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Abstract

We developed an automated system based on deep neural networks for fast and sensitive
3D image segmentation of cortical gray matter from fetal brain MRI. The lack of exten-
sive/publicly available annotations presented a key challenge, as large amounts of labeled
data are typically required for training sensitive models with deep learning. To address
this, we: (i) generated preliminary tissue labels using the Draw-EM algorithm, which
uses Expectation-Maximization and was originally designed for tissue segmentation in the
neonatal domain; and (ii) employed a human-in-the-loop approach, whereby an expert fetal
imaging annotator assessed and refined the performance of the model. By using a hybrid
approach that combined automatically generated labels with manual refinements by an ex-
pert, we amplified the utility of ground truth annotations while immensely reducing their
cost (283 slices). The deep learning system was developed, refined, and validated on 249
3D T2-weighted scans obtained from the Developing Human Connectome Project ’s fetal
cohort, acquired at 3T. Analysis of the system showed that it is invariant to gestational
age at scan, as it generalized well to a wide age range (21 – 38 weeks) despite variations
in cortical morphology and intensity across the fetal distribution. It was also found to
be invariant to intensities in regions surrounding the brain (amniotic fluid), which often
present a major obstacle to the processing of neuroimaging data in the fetal domain.
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1. Introduction

During early stages of human brain development, the cortex undergoes rapid transforma-
tions in texture and morphology; expanding from a smooth, homogeneous composition into
a dense, highly convoluted structure (Figure 1). Throughout this process, cellular connec-
tions start to form between distant brain regions, mapping out the foundations for humans’
advanced cognitive abilities. Alongside this, functional activations and connections also
start to develop across the brain; a crucial process for the development of human cognition
(Van Essen, 1997; Doria et al., 2010; Ball et al., 2013; Makropoulos et al., 2018b). Work by
Turk and colleagues (Turk et al., 2019), and efforts such as the Developing Human Connec-
tome Project 1 (dHCP) (Makropoulos et al., 2018b; Bastiani et al., 2019; Fitzgibbon et al.,
2019) and the Baby Connectome Project 2 (Howell et al., 2019) aim to advance magnetic
resonance imaging (MRI) techniques in order to map out such structural and functional
changes in early brain development. Such mapping, also known as the connectome, would
allow the neuroscience community to investigate neurobiological mechanisms, as well as
genetic and environmental factors that underpin healthy brain development in fetuses and
neonates. It could also help understand the development of neurological conditions such as
cerebral palsy and autism.

Figure 1: Example T2-weighted axial slices of four different fetal subjects from the dHCP
cohort, imaged at various gestational ages: 24.3, 28.4, 32.1, and 35.2 weeks. One
can observe striking changes in cortical gray matter intensity and morphology
taking place within narrow time frames. This makes image segmentation of the
developing cortex from the fetal brain MRI a tremendously challenging task.

An important step towards delivering an accurate and representative connectome is
robust structural processing (e.g. tissue segmentation) of brain MRI scans; a particularly
challenging task when carried out on perinatal data sets3. As discussed by Makropoulos and
colleagues (Makropoulos et al., 2018b), visual characteristics of fetal and neonatal brains are
significantly different from those of adult brains in terms of size, morphology, and white/gray
matter intensities. Such changes in intensities during brain development are a result of the

1. developingconnectome.org
2. babyconnectome.org
3. Perinatal here refers to relatively short periods before and after birth à la both fetal and neonatal data

sets. Perinatal scans acquired by the dHCP consortium range from 20 to 45 weeks of gestational age. In
this work, only scans from the dHCP fetal cohort were included (gestational age at scan: 21 - 38 weeks).
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continuous decrease of water content within the brain, as well as the formation of myelin
sheaths around white matter tracts, i.e. myelination (Serag, 2013). Additionally, scanning
times tend to be limited to ensure the comfort of mothers and babies, causing the spatial
and temporal resolutions of the images to be much lower and more prone to motion artifacts
compared to those acquired from adults. Hence, whilst a plethora of methods is available
for use on adult data sets, the analysis of developing brain MRI needs to be addressed as
a separate problem. The translation of image segmentation methods optimized for use on
adult data into the perinatal domains remains a tremendously challenging task.

