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ABSTRACT

We study the challenge of achieving theoretically grounded feature recovery us-
ing Sparse Autoencoders (SAEs) for the interpretation of Large Language Models.
Existing SAE training algorithms often lack rigorous mathematical guarantees and
suffer from practical limitations such as hyperparameter sensitivity and instabil-
ity. We rethink this problem from the perspective of neuron activation frequencies,
and through controlled experiments, we identify a striking phenomenon we term
neuron resonance: neurons reliably learn monosemantic features when their acti-
vation frequency matches the feature’s occurrence frequency in the data. Building
on this finding, we introduce a new SAE training algorithm based on bias adapta-
tion, a technique that adaptively adjusts neural network bias parameters to ensure
appropriate activation sparsity. We theoretically prove that this algorithm correctly
recovers all monosemantic features when input data is sampled from our proposed
statistical model. Furthermore, we develop an improved empirical variant, Group
Bias Adaptation (GBA), and demonstrate its superior performance against bench-
mark methods when applied to LLMs with up to 2 billion parameters. This work
represents a foundational step in demystifying SAE training by providing the first
SAE algorithm with theoretical recovery guarantees and practical effectiveness for
LLM interpretation.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable capabilities across diverse tasks. It
is found that LLMs encode vast amounts of information by superposition (Lu et al., 2024; Xiong
et al., 2024; Elhage et al., 2022; Bengio et al., 2013)—packing multiple concepts into the same
weight or activation directions to maximize capacity. This efficiency comes at a cost: individual
neurons (or activation vectors) become polysemantic (Scherlis et al., 2022), meaning they respond
to several monosemantic features at once, making interpretation challenging.

Dictionary learning has recently been applied to disentangle polysemantic LLM representations,
with Sparse Autoencoders (SAEs) emerging as a leading approach (Cunningham et al., 2023;
Bricken et al., 2023; Templeton et al., 2024; Gao et al., 2024; Rajamanoharan et al., 2024b).
An SAE encodes an LLM’s internal activation z € R? into a high-dimensional, sparse code
2 = fonc(z) € RM with M > d, then decodes 7 = fgec(2) ~ z. By enforcing sparsity—so
only a few components of z are nonzero—each active neuron ideally reflects a single interpretable
feature. Empirically, SAEs have revealed such monosemantic features in models like Pythia-70M
(Cunningham et al., 2023) and Claude 3.5 Sonnet (Templeton et al., 2024).

Despite these promising empirical advances, existing studies on SAE:s still lack rigorous guaran-
tees regarding feature recovery. Popular SAE training algorithms, which typically minimize a loss
function of the form L(z,2) = ||z — Z||2 + A - R(z) where R(z) is a sparsity regularizer, involve
hyperparameters like A. For instance, methods employing L,, regularization for R(z) = ||z||, and
p € {0,1}. Other strong candidates include the TopK activation method (Makhzani & Frey, 2013;
Gao et al., 2024) and gated SAE (Rajamanoharan et al., 2024a). However, these methods exhibit
specific drawbacks. For example, L, regularization is sensitive in the hyperparameter A and often
leads to activation shrinkage, where the magnitudes of the learned features are systematically un-
derestimated (Tibshirani, 1996). TopK approaches, while enforcing a hard sparsity constraint, often
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Figure 1: Ilustration of SAE architecture and neuron resonance (left) and a demo neuron (right)
learned using GBA. Left: SAE architecture and the resonance phenomenon—neurons successfully
learn features when their activation frequency p matches the feature occurrence frequency f. Right: a
neuron that activates for the concept “class”.

overlook the fact that different inputs may require varying numbers of active features, and also suffer
from inconsistency across random seeds (Paulo & Belrose, 2025), which means that they yield sets
of learned features that are sensitive to the random initialization (Paulo & Belrose, 2025).

This landscape motivates us to address fundamental questions concerning the reliability and theo-
retical underpinnings of feature recovery with SAEs:

What enables neurons to successfully recover features? Can we design a training algorithm that
provably recovers features while being practical for modern LLMs?

Let us consider what makes SAE training successful. In an ideally trained SAE, each neuron learns
a distinct monosemantic feature and activates precisely when that feature appears in the input. Thus,
the neuron will have an activation frequency p—the fraction of inputs for which it activates—that
matches the occurrence frequency f of its corresponding feature in the data. This observation raises a
natural question: if we control neurons to activate with frequency p matching a feature’s frequency f,
will they reliably learn that feature? Moreover, since we typically cannot know a feature’s frequency
f in advance, what conditions on a neuron’s activation frequency p enable it to learn a feature with
unknown frequency f?

To investigate these questions, we conducted controlled experiments on synthetic data with known
feature frequencies. Our experiments reveal a striking phenomenon we term neuron resonance:
Neurons reliably recover features when their activation rate matches the feature’s frequency in the
data. Like a radio tuning to a specific frequency for a clear signal, SAE neurons must “resonate” at
the right activation rate to capture their target features. Importantly, our theory shows that successful
learning requires only that p fall within a resonance band around f, not an exact match. This
flexibility enables practical feature discovery: even without knowing f in advance, we can recover
features by ensuring neurons’ activation frequencies cover a diverse range.

The resonance principle reveals a fundamental yet intuitive correspondence: common features re-
quire frequently active neurons, while rare features need selective, infrequently-firing neurons.
Based on this, we develop Group Bias Adaptation (GBA), an algorithm that creates multiple
groups of neurons with geometrically-spaced target activation frequencies (e.g., 10%, 5%, ...). Each
neuron computes z,, = ¢(w,) (2 — bpre) + by,), where w,,, € R? is the weight vector, b,, € R
is the bias, by.. € R< is the shared pre-bias, and ¢ is the activation function (e.g., ReLU). GBA
dynamically adjusts these biases to match the target frequencies: decreasing bias if fires too fre-
quently to increase selectivity, and increasing bias when rarely fires to encourage activation. The
direct frequency control across diverse activation ranges ensures comprehensive feature recovery
while circumventing the hyperparameter sensitivity and dead neuron problems in existing methods.

We thus provide affirmative answers to both fundamental questions posed earlier through the follow-
ing contributions. First, we discover and investigate the neuron resonance phenomenon, revealing
the principle that governs successful feature learning in SAEs from the view of neuron activation
frequency. Theoretically, we justify the resonance principle by rigorously showing that neurons
with appropriate activation frequencies can provably recover all monosemantic features when data
follows a well-defined statistical model. To our best knowledge, this provides the first dynamical
analysis and learning guarantee for SAE training. Empirically, we scale GBA to Qwen2.5-1.5B
and Gemma2-2B on Pile datasets and demonstrate its superiority: (i) achieving the Pareto frontier
in reconstruction-sparsity tradeoff comparable to TopK, (ii) significantly higher cross-seed consis-
tency than TopK, (iii) competitive performance on SAEBench (Karvonen et al., 2025) interpretabil-
ity metrics while maintaining 99% neuron aliveness, and (iv) remarkable consistency and robustness
through ablation study, requiring only simple hyperparameter rules without dataset-specific tuning.
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Related works. The related works are available in §A.

Notations. Let R, denote the set of non-negative real numbers. We use standard Big-O and small-
o notation and use a 2 b to hide polylog(n) factor for sufficiently large n. We denote by [n] the set
{1,2,...,n} for positive integer n.

2 PRELIMINARIES

A model for feature recovery. As a motivating example, consider how a model processes “The
detective found a muddy footprint near the broken window.” The internal representation mixes
monosemantic features:

xr=hy -vi+hy-vo+..., wherewvs = “muddy footprint”, vy = “broken window”.

Here, hi, ho > 0 are nonnegative coefficients, where negative values would imply contradictory
concepts. We formalize this as follows: Let V' € R™*¢ be a feature matrix where each row v; is
a monosemantic feature. For N data points, each row z, of data matrix X € RV*? is an s-sparse
mixture of features with nonnegative coefficients collected in H € Rf X

X = HV e RV*4, 2.1

We focus on the superposition regime where n > d, meaning features are necessarily linearly de-
pendent (Arora et al., 2018; Olah et al., 2020; Elhage et al., 2022). Our goal is to recover V from X
without knowing H—a common challenge in model interpretation.

SAE architecture. We follow Gao et al. (2024); Cunningham et al. (2023) and use a three-layer
neural network for SAE with tied encoding and decoding weights. Let M be the width of the SAE,
and for input z € R, its output is

f(x;0) = Zle Am Wi G, (T — bpre) + b)) + bpre- (2.2)

where © = {wy,, G, b, blr,re}%:1 denotes the trainable parameters. For each neuron m € [M]:
wy, € R? is the tied encoder/decoder weight, a,, € R is the output scale, b,, € R is the bias,
and by € R? centers the input. The pre-activation is ¥, = w,}, (% — bpre) + b, and neuron m is
activated when y,,, > 0. When activated, neuron m contributes a,, - w,, - ¢(y., ) to the reconstruction,
where the tied weight w,, serves as both detector (encoder) and reconstructor (decoder).

Existing SAE training methods. Prior methods minimize reconstruction loss L.(x;0) =
2|1 (z;©) — x||3 with sparsity constraints. L; SAE adds penalty )\Z%:l lwmll2 - ¢(ym) but
suffers from shrinkage bias (Tibshirani, 1996). TopK SAE (Makhzani & Frey, 2013; Gao et al.,
2024) retains only K largest activations but exhibits extreme seed sensitivity (Paulo & Belrose,
2025). Both methods have significant limitations detailed in the introduction.

3 RETHINKING HOW SAES LEARN: NEURON RESONANCE

We rethink SAE training from the perspective of neuron activation frequency: how should a neuron’s
activation frequency p relate to a feature’s occurrence frequency f for reliable feature learning?

To investigate this, we conducted controlled experiments using synthetic data generated from (2.1).
We construct s-sparse coefficient matrices H, which have uniform feature occurrence frequency
f = s/n. The selected features can be viewed as the “concepts” in each data point, and f reflects
how often each concept appears in the data. We generate the feature matrix V' by randomly sampling
n vectors from the unit sphere in R%, mimicking independent features in high-dimensional space. To
study the relationship between neuron activation frequencies p and feature occurrence frequencies
f, we train a set of SAEs while systematically controlling p through dynamic bias adaptation. More
details can be found in §D.1 and the bias adaptation can be found in §4. We measure feature learning
success using the Feature Recovery Rate (FRR), which quantifies the percentage of features learned
by at least one neuron (see §C.2). The relationship between p, d, and FRR is shown in Figure 2.

Neuron resonance phenomenon. The results reveal a striking pattern we term neuron resonance:
neurons successfully learn features when their activation frequency p falls within a specific band
around the feature’s occurrence frequency f. The width of this resonance band depends critically on
the degree of superposition. In heavy superposition where d < /n (right panel), the band is narrow,
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Figure 2: Feature Recovery Rate (FRR) for varying activation frequencies p and dimensions d.
Left: Light superposition (d > /n, n = 128). Right: Heavy superposition (d < /n, n = 65536).
The resonance phenomenon is evident: optimal feature recovery occurs when neuron activation fre-
quency p aligns with feature occurrence frequency f. Here, j stands for 105 and m stands for 102,

requiring p to closely match f. In light superposition where d > /n (left panel), particularly when
d > n, the band widens significantly. This widening is intuitive: when d > n, features become
nearly orthogonal and easier to separate, allowing neurons with imperfect frequency matching to still
converge to individual features due to reduced interference. Since real-world data typically exhibits
heavy superposition (n > d), we expect the resonance phenomenon to persist with a narrow band
similar to the right panel of Figure 2. Here, we set s = 3, M = 512 (left) and M = 262k (right).

In §6, we theoretically characterize a feasible activation frequency range for faithful feature recovery.
A feature with occurrence frequency f is learned when neurons’ activation frequency p lies in the
resonance band f < p < min{+/f, df} (up to logarithmic factors). With f = s/n, a phase transition
occurs at d = /n: light superposition (d > /n) yields a wider band p < +/f, while heavy
superposition (d < /n) constrains it to p < df, narrowing as d decreases. This phase transition and
narrowing band in heavy superposition perfectly matches our empirical findings in Figure 2.

Motivation for frequency-aware training. Existing methods cannot directly control neuron acti-
vation frequencies. They achieve this by imposing sparsity constraints: L; SAE uses penalty terms
while TopK SAE limits the number of active neurons per input. The resonance principle indicates
that optimal feature learning requires aligning neuron activation frequencies with the natural fea-
ture frequency distribution—ranging from high-frequency features (e.g., common function words)
to low-frequency features (e.g., domain-specific terminology). This insight motivates our Group
Bias Adaptation algorithm in the next section.

4 ALGORITHM: GROUP BIAS ADAPTATION

From resonance principle to algorithm design. The neuron resonance phenomenon (§3) reveals
that successful feature learning requires matching neuron activation frequencies to feature occur-
rence rates. This insight motivates our Group Bias Adaptation (GBA) algorithm, which operational-
izes the resonance principle through two key design choices:

1. Direct frequency control: Instead of relying on indirect penalties (L) or fixed constraints
(TopK), we directly control each neuron’s activation frequency through adaptive bias adjustment.
When a neuron fires too frequently, we decrease its bias to make it more selective; when it rarely
fires, we increase its bias to make it more active.

2. Multiple frequency bands: We partition neurons into groups with geometrically-spaced target
activation frequencies (e.g., 10%, 5%, 2.5%, ...), creating a spectrum of “resonance bands” that
automatically covers the diverse feature frequency range—from common features to rare, spe-
cialized ones. Then we use the previously described adaptive bias adjustment within each group
to maintain the desired activation frequency.

These design principles ensure: (i) sufficient sparsity for interpretability while avoiding dead neu-
rons by controlling the lowest activation frequencies, and (ii) smooth training dynamics via adaptive
bias adjustment while maintaining efficient control. The complete algorithm is presented below.

Neuron grouping strategy. To cover the diverse feature spectrum, we partition the M neurons
into K groups (default K = 10) with geometrically-spaced target activation frequencies (TAFs).
Specifically, we fix the decaying ratio py/pk+1, yielding TAFs from 10% down to 0.01%. This
geometric spacing naturally matches the long-tail distribution of feature frequencies in language—
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Figure 3: Illustration of Group Bias Adaptation (GBA). Left: Neurons are partitioned into K
groups with geometrically-spaced target activation frequencies (TAFs) from 10% to 0.01%, creating
resonance bands that match the natural feature frequency distribution. Right: Bias adaptation mech-
anism—if a neuron over-activates (P, > px), we decrease its bias to make it more selective; if it
under-activates (P, < €), we increase its bias using the group baseline 7 to make it more sensitive.

from common words to rare technical terms. Each group contains M /K neurons sharing the same
TAF py, within the group.

Algorithm 1 Group Bias Adaptation (GBA)

1: Input: data X, initialization ©(®), neuron groups and desired target activation frequencies
{Gr,pr }_ |, a first-order optimization algorithm Opt

2: Hyperparameters: 7', L, B, v, v_, and €

3: For all m € [M], initialize buffer B,,, < @

4: Fort=1,...,1"

5: > Forward pass, backward with reconstruction loss, optimizer step with fixed biases.

6 Sample mini-batch X; € RX*<, row-normalize, and compute: £(*) < L..(X;; ©¢~1)

7 Backward and optimizer step (exclude biases): ©®) < 0pt(©¢—1 \ {p(t=D} VL)

8

: Append pre-activations to buffers: B,,, < B,, U {yg?l, e ,yfi) .} forallm

9: > Bias adaptation: when buffers reach size B, update biases and clear buffers.

10: If |B1| > B then

11: > Compute per-neuron activation frequency p,, and max pre-activation r,, in buffer.
12: Set P, |Bm |7t > yen,, Ly > 0) and ryp, < max{maxyep,, y,0} form € [M]
13: > Average positive max pre-activation 1., for each group as group baseline Ty,.

14: Set 7, ¢ (X mee, Lrm > 0)) " 3, ca m for k € [K]

15: > Adjust biases based on target activation frequency p..

16: For each group £ = 1,..., K and each neuron m € Gy;:

17: If Do > i, st by,  max{b,, — y_rpy, —1}

18: If D, < €, set by, « min{b,, + v+ 7,0}

19: Clear buffers: set ,,, + @ for all m

20: Return the final SAE parameters ©(T)

Tracking activation frequencies. We measure each neuron’s empirical activation frequency us-
ing buffered pre-activations. For neuron m with weight w,, and bias b,,, the pre-activation is
Ym (2) = w,}, (¥ — bpre) + bp,. During training, we accumulate B samples in a buffer and compute
the empirical frequency p,, as shown in Algorithm 1 line 12. While the algorithm shows storing
full pre-activations for clarity, the implementation is memory-efficient: we only track each neuron’s
maximum pre-activation r,,, and activation count, updating these statistics incrementally.

Adaptive bias updates. Biases adapt to maintain target activation frequencies through feedback
control. For neuron m in group k, we compare its empirical frequency p,, to its target py:

1. If p,, > pi, (over-active): decrease bias b,,, < b,,, — v_7T,, to make the neuron more selective
2. If P, < € (under-active): increase bias by, < by, + 74T to make it more sensitive

Here r,, is the neuron’s max pre-activation for proportional decrease of over-active neurons, while
Ty, is the group average for boosting under-active neurons. We clamp biases to [—1, 0] to prevent
extreme values, which should not be loss of generality since inputs are normalized. To give a sense
of how the bias adapts, we find the rates v, = y_ = 0.01 provide smooth adjustment to the bias
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without oscillations in the loss when we perform one adaptation step against every 50 optimizer
steps with batch size L = 512.

Summary. GBA integrates with standard SAE training through periodic bias adaptation. The train-
ing alternates between: (1) a gradient phase where a standard optimizer (Adam/AdamW) updates
weights W and output scales a, and (2) an adaptation phase that adjusts biases when the buffer
reaches B samples. Crucially, biases are excluded from gradient updates and controlled only through
the adaptation mechanism. Algorithm 1 presents the complete procedure. This design ensures each
neuron finds its resonant features through frequency matching. The groups create “resonance bands”
covering the feature spectrum, while adaptive bias control maintains target frequencies despite train-
ing dynamics. Features naturally migrate to neurons with matching activation rates.

5 EXPERIMENTAL EVALUATIONS

To demonstrate the effectiveness of our proposed method, we conduct experiments on the Qwen2.5-
1.5B base model (Yang et al., 2024) using Pile Github and Pile Wikipedia datasets (Gao et al.,
2020). We train SAEs with 66k hidden neurons attached to the MLP outputs at layers 2, 13, and
26. We evaluate each method using two metrics: (1) reconstruction loss and (2) average fraction
of activated neurons per input. All methods employ JumpReLU activation (Erichson et al., 2019;
Rajamanoharan et al., 2024b) for optimal performance. We compare GBA against three baselines:
L+, TopK, and Bias Adaptation (BA)—a single-group variant of GBA with fixed target activation
frequency p. Additional details and comparisons between ReLU and JumpReLU are in §D.
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Figure 4: Curve for reconstruction loss and sparsity (average fraction of neurons activated per
data point). All experiments are conducted using an SAE with 66k neurons. For TopK, we vary
K € [50,600]. For L1, we vary the penalty coefficient A € [0.001,0.1]. For BA (non-grouped),
we vary the target frequency p € [0.003,0.1]. For GBA, we sample within the range K € [3,20],
p1 € [0.05,0.5], and px € [107%,5 x 1079].

Reconstruction loss and activation sparsity frontier. We first compare the normalized /- re-
construction loss against the average fraction of activated neurons across different methods. The
results are presented in Figure 4, where each benchmark method (TopK, L, BA) involves varying
sparsity-related tuning parameters. Our method performs comparably to the best-performing bench-
mark, TopK—achieving the lowest reconstruction loss among all methods for a given sparsity level.
Specifically, when these methods have the same average fraction of activated neurons, GBA’s recon-
struction (yellow star) is comparable to TopK’s best curve while significantly outperforming both
the L penalty method and the non-grouped variant BA. The consistent superiority over BA across
all experiments provides strong evidence that the grouping mechanism is crucial for achieving both
optimal performance.
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Figure 5: Fraction of neurons that have max cosine similarity exceeding threshold for Github-
Layer 26, where the max cosine similarity is evaluated for neurons from 6 different runs initialized
with different seeds. We take Max Activation and Z-Score as the selecting criteria and plot within a
subset of neurons that rank top-« under the criteria in all the neurons with « in {0.3%, 0.05%} (i.e.,
top-200 and top-30 neurons out of 66k).
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Consistency of recovered features. Furthermore, we assess the consistency of the learned fea-
tures across independent runs with different random seeds. Since ground truth features are unavail-
able, consistency serves as a proxy for the reliability of the training method. For each neuron in one
run, we compute its Maximum Cosine Similarity (MCS) with neurons from another run; a high MCS
indicates that a feature is consistently recovered. To avoid the influence of rarely activated neurons,
we restrict our analysis to the top-a neurons—selected based on maximum activation or Z-score.
The results are presented in Figure 5 and Table 1, and the key findings are shown as follows:

1. As noted in prior work, TopK is seed-sensitive (Paulo & Belrose, 2025). In our experiments,
GBA yields a higher percentage of neurons with high MCS. To quantify this effect, Table 1
reports the fraction of consistent neurons (MCS > 0.9) under different selection criteria; GBA
consistently exceeds TopK. Variability across seeds is small: all runs show tight fluctuations over
the (3) = 15 pairwise comparisons.

2. The L; penalty-based SAE is generally more consistent than TopK, and our results confirm this
trend: across most selection criteria, L achieves higher consistency than both TopK and GBA.
However, when focusing on the most active neurons (top-0.05% by activation), GBA surpasses
Ly, suggesting stronger recovery of the most salient features.

Combined with the reconstruction-sparsity fron-

tier in Figure 4, in our experimental setting, the

proposed GBA method achieves the Pareto fron- NE:E ;)C;S GBA (ours) TopK
tier in terms of reconstruction fidelity, activation

25% 0.0146 + 0.0004 0.0127 £ 0.0002
Interpretability. To further evaluate the inter- 50% 0.0073 £ 0.0002  0.0063 £ 0.0001

pretability of the learned features, we employ a 100%  0.0037 &+ 0.0001  0.0032 + 0.0001

suite of metrics by Karvonen et al. (2025). To
ensure a fair comparison, we retrain GBA SAE  Table 1: Fraction of neurons with Maximum Co-
with 66k neurons on Gemma2-2B (Team et al., sine Similarity (MCS) > 0.9 across different se-
2024) residual stream after layer 12, and compare lection percentiles based on the top « selection
it against TopK, JumpReLU SAE (Rajamanoha- rule inGmaximum a}ctiyation. Regults are averaged
ran et al., 2024b), and GatedSAE (Rajamanoha- ©OVer () = 15 pairwise comparisons from 6 ran-
ran et al., 2024a) provided in the SAE-Bench. We dom seeds with standard deviations shown. GBA
. . achieves higher consistency than TopK for all .

also ensure similar L; sparsity among the com-

pared SAEs. The results are summarized in Ta-

ble 2, demonstrating the competitive interpretability of GBA across all metrics.

Comparing GBA to JumpReLU SAE reveals that performance gains come from our training al-
gorithm. GBA’s strong reconstruction partially stems from higher alive neuron fraction (Table 2),
where neurons are alive if they activate above threshold for at least one input. While GatedSAE
also has high alive fraction, it does so at the expense of interpretability metrics (e.g., SCR, TPP, and
Absorption Score). GBA achieves high alive fraction without sacrificing interpretability.

