the
transition model, as well as for our notion of concentrability coefficient. The important takeaway
is that the control of the error, i.e., the decay of these concentration bounds depends only on values
known to the user, which will allow us to compute confidence policy sets based on these bounds.

B.3.1 Policy estimation

Define the log-loss behavioral cloning estimator for dataset DX as described in @ as

7= mgmax 3 3 log(m(a}sh) )
i€[n] he[H]

which is from Equation (6) equivalent to performing maximum density estimation over the density

class {P%. }rer. Similar to deﬁnition [Foster et al., [2024] define the following

Definition 18 (Policy Covering Number). For a class I1 C {m, : S — A(A)}, we say that
Il C {7, : S = A(A)} is an e—cover if for all m € 11 there exists 7' € I’ such that

malals) y
g<7T;L(a|5)) <e VY(s,a,h) €S x Ax[H]

We denote the size of the smallest such cover as Npo (11, €)

We state the following theorem from [Foster et al.| 2024, Appendix C]:

Theorem 19 (Generalization bound for logloss-BC). The Logloss BC estimator Eq{7 satisfies with
probability > 1 — §

Glog(QNpol(l_L 6/H)671) + 6}

H? (P, P%.) ginf{
n

€
in particular, if 11 is finite

6 -log(2-|IT] - 61)

H2( ;15*7 gk*)g n

Proof. See [Foster et al., 2024] Appendix C]. O

Corollary 20 (Deterministic Stationary Tabular Policies). If II = Hg i.e the set of deterministic
tabular policies the log-loss BC estimator Eq[7|has that with probability at least 1 — §
6-]S|-log(|A] - 67

H2(PL. PT.) <
(PaP)— n

Proof. We have |15 | = | A|IS] O

In the case we don’t have deterministic but stochastic policies, we need to determine log(Npe; (g, €)).
This can be accomplished using a discretization argument, where we create a finite e-net that
approximates the continuous space of stochastic policies within the desired error tolerance.

B.3.2 Transition model estimation

Here we can give a similar argument as for the policy log loss BC estimator. We define the following
estimator

H
P = arg max Z Z (IOg[P<S§+1|S§'7a;)]> ®)

i€[n] j=0

which is from Eq. [6 equivalent to performing maximum density estimation over the density class
{IF’TIB* } pep. Similarly, we define the following notion of covering
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Definition 21 (Stationary Transition Log Covering Number). For a class of stationary transition
probability functions P C {P : S x A — A(S)} we define that P C {P: S x A — A(S)} isan
e-cover if for all P € P there exists P' € P’ such that

P(s']s,a)
1 — ) <e VY(s,5)€8S,ac A
og (P’(s’|s,a) <e V() a
We denote the smallest such cover by Niyans(P, €)

Assumption B.1 (Realisability of Transition). We assume the true transition density to be in the
model class i.e P* € P

We can now give a similar guarantee as for the log loss policy estimate but for the transition estimate

Theorem 22 (Generalisation Bound for MLE Transition Estimator). The MLE transition estimator
of Eq[8| satisfies with probability at least 1 — §

610g(2Nirans (T, ¢/ H)5™) }

H*(PT,P}.) < inf { .

Proof. Given a valid e-cover of P from definition 21 we have
H
PE P(snt1lsn,an)
lo P ) = lo (’ <e-H
¢ (P}B/ hz::l S\ P (snaalsn, an)

this means that we get a valid € - H cover for the trajectory density class. The bound follow be a
direct application of Lemma O

Lemma 23 (Transition Covering Number: Stationary Tabular Stochastic Transitions). For a class of
stationary transition probability functions P C {P : § x A — A(S) where |S x A| is finite (tabular
MDP), the e-cover from Definition|21|satatisfies:

1
108 (Nirans (P2 0) < 181 1A (18] = 1) o (£ 1)

Proof. The proof follow a standard geometric discretization argument for finite class of function (see
Chapter 5 [Wainwright|[[2019]]) . For a given € > 0 we construct a geometric grid:

Ge = {0,6 - exp(€/2), 5 exp(e), d exp(3e/2), ..., d exp(ke/2) }

where § > 0 is the minimum probability and & is chosen such that the grid represents a discretization

of the continuous interval [0, 1] i.e
2log(1/6
dexp(ke/2) = k> 2log(1/9)
€

Thus the grid size is at most:

€

G| < [

For each state action pairs (a, s) define P(s;|s,a) = p; fori € |S|. Note that for the first 1, ..., |S|—1
there exist ¢; := P’(s;|s,a) € G, that satisfies by construction

exp(—€/2) < % < exp(e/2)

(3

210g(1/5)-‘ +1

For the last state ¢ = |S
Let define S, := ZLS_II g; and S, := ZL‘S_” p; we have the constraint

, we need to determine g|s| close enough to ps).

p\S\ =1- Sp
s =1-85—¢q
From the bound on the first 1 — |S| elements we have

Sqexp(—e/2) < S, < S, exp(e/2)
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For the ratio of the last probability
pisi _1-5,
Q\S\ 1-— Sq

we have the following condition such that we have % > exp(—e)

1 — exp(—¢)
exp(e/2) — exp(—e)
Similarly for the upper bound we have the condition

exp(e) — 1
exp(e) — exp(—¢€/2)

q =

Sq <

Combining both constraints we have

3, < min exp(e) — 1 7 exp(e) — 1
exp(€) — exp(—e/2)’ exp(e) — exp(—e/2)
By Taylor approximation this boils down to
2
S, < =
=3

Hence we select only the combination of points that satisfies
2
3 <S5, <1-9

It remains to count the number of point we have in our cover i.e the first |S — 1| that satisfies our
constrains

og |S1-1
number of grid points | 1 < QE 51-1 < 721 (1/6) +1
( g p ) = =

€

Across all state action pair and taking the logarithm
2log(1/6
10g(Nirans (P, €)) < |S|IAI(S — 1) log ([Ogi/w N 1)

choosing 6 = O(e) yield the result. O

Corollary 24 (Stochastic, stationary, tabular transition setting). For finite |S X A| (tabular setting)
and assuming the transition density class to be stochastic and stationary we have with probability at
least 1 — 0

S S| Al log(nH&~1)
H?*(P7% ,PE.) < |
vy 75 < o SR

where for the theoretical optimal constant Cypeory = 6

Proof. From our lemma on the covering number of transition functions, we have:

"
10g Nieans (P, £/ H) < |S|JAI(|S| — 1) log <5 N 1)

log (H + 1) ~ log (H>
€ €

6log(2) + 61S||A|(S] — 1)log () +6log(6~!) }

For large £, we can approximate:
€

Substituting this into our bound:

e>0

H*(PTP}.) < inf { -

= inf
e>0

{610g(2) +6Dlog(H) — 6D log(e) + 6log(d71) N 8}

n
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671 where D = [S||A|(|S| — 1) for brevity.

672 To find the optimal €, we differentiate with respect to € and set to zero:

_ ~1
d [6log(2) +6Dlog(H) — 6D log(e) 4+ 6log(6™") tel = 6D +1=0
de n ne
L 6D 6sIASI- Y

673 Substituting this optimal value back:

6log(2) + 6D log(H) — 6D log (%2) + 6log(6~1) N 6D

H*(P% ,P.) <

n n
 6log(2) + 6D log(H) — 6D log(6D) + 6D log(n) + 6log(6 1) + 6D
o n
 61og(2) +6log(6~") + 6D log (25 ) + 6D

n

674 For large state spaces where |S| — 1 ~ |S|, and defining D = |S|?|.A|, this becomes:

o ﬁlog(z)+610g(5—1)+61”)10g(gg)+6D
H (P P <

n

675 For large n and D, the dominant term is M, and we can combine the logarithmic terms to
676  get:
T |SI?|.A| log(nHo~")
H2(]P’P,IPP*):O< -
677 Note that the constant 6 appears in the full derivation. This completes the proof. O

678 B.3.3 Concentrability Coefficient Upper Bound

679 Definition 25 (Concentrability Coefficient). We define the following quantity as the "concentrability
680 coefficient’:

dol(s,
C(#,7%) = sup sup M
. d7r ,t
te[H] (s,a)eSx A:dT " (s,a)>0 4P~ (s,a)

681 which measures the maximum ratio between the state-action distributions induced by policies T and
682 7" under the true dynamics P*.

683 Assumption B.2 (Minimum Visitation Probability). There exists a constant i, > 0 such that for
684 all state-action-time tuples with non-zero probability under the optimal policy:

. Tt
min dp."(8,a) > Ymin
(s,a,t):d;*”’(s,a)>0

685 Lemma 26 (Concentrability Coefficient Bound). Consider a policy estimator 7 satisfying
H?(P%. PR <R

e86 Then, under Assumption[d.2] the concentration coefficient is bounded by:

2vVR

Ymin

O, ") <1+

687 Proof. We will proceed by upper bounding the numerator using the condition on the Hellinger
ess distance followed by lower bounding with concentration the denominator.
689 For the upper bound note that
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— 2. TV(d5!, dn.")

ot *t
sup |[dp. — dpy
a,s

Recalling that the state-action distribution d}r,’f (s, a) is the marginal distribution of the trajectory
distribution at time step ¢t. Explictly:

dpl(s,a) = / T (T)dr_y = PR (s, = 8,a; = a)

where 7_; denotes all time steps in the trajectory except for time ¢, and P%. (1) is the probability of
trajectory 7 under policy 7 and dynamics P*.
Hence

TV (dp, d}i’t) = 2. TV (Ph.(s; = 5,a; = a), Pp. (s, = 5,0, = a))

<2.-\/H2(P:.,Pr.) < 2VR

By Assumption 1, we have a lower bound on the minimum state-action visitation probability:

together with
min d;*’t(s, a) > Ymin
(s,a,t):d;*’t(s,a)>0

Finally, we combine the upper bound on the numerator and the lower bound from Assumption 1 to
getV(a,s,t) st dp.'(a,s) > 0:

sup, ., |d5(s,a) — d5t(s,a
C(ﬁ',ﬂ'*)=1—‘r pa,b,t| P( ) P ( )|

inf, s+ d;’t(s, a)
2VR
inf, s+ d};’t(s, a)

2vR

TYmin

<1+

<1+

This completes the proof, giving us a deterministic bound on the concentration coefficient that depends
on the Hellinger distance between trajectory distributions and the minimum visitation probability of
the optimal policy.

B.3.4 Confidence Set Construction

In this section we will derive a distributional confidence set on the trajectory space in the form of a

hellinger ball, accounting for the error of the MLE density estimates 7 and P. We start by presenting
the following in between result

Lemma 27 (Technical Results). Assume finite state and action pair: S x A . The following upper

bound is true Y € 11 with T being the true policy and P*, P being the true and estimated transition
models:

H?*(P%,Pp.) < H-C(m, ) - H*(P}, ,Pp.)
where
dpl(s,
C(m, ) = sup sup #
te[H] (s,a)GSXA:d;i’t(s,a)>0 dP* (87 a‘)

Proof. We derive the proof in three steps:
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Step 1.