2. Related Work

2.1. Conventional segmentation techniques

In light of the above, Makropoulos and colleagues presented an automated pipeline for pro-
cessing structural scans obtained from neonates (Makropoulos et al., 2018b). The pipeline’s
workflow comprised a number of steps that included bias correction, brain extraction, tissue
segmentation, brain parcellation, white-matter mesh extraction, and cortical surface recon-
struction. The tissue segmentation aspect of the workflow incorporated the well-established
Draw-EM (Makropoulos et al., 2014); an open-source software for neonatal brain MRI seg-
mentation based on the Expectation-Maximization algorithm. Readers are referred to a
review by (Makropoulos et al., 2018a) for a thorough survey of the image segmentation
literature in perinatal MRI. Notably, a plethora of the structural processing methods de-
veloped in the neonatal domain focused on image segmentation brain tissues. Examples
systems include MANTiS (Beare et al., 2016) and Neoseg (Prastawa et al., 2005), as well
as various works reported by (Anbeek et al., 2008, 2013; Srhoj-Egekher et al., 2012; Chiţă
et al., 2013; Moeskops et al., 2015; Wang et al., 2015; Sanroma et al., 2016). Within the
context of fetal imaging, studies looked into the application of parametric methods (Habas
et al., 2008, 2009, 2010; Ison et al., 2012; Wright et al., 2014) as well as deformable modeling
techniques (Dittrich et al., 2011; Gholipour et al., 2012).

2.2. Techniques based on machine learning

In terms of machine learning methods, a number of supervised classification algorithms were
explored in the literature, these include random forests, e.g. (Ison et al., 2012; Kainz et al.,
2014), support vector machines (Keraudren et al., 2014), and more recently, deep neural
networks (Moeskops et al., 2016; Rajchl et al., 2016; Khalili et al., 2019). Moeskops and
colleagues were amongst the first to study the application of deep learning for brain MRI
tissue segmentation; an important step in neuroimaging structural processing workflows,
and one that is also needed to localize functional and diffusion signals from labeled anatom-
ical structures. Their work showed accurate segmentation as well as spatial consistency for
developing brains (namely preterm neonates), as well as young and ageing adult brains.
The recent work by Khalili and colleagues focused on the application of deep learning on
the specific problem of brain tissue segmentation from fetal MRI (Khalili et al., 2019).
Brain tissue segmentation can be particularly difficult to carry out on fetal scans due to
the aforementioned rapid changes in shape and intensity that take place over narrow time
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scales. As a result, it is very challenging to optimize an individual algorithm to be generic
enough for use on scans obtained from various fetal age groups.

3. Contribution and overview

In this regard, and as a step towards producing a robust map of the fetal connectome, we
developed a novel, age-invariant system for fast and sensitive 3D image segmentation of cor-
tical gray matter from the developing fetal brain. The system is based on the deep learning
family of algorithms (LeCun et al., 2015), namely convolutional neural networks (CNNs),
and was designed to work on volumetric, T2-weighted brain MRI scans. A major constraint
to using deep learning techniques is the need to collect large, manually labeled ground truth
annotations; a tedious task that can take months to complete by an experienced annotator.
Image annotation in the fetal domain poses the additional challenge that data is highly
heterogeneous; brain morphology and intensity characteristics change rapidly throughout
development. To address this bottleneck, we leveraged the Draw-EM algorithm, which was
originally developed for the neonatal domain, and used it to generate preliminary 3D labels
in place of ground truth annotations. We then employed a human-in-the-loop approach,
whereby an expert fetal imaging annotator assessed and refined the performance of the
model using fewer than 300 2D slices, substantially cutting down the cost of ground truth
annotations. A key novelty in our approach is in updating the complex 3D segmentations
with corrections made only on a small number of selected 2D slices, sampled from axial,
coronal, and sagittal directions. Our system was developed, refined, and evaluated using
a large number of 3D scans (n=249, gestational ages= 21-38 weeks), acquired at 3T. Our
analysis of the system showed that it is invariant to the changes in shape and intensity which
occur during early brain development; such heterogeneity often impedes the development
of segmentation systems that can generalize across the fetal ages.

4. Materials and Methods

Figure 2 visually depicts our methodology. Details are discussed below.

4.1. Image acquisition

A total of 249 T2-weighted 3D scans were obtained retrospectively from the dHCP fetal
cohort. Acquisition was carried out by the dHCP consortium using a Turbo Spin Echo
(TSE) sequence on a 3T Philips scanner, following a protocol described by (Price et al.,
2018). Details of image acquisition are available in Appendix A.