Explained  Absorption SCR Sparse TPP Alive
SAE Model Lo Variance 1 Score | Metric t Probing © Metric 1  Fraction 1
GatedSAE 662.3 0.898 0.0351 0.254 0.958 0.086 0.913
TopK 655.7 0.906 0.0274 0.230 0.959 0.328 0.718
JumpReLU  605.2 0.906 0.0052 0.329 0.959 0.159 0.584
GBA (ours) 694.9 0.926 0.0044 0.235 0.960 0.209 0.997

Table 2: Comparison of SAE models for Gemma2-2B with 66k neurons and similar L, sparsity. Lower
values are better for Absorption Score, and higher values are better for the remaining metrics. Bold indicates
best performance, and underline indicates second best. GBA achieves the best or second-best performance
across all metrics, demonstrating its competitive interpretability. For SCR (Marks et al., 2024) and TPP metrics,
we take the average of the scores over Top-20 and Top-50 neurons as scores evaluated for these numbers tend
to be more stable (Karvonen et al., 2025) while avoiding biases from too limited neuron counts.

Ablation study on GBA hyperparameters. To assess GBA’s sensitivity to hyperparameters, we
perform an ablation study varying the number of groups K, Highest Target Frequency (HTF) py,
and Lowest Target Frequency (LTF) pg, as shown in Figure 6. The left panel reveals a key pattern:
as HTF increases, performance stabilizes—scatter points converge and align with TopK’s curve,
especially for ' > 10. Additionally, since low HTF values (e.g., 0.05) hinder recovery of frequent
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features, it results in higher reconstruction loss. The middle and right panels again confirm that both
reconstruction loss and sparsity stabilize when K > 10, demonstrating insensitivity to the exact
number of groups. We observe a slight increase in loss when increasing the number of groups K
in the middle panel. This is not detrimental but rather reflects a tradeoff: with few groups (e.g.,
K = 3), many neurons are assigned high target frequencies, resulting in denser activations (right
panel) and thus lower reconstruction loss at the expense of interpretability.
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Figure 6: Ablation study for GBA in terms of K, HTF, and LTF for Github-Layer 26. For each
run, we partition neurons into K groups with target frequencies as a geometric sequence between HTF
and LTE. HTFs: {0.05,0.1,0.3,0.5}; LTFs: {10™%,1073,5 x 107°}. Left: Loss vs sparsity grouped
by HTF. Difterent colors represent different K values; dots of the same color correspond to different
LTFs. Middle & Right: Loss and sparsity for varying K, where each curve represents a pair of HTF
and LTF. Results show GBA stabilizes when HTF = 0.5 and K > 10.

Simple rule for hyperparameter selection. These results establish that GBA is nearly tuning-free
with a simple selection rule: (1) set HTF = 0.5 as the default upper bound, since randomly initialized
neurons with zero bias fire 50% of the time; (2) set LTF = 1072 to 10~ to cover rare features while
preventing dead neurons; (3) use a large number of groups for better frequency coverage and stable
performance. This principled setup eliminates the need for dataset-specific tuning—in stark contrast
to searching TopK’s K across 66k neurons or tuning L;’s penalty coefficient \.

6 NEURON RESONANCE: A THEORETICAL PERSPECTIVE

The neuron resonance phenomenon observed in §3 raises a fundamental question: How does fre-
quency matching enable reliable feature recovery, and what determines the resonance band? We
provide a theoretical analysis that justifies this phenomenon with precise recovery conditions.

To rigorously analyze the neuron resonance phenomenon, we study a simplified variant of Algo-
rithm 1 that captures its core mechanism. We consider the Bias Adaptation (BA) algorithm, which
is essentially GBA with a single neuron group and all neurons share a fixed target activation fre-
quency p. The SAE is trained via spherical gradient descent (weight updates normalized to unit
sphere). This single-group setting isolates the activation frequency factor from other dynamics,
helping us understand how neurons with frequency p selectively learn features with similar occur-
rence frequency.

For the data model (2.1), we assume V has i.i.d. N(0,1) entries and simplify H to have exactly
s-sparse rows: each row ¢ has uniform random support S, with |S;| = s for a constant s and entries
Hy; = 1/y/s for i € Sy, zero otherwise. This simplified H structure is only for presentation
convenience; our analysis captures more general coefficient matrices (see §B.1). The following
theorem characterizes the conditions under which BA can recover all features with high probability.

Theorem 6.1. Consider the simplified data model X = HV with data size N, feature size n and
feature dimension d. We train an SAE with M neurons using the BA algorithm with spherical
gradient descent, target frequency p, and learning rate n 2 (pN)~'. Under certain regularity
conditions on the SAE model (§B.2.1), for any small constants s, ¢ € (0, 1) such that

Network Width: M > n - p*/(1=9)" (6.1)

- o dls
Frequency Range: n~' <p < min{n_(H'S N2 pm204e) s, —} (6.2)
n

—4¢, every feature i € [n)] is recovered by at least one neuron m;

within T = ¢~ iterations in the sense that <w7(,§:), vi)/l|vill2 = 1 — o(1).

with probability at least 1 — n
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See §B for the full version of the theorem with detailed assumptions and the proof is in §G. To our
best knowledge, Theorem 6.1 provides the first provable guarantee that an SAE training algorithm
can recover monosemantic features within a constant number of iterations. The theorem relies on
V' being Gaussian for technical convenience, but our empirical results on both synthetic (§3) and
real LLM data (§5) show that the BA and GBA algorithms work well when V' is non-Gaussian.
Moreover, although the theorem only analyzes for a single group with frequency p for clarity of pre-
sentation, we can easily extend it to GBA with multiple groups under the same regularity conditions
on the SAE model. See §B for detailed discussions.

Interpreting the theorem. The theorem reveals two critical factors for successful feature recovery:

1. Network width: The required width M > n - p=%/ (1-9)* shows that M scales linearly with
the number of features n but exponentially with sparsity s when p is fixed. The linear scaling
with n is intuitive, as each neuron can learn at most one feature. This exponential dependency
arises from the challenge of distinguishing features when they co-occur in the same data points.
Figure 7(a) experimentally validates this exponential scaling. This result highlights the benefit of
overparameterization in SAE training.

2. Activation frequency range: The condition on p translates to a “resonance band”, where fea-
tures are most effectively learned when the neuron’s activation frequency p falls into the band.
The upper bound depends on both the superposition level (controlled by d/n) and the feature
sparsity s. Figure 7(b) visualizes these resonance bands for different sparsity levels. Notably, in
our simplified data model, the feature occurrence frequency is f = s/n = ©(n~1), so for a large
constant s, we can rewrite the condition as f < p < min{+/f, fd}, as mentioned in §3.

FRR Heatmap (d = 100, n = 384) Theoretical Learnable Region

1052
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817
- 0.6

M 635
0.4

494
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0

1 2 3 4 5 6 17
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Figure 7: (a) Network width scaling: Heatmap of Feature Recovery Rate (FRR) with respect to
(M, s) for the GBA algorithm with M axis in log scale, showing exponential dependency on s. (b)
Resonance bands: Theoretical learnable region (yellow) for different sparsity values, demonstrating
the transition at d ~ \/n between heavy and light superposition regimes. For large s, the upper bound
approaches min{+/f, df} with f = ©(n™!). (c) Feature imbalance: FRR vs. relative occurrence
fiow/ fhign, showing GBA’s advantage over BA in handling imbalanced feature frequencies. All exper-
iments use (n, d) = (384, 100). For (c), we use s = 3 and M = 1024.
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This theorem rigorously justifies the neuron resonance phenomenon by proving that neurons with
frequency p optimally recover features within a specific frequency band. This insight motivates
the GBA algorithm’s multi-group design: by creating groups with geometrically decaying target
frequencies, we ensure coverage of the entire feasible frequency range, enabling recovery of features
with diverse occurrence patterns.

GBA handles imbalanced features. As an extension to the discussion above and to build connec-
tion to the GBA algorithm, we compare the analyzed BA algorithm with GBA (with 4 groups) on
data with imbalanced feature frequencies. To demonstrate the effectiveness of GBA, we construct
a dataset with features divided into two groups of equal size: one group with high occurrence fre-
quency fhign and the other with low frequency fiow. We vary the imbalance ratio fio / fhign While
keeping the average frequency fixed. The results in Figure 7(c) show that GBA significantly outper-
forms BA as the imbalance increases, i.e., fiow/fhign < 0.3, highlighting GBA’s ability to recover
features across a wide frequency spectrum, and flexibility to handle real-world data with diverse
feature occurrence patterns.

Reproducibility. The anonymous source code to this project is available in the supplementary for
both data processing and model training. The assumptions and proofs to the main theory can be
found in §B and §G, respectively.
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A RELATED WORKS

SAE Training Methods. Many methods have been proposed to train SAEs, addressing the trade-
off between reconstruction fidelity and sparsity-induced interpretability from various perspectives.
One canonical approach is imposing an L; penalty on the activations Bricken et al. (2023). Al-
though L, is a natural surrogate for enforcing L sparsity, it typically suffers from activation shrink-
age Tibshirani (1996). Several works have attempted to overcome this drawback through alterna-
tive techniques Wright & Sharkey (2024); Taggart (2024); Rajamanoharan et al. (2024a); Konda
etal. (2014). In particular, Rajamanoharan et al. (2024b) proposed the JumpReLU activation, which
achieves state-of-the-art performance despite requiring backpropagation with pseudo-derivatives be-
cause of the non-smooth nature of JumpReLU and the need for tuning the kernel density estimation
bandwidth. Another representative example is the use of TopK activation Makhzani & Frey (2013),
which has proven effective when scaled to large models Gao et al. (2024). However, it has been
observed that features learned via TopK activation are quite sensitive to the random seed Paulo &
Belrose (2025), raising concerns about their reliability.
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Sparse Dictionary Learning. Beyond SAE training methods, there is a long history of research
on sparse dictionary learning (SDL) dating back to Olshausen & Field (1996); Kreutz-Delgado et al.
(2003). Numerous techniques have been developed for applications in signal processing and com-
puter vision (Bruckstein et al., 2009; Rubinstein et al., 2010). For example, Spielman et al. (2012)
proposed a polynomial-time algorithm that can accurately recover both the dictionary and its coeffi-
cient matrix, under the assumption of sparsity in the coefficients.

Using SAEs for Model Interpretation. In recent years, SAEs have gained attention for model
interpretation, particularly in the context of large language models (LLMs) (Bricken et al., 2023;
Paulo & Belrose, 2025). Notably, Bricken et al. (2023); Dunefsky et al. (2024); Ameisen et al. (2025)
have identified several interesting features and circuit patterns learned by SAEs or their variants.
Beyond detecting monosemantic features, Papadimitriou et al. (2025) found that groups of SAE-
learned features remain remarkably stable across different training runs and encode cross-modal
semantics. Additionally, the potential of SAE activations for steering model behavior has been
explored (Ameisen et al., 2025; Shu et al., 2025).

B FORMAL THEORY OF SAE TRAINING DYNAMICS

In this section, we present a formal theory of SAE training dynamics, providing rigorous guarantees
for feature recovery when data follows a well-defined statistical model. However, before delving
into the details of the theory, we first need to answer the following fundamental questions:

* What is the precise statistical model for data generation we should consider?
* What does it mean to recover features, and under what conditions is feature recovery even
possible?

In this section, we will

* Formalize the statistical model for data generation. State the feature recovery problem and
define identifiability of features, which is a pre-requisite for any recovery guarantee
* Present the full set of assumptions and result on SAE training dynamics.

Notations. Let R denote the set of non-negative real numbers. For two sets A and B, we denote
by A U B the disjoint union of A and B. We denote by 1 the all-ones vector, whose dimension will
be clear from context. In the remaining of the section, we abuse the notation and use a 2 b to denote
that a > b+ O(loglog n/ logn) for sufficiently large n, which differs from what we use in the main
text.

B.1 DATA MODEL

We consider the data model X = HV from (2.1), where data matrix X € RV*4 is a sparse,
nonnegative combination of monosemantic features V' € R™*? with coefficients H € Rf X" Our
statistical framework requires the following decomposable data conditions:

Definition B.1 (Decomposable Data). We say that the data matrix X € RN*? is decomposable
if there exists a positive integer n € N, a nonnegative matrix H € Rf X" and a feature matrix
V € R such that X = HV. Moreover, each row of H has unit {3 norm and the {5 norm of each

row of V' is @(\/&) Furthermore, the coefficient matrix H € RN*" satisfies the following three
conditions:

(H1) Row-wise sparsity: maxc(nj || Hy,:|lo = s with s = O(1).
H. i1 /I[H-.illo = ©(1).

(H2) Non-degeneracy: For every i € [n)],
(H3) Low co-occurrence: py:=max;; (1{H., # 0}, 1{H.; # 0})/||H.;|lo < n~/2

In addition, we further assume that the feature matrix V. € R"*? satisfies:
(V1) Incoherence: For all i # j, [{vi,v;)|/(|lvill2 ||lvll2) = o(1).

These conditions ensure feature recoverability: nonnegativity removes sign ambiguity since op-
posite directions yield contradictory concepts; row-wise sparsity (H1) limits each data point to s
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features, essential for sparse recovery; non-degeneracy (H2) ensures sufficient feature magnitude
when present; low co-occurrence (H3) and incoherence (V1) guarantee features are distinguishable
by occurrence pattern or direction—generalizing the orthogonality assumption common in sparse
recovery (Marques et al., 2018; Candes & Plan, 2009). All these conditions will be used in our
theoretical analysis of SAE training dynamics.

Feature recovery problem. Note that the bilinear representation X = HYV has two intrinsic
ambiguities: (i) feature permutation—reordering features leaves HV unchanged; (ii) feature scal-
ing—scaling features while inversely scaling coefficients preserves the product. With the data
model, we can now define the feature recovery problem: given data X generated from an unknown
decomposable pair (H, V'), the goal is to learn an SAE such that for each feature v; in V/, there exists
a neuron m; in the SAE with weight vector w,,, satisfying

(Wi, vi) /[Jvill2 > 1 = o(1).

This means each feature is closely approximated by at least one neuron, up to a small error.

B.2 SAE DYNAMICS WITH BIAS ADAPTATION

In the following, we first introduce a Bias Adaptation (BA) algorithm, which is a simplified version
of the GBA algorithm with only one group of neurons and a fixed target activation frequency (TAF)
p. Then, we provide theoretical results on the training dynamics of BA, which is accompanied by
synthetic experiments to validate the theoretical findings.

B.2.1 SIMPLIFICATION FOR THEORETICAL ANALYSIS

We make several simplifications to the setup of SAE to facilitate theoretical analysis.

Decomposible data with Gaussian features. We assume that the data matrix X € RY*" ig
decomposable in the sense of Definition B.1. Moreover, we assume that the feature matrix V' &
R™*4 has i.i.d. entries following A'(0, 1). Such a choice of V satisfies the incoherence condition
(VD).

SAE model. We consider a simplified version of the SAE model f(z; ©) in (2.2), where the only
trainable parameters are the weights {w,, }M_,.

* (Small output scale) We assume that the output scale a,,, = a and a is sufficiently small. When

computing the gradient, we rescale the V£(©) back to its original scale by multiplying a .

* (Fixed pre-bias) We fix the pre-bias b, = 0, as the data matrix X is centered.

* (ReLU-like smooth activation) We use a smooth, ReLLU-like activation function ¢ (see Defini-
tion B.3 for details). One example is the softplus activation ¢(x) = log(1 + exp(z)).

* (Fixed bias) For each neuron m € [M], we fix the bias b,, = b < 0 throughout training,
where b is a negative scalar whose value will be specified later. This fixed bias will determine
the target activation frequency (TAF) p of all neurons via p = ®(—b), where ®(-) is the tail
probability function for Gaussian distribution. We will detail the intuition behind this choice
later.

These simplifications help isolate the core aspects of feature recovery and make the analysis more
tractable.

Bias Adaptation (BA) algorithm. Recall that Bias Adaptation (BA) algorithm is a special case of
GBA algorithm with only one group of neurons and a fixed TAF p. As our goal is to systematically
understand how neurons with a specific TAF p can recover features with similar occurrence fre-
quency, it is reasonable to try using a version of GBA algorithm with a single group and a fixed TAF
p. We introduce the algorithm as follows. Here we determine the value of p implicitly by choosing
a fixed bias b < 0, and they are related by p = ®(—b), where ®(-) is the tail probability function for
Gaussian distribution. That is, ®(t) = P(Z > t) for Z ~ N(0,1).
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Given the data matrix X and the SAE model f(z; ©), we can compute the loss function as L. (0) =
Avg,ex (3] f(x;©) — z|3), and its gradient with respect to the weights {wy, }2_;. Since only the
directions of the features {v; }_, matter, we adopt spherical gradient descent to update the weights.

That is, starting from the initial weights {wm }me(u) uniformly sampled from the unit sphere S,

for any ¢ > 1, in the ¢-th iteration, we update each wﬁffl) by

w4 ng (t)
BA: w() = = o Where g\ = lim —a"'V,,, Lrec(©D). (B.1)
[wm " + 0 gm’ |2 a0
Here, g( ) is the rescaled negative gradient of the loss function L,..(-) with respect to the weight

w,, of neuron m at iteration ¢t. We will show that, under proper conditions, for any feature v;, there

exists at least one neuron m; € [M] such that the alignment between wit, )

to one when T’ is sufficiently large.

and v; is arbitrarily close

Before we proceed to the main theoretical results, we make several remarks on the above simplifi-
cations for theoretical analysis and their implications.

Fixed bias is without loss of generality. As we consider 6

Gaussian features and always normalize w) to the unit = RelU

sphere, it can be shown using the Gaussian conditioning tech- 4 Shifted ELU

nique that the pre-activations remain approximately Gaussian, 3 ) = Softplus

ie., ym(z)) = (wfn), x¢) + b ~ N(b,1) for a constant num- & BX

ber of iterations ¢. See §B.4 for details. Therefore, to achieve 0 gt

the desired TAF p, it is without loss of generality to fix the

bias b < 0 such that &(—b) = p, which means that the pre- e — 5 .y
activations of each neuron will be non-negative for approxi- P

mately p fraction of the N data points throughout the training.

Figure 8: Smooth ReLU-like activa-
Smooth ReLU-like activation approximates ReLU. We tions
choose a smooth activation function for technical convenience.
For definition, we defer to Definition B.3. These activations
can be viewed as a smooth approximation to the ReLU function, as illustrated in Figure 8. This
class of activations encompasses functions like Softplus and shifted ELU, and closely resembles the
standard ReL.U activation function. We believe that a more refined analysis can also be applied to
the standard ReLLU activation, but we leave this as future work.

Small output scale decouples neuron dynamics. Following a common paradigm in the litera-
ture (see e.g. Lee et al. (2024); Chen et al. (2025)), we assume that the output scale of the SAE
is sufficiently small. The benefit of this condition is that it decouples the dynamics among the M
neurons, making the analysis more tractable. Specifically, the rescaled negative gradient of the loss
L(©) is given by

Im = 7lvwm£ =

Mz

N
(whaeib)ee — Ym(260) ) 20D plwgasblze , (B2)

z:1 =1

where we define (-, ) and 1,,, (+; ©) as

p(u,v) = dpu+v) +¢'(ut o) u

Um(2;0) = ¢/ (w,x +b) - w,), f(2;0) -z + d(w,z +b) - f(2;0) .

Here, ¢ : R +— R is a decoupled term that depends only on each individual neuron’s weight and bias,
while 1,,, : R — R is a coupling term that captures the interaction between the neuron and the
rest of the network. Since the scale of f(z; ©) is proportional to a, this coupling term is negligible
when a is small. As a result, when a is infinitesimally small, each neuron m evolves independently
of the other neurons. Furthermore, thanks to the decoupled dynamics, the restriction to a single
group with a fixed TAF p does not result in any loss of generality, as the analysis of multiple groups
is a straightforward extension.

B.2.2 MAIN THEOREM ON TRAINING DYNAMICS
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Intuitively, to recover a feature v, it has to appear in sufficiently | * N
many data points with sufficiently large coefficients. To charac- ﬁ-\

terize this intuition, we introduce two key quantities based on the /7 WS
coefficient matrix H. First, for each feature index i € [n], let o *h &
D; = {l € [N] : H;; # 0} be the set of data indices that con- 02 04 0.6
tain feature v;. The occurrence of the feature v; is thus given by
|D;|/N. We define the maximum feature occurrence as the largest
occurrence among all features, i.e.,

Figure 9: Relationship between
s, h, and h; with different
concentration level in H’s non-
zero entries’ empirical distribu-
}. tion (shadow). A less concen-
trated H leads to larger h, and
hi.

= m{ 1D,/ = {1/ 3 1481 £ 0)
lE[N]

To ensure each feature v; appears in sufficiently many data points,
we require that the occurrence of each feature is comparable to p1, i.e., |D;|/(p1 V) is not too small
for each i € [n].

Second, to measure the magnitude of coefficients associated with each feature, we define the cuz-off
level for the feature ¢ as

1 _
hi = max{h <1: @ ZleDi 1{H,;,; > h} > polylog(n) 1}. (B.3)

Intuitively, h; is a critical threshold such that, among all data points containing v;, at least a
polylog(n)~! fraction of them have coefficients no smaller than h;. In other words, h; reflects
the magnitude of coefficients associated with feature v;, within the subset of data points where v; is
present. Thus, h; can effectively be viewed as a notion of “signal strength” for feature v;, and we
should require that h; is not too small for each ¢ € [N].

Furthermore, we additionally introduce a global quantity called the concentration coefficient hy, =
h.(H ), whose definition is technical and deferred to (G.1) in the appendix. Intuitively, h, character-
izes the global concentration level of nonzero entries in [1. For now we can intuitively understand
it as the variance of the nonzero entries in H, and thus h, will increase when the nonzero entries in
H are less concentrated.

With these definitions, we are now ready to state the main theorem on the training dynamics.

Theorem B.2. Let X = HV be decomposable in the sense of Definition B.1 with H € RN*"
satisfying all the conditions therein, and further assume that V. € R™*? has i.i.d. entries following
N(0,1). For this X, we train the SAE with BA algorithm given in (B.1). Lets,e € (0,1) be any
small constants. We assume that the number of neurons M is sufficiently large:

log M

b2
Network Width: > _— 4+ 15. B.4
etwork W logn ~ 52?5]( { 2(1 —¢)2h2logn + } (B.4)

Moreover, we assume that the learning rate 1 satisfies logn > (b*/2 —log N) and that the bias
b < 0 is set to satisfy the following condition:

2

1 h? logd
Bias Range: 1> > % B 914e)2m2 1-(1-0¢)- } B.5
ias Range: 12 50— 2 max{} + % a0+ epnd 1- -9 E2L @)

Furthermore, we assume the coefficient matrix H satisfies the following feature balance condition:

|D;|

log1
Feature Balance: T > polylog(n)™, h2> M
Pl

: el Vi € [n]. (B.6)

Then, it holds with probability at least 1 —n~4¢ over the randomness of V' that for any feature i € [n),
there exists at least one unique neuron m; such that after at most T = ¢~ iterations, the alignment

between the weights of neuron m; and the feature vector v; satisfies <w£3), vi)/||vill2 > 1 = o(1).
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See §G for a detailed proof of this theorem. Theorem B.2 shows that under appropriate conditions,
BA provably recovers all monosemantic features within a constant number of iterations. These
conditions include that (i) the network is sufficiently wide compared to the number of features as
specified in (B.4), (ii) the bias b is chosen within a certain range as specified in (B.5), and (iii) the co-
efficient matrix H satisfies the feature balance condition in (B.6), ensuring that each feature appears
frequently enough with sufficiently large coefficients. To our best knowledge, this theorem is the
first theoretical result that proves a SAE training algorithm can provably recover all monosemantic
features.

Going from one group to multiple groups. The analysis of BA with a single group can be nat-
urally extended to the case of multiple groups in GBA thanks to the decoupled dynamics among
neurons. Specifically, as we have shown in (B.2), each neuron m evolves independently when all
neurons’ output scale a,, is sufficiently small. Therefore, if we have K groups of neurons, each
with M /K neurons and bias by, for group k € [K] such that the TAF p;, = ®(—b), then the same
analysis can be applied to each group separately, and we will derive the same conditions as in The-
orem B.2 for each group. As a result, to learn features of a certain occurrence frequency f, we just
need to ensure that at least one group k has TAF py, and the corresponding bias by, satisfying the Bias
Range condition in (B.5).