H*(PT,Ph.) < Y E (s, a0 i [H2(P(.|st,at),p*(.St,at))]

te[H—1]

Step 2.
E(st,at)Nd;’: {Hz <13(,5t7at)7 P*(|s, at))} < C(m, ) ’E(st,at)Nd;’L“ [HQ <]5('|st, ag), P*('|5t,at)>}
Step 3.
HAPE P 2 7By |2 PCse 00, P Clsan) )|

712 Proof Step 1:

713
H—-1
1= pio(s0) [T m(arlsoy/Plseslar, s0)P*(sesalsis ar)dr

-
T t=0
-

-

H(]P)ﬂ' 7T)

MO(SO)HfI:BIW(at|3t)\/P(St+1|at»St)P*(5t+1|3t»at)d
-

#O(SO)HfI—Bl m(a¢|se) P* (st41]8¢, ag)

3t+1|5taat)
=1- /p . \| 50————=dr
T H P*(s¢41, 8¢, a¢)

714 Next define for ease of notation :

p(st+1|8tvat)

o (Se+1, at, St) 1= P*(st41, 5t,at)
5 )

"}/t(St,CLt) 5:/ \/p(st+1\st,at)P*(st_,_l,st,at)ds’ :/ P*(s'\st,at) ~ozt(s/,st,at)d5/

s/

715 Notice that v; is a BC coefficient i.e

1 —%(St,at) = H2(]5('|St,at)7P*('|5t,at))

716 Using notation above:

H-1
2
H (]Pmp, P}TD*) =1- ]ETNIP’;* |: H at(st—i-l, St, at):l
t=0
717 Using conditional expectation (law of iterated expectation) we change the distribution in the expecta-

718 tion from PP, to the so called state-action distribution d7>Z. To show this argument we show it for
719 state action pair (ag, So, s1). The rest follows by using the same idea:

H-1 H—-1
]ETNP;* { H at(3t+175tvat)] = ESoﬂo []E81807a0 |:Ozo(51,30,a0)] 'EG1UT[2:H—1]|51 [ H at(st""l’st’at):”
t=0 t=1

:/ fo(s0) '771(@0|80)/ P*(s1]s0,a0) - 2o (81,50, a0)
50,00 S1
H—-1
“BayUrigm 1 [ 1T cuCsinn, Stvat):|
t=1

= /SMO to(so) - m1(aolso) - vo(so, ao) - {””}
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720 Notice that
,U()(So) < T ((L0|80) = /p}r)* dT[lefl] =: d;’?(SO, CLo) Marginal over (So, ao)

721 Hence using a recursiv argument we have

H-1
HQ(]P;;,P}TD*) =1- ]ETNP;* |: H at(stﬂ,st,at)}
t=0
H-1

=1- H Ed;’,f [%(st,at)]
t=0
722 Usinge the fact that
1= JJai <> (A=) Va; €0,1]

723 and by the fact that y; € [0, 1]Vt we have

H-1
H2(P7}37 ;*) S Z Ed;f(l — ’Yt(st7at))
t=0
H-1
= 3 B 1 (Pl P Clsso)
t=0

724 Proof Step 2:
725

E(st,at)md;;f [HQ(P('LShat)vP*('|St7at))] = Zd}yf(&a) ! H2(P('|S,CL),P*("S,(1))
dpt(s,a o A y
= Z # -dp.(s,a) - HX(P(|s,a), P*(-]s,a))

dpi(s,a) - ~ .
=N B qn (s a) - HA(P( s, a), P* (s, a))
726 By definition of the concentrability coefficient:
Al (s,
C(m,7*) = sup sup #
te[H] (s,a)ESXA:d;r,’;’t(s,a)>0 dP*7 (57 CL)
727 Therefore:
dol(s,a) it
L2 < C(m,m*) Wt Y(s,a) where d}p. >0
dp. (s, a)

728 Proof Step 3:
729  Starting from our previous expression:

H-1
HQ(PE*v 715**) =1- H ]Ed;’;vtht(Staat)]
t=0
730 Let’s denote
zi =1 —(si,a;) = H*(P(-|s51,a;), P* (|51, a:))
731 Using the fact that (1 — ) < e~ ? for all =, we have:

H H
H(l —x;) < exp ( sz>

=1 =1
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732 By the second-order Taylor expansion of the exponential function:
H H WA 2
exp (—le> <1- in + 3 (sz>
i=1 i=1 i=1
733 Since x; < 1 for all 7, we know that Zfil x; < H, which gives us:
2
H
1 H
H(2a) <4 ya
i=1

734 Therefore:

735 For the bound H? (IP’}E: PR > & S>H | ; to hold, we need:

(1)2%_ Hzx,

736 This is satisfied when:

737 This condition is typically met for good estimators where Hellinger distances are small. For large H,
738 the bound approaches 2.

739 Under this condition, we can establish:
H—

H? (P} Pp. Z (sesanyagt P (PCls a), P (e, an))
t=0

740 ]

741 Lemma 28 (Policy Density Confidence Set). Assume the following events hold:
E = {H ( P*’PP*) <R1(51)} such that P(El) > 1751,
Ey = {H2(P71g, 711:*) < R2(52)}, such that P(EQ) >1-— 52,

742 where 7 and P are estimators of the policy and the transition dynamics, respectively.

743 Then, under Assumption the policy set

sim [ PEL T < VA« VA (1 (1 20) )}

erzn

744 is a confidence set of level 1 —§ =1 — (§1 + d2), i.e
P(r* € TP > 1 — (61 + d2).
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Proof. For ease of notation, let us define:

VH2(PE L PE) = [|(m1, Pr) — (w2, P2

with [ - |l == - [l 2o umy)
We can then decompose by the triangle inequality:
I(x*, P) = (&, P)I| < |[(x*, P) = (x*, P*)|| + ||(x", P*) = (&, P*)| + | (&, P) — (&, P)]
From Lemma[27] we have:
(&, P*) = (&, P)|| < VC(@,7) - H - ||(w*, P) = (w*, P*)]
From Assumption4.2|and our concentrability coefficient bound, we have:

2v R,y

Ymin

O, m*) <1+

From event E'{, we have:

Iz, P*) = (7, P*)|| < VR1
From event F5, we have:
I(x*, P) = (x*, P*)|| < VR

Then, assuming events E1 N Es hold jointly, with probability at least 1 — (1 + J2), we have:

(. P) — (& )| < /B + /T - (HWHNRT) )

min

Hence, by construction, the set:

nﬂ?an;_{wen;umﬁ)mJ%gv@h+vﬁb-0,k¢(1+%ﬂi>.ﬂ)}

Ymin

contains 7* with probability at least 1 — (01 + d2). O

B.4 Performance Guarantees

We apply our method of constructing confidence sets based on distributional guarantees for maximum
likelihood density estimation to the tabular reinforcement learning setting with state space S and
action space A. We consider deterministic stationary tabular policies (Il = II%) and stochastic
stationary tabular transitions, though the method is versatile to other settings with appropriate
adaptation of the corresponding covering numbers (cf. Definitions[I8]and [2T).

Let 7 be the log-loss BC estimator (Equation ) of the true policy 7*, and P be the MLE estimator
(Equation (2)) of the true transition model P*. The concentration bounds for these estimators are,
with probability at least 1 — §; and 1 — 5 respectively:

48| -log(|Al- 6, )

H?(PF. PE.) < Ry = (Corollary [20)
n
R 4-|S|? - |A| - log(nHé; "
H?(P ,P}.) < Ry = [SI7- 1Al - og(nHd, ) (Corollary [24)

Additionally, we make the following assumption about the minimum visitation probability under the
optimal policy:

Assumption B.3 (Minimum Visitation Probability). There exists a constant p,;, > 0 such that for
all state-action-time tuples with non-zero probability under the optimal policy:

. Tt
min dp."(5,a) > Ymin
(s,a,t):d;*’t(s,a)>0
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Under this assumption, the concentrability coefficient is bounded by:
2- VR,
Ymin

Theorem 29 (Policy Confidence Set). Under the setting described above and Assumption|B.3| with
d1 = 02 = 0/2 and defining

C(r,m") <1+

o = /4-|S| - log(JA| - 2/4)
Bi=\/4-|S%-|A| - log(nH -2/3)

The policy set

e o T < AR (1 (120 )}

mwn

is a confidence set of level 1 — § containing ©* with probability at least 1 — 0. The radius of this
confidence set is explicitly:

.« B 2a
Radlus—\/ﬁ—i—\/ﬁ-(l—i-\/H-(l—&-M))

Proof. The proof follows directly from Lemma@by applying our bounds on H?(P%,., IP’}T,**) and
H? (IF”}T: , IE”]EZ ), along with our bound on the concentrability coefficient from Assumption Setting
d1 = 03 = 0/2 and substituting the appropriate values gives us the result.

C Online Estimation

The underlying setting is described in the Section Problem Setup

C.1 CElliptical Confidence Set

For completeness and to make our paper self-contained, we provide a brief overview of the online
preference-based learning approach used in our method. The formulation presented in this section
closely follows the work of Saha et al. [2023] and [Faury et al.|[2020], with adaptations to our
specific setting. We include this background to help the reader understand the elliptical confidence
set construction that forms a foundation for our theoretical analysis.

In the logistic model, a natural way of computing an estimator w; of w* given trajectory pairs
{(r},72)},Z] and preference feedback values {o,}/_] is via maximum likelihood estimation. At
time ¢ the regularized log-likelihood (or negative cross-entropy loss) of a parameter w can be written
as:

£iw) =Y (orloalo((a(r}) — 6(a7)), w)) — 5wl

+(1 = 0¢) log (1 = o ({6(7) — 6(77), w))),

where A > 0 is a regularization parameter. The function £} is strictly concave for A > 0. The max-
imum likelihood estimator WME can be written as wM'F = arg maxy,cgs £ (W). Unfortunately,

WMLE may not satisfy the boundedness Assumption 1, so we instead make use of a projected version
of WMLE, Following Faury et al. [2020], and recalling Assumption 1, we define a data matrix and a
transformatlon of wMLE given by
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Then, the projected parameter, along with its confidence set, is given by
Proj : ~ MLE
w, "= argmin gi(w) — g:(W" )|y
w st ||w|<W

Ci(6) = {w s [w —w/llv, < 268,(6))

KAd
that shows the probability of w, being in C;(d) for all ¢ > 1 can be lower bounded.
Lemma 30 (Confidence Set Coverage). Let 6 € (0, 1] and define the event that w. is in the confidence
interval C(0) for all t € N:

where 3;(8) = VAW + \/log(1/5) + 2dlog (1 + @). We restate a bound by |Faury et al. [2020]

By ={Vt>1,w, € C,(9)}.
ThenP(E,+) >1—0.

Proof. This follows from Faury et al.|[2020] with a slight modification to account for our bounded
feature assumption. O

This elliptical confidence set construction, which has its roots in generalized linear bandits [Filippi
et al., 2010, |[Faury et al.} 2020], forms a critical component of our online learning algorithm. By
maintaining and updating these confidence sets as new preference data is collected, our algorithm can
efficiently balance exploration and exploitation to identify the optimal policy. The confidence bounds
ensure that with high probability, the true reward parameter lies within our constructed set throughout
the learning process, which is essential for the regret guarantees we derive in the following sections.

C.2 Norm Relation Between Data Matrices

For completeness, we restate key results from|Saha et al. [2023] concerning the relationships between
various data matrices that arise in our analysis. These results are included to ensure the appendix is
self-contained and to provide context for our subsequent analysis. The full proofs of these results can
be found in the original paper.

Saha et al. [2023|] establishes relationships between three key matrices:
* V, - The empirical data matrix constructed from observed trajectories
. Vf " The expected data matrix under the true transition dynamics P*
* V; - The expected data matrix under the estimated transition dynamics P,

These matrices are defined as follows:
t—1

Vo= ML+ Y (6(r) — o(72)) (1) — d(73)) "

(=1

VI = i S (60n) — 6(n)) ((nd) — b(n2))
=1

V= oA+ 3 (67 () — 67 (n2)) (67 () — 67 (x2))

(=1

T

Where ¢(7) represents the expected feature vector under policy 7 and the true transition dynamics
P*, while ¢! () represents the expected feature vector under policy 7 and the estimated transition
dynamics P;.

Saha et al.|[2023] introduces a precision event that relates the empirical matrix Vp to the expected
. —=P*
matrix Vo :

Byr ={V] = 2Vp +84B%dlog((1 +2T)/6)Ly}
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Under this event, they establish the following bound:

Lemma 31 (Adapted from [Saha et al. [2023]] Corollary 1). Under Assumption 1, conditioned on
event By« N Eqzp=, forany t € [T
T

lw* = Wi lpre < 465:(8) + a7 (8),

where aig 1(8) = 20BW /dlog(T (1 + 2T')/6). Furthermore, if § < 1/e, then P(Ey~ N Egp) >
T
1—6—dlog, T

Additionally, Saha et al. [2023]] relates norms based on the matrix Vf ’ with those based on V:
Lemma 32 (Adapted from[Saha et al. [2023] Lemma 3). Let £ be the event that forallt € N,

t—1 2
R 5 1
proj proj
W™ = wlly, < V2Iwi™ = w.lpe + ;:1:4 (Be (w,maw)) Ty

where §' = a and € = Then P (EO) >1-0.

1
(1+4W 2rA+4AB2Le

Note that the bonus function B is defined in Lemma@
These norm relations from Saha et al. [2023]] are essential in our regret analysis, as they allow us to
relate confidence bounds across different probability spaces and to bound the regret of our algorithm.