4.2. Addressing the ground truth bottleneck

i) Generating preliminary 3D training labels using Draw-EM
The current gold standard for image segmentation is manual delineation (Gousias et al.,
2012); achieving robust segmentation via a deep learning set-up would conventionally require
the presence of large amounts of ground truth labels carried out by experienced annotators.
We addressed this by capitalizing on labels generated by Draw-EM (Makropoulos et al.,
2014), originally designed for neonatal MRI. Our goal was to automatically obtain effective
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groupings of tissues into semantic classes, one of which is cortical gray matter, and to use
them as preliminary labels for training an initial deep segmentation model. Labels generated
included: background, brainstem, cerebrospinal fluid, deep gray matter, germinal matrix,
cortical gray matter, outliers, ventricles, and white matter (Appendix B).

The number of 3D scans available was 249; 151 of those were processed by Draw-EM.
Since this variant of Draw-EM was not extensively validated on fetal scans prior to use on
our cohort, it was plausible that it might not have performed sufficiently well on all scans.
The output of Draw-EM therefore visually inspected by a postdoctoral researcher who
grouped the scans into two categories - pass and fail. Scans in the pass category were those
successfully registered to the developing brain atlas and had segmentation labels assigned
into reasonable regions of the brain, regardless of sensitivity. The remaining scans were
assigned the fail category; those were predominantly scans that failed the registration step
of Draw-EM. The 98 scans not processed by Draw-EM were retained for use in subsequent
steps: 12 scans were retained for the clinical refinement step (held-out-set-B), while 86 scans
were retained for ultimate assessment after development and refinement (held-out-set-A).

ii) Initial data separation
Of the 151 scans processed by Draw-EM, 92 were assigned the pass category in the manual
quality control step, and were further subgrouped into two sets. The first subgroup was the
model-development-set ; 49 T2-weighted scans were included with the purpose of developing
and optimizing a deep neural network capable of segmenting developing brain tissues, based
on their visual characteristics. Of those 49 scans, 39 were used for model training and 10
were used for validation throughout the training cycle. Subjects’ GAs at scan in this set
ranged between 22.4 and 38 weeks. The second sub-group comprised 43 scans; these were
completely retained from the model during training (hereby referred to as the held-out-set-
C ). This sub-group was retained for the purpose of providing an initial assessment of the
model’s performance. GAs in the held-out set ranged between 23.3 and 36.5 weeks.

iii) Training a preliminary 3D tissue segmentation network
Scans were normalized to ensure zero mean and unit variance intensities (bias field correction
was not carried out). A deep 3D network was trained on the model-development-set using
DeepMedic v0.7.0 (Kamnitsas et al., 2017) to classify voxels into one of the 9 tissue classes.
Labels generated by Draw-EM were used in place of ground-truth annotations. Throughout
the training cycle, 39 scans were used for training and 10 were used for validation. This
version of the model is referred to as Segmentation Network 1 (SN1).

The adopted 3D architecture is based on multiple parallel convolutional pathways, each
processing the input at different scales (resolutions). Features encoded by the pathways
are complementary, creating a feature hierarchy suitable for the task of tissue segmenta-
tion: pathways processing higher resolution input encode local, detailed features, which
are required for precise segmentation; pathways processing low-resolution input capture
higher-level contextual information, such as for improving localization of structures (Kam-
nitsas et al., 2017). In this work, we used three parallel pathways. The first processes input
at normal resolution, while the other two operate at resolutions down-sampled by 3 and
5 times, respectively. All pathways comprised 8 layers of [3,3,3] kernels. Output features
are then concatenated and processed by a final classification layer. The training cycle for
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this preliminary network comprised 35 epochs, each consisting of 20 sub-epochs. In every
sub-epoch, images were loaded from 50 cases, and 1000 segments were extracted in total.
Training batch size was set to 5. Initial learning rate was set to 0.001 and was halved at
pre-defined points using a scheduler (epochs 17, 22, 27, 30 and 33). Changing the mean
and standard deviation of training samples was carried out in order to augment the dataset.
Training was accelerated using an NVIDIA Tesla K80 graphics processing unit (GPU).