Specializing Theorem B.2 to Theorem 6.1. To relate the above theorem back to the one presented
in the main text:

» We first note that the decomposable data condition in Definition B.1 is always satisfied when
H is designed to have exactly s-sparse rows: each row ¢ has uniform random support S, with
|S¢| = s for a constant s and entries Hy ; = 1/+/s for i € Sy, zero otherwise.

» Moreover, the feature balance condition in (B.6) is also satisfied with high probability in this
case because each feature appears in s/n fraction of data points, and |D;| = sN/n for each
i € [n] by the law of large numbers, and so is p; = s/n.

* Finally, in this case, the concentration coefficient h; defined in (B.3) is equal to 1/4/s, as the
nonzero entries are all equal to 1/+/s.

Hence, the remaining conditions to be checked are the network width condition in (B.4) and the
bias range condition in (B.5). We now invoke Theorem G.1, which states that if H has every entries
belonging to {0,1/+/s}, then h, = 1/4/s as well. Therefore, by substituting h; = h, = 1/4/s into
(B.4) and (B.5), multiplying both sides of the inequalities by logn, taking exponential, and using
the fact that

exp(b;) ®(polxy;og(n))

by the Gaussian tail estimate for b > /logn > 1 (guaranteed by the bias range condition), we
recover the conditions in Theorem 6.1.

B.3 DETAILS ON RELU-LIKE ACTIVATION

In this section, we provide the omitted details for §6. We give a formal definition of ReLU-like
activations.

Definition B.3 (ReLU-like Activation). For the activation function ¢ : R — R, we define ¢ as

o(z) = ¢(7;0) = p(z) + x ¢/ (2).
We say that ¢ is ReLU-like if it satisfies the following:

1. (Lipschitzness) The activation function ¢ is continuously differentiable, 1-Lipschitz, and ~:-
smooth with vy, = O(polylog(n)). Furthermore, p(x) is vo-Lipschitz with 2 = O(polylog(n)).

2. (Monotonicity) The activation function ¢ is non-decreasing, and moreover, ¢' (x) > Cy for some
constant Coy > 0 and all x > 0.

3. (Diminishing Tail) There exists a threshold ko = O((logn)~'/?) and a sufficiently large con-
stant ¢y > 0 such that for all x < —ko, max{|d(z)|, |¢'(z)], |z ¢'(z)|} < n~c.
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Lipschitzness. Under the above assumptions, we note that ¢(x;b) is L-Lipschitz in z with L =
(72 + |b|71) = O(polylog(n)) > 1. The Lipschitz property of the function ¢ is pivotal in our
analysis since it enables control over error propagation across iterations. However, this property
depends on the smoothness of the activation function ¢, a condition that the standard ReLU does not
satisfy. Fortunately, many common activation functions—such as softplus, noisy ReLLU, and shifted
ELU (with the limit at —oo set to 0)—do satisfy this smoothness requirement. In particular, with
a large smoothness parameter 7, = polylog(n), we can use a smooth activation function to well
approximate the ReLU function. For instance, we can take ¢(x) = ;" log(1 + ¢7'%) for some
~1 = polylog(n) as a smooth approximation of the ReLU activation function.

Monotonicity. The monotonicity property ensures that neurons with large pre-activations, which
indicate a good alignment with the underlying features, will also have large post-activations. This
then guarantees a continuous growth of the corresponding neuron weights.

Diminishing Tail. The diminishing tail condition ensures that both the activation function ¢ and
its derivative ¢’ are negligibly small when the input is below the threshold —rg. This property
suppresses unwanted neuron activations, thereby promoting sparsity in the activations—a key factor
in the successful training of the SAE.

B.4 PROOF OVERVIEW

In the following, we provide an overview of the key steps in the proof of Theorem B.2.

B.4.1 GOOD INITIALIZATION WITH WIDE NETWORK

By planting a large pool of i.i.d. random neurons at initialization, we can—with overwhelming prob-
ability—(1) assign to each feature v; one neuron m; whose inner product with v; is already very
large, and (2) simultaneously ensure that this same neuron has only weak correlations with all the
other features. Concretely, we prove that if M grows fast enough relative to n, then there exists a
choice of distinct neurons {m;}?_; such that

M
InitCond-1: (vi,ws,g?) >(1—-¢) \/21?7
' n

InitCond-2: mjx’@j,wgﬂ <V2(1+¢)\/2logn. (B.7)
VE)

These two properties together ensure a good initialization for the neuron m; dedicated to feature
v;. With M > n®, we deduce that neuron Wm, aligns exclusively with feature v;. In fact, as M
increases the separation between the two thresholds also increases, so wﬁ,?z is ever more strongly
aligned with its own feature v; than with any other v; at the start. This widening margin precisely
captures the benign over-parameterization effect: having many neurons actually promotes clean,

feature-specific initialization. See Theorem E.1 for more details.

B.4.2 PREACTIVATIONS ARE APPROXIMATELY GAUSSIAN

We give a brief overview of how we deal with the challenge of tracking the highly nonlinear dynam-
ics in (B.1). With an abuse of notation, let us denote by w; and b; one neuron’s weight and bias after
iteration ¢. For the first step, the preactivations are Gaussian, i.e., w(—)r xp + by ~ N (by, 1). For later
steps, we expand the gradient descent update for the neuron weights wy at iteration ¢. Let us denote
by ¢ = (¢(w/_12¢;bi—1))een] and g¢ = X T, the gradient computed in (B.2) at iteration ¢. By
the gradient formula in (B.2), we have

t t
wy = Z)‘T ~XT<pT+)\O~w0, and Xw; = Z)\T - X g+ Ao - Xwg, (B.8)

T=1 T=1

for some coefficient A.. Let us recall the decomposition X = HV. The first equality in (B.8)
indicates that w;_; only contains information of V' through the (¢ — 1)-dimensional projection & =
span{p| H 3;11 For the second equality, the most recent component Xg; = HV g, in the pre-
activations contains information from a new gradient direction—the direction of projecting g; onto
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the orthogonal space of G = {wg, g1, ..., g¢_1}, which we denote as g;-. Data X s projection onto
this new direction can be decomposed as

Xgy=H - (Vg + V),

where ®1V g;- is independent of all the previous updates, as the projection is orthogonal to both ®
and G. Therefore, V g;- is a high-dimensional independent Gaussian vector plus a low-dimensional
coupling term ®V g;-. The argument holds true for all iteration steps, and if t < d A n, we ap-
proximately have z,w; ~ N(b;, 1) thanks to the normalization of the weight w;. This argument
can be made rigorous by use of the Gaussian conditioning technigue (Wu & Zhou, 2023; Bayati &
Montanari, 2011; Montanari & Wu, 2023) in the formal proof. See §E.3 for details.

B.4.3 WEIGHT DECOMPOSITION AND CONCENTRATION UNDER SPARSITY

For one neuron dedicated to the target feature v; and satisfying the initialization conditions in (B.7),
we decompose the weight w; into two directions: 1) the projection of w; onto the 2-dimensional
subspace spanned by wg and v;; 2) the projection of w; onto the orthogonal space w;-. We define

<wt7vi>
vill2

Using o and (3;, one can compute the first and second moments of the post-activation ¢; under
the decomposition of the pre-activations (into a high-dimensional Gaussian component and a low-
dimensional coupling term) obtained by the Gaussian conditioning technique. The post-activation
¢ then gives rise to the next-step w; 41, and we thus obtain an induced recursion over o and ;. As
a more concrete example, let us take learning rate = co, and we can express «; as
R A P O
—1,t = =
loilla flvillz - [ X T el
Recall that X = HV. By a splitting of V' = [V_1; v, ] in the row and a splitting of H = [H_;, H;]
in the column, we have
2. gT TyT T TyT . gT
. vill3 - H; o +v; V- H ;0 _ [Jvill3 - HiTSDt v, Vi H_jp
—1,t =

[vill2 - 11X T oel2 X Tl [vill2 - [ X Tepel2 °
Signal Noise

ap = B = HwtlHQ'

Here, we explicitly separate the signal from the noise. Our goal is to steer the neuron toward the
direction of v;, while treating gradient contributions from other features as noise.

Controlling Moment of the Activations. To proceed, we
must tightly control both the signal and noise terms in the nu-
merator and the denominator. Concretely, this means bounding
the first moment of the activation ¢, (which enters the numera-
tor) and its second moment (which controls the denominator),
all while respecting the sparsity structure of ;. A core diffi-
culty stems from the pre-activation

X’U}t = HV'LUt,

whose entries are not independent—even under a Gaussian
approximation—because the feature rows Hy . are correlated.
This correlation invalidates the assumptions of classical con- .
centration inequalities, such as Bernstein’s, and the problem Figure 10: Visualization of the
only worsens once we apply the nonlinear activation. More- Projection of w; onto 1) the sub-
over, classical concentration techniques based on the bounded- SPace spanned by wo and v; and 2)
differences property, such as McDiarmid’s inequality (McDi- the orthogonal space w;".

armid et al., 1989), are not applicable here. This is because the bounded-differences property only
offers a uniform bound on the impact of each individual input change on the output, and it fails to
capture that the activations are sparse—remaining zero most of the time.

To overcome these dependencies, we invoke the Efron-Stein inequality (Boucheron et al., 2003).
Unlike McDiarmid’s bounded-differences inequality, which requires each individual input change
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to have a uniformly small impact on f, Efron-Stein only demands a bound on the total conditional
variance, namely

B[S (1) - 19)? |4] < v

where (V) denotes the vector obtained by replacing the ith coordinate of 2 with an independent
copy. This variance-based condition is far more flexible in the presence of both correlation and
nonlinearity, allowing us to derive the sharp moment bounds we need.

B.4.4 STATE RECURSION AND CONVERGENCE

We track at iteration t the alignment o1 ; and the orthogonal component j3; of the neuron weight
wy. By exploiting the “Gaussian-like” concentration of the pre-activation Xw; = H V w, and
applying the refined Efron-Stein inequality to handle both feature correlations and the nonlinearity,
one obtains the coupled recurrences

1

Q_1¢

B

Q_1¢t

<o) + A(2D o1 d),

p1d a_1t-1

Here, \;  p1N/|D;|, and ®(—b) denotes the Gaussian tail probability beyond the threshold —b,
which captures the activation sparsity. For clarity, we focus on the noiseless regime (i.e., assume

Et = () so that all noise contributions are neglected. We now elaborate on these recursions in detail:

1. Recall that we require 8; < «_+ since the neuron should eventually converge exclusively
in the direction of the target feature. In our framework, the minimal growth rate of the ratio
Bt/c—1 ¢ is intrinsically controlled by \; = 0 (p1N/|D;|). By the definition of py, this ratio is
inherently larger than 1. Thus, to prevent an unbounded escalation of 8, /a_1 ;, we must restrict

A¢ to, at most, a polylogarithmic scale, i.e., Ay = 5(1)
2. If we additionally set (—b)/(p1d) < d~° for some ¢ € (0, 1), then the map ozj,t — oz:itJrl is

contractive. Hence ov_1 ; grows from its initialization ©(d~1/2) to 1—o(1) in O(1) steps, and the
growth rate is much faster than that of 3, /cv_1 ; thanks to the sparsity condition ®(—b)/(p1d) <
1.

From the above discussions, we already justify the inclusion of the Individual Feature Occurrence
condition % > polylog(n)~* inN(B.6) and part of the Bias Range condition % >1-01-
¢)-1ed o §(—b) < d'=S/n = O(dS - (p1d)) in (B.5). The remaining conditions can be derived

logn

based on a more careful analysis, including the noise term Et and the initialization conditions (B.7).

C SUPPLEMENTARY DISCUSSIONS

C.1 DETAILS ON TOPK AND L; TRAINING METHODS

We provide here more details on the training methods used in our experiments, including the Sparse
Autoencoder (SAE) with TopK activation and SAE with L, regularization.

Sparse Autoencoder (SAE) with TopK activation. In an SAE with TopK activation, sparsity is
enforced by selecting only the K neurons with the highest activation values in the hidden layer. Let
y = W(x — bpre) + b be the pre-activation values of the hidden layer. Let ¢(y) be the activations
after applying a standard activation function. The TopK selection mechanism, denoted as Sk (-),
operates on ¢(y). For a vector v € RM, Si (v) produces a vector v’ € RM such that:

J

o - v; if v; is among the K largest values in v,
0 otherwise

for j € [M]. The post-activation in a TopK SAE is:
z =Sk (Qb(W(x - bpre) + b)),

23



Under review as a conference paper at ICLR 2026

which by definition is K -sparse. The reconstructed output is:
7 = diag(a) - W2 + bpre.

Let © = (W, bpre, b, a) be the parameters of the SAE. The loss function for the TopK SAE is the
reconstruction loss:

»Crec(x; 6) = ||(E - ff”%

Sparse Autoencoder (SAE) with [, regularization. In an SAE with L, regularization, sparsity
is encouraged by adding a penalty term to the reconstruction loss, proportional to the sum of the
absolute values of the hidden layer activations. Let y = W(x — bpre) + b be the pre-activation
values of the hidden layer. Let z = ¢(y) = ¢(W (x — bpre) + b) be the activations after applying
a standard activation function; these are the hidden layer representations that will be encouraged
towards sparsity. The reconstructed output is:

7 = diag(a) - W'z + bpre.

The loss function for the L1 SAE, £(z;©), incorporates both the reconstruction error and the L1
penalty on the hidden activations z:

L(;0) = llz =25+ A Izl - llwyla,

Jj=1

where A > 0 is the sparsity penalty parameter that controls the strength of the regularization, m is
the number of neurons in the hidden layer, and wy; is the j-th row of the weight matrix W.

JumpReLU. In our real-data experiments, we also consider the JumpReLU activation, a non-
smooth, non-monotonic function. Conceptually, it behaves like ReLU for positive inputs but intro-
duces a sharp jump for sufficiently large inputs. In our implementation, we adopt a simplified scalar
form adapted to our neuron pre-activation w,! x + by,

0 if w2 + by < 0
LU(w? 2 =< T " ’

This activation acts as a hard thresholded identity: it passes the neuron’s response only when the pre-
activation crosses a bias-controlled threshold. Although JumpReLU does not satisfy the smoothness
or Lipschitz conditions required in our theory (see Definition B.3), it is empirically effective and
included in our experimental comparisons §5. To train SAEs with JumpReLU activation, we follow
Rajamanoharan et al. (2024b) and use straight-through estimators for the gradient of JumpReLU
with respect to the bias b,,. Specifically, for a small constant ¢ > 0, we approximate the gradients
as

dJumpReLU(y; b) [0, ify+b<0  dJumpReLU(y; b) [0, if|y+b] >
oy |1, ify+b>0" Ob - boifly+b <

N DO

The approximation follows the logic: the gradient with respect to b is in essence the gradient of
Heaviside step function, which can be approximated by a smoothed version over a small interval
around the threshold. Note that for GBA method, we do not apply any gradient for the bias; instead,
we update the bias through the frequency control mechanism described in §4.

Activation sparsity. For both the L1 and TopK SAE, we define the sparsity as the number of non-
zero entries in the latent z, i.e., ||z]|o.

Minor notational discrepancy. In the main text and above definition we express the activation as
é(w,] x + by,), whereas in the definition above the JumpReLU activation is indeed as a bivariate
function of w,|z and b,,. This slight difference is purely notational and does not affect the un-
derlying functionality or the definition of activation sparsity. For simplicity, we always stick to
#(w,] x + by,) in the main text, even for the JumpReLU activation.
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C.2 EVALUATION METRICS

We explain here the details of the evaluation metrics used in our experiments to assess how well the
GBA algorithm recovers the underlying features.

We first introduce the maximum activation and neuron Z-score, which are used to measure the quality
of the learned neurons. Then, we introduce the notion of Max Cosine Similarity (MCS) and Feature
Recovery Rate (FRR), which are used to measure the quality of the alignment between the learned
neurons and the ground-truth features, or the consistency of the learned features across different
runs. We also introduce the neuron percentage, constructed from the MCS, which is used to generate
Figure 5.

‘We introduce maximum activation and neuron Z-score of a neuron m as follows.

Maximum activation. Unless specified, we define the maximum activation of a neuron m as the
maximum of its pre-activations over the validation set:

Maximum Activation(m) = ey max Ym (), where ym,(2) = w,, (T — bpre) + by
(C.D

Note that the maximum activation is computed based on the tokens in the validation set, which is a
held-out dataset separate from the training data used for evaluation purposes. It maps each neuron
to a scalar, characterizing the maximum pre-activation of the neuron across all validation tokens.

Neuron Z-score. Let ¢(-) denote the neuron’s activation function (e.g., ReLU, or JumpReLU).
For each neuron m and a minibatch {z;}2 |, we define its post-activation responses as
T .
¢m,i = ¢(wm(xi_bpre)+bm)7 i=1,...,B,
where w,, € R? is the neuron’s weight vector and b,,, € R is its bias. We can compute the mean
and standard deviation of these activations in the minibatch as
B

1 & _ 1 2
Hm = §;¢m,i7 Sm = EZ(¢m,z_Mm) .

=1

The Z-score of neuron m on data point z; is defined as

Zm,i = (¢m,z - ,U/m)/sm e R.
‘We can also take the maximum of the Z-scores over the batch:

Zﬂrr;ax = ( m,max /’Lm>/8m ) where ¢m,max - 1I§nia§XB (bm,i' (CZ)

A large value of Z,, ; (or Z3?* > 0) indicates that on some input x;, the neuron’s activation ¢, ;
lies multiple standard deviations above its mean. Thus, when Z22* is large, neuron m is well-
learned to sensitively detect certain data points within the batch. More specifically, when Z72* is

large, the two following conditions hold:

* Strong Selectivity: There exists some x; within the batch such that ¢,,, ; > (i, i.e., the neuron’s
activation ¢,, ; “spikes” for input z;.

* Low Baseline Variability: Within the whole batch, the neuron’s activation ¢,, ; is relatively
stable, i.e., the standard deviation s,,, is moderate.

As aresult, Z)** serves as a quantitative measure of the neuron’s specificity on the batch of data.
When generating Figure 5, we use the maximum Z-score of each neuron across the whole validation

set to select a subset of neurons.

Next, we introduce the Max Cosine Similarity (MCS) and Feature Recovery Rate (FRR) metrics,
which are used to measure the quality of the alignment between the learned neurons and the ground-
truth features, or the consistency of the learned features across different runs.

Max Cosine Similarity (MCS) for synthetic data. For each neuron m with weight vector w,, €
R4, we define
MCS(m) = max —2m )¢y q)
i€ln] [[wml[2 [lvi]2
By definition, MCS(m) = 1 if and only if w,, coincides with one of the true features v;.
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Max Cosine Similarity (MCS) for real data. For real data, as we do not have access to the
ground-truth features, we define the MCS as the maximum cosine similarity between neurons across
different runs. This definition is used in Figure 5. Specifically, consider the trained neurons weights
W) € RM*d for j = 1,...,.J where .J is the number of runs with different random seeds. We fix
the first run as the host run and compute the MCS for the m-th neuron in the host run with respect
to the j-th run with j > 2 as follows:
MCS(m, j) = max{cos(W(j), wﬁ,ll))}

Here, the term inside the max is the cosine similarity between the m-th neuron in the host run and
all neurons in the j-th run, which is an M -dimensional vector. The maximum taken outside can be
interpreted as finding the best match for the m-th neuron in the host run. Now, given a threshold
7 for the MCS value, i.e., the x-axis in Figure 5, we define neuron m to have an MCS above the
threshold if MCS(m, j) > 7 for all j > 2. We require this condition to hold for all runs j > 2
because if the algorithm learns a consistent feature, it should be present no matter which random
seed is used. When this is the case, neuron m in the host run can find a corresponding neuron in each
of the other runs that has a cosine similarity above the threshold 7. Thus, by computing MCS for all
the neurons in the host run, we evaluate the consistency of the learned features across different runs.

Neuron percentage in Figure 5. Recall that we call the first run of the algorithm the host run.
Under the definition of MCS, in Figure 5 we plot the neuron percentage as a function of the MCS
threshold 7. In particular, for any threshold 7 (x-axis in Figure 5), we compute the fraction of
neurons in the host run that have an MCS above the threshold across all runs. That is, we define
M
Neuron Percentage(7) = % Z 1(MCS(m, j) > 7,Vj > 2). (C.3)
m=1

By definition, this quantity computes the fraction of neurons in the host run that have an MCS
above the threshold 7 across all runs j > 2. If this quantity is large, the algorithm is able to
produce consistent results across different runs with different random seeds. Moreover, because a
considerable portion of the neurons of SAE are rarely activated, instead of enumerating over all
neurons as in (C.3), we can also consider the neuron percentage over a subset of neurons, denoted
by M C [M]. Then, focusing on M, we define the neuron percentage as

1
Neuron Percentage(7, M) = ™ Z 1(MCS(m, j) > 7,Vj > 2). (C4)
meM
In particular, in Figure 5, we choose M to be the top-« subset of neurons in terms of the maximum
activations or neuron Z-score in the host run, which are defined in (C.1) and (C.2), respectively.
Note that these two metrics are computed based on the validation dataset. The y-axis in Figure 5 is
computed as in (C.4) with these two versions of M.

The notion of Feature Recovery Rate (FRR) is only used for synthetic data, where we have access
to the ground-truth features.

Feature Recovery Rate (FRR). For one monosemantic feature

v;, We say it is recovered if there exists a neuron m € [M] such that

the cosine similarity between the neuron and the feature is above a 0 0/3
certain threshold Tajign:

1 — 1 if 3m € [M] such that ‘(@m, vz>|/||vl||2 > Talign,
710 otherwise.

Then the Feature Recovery Rate is
1 n

FRR = — Z;]li € [0,1].
i=

In words, FRR is the fraction of ground-truth features v; that have
been recovered, i.e., aligned to at least one learned neuron. Here,

we find the following way to define the threshold T,jign useful: Figure 11: An illustration of

the learnable region surrounding
1 (v, v;) the feature. Any neuron weight
Talign = COS| — arccos| max ————— | |. (CS5 ... S
3 i#j ||Uz||2 ||Uj H2 within the cone has cosine sim-
ilarity above the threshold with
the feature.

26



Under review as a conference paper at ICLR 2026

Intuitively, the angle given by arccos in (C.5) is the smallest angle

among all pairs of features v; and v; in V, which is denoted by 0

in Figure 11. Then, if a neuron exhibits a cosine similarity above

the threshold T,j;gn With a feature v;, then it lies within the cone centered at v; with angle /3. See
Figure 11 for an illustration. By our choice of 7,jign, these cones associated to all monosemantic
features lie in the d—1-dimensional sphere without overlapping, ensuring that each neuron exceeding
the threshold is uniquely aligned with a single feature.

D ADDITIONAL EXPERIMENTS DETAILS

We provide additional experimental results and implementation details that complement the main
findings presented in the paper.

D.1 SYNTHETIC EXPERIMENTAL SETUP

We generate synthetic data X = H'V satisfying decomposable conditions outlined in Definition B.1.
In the default setting, each row of H contains exactly s nonzero entries, each with value 1/4/s, and
the support of each row is chosen independently at random. We implement the BA algorithm with
a fixed TAF p, where the SAE adopts the ReLU activation. We fix the output scale a,,, = 1 for all

m € [M] and the pre-bias bye = 0, and initialize the weights w,(,?) uniformly on the unit sphere

Se-1 with bias oY) =

In synthetic experiments, we use Spherical Gaussian features. For each sample z; (j € [N]), we
randomly sample s indices (with replacement) from [n] to form a multi-set S;. The corresponding
features are then combined with a weight 1/4/s to construct the reconstruction target:

xj = Z v;/V/s.

i€S;

To evaluate feature learning of neuron m, we use the Max Cosine Similarity (MCS) metric. For any
neuron m, MCS is defined as max;cn) [{Wm /||wm |2, vi/|vi|l2)|. Thus, MCS measures how well
a neuron aligns with the most aligned feature in V. We say a neuron is aligned with some feature
if the MCS for that neuron exceeds a certain threshold. To evaluate overall feature recovery, we use
the Feature Recovery Rate (FRR) metric, defined as the proportion of features that are aligned with
at least one neuron. See §C.2 for more details on these metrics and the choice of thresholds.