C.3 Transition Estimation and Bonus Terms

Note that the offline estimator of the transition probabilities based on the log-loss MLE in Equation (2)),
when the state-action space is discrete, is equivalent to the following count-based estimator (derivable

using a simple Lagrange multiplier argument):
- Nog in, ! )
Postine(8'5, a) = Nottine ('], @)

Nofﬂine(sa a)
ofﬂme Z Z ]I{Sh =S ah - a}
i1€[n] he[H]

Nottiine (s'] s, @) Z Z I{s},,1 =&, s}, = s,a}, = a}

i€[n] he[H]

where

This equivalence allows us to initialize the online estimation process with the count estimator from
the offline data (see line 3 in Algorithm [}, yielding the combined estimator for the transition model:
Nofﬁine(sllsaa) +Nt(5/|37a) (9)

Bu(/]s,a) =
t(s ‘57a) Nofﬂine(37a> +Nt(3aa)

From this estimator, we adapt two key lemmas from |Chatterji et al.|[2021] that will define our notion
of bonus terms.

Lemma 33 (Moment Transition Difference Error). Consider the transition count estimator Pt from
Equation (9). Further assume the trajectory data follows a martingale structure adapted to the
natural filtration of the problem. For any fixed policy m € 1l and any scalar function f : T — R
such that | f(7)| < n, with probability at least 1 — § for all t € N:

Erg. [f(7)] ~ Ery [F()] <Ep | 3 €, 0, (0)| = Bu(m,m.0)
he[H]
where

Hlog(|S| - |A]) + log (6log(Nt(Sh"ah’);NW"e(sh’ah)))
Nt(Sh, ah) + No ine(8h7 ah)

&, .0, (1,6) :=min | 2,47

The term B.(m,n,0) serves as our "bonus" term.
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849 Proof. Our combined estimator incorporates both online data (adapted to the natural filtration) and
sso offline data (assumed i.i.d.). We can artificially treat the offline data as though it were adapted to the
ss51  natural filtration as well, by considering it as "past” observations. This allows us to directly apply the
gs2  proof methodology from |Chatterji et al.|[2021] (Lemma B.1) to our combined count estimator.

853 The key insight is that the martingale structure of the estimation error is preserved when combining
gs4« offline and online counts, with the benefit of reduced variance due to the increased denominator
855 (Ni(sn,an) + Noine(Sn, an)). This directly translates to tighter confidence bounds compared to
gs6 using only online data. O

857 We now present a stronger version of the lemma that holds uniformly for all policies 7.

sss  Lemma 34 (Uniform Moment Transition Difference Error). Consider the transition count estimator
sso D, from Equation (9). Further assume the trajectory data follows a martingale structure adapted to
seo  the natural filtration of the problem. For any scalar function f : T — R such that | f(7)| < 1 and
gt for any € > 0, with probability at least 1 — § for allt € N and all 7 € 11:

]EIP’;;t [f(m)] = Epr, [f(T)] < Epr,, Z Eih,ah (n,0,€)| +e
he[H]

=:By(m,n,0,€)

se2  where

Hlog(|S| - |A]) + |S|log ([MH—D +log (Glog(Nt(sh,,ah,);N,, m(s;mah)))

—t €

gsh,ah (T]7 5a 6) 1= min 277, 47]

Nt(shvah) + No ine(sha ah)

863 Proof. The proof follows by applying similar techniques as in Lemma[33] but with additional care to
se4 ensure uniformity across all policies.

865 As before, we can artificially treat the offline data as adapted to the natural filtration. The uniform
ges convergence over the policy class II is achieved by applying a covering argument and the union
867 bound, following the methodology in |Chatterji et al. [2021] (Lemma B.2). The additional term

ges  |S|log ([@—D appears due to this covering, which introduces an e-discretization of the policy
869 space.

870 The combined offline and online counts in the denominator (N (sp, an) + Nofine (Sh, @z )) provide
g71  tighter uniform confidence bounds compared to using online data alone. O

g7z To provide further intuition, we elaborate on the meaning and significance of the terms B; and B;
873 introduced in the previous lemmas. In reinforcement learning literature, these would be referred to as
g74 the "empirical bonus" and "true bonus," respectively. Both terms quantify the concentration of our
875 estimators around their true values.

g76 The empirical bonus Bt(ﬂ', 7,0) represents the expected sum of state-action-level uncertainty terms

g77 &L han (n, 6) under the estimated transition model B. Importantly, this term can be directly computed

s7s  from observed data.

g7o In contrast, the true bonus By(m,n,d,€) represents the expected sum of uncertainty terms
=t - . . .

80 &g, an (1,9, €) under the true transition model P*. This term cannot be directly computed as it

ss1  depends on the unknown true model.

gs2  For our regret analysis, we need to relate these two quantities. The following lemma provides a

883 crucial connection, showing that the empirical bonus B; can be bounded in terms of the true bonus

g4 By uniformly across all policies 7.

gss Lemma 35 (Relationship Between Empirical and True Bonus Terms). Let 1, € > 0. For all policies
sss 7w € LI simultaneously and for all t € N, with probability at least 1 — §:

Bi(mw,n,8) < 2By(w,2Hn,d,¢) + €
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Proof. Define the function f : 7 — R as:

=Y & o

he[H]

By construction, By(m,7,8) = Epr [f(7)]. Since &, ,, (1,0) < 27 for all state-action pairs, we
t

have |f(7)| < 2nH.

Applying Lemma 34 with this f(7) and the bound 2nH:

B [f(7)] = Eep, [F(7)] < By, | Y &, 00 (20H,06) | +¢
' he[H)

By definition, the right-hand side equals By (7, 2Hn, 0, €) + €. Therefore:

Bt (7‘-7 m, 5) = ]EIP”};t [f(T)]
< EP;* [f(T)] + Bt(ﬂ-v 2Hn, 9, 6) te

From Lemma 33| we know that:
EP};* [f(T)] < EP% [f(T)} + Bt(ﬂv 1, 5) = Bt(ﬂv 1, 5) + Bt(ﬂ—7 1, 5) = 2Bt(7rv 1, 5)

This gives us:
By(m,1,6) < 2By(m,n,6) + By(m, 2Hn, 6, €) + €
= —By(m,1,6) < By(m,2Hn,8,¢) + €
= By(m,n,0) < By(m,2Hn,d,€) + €

Therefore, the lemma statement follows. O

This lemma is instrumental for our regret analysis as it allows us to work with B, instead of B,. The
advantage is that B; involves expectations with respect to the true transition model P*, which makes
it more amenable to theoretical analysis. By establishing this relationship, we effectively account for
the transition estimation error and can focus on controlling the difference between empirical and true
moments, which is a more tractable problem in our analytical framework.

C.4 Policy Set IT; and Proof Lemmag]

Recall that we define the policy set IT; to draw from in line 7 of Algorithm [T]as
I, = {7 € TI{Me | v’ € TIgMpe
(&7 (m) = 87 (1), ™) + 71 - @7 () — 6™ () |
+ By(m,2WB,8") + By(',2WB,8') > 0 }

where H?fﬂige is derived in Theorem The radius ~; is defined as

=1, & S
7= V2URBO) + 0ar () +24 D (Be (WWB’ W)) T

Then Lemma state that with high probability, 7* € II; Vt € [T]

Proof of Lemma|5] We begin by conditioning on the following events:

® Loffline = {77 S Hofﬁme} from Theoreml
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* E,» from Lemma[31] (confidence set for w*)

. EVP* from Lemma|31|(relation for data matrices)
T

s & from Lemma (estimated norm relation)

&3 from Lemma (bounds on the bonus terms ét)

By the union bound, these five events hold simultaneously with probability at least 1 — 56.

By the optimality condition, we have:

0 < (§(n") = ¢(n), w") = (Bpys (1) — Epwr (7), ")

Then, by event &5 and defining f(7) := (¢(7), w*), we have from Assumption [3.2]that | f(7)| <
2W B, which yields:
(07 () = 0" (x'),w") + Byl 2W B, 6/|AS) + Bu(x/, 2W B, /| A|1¥)

where the probability parameter accounts for any 7/ € II, which covers the case of the offline
confidence set being the whole policy space (i.e., not having enough offline data for learning).

Next, we bound the term:
(@ (%) — ¢Fr ('), w*) = (¢F* (7)) = ¢P* (), wl™) + (¢F* () — ¢P* (), w* — wi"™)

< (g7 (1) = ('), Wl + |7 (1) = 67 (1) [ - ™ = wlp,

We can now use event Eg:

t

1 2
. . . o 1
proj || proj _ X _ v z
wi™ —w*|y, < \/§||wt w*”Vf’ +2 (Bg (77,2WB, 8€3|A|S|>) + .

(=1

Using events E,« N -, we get:
T

t—1 2
r0j * » o’ 1
W™ — w* ||y, < V2(46B4(8) + cva,r(6)) + 2 ; (Bg (77,2WB, 8€3|A|S>> + =

Putting these results together yields that 7* € II; for all t € N under the event Eqipe.

The probability of this event is at least 1 — 54 by the union bound of all the events we conditioned on.
By rescaling § — /5, we obtain the desired result with probability at least 1 — 4. O

C.5 Regret Bound

In this section, we provide a lemma as an intermediate step toward the full proof of the regret analysis
of BRIDGE. This lemma separates the upper bound on the regret into three distinct terms, each of
which we further analyze in Appendix D!

Lemma 36 (Regret Analysis). Under the following events:
* Eofine = {n* € H?ﬁ’;ige from Theorem@
* Ey» from Lemma[31|(confidence set for w*)

. EVP* from Lemmalﬁ' (relation for data matrices)
T

&o from Lemma|32|(estimated norm relation)

Es from Lemma( bounds on the bonus terms Bt )
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932 the regret of BRIDGE Algorithm|l|is upper bounded by:

Rr<2- yr - [T Y [6P(x}) =P (ad)lg-1+ > D Bl AWB,0)
Term 1 te[T] i€{1,2} te[T]
Term 2 Term 3

933  where

yr = V2(4k - Br(d) + agr(6)) + 1y > ) Br(xi,AHWB,6,¢)? + 96TcHW B

T ,
i€{1,2} te[T)
934 and
935 * aqr(8) =20BW/dlog(T (1 + 2T)/6)
- * Br(6) = VAW + \/log(1/6) + 2d1og (1 + T22).

937 Proof. We start by writing
2ry = (p(n*) — p(mf), w*) + (P(n*) — p(nF), w*)
= (@M (") = ¢ (m}), w*) + (9T (x*) — " (m7), w*) + 2(6" (7)) — p(x%), w*)
+ (o7 (mf) — ¢(m), w*) + (97 (n7) — (7)), w)
938 Then, by Lemma|[33] we have with probability at least 1 — ¢ for each of the following:
2 (") — P (7)), w*) < 2B,(n*, 4W B, §)
(67 () = o(m}), w*) < By(r},4W B, )
(67 () — ¢(m}), w*) < By(r?, AW B, )
939 By the union bound, with high probability:
2r, < (@7 (1) — 67 (n}), w) + (67 (7%) — @7 (w), w*) + By(x}, AW B, ) + By(n}, AW B, 8) + 2B, (", 4W B, )
940 Next, we observe that:
(@7 (7)) = o™ (x)), w*) + (@7 () = ¢ (7]), w")
< (@™ () = o7 (), wi) + (@7 () — o7 (mF), wi')
ot — g, (||¢Pf< ) = &P () llgr + 167 () — o (W?)”vtl)
941 Conditioning on the joint event £y N Fyyx N EVP* , we have with high probability:
(@7 (1) — Tt (mh),w*) + (@7 (x*) — ¢ (x2), w*)
< (P (%) — T (m}), wl™) + (67 (%) — 6T (x2), wp™)
Fae (107 0) = ™ (bl + o™ ) = o™ (Dl
942 Using Lemma@ again, the following holds with high probability:
2p(r") — ¢ (1), wf'™) < 2B,(x*, AW B, 0)

(@7 (m}) — p(md), wh™) < By(n},4W B, §)
(@7 (12) — p(n2),wd™) < B, (n?,4W B, §)
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Putting everything together yields:
2ry < 2 <|¢Pt () = o™ (1) g1 + [l () — 6™ (W?)|V1>
+ 2B;(n},4W B, 8) 4 2B, (n2,4W B, §) + 4By (n*, 4W B, §)

Under the event 7* € II; from Lemma and using the fact that 7}, 77 € II;, we have:

2y < 3|67 (52) — 7 (x})[g-r + 4By, AW B, 6) + 4By (2, AW B, 6)

Hence, the regret is:

RT = Z 2Tt

te(T)
< Y (llo™(x2) = P (w2 +4Bi(x} AW B,5) + 4By(x} AW B,5))
te[T]
<ar [T 1l6P(r2) = P (D2 + > (4Bi(x1, AW B, 6) + 4B,(r2, AW B,5))

te[T) ¢ te[T]

Note that by Lemma[33] with high probability:

By(n},2WB,6)? < 4B,(x},2HW B, 6, €) + 24eHW B
Plugging this into ~; yields:

e < V2(4RBA(S) + aar(8)) + %

+4,|> " B}(n},AHSB, 8}, €) + B (n?,4HSB,5;) + 96(t — 1) HWB vt

This completes the proof of the claimed result. O

D Regret Analysis: Theorem [9)

In this section, we present the complete regret analysis of our BRIDGE algorithm. We recommend
that readers first review Appendix |A| where we analyze a simplified setting in which the dynamics
are assumed to be known. This simplified case captures the core idea of our approach: constraining
the set of policies considered during online preference learning using a confidence interval derived
from offline behavioral cloning estimation (see ??).