iii) Clinical refinement of preliminary cortical segmentation samples
An experienced fetal brain imaging annotator was presented with segmentation maps pro-
duced by the initial model SN1. Slices were obtained from a selection of 101 volumes
representative of the age distribution within the cohort. These volumes were sampled from
the 151 scans processed by Draw-EM, as well as the 12 scans in held-out-set-B, ensuring
variability is introduced into the selection. For each volume, the annotator was presented
with the mid axial, sagittal and coronal slices together with their corresponding segmen-
tation labels predicted by SN1. The use of slices from the three different plane views was
done to ensure various aspects of the brain anatomy were sufficiently represented within
each volume. Slices were sampled from the centers of the volumetric scans; variations in
brain sizes as well as in regions surrounding the brain within each scan ensured that the
extracted slices were not from the exact centers of the brains. This was done to increase the
range of visual characteristics presented to the annotator. We aimed to extract 3 slices from
each of the 101 volumes. This initially resulted in 303 slices, and a visual check reduced the
number of slices of sufficient quality to 283 (101 axial, 86 coronal, and 86 sagittal). Using
a clinically-established annotation protocol, segmentations were refined by the annotator
on the slices. By using a hybrid approach that combined automatically generated labels
with manual refinements, we aimed to amplify the utility of ground truth annotations and
immensely reduce their cost to those 283 2D slices.

4.3. Formulating a 3D cortical segmentation network and final evaluation

The segmentation task was reformulated as a binary problem: cortex vs. non-cortex,
and a new deep network was trained on the model-development-set, also using DeepMedic
v0.7.0. The cortical segmentation network was trained as per the settings discussed above,
also on the model-development-set, albeit with a number of variations. Training was carried
out over a longer period of 65 epochs. Learning rate halving schedule was set to more
frequent pre-defined points: epochs 17, 22, 27, 32, 37, 42, 47, 52. Finally. a more extensive
data augmentation strategy was used, whereby 11 different combinations of Gaussian dis-
tribution mean and standard deviation values were used to introduce sampling variations.
The architecture of the network was, however, left unchanged. The resulting model is re-
ferred to as Segmentation Network 2 (SN2). Refined cortical gray matter labels produced
on the dHCP 3T slices by the expert annotator were incorporated into SN2 (243 training,
30 validation), which was fine-tuned over a new training cycle that comprised 50 epochs.
The state of the trainer was, however, reset at the beginning of each session. Learning rate
scheduling and data augmentation strategies were carried out as discussed above. The final
system was applied on held-out-set-A which consisted of 86 full dHCP volumes.
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Figure 2: Workflow taken to develop, refine, and validate the cortical segmentation system
with minimal manual labeling through a human-in-the-loop approach. We have
released the final CNN model, in addition to videos showing example segmenta-
tion performance on completely unseen 3D scans, publicly on Github.

7

https://github.com/afetit/fetal-mri-segmentation


Segmentation of the developing cortex in fetal brain MRI

4.4. Studying transferability into a 1.5T distribution

To explore transferability of SN2 on fetal scans from a different domain distribution, the
above process was repeated, albeit with an additional 41 full volumes from an independent
1.5T clinical cohort. Details of a preliminary experiment can be found in Appendix D.

5. Results and Discussion

5.1. Preliminary training labels generated with Draw-EM

92 of the 151 scans were successfully registered and had acceptable tissue labels assigned
to corresponding brain regions. Visual inspection of the remaining 59 scans indicated that
failures were predominantly due to errors in registration; these resulted in, for instance,
regions outside the brain wrongly assigned brain tissue labels of similar intensity ranges.

5.2. Development and assessment of initial model SN1

The initial segmentation model SN1 was successfully trained to capture discriminative
patterns for the segmentation of tissues in fetal brain MRI. The model at convergence
was applied to held-out-set-C (n=43) which was completely retained during training. As
per Appendix C, quantitative assessment showed good performance, with cortical gray
matter segmentation showing a DSC of 76% (standard deviation = 8.5%). DSC values
obtained on the remaining tissue classes ranged between 80% and 90% (with the exception
of the germinal matrix class which achieved a relatively low score of 56%). The observed
sensitivity, specificity, and positive predictive values were similarly very high. It remains
noteworthy that these reported metrics were computed by leveraging the output of Draw-
EM in place of ground-truth labels. Visual inspection of the output maps was carried out to
provide additional reassurance; the obtained segmentation delineated tissue groupings into
9 classes that represented the brain anatomy sufficiently well. An interesting observation
was that upon training SN1 using labels generated from Draw-EM, SN1 was actually able
to segment data in both the pass (n=92) and fail categories (n=59). Discussion of results
from subsequent steps focuses on cortical gray matter; the primary interest of this paper.
The processes described on cortical gray matter are parts of a substantially bigger project,
and are being replicated with the remaining tissue classes using labels generated by SN1.