D.2 ADDITIONAL DETAILS FOR §5

Data and model details. We choose the subsets of Github and Wikipedia_en of Pile (Gao
et al., 2020) without copyright as our datasets. The Github dataset is a collection of 1.2 billion
tokens from public GitHub repositories, while the Wikipedia_en subset contains 1.5 billion
tokens from English Wikipedia articles. We use the first 99.8k rows from each dataset for train-
ing and the next 0.2k rows for validation. Each row in the dataset is truncated to the first 1024
tokens after tokenization. Therefore, the total number of tokens is roughly N = 100m. We use the
Qwen2.5-1.5B base model (Yang et al., 2024) as our LLM, which has 1.5 billion parameters and
MLP output dimension 1536. We attach an SAE to the output of the LLM’s MLP output at layer 2,
13, and 26 with M = 66k neurons, resulting in three different SAEs for each dataset. The dimen-
sion d of the input data points is equal to d = 1536. We use the JumpReL.U activation (Erichson
et al., 2019; Rajamanoharan et al., 2024b) for all training methods.

Training details. We train the SAEs using methods such as GBA, TopK, L1, and BA, where BA
is simply GBA with one group. For all these methods, we use the AdamW optimizer with a learning
rate of 10~* and a weight decay of 1072, Since the sentences are truncated to 1024 with padding
token removed, we set the batch size to L. = 8192 tokens and a buffer size of B = 40k tokens. Each
run can be completed using a single NVIDIA A100 GPU with 80GB memory, and we train 8 epochs
for each method. The hyperparameters of each method are set as follows:

* For GBA, we set K € {3,10,20}, p; € {0.05,0.1,0.3,0.5}, and pxr € {1074,1073,5 x
1073}, where K is the number of groups, p; is the target frequency of the first group,
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and pg is the target frequency of the last group. In addition, we have {ps}rc[x] form a
geometric sequence.

* For the BA method, we set the HTF to be from {1071,3 x 1072,1072,3 x 1073} and vary
the choice. The other parameters are the same as GBA.

e For TopK method, we implement two versions — the pre-activation TopK and
the post-activation TopK. See §C.1 for details. = We vary the value of K in
{50, 100, 200, 300, 400, 500, 600}.

* For L1 method, we vary the penalty parameter Ain {1071, 3x1072,1072,3x1072,1073}.

D.3 COMPARISON BETWEEN JUMPRELU AND RELU ACTIVATION

For the SAE trained on the Github dataset at layer 26, we compare the performance between
JumpReLU and the standard ReLU activations across all methods considered in this paper. As
shown in Figure 12, the sparsity-loss frontiers for TopK and L1 methods are nearly identical un-
der both activations. However, the GBA method demonstrates a marked improvement when using
JumpReLU activation. With ReLU, decreasing the neuron bias also reduces the output magnitude.
Thus more neurons are needed to compensate for the loss of output magnitude, which leads to a less
sparse model, which degrades the sparsity-loss frontier. In contrast, JumpReLU decouples the neu-
ron output magnitude from its bias—only the activation frequency is influenced—yielding a more
robust sparsity-loss performance.

0.4 -@- TopK+JumpRelLU(pre-act) @ TopK+RelLU(pre-act) TopK+ReLU(pre-act)
. ={=3* TopK+JumpReLU(post-act) 0 4 = (3= TopK+ReLU(post-act) 0.4 -@- TopK+JumpReLU(pre-act)
L1+JumpRelU : L1+RelU TopK+ReLU(post-act)
0.3 ~= GBA+JumpRelU 0.3 =)= GBA+RelU 0.3 -(3 TopK+JumpReLU(post-act)
. . L1+RelU
Q, @
Q. (] ..., . L1+jumpRelU
0.2 ke 0.2 Q.. ., * 0.2 Q, e GBA+RelU
* - @. %‘." = GBA+JumpReLU
0.1 I 3 e 0.1 _ 0.1 _ e
lower is better©® lower is better lower is better©®
o / o ./ 0
0.2 1 5 20 0.2 1 5 20 02 1 5 20

Figure 12: Comparison of sparsity-loss frontier between JumpReLU and ReLU activations. The left
and middle plots show the sparsity-loss frontier with JumpReLU and ReLU activations, respectively.
The right plot is a combination of the two, where the faded plots represent the sparsity-loss frontier of
the ReLU activation.

Bias clamping to prevent over-sparsification. During the bias scheduling subroutine of the GBA
algorithm (Algorithm 1), we enforce a clamp on the bias values, restricting them to the range [—1, 0].
This constraint serves two primary purposes. The upper bound of O ensures that a neuron is only
activated when the input data exhibits a sufficient alignment with the neuron’s weight vector. Con-
sequently, allowing negative bias values (b,,, < 0) effectively prevents excessive or premature acti-
vation of neurons.

The lower bound of —1 is implemented to avoid over-deactivation and the emergence of a reinforcing
loop. We have observed experimentally that when the pre-bias (bp,e) significantly deviates from
zero, certain neurons may develop weights that are in opposition to the pre-bias to compensate for
this drift. As these compensatory neurons are more likely to be activated by the initial pre-bias, the
GBA algorithm might inadvertently continue to deactivate them by further reducing their bias (b,,).
This deactivation would then necessitate an increase in the neuron’s weight to maintain its influence,
leading to a counterproductive cycle of deactivation and weight growth.

By limiting the bias to be no less than —1, we effectively interrupt this reinforcing loop and promote
training stability. The rationale behind choosing —1 as the lower bound stems from the fact that
our input data is normalized. This normalization typically results in pre-activation values that are
significantly smaller than 1, with values approaching 1 only when the data strongly activates specific
neurons. Therefore, a lower bias bound of —1 provides sufficient range for deactivation without
causing the problematic feedback loop. This clamping strategy has been shown to significantly
enhance the stability of the training process.
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E GoOOD INITIALIZATION AND GAUSSIAN CONDITIONING

In this section, we provide proofs for two important lemmas: Theorem E.l on the initialization
properties and Theorem E.2 on the Gaussian conditioning. These lemmas provide the necessary
foundation for analyzing the SAE training dynamics, enabling us to isolate and control the relevant
sources of randomness throughout the analysis.

E.1 INITIALIZATION PROPERTIES

If we initialize the network with a sufficiently large number of neurons M, then for each neuron,
there must exist a feature that aligns well with it. However, the question is how many neurons
we need to achieve a sufficiently large alignment and with all features of interest simultaneously.
Theorem E.1 provides an answer to this question. In particular, we prove that when M is sufficiently
large, for each feature v;, we can find a neuron m; that aligns well with it (InitCond-1) while
maintaining a small alignment with all other features (InitCond-2).

Lemma E.1 (Good initialization). Given n i.i.d. features {v;}?_, with v; ~ N (0, 1) and weights

{w(o)}m:1 independently initialized from the uniform distribution on the unit sphere, then for any
constants ¢ € (0,1) and ¢ > 0 such that n=° upper bound exp(—n©° ), with probability at least

1 —n~¢ over the randomness of both {v;}!'_, and {w )}m 1, one can select a sequence of neurons
{mz}"_1 satisfying the following propemes

1. Foranyi € [n], we have

InitCond-1:  (v;,w{Y) > (1 —¢)\/2log(M/n).

2. For any i € [n], when conditioned on the selection of neuron m;, which aligns well with
feature v; in the sense of InitCond-1, the distribution of the remaining features {v;};;
remains unchanged, i.e., they are independently drawn from N'(0, I).

3. For any i € [n], when conditioned on selecting neuron m;, with probability at least 1 —
n~174 over the randomness of {v;} ;i we have

InitCond-2 :  (v;,w?)) < V2(1+e)-\/2logn, Vj#i

Proof of Theorem E.1. We present the proof by constructing such mj, me,...,m, explicitly.
Suppose we are provided with n features vy, vs,...,v, and M neurons with initial weights

w§0), wéo) wgw) We first put all the pair-wise alignments (v;, w © )> into a matrix A € R"*M,

where A, = (v, w @ )> for i € [n] and m € [M]. The algorithm execute as follows for i going
from 1 to n:

1. Randomly divide the M neurons into n disjoint groups M;, Mo, ..., M, such that each
group M, contains M /n neurons.

2. For each M, find the neuron m; as the one that maximizes the alignment with feature v;,
i.e.,

m; = argmax A; ,, = argmax(v;, wﬁ?).
meM,; meM;

By construction, we know that the selection of m; is independent of the selection of m; for 7 # j.

It is not hard to see that the distribution of (v;, w © )> is the same (up to scaling) as the distribution of
the first coordinate of a random vector uniformly distributed on the unit sphere. Therefore, for each
i € [n], each group {A; ,, } m, is iid sampled from the following distribution:

a  Zifvill2

Aim =
’ ‘meMi Z2+...+ 22

where  Zj, ~ N(0,1),Vk € [d].
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By the concentration for Chi-square distribution, Theorem J.1, we know that the denominator and
also the norm of ||v;||2 satisfies

d
P(‘Z 72— d’ > 2\/dlogd—1 + 210g(5—1> <9,

k=1
P(‘||vi|§ - d’ > 92\/dlogo-1 + 21og5—1> <.

To proceed, we label each d-dimensional random vector as Z(m) = (Z™) Z((i”m)), where
the superscript (i, m) corresponds to feature ¢ and neuron m. Applying a union bound over all
n X M /n pairs of (i, m) and choosing § = n~¢/M for some universal constant ¢, we deduce that
with probability at least 1 — n ¢, the following holds for all ¢ € [n] and m € [M]:

_ 2" (d— C\/dlog(n}) — C'log nM) 12

s (d+ C/dlog(nM) + Clog(nM))"/*

where C'is a universal constant. Moreover, by property of the maximum of Gaussian random vari-
ables in Theorem J.4, it holds that

(M/n)=—=/* ) E.D)

3y/mlog(M/n)/

[P’(nrlré%l( Z( m > (1-¢/2) 210g(M/n)) > 1—exp(—

Here, we divide € by 2 because

e (d+c\/m+mog nM)1/2 T 1-¢/2

for small constant €. Consequently, by multiplying both sides of the inequality inside P(-) in (E.1)
by 11—;572 we can recast the probability statement so that the maximum of A; ,,, over all m € M,

exceeds (1 — )4/2log(M/n). By taking a union bound for i € [n], the probability of successfully

finding a sequence of neurons ms,ms, ..., m, satisfying A; ,, > (1 — €)y/2log(M/n) for all
i € [n] and m € [M] is at least

P(Vi € [n] L max Aim > (1 —¢) 210g(M/n)) >1- n-exp( 3%) —n~°

where we can safely take ¢ to some constant as the failure probability is exponentially small in n
given that M > n2. To this end, we conclude that with probability at least 1 — n~°, we can find a
sequence of non-overlapping neurons my, ma, . . ., M, such that A; ,,,, > (1 —¢)/2log(M/n) for
all i € [n].

Observe that the selection of each neuron m; is done independently for each feature. Consequently,
when we condition on the selection of m;, the distribution for the remaining features {v;};; re-
mains unchanged. This proves the second statement.

It remains to analyze the probability that A;,,, < v2(1 +¢)-y/2logn forall j € [n] and i # j.
By the second statement, we know that when conditioned on neuron m;, the collection {A; ; }ji
(for any fixed 4) consists of (n — 1) independent and identically distributed random variables with
distribution A/(0, 1). Thus, we can apply the tail probability for the maximum of Gaussian random
variables in Theorem J.2 to obtain

IP’( max  Ajn, > V2(14¢)- m) < pl-20te)? < pmlde,

€[n]:j#i B
Thus, we prove the last argument for Theorem E.1. O

A direct corollary of Theorem E.1 is that InitCond-1 and InitCond-2 hold simultaneously for all
i € [n] and j # i with probability at least 1 — n=¢ — n~4¢ < 1 — n~¢ after taking a union bound
over the success of InitCond-2 for all i € [n]. These two conditions together imply that the neuron
m; exclusively focuses on feature v; at initialization, which is crucial for developing a 1 — o(1)
alignment with feature v; during training.
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E.2 REWRITING THE GRADIENT DESCENT ITERATION

Single neuron analysis. In the previous Theorem E.1, we have shown a correspondence between
each feature v; and a neuron m; such that the initial weight of neuron m; aligns well with feature
v; while maintaining small alignments with all other features. In other words, m; is the neuron that
is most likely to learn feature v; during training. As the neuron dynamics are decoupled under the
small output scale assumption, we only need to analyze the dynamics of neuron m; to understand
how feature v; is learned.

Notation. In the following, we denote by v the feature of interest and by w; the weight of the
corresponding neuron at iteration ¢. Let 7' be the maximum number of steps considered and the
time step ¢ ranges from O to 7'. For the sake of notational convenience, we also denote the feature
of interest by w_; = v and the normalization w_; = v/||v||2. Meanwhile, wy = wy is the
initialization that is already normalized to unit length. Here, the bar notation indicates that the
vector is normalized to unit length throughout the whole proof.

Reformulating the iteration. In this section, we reformulate the gradient descent update (B.1)
to isolate the contribution of a specific feature v from the remaining features. Recall that the data
matrix is given by X = HV, where H € RV*" is the weight matrix and V € R™*? is the feature
matrix. The gradient descent update (B.1) with gradient explicit in (B.2) is

N

where gt = Zgo(wt—zlxg; bt )y,
=1

W1 + 7 Gt

Modified BA: = —
U o + gl

which can be written in terms of H and V as:
ye = Vw1, by=A(Hy), w= HTcp(Hyt; b)),

(E.2)
wy =V + 0 o, W = we/[|well2.

Here, the meaning of these quantities are given as follows:

* y; € R4 is the projection of the normalized weight vector onto all the features, which we refer
to as the feature pre-activation.

* b; € Ris the bias term updated by a bias adaptation algorithm A (-) that depends on the feature
preactivation and time .

e u; € R” is the feature post-activation that aggregates the post-activation information from all
the data points back to the feature space.

» w; € R? is the unnormalized weight vector after one step of gradient descent update, and
w; € RY is the normalized weight vector.

In our analysis, as the bias is fixed, A;(-) always returns the same bias value. However, we keep this
general form which can be useful for adapting the current proof framework to handle more complex
bias adaptation algorithms. Note that o(Hy;; b;) € RY obtained from the gradient calculation in
(B.2) is not exactly the post-activation (recall definition ¢(x;b) = ¢(z + b) + ¢'(x + b)x, where ¢
is the actual activation function. ) However, in the following proof, we will abuse the notation and
refer to ¢(Hy,; by) as the post-activation for brevity.

Without loss of generality, suppose v is the ¢-th feature. To isolate the contribution from feature of
interest v from the remaining features, we decompose the weight matrix H into three parts: (i) 6:
the non-zero entries of the i-th column, (ii) F': the rows with non-zero entries in the i-th column,
and (iii) £: the remaining rows with zero entries in the ¢-th column. Formally, suppose v is the ¢-th
feature, then we decompose H as follows:

0= (Hyi s Hii # 0) ey = (Hig = Hi # 0)eqmy jepungiy = (b + Hei = 0) e sepon gy

Notably, the rows of E and F' do not include the i-th column of H, as it is already isolated as vector
6. See Figure 13a for an illustration of this decomposition.
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H F o
o - . Vi
Hy Hy - iHy: - Hy,| H;#0 Hy Hyp - Hygyy Hgay = Hy . i
R - 2
Hy Hy Hyi - Hy, Hy Hy o - Hygyy Haygeny o Hy, L :
Hy Hi Hy; Hy, | I : i | "2 N
: : - T .
Hy, Hy, Hy; Hy, H'Zl H'zz Hz('z-n HZ.(1+1) H,y, % "::—1
: : . S . 5 8 .T
H;=0|Hy, Hy, - Hyep Hyerry = Hu v, " ]
0=[Hy; Hy -] E N -,

(a) The weight matrix H is splitted into matrices E and F' by row according  (b) Isolating the i-th fea-
to whether the corresponding entries in the ¢-th column are zero or not. The ture from feature matrix
nonzero entries in the ¢-th column of H are collected as vector 6. V.

Figure 13: Illustration of the split of matrices H and V.

Using the above decomposition, we can rewrite the actual projection of the weights w;_; on each
data point as

HVw;_1 = Interleave([F; E] - V_;wy_1 + [0;0] - v ;1)
= Interleave([F; E] - y¢,—; + [6;0] - vTu_Jt,l),

where [F; F] is the vertical concatenation of E and F', V_; is the feature matrix V with the i-th
row removed, and y; _; = V_;w;_ is the vector y; with the i-th entry removed. The interleave
operation simply restores the original order of the rows in H. Therefore, we can rewrite the original
u in (E.2) as

up = H p(Hyy;be) = ETp(Eys_isby) + FTo(Fye i + 0 - v w13 by). (E.4)

In order to avoid overcomplicated subscripts, we let V' denote the feature matrix V_; with the i-th
row removed, and let v refer to the original ¢-th row of 1. See Figure 13b for an illustration of this
decomposition. We also rewrite y; _; as ¥y, and following the above notation, we still have y, =
Vw;_1. Now with (E.4), we can explicitly separate the contribution of feature v from the remaining
features in the gradient descent iteration (E.2) and obtain the following equivalent iteration:

Gradient Descent Iteration

feature pre-activation: y, = Vw1, w1 = wi—1/||wi—1]l2,
bias scheduling: b, = A;(b;_1, Eys, Fy; + 60 - v w;_1),
feature post-activation: u, = E'o(Ey;b) + F o(Fy +6 - v w_1;by),

weight update: w; = V ', + vOTgo(Fyt + 00 Wy_q; b) + N~ w1,
(E.5)

Note that the notation in (E.5) is self-consistent with E, F’, § defined in (E.3) and V, v defined below
(E.4). We will keep using this notation throughout the rest of the proof.

E.3 GAUSSIAN CONDITIONING

Since both the feature of interest v and each row of the feature matrix V' follow Gaussian distribu-
tions, we can leverage the properties of Gaussian distributions to simplify the dynamics. However,
the coupling between different iterations prohibits a direct application of Gaussian properties. This
challenge motivates us to explicitly split the intermediate variables in (E.5) into two components: (i)
a coupling component that lies in the subspace spanned by the previous intermediate variables, and
(ii) an independent component that is orthogonal to this subspace. We can then apply some Gaussian
concentration arguments to the orthogonal component to simplify the dynamics.

Additional notation. To achieve this, we introduce some additional notations. Let us define

P,,_,.,_,x as the projection of = onto the subspace spanned by {w_1,...,w;_1}, and P,uiufla: =
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z—P,

w_ 1.+, 2 as the orthogonal projection. In the followmg, we use the notations wj- = P

W—1:t—1

to denote the new direction induced by w;, and we define ut = Pj‘l o Ut in a similar manner (note

that u, starts from ¢ = 1). Note that when ¢t < 2, u1.4—1 is empty and ull - becomes the identity

Wt

mapping. Also, we enforce w_; = wt; = v.

In the following, we use the trick of Gaussian conditioning (Wu & Zhou, 2023; Bayati & Montanari,
2011; Montanari & Wu, 2023) to simplify the dynamics in (E.5). Specifically, we will define an al-
ternative dynamics that is distributionally equivalent to the original one, where for each iteration, two
new independent Gaussian vectors are introduced to replace the original Gaussian components com-
ing from the V' matrix. To make the presentation clearer, we will denote the variables in the original
dynamics in (E.5) by (y¢, wy, us, by) and the variables in the alternative dynamics by (¢, Wy, Uz, by)
in the following proofs.

Lemma E.2 (Alternative dynamics). Foranyt € N, let z_1, 29, ...,2t and Z1, . . . , Z; be sequences
of i.i.d. random vectors from N'(0, I,,_1) and N (0, I4_1), respectively, with mutual independence.
In addition z_1.; and Z1.; are also independent of the initialization wy and the feature of interest v.
Consider the following alternative iteration for (g, Wy):

I = |kl at
Jo= Y @ry1-Pa 2+ Gy = T (E.6)
= ~ a2 lluF]2
=1 i ~ |
5 ) |wrle @7
= 3 (P, 2, ) +Z :
e |wL||2 HUL||2 ke @t
T 1
+ Py Lia % 2 a2 + v 0T p(F + 0 - v we_15be) + 17 g,

where we define the alignment

~J_ >~ ~
g = D00y D
([ (|2 (||

In addition, (b, ;) in the alternative dynamics are updated by the same formula as in (E.5):

by = Ay(be—1, By, Fyy + 0 - UTﬁtfl), Uy = ETSD(E@; by) + FTSO(th +0-vTw1; by).
(E.7)
Then, conditioned on W_1 = v (the same as our previous definition of w_1 = v) and Wy = wq being
the initialization of the neuron weight, the alternative dynamics (Jr, Wy, Ur, b, )t _, from (E.6) and
(E.7) and the original dynamics (Y., wr, Uy, bT)tT:1 from (E.5) follow the same distribution.

Proof of Theorem E.2. To show that the trajectory from (E.6) and (E.7) follow the same distribution
as the trajectory from (E.5), we first decompose the iteration in (E.5) in the following lemma.

Lemma E.3 (Decomposition). For the iteration in (E.S5), define the alignment between the weight
vector w; and the weight direction wi- as a,; = (W, w)/||wi||2, Then, we have the following

decomposition for the preactivation vector y; € R"1:

wzlleur
Qrp—1 P V — .
Tgl " LH Z e k]l
and the following decomposition for the unnormalized weight vector w; € R%:
§<PL o > wi +§<u¢,ut> lwtlla  wh
’U}t: . ut . .
N gl lwrlls = lluzllz llugllz ozl
1
U _ 1
PV Iy, e+ 8T e (Fy 480 @i + 07 0,
T
Proof. See §E.4 for the proof of Theorem E.3. O
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With the above decomposition, if we do the following substitution for y; and w; in the above lemma:
ui
[ug|l2”

the assertion in Theorem E.2 follows immediately. The following proof is devoted to showing that
the substitution does not change the joint distribution of the whole dynamics. To show that, we just
need to verify that for each iteration ¢, when conditioned on all the history up to iteration t — 1, the
two newly introduced vectors P> Vwi-/||lwi-||2 and Py V Tui/|lui ||z still follow a standard
Gaussian distribution and are 1ndependent of all the history.

1
PL s« PL vV Pl ZepPL VT

Ut ULt ”thHz’ W—1:t—1

To proceed, we denote the original iteration in (E.5) by (v, wy, ut, b;) and the alternative iteration

in (E.6) and (E.7) by (g, W, at,gt). Following explicitly from the decomposition in Theorem E.3
and the construction in (E.6), we can further derive the following dependency between the variables
in both iterations.