The key difference in the present analysis is that we now incorporate the estimation of the transition
model. Specifically, we first estimate the transition model offline and then use this estimate as the
starting point for online transition estimation. This approach reduces the error due to transition
uncertainty by a factor of O(1/4/n), which is the same rate of improvement we achieve for the policy
estimation through behavioral cloning. As we will show, this allows our algorithm to effectively
leverage offline demonstrations to reduce both sources of uncertainty, resulting in substantially
improved regret bounds.

Theorem 37 (Regret Bound with Offline-Enhanced Exploration). Let n be the number of offline
demonstrations with minimum visitation probability ~yin, > 0 for state-action pairs. With probability
at least 1 — 0, the regret of the algorithm is bounded by:

37



965

966

967
968
969

970

971
972

973

974

975

976

O(B2~H-|52-min{2,ln(T)}+% VLA|H>
Rr <2 ~p - T~log(1+ )
—~— d
Term 1
Term 2
~ TH HS?WBVT S|V/2| A4
+O<H|3| ATH VT | wewp. 7. SECAT 1'“3'
T * Ymin \/n"Ymin n /
Term 3
where
VTO((/{JrBW)\/dlog(T)+]—12V[/BS|.\/min{log(T),n.,y . }+VHWB>

and we have set € = % to optimize the bound.

From Lemma([36] we analyze the three key terms in our regret bound: the confidence multiplier (Term
1), the logarithmic determinant ratio (Term 2), and the bonus function summation (Term 3). Each
term is examined in detail in the following subsections.

1 .
Term 1 = yp = V2(4k - Br(8) + aar(8)) + 4 > Y Br(xi,AHWB, 6,¢)> + 96TcHW B
i€{1,2} t€[T)

Term2 = |T Z [P (x}) — o (7T152)||V;1

te[T)]

Term 3 = Z Zét(ﬂ'é,élWB,é)

i€{1,2} te[T)

D.1 Term 1: Asymptotic bound

We derive an asymptotic bound for Term 1 in Theorem [37 via Lemma[38. The auxiliary lemmata
used in the proof of Lemma [3§]are found in Appendix[D.1.T.

Lemma 38. The asymptotic bound on vy can be expressed as:

v =0 ((H + BW)\/dlog(T) + H*W B|S)| - \/min {1og(T),

7 Ymin

}wm)

Proof. We analyze each term in the expression for vy separately.

Step 1: Analyze /2(4x - B7(8) + aq7(6))

Given:

a1 (6) = 20BW/dlog(T(1 + 2T)/9)

Br () = VAW + \/Iog(l/é) + 2dlog <1 + Zf;)

For aig 7(6), we have:
aqr(8) = 20BW/dlog(T(1 + 2T)/6)
= 20BW \/dlog(T) + dlog(1 + 2T) — dlog(9)
= 20BW+/d(log(T) + log(1 + 2T — log())

= O(BW+/dlog(T/$))
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For 7 (9), we have:

5T(5)—\F)\W—|—\/Iog (1/6) +2dlog 1+ >

2
zﬁw+\/1og (1/6) + 2dlog ’“‘”TB )

)

) (for large enough T)

(3

S
= VAW + \/log (1/6) + 2dlog (1 +

(s

< VAW + \/10g (1/6) + 2dlog

— VAW + \/10g(1/5) + 2d1og(T) + 2dlog (2]121)

= O(VAW + /dlog(T) + log(1/4))

Therefore, this term becomes:

V2(4k - Br(8) + aar(8)) = O(k - (VAW + /dlog(T) + log(1/8)) + BW/dlog(T/5))
O(kVAW + k+/dlog(T) +log(1/8) + BW+/dlog(T/5))
O((k + BW)+/dlog(T) + k+/log(1/8) + BW+/dlog(1/5))

For a fixed confidence parameter 4, this simplifies to:

V2(4k - Br(6) + aqr(8)) = O((k + BW)/dlog(T))

Step 2: Analyze 1

This term is O(%) and becomes negligible for large 7' compared to other terms.

Step 3: Analyze 4\/22E (12 Yreqr Br(ml, AHW B, 6, )2 + 96TeHW B

Using the provided lemma on the sum of squared bonus terms, Lemma J T}

> D Br(m,4HWB.6.¢? <0 ((MWB)ZJLIZSI2 : min{log(T), T })

i€{1,2} te[T] 7 * Ymin

O<16H2W282-H2|S|2-min{log(T), r })
n

* Ymin

=0 (16H4W2B2|S|2 - min {log(T), T })
T Ymin

For the second term inside the square root:

96TeHW B = O(TeHW B)
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985 Therefore:

4 | > > Br(xi,AHWB,5,¢)? + 96TeHW B
i€{1,2} t€[T]

T

7 Ymin

= 4\/ D ( 16H4W2B2|S|2 - min {log(T), }) + O(TeHW B)

T * Ymin

( \/16H4W2B2|S|2 - min {log(T), T }) +O(4vTeHW B)

= (16H2WB|S| \/min{log(T),n : : }) +O(VTeHW B)
~ 9 ) T
=0 | H*WB|S| - {/min 10g(T)’n-'y : +O(VTeHWB)

986 Step 4: Combine all terms

987 Combining all terms from Steps 1-3, we get:

T * Ymin

yr = O((k + BW)+/dlog(T)) + O (71,) +0 (HQWB|S| . \/min {log(T), }) + O(VTeHWB)

= O((k + BW)4/dlog(T)) + O (HQWB|S| . \/min {log(T)7 }) + O(VTeHWB) + 0o(1)

: ’Ymin
988 Expressing this with O notation to hide logarithmic factors:

=0 ((H + BW)\/dlog(T) + H*W B|S)| - \/min {1og(T),

989 O

}wm)

T * Ymin

990 D.1.1 Term 1 asymptotic bound: auxiliary lemmata for Lemma 3§]

991 Lemma 39 (Offline-Enhanced Bonus Term Bound). Let n be the number of offline demonstrations,
992 with a minimum visitation probability vy, > 0 for state-action pairs visited by the expert policy m*.
9e3  Then, with probability at least 1 — 2¢', the sum of squared bonus terms satisfies:

= 2 AnH 6log(HT
5 Z (€0 0)) " < 3207 (g1l + 131t (2150 ) 410 (2L )

te[T] h
T
7 Ymin

904 where | Syeqcn| is the number of state-action pairs with non-zero visitation probability under the expert
995 policy.

'|Sreach| 1Og (1 +

996 Proof. Step 1: Express Modified Bonus Terms with Offline Data. We define our modified bonus
997 term to incorporate offline data:

. U
55 2(e,1,6) = min (27% 477\/Noff(37 a) + Ni(s, a)>
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998 where U = H log(|S||A|H) + |S|log (#) + log (61ng;(0>

999 Step 2: Express the Sum of Squared Bonus Terms. Following Pacchiano’s structure but with our
1000 modified bonus terms:

33 (€9, (0.0))’ =

te[T] h=1

Nr i (s.0) , H10g(IS||A[H) + |S|10g (21) + 10g (252

ZZ Z min (477 1672 Noff(sva)_:t )

sES acA t=1

1001 Step 3: Rearrange to Account for Offline Data. The key insight: With offline data, we need to
1002 adjust the indices of summation. For each state-action pair, we’ve already observed it Ny (s, a) times
1003 in the offline dataset. Therefore:

Z Z ( stmann (€ 77,5))2 =

te[T] h=1
a5 N2 () H log (S| A|H) + |5 1og (#121) + log (52

Z Z Z min (4772, 1672 7 ‘ )

seSacA t'=Nof(s,a)+1

1004 where ' represents the total count (offline + online).

1005 Step 4: Simplify Using Common Term. For clarity and following Saha et al.|[2023] approach, let’s
1006 define:

V = Hlog(|S||A|H) + |S] log (477€H> +log (WHT)>

5/

1007 For sufficiently large ¢/, the min is dominated by the second term:

Noi(s,a)+Nry1(s,a) Nofi(s,a)+Nry1(s,a)

DB S S . L0 %) VEEED VI

s€SacA t'=Nof(s,a)+1 s€SacA t'=No(s,a)+1

1008 Step 5: Use the Harmonic Sum Property. We know that >°._ | 1 < log (). Therefore:

Noi(s,a)+N: (s,a)
ff ZT+1 l “1o <chf(s, a) -+ NT—Q—l(& a)) _ log <1 4 A7\/'T_~.1(87 a))

t/=Not(s,a)+1 N"ff(s’ a) NOff(S’ a)

1009 Step 6: Apply the Minimum Visitation Probability. With our assumption that d;i’t (s,a) > Ymin
1010 for all state-action pairs visited by the expert policy, we have:
Noff(sv CL) 2 n-H- “Ymin V(S, a) S Sreach

1011 where Sieqch 18 the set of state-action pairs with non-zero visitation probability under the expert policy.

1012 Therefore:

Nryi(s,a) Nrpyi(s,a)
log {14 7=+ ) Slog {1+ === ) V(5,0) € 5
o ( - Noff(S, CL) = 108 T n-H - Ymin (S a) reach
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1013
1014

1015

1016

1017

1018
1019

1020

1021

1022
1023

1024
1025
1026

1027

Step 7: Apply Jensen’s Inequality. We know Zs’a Nry1(s,a) = TH (total state-action visits in
online learning).

By Jensen’s inequality and the concavity of log(1 + x):

N S,a N S,CL
Z log <1 -+ T'H(s’a)) < |Sreach| ~10g (1 + Z( ,0) € Seach T+1( ))

(5,@) € Sheaeh “Ymin | reach| “Ymin

Since Y- 5 o) esun NT+1(8,a) < TH:

Z IOg (1 + ]VTIJ;(SG)> S |Sreach| : IOg <]- + ra >

(5,0) € Sheact min |Sreach| 'n'H"Ymin
< reacl

Simplifying:
N T
> (1 2 g (1 )
n - }{ 'Wﬁnin .

(s,a)€S, |Sreach| * T * Ymin
) reach

For unreachable states, we can use Pacchiano’s original bound, but these contribute negligibly to
regret as optimal policies don’t visit them.

Step 8: Final Bound. Substituting back:

Z Z <£Sth aun (€70, ))2 <16n% -V - |Seeacn| - log (1 + - -i;m)

te[T] h=1

Substituting V' and accounting for approximation constants:

H-1

2 anH log(HT
5 3 (€0 end))” < 32 (Erion(islal) + Isf1og (227 ) 4 10g (HEFD ) )

te“ ] h=1
T )
'Ymin

This completes our proof, showing explicitly how offline data (through ) and minimum visitation
probability v, reduce the bound on bonus terms, thereby reducing regret. O

"Sreach| 1Og (1 +

Lemma 40 (Offline-Enhanced Squared Bonus Term Bound). Lern, ¢ > 0and 6,0’ € (0,1). Let n be
the number of offline demonstrations with minimum visitation probability vy, > 0 for state-action
pairs visited by the expert policy. Define E5(8') be the event that for all t € N and i € {1,2}:

Z Z (Be(mgym,6/¢2, e))2 <12n*H? (1.4lnln (2 (max (4n*Ht,1))) + In 55—/2 + 1>
ie{1,2} £=1

T
+ 647 H|Syeqcn| log (1 + )
T * Ymin

. (Hlog(|S||AH) +18]log q‘“iHD +log (Gk’gg}m))

Then P(E5(6")) > 1 — 26",
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1028 Proof. We follow Saha et al.|[2023] proof structure, beginning with the martingale analysis and then
1029 applying our offline-enhanced bounds.