5.3. Clinical refinement of cortical segmentation output from SN1

Figure 3 illustrates a sagittal slice (GA at scan 27.5 weeks) from the sample presented to the
expert annotator, in addition to corresponding cortical gray matter segmentations generated
by SN1, as well as subsequent refinements that were manually carried out. The figure
shows example over-segmentation errors that occured by the Draw-EM trained network,
where voxels forming boundary regions between cortex and surrounding tissues required
corrections and improvements.

5.4. Developing, validating and evaluating SN2 for 3D cortical segmentation

At the end of the 50-epoch training cycle, the cortical segmentation model at convergence
achieved mean and median DSC values of 0.82 and 0.84 respectively on the validation set
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Figure 3: (a) Sagittal slice from scan acquired at GA of 27.5 weeks. (b) Corresponding
cortical gray matter segmentation generated by initial model SN1. (c) Manual
refinements carried out by the annotator to address over-segmentation.

(standard deviation = 0.07), which consisted of 2D slices refined by the expert annotator
(n=30). The slices corresponded to subjects scanned between a wide range of GAs (22.2
to 37.3 weeks) and comprised axial, sagittal and coronal views. We applied the model
to held-out-set-A (full volumes, n=86) to evaluate its performance on completely retained
3D data. All evaluation was done in 3D. Figures 4-6 show representative images (axial
view) illustrating various stages of cortical development, in addition to segmentation masks
generated by the system; the segmentation shown is representative of the results observed
across the held-out set. The results indicate that the system is age-invariant, in the sense
that accurate and sensitive segmentation maps were successfully produced for scans sampled
from a wide range of gestational ages (e.g. 27, 31, 32.4 week scans in Figures 4-6).

The results also indicate that the system is invariant to changes in intensity across struc-
tures surrounding the brain (amniotic fluid), and does not require separate brain detection/
region-of-interest masks prior to cortical segmentation; a time consuming pre-processing
step that is common in neuroimaging studies. Noteworthy, the system is computation-
ally efficient, with complete segmentation of the 86 volumes taking only 1,441 seconds (24
minutes) on an NVIDIA Tesla K80 GPU device. Finally, whilst a pre-processing step was
carried out to roughly align the scans to standard pose, this does not need to be carried
out perfectly as the segmentation remains efficient regardless of perturbations in initial
brain orientation, as per Figures 4-6. For detailed visualization of 3D segmentation exam-
ples, readers are referred to our publicly available Github repository and example videos.
The repository also includes a separate brain region detection network that can be used to
provide ROIs for use alongside the cortical segmentation CNN.

Figure 4: Performance of SN2 on a completely held-out 3D scan, GA: 27 weeks.
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Figure 5: Performance of SN2 on a completely held-out 3D scan, GA: 31 weeks.

Figure 6: Performance of SN2 on a completely held-out 3D scan, GA: 32.4 weeks.

6. Conclusion and future work

We used a human-in-the-loop-approach to develop a fast and sensitive 3D cortical segmenta-
tion system based on deep neural networks, without the need for large manual annotations.
Our approach can be adopted in a wide range of neuroimaging applications, where the need
for vast manual input from domain experts can impede rapid algorithm development and
implementation. It remains noteworthy, however, that the availability of Draw-EM, origi-
nally designed for neonatal MRI, provided a good starting point for the specific problem of
fetal MRI segmentation; a potential constraint in other applications. We therefore ought to
explore other machine learning paradigms in the future, e.g. active learning, where expert
annotators only label scans which are estimated to be of most potential value to the model.
Finally, the segmentation work described in this paper on cortical gray matter is part of a
bigger project and is being replicated for the other tissues using labels generated by SN1.
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Sabina M. Chiţă, Manon Benders, Pim Moeskops, Karina J. Kersbergen, Max A. Viergever,
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Appendix A. dHCP image acquisition protocol for fetal MRI