Lemma EA4. For each iteration (u;, wy) in (E.5), it holds for any t > 1 that

n wJ_ t—1 N - uJ_ t—1
u € ol w_1.9,s Po- V—T" } {P \% T } >
' ( 10’{ i flwHle f o U gl S o)

Loy w o 1 v ur '
T T
Wy € O’<w—1:o,{1 ULir ||w¢|2} 17{1’11)1:7—1 |u¢||2} 1>'
T T=— T T=

where 0(X) denotes the o-algebra generated by the random variable X. For the Gaussian condi-
tioning iteration (u, W) in (E.6) and (E.7), it holds for any t > 1 that

utea(w 107{ ulTZT ’T——17{ ‘f'} )7 wtea(w 10a{ ulTZ T——l’{ZT} )

Proof. See §E.4 for a proof of Theorem E.4. O

The message of the above lemma is intuitive: each iteration only inserts new randomness coming
from

1 1
w U
1 t—1 1 T U
Pul:tfle_i and P'wfl: V
l[wi=1ll2 [P
for the original iteration, and from
1 1 ~
Pulf 1Zt71 and P’u) Lt 1Zt

for the alternative iteration. Using the dependency results, we next prove the equivalence between
the trajectory {@_,, @0, (J,, @y, Uy, br)t_,} from the Gaussian conditioning and the trajectory
{w_,, wo, (Y7, ws,ur,br)t_;} from the original iteration by considering the conditional distribu-
tion of the newly introduced randomness at each iteration. Let us define A; as a realization of the
random variables (W_1.0, 2—1:t—1, 21:¢) OF

wt t—1 ut t
w14, Pt V—T pt | Vg — .
( ”’{ . Iwillz}T__l’{ R (7 P

By property of the Gaussian ensembles, it holds that

wJ_ wJ_ t—1 UJ_ t
Pty _—t <w_1:0 {P% 7 — } {PL I Vg } ) = A
e Jwg |l { U wrlle S U etz )Ly
1 s t—1 1 t
w w u
PL ‘/t t <w_1:0 {PL V T } {Pl VT T } ):At
U lwit |l U el S U el )

d o ~ ~
= Pqi:tzt | {(wflztaul:h 211, 214) = At}~ (E.8)

where V; 2 Visan independent copy of V' and is independent of all the histories. Here, the first
equality holds because P~ Vwi/||wi-||2 is orthogonal to any of the previous row/column space
that we have conditioned on. In particular,
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L L
. Pi:tv\llﬁ\lz is orthogonal to {le:TV”fU"ﬁ £Z1 | in the column space of V' since wj- is
orthogonal to w:- for any 7 < ¢.
s PL VL is orthogonal to { P VTL}’& _, in the row space of V since Pt is
Uit [Jwit||2 W_1:r—1 uLls J7=1 Uizt

projecting to the row space orthogonal to u>- for any 7 < t.

Moreover, V is also independent of w_; = v and the initialization wy. See Figure 14 for a more
intuitive explanation. Therefore, the conditional distribution of P- Vwi/|lwi"||2 is the same as
that of an (n — t)-dimensional Gaussian vectors. Hence, we are able to replace V' by an independent
copy V;. For the second equality, we can set z; = Viyw;- /||wi-||2, which is again a Gaussian vector
independent of all the histories. Similarly, let B; be a realization of (@W_1.0,2-1:t—1, 21:4—1) OF

1 wi ! 1 T uz o
o0, PL V— B VT
(w 1.0a{ Ul.r qul-_”Q }717 { W_1:7—1 ||’U,7J.‘||2}7—1)

we similarly have for Py V Tui/||lui||2 that
1 1 t—1 1 t—1
u w u
PL VT t (wl:O {PL V T } {Pl VT T } ) — Bt
W—1:t—1 HutlHQ ! Ul:r ||w7j__||2 7':717 W—1:7—1 ||u£__H2 I
d ~ ~ ~
== Pug;ll:tilzt ‘ {(w—l:Oa Z—_1:t—1, Zl:t—l) == Bt} (E9)

To this end, it can be concluded that

1. The initializations (w_1,wp) and (W_1, W) are the same.

2. By (E.8) and (E.9), we have the same conditional distributions for the updates of
(Pt Vwi/||wi||2, Pt VTui/||lui||2) and those of (Pg- =z, Py %), which

Ul:t W—1:t—1 u W_1:t—1
means the conditional distributions of (y:, w;) and (¥, W) given the past are the same.

3. The updates of (b, u;) and those of (gh Uy ) are also the same.

We hence conclude that the joint distribution for the two iterations are the same for any time t.
Consequently, we obtain that

~ ~ ~ ~ ~ 7 d
{w717w07 (ym Wr, Ur, b'r)s—:l} = {w,lawa (yTaw‘ran‘m b‘r)trzl}-

This completes the proof. O

Since the alternative dynamics in Theorem E.2 are distributionally equivalent to the original dynam-
ics, we work exclusively with the alternative formulation below. We emphasize the following key
point when running the alternative dynamics for 1" steps:

The randomness in the alternative dynamics comes from the initialization wy, the feature of
interest v, and the random vectors z_1.7 and Z.7.

Since the system is rotation-invariant, without loss of generality, we fix the direction of the initial-
ization wy in the following analysis, and only consider the randomness over v, z_1.7, and 27.7.

Remark. In fact, the iteration in (E.6) is a reformulation wh oWk ik
of (E.5) obtained by decomposing the random matrix V" into -1 7o "I
its projections along the row spaces ui-, us, ... and column
spaces wi,ws, ..., and then replacing the corresponding
components by the following rules: . .
PJ.Z .
N N s 21| 2 |[fuf
Pt oz« P V—t - L
uq. <t Ut ||wtl||27 Pw_uzz u;
~1
1 ~ 1 T U P 7 ut
Pw_1:t—1zt — P’lT}—l:t—lv ”,D:LHQ : w_o81 1
t
v

35 Figure 14: Ilustration of the Gaus-

sian conditioning. After removing the

feature of interest v, the remaining
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For a detailed explanation, we refer interested readers to The-
orem E.3 and its following discussions. In essence, the terms
on the right-hand side combine to reconstruct the matrix V, as
illustrated in Figure 14. A crucial property is that these terms
are orthogonal in direction; within a Gaussian ensemble, such
orthogonality implies their mutual independence. This decou-
pling of randomness across iterations considerably simplifies
the subsequent analysis.

Rewriting the initial conditions under the alternative dy-

namics. Let us now specify the randomness in equation (E.5) by describing the distributions of
the vector v and the matrix V. In the absence of any conditioning on the initialization, v and V' have
ii.d. standard normal entries. However, the neuron selected for analysis is not arbitrary; it must
satisfy the initialization conditions detailed in Theorem E.1. We first restate these conditions in the
following more concise form:

(v,g) > (1 —e)y/2log(M/n)=:(o, T = Vg =< V2(1+¢)-/2logn-1=:(; -1,
where a < b indicates that every element of a is no greater than the corresponding element of b.
In fact, these two conditions induce a correlation among v, V', and the initialization wg. Under the
alternative dynamics in (E.6) and (E.7), we can reformulate these conditions without involving V' as
follows:

InitCond-1: @_1,0 H’U”Q > C(), InitCond-2: Y1 = x_1,02-1 + 0,020 =< (1 . 1, (ElO)

where

Co:=(1—¢)y/2log(M/n), (1:=v2(1+¢)\/2logn.

(E.11)

Here, we recall that a_1,0 = (v, @) /||v||2 and a0 = (wg, @Wo) /||wi ||2-

Decoupling the randomness. In the following analysis, we can safely decouple the randomness
in v and wq from the randomness in z_1.7 and Z1.7 by definition of the alternative dynamics. No-
tably, the second initial condition in (E.10) only couples z_; and z if we treat cv_1 o and g o as
deterministic quantities when conditioning on v and wy. In fact, if we condition on v and wy, the
second condition can be satisfied with probability at least 1 — n~° by Theorem E.1.

Rewriting the alignment recurrence under the alternative dynamics. Under the reformulation
(E.6), the alignment we are interested in is a_1 + = (v, wy)/(]|v||2||we]|2). Note that in the decom-

position of w;, only the terms in the direction of w®, = w_; = v contribute to the inner product
(v, wy). Therefore, the alignment can be expressed as

(1, ug) + |[v]l2 - 0T o (Fyr + 6 - v w13 b,) + nila—l,t—l

[l

Q_1t =

s

(E.12)

This formula will be useful in the later proof.

E.4 ADDITIONAL PROOFS

Proof of Theorem E.3. The proof follows from a direct decomposition of the preactivation vector y;
and the unnormalized weight vector w;. By a direct decomposition of Viw;-, we have

1 <uf_7thJ_>

1 L oyal T
Vi =Py Vwp +ug ol At >1)+ Py, Vg
0 B (Vb wb)
L 1
i U w
© g v+ ez )

luillz g2
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Here, (i) follows from the fact that forany 7 = 1,...,t — 1,
VTiu, =w, — 08" o(Fy, +6 - v W13 b ) — n lw,_, € span(w—_1.r ),
which is orthogonal to wt In (ii), we use the fact that
Vut fwt:V Up — VPu1t1
= —f" (Fyt +0-0 W_q; be) — 0 tw_ g — VTPulzt_lut € span(w_1.t—1)-
Therefore, (VT ul, @f) = (wy, @) = (wi, @) = [wi o - [0 |2

Using the above result, we derive for the preactivation vector y; that
t—1

_J_ -
W, Wy—
yr=Vwe_1 = Z (07, D) T,’Lt21> -Vt
= lwF]3
t—1 1 iR
Ort—1 ( 1 — | U Ile ||2 |
=D i (P vaer + e ot e 1 > 1))
Bt K2 | PR (175 | PR (175 | PR
t—1
Jwrllz oy
:Za,tfl’PJ_V +Zat1 Thz _Zr

= P Tkl Tt
And also for the unnormalized weight vector w;, we have
wy — veTgo(Fyf +6- Uwa b)) —n g

N J_
=Py ., ut—|—TZ_: HU’H Vw ug)
_ t—1 _
— P, VT b+ S L vy By el 0
t ,. 9 — — .
vt lf 2 P VI ot 2 ok, Tl okl

Therefore, we complete the proof of Theorem E.3. O

Proof of Theorem E.4. Recall that
U = ETcp(Eyt; b) + FTgp(Fyt +6 v w_q; be).

This implies that u; can be expressed as a function of y; only. This also holds for %;. For each
iteration (u;, w;) in (E.5), it holds by the explicit decomposition in Theorem E.3 that

wJ_ t—1
U € J<w—1:t—l7 UL:t—1, {qu—lTv ||wl—|| } >a
T2) r=—1

1 w ! 1 T “tL
Wy € 0| W_1.4—1, U1 P V—= P N E.13
t ( e { ||w¢|2}7__1’ R ||2> 1

where o (X)) denotes the o-algebra generated by the random variable X. For the Gaussian condi-
tioning iteration (t;, W;) in (E.6) and (E.7), it also holds that
Uy € o(W_13—1, Ur:p—1, { uhZT}T—_l) Wy € 0(W_114-1, Un:t, {P;f Yt P L F).
Notably, for u; (only depending on y;) we have

w-1 (w_1,Wo) w1 L

— — W,
y1=a_10"V = -V EU(w—l:o pP- Vv )
f[w-1]l2 [w-1]l2 [w-1]l2 B 715y | P

by the definition that P:]:_ , is the identity mapping and wt, = w_;. Similarly, w; is also measur-
able by

i why i Toug
R ey P e )

This verifies the base case for ¢ = 1. Now we can recursively apply the dependency results in (E.13)
fort = 2,3, ... and obtain the desired conclusion. This completes the proof of Theorem E.4. [
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F CONCENTRATIONS RESULTS FOR THE SAE DYNAMICS

Notation. In the following proofs, we use the to highlight the definitions that are
used in the proofs for readers’ convenience, and use the to highlight different versions
of the conditions in (B.5) and (B.6) to inform the readers how the conditions evolve throughout the
proof. We use N; to denote the number of rows in matrix £’ and N5 to denote the number of rows
in matrix F. In the statement of a lemma, we use ¢ > 4, C' > 0 to denote some universal constants
that may change from line to line. We redefine

N
pl o= max{max ||H,ZH0 TSR Zl:l -]1(1717‘7 # 0) 1(Hl,i = O) }

icm] N ' i Zf\il 1(H;; = 0) 1)
Y 1(Hy £ 0)1(Hy, #0) ‘
p2 i=max 7 .
# > 1=1 L(Hui #0)

Compared to the original definition in the main text, we add an additional term in the definition of
p1. We remark that this is not an issue as

N
nax 2= W(Hi; # 0)1(Hi; = 0) _ e 1 4ll0 max;ep | H. jllo/N

i SV A(Hy,; = 0) it N —|[Hollo — 1 —maxep||H. illo/N°

Since we assume in the main theorem that max;c || . ;|lo/N < 1, we have

N
1(H; 1(H;; = S
max Zl:l ( l,j 3& O) ( lyi 0) S (1 + 0(1)) . max ||H7 ||O

i#] SN 1(Hyi = 0) ien] N

The two terms in the definition of p; are only different up to a factor of 1 4 o(1), and hence we can
safely stick to the new definition of p; in the proof. Consequently, p1 > max;cp,—1) || E. llo/N1,
p2 > maxX;ep—1]||F illo/N2. In addition, Ny > (1 — py)N. By assuming p; < 1/2, we have
N1 > N/2. We use notation z = x + y to indicate z € [z — y, = + y|.

Initialization conditions. In the following analysis, we focus on a single neuron whose initializa-
tion satisfies the conditions in (E.10) for a given feature of interest, v. For clarity, we restate the
initialization conditions:

InitCond-1: «_19||v|2 > (o, ImitCond-2: y; = a_102-1 + apoz0 = (1 -1,

where

Goi=(1—¢e)y/2log(M/n), (1 :=V2(1+¢)\/2logn.

Once InitCond-1 is satisfied for fixed wq and v, it remains to ensure that the Gaussian vectors z_1
and zj satisfy InitCond-2. In the subsequent analysis, we sometimes relax InitCond-2 so as to
leverage the standard Gaussian properties of z_; and zp. In fact, if an event £ holds with probabiity
1 — p without enforcing InitCond-2, then the joint event that both InitCond-2 and £ hold occurs
with probability at least 1 — p — n™° by a union bound. For this reason, unless otherwise specified,
we

Roadmap. In §F.1, we decompose the pre-activation y, into two parts: the Gaussian component
y;, which aggregates independent Gaussian contributions and captures the nominal dynamics, and
the non-Gaussian component Ay,, which accounts for deviations induced by cross-iteration cou-
pling that is typically non-Gaussian. Using this decomposition, in §F.2 we demonstrate that only
a small fraction of the training examples activate the neuron—a phenomenon we refer to as sparse
activation.
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F.1 ISOLATION OF GAUSSIAN COMPONENT

As is discussed in §E.3, the key step in our analysis is to isolate the Gaussian component from the
non-Gaussian component. In the following, we decompose ¥, which is the alignments between the
weight and all features, into the Gaussian component that contains weighted sum of i.i.d. Gaussian
vectors, and a non-Gaussian part whose ¢5-norm can be bounded by tracking the evolution of the
dynamics. Recall the definition of y; in (E.6), we use the fact that PULNZT =2z — Py, 2 t0
decompose y; as

— t—1 1 1

1 ||w7' H2 uz

Y = ari—1- Py, 2r + Qr i1 - .
DR D DL R el i

T=—1

2

t—1 t—1 ||’U)
= Z Qrp_1-2r + (Zar,tfl' T i Zan 1Py 2 )
= = [Juz |2 llu ||2 =

We can thus define the Gaussian component y; and the non-Gaussian component Ay; as

J_
Uz

t—1 t—1 ||U}J'||2
= E Qrt—1 " 21, Ayt ::§ Ort—1° I ' l E Qrt—1-° ’IJ,lTZT' (FZ)
llull2
T=—1 =1 T T

In the above, the Gaussian component y; = Zi;l_l 0y 1—1%7 18 obtained by summing independent

Gaussian vectors z_1, 20, - .., 2¢t—1 With weights ;1. Conditional on these coefficients, y; is
simply a standard Gaussian vector independent of the learned directions wi.;—; and %1.4—1. In
contrast, the non-Gaussian component Ay; quantifies the deviation of the true feature pre-activation
y; from y; due to cross-iteration coupling.

In the sequel, let us recall the form of o ;1 in (E.12) and define 8;_; as

(z_1,u) + [vll2 - 0T @(Fys + 6 - v T Wy—15b) + 0 ta—1e-1
[Jwell2

t—1
Z a?,t_l = ||Pd],1:0wt—1H2-
=il

a1t = )

(E.3)
Bi—1:=

Here, a_; ¢ is the alignment between w; and the feature of interest v = w_1, and f; is the norm
of the projection of w; onto the subspace orthogonal to both w_; and wy. Tracking a_; ; quanti-
fies how far the neuron has progressed from its initialization wy toward the feature direction w_;.
Ideally, we want a_; ; — 1, indicating strong alignment with the feature while remaining con-
fined to the plane spanned by w_; and wy. In contrast, 5; measures the extent to which the neuron
drifts away from that plane due to the influence of irrelevant features. We can build an interesting
connection between the non-Gaussian component Ay; and 3;_; as stated in the following lemma.

Lemma F.1 (Upper bound the non-Gaussian component Ay;). Suppose T < +/d and d €
(nl/cl,ncl)for some universal constant ¢y > 1. Forallt = 1,...,T, it holds with probability
at least 1 — n™° for some universal constants c,C > 0 that

1Ay |3 < Cd- 57,
Proof. See §H.1.1 for a detailed proof. O

F.2 SPARSE ACTIVATION
Before we move on to studying the evolution of o_; ; and j; defined in (F.3), we first present con-

centration results for the neuron’s activation frequency. To leverage the benefits of sparse activation,
we analyze how the scheduled bias b; induces sparsity in the neuron.
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Concentration for ideal activation. We will first study the ideal case where Ay; = 0, and then
move on to the real case in Theorem F.2 where we replace y; with y; in Theorem F.3. For more
generality, we present a full version in Theorem H.4 and derive Theorem F.2 as a direct corollary. In
the following, recall that ¢; is the [-th row of matrix E, which is a submatrix of H defined in (E.3).
We study the activation frequency of the neuron on the set of data that does not contain the feature
v (i.e., the rows contained in F).

Corollary F.2 (Concentration for ideal activation). Let ¢; be the I-th row of matrix E. For kg as

the threshold defined in Definition B.3, we denote by b, = b, + kq. Let yr = ZtT_:l_l Qr 127

with z,; being the ii.d. standard Gaussian vectors. It holds for all t < T < n® a1 =
(@1t-1y--yu—14-1) € S, by € Rand any § € (exp(—n/4),1) that with probability at
least 1 — 0 over the randomness of z_1.1, the following holds:

Ny
1 _ _
A L(e y; +be > 0) < C - (2(—by) + prstlog(n) + prslog(6—1)). (F4)
L=
Proof. This is a direct corollary of Theorem H.4. O

Here, a neuron is considered active when its ideal pre-activation elTy;‘ + b; exceeds the threshold
—kg. In the idealized setting (i.e., as N3 — oo, and y; ~ N(0, I,,_1)), the expected activation
frequency is exactly ®(—b;), making the ®(—b;) term tight. The additional terms in the bound
capture the empirical fluctuations in the activation frequency due to data coupling. In particular,
the parameter p; quantifies the maximum fraction of data coupled through a single feature, thereby
governing the fluctuation term. A key point to note is that a;_; € S also depends on the randomness
of z_1.7, hence how to approximate y; with random Gaussian vector is not straightforward. In the
proof, we decouple the dependence of y; on ;1 by proving a concentration result for all o;_; that
form a covering net of St, and then take a union bound over the covering net of size n°(*). This
gives rise to the ¢ log n factor in the bound when taking the logarithm of the covering number.

Efron-Stein inequality for handling data correlation. In proving the lemma, we use a refined
version of the Efron-Stein inequality (Boucheron et al., 2003) to overcome challenges caused by data
correlation. In our setting, two data points may be correlated if they share the same feature, which
violates the independence assumption required by classical concentration results such as Bernstein’s
inequality.

Traditional techniques based on the bounded-differences property—for example, McDiarmid’s in-
equality (McDiarmid et al., 1989)—would treat the left-hand side (LHS) of (F.4) as a function

Flr ),y (n = 1))

of (n — 1) variables, where y; (i) is the i-th coordinate of y}. Since altering a single coordinate
of y; has the same effect as modifying the projection of w; onto a single feature, and because
each feature influences at most a p; N; fraction of the terms in the sum on the LHS, we obtain the
bounded-differences property

Fyr )i (@), (n = 1) = fyr (1), -7 () yi (n = 1) < 1

Consequently, McDiarmid’s inequality would yield a fluctuation bound of order

which is clearly suboptimal. Unlike McDiarmid’s bounded-differences inequality, which requires
each individual input change to have a uniformly small impact on f, Efron-Stein only demands a
weaker bound on the variance incurred by altering one coordinate. We defer interested readers to
§H.2.1 for a detailed proof.
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Concentration for original activation. To fully characterize the behavior of the activation, we
also need to take into account the non-Gaussian component Ay. This gives rise to the following
lemma.

Lemma F.3 (Activation with non-Gaussian component). Following the setup of Theorem F.2, sup-
pose by < —2. Then forallt <T < n¢ oy_1 € St and by € R, it holds with probability at least
1 — n=¢ over the randomness of z_1.7 that

Ny

1 _ _ _

A E ]l(el—ryt +b:>0)<C- (<I>(—bt) + pystlog(n) + p1|bt|2||Ayt||§).
=1

Proof. See §H.2.2 for a detailed proof. O

The fluctuation term in the upper bound now depends on both p; and the ¢5 norm of the non-
Gaussian Ay;. This is because a larger || Ay, || can shift the pre-activations further away from the
ideal Gaussian case, thereby in the worst case, increasing the activation frequency.

Concentration for a_; ; and ;. We next aim to characterize the evolution of the parameters
a1+ and f3; defined in (F.3). Note that in the formula of av_1 +

(z—1,ue) + [[vll2 - 0T p(Fyp + 0 - v wi—13b) + 0~ to14-1

[[well2

a_1t—1 = ’

we can decompose the first term in the numerator as follows:
(z—1,ue) = (221, ETo(Eys; b)) + (-1, F T o(Fyy + 0 - v w15 b))

according to the defintion of u; in (E.5). Here, F and F' are the submatrices of H defined in (E.3),
where F corresponds to the rows not containing the feature of interest v, and F' corresponds to the
rows containing v. To this end, we just need to control

(2 ETo(Byiby)),  (2r, FTo(Fys + 60 - v w13 by)), (ES)

for general 7 € [—1 : T and then specialize to 7 = —1. Note that the above two terms for general 7
will also be used in computing the norm of ||w||2 later. Let us just consider a simplfied case where
z, is independent of y; (which does not hold in general). To control the fluctuation of the above
terms, it is important to compute the second-order moments with respect to the randomness of z.
As a concrete example, for the first term, we have the second-order moment computed as

E..on©,1, ) [(2r ETo(Ey; 0))?] = [|1ET o(Bys; by)])3.

The second-order moment of the second term can be computed similarly. Therefore, as a first step,
we will focus on the follwoing two terms:

IET o(Bye; bo)l3,  1FTo(Fye +0 v @13 be)I3. (F.6)

In §F.3, we will first present concentration results for the second-order terms in (F.6) and then use
them to derive the concentration results for the two first-order terms in (E.5). In addition, we will
also derive the concentration result for the term 0T<,9(F v + 0 - thT)t,l; b;) as in the numerator of
d_1t—1.