1030 Observe that the bonus terms can be expressed as:

2
5 2 ) 5 2 H-1 © 5
(Bf(ﬂl}vmggve)) +(BZ<7TZ7777€376)> = Es%prN]P’T}(-‘S%) 53;,(1;(6777,?3)
) 2

1
H-1 o 5 2
;
+ (Espr,TNP;§(<|S%) [ gsivai (67 m, 63)‘| )

1031 Using Jensen’s inequality (as in the original proof):

H-1 o 5 2 H—-1 o 5 \2
E i . ) S H]E . 4 . i i \E Ty 7=
( siwp,‘rN]P’Pf; (-]s%) [Z E ( " 03 )] ) si~p,‘r~IPPi (-Is%) [h—l <£Sh7ah( " 03 )> ]

h

1032 Following the martingale analysis of Pacchiano, we define:

@ H-1 o H-1 2
De - Esin,TNIP’T}' (+]s%) [Z <€S;L’a’ ¢ 777 ) ( 85,0, 6 " ))
! Pt 1 Lh=1 h=1

. . 2
1083 Since fé a(e n,0) < 2n, we have |DE,Z)\ < 8n?H and Var;) ( hH;11 (fif)ai (6,77,6)) ) <
h*"h
1034 16n*H?2.
1035 Applying the Uniform Empirical Bernstein Bound (as in the original proof), we get:

t—1 () 1 H—-1 (@) 5
DY < ZE i ( €n, o )
ez:; £ 2 s Cls)) [Z $aiat (671:9) ]

h=1

+6n°H <1.4ln In (2 (max (49*Ht,1))) + In 5(5’2)

1036 Therefore, with high probability for ¢ € {1,2}:
t—1 H—1

5 |5 €aten0)] <2582 (0 cna) o
h=1

Sle,TNPPi("Sl) =1 h=1

+6n°H (1.4ln In (2 (max (47]2Ht, 1))) +In (5/2)

1037 Combining for both policies, with probability 1 — 2§”:

t—1 , 9 t—1 H-1 2
> Y (Bulmhn.o/6) <2H Y (¢4 en.))
1€{1,2} £=1 i€{1,2} ¢=1 h=1

2
+ 12n*H? <1.41n In (2 (max (47}2Ht, 1))) +In 55—/ + 1)
1038 Now, using Lemma[39] we have:

1H-1

53 (60 ) <1607 Sl o (14 )

¢=1 h=1

1039 where V = H log(|S||A|H) + |S|log ([47711—‘) +log (610g(HT))

43



1040

1041

1042

1043
1044
1045

1046

1047

1048

1049

1050
1051

1052

1053

1054

1055

Substituting this bound and combining terms:

Z z_: (Bé(ﬂ-éa m, 6/63

i€{1,2} £=1

Expanding V:

i€{1,2} £=1

Lemma 41 (Asymptotic Bound for Offline-Enhanced Squared Bonus Terms). With n offline demon-
strations and minimum visitation probability Vi, the sum of squared bonus terms is bounded

)

7 Ymin

as:

) X_: (Be(mhm.8/6%,¢)” <

i€{1,2} £=1

where O(-) hides logarithmic factors in H,

+ 64172HV - | Steach| - 1log

+ 6402 H - |Sreach| log (1 +

(1 108(1sialen) + 311oe |

S|, |A

s

Proof. We start from the detailed bound of Lemma

S S (Belmin 6768

ie{1,2} =1

Analyzing each term:

))? < 120°H? (1.4ln In (2 (max (4n2Ht, 1)))

Step 1: First term analysis. The first term is:

120 H? (1.41n In (2 (max (4772Ht, 1))) +1In

Since log log(T") grows extremely slowly, and we’re using O notation which hides logarithmic factors,

]

this term is dominated by O(n>H?).

5.2
=41

(1+

0 <n2H2|52 - min {1og(T),

Step 2: Second term analysis. For the second term, we have:

T
n- Ymin

where C'is a constant and V' = (H log(|S||A|H) + |S|log ([ﬂ

Within the factor V, the dominant term is |S|log ([@—D since it scales with |S|. Therefore,

asymptotically:

C-n*H-V- | Sreach| - 1og (1 +

Vv =0(ls])

44

€

))? < 120°H? (1.4lnln (2 (max (42 Ht, 1))

T
T Ymin

Z X_: (Bg(ﬂé,n,é/ﬁg))Q < 12n*H? (1.4lnln (2 (max (4n°Ht,1)))

T
n"Ymin) .
477€H—D +log <610g((5HT)>>

dnH log(HT
+ 64> H (Hlog(|S|A|H) + 18] 1og GZD +log (60g§)

]+

5/

5/

6log(HT)

0

5.2
+ln?+1

.2
+ln5+1>

2
+ln5+1)

) = O(n*H*loglog(T))

)

)

L0~ and €71, as well as constant factors.

O

T
)) |Sreach| 1Og (1 +
n-y

*/min

)



106 Upper bounding |Sreach| < |\S] as requested, the second term becomes:

~ T
O(n2H2|52-10g (1+ ))
T * Ymin

). We need to consider different regimes for this logarithmic

1057 Step 3: Analysis of log (1 +
1058  term:

T Ymin

1059 Case 1: Small offline dataset (n - Yin < T)

T T
log {1+ =~ log
T * Ymin T * Ymin

= log(T) — log(n * Ymin)
— 0(l0g(T)

1060 Case 2: Balanced regime (n - Ypin =~ 1)

T 1
log <1 + ) ~ log (1 + ) =0(1)
7 Ymin Ymin

1061 Case 3: Large offline dataset (n - yin > T)
1062 Here we can use the approximation log(1 + x) ~ z for small x:

T T T
log (1 + ) ~ =0 ( )
T Ymin 1 * Ymin 1 * Ymin

1063 Combining these cases, we can express the behavior of this term as:

T T
) =0 (min {1og(T), })
T * Ymin T * Ymin

1064 Step 4: Combining all terms. The first term O(ngH 2) is dominated by the second term when
1065 |S| > 1 and T is non-trivial. Therefore, our final asymptotic bound is:

2 §<B‘f(”§7’775/€3))2 S@(nQHQSIQ-min {log(T) r })

)
n . .
i€{1,2} =1 Ymin

log (1 +

1066 This bound correctly captures how the offline data affects the regret across different regimes. For
1067 small n relative to 7', we recover a bound similar to the standard one with log(T'). For large enough

1068 1, the bound improves to —L—, showing a linear reduction in the bound as n increases. O

N Ymin ’

1069 D.2 Term 2: Asymptotic bound

1070 We derive an asymptotic bound for Term 2 in Theorem [37] via Lemma[2] The auxiliary lemma used
1071 in the proof of Lemma[?2]is found in Appendix [D.2.T.

1072 Lemma 42 (Upper Bound on Term 2). The term 2 has the following asymptotic result

0 (B2 11572 -min { . 1n(1)} + LR
Ttez[q;] H(bpf(ﬂ'g) _ QSPt(TrtQ)HV;l <A|Tlog (1 + p )

1073 with the most important part, as n — oo i.e the offline data set goes to co the asymptotic regret is
1074 log(1) =0

1075 Proof. We follow standard argument from |Lattimore and Szepesvari [2020].
1076 We start with the inequality

uw<2log(l+u) u>1 = Y |[lom|3<2- > log(l+[|om3)
te(T] te(T]
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1077

1078

1079

1080

1081

1082

1083
1084

1085

1086

1087

Using the definition of V; we have
Vigr = A Igwa + Z (571';82 =V, + 577,5(571'? = V12 (I + ‘_/_1/2577,5571'?‘7_1/2> yi/2
1€[t]

Using properties of determinant:

det(Vig1) = det(Vy) - det(I + V=Y 26m67F V=12) = det(V,) - (1 + ||57Tt||%7[1) = det(Vp) - H (1+ ||57Ts||%7[1)

s€(t]
<~
det(VtH)} 2
log | ————| = 1+ [|d7s||% -
g{ det(Vy) SEZM( omslly,-+)
‘We have for

_ 1 _
d@t(‘/t_;,_l) = H )\z < (8 . TT{W+1})d
i€[d]

where using linearity of trace

Tr{Vip} =Tr{M} + > Tr{6a2?} =d- X+ Y [om,|3

s€t] s€(t]
We notice that
l6ma[13 = 6™ (x8) — 67 (x2)13

= (67 () = ™ (x}) + 6™ (n}) — 670 (x2) + 97 (n2) — $70 (=213

< 20" (m) — 6™ (m) 13 + I (x1) — 6™ (72) 3
we can control

o™ (xf) — ™ (xP)|3 < 4-R- B?

from lemma [49]linking the hellinger ball with the contraint moments, together with lemma 3] for the
tabular setting yield

_ Radius = - + £ (2
R = Radius \/ﬁ+\/ﬁ <1+\/H (1+’Ymm'\/ﬁ>>
a:=+/4-15|-log(|A] - 2/6)
8= /4-1S]>-|A| -log(nH - 2/5)

Now with result Lemma[43] we have

t 12

167 () — P (M2 < O (32 CH ISP 1og(IS|Al/8) - Co(Fromxt)? (

Hence in asymptotic notation

2|6 (m;) — ¢ () |3 + 1670 (m)) — pPo (w2)]13
< 2)|6" (m) — ¢70 (m) |13 + |97 (m}) — ¢To (w23

~ 2 2 t |S|-B%-\/|A|-H
<O<B-H-|S| T b

Note that we need to sum over ¢ € [T| hence
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1088

1089

1090

1091

1092

1093

1094

1095

1096
1097

1098
1099

1100

1101
1102

1103

1104
1105

> (216" (m) = "o (m) I3 + 6™ (n) — " () 3)
te(T]

~ T. .B2../IA|l - H
<O <B2.H.|S|2.min{T,ln(T)}—|— 151 4 )
n VTV Ymin

by using
Z t T T
~n(n+t) n n

This expression behaves differently depending on the relationship between 7" and n:

1. When T' < n: Using In(1 + x) ~ « for small z, we get

A
— n(n+t) “non
=0()
2. When T > n: We have In (1 + %) ~ In (%), so the sum is dominated by %
A unified bound that works across all regimes is:
T
T
Z _t ) <min {,hl(T)})
— n(n+1) n

Hence the final bound yields

Ty lloP(n}) = ¢ ()l

te(T]
0 (2 - I5f2 i (£, m()} + LRI
< A|Tlog <1 + d >

D.2.1 Term 2 asymptotic bound: auxiliary Lemma for Lemma [42]

Lemma 43 (Bound on Feature Expectation Difference). Let ¢ : T — R? with max, ||¢(7)|| < B be
a feature map, Py be the count-based estimator from n offline trajectories following policy m* under
dynamics P*, and Pt be the combined estimator after t additional online interactions. Then, with
probability at least 1 — §:

t 12

|67 () = 6™ ()3 < O (BH |2 - log(|]|A|/8) - Cr(Fr,m,7")? ( TR R e

where C(Fr,m,m) is the concentration coefficient accounting for distribution shift.
Furthermore, when combined with an additional error term of O ( %) the overall bound simplifies to
O (%) for all practical regimes.