Data was obtained retrospectively from the dHCP fetal cohort. A total of 249 T2-weighted
scans were acquired by the by the dHCP consortium using a Turbo Spin Echo (TSE) se-
quence on a 3T Philips scanner, following a protocol described by Price and colleagues
(Price et al., 2018). Acquisition of fetal MRI at 3T presents various challenges with regards
to increased magnetic field inhomogeneity for both B1 and B0; the dHCP protocol therefore
made use of RF shimming, as well as localized image-based static field shimming (Gaspar
et al., 2019). In order to address spontaneous fetal movements and maternal-induced mo-
tion, 2D snapshot multi-slice acquisition was used. Acquisition parameters were: TR=
2265 ms; TE= 250 ms; resolution= 1.1 x 1.1 x 2.2 mm. Data was captured from 6 uniquely
oriented stacks centered to the fetal brain using a zoomed, multi-band, single-shot TSE
sequence. A multi-band, tip-back preparation pulse was used for increased signal-to-noise
(SNR) efficiency. Volumetric fetal brain reconstructions were automatically produced from
the six stacks (Price et al., 2019). Brain localization was carried out using a deep distance-
regression network (Cordero-Grande et al., 2019). Slices were aligned by applying a global
search algorithm in the rigid transform space, followed by a multi-resolution registration
step that uses a fractional derivative metric. Finally, images were reconstructed using an
outliers-robust hybrid 1,2-norm and linear high order regularization approach (Cordero-
Grande et al., 2019).
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Appendix B. Preliminary labels generated by Draw-EM

In essence, Draw-EM employs a two-step process: (i) registration using a spatial prior term,
and (ii) segmentation using an intensity model of the image being processed. The spatial
prior probability of the different brain structures is defined using an age-specific atlas. The
atlas is registered to the target image, and its labels are transformed and averaged according
to the local similarity of the atlas. Following this, a Gaussian Mixture Model is used to
approximate the intensity model of the image. Draw-EM was originally designed for use
on neonatal scans and had conventionally used the label-based encephalic ROI template
(ALBERTs) atlas by (Gousias et al., 2012). Since we focused on fetal subjects as opposed
to neonates, we employed a variant of Draw-EM that incorporated the developing brain
atlas (Serag, 2013) rather than ALBERTs.

Figure 7: MRI of a fetal subject from the dHCP cohort showing various tissue classes. At
the first instance, preliminary labels of these tissues were generated using the
Draw-EM algorithm in order to address the ground-truth bottleneck.

Figures below show T2-weighted scans (GA 31.6 and 24.5 weeks) that passed and failed
the quality control step, respectively. Various aspects may have contributed to such dis-
crepancies; we speculate that relatively bright areas (amniotic fluid) surrounding the brain
region may have obscured Draw-EM ’s workflow. This pattern was apparent in other scans

16



Segmentation of the developing cortex in fetal brain MRI

Figure 8: Example T2-weighted scan assigned the pass category when processed by Draw-
EM in the manual quality control step. (a) Mid slices shown in the axial, coronal,
and sagittal views. Preliminary tissue labels visualized on top of the slices: (b)
white matter and brainstem, (c) cortical gray matter and ventricles, (d) CSF and
deep gray matter, and (e) germinal matrix and outlier tissues. The subject was
scanned at GA of 31.6 weeks.

that did not result in acceptable tissue labels. The 92 scans processed by Draw-EM and
assigned the pass category were included in subsequent stages for developing the deep seg-
mentation model.

Figure 9: Mid (a) axial, (b) coronal, and (c) sagittal slices of an MRI scan (GA 25.4 weeks)
that failed to produce acceptable labels by Draw-EM. We speculate that the
bright regions surrounding the brain have obscured Draw-EM. This pattern was
consistent with other scans that failed the manual quality control step.
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Appendix C. Metrics computed on full scans in held-out-set-C (n=43)
for evaluating the initial segmentation model SN1

Table 1: Dice Similarity Coefficient

Tissue class Mean SD
Brainstem 0.897 0.048
CSF 0.848 0.095
Deep gray matter 0.877 0.048
Germinal matrix 0.557 0.085
Cortical gray matter 0.763 0.085
Outlier tissues 0.900 0.037
Ventricles 0.806 0.078
White matter 0.901 0.050