F.3 SECOND ORDER CONCENTRATION

In this subsection, we present concentration results for the second-order terms with respect to the
Gaussian component y; defined in (F.2):

IETo(Byr:b)l; and  [|FTo(Fy; + 0 - v w1563 (E7)

We will bridge the gap between these two terms and the original terms in (F.5) by using the analysis
of the non-Gaussian component Ay; in §F.5. For now, let us focus on the two terms in (F.7). We
now present our concentration result formally in the following lemma.
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Lemma F.4 (Second-order concentration for E-related term). Under Definition B.3, let by = by +
ko < 0, and assume further that —b; = @(\/log n) and —b; < (q, with (1 defined in (E.11) as
required by InitCond-2. Suppose p1 < 1 — 1/C4 for some universal constant C; > 0. Then with
probability at least 1 — n™° over the randomness of standard Gaussian vectors z_y., it holds for
allt < T withT < n® that

1 *
Nz 1B o(By;b:)ll5 - 1(€0) < OL? - pist®(logn)® - K7
1

+CL? - o(|by]) - By v

)
(b(|bt| W)(mJW)]-

(F8)

where I/F:U/ denotes the empirical average over 1,I' € [N], h; denotes the l-th row of H, L =
Yo + |be|y1, and & is the event such that z_1 and z satisfy InitCond-2. Here we define K; as

1/4 1/4

_ ) _ 5
K= n|bt|<1>(t1> + p28n|bt<l><t1>

3 %2 232
Zh47* + 1 EﬁS,* + 3

+ <¢<_W) - (p25)1/4> , (“Og(n))m S el

/11—y

In the above definition, we let hiy . and Ty ; for any positive ¢ > 1 and time t > 1 be the smallest
real values in [0, 1] such that the following inequalities hold:

1 —b —b
RTINS DV T .
A . A R

1 by + H ;G\ by + Fg,eCe\ @
max —— S @20 o g (0 ST (E11)
Jj€[n] |DJ| ZEZD]- ( ) ( )

\/1- HE, \J1—h2,

Here D; = {l € [N] : hyj # 0} is the set of row indices in matrix H that has non-zero entries in
the j-th column, and Gy = (1 +1(t > 2) - C(Bi—1 + |a—14-1] + |a—1,0])\/t log(nt) with the value

¢1 in InitCond-2 and 3,1 = \/m-

Proof. See §H.2.3 for a detailed proof. O

(F.9)

Validity of the definition of 7, ; and 7i, .. The definitions of 7, . and # ; are valid as the right-
hand sides (RHSs) of the above two inequalities are strictly increasing in terms of i, . and fig,1,
respectively, under the condition —b; < (3.

_b,
. . ) T
also strictly decreasing in terms of H; ;. Therefore, the composition of the two functions is

strictly increasing in terms of 71 .

* To see this for Ay ., we note that ®(-) is a strictly decreasing function, while is

* To see this for A, ¢, observe that (; > (3 > —c; = —b,, since the bias is fixed at b, = b in
the current algorithm. Moreover, the derivative of the right-hand side of the inequality in (F.11)
with respect to A ; is

T e )

Therefore, the definitions of 7, , and 7, ; as the smallest real values satisfying the inequalities in
(F.10) and (F.11) are valid.

>0. (F12)
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Heuristic derivation for |E " p(Ey;;b;)||2. The first term involves the submatrix F. Before we
present the concentration result, let us derive heuristically what the concentration result should look
like. Let us denote by e; the [-th row of matrix E. We can compute the expectation of the squared
norm as

Ny
1 1
N2 ‘E[||ETo(Byf;b)|l35] = Z > Ellelel uisbe) - olefyrib)]] - (e er).
=1

If we assume «. ;—; are fixed, then y; is just a standard Gaussian vector, and

(e] vl epy) ~ N <[8} ' [(61,161'> <el?1€l,>D '

This fact enables a direct upper bound on the expectation, as detailed in Theorem F.5.

Lemma F.5. Letb = b+ rg < 0. Suppose |o(x;0)| < (nV d)~% + L(z +b) - 1(z > —b) for
some L > 0 and cq > 0 under Definition B.3. For two independent x,z ~ N(0,1) and ¢ € (0, 1),
it holds that

— _ 1 _
Elp(a:b)p(ix + /I~ 2 )] < CL(n v d)~* + C(L* +1) - &([5)) - @(lbi\/:f)-
Proof. See §H.4.1 for a detailed proof. L)

By relaxing the rows e;, e, of E to the corresponding rows h;, by of H, we derive the second term
in the concentration result (F.8). The first fluctuation term is obtained again via the Efron-Stein
inequality, which needs a careful analysis up to the 4-th moment. In particular, we also apply a
uniform bound over the sphere St for o;_1, which gives rise to the dependency on ¢ in the definition
of Ky in (F.9).

We now turn to the second term in (F.7), which is || F'To(Fyr + 6 - v 1w _1;bs)||3.

Lemma F.6 (Second-order concentration for F-related term). Under Definition B.3, suppose by <
—ko and let L = 73 + |bt|y1. Forallt < T < n€, it holds with probability at least 1 — n~¢ over
the randomness of standard Gaussian vectors z_1. that

1 ~ _
WHFT‘P(F%* +0-0Tw1;0,)|5 < CL?ps - (62|[vl30%, 41—y + pan + patlogn),
2
where 62 = ||0||3/Na.
Proof. See §H.2.4 for a detailed proof. O

F.4 FIRST ORDER CONCENTRATION

In this subsection, we continue to present the concentration results on the first order terms specified
in (F.5). Let’s first consider the concentration for (z,, BT @(Eyr; b;)).

Heuristic derivation for (2., BT (Eyf;b;)). Let us recall that y; = Zi;l_l O t—1%r, and we

can rewrite the term as
Ny
(2, ET@(By;ib)) = > e 20 - ole] yfsby)
=1

for e; being the [-th row of matrix F. Moreover, we have for any fixed ay—1 =
(_1¢-1,---y4_14-1)" € S* and by the fact that ||e;||2 = 1 for all | € [N;], we have

(efzﬂefy?)fv/\f({g],{ L O‘]“D (F.13)

Art—1
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where j € [n — 1] is the entry index of the vectors. Hence, the term we are interested in should be
close to

N
D E o (@ni-1C /1= 02 1) oG] = Niv a1 - $a(be),

where we define

$1(0) = Eunr0,1) [0 (u; b)u].

Building on this intuition, the following lemma provides the concentration result in more detail.

Lemma F.7 (First-order concentration for F-related term). Under the condition of Theorem F.4, let
L =73+ |bt|11. Forallt < T < nf it holds with probability at least 1 — n~¢ over the randomness
of standard Gaussian vectors z_1.7 that

1 ~
(e ETo(Byfi b)) — azer - Pa(by)
1
< CLa;—1tlog(n) - (\/sp1<1>(|5t|)tlog(n) + spitlog(n))

c
F i y/1- o IETe(Eggb)l - tog().

Proof. See §H.2.5 for a detailed proof. O

In the above lemma, we bound the deviation of the first-order term (z,, ET o(Ey;;b;)) from its
expectation o, ;1 - @1 (b;) by some p; and ®(|b;|)-dependent fluctuation terms. The dependence on
®(|b;) is consistent with the intuition that sparser activation which avoids unnecessary activations
on other features except the one of interest, often leads to less fluctuation. The following lemma
provides upper and lower bound for @1 (b;).

Lemma F.8 (Upper and lower bounds for ¢y (b;)). Suppose Definition B.3 holds and let by = by +
ko < 0, L = vo + |b|y1. If |b] = w(1), and kolbs| = O(1), then

Co -
=2 2((Bel) < Br(Br) < 2- CoLB([Bi]).

Proof. See §H.4.2 for a detailed proof. O

The message from Theorem F.8 is quite straightforward: the expectation term @1 (b;) is on the same
order as the activation sparsity level ®(]b;|).

Heuristic derivation for (2., F'To(Fy; +6-v w;_1;b;)). Similar to the previous case, we still
use the approximation in (F.13) except that this time each row f; of F' has norm /1 — 62, and have

* 0 1 QU t—
ey~ (o] a-en |, b o))
This leads to the following approximation:

No

<Z7—, FT(IO(FyZ + g - 'UTIIJt_l; bt)> =~ Z Ort—114/ 1— 912 . EQZNN(O,I) |:.’,Eg0(\/ 1-— 0?1’ + ol'UTQDt_l; bt):| .

=1

We now present the formal concentration result for (z,, F'To(Fy; +6-v " w,_1;b;)) in the following
lemma.
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Lemma F.9 (First-order concentration for F-related term). Under Definition B.3, suppose by =
by + ko < 0andlet L = vo + |be|y1. Forall T <t < T with T < n¢, it holds with probability at
least 1 — n™¢ over the randomness of standard Gaussian vectors z_1.T that

N2

1 _ _
N, (zr, FTo(Fy;f +0 -0 w,_15b,)) — Zam—u/ 1—07 - Epnon) [1590(\/ 1 — 020+ 00 "Wy bt)] ‘

=1

< CLay; 1 - (V/tlog(n) + ||v]lac—14-1) - \/p2s - (tlog(n))>/?
+—\/1fa AIETo(Fy +6 - T w_1:6,)]13 - tlog(n).

Proof. See §H.2.6 for a detailed proof. O

Heuristic derivation for 6" ¢(Fy; + 6 - v w;_1;b;). The last term we need to control is
0T p(Fyf + 6 - v w,_1;b;). Using the Gaussian approximation f,"yr ~ N(0,1 — 6?) as in the
previous case, we have

0T o(Fyf +60-v w,_1;b;) = Zel Ezno,1) [ (\/1_91233+0lUT7«T)t—1§bt) .

For our convenience, let us define

Vd & _
= ;E%N(O,l) [0 (/1= 6022+ 0,- v @15 b)), (F.14)

and it follows that 0T o(Fy; + 6 - v w;_1;b;) ~ N -1p;/+/d. Lastly, we present the concentration
for 0T o(Fyr + 60 - v ws_q;b).
Lemma F.10 (First-order concentration for signal term). Under Definition B.3, suppose by = by +

ko < 0andlet L = vo + |b¢|y1. Forallt <T < n€, it holds with probability at least 1 — n~¢ over
the randomness of standard Gaussian vectors z_1.7 that

1 N p—
EQTS@(F%* +0 -0 W_1;by) — \1/%7]\/_‘ < CL(y/tlog(n) + ||v]l2a—1,4—1) - \/ p2s6? - tlog(n).
2

Proof. See §H.2.7 for a detailed proof. O

Lastly, we provide a useful bound for the term vy defined in (F.14) in the following lemma, which
is related to the strength of the weight vector 0 for the feature of interest. To quantify the strength,
we make the following definition

1 —b = . 11613
=—3 1(6,> —— ), §2:=112 F.15
Qi > (o ﬁza,l,t,l) - (E.15)

Lemma F.11 (Bounds for the signal term). Under Definition B.3, it holds for 1, defined in Theo-
rem F.10 that
C102Q; - Nada_14—1 < Nypy < CLO? - Nodo_q41.

Proof. See §H.4.3 for a detailed proof. O
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F.5 NON-GAUSSIAN ERROR PROPOGATION

In the following, let us define the following error terms
AE; = E"¢(Bys;br) — E'o(Byf:by),
AFt = FTQO(Fyt + g - ’L}Tlf/t_l; bt) — FTcp(Fy: + g - UT’LDt_l; bt)7
Appy=@(Fy 40 -0 @ 15b) — o(Fy; +0-v @13 by).

The last piece of the puzzle is to control the error propagation in the dynamics due to the non-
Gaussian component Ay, in the pre-activation. Let us recall the error terms

AE; = ETo(BEys;;b) — ETo(Ey;;by)
AF, =FTo(Fy;4+0 v @;_1;b;) — FTo(Fyf +0-v w;_1;b).
We are interested in how the error Ay; propagates through the nonlinear function ¢ in the update.

Lemma F.12 (Error propogation for AE,). Under Definition B.3 on the activation function, let
by = by + ko, L = y2 + |be|y1 and suppose by < —2. For allt < T < n€, it holds with probability
at least 1 — n=¢ over the randomness of standard Gaussian vectors z_1.7 that

|AE ||y < CLN; - ((\/ sp1®(=by) + sp1y/tlogn) - [|[Ayqll2 + V/spa by - IIAyt\@)
+ CN1s(2 + [be]) - (n vV d)™,
and the Uy norm of AE; are bounded as ||AFE:|l2 < (72 + |be|71) - p1 N1 || Ayel|2-

Proof. See §H.3.1 for a detailed proof. O

In the above lemma, we incorporate the sparsity in the activation to obtain a more refined bound for
||[AE¢||1. Next, we also present the error bound for AF;.

Lemma F.13 (Error propogation for AF}). Define Apry = o(Fy, + 0 - v wi—1;b) — p(Fy;p +
0-v W_1; bt). The following bounds hold:

1 |AR|L < VANSL - || Ao
2. |AF]2 < paNoL - ||Ayy2.
3. [[Aprill2a < VpaN2L - [[Ay,||2.

Proof. See §H.3.2 for a detailed proof. O

G SAE DYNAMICS ANALYSIS: PROOF OF THEOREM B.2

In the sequel, we will first state a more general version of Theorem B.2, accompanied by the full
details on the related definitions and assumptions that are mentioned in the main text. Then we will
present the proof of the theorem.

G.1 A GENERAL VERSION OF THE THEOREM

In the follwoing, we first state the definition of the concentration coefficient h, and a general version
of the main theorem. Then, we present the rigorous definition of the ReLU-like activation function.

Details on concentration parameters h,. To measure the magnitude of coefficients associated
with each feature, we recall in the definition of the cut-off level for feature 7 in (B.3) as

1 -1
hi == max{h <1: Dy Zlepi 1{H,;; > h} > polylog(n) }

To measure the concentration level of the global coefficients across all features, we define the con-
centration coefficient h, as follows. We first recall the definitions of A , and fi4,; from Theorem F.4
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(witht = 1 for any ¢ > 1). In particular, i, , and #i, 1 are defined as the smallest numbers satisfying
the following inequalities:

s+ () ()
meiion 3 e S

eaX|D|Z ( M) S@(—M)q.
j

\/1— HE, \J1-he,

Here, D; = {l € [N] : H;; # 0} is the set of row indices in matrix H that has non-zero entries in
the j-th column, and ¢; = 2(1 4 €)+/logn that is formally defined in (E.11). Here, ®(-) is the tail
probability function of the standard Gaussian distribution, i.e., ®(x) = f;o e—u’/2 / V27 - du. The
definitions of #, , and fi, 1 are valid as the right-hand sides (RHSs) of the above two inequalities are
strictly increasing in terms of A4, and A 1, respectively. We defer readers to the discussion under
Theorem F.4. We define the concentration coefficient for the weight matrix H, denoted by h, as
the smallest number such that

n
1 HiHy ey
Bl B <he, Y S o bl i) < e :
e B ik = B PP N T, e, ) <"\ T )

(G.1)

In fact, the RHS of the last inequality in (G.1) is also strictly increasing in terms of h,, and hence the
definition is valid. In the extreme case where H does not have any diversity in its nonzero entries,
we have the following simple relationship between sy, s; and s:

Proposition G.1 (Concentrated coefficient H). If H;; € {0,1/+/s} foralll € [N] and j € [n],
then hy = h; = 1/4/s.

In this extreme case, every row of H has exactly s non-zero entries, and the non-zero entries are all
equal to 1/+/s. In the following, let us define 62 = ||6;]|3 /Ny and Qi(z) = |D;| > ep, W(Hi >
x) for « € [0, 1]. The following proposition relates s; and s, to the sparsity s through inequalities
that must be satisfied.

Proposition G.2 (General coefficient). Recall the definitions of h; in (B.3) and hy in (G.1). Suppose
the bias b < —\/3, then for any feature i € [n] satisfying the conditions in (B.5) and (B.6) and that
6? > Q;(h;), we have the following inequalities:

he >1/Vs,  hi >1/607 — Q;i(hy).
Proof. See §1.1 for a detailed proof. O

General version of Theorem B.2. In the following, we will let s, = 1/h2. To ensure consistency
in the notation, we will also define s; = 1/ h? for h; defined in (B.3). We give a more general
version of Theorem B.2 in the following theorem, which will be formally proved in the remaining
part of this section.

Theorem G.3. For feature i € [n), let us take some small constant € (0,1) and define Q) as

—b/Vlogn )
(1—¢)y/2(og, M —1)/)

QW = g (

Suppose

logn . b?/2 —log N

~

logn logn

For any feature i € [i], consider the following joint conditions for ps, d, QY and bias b < 0 with
respect to constant parameter s € (0,1):
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1

> polylog(n) ™,

H.
Individual Feature Occurrence: %

1 .
Limited Feature Co-ocurrence: log, (p;") > max{ —4log,, QW, 50 log,, Q® },

2 2

1 h A T ;
> Sl il CR N e )
ol max{2+ 5 — (1+h))log, QUV, 7 + =% — (3h3 +1)log, Q)

(V2he(1+) + /=(T — W) Tog,, @1)", 1 - (1= <) log,, d — log, Q" }.

Bias Range: 1 2,

Here x© 2,y means x > y+ O(loglog(n)/log(n)). Then with probability at least 1 —n~"*¢ over the
randomness of the features V, for any feature i such that there exists some constant g; satisfying the
above conditions, there exists at least one unique neuron m; and after at most T; = max{(2¢;) "%, 1}
steps of training, we have (wi ,v;)/||vill2 > 1 — o(1).

Relationship between Theorem B.2 and Theorem G.3. The main difference between Theo-
rem B.2 and Theorem G.3 is that the latter allows Q) to have a larger range of values, while

the former requires Q) = Q) (h;) to be strictly larger than polylog(n)~!. A direct consequence
of this restriction in Theorem B.2 is that the range of M is smaller compared to that in Theorem G.3.
However, the conditions in Theorem G.3 have Q(*) and ps, b coupled together, which makes it diffi-
cult to gain a clear understanding, while in Theorem B.2, we decouple the conditions by enforcing
the range of Q(¥). Specifically,

1. The condition Q) > polylog(n)~" is equivalent to
—b
<
(1 —¢)y/2(log, M — 1)

by recalling the definition of h;. This gives the range of M as in (B.4) if we require all the
features to be learned simultaneously. In fact, if the condition is satisfied for only a subset
of features, our theorem still holds on that subset of features.

2. The individual feature occurrence condition is the same in both theorems, and the limited
feature co-occurrence condition in Theorem G.3 will reduce to py < n~1/27°(1) which is
already implied by the data condition in Definition B.1.

3. The bias range condition in Theorem G.3 will reduce to the version in Theorem B.2 by

removing the terms that involve Q¥ as log log(n)/ log(n) gap is already enforced by the
2 notation.

Moreover, we assume that s > 3 as mandated in Theorem B.2. Since s, < s by Theorem G.2, if
sy < s < 2 the following inequality

b2 1 2
1> ( (1 . 1)1 <>)
2z 21ogn . +¢) +\/ )log,, Q

cannot hold, because the right-hand side would exceed 1.

Roadmap for the proof of Theorem G.3. The remaining part of this section is organized as
follows:

¢ Concentration simplification: In §G.2, we will combine the concentration results derived in
§F to derive explicitly the simplified concentration results for the atomic terms in (F.3) for the
evolution of a_; + and ;.

¢ Conditions for strong alignment: In §G.3, we formulate a set of conditions Cond.(i)
to Cond.(iii), Cond.(I) and Cond.(II) that will yield a simple two-state recursion. Building
upon these conditions, we further identify Cond.(iv) to Cond.(vi) that will guarantee a strong
alignment «_; 7 = 1 — o(1) with only T' = O(1) steps of training.

* Conditions simplification: In §G.4, we further simplified the series of conditions into a more
concise form as in (G.12), which yields the full list of conditions in Theorem G.3.
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Notation. Following the convention in §F, we let b, = b, + ko where ko = O((logn)~/?) is
defined in Definition B.3. Recall the definition {; = 2(1 + £)+/logn and ¢, = (1 — €)y/2logn in
(E.11) for some small constant € € (0, 1). We let C be a universal constant that may vary from line
to line.

G.2 CONCENTRATION RESULTS COMBINED

We now combine the concentration results for the second-order terms in Theorem F.4 and Theo-
rem F.6 under the assumption that ¢ log n < n. In particular, by taking the square root of the upper
bounds in these lemmas and noting that ||v||3 = O(d) holds with probability at least 1 — n~¢ (see
Theorem J.1), we can express the combined square-root upper bound as

_ T = (1= (i, hr)
= 1 Ll® By | @ . LA A /
& = V/stlogn Ky + p; (16¢]) - Eag [ (|bt| T (hhhl/))ml’hl >]

+ v/ ped|a_i—1| + p2v/n.

We formally state the combination of the above two lemmas in the following corollary.

Corollary G.4 (Second-order concentration combined). Then under the conditions tlogn < n,
—by = O(logn) < 1, p1 < 1, it holds for all t < T < n® with probability at least 1 — n™¢ over
the randomness of standard Gaussian vectors z_1.7 and v that

VIET (Eyisb) I3 + [ FTo(Fye +0- 0T w0 13b,)[3 < CLNpré.

Here, the constant C' hides some factors from using the inequality v/a + Vb < \/2(a + b). We
refrain from a detailed proof here. With the second order concentration results in Theorem G.4,
we can now derive the first-order concentration results for the terms (z,, u;) based on Theorem F.7
and Theorem F.8. To further simplify the concentration bound, we impose the additional condition
®(|bs|) > L s py (tlog(n))?, which in particular holds if ®(|b;|) > n~! polylog(n). This require-
ment is reasonable because it ensures that the neuron is not activated too rarely compared to the
average occurrence frequency (s/n) of the features.

Lemma G.5 (First-order concentration combined). If ®(|b]) > Lspi(tlog(n))3, —b, =
O(Vlogn) < (4, kolbe| = O(1), forall t < T < nS, it holds with probability at least 1 — n~¢ over
the randomness of standard Gaussian vectors z_1.7 that

(zryur) = Naz—1901(bt) - (1 £ 0(1)) £ CNLpy+/p2s(tlog n)?’/2 cd o101 -]

+ CNp1L\/tlogn - & + CLN+/logn - (\/sp1d®(|b|) + v/sp1|be|d Bi—1) - Bi-1,

where & is defined in Theorem G.4.
Proof. See §1.2.1 for a detailed proof. O

In order to derive the recursion for av_1 ; in (F.3), we need to control the numerator

<U’wt>
[[v]l2

= (21, ue) + [vll2- 0T @(Fye + 60 - v w_13b;) +n a1 1.

Qa_1¢t th2 =

Using Theorem G.5 and the concentration for the second term in Theorem F.10, we derive the
following lemma for (v, wy)/||v||2.

Lemma G.6 (Concentration for numerator in a-recursion). Suppose p1rd(st log n)_l > <I>(|5t|) >
Lspi(tlog(n))3, —b: = O(VIogn) < (1, kolb:] = O(1), ViEslogn|b|Bi—1 < 1, and

\/&a,l,t,1 > 1. Furthermore, assume that

Ny  — - _
W20092Qt >>maX{Lp1w/p23(tlogn)3/2, Ld™'®(|bs|), L\/tlognp, & Lp; Bi }

)
dOé—1,t—1 Q_1,t—1

49



Under review as a conference paper at ICLR 2026

If =1 < NdCy62Q Then it holds with probability at least 1 — n=¢ over the randomness of
standard Gaussian vectors z_1.7 and v that

<U’wt>
[v]l2

= (1£0(1))Nep.

Proof. See §1.2.2 for a detailed proof. O

Now that we have characterized the “numerator” for a-recursion. It remains to control the “denu-
merator” ||w;||2. In what follows, we will decompose the norm ||w;||2 into two parts: the projection
onto the subspace spanned by w_1.¢ and the projection onto the orthogonal compliment of this sub-
space. For Pjﬁl:owt being the projection onto the orthogonal complement of the subspace spanned
by w_1.9, we have the following bound.

Lemma G.7. Suppose p1d(stlogn)=" > ®(|b;|) > Lspi(tlog(n))?, —b; = O(v/logn) < (1,
kolbe] = O(1), Vislogn|bs|B:—1 < 1, \/305,1,,5,1 > 1, \/p25(tlog n)3? < 1, and n7' <
N®(|b;|). Then, for allt < T < ~/d, it holds with probability at least 1 —n~° over the randomness
of standard Gaussian vectors z_1.7 and v that

||P$,mwt||2 < CNLPl\/g(ft + \/&5::71)
Proof. See §1.2.3 for a detailed proof. O

For P, ,,w: being the projection onto the subspace spanned by w_i.9, we have the following
bound.