Proof. We divide the proof into several steps:

Step 1: Martingale Structure and Concentration Bounds. Let F; be the o-algebra generated by
all information available after ¢ interactions. For each state-action-next-state triplet (s, a, s’), define:

Xi(s,a,8") =1{s; = s,a; = a,8,41 = 8’} — P*(§'|s,a) - I{s; = s,a; = a}
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1106 This forms a martingale difference sequence with respect to filtration {F; }!_;:

E[X;(s,a,s")|Fi_1] =0
1107 The offline estimator can be expressed as:

N 1
Po(s/]s,0) = P*(s/ls,0) = -————— 3" Xi(s,0,5)

N, ine(S,a
of fline (8, )iEOfﬂine

1108 By Hoeffding-Azuma inequality, for any (s, a) with Nj f1ine(s, a) > 0, with probability at least
5.
1109 1 — W

2log(4/5]?|A/9)

Py(s'|s,a) — P*(s]s,a)| <
Py([5,0) — P >_\/ o

Ne(s'|s,a)

1110 Similarly, for the online-only estimator P2""¢(s'|s, a) = AR

with probability at least

) .
11— STSI2TAT

o 21og(4]S|2|A/5)
Ponlme / — P*(s’ <
P s, @) — P (5|5, o) _\/ Niooa)

1112 Step 2: Bounds on Total Variation Distance. By union bound over all next states, with probability
1113 atleast 1 — m:

1Po(-]s,a) = P*([s,a)lly = Y |Po(s'|s, @) — P*(s'|s,a)]

<15]- 2log(4]S]?|A[/6)
a Noffline(s>a)

1114  Similarly for the online estimator:

Sonli 21og(4]51%|A1/9)
online _ p*/(. < .
| Bentne (s, @) P (ls, )l < |9) \/ Yo

1115 Using triangle inequality:
17 (s, a) = Pol-ls,a)ll < PP (fs,a) = P*(:|s )|l + [P (-|s,a) = Po(-|s, )]s

2log(45[?|Al/d) 2log(45[?|Al/9)
< . .
- |S| \/ Nt(S,G) +|S| Noffline(saa)

1116 Step 3: Combined Estimator Analysis. The combined estimator can be expressed as:

Noffline(5/|55 Cl) + Nt(8/|57 CI,)

By(s|s,a) =
t( | ) Noffline(saa)+Nt(Saa)
_ Noffline(sya) . Noffline(8/|s7a) + Nt<s7a) . Nt(sllsaa)
Noffline(57a)+Nt(57a) Noffline(saa) Noffline(sva)+Nt(57a) Nt(saa)
= (1 —ay(s,a)) - Py(s']s,a) + ay(s,a) - PE"(s'|s, a)
1117 Where a4 (s,a) = Nofflmiz(;’)‘l_f_Nt(&a). Thus:

Pi(s'|s,a) — Py(s'|s,a) = (1 — ay(s,a)) - Po(s'|s,a) + au(s,a) - PP (s |s,a) — Po(s'|s, a)

= ay(s,a) - (P{’"””e(s’|s, a) — Po(s'|s,a))
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1118

1119
1120

1121

1122
1128

1124

1125

1126

1127

1128

Therefore:
1P.(]s,a) = Po(:ls,a)lly = (s, a) - [| PP (]s,a) — Po(:ls,a)[x

oo (. B PSP

Step 4: Accounting for Visitation Distributions. For precise analysis, we express the counts in
terms of visitation frequencies:

Noffline(37 CL) =n: ugffline(sa a’) -H
Ni(s,a) =t-p’t,. (s,a) - H

online
Where ugf fline(8,a) and pi71,. (s, a) are the average state-action visitation frequencies. This gives:

t- lu’:)r;Lllnp (87 CL)
n: p’gffline (87 a’) +1- M‘gizline(s’ a)

ai(s,a) =

Assuming the states in the support of policy 7 have visitation frequencies lower-bounded by some
constant ¢ > 0 for both offline and online regimes:

. . t-c 21og(4|S|?|A|/0) 1 1
| P:(]s,a) — Po(:]s,a)llx W'kﬂ'\/ o H (\/Z+\/ﬁ>

ot 2log(4[S]2[A[/8) (1 1
- R (7 %)

log(|S]|Al/6) t 11
0('5" H 'm'(ﬂm))

Step 5: Feature Expectation Difference. We begin with the telescoping decomposition:
167 () = & (m)ll2 = [Erney, [6(7)] = Ernry, [$(7]]l2

< B-H-Egapay, |IB(ls,a) = PoCls,a)1

IN

To handle the distribution shift, we use the concentration coefficient:

d= (s,a) 2
*\ Py
CT(]:Ty ™, T ) = E(s7a)~ﬂf;f”m </”L7T;fl‘ (87 a))

By Cauchy-Schwarz inequality:
Eqaag, [F(s:0)] < Cr(Fr,ma) -\ By [F(5,0)]

Applying this to our bound:

|67 (x) — 6™ (m)ll2 < B - H - Cr(Fr,m,7°) - \/ Efgapnz: o, [IPC15:0) = PoCls, 0)]?]

From Step 4, we have:

115, a) — Po(-ls,a)|[3 < O <5|2 . 1°g<|51|}f4|/5> . (nm . (;{ N \/15) )

. <5|2 | 1og<|sf|j|[A|/6) _ (nit>2 . (1 + \/% + i))
Y <|S2 os(1S141/%) ((n Lot . +§)tm e fﬂ%))
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1129

1130

1131

1132

1133

1134
1135

1136

1137

1138

1139

1140

1141
1142
1143

1144

1145
1146

For large n and ¢, the middle term is dominated by the other two, so:

: 1 , los(SI|AI/0) ([t £
I2ls.0) = Aol <0 (s AR (Lo E))

Substituting back:

2 Po 2 2 772 . — 2.10g(|5||A‘/5>_ t £
167(x) = 6P I < B2 12 ColFp, w2 -0 (152 AL (-t B )

2
-9 (32 H ISP log(1S11A41/3) - Cr(Fr.m )" <(n . 02 +tt)2 n)>

Step 6: Analysis for Different Regimes. Let’s examine the bound for different regimes:

When n > t (dominant offline data):

6™ (x) — ™ (m)II3 < O (32 “H - |S|* -1og(|S||A]/3) - Cr(Fr,m,7")? - t)

n2

When t > n (dominant online data):

|67 () = 0" (m)]3 < O (32 A - |S[* -log(|S]|41/9) - Cr(Fr,m,7*)? 1)

Step 7: Combined with Additional Error Term. When combined with an additional error term of
@ (%) , we analyze the combined bound by comparing the orders:
When ¢ < n (early online learning):
t ot 1
(n+t)2 " n2 T n
t2 21
(n+t)2-n n3 " n

Therefore, O (1) dominates.
When ¢ ~ n (balanced regime):

t Nn_l_o 1
(n+t)2 " 4n2 ~ 4n n

t? oot 1 _of?
(n+t)2-n  4n2-n  4n n

Both terms are O ( )

1
n
When ¢t >> n (predominantly online learning):
t t

(n+1)2 "~ 2
t? t? 1
(n+t)2-n 2-n n

1
t

Q

Since ¢ > n, we have % < % so the second term % dominates our derived expression. When
combined with an additional error term of O (%) , both terms are of the same order, giving an overall
bound of O (1). O
D.3 Term 3: Asymptotic bound

We derive an asymptotic bound for Term 3 in Theorem [37 via Lemma[4. The auxiliary lemmata
used in the proof of Lemma[d4]are found in Appendix[D.3.1.
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1147 Lemma 44 (Asymptotic Bound for Offline-Enhanced Bonus Terms). Let s be the event from
1148 Lemma @5, which occurs with probability at least 1 — 25. Then, by setting ¢ = %, the following
1149 asymptotic bound holds:

> 4By(n},4SB,6) + 4By (w7, 45 B, 0)

te(T]
~ |AITH ~ H®?SBVT |$|1/2|A|1/4
H H*SB-T-+/lo
¢ ( |S‘ 7 Ymin i VT Ymin * S 1/4

1150 Proof. Starting with the bound from &s:

Z 4B, (7,45 B, 5)+4Bt(7rt,4SB 0) < el + Z 8By (), 8HSB, 6, ¢) + 8B (n?,8HSB, 5, ¢)
te[T] te(T]

1151 From Lemmal43] we have:

> 8By(r},8HSB, ,€) + 8By(n7,8HSB, b, ¢)

te[T)]
~ |AlTH  H°?SBVT |$|1/2|A|1/4
O|H|S H*SB-T -4/
( | ‘ T * Ymin + RV T * Ymin + Og 1/4
1152 We set € = % to optimize the bound, which makes €7" = 1 = O(1). This constant term is dominated

1153 by the other terms for large 7.

1154 Additionally, setting € = = affects the log (@) = log(32H2SB - T) term inside the bound.
1155 This adds a log(T") factor, which is already absorbed in the O notation.

1156 Therefore, our final asymptotic bound is:

> 4By(n},4SB,6) + 4By(n}, 45 B, 0)

te[T]
~ |AITH  H®?SBVT |$|1/2|,4|1/4
H + H*SB-T-+/lo
O ( |S‘ T * Ymin * \/n'r}/min S 1/4

1157 This bound shows three distinct terms scaling with offline data:

1158 1. The first term scales as f and represents the primary benefit of offline data for covered
1159 regions

1160 2. The second term also scales as f and captures the improved martingale concentration
1161 3. The third term scales as # and accounts for the diminishing probability of encountering
1162 uncovered regions

1163 For sufficiently large n, the bound improves, but it’s important to note that the third term has a direct
1164 linear dependence on T' (modulo logarithmic factors). This term dominates for large 1" unless n
1165 scales appropriately with T. Specifically, with n = ©(7*), the third term becomes O(1), and with

1166 n = O(T?), the overall bound becomes O(+/T log(T')), which is near-optimal.

1167 This demonstrates that with sufficient high-quality offline data scaling appropriately with the horizon
1168 1', the sum of bonus terms can be made arbitrarily small, fundamentally improving the regret
1169 bound.
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1186
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D.3.1 Term 3 asymptotic bound: auxiliary lemmata for Lemma 44|

Lemma 45 (Offline-Enhanced Bonus Term Summation Bound). Let &3 from Lemma46|be the event
that for all T' € N:

> 4Bi(n},AWB,8) + 4B,(r}, AW B, 8) < €T+ > 8By(n},8HW B,0,€) + 8B,(r},8HW B, 5, €)

te[T) te[T)

Let n be the number of offline demonstrations with minimum visitation probability Yy, > 0 for
state-action pairs visited by the expert policy. Then, invoking Lemma[{6|and Theorem{7| Es occurs
with probability at least 1 — 26, and:

> 8By(w},8HW B, ,€) + 8B(r;,8HW B, 6, ¢)
te[T)

<8y (th)hagh e,8HW B, ) + Z&ghafh(e,SHWB,é)> +1

te([T] h=1

where I incorporates the benefit of offline data:

- [ H32WB 1/2| g|1/4
_ o (HEWBYT | oy g g 1SICIARY
V T * Ymin 1/4

with P(E€) = O (TH -4/ WW) representing the probability that at least one state-action
pair encountered during online learning lacks good offline coverage.

Furthermore, with probability at least 1 — 26:

> 8By(n},8HW B, 6,€) + 8B;(n7,8HW B, 6, ¢)
te[T]

2H2W B log(HT T
< 2048HWB\/H log(|S||A|H) + |S| log (BGVV> + log (60g()> | Sreacn] -

6 T * Ymin

H52W B 1/2] f|1/4

10 (HEWBVT | oy ISIZIARY
V7 Ymin nt/4

Using O notation to hide logarithmic factors and simplifying:

> 8Bi(n},8HWB, 6,¢) + 8By(n},8HW B, , ¢)
te[T]

N TH H5/2 B 1/2 1/4
_O<H|S| ATH | HPWBVT | oy 7 ISIZART >

n: ,len V n- ’ymm 1/4

This bound demonstrates how offline data benefits reinforcement learning through three mechanisms:
1. Reducing exploration needs for well-covered regions (first term)
2. Improving martingale concentration for covered state-action pairs (second term)
3. Decreasing the probability of encountering poorly-covered regions (third term)

All terms approach zero as n — oo, though at different rates: the first two terms scale as f while

the third term scales as W' This confirms that with sufficient high-quality offline data, the entire
bound can be made arbitrarily small, fundamentally improving sample complexity in reinforcement
learning.
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1193
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1195
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1198
1199

1200
1201

1202

1203
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1205
1206

Proof. We follow the structure of the original proof, adapting it to incorporate our offline-enhanced
bounds.

Step 1: Set up the martingale difference sequences. Consider the martingale difference sequences:

H—-1

{By(n} SHWB,8,¢) — Y _ £ ut, (e 8HWB.0)}72,

t,h?
h=1
and

H-1

{B,(72,8HW B, 6, ¢) Zgg w2 (€ SHWB,0)}2,
h=1 "

Each has norm upper bound 32H?W B, since &; 4 (€,7,8) < 2 and therefore >, &, a0, (€,7,6) <
2Hn.

Step 2: Apply anytime Hoeffding inequality with improved bounds. Consider the martingale
difference sequences:

H-1
{Bi(n} SHWB,5,¢)— > €9 .\ (¢, SHWB, )},
Pt St,h %t n
and
H-1
{By(n?,8HW B, 6, ¢) — §§?h,a2h(e,8HWB75)}?il
=1 "

By Lemma 48] which accounts for both covered and uncovered state-action pairs, with probability at
least 1 — ¢ for all T € N simultaneously:

> " 8B(r},8HWB, ,€) + 8By (7, 8HW B, 4, €)
te[T]

H—-1
) (t)
<82<25W;,(6 SHW B, ) +Z£ .2 (6,8HWB,6)>+I

t @ t,h
te[T] \h=1
where I incorporates our rigorous analysis of martingale concentration with offline data from Lemma

5/2 1/2] 411/4
1= o (HEWBVT | oy . ISEZIALT
V n- ’Ymm 1/4

The second term accounts for the probability P(E¢) = O (TH 4/ |82A7|Ll°g(”)) that at least one

state-action pair encountered during online learning lacks good offline coverage, while maintaining
the proper /T scaling in the regret bound.