Table 2: Sensitivity

Tissue class Mean SD
Brainstem 0.899 0.055
CSF 0.866 0.077
Deep gray matter 0.892 0.089
Germinal matrix 0.560 0.129
Cortical gray matter 0.744 0.099
Outlier tissues 0.885 0.061
Ventricles 0.842 0.099
White matter 0.919 0.052

Table 3: Specificity

Tissue class Mean SD
Brainstem 1.000 0.000
CSF 0.995 0.002
Deep gray matter 0.999 0.000
Germinal matrix 0.999 0.000
Cortical gray matter 0.995 0.002
Outlier tissues 0.943 0.036
Ventricles 1.000 0.000
White matter 0.995 0.003
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Table 4: Positive Predictive Value

Tissue class Mean SD
Brainstem 0.902 0.085
CSF 0.836 0.117
Deep gray matter 0.871 0.056
Germinal matrix 0.569 0.060
Cortical gray matter 0.787 0.078
Outlier tissues 0.924 0.078
Ventricles 0.790 0.116
White matter 0.890 0.072

Figure 10: Example performance of SN1 on an unseen T2-weighted scan of a fetal subject
(GA 27.4) in held-out-set-C (a) Mid slices shown in the axial, coronal, and
sagittal views. Segmentation performance of initial model SN1, overlayed on the
slices: (b) white matter and brainstem, (c) cortical gray matter and ventricles,
(d) CSF and deep gray matter, and (e) germinal matrix and outlier tissues.
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Figure 11: Example performance of SN1 on an unseen T2-weighted scan of a fetal subject
(GA 30.1) in held-out-set-C (a) Mid slices shown in the axial, coronal, and
sagittal views. Segmentation performance of initial model SN1, overlayed on the
slices: (b) white matter and brainstem, (c) cortical gray matter and ventricles,
(d) CSF and deep gray matter, and (e) germinal matrix and outlier tissues.
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Appendix D. Exploring transferability of SN2 into a new domain (1.5T)

41 scans were obtained retrospectively from an independent fetal cohort discussed in the
work by (Kyriakopoulou et al., 2013). Acquisition was carried out in Hammersmith Hos-
pital (London, United Kingdom) between 2007 and 2011 as part of a study on cortical
overgrowth in fetuses with isolated ventriculomegaly. Readers are referred to the work in
(Kyriakopoulou et al., 2013) for details on inclusion and exclusion criteria.

Scans were acquired using a Single-Shot Turbo Spin Echo (ssTSE) sequence on a 1.5T
Philips scanner. Acquisition parameters were: TR = 15000ms; TE = 160ms; slice thickness
= 2.5mm; slice overlap = 1.5 mm. Data was captured in 3 orthogonal planes (4 transverse,
2 coronal, and 2 sagittal acquisitions). Volumetric reconstructions were automatically pro-
duced following an approach described in (Jiang et al., 2007). Scans were oriented into
standard axial, coronal and sagittal projections, and voxel sizes were interpolated in order
to aid display (0.2 x 0.2 x 1.0 mm).

The volumes had associated cortical gray matter annotations previously carried out by a
research clinician, as part of the study reported in (Kyriakopoulou et al., 2013). To explore
transferability of SN2 on fetal scans from a different domain distribution, the fine-tuning
process described in 4.3 was repeated, albeit with an additional 28 full volumes from the
1.5T cohort (23 training, 5 validation). In terms of testing, 13 additional volumes obtained
from the 1.5T cohort, unseen by the system, were also used. Similar to the corresponding
training data, the 1.5T validation volumes had cortical gray matter annotations previously
carried out by a clinician. Those helped provide a quantitative assessment of the system’s
performance across the fetal age distribution. A longer training cycle (100 epochs) was used
in order to account for the heterogeneity of the data.

Preliminary performance shows mixed success but is encouraging; the model is capable
of delivering accurate cortical segmentation, but that performance is not as robust as with
the dHCP -only system. The figure shows example segmentation on sample slices across
various GAs, and the corresponding DSC obtained for the entire volume. It is likely that
the lower resolution of the scans obscured the network’s performance.

Figure 12: T2-weighted slices and overlayed segmentation masks showing example perfor-
mance of model on completely held out 1.5 T scans; (a) and (b) presented with
Isolated Ventriculomegaly, (c) and (d) did not.
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