Lemma G.8. Suppose p1d(stlog n)~! > ®(|by|) > Lspi(tlog(n))?, —b; = O(ylogn) < (i,
kolbe] = O(1), Vislogn|b|Bi—1 < 1, and Vda_y 1 > 1. Furthermore, assume for some
constant Cy > 0 that

Ny  — — _
“2000%2Q, > maX{Lph/pgs(tlogn)g/Q, Ld='®(|bs]), L/tlognp & , Lpy fia }
N do_q,4-1 Q11

Ifn~ < NodCo02Q, AN ®(|bs|), then it holds with probability at least 1—n~° over the randomness
of standard Gaussian vectors z_1.7 and v that

1P gwell, = (1 0(1)) - /(N2 + (Nao—11(50)) ™.

Proof. See §1.2.4 for a detailed proof. O

Combining the results from Theorems G.7 and G.8, we obtain the upper bound for ||w;||2.
Lemma G.9. Suppose p1d(stlogn)™1 > ®(|b]) > Lspi(tlog(n))3, —b; = O(y/Iogn), kolbs| =

O(1), Vtslogn|b:|Bi—1 < 1, \/goz_l,t_l > 1 and \/pas(t 10gn)3/2 <& 1. Furthermore, assume
for some constant Cy > 0 that

N- — — _
2 Co2Q1 > max{ Ly /pzs(tlogn)*/2, La~ @((bi)). Ly/Flognp . Lpy =1,
N do_q4-1 a_1t-1

Ifn~' < NodCoB2Q, AN®(|by|), then it holds for allt < T < /d with probability at least 1 —n—°
over the randomness of standard Gaussian vectors z_1.7 and v that

Jwrlls < (1 £ 0(1)) -/ (N91)? + (N1 (5))” + ON Loy V.

Proof of Theorem G.9. By the triangle inequality, it holds that

||wt||2 < ||Pw 1: oth? + || 1owt||2

< (L o)y o + (Nao 1 181(00))” + CNLpy V(& + VBi-1).

By condition &2 C’OGQQt > Lp1 and the lower bound N, > CO2Q,;Nadov_+. .+—1 shown in

Theorem F.11, we have N, > CN Lp1 dp:—_1 satisfied and can be absorbed into the upper bound
of || Py_y.oWt ||2 Hence, we conclude the proof. O
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When we derive the above lemmas step by step, we collect all the conditions used in the final
Theorem G.9. In the following proof, we will be focusing on the conditions listed in the statement
of this lemma.

G.3 A TwWO-STATE ALIGNMENT RECURSION

From now on, we adhere to the fact that the bias remains fixed throughout the dynamics. Thus, we
drop the time index in b; (writing it simply as b) and define b = b + k¢. To further simplify the
conditions in the previous section, we have the following lemma.

Lemma G.10. Consider fixing the bias to be b < 0 and b = b + ko < 0. Suppose InitCond-1 and
InitCond-2 hold. With the following conditions at initialization:

(i) —=b = ©(y/Togn) < (1, kolb| = O(1), /pzs(Tlogn)?/? <« 1, n=1 <« NodCof2Q; A
N ([b]).

(ii) prd(sTlogn)™ > ®(|b|) > Lspi (T log(n))>.

(iii) N2Co02Q; > max{Lpl,ﬁpQS(Tlogn)W, L= &([p]), LyTTognp: - 75— }
If for some time step t < T' < \/d we have

(I) a_14-1 >t2a 10, VTslognlb|fi—1 < 1,

(1) N2Cof2Q; > Lpy 2=

a_1t—1"

Let us define

:400072,N2/N’ t_@7 t_\/g

L ~ 1
o CLp Ao 7( &1

+ OVt (logn)¥/2 - 1(t > 2))
a_10

Sfor some sufficiently large constant C > 0. Under the above conditions, we have the following
conclusions:

(1). All the conditions in Theorem G.9 hold fort < T';

(2). Then with probability at least 1 —n ¢ over the randomness of standard Gaussian vectors z_1.T
and v, we have the following two-state alignment recursion:

Two-State Alignment Recursion

~ _ 1 (b ~
ﬁt S )\t . (gt + 5t 1 )’ § (1 +0(1)) +)\t ( (l |) . +£t)
a1y Q_1—1 o1 pd 141
Proof. See §1.3.1 for a detailed proof. O

From the above lemma, we can obtain the following observations:

* The ratio A\;®(|b|)/p1d controls the growth of the alignment o1 ;. In order for the align-

ment to grow faster, we need a smaller activation frequency ®(|b|), i.e., a larger bias |b| in
the absolute value.

* The term \; controls the growth of the ratio 5, /a1 ¢+. By definition, we know that A\, > 1.
* The maximum alignment achievable is 1 — o(1).

Therefore, the best we can do is to set \; as close to 1 as possible while exploiting a small ratio
®(|b])/p1d to ensure that the alignment a1 ; goes to 1 before the ratio 5;/cv_1 4 blows up. Since
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Bo = 0, we have B1/a—11 = A1 - 51. This means we also need a small initial value El to avoid a
large ratio 1 /a—1 1 at the beginning. In the sequel, we quantitatively analyze the evolution of the

above recursions. Before we proceed, by definition Q; = ~ ZN2 ]l( ), we note

> __=b
. . . \/Ea —1,t—1
that (); is nondecreasing in ov_; ;—1. Therefore, we have the following fact:

Fact G.11. Ifa—l,t—l > a_11, then Qt > QQ and Ay < Xs.

Expanding the recursions. Let us define 7 + 1 as the minimum of ¢ such that either of the
following conditions fails:

To-Cond.(1). Cond.(I) or Cond.(II);
Tp-Cond.(2). a_1¢—1 > _11;
To-Cond.(3). t < log(n).

In other word, T, is the stopping time up to which all the conditions above hold. We have \; < A
by Theorem G.11 and the definition \; = Ao/Q;. To obtain a simple recursion for ar_; ;, we take

Ao %ﬁTé(logn)?’/Q) . 1
\/gaq,o Vd 1 - )\2‘I)(|g|)/,01d.

Here, we take the o(1) term above to be the maximum of all the o(1) terms in the recursion for a_1 ;
for any ¢ < Tp. For 2 < t < T}, we have from substracting C; from both sides of the recursion for
Qa_1¢ that

Cy = (1 +o(1) + (G.2)

1 o(Jo]) 1 1 & 2 3/2
—C < (140(1) + A - : —_— t2(1 12t > 2
s (o) £ A (5. a_lvt_ﬁﬁ(a_l’owﬁ (logn)*/2 - 1(t > 2)) )
A&y Chay/sT§ (logn)®/2 C1Aa®([b])
—(1+o0(1) + + -
( @ Vda_1 Vd ) pd
e
(I)(‘bD-( 1 —01)7 V2<t<Ty. (G.3)
p1d a—1,t-1
Using the fact that
Me(b) | A& 1
—Cy <1+40(1)+ + : -C
Qa1 t= 0( ) ( Pld \/&) a_1,0 !
Me(pl) | A&y 1
< + : 7 G.4
7< p1d \/E> Q_1,0 ©4

we obtain that
1 M®(D)\ T R (B) M& 1
g( ) ( n ) 10O, VI<t<Ty. G.5)
Q—1,¢ p1d pid Vd a—1,0 ! ’ (
In the above formula, we can extend ¢ to allow ¢t = 1 as

L 1yom)t (A1<I>(|b|) N /\161) - L o ()\1<I)(|b|) N ,\151) 1
—1,0

a_11 p1d Vd p1d Vd/ a-ip
For the ratio 3;/a_1 ¢+, we use the fact that A, < Ay for 2 < ¢ < Tj and also that
1
& < \f( 3! +C\/§T02(logn)3/2), 2<t<Ty

to expand the recursion for 8;/a_1 ; as follows:

1
Bt < 7( &1 +C\[To (log ) 3/2) Z)\t T+1+)\t 1. A

a1y~ Vd\a—ip a_11
To 1 & 2 3/2 t—1 1 M
<= + C/sT? log(n)®/?) - ALt 4 At 280
\/&(a_l,o Vs o log(n) ) 2 2 \/Ea,l,o
Ayt & 3 3
= (T + M) - C/sT31 12) V1<t<T, G.6
2o (Tt P OVET logn)*?), VISt T, (GO
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where in the second inequality, we use the fact that Ay > 1 and the recursion for the ratio that

b1 < ME = M

1.1 \/ciia_l_ro'

Also in the last equality of (G.6), we can relax the condition to allow ¢ = 1 as the right-hand side
for t = 1 clearly upper bounds the right-hand side of (G.7). Using the results derived in (G.5) and
(G.6), we now have the following statement. Now, building upon the results derived in (G.5) and
(G.6), we have the following lemma, which summarizes the additional conditions needed to ensure
that the alignment «_ ; can be driven to 1 — o(1).

(G.7)

Lemma G.12. Let s € (0,1) be a constant. Take € = C'loglogn/(slogd) for some sufficiently
large constant C' > 0. Suppose InitCond-1 and InitCond-2, Cond.(i) to Cond.(iii) hold. Under the
following conditions

(iv) Ao = O©(polylog(n)).

(v) Ag'Qu-d™ = &([p])/prd.

(vi) &1/Q1 < d=/(Xoy/slogn).
there exists a time t* < ((26) 71V 1) ATy such that a_1 y = 1 — o(1), where Ty is the stopping time
before and at which Ty-Cond.(1) to Ty-Cond.(3) hold.

Proof. See §1.3.2 for a detailed proof of the lemma. O

Since t* < Tp, Cond.(I) and Cond.(Il) hold for all t < t* automatically. In summary, in Theo-
rem G.12, we have shown that under Cond.(i) to Cond.(vi), the alignment «v_; ; can be driven to
1 — o(1) in constant time steps.

G.4 SIMPLIFYING THE CONDITIONS OF THEOREM G.13

To finish the proof of Theorem B.2, it remains to simplify the conditions in Theorem G.12. As a
first step, we have the following lemma.

Lemma G.13. Under InitCond-1, InitCond-2, and Definition B.3, Cond.(i) to Cond.(vi) hold upon
the following conditions for some constant ¢ € (0,1) and ¢ = C'loglogn/(slogd) for some
sufficiently large constant C' > 0:

Q. () _ Lslog(n)?
A S = W deS4/s1 . —“° o\
Ao nd max{ ol Gy ——2 } (G.8)
Xo = O(polylog(n), 1" < N([5)).
Proof. See §1.4.1 for a detailed proof. O

Next, we will plug in the definition of £; into the above condition to obtain the statement in Theo-
rem B.2. In what follows, let us define h, as the smallest number such that

1-H;;Hy - [1—h2
Wl m) gn¢><|b| )
1+Hl’jHl/’j 1+hz

(G.9)

n 1 _
max(i 08 ) <02 Y S (i
j=1'"7

1L,l'eD;

where 715 ,, 5, and 7] ; are defined in Theorem F.4. The definition is valid as the right-hand sides
of both inequalities are increasing in h,. In addition, we notice that h, < 1 always holds, as h, =1
gives the trival upper bounds for all the inequalities in (G.9). In fact, the quantity h, characterize
the concentration level for the empirical distribution of {H; ; }ep;.
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Lemma G.14. [f (1 — h2)/(1 + h2) = O(1) for h, defined in (G.9), it holds that

. _ 1— (hy, by _1-h2
i {q’('b' M) <hz,hz'>] < Cnpt - (b)) T + prpos” (G.10)
Proof. See §1.4.2 for a detailed proof. O

Next, we also upper bound K; in terms of h,.

Lemma G.15. Under the conditions that ¢, h./|b| < 1 — v for some small constant v € (0,1) and
O(|b|) > p1, it holds for some sufficiently large constant C > 0 that

O, < (n |B|)1/4 (I)(|5D3h,2+1 + (pgsn\a)l/‘l . ¢(|B|)m

_ (—h« ¢ /10D

+((B) T+ (p28)*) - (logn) Yt + 0t/ pyslogn.
Proof. See §1.4.3 for a detailed proof. O

In the following, let us take s = O(polylog(n)), L = O(polylog(n)) and

d=n", pi=n""" py=n""2 &(b|)=n"11". (G.11)

Using the above configurations, we have by the Mill’s ratio that

[b] = \/2(1 — x3)logn + O(loglog(n)).
In the following, we use the notation « < y to denote that z < y 4+ O(loglog(n)/logn), and z ~ y
to denote that < y and y < z. Consequently, we have |b|/v/logn ~ /2(1 — x3), and

G 2(1+4¢e)ylogn 2
| — 2(17x3)10gn_(1+8) 1—x3

With Theorems G.14 and G.15, we can now upper bound &; as
1 -1 1- 3(xz —1 V1—z3—+v2h(1 2 1
1OgnK1§maX{i+ o ’ 2 + (zg )7 7( s f *( +€)) 37B? 77:62}'
4 3h2+1 4 8h2 + 4 1—h2 474

In addition, using Theorem G.14, the second term in the definition of &; is upper bounded as

_ =N - 1—<hl,hl/> LCg—l—hz 1 z3—a94+21—1
log,, <P1 "y @(o)EL [‘I’(b| m)<hl7hl’> S maX{ Y 5 - }
I *

Therefore, £; is upper bounded as

1 23—1 1—2o 3(wz3—1) (VT—a3—v2h(1+¢))?
1 < {7 _
08y 1 SmaxXy g Tt g2 1—n2 ’
To 1 T3 (1—h,2()(333—1) r3—To+x1 — 1 To 1
- 7 — T2, — + 5 s T e 0 7_1:2}
474 2 2(1 + h2) 2 272

Plugging this bound into the first inequality in (G.8), we have the following reformulation:
log, @1~ x5 — (1 —¢)xg 2 log, &1, x320.

where we note that ¢ = O(loglog(n)/logn) and can be ignored in the context of ~ notation.
Therefore, we just need to solve the following inequality system:

log Q1>max{l+x3—171—3024_3(303—1)7_(M—\/ﬁh*(l—i—a))Q’
nWlA 173241 4 8hZ + 4 1—h2
zo 1 r3  (1—=h2)(x3—1) 23 —a9+21 -1 25 1
Ta1 "y 2(1+h2) 2 ’_?’5_”}
0S w3~ (l—¢)rg+log,Q1, 0S2251, 2020, 0521 51,

54



Under review as a conference paper at ICLR 2026

Solving this inequality system, we arrive at the following conditions that ensures (G.8):

1 N- _
12102 max{—4logn Q1, = — log, Ql}, logn<—2 ) =0, 7771 < NO(|b])
2 plN
1 h2 h2
0<S 23 S min{i — 3* + (1 4+ h?)log,, Q1, % = Z* + (3h2 +1)log, Q1, (G.12)

1— (V2ho(1+&) + /—(T — h2)log, Q1)°, (1 —<)zo + log, Ql},

Now, the first condition involving x5 = log, (py ') can be transformed into the Limited Fea-
ture Co-occurrence condition in Theorem G.3. The second condition log,, (N2/p1N) 2 0 can
be transformed into the Individual Feature Occurrence condition in Theorem G.3 by noting that
Ny = ||H.;||o for feature i of interest. The third condition n~ < N®(|b|) can be transformed into

logn > —log N — log ®(|b|) + O(loglogn),
where the second term on the right-hand side can be further upper bounded as

S b b? - b?
—log ®(|0]) < 5+ O(loglogn) < 5+ O(loglogn + |blkg + K2) =~ 5 O(loglogn),

where we use the Mill’s ration in the first inequality and the fact that ko = O((logn)~'/2) and
|b| < +/2logn in the second inequality. Therefore, a sufficient condition will be

logn b?/2 —log N

logn ™~ logn
The last condition involving
1 b]> + O(loglog(n)) 1 [b]> + O (log log(n) + [b|ko + K3) ~1_ b*
3 2logn N 2logn o 2logn

can be transformed into the Limited Feature Co-occurrence condition in Theorem G.3. Lastly, we
remind the readers that (), is also lower bounded as a function of x3, which is shown in the following
proposition.

Proposition G.16. Under InitCond-1 and the reparameterization in (G.11), we have

~ —b/+/logn
@ 2 Q((l —e)y/log,, M —1

is the tail function for the empirical distribution of 9;.

>, where Q(z):= Nig Z 106, > x)

=1

Proof of Theorem G.16. By InitCond-1, we have vda_1 o > (1 — ¢)/2log(M/n). Recall the
definition of Q; in (F.15), we have by the non-increasing property of Q(-) that

VRN b
a=0(77 )2 Q((l —e>\/2log<M/n>>'

This completes the proof of Theorem G.16. O

Note that using the lower bound on )7 only strengthens the conditions in (G.12). Hence, we can
directly plug in the lower bound of ()7 into all the conditions in (G.12), and this gives us the final
statement of Theorem G.3.

H PROOFS FOR CONCENTRATION RESULTS

In this section, we provide proof for the concentration results presented in the previous section.
We first provide proofs for Theorem F.1 that controls the norm of the non-Gaussian component
Avy,. Then we give the proof for the concentrations of the second-order and first-order terms in the
decomposition of the alignment recursion. Finally, we provide the proof for the error propagation in
the dynamics due to the non-Gaussian component Ay;.
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H.1 PROOFS FOR NON-GAUSSIAN COMPONENTS

In this subsection, we provide the proofs that are related to the Gaussian & non-Gaussian compo-
nents. In particular, we provide the proof for Theorem F.1 that controls the norm of the non-Gaussian
component Ay;.

H.1.1 PROOF OF THEOREM F.1

By definition of Ay, in (F.2), we further define

AV = ZO‘ |wrllz ur Ay = ZO‘
T et e e 2 meh

and thus Ay, = Ayt(l) + Ay§2). The proof of Theorem F.1 is then based on the bounding the ¢
norm of Ayt(l) and Ayf) respectively. To proceed with controlling the norm ||Ay§1) |l2, we first
control the ratio ||w:||2/||ut||2 via the following lemma.

Lemma H.1 (Ratio ||wi||o/||u||2). Take some total step T < /d and suppose d € (n'/°*,n)
for some universal constant ¢; € (0,1). Forallt = 1,...,T, it holds with probability at least
1 — n=¢ for some universal constant c,C > 0 that

[wi[|2 1/2 ||thH§
—Vd| < C(logn)/?, —d| < C+/dlogn.

luit[l2 llu 113

Proof. See §H.1.2 for a detailed proof. O

With Theorem H.1, we can now control the ¢5 norm of Ayil) and Ayf@ respectively with the
following two lemmas.

Lemma H.2 (¢ norm of Aygl)). Under the conditions in Theorem H.I, for allt = 1,...,T, it
holds with probability at least 1 — n~¢ for some universal constant ¢, C > 0 that

d CV dlogn 10wt 1”2 < ||Ayt1)H2 d+c\/ dlogn w 10wt 1”2'
Proof. See §H.1.2 for a detailed proof. O

Lemma H.3 ({5 norm of Ay§2)). Under the conditions in Theorem H.1, for allt = 1,...,7T, it
holds with probability at least 1 — n™¢ for some universal constants c,C' > 0 that

1Ay 3 < C(t + logn) - [Py @i 13
Proof. See §H.1.2 for a detailed proof. O

Combining Theorem H.2 and Theorem H.3, we complete the proof of Theorem F.1 by additionally
noting that

| Apill3 < 2 Ay 3 + 2 Ay |3 < 2(d + C/dlogn + C(t +logn)) - | Py, ,@e-1 3.
As the first term d|| P oW1 |2 = dB?_, is the leading term, we conclude the proof of Theo-
rem F.1.

H.1.2 ADDITIONAL PROOFS FOR THEOREM F.1

Proof of Theorem H.1. Recall from (E.6) that

t—1 -1
S SR LI B e By L L ¥
T=—1 e ||w7J—_H2 — T ||’U,7J:||2 ||fw_ll_-||2 w_1.—17

+ v9T<p(Fyt +6 -0 w_q; be) + ntwe_q.
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Applying projection Puiuf to both sides, we have

wt _P’j; 1ot — 1 Pj; 1:t— 1 Hut ||27
which implies that ||wi-||2/||ui|l2 = | Pa, 1,zt||2 Note that Z; is independent of o (w_1.;—1) and

follows standard Gaussian distribution. Therefore, ||w;-||2/||ui||3 ~ x?(d — t — 1) and we have by
the concentration in Theorem J.1 that with probability at least 1 — n~¢ for all ¢t € [T,

||2

where the last inequahty holds by conditions 7' < v/d and d € (n'/', n°"). Therefore, we conclude
that with probability at least 1 — n=¢ for all ¢ € [T,

||th||2 _ \/&‘ < C(lO 1/2
T < C(logn)™/=.
[[uz-2

This completes the proof of Theorem H.1. O

Proof of Theorem H.2. By definition of Ay,ﬁl) we have

IIwLII% 113

1
AU - dIPL, 11 |—\Z 2o (Pt -d)| < sw |07l Zaﬁ 1
uz 12 2

T=1,...,t

< C\/m ” U)—l:(]wt_ng,

where the first equality holds by Z 1 aTt 1 = 1 according to the definition of « ;, and the
second inequality holds by Theorem H.1 with probability at least 1 — n=¢. O

Proof of Theorem H.3. By rewriting the definition of Ay(2), we have
t—1t—1

M =30 > ene Ln

T=1j5=71

L
We note that when conditioned on {OéT,T_1}Z:_i1 and u;.7_1, the random variables {”5%“2% Yir
forany 1 < 7 < 5 < t — 1 are ii.d. standard Gaussian. Let us denote the filtration

F = a({aT7T_1}Z;i1, u1.7—1). Therefore, we have

ul
(2)
Ay~ | F = Z Zamt 1’ IHQZ;’
. Uz
where {2/ }!_} arei.i.d. standard Gaussian independent of the filtration . Hence,
Pl R
2
1851317 =303 adu - (20)°
T=1j=1

Using the concentration of 2 distribution in Theorem J.1 gives us

t—1t—-1 t—1 t—1 t —
(\myg)”Q SN et 2 0 Y (S a2)  Viosln + 03 o2,y los(n) \r) <2
=1

T=1j=71 T=1 j=71

Each term inside the probability can be upper bounded by

t—1 t—1

Z(Zajt 1) (1_04 1,6—1 O‘(Q),tfl) Vi || 10 Wi— 1||2a

=1 j=71

t—1t—1
1 —
Zart 1=1- a? —1,t—1 ao:& 1= H o Wt— 1||2a Zza?,tfl St”Pw_l:owt*lH%-
=1 T=1j=71
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Therefore, we conclude that when conditioning on F, it holds with probability at least 1 — n~° and
forallt =1,...,T that

1Ay |12 < C(t + /tlogn +logn) - [|PL | w—1]|3 < Ot +logn) - | P, w3,

where C' is a universal constant that changes from line to line. Here, we also use the condition that
T < n. Now, since for any event in the filtration F, the failure probability is at most n~¢, we can
safely remove the conditioning and conclude the proof of Theorem H.3. O

H.2 PROOFS FOR CONCENTRATION LEMMAS

In this subsection, we first provide a formal lemma that characterizes the sparsity of the activations
when tuning the bias b; to be some negative value. Building upon this result, we then provide the
proofs for the concentration results concerning the recursion of the alignment.

H.2.1 CONCENTRATION FOR IDEAL ACTIVATIONS

The statement of the following lemma slightly generalize beyond the settings in (F.2) for technical
convenience. Specifically, we want to understand how the neuron’s activation frequency concen-
trates around ®(—b;). As we have the coefficient matrix H decomposed into E and F', we want
to have a general result that can be applied to all of them. Therefore, we consider a general sparse
weight matrix G in the following lemma.

Lemma H.4 (Concentration for Activations). Let G € Rixn be a nonnegative weight matrix whose
rows (g1)ie(z) satisfy ||gill2 = 1, and assume that G is sparse in both rows and columns:

e For every coordinate i € [n, the ith column satisfies |G. ;|0 < pL for some p € [n™',1].
* Forevery row | € [L], we have ||gi|jo < s.