Step 3: Apply our offline-enhanced bound. Now, to bound the remaining empirical error terms, we
apply Theorem For each policy 7}, ¢ € {1,2}:

3 Z 67, i, (. BHWB.3)

te[T] h=1
2H2W B log(HT
< 64HWB\/H10g(S||_AH) + 18] log (?’W) +log (‘“gé))
€

T

T * Ymin

: |Sreach‘ -2
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1211
1212

1213

1214

1215

1216

1217

1218

1219

1220
1221
1222

1228

1224

Step 4: Combine the bounds. Summing over both policies:

H-1 H-1
8 (Z €0 1 (eSHWB,)+ Y €9 (e,8HWB,5)>

R

te[T] \h=1 h=1
32H2W B 6log(HT T
<82 64HWB\/Hlog(S||AH) +1S|log () + log (Ogé)> +[Steaen] - 24 [ — .
€ *Jmin
32H2W B 6log(HT T
= 2048HWB\/H10g(|S|.A|H> + |S| IOg (6) + log (Ogg)> . |Sreach| : 7 Yoni

Step 5: Express the complete bound. Therefore, with probability at least 1 — 24:

> 8Bi(n},8HWB, 6,¢) + 8By (w7, 8HW B, 4, ¢)

te[T]
2H2W B log(HT T
< 2048HWB\/Hlog(|S|A|H) +|S|log (36W> + log (G()gé)) | Sreach] - .
B 5/2 1/2] g|1/4
+0 HWBVT WB‘/T+H2WB-\/T-7|S| A
\/n * Ymin n1/4

Using O notation to hide logarithmic factors and simplifying:

> 8Bi(n},8HWB, 6,¢) + 8By (w7, 8HW B, , ¢)

te[T]
~ TH  H?2WB\T S|1/2|4|1/4
go(ﬂm ATH T rwp. 7. SECA
" Ymin v/ Ymin nt/4

This bound demonstrates several key insights:

1. Sublinear Regret: All terms scale as /7', maintaining the crucial sublinear dependence on the
horizon. This ensures that our regret doesn’t grow linearly with 7.

2. Offline Data Benefits: All terms decrease as n increases, but at different rates:

* The first two terms decrease at rate ﬁ and capture the direct benefit of offline data for
state-action pairs with good coverage

* The third term decreases at the slower rate of # and accounts for the diminishing proba-
bility of encountering poorly-covered state-action pairs

3. Complete Dependence on Offline Data: Unlike traditional online-only bounds, our analysis
shows that all components of the regret can be reduced with sufficient offline data.

With sufficient high-quality offline data (n — oo with fixed ymin > 0), all terms approach zero,
confirming that offline data can fundamentally change the sample complexity of reinforcement
learning. [

Lemma 46. Let 1), ¢ > 0. For all m simultaneously and for all t € N, with probability 1 — 6,

Bt (7T7 m, 5) S 2Bt (71-7 2H771 67 6) +e€

Proof. Recall that,

H-1
Bt(ﬂ-7 7, 6) - Eslwp,TNIP’"ﬁt(ﬂsl) [Z é.:(;i),ah (na 6)‘| .

h=1
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1225

1226
1227

1228
1229

1230

1231
1232
1233

1234
1235

1236

1237

1238

1239

Let f : ' — R be defined as,

H-1

=2 &a )

h=1

It is easy to see that f(7) € (0,2nH] for all 7 € T'. Therefore, a direct application of Lemma 13 in
Saha et al.|[2023]] implies that with probability at least 1 — ¢ and simultaneously for all 7, and ¢ € N,

H-1

Bt(ﬂ-vna 6) < ESINp,TN]P’W(-\sl) [Z fsh an (777 )

h=1

+ By(m,2Hn,d,¢€) + €

Since fé(f,)z(e, n,9) > 5St,)l(n, 0) foralle > 0, s,a € S x Aand 55 a(E 7,9) is monotonic in n we

conclude that,

H
< Eslr\/p,‘er""("sl) [Z ShyQn E 777 ‘|

h=1
H—

H—-1
Esl/\/p,TNIP’”(~|sl) [Z f‘gz),ah (777 5)

h=1

1
< Eslwp,TN]P’”(-\sl) [ fgh) ap (6 2H77a 6)]
1

h=
= By(m,2Hn,d,€)

Combining these inequalities the result follows. O

Lemma 47 (Offline-Enhanced Non-Squared Bonus Term Bound). Let n be the number of offline
demonstrations with minimum visitation probability ymin > 0 for state-action pairs visited by the
expert policy. Then, with probability at least 1 — §:

2
3 Z €0 (e, SHSB,0) < 64HSB\/Hlog(|S||A|H) +1S]log (32H€SB) +log <61°g(HT))

te[T] h=1 1)

T
‘Sreuch| -2

* Ymin

Proof. We follow the approach shown in the provided image, adapting it to incorporate offline data.
Starting with our modified definition of bonus terms that incorporate offline data:

U
£ (e,n,8) = min (2n’477\/N0ﬁ~(8 a) + Ni(s a)>

where U = H log(|S||A|H) + |S] log (%) + log (mng;(t)). Rewriting the sum by grouping
state-action pairs:

Nrii(s,a)
> Z &0 i @8H5B,) =333 min (16HSB 32HSB v t)
te[T] h=1 seSacA  t=1 Noge(s, a) +

For sufficiently large values of Nyg(s, a) + ¢, the minimum is dominated by the second term:

NT+1 S a) NT+1(80,

U 1
> > 32HSB N0 1 =32HSBVU - > > NI EOES,

s€SacA  t=1 seSacA  t=1
The key adaptation now is to reindex the sum to account for offline visits:

Nrii(s,a) Nogr(s,a)+N741(s,a)

YY Y Yy Y

s€SacA t=1 s€SacA t'=Nof(s,a)+1
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1241
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1243

1244

1245

1246
1247

1248

1249

1250

where ¢’ represents the total count (offline + online). Using the property of the sum of inverse square
roots and the minimum visitation assumption:

Noft(s,a)+Nry1(s,a)

1
tl

< 2\/N0ﬁ‘(5, a)+ Nriq(s,a) — 2\/N0ff($, a)
t/:No{f(S7a)+1

< 2v/Nege(s,a) + Nri1(s, a)

N s, a)
<2 T+1 “/ Nogi(s, a)

NO“(S CL
N s, a)

<2 T+1 Y off S, a V S a 6 Steach
n - H - ymin

Applying Jensen’s inequality:

N s,a) Z Sreac Nria(s,
Z 9 T+1 /70ff8a<2 Sreach\/ (5,0) € Sreach

= H - Ymin - H - Ymin

a)

TH
<2 Sreac : Y
- ‘ h‘ n- H * Ymin
T
=2 ‘Sreach‘ .
T * Ymin
Substituting back:
T
> Z €D, o (6,8HSB,5) < 32HSBVU -2+ | Sreach| - :
te[T] h=1 " Ymin
T
= 64HSB\/E . |Sreach| :
T * Ymin
Expanding U:
> ng a, (€,8HSB, 6)
te[T] h=1
32H?SB 6log(HT T
< 64HSB\/Hlog(|S||A|H) +|S|log (€> + log (Ogg)) | Sreach| - 2 —
This completes the proof. O

Lemma 48 (Martingale Concentration with Offline Data). Let {X;}]_, be the martingale difference
sequence defined as:

th

H-1
Xy = By(r},8HWB,5,¢) — > _ £ ¢ (¢, 8HWB, )
th
h=1

Let n be the number of offline trajectories with minimum visitation probability Vmin for state-action
pairs visited by the expert policy. Then, with probability at least 1 — §:

5/2 1/2| 411/4
ZXt <0 m + HWB-VT- M

where the first term captures the direct benefit of offline data for state-action pairs with good coverage,

and the second term accounts for the diminishing probability P(E€) = O (TH -4/ SlzlAnlog(")>

of encountering state-action pairs with insufficient offline coverage.
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Proof. We introduce a novel approach that substantially improves upon standard martingale concen-
tration bounds by leveraging offline data. We begin by comparing our approach with the standard
method used by Pacchiano.

Saha et al. [2023]’s Approach (Standard Method): The conventional approach uniformly bounds
each element of the martingale difference sequence:

H—-1
1 X¢| = |Bi(n}, 8SHWB,6,¢) = Y _ €9 . (e, SHWB,4)| < 32H*WB
t,h % h
h=1

This bound is derived by noting that &, ,(e,7,0) < 27, yielding >, &, a, (€,7,6) < 2Hmn, and
applying triangle inequality. This leads to a martingale concentration term in the regret bound that is
O(H*W B VT ) and, crucially, does not improve with offline data.

Our Improved Approach: We recognize that with offline data, we can obtain substantially tighter
bounds by conditioning on appropriate events. This leads to a martingale concentration term that
explicitly decreases with offline data, approaching zero as n — oo.

Step 1: Define data-dependent events and calculate their probabilities.

We define two complementary events:

* Event E: "All state-action pairs encountered in all 7" episodes have good offline coverage"
(i-e., Nogt(s,a) > ¢+ n - Ymin for some constant ¢ > 0)

» Event E°: "At least one state-action pair encountered lacks good offline coverage"

To calculate P(E°), we leverage our MLE concentration bound for transition models (Corollary :
|S[?|A[log(nH~1) )

n

H*(PY, ,PT.) <0(

The crucial insight is that we can relate this Hellinger distance to the probability of encountering
state-action pairs with insufficient offline data. Using the relationship between Hellinger distance,
total variation distance, and event probabilities:

1. Hellinger distance bounds total variation: TV(P, Q) < v/2 - H(P, Q) 2. Total variation bounds
event probability differences: |P(A) — Q(A4)| < TV(P, Q)

Let A, , be the event "state-action pair (s, a) has insufficient offline data coverage." Under the true

model P* and with enough offline data sampled from a policy close to 7*, the probability IP’}T;* (As.a)
is negligible. Therefore:

PE (Asa) < PP (Asa) + TV(PE  PE.) < O(H(PE PF.))

Using our Hellinger distance bound:

2 —1
BT (Aya) < O <\/|S | Al log(nHé )) .

n

By union bound across all T' - (H — 1) state-action pairs encountered:

P(EC)<T~(H—1)-pn:O<TH. |52A|10g(”)>

n

Key Insight 1: The probability of encountering any state-action pair with insufficient offline coverage
decreases as n increases, at a rate of approximately ﬁ

Step 2: Establish conditional bounds on martingale differences.
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Case 1: Under Event E (Good Offline Coverage). When all state-action pairs have good offline
coverage:

U
£ (e,n,8) = min (217’477\/N0ﬁ‘(8 a) + Ni(s a)>

< min (217, 477’ / )
c-n- ’len

For sufficiently large n, the second term in the min dominates:

¢t)(e,m,0) < 4n

c-n- 'Ymm
_ o[ - /H 1og(IS[IA]) +log(1/9)
VT Ymin
Therefore, forn = SHW B:
4 H-1
X, | E = |By(w, 8SHWB,5,¢) - 3 €9 (e, SHWB,3) ’E
t,h?"t, h
h=1
Z éqhaah + Z g(f o a, n
Pt
<2.H.0 HWB - \/H -log(|S||Al) + log(1/0)
\/n * Ymin
_0 H*WB - \/H -log(|S||A]) + log(1/4)
\/n * Ymin

= j\f;l

Case 2: Under Event £° (At Least One Poorly Covered State-Action). Here, we revert to
Pacchiano’s standard bound:
|X¢|| B¢ < 32H*WB =M

Key Insight 2: Under event E (which occurs with high probability for large n), the martmgale
differences are much smaller than Pacchiano’s uniform bound, specifically by a factor of W

Key Innovation: By conditioning on events F/ and E'°, we can precisely quantify how the martingale
concentration improves with offline data through two mechanisms:

1

1. The magnitude of martingale differences under E scales as T

2. The probability of event E° decreases as n increases, at a rate of approximately ﬁ

This conditional analysis is fundamentally different from Pacchiano’s approach, which uses a single
worst-case bound regardless of offline data. Our approach precisely captures how offline data reduces
both the magnitude of exploration bonuses and the probability of encountering state-action pairs that
require large exploration.

Step 3: Apply Azuma-Hoeffding inequality conditionally.

The Azuma-Hoeffding inequality for bounded martingale differences states that for a martingale
difference sequence { X}/, with | X;| < ¢; almost surely:

= 231 G

S,
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Applying this conditionally on event E, where | X;| < M,, for all ¢:

)\2
P E | <2exp <_2TM2>

T
> X
t=1

Similarly, conditionally on event E°, where | X;| < M:

/\2
P E°) <2 -
. = eXp( 2~T~M2)
1294 By the law of total probability:

T
> X
t=1
1203 Step 4: Apply the law of total probability.
T T
P(Zth/\>:P<ZXt E)-P(E)+P<
t=1 t=1
A2 A2
< Zexp (‘zTMz) PIE) + 2exp (‘zTMz) - P(EF)

1205 To obtain an overall bound of d, we allocate J/2 to each term.

> A\

> A

T
DX

t=1

> A >\

E) . P(E)

1296 For the first term:
)\2
2 ———— |- P(E) <
eXp( 2-T-M;4;> (B) <
e B A2 < )
AT T M2 ) = 2 P(E)

o M2 = B\

2-P(E
:>)\2Mn-\/2-T-log ((5()>
1297 For the second term:

2exp <_A> P(E) <

0
2

NN

2-T-M?

= ex — A < 0
PN\ T M2 ) = 2 P(EY)

e ()

1299 For the bound to hold with probability at least 1 — 4, we need:

AZmaX<Mn'\/Q'T-log(z'];(E)),M.\/Q.T.log<2'i@c)>>
gMn.mw.\/Q.T.log(z-Pém)

1300  Substituting our expressions for M,, and M:

H*WB - /H -1og(|S]|A]) - T - log(1/5) ) P(E°)
/\§O< o~ >+O<HWB-\/T-log( 5 >>

1298 Step 5: Derive the combined bound.
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1301 Using our bound on P(E°):
H2WB-+\/H - AN - T -
A< < B - \/H -log(|S[|A]) 108;(1/5)>

\/n"ymin
TH . /IS Allog(nHs-1)
O|H*WB. |T - log 5 n

1302 Step 6: Analyze the asymptotic behavior.
Starting with the second term of our bound:

TH . /ISEIAlog(nHs—)

O|H*WB. |T - log 5

Step 6.1: Expand the logarithm inside the second term.

TH -/ BEALs( ) TH |S[2[Allog(nH5~1)
:lOg T +1Og

1
08 1) n

TH 1 SI?|All Hé !
_10g<6>+2log< I |05(n )>

Step 6.2: Extract \/T from the square root.

2 -1
e R e )

2 -1
= H*WB-VT- \/log (T;I> + 1log (|S| Al log(nHd ))

2 n

1303 Step 6.3: Analyze the behavior for large n. For large n, the term log (w)

1304 becomes negative because n grows faster than the logarithmic term.

2 -1
\/log <T;{> + %log <S| A 105("H5 ))

log (Tf) — 0(\/IogT))

1305 Therefore:

1306 This gives us:
H?>WB - VT -0(\/log(T)) = O(H*WB - VT)

n

1307 Step 6.4: Incorporate P(E°) correctly. We know that P(E°) = O <TH . Wllog(")>

1308 To properly account for this probability in the bound, we can express the term as:

H>WB-VT - [log (TH) \/ |S| |A| log(n
/\5| |Awlog<n>

_ 5 |~9|1/2|A\1/4
= H*WB-VT-0(1) —— 77—
_olm [SIM2 A
—O(H WB VT = —
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Step 7: Combine these results for our final bound.

We now have two key terms in our bound for martingale concentration:

2 . . . .
A<O H2*WB - /H -1og(|S]|A]) - T - log(1/6) N
vV 7 * Ymin
|81/2|A|1/4>

nl/4

O(HQWB-\/T-

Simplifying the first term and using O notation to hide logarithmic factors:

- 5/2 . - 1/2) f|1/4
A< O m +0 H2WB~\/T-M
\/n * Ymin TL1/4

Therefore, with probability at least 1 — §:

T
S,
t=1

This bound reveals several key insights:

- { H%2 . WB-/T 1/2) g|1/4
<0 #_FH?WB.\/T.M
\/n"Ymin ’I’Ll/4

1. Sublinear Regret: Both terms scale as \/T , maintaining the crucial sublinear dependence
on the horizon. This ensures that our regret doesn’t grow linearly with 7T'.

2. Offline Data Benefits: Both terms decrease as n increases, but at different rates:

* The first term decreases at rate ﬁ and captures the direct benefit of offline data for
state-action pairs with good coverage

* The second term decreases at the slower rate of # and accounts for the diminishing
probability of encountering poorly-covered state-action pairs

3. Complete Dependence on Offline Data: Unlike Saha et al.| [2023]’s bound, which has
an irreducible term independent of offline data, our bound shows that all components of
martingale concentration can be reduced with sufficient offline data.

4. Different Decay Rates: The different decay rates (ﬁ Vs. #) suggest that the second

term will eventually dominate for very large n, setting the ultimate rate at which offline data
can improve performance.

This confirms that with sufficient high-quality offline data (n — oo with fixed ymin > 0), the entire
martingale concentration bound approaches zero, eliminating this component of regret entirely. [

E Auxiliary Mathematical Results

E.1 Bridging Offline Confidence Sets and Online Constraints

Lemma 49 (Hellinger Ball to Moment Constraints: Linear Embedding). Define a random variable
X on (A, A).

Assume f: A — R¥and || f]|oo < B < o0

Consider two distributions P, Q) with densities that are continuous with respect to Lebesgue measure.
Further assume:

H*(P|lQ) < R
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Then
IEpf(X) —Eqf(X)l2<2v2-B-Vd-R

and

ICovp (f(X)) = Covg(f(X))llop <6-d-B*-V2-R
Proof. For the squared norm on first moment, the following holds true
[Brf ~Eafla = [ F@)p(e) - gla))dal]
A
< [ W @lalp@) - a(o)lda
A
<Vd-B- [ o) - a(w)lds

=2TV(P,Q)

Using the classical result|Sason and Verdu! [[2016]] together with our constraint

TV(P,Q) < /2H?(P||Q) < V2R

yield the first result.

For the covariance we follow a similar approach only for matrices. Define g(z) := f(x)f(x) then
[Epg(z) —Eqg(2)llop = | /g(ff)(p(ff) = q(x))dz]op

= sw o ([ o@)ote) - atets o

olla=1

= su oI (@) F(2) T vlp(x) — g(z))dx
ol / F(@)f (@) o(p(z) - q(x))
—inequ. SU v, f(x 21 p(x) — q(x)|dz

<a |Uf;1/‘< @2 [p(z) - q(@)|

< sup / 1£@)2] - |p() - g(a)|de

llvll2=1

<2.d-B*TV(P,Q)<2-d-B*-V2-R

Using definition of covariance matrix we have

ICova(f) — Covg(F)llop = IERLFFT) — EQlf 7] + Ep fEpST — EqfEqf llop
<EPf 1) ~EQlf fMllop + IEP FEP ST — EQSEqf” lop
<2-d-B*-V2-R+|EpfEpfT — EQfEQS" op

in order to bound the last term we have

IEpfEpf" —EQfEqf lop = IEpfEpfT —EpfEqf" +EpfEqf" —EQfEqf™ |lop
<|Epf(EpfT —Eqf )lop + (Brf —Eqf)EQ S [lop
<|Epfll2- IEpf —Eqfll2 + [Eqfll2 - [Erpf —Eqfll2
<2-Vd-B-|Epf —Eqfll2
<4-d-B*-V2-R
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F Experiments

We compare our algorithm with the log-loss behavioral cloning method of |Foster et al.|[2024] and the
preference-based online learning algorithm of [Saha et al. [2023]. We could not find publicly available
implementations for either of the two, so we made adaptions to achieve a computable implementation.

All experiments were run on an M1 Max CPU with 32GB of RAM, with a wall-clock time of roughly
4 seconds per iteration of the online loop. The main computational bottleneck in this implementation
is the simulation of trajectories for approximating the expectation within ¢ (7), so runtime does not
vary significantly between the different environments, if normalized for episode length. Throughout,
we use deterministic, tabular policies, i.e., they are represented by a matrix of size S x .4, where
each row is a one-hot vector defining the deterministic action taken in that state. The figures shown
display results averaged over 30 seeds, with thick lines representing the average and shaded areas the
results contained within one standard deviation to either side of the average.

Our figures contain two plots. The first displays the (sub)optimality of the current best policy
chosen by each online algorithm at each iteration. At the end of an iteration, this policy is chosen
as the one from the offline confidence set IISM which maximizes the learned score function

sP(m) = Erepr, [(9(7), wi™)]. Tts expected reward is simulated and compared to the optimal
policy’s in percentage terms. The second plot illustrates the speed at which the algorithms pare down
the size of the policy confidence set II; — once the set contains only a single element, we consider the
algorithm converged, as that element is the algorithm’s estimate of the optimal policy 7*.

We had to make certain pragmatic adaptations when implementing the algorithms. For BRIDGE,
we construct IS by taking the offline behavioral cloning policy 7, and obtaining 100 additional
candidate policies via adding noise to 7’s distribution in a way that ensures the candidate stays
within a Hellinger distance of R to 7. The purely online PbRL baseline instead starts with a TI9Mie
containing 100 random policies.

F.1 Environments

Figure 4: Star MDP. Transition probabilities are 0.7 for all solid arrows, otherwise the action takes
the agent randomly to one of the other states.

StarMDP. We illustrate the transition dynamics underlying the Star MDP in Figure 4. This
environment features 5 states and 4 actions ag, a;, as, ag that correspond to right, left, up and
down respectively. Actions have a probability of 0.7 of success, with an agent being moved to a
different, random state with a probability of 0.3. Taking an “impossible” action such as going left
in state s4 will result in not moving with probability 1. Episodes have length H = 10 and start from
so. The offline expert’s dataset consists of 2 trajectories.

Gridworld. We illustrate the gridworld environment in Figure|5. The environment consists of a
4 x 4 grid with states associated with different rewards, including a negative-reward region in the
top-right corner, a high-reward but unreachable state, and a moderate-reward goal state at the bottom
right corner. Each episode has length H and starts in the top-left corner. Each of the four actions (up,
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Figure 5: Gridworld environment. Rewards at every state are indicated if non-zero. Transition probabilities are
0.9. Thick lines indicate an obstacle, through which state transitions have probability zero.

left, down, right) has a success probability of 0.8, whereas with probability 0.2 a randomly
chosen different action is executed. Action stay remains in the current state with probability 1.
Transitions beyond the grid limits or through obstacles have probability zero, with the remainder of
the probability mass for each action being distributed among other directions equally.

F.2 Additional result on Gridworld

We run an experiment in the vein of Figure 2]comparing BRIDGE with Saha et al. [2023] in the more
complex Gridworld environment. We measure the degree of optimality of the algorithm at each
iteration by comparing the expected reward of the currently selected ‘best’ policy with the expected
reward of the true optimal policy (red dotted line). The green dotted line is the expected reward of
the BC cloning policy estimated using [Foster et al. [2024]. Our algorithm leads to a much faster
convergence using the information from the expert’s trajectory dataset.

100

100 — Online PbRL
— BRIDGE

80 30

60

60

10 10

% of optimal reward
Number of policies in 11,

20 20

— Online PbRL
—— BRIDGE

0 5 10 15 20 25 0 5 10 15 20
Iteration Iteration

Figure 6: Comparing BRIDGE to |Saha et al.|[2023] and [Foster et al. [2024] in the Gridworld
environment.

F.3 Embeddings

The choice of embedding function ¢ has implications on computational complexity and learning
speed. Concretely, both a small dimension d and upper bound B for the norm of embedded trajectories
are desirable. In the experiments shown we use two embeddings that strike a good balance between
dimension, norm bound, and expressiveness. The StarMDP experiments use the identity-short
embedding. It is defined as ¢(7) := Y, (s, a;), has a norm upper bound of B = v/2H and
dimension d = |S| 4 |.A|. States and actions are represented as one-hot vectors. The Gridworld
experiments use the state-counts embedding. It is defined as ¢(7) := >, ;(s¢), has a norm
upper bound of B = H and dimension d = |S|. States are represented as one-hot vectors.

Cf. [Pacchiano et al.|[2020] and |Parker-Holder et al. [2020a] for more possible embedding functions
and analyses of their performance in different RL tasks.
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