For any integer t < n® (with some fixed constant ¢ > 0), define

t—1
Yt = E Qrt—1 27,

T=-—1

where the vectors z; € R™ (for r = —1,0,...,t — 1) are independent standard Gaussian random
vectors, and the coefficients oy = (ar4—1)-2" | € S* belong to the unit sphere in R'™. Next, let

b, € R be an arbitrary bias and let 9, € R and ¢ = (Cl)le[L} S Rf; be fixed vectors. For each
neuron l € [L], define its shifted bias by
bt,l =b—q OétT_ﬂ?t

Then, for any failure probability § € (exp(—n/ 4), 1), there exists a universal constant C > 0 such
that with probability at least 1 — § (over the randomness of the Gaussian vectors {2;7.}3_:171 ) the
following holds simultaneously for all choices of a;—1 € St and b, € R:

L L
1 1 _
7 E 1{g ye > by} < C(L E D(by1) + pstlog(n(l + [[s]lool|Fellc)) + ps log(d 1))»
=1 =1

where ®(-) denotes the standard Gaussian tail probability. In particular, if t, a;—1 and by are also
fixed, then with probability at least 1 — ¢ it holds that

L L

1 1

I E g ye > b} <C <L E (b)) +ps 10%(51)> :
=1 =1

Reduction to Theorem F.2. We remark that when take G to be the weight matrix E, L to be Ny,
ntoben —1, ptobe py, b; to be by, and letting ¥, = 0, we directly obtain Theorem F.2 as a special
case. In the remaining of this subsection, we will present the proof of this lemma.

Proof of Theorem H.4. In the following proof, we will use C' to denote universal constants that
change from line to line.
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Step I: Concentration for fixed a;_1, b; and ¥;. When fixing a;_1, b; and 9J;, note that
bt,l =b, — §l04;|;119t

is also fixed and the only randomness comes from the Gaussian vectors z_1, 2g, - . ., 2;—1. In partic-
ular, y; ~ N(0, I,,) since ||az—1]|2 = 1 by assumption. In the sequel, the discussion will be focused
on one time step ¢ and we omit the subscript ¢ for simplicity. The following is a table of the notations
we will use in the proof:

Y Y gy =S sz,
by < by big = by — g1y
o= o a1 = (arpo1)iZt €St
y® y® is the vector y with the i-th coordinate 7;
replaced by an independent copy y; ~ N (0, 1)
z Z=L"Y0 19 y > ba)
VAQ! 7@ — —1 Z (ngy(i) > bt,l)

Table 3: Summary of notations used in the proof of Theorem H.4.

Define Z = L=' 3/, 1(g/y > b;). To study the concentration of Z, we need to analyze the
fluctuations when we change one coordinate of 3. This leads us to the definition of y(*) in Table 3

with the corresponding Z() = L—! Zlel 1(g y® > b;). Let us also define the Exceedance-
Perturbed Variance (EPV) as follows:

n

Vi = E[Z(zm ~- 212 > Z2) M

i=1

In the definition of EPV, we only count the contribution from the i-th coordinate of y when Z
exceeds its perturbed counterpart Z(?). Next, we show that V, is actually controlled by Z itself up
to a small factor. In particular, for the term inside the expectation in the definition of V., we have

n n

(29 -2) 1z > 20) =3 (29 - 2)" 1y > )

i=1 i=1

1 n L 2
BZ(ZHQH%O (gzy>bu))
=1

=1

IN

L
(g #0) - 1(g y > bey) = psZ.

IN
h\b
M:

@
Il
-
Il
N

where

* in the first identity, we use the fact that Z is monotone in the ¢-th coordinate y; due to the
nonnegativity of the weight matrix G.

* In the first inequality, we use the fact that 0 < ]l(ngy > byy) — ]l(gl—'—y(i) > byy) <
1(g) y > by,;) thanks to the condition y; > v, which is guaranteed by the condition Z >
AQN

* In the last line, we use the Cauchy-Schwarz inequality with the fact that Zlel 1(gi; #

0)1(g 'y > bry) < ZzL:1 1(g1; # 0) < pL. Then, by also noting that each g; is also
s-sparse, we obtain the last equality.
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Meanwhile, the mean of Z is simply E[Z] = L~1 Zz 1 ®(by,1), where we use the fact that ||g;||> =

1 by assumption and g "y ~ AN(0, 1). Invokmg Theorem J.5, we conclude that for fixed o and by,
we have with probability at least 1 — 6,

L
Z < E[Z] 4+ C+/psE[Z]logé—1 + Cpslogd < C - (2 Z@(bt,z) + pslog(5_1)> (H.1)

=1

for some universal constant C' > 0. Here, we directly apply the inequality vVab < a+0bfora,b > 0
in the last inequality. In the following, we will apply a union bound on «;_1, b; to extend the above
bound to arbitrary choices of a;_; and b;.

Step II: Union bound over «;_; and b;. In the following argument, we will also drop the sub-
script ¢. Since Z is a function of « and b, we use the following notation:

L -1
1
= LZ]I( Z g zr > b—glaTﬁ).

=1 T=—1

It is sufficient to construct a covering net for the pair («,b). Since the Gaussian vectors z, are
unbounded, we first introduce a truncation step in our covering argument. By applying the Chernoff
bound for Gaussian tails and then taking a union bound over all indices 7 = —1,0,...,t — 1, we
deduce that with probability at least

1—(t+4+1)n-exp(—n/2) > 1 —exp(—n/4)/2,
we have
_ max HZTHOC <Vn.
In what follows we condition on this hlgh—probablhty event.

For o € S, we take a uniform covering net on the sphere, denoted by A\, such that for any «, there
exists o € N, satisfying |[o — o||c < €. The covering number is upper bounded by [N, | < et
See for example Example 5.8 in Wainwright (2019). To proceed, let us define

p=(t+1) - (Vstn+ [sllsol9]o0).

The intuition for this definition is that ;1 represents the Lipschitz constant of >.'_" | a, g, 2, +

g T with respect to any perturbation on « in the /,.-norm. For b, leveraging the Gaussian tail

property, we define the following covering net with size at most 4je ~* + 4:
={k-p-e|lkeZke[-[2"], |2 "]]} U{—o0}.

There are three special points in N3: —oo, the minimal finite point by, = — (26_1} - 1 - €, and the

maximal point by = [2¢ '] - 1 €. Forany o € S" and b € R, we pick & = argmin,, ¢ [lov —

'||os and b = argmax{b’ € N} : b’ < b— i - €}. Therefore, we have by the monotonicity of the
indicator function that

L t—1

Z(a,b) < = Z (Z &Tngzt >b—§l&T19—u~e> < Z(@,g). (H.2)

=1 T=—1

On the other hand, for El —ph— g "1, using the definition of & and 5, it holds that

(D(/I;l) < q)(bg - 3u . 6) . ]l(_bmin < /6l < bmax) + ]l(/b\l = _OO)
—+ (I>(2,u — (lOéT’lg) . 1(gl = bmax)~

The above inequality holds by considering three cases:

* When b; € [—bmin, bmax), We have b; close to b; up to an approximation error of 3y - €,
where one (i - € comes from the approximation between « and & and the other 2y - € comes

from the approximation between b; and b;.
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* When El = —o00, we simply upper bound the tail probability by 1.

« When b; = byyax, We have <I>(gl) = ®(bpax — g1 V) > (2 — qa V).

Next, we characterize in each case the approximation error between ®(b;) and the bound given
above, which are ®(b; — 3y - €), 1, and ®(2u1 — g T 99) respectively. In particular,

« For the first case gt € [~bmin, bmax ), We have the approximation error ®(b; —3u-€) — @ (b;)
directly bounded by 3pe by Lipschitz continuity of the Gaussian tail function.

¢ For the second case Et = —o00, it must hold that b; < by,;, + pe, and the approximation
error is thus upper bounded by 1 — ®(b;;) = 1 — ®(b; — g ") < exp(—(|bmin| — (1 +

O)?/2) < exp(—pi?/4).

¢ For the third case gt = bmax, it must hold that b; > by, > 2u. Hence, the approximation
error is upper bounded by ®(2u — gaT9) — ®(by;) < ®(2u — qa V) < exp(—(2u —
1)?/2) < exp(—p?/4).

Combining these three cases, we conclude that
®(by) < B(by) + exp(—p2/4) + 31 - €. (H.3)

If we choose the covering net parameter ¢ = pp~—!, then the upper bound can be simplified as

(I)(El) < ®(b;) + exp(—n/4) 4+ 3p. Since p is at least 1/n, we can further conclude that (I)(El) <
®(b;) + 4p given that exp(—n/4) <« 1/n < p. Lastly, note that the log cardinality of the joint
covering net is upper bounded by

log(|Nal) +log(JN3]) < tlog(e™") +log(4ue™!) < Ctlog(n(l + [<lloll¥llc))  (H4)

given that ¢ = pu~! > (nu)~!. Here, for the last inequality, we use the fact that log(y) =

log((t + 1)(Vstn + [[s]loc]|?]le0)) < Clog(n(1 + [[s]loc||¥]|oc)) since t < n€ for some constant
¢ > 0and s < n. We can also apply a similar argument for every ¢ < n°. This only increases the
size of the covering net by a factor n°. Combining (H.1), (H.2) and (H.3) with the log cardinality
(H.4), we conclude that with probability at least 1 — ¢ for all «, b, and § > exp(—n/4) that

L
~" = 1 ~ _
Z(ar-1,br) < Z(Gr-1,br) < C- (L > " @ (b) + pstlog(n(1 + [lsllocl|]]c)) + pslog(d 1))
=1

L
1
<0 D000 + pttontn1 + el + 1og(s ™)),

where in the second inequality, we apply a union bound on the joint covering net for o and b and
also for all ¢ < n°. In the last inequality, we just need a change in the constant factor C' to absorb

the approximation error 4p for the approximation error ®(b; ;) — @(gt,l). Here, the lower bound
d > exp(—n/4) is to ensure that the good event max,;—_10,..+—1//%r|lcc < vtn holds true. This

concludes the proof of Theorem H.4. O
H.2.2 ACTIVATIONS WITH NON-GAUSSIAN COMPONENT: PROOF OF THEOREM F.3

In the following proof, we will use C to denote universal constants that change from line to line.
Let us denote by b, = b; + k¢ as the shifted bias. Let us pick o; > 0 to be specified later. For any
[ € [IN1], the neuron is activated only if either of the following two conditions hold:

1. elTyf +Bt > —0¢;
2. ¢ yf + b < —o; and €] Ay, > o1
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For the first case, by Theorem F.2, we have with probability at least 1 — § that

1 &

A Z]l(el—'—yt* +bi > —01) < C- ((=b; — 1) + prstlog(n) + prslog(6~1)). (H.5)
=1

For the second case, we only need to control N; ! vazll 1(e] Ay > 0;). We have the following
upper bound

N1 N1 n—1

Nt A > o) < - St (el 30 A 1B £0) > of)
=1 =1 i=1
1 n—1
-+ Zﬂ(ZAyH (B #0) > 6}
N1 n—1
SngQZZAyH (B #0) < % | Ayell3, (H.6)

t=1i=1

where the first inequality holds by the Cauchy-Schwarz inequality and the following equality holds
by the fact that ||e;||2 = 1. The second inequality follows from the fact that 1(x > a) < x/a for
any a > 0 and = > 0. The last inequality holds by noting that || E. ;|0 < p1/N;. Combining (H.5)
and (H.6), we conclude that with probability at least 1 — n ¢,

—_— Z ]l(el—ryt > Et) <C- (@(—Et —0t) + p1st log(n)) + % . ||Ayt\|§ (H.7)

=1 t

Let us pick o; = |b;|~!. Note that by assumption b, < —2, we have —b; — ¢; > 3/2 and by
the Mills ratio inequality (z~1 — 273) < ®(z)/p(z) < 271 — 273 + 3275 for z > 0, where
p(r) = exp(—x2/2)/+/27 is the density for standard Gaussian distribution, we have

1+ 3(|5t| —o1)7? (|Bt| —01)?

il Cexp(— 2t — et H.8
Var - (b — or) o) e
e A 2 W e L e o 2 O R 1

= " arlb] (=) (o — o) (1= [ 2) © (—

where in the last inequality, we note that the highlighted ratios are bounded by a universal constant.
Combining (H.7) and (H.8), we conclude the proof of Theorem F.3.

(I)(_Et - Qt)

) < Co(=b),

H.2.3 CONCENTRATION FOR ||ET(Ey;;b;)||3: PROOF OF THEOREM F.4

When treating {c, ;1 }_" | and b; to be deterministic, it follows that 37 ~ N(0, 1). When condi-

tioned on the good event £, we always have ||y} || < (1 4 ¢)y/2(t 4 1) log(nt). In the following,
we use y to replace y; for notation simplicity. We use y; to denote the j-th coordinate of y. Let

Et = b; + Kg.

Good event on bounded Gaussian vectors. Let & denote the event that InitCond-2 is satisfied
by the vectors z_1.9. Throughout the proof, C' will denote a universal constant whose value may
change from line to line. Fix a time step ¢ > 1 (we omit the subscript t for notational simplicity).
Define the “good event”

& = { _ max lzr]lec < (14¢) 210g(nt)}.
Then, by Theorem J.2 (applied to the i.i.d. standard Gaussian vectors z_1.;—1), we have

P(&) > 1— (nt)™¢ > 1—n~c.
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Good event on the activation sparsity. Let us define S; = {l € [N{] : E;; # 0}. It holds that
|S;| < N1p;. In addition, we define event & as

Vj € [n—1] b+ E
E =4 Yoy €8 Z 1(e/y+b>0)<C- (Z <I>< L l’jyj) + |Sjp25t10g(n))
Wb, € R = ies; ~ \J1-Ef

To show that £ holds with high probability, let us define E as the submatrix of E by keeping the

rows indexed by S; while removing the j-th column. We also normalize each row of E to have
£5-norm equal to one. We then have

L[Eyalla = 1 [|EJlo < s and [|E. kllo < S50, T(Hy # 0) L(Hyg # 0) < |Sj|p2, where
the last inequality holds by definition of ps.

2. It holds that
- 7 - . by + Eyjy;
18,1703 1(ey + b, > 0) = |5 12]1(e?y,j+t7“yj>0),

2
1€S; l€S; V31— E;;

where €] is the [-th row of E and y—; is the vector y with the j-th coordinate removed.

In the following, we use z, ; to denote the j-th coordinate of z;, and y; = Zt;:l_l Qr (127 5.
We denote by z. _; the vector z, with the j-th coordinate removed. Therefore, we can invoke
Theorem H.4 with the configurations

G+ E, P < P2, Y (Z_Lj, 20,5y Zt—l,j)’

§l%El7j/,/1—Eﬁ-,bt<——Bt/,/1—El2’jaHdZ-,—FZT),J‘

to obtain that with probability at least 1 — §/n over the randomness of standard Gaussian vectors
Z_1:t—1,—j>» and for fixed t, o1, bt and ¥ = (Z 1,55 20,55 - thl,j)s

_ b+ E
S ey +b>0<C- (Z q>( tilﬂyf)ﬂs |p2slog(nd~ ))

l€S, l€S; V31— El}j

bt + Hl,Jyj
) + |S;|p2slog(nd~ )) (H.9)
(lez’; < \/ HZQJ ) 2

where C' is a universal constant independent of ¢, a;_1, b; and ). Here, in the last inequality, we
define D; = {l € [N] : H; ; # 0} as the set of rows in matrix H that have nonzero j-th coordinate.
Since F is just a submatrix of H, adding more rows to the summation does not decrease the target
value in the second inequality. Note that z_.;,_q _; are independent of z_;.;—1 ;. We thus conclude
that the above bound holds with probability at least 1 — § /n over the randomness of z_1.;_1. Further
applying the union bound for all j € [n — 1], we conclude that (H.9) holds with probability at least
1—4dforall j € [n—1].

Note that the randomness discussed above is only over z_1.;—1. We invoke a covering argument over
as;_1 € St and by € R similar to the proof of Theorem H.4. Since the argument is largely the same,
we will not repeat it here. The size of the covering net is n°(**+1), and we can pick § = n—¢~9(t+1)
in (H.9), which gives us the upper bound in the definition of £ with probability at least 1 — n~

c

Refined upper bound on y. We work with a fixed time step ¢ and aim to bound every coordinate
y; for j € [n — 1]. Here, we recall definitions

t—1
yj:E Ort—1 275, Be—1 =

T=—1

where ;1 represents the ¢5-norm of the component of w;_; in the subspace orthogonal to w_1.g.
(Recall that the coefficients {cv, ;—1 }f._:ll arise when projecting w;_1 onto the orthonormal basis

fo, V8wt ey
g Tt Tt
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To leverage InitCond-2, we make a change of basis for the first two directions, namely, we replace

{@ w bowith {d@o, @}, where @ 0 wp
w-_— w1 w w where w = « w-1 — o— —_—.
1, H'LU(J)'H 0, ) 0,0 1 LOH’LU(J)'”

Note that @ is orthogonal to wy. The projection of w;_; onto the direction w satisfies
‘(11_%71, lwf = ’ao,o Q_14-1—Q_10 a(),tfl‘ <l|a—1i-1]+ la—1,0]-

Since @y, @, and {w3 /||w||}E_} form an orthonormal basis, the component of w;_; orthogonal
to Wy is bounded by 8;_1 + |a—1,1—1| + |@—1,0]. Moreover, we can also decompose y; into the new
basis as follows:

t—1
Yy = (Wo, Wi—1) (04—1,0 Z-1+ Qoo Zo) + (@, wt—l)(ao,o Z1—Q_1g Zo) + Z Qri—12r
T=1
t—1
= (Wo, Wi—1) Y1 + (W, @t—1>(040,0 Z-1—Q_10 Zo) + Zar,t—l Zr
T=1

Under InitCond-2 the first term, (wy, W¢—1) Y1, is bounded by ¢;. Moreover, since both

t—1

Qp,02—-1 — Q®—-1,0 20 and {Z.,— =1

have their entries bounded by 2(1 + ¢)+/log(nt) on the good event &, the contribution from the
subspace orthogonal to wy is bounded by

C (Bi—1 + |a—1-1] + |a—1,0]) Vtlog(nt).

Thus, by the triangle inequality, for every coordinate j we have under event &, and &£; that
Y <G +C (Bt_l +lacg -1+ |a_1,0|) Vitlog(nt) =: (. (H.10)

Good event on the Bernstein concentration. In the following, we will use another good event to
control the upper bound in the definition of £. Consider the function ®(—(b; + zy;)/v1 — x2)9
for ¢ > 1. We demonstrate that this function is Lipschitz continuous and monotonically increasing
on the interval = € [0, 1] if y; > —b, by taking the derivative with respect to z:

> 0.

i(I)(_Bt + zy; )q _ @(—Et + zy; )qfl ' (_Et + xyj) Y~ (=by)x
dx Vi—az2/ V1— a2 VI—a2/ (1—x%)3/2
Using the upper bound for y specified in (H.10), we can define the critical value i, ; as the smallest
real number such that the following inequality holds:

1 Z @(—7& + Hl’jyj)q]l(go Nné&p) < maxi Z q’(—_bit i Hz,th)q < @(—L i hq’tCt)q.

il 5, /1 - HZ, setl 15| /&5 J1- HE, J1- 12,

(H.11)
As we will only be using ¢ € {3,4} in the following proof, we define the event &3 as the event such
that for all ¢ € {3,4}, a;—1 € S', b, € Rand j € [n — 1],

| by + Hy jyi\4
s ;WZQ(_tluyﬂ) 1(E) 1(&)

leD; \/ 1- Hl%j
n—1 - T
1 by + Hy syi\4 b h q
<o (Yo Y E[¢(t+m%) } +¢<7M) tlog(n) | |
= Dil & J1 - HE, 112,
where C is a universal constant independent of ¢, a;_1, b; and ;. To show the event &3 holds

with high probability, we can apply the Bernstein concentration inequality in Theorem J.3 for the
bounded random variables

1 ‘I)(—gt +Hl7jyj)q.
|D7|leD_j V1-HE
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That is, for fixed a;_1, by and with probability at least 1 — § over the randomness of z_1.;_1, we
have

l€ED;

Z e (W}qm)ﬂ(a)
2

by + Hy jy; q>2 ]
< |2logd1t E o - —214 1(ENE
< |2log Z [<| J|1ezr; ( %I_Hﬁj) (Eo N &)
5t‘f'Hl,‘y‘ 4 1 Et+h,tCt q _
+Z‘D ‘ ZE[ (- 1_};5;)%3@(_1_22 )" log(s).

leD; q,t

Moreover, we have for the second moment term that
1 by + Hy yina\ 2
E[( 3 ¢(_M) ) ]l(gomgl)}
|DJ| leD; \ll_HZQJ
1 by + Hy iy, b+ Hy
- E{@(w)q,ﬂ(&)mgl)] DIR P
D] J1 - HE, 1-HE

l€D; VeD;
S (1 S ot ) oty
= D51 D, 1 - H, 1-h2,

where in the first inequality, we invoke the upper bound in (H.11). Using the fact that va - b < a+b
for a,b > 0, we derive that

IN

. b + Hijy;\
g X (- ﬁHiZHly) 1(E0) 1(E1)

1 by + Hy yina] 1 by + fig 4G\ @ _
<C- — E[@ s ]+<I> — =2 ) log(671)
;mj ZEZ; ( ﬁ) 32 M) og

(H.12)

Now, we apply the covering argument over o1 € S' and b; € R similar to the proof of Theo-
rem H.4. The size of the covering net is n?**1) and we can pick § = n~°~ 9+ in (H.12), which
gives us the upper bound in the definition of &5 with P(£3) > 1 —n~°.

The Perturbed Variance. Given the good events &, £1, &2, and &3, we define

Z Zyy, where Zjp = <p(elTy; by) - cp(e;y; b) - {eg,ep) - 1(EgNE NEF N ER).
1 LI'=1
(H.13)

For concentration of Z, we consider the following Perturbed Variance (PV) defined as

e[ s}

i=1

where the perturbed term Z(%) is defined as follows:

Ny
. 1 ; ; , ,
20 =5 3 20, where 20 = o(e yD;b) - (el yDib) (e ) AP GED).
L=t '
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Here, y(*) = Zi{l Or p— 129 and z&i) is given by replacing the i-th coordinate of z; by an

independent A/(0, 1) random variable. In addition, the good events {&, @ )} _o are defined similarly

to £,, but using 2l )1 .+ instead of z_1.,_1. We begin by noting the elementary inequality (a —b)? <

2a? + 2b%. Thus, we obtain

n—1 N1 9
VS%]E Z(Z Zup W{Evi £0V El,,#0}> y]
! i=1 \l,I'=1
@
2 n—1 Ny 4 9
+m E[Z(Z Zl(,ll)/ ]l{El,i 7&0 V El’,i#O}) y]7
U L= \ur=1
an

where the upper bound is obtained by the following reasoning. For each perturbed quantity Z(), we
have

Ny
) 1
Zfz(l)f—z Z Z”/*Zl(l/ ]I{El,i#ovEl’,i#O}‘
1

/=1
Ll

Note that the difference Z; ;y — Z l( l), is nonzero only when at least one of the vectors e; or e;» has a
nonzero ¢th coordinate. The two terms (I) and (II) correspond to the contributions from the original
and the perturbed parts, respectively. In what follows we focus on an upper bound for the term (I);
the term (II) can be estimated by a completely analogous argument.

Controlling Term (I). Due to the L-Lipschitz continuity of ¢ with L = 2 + |b;|71, on the good
event &, the absolute value of ¢(e; y;b;) is bounded by (e, y;b:)| < |0(0;6:) + L - e/ ],
which can be further bounded as

(e yib)l < (dVn)~® + Lv/s-[lylec < CLy/tslog(n) :== By,

where we used that ¢ < n¢, |le||1 < /s, and that (d V n)~% < 1 < Ly/ts log(n). Note that

the same bound holds for <p(elTy(i); b;) on the corresponding good event 51(1). For Z; ;s defined in
(H.13), we first upper bound o (e; y; b;) - (€] y; by) by

ole] y;be) - olepy;by) < BEL(e] y+ by > 0)L(ejy+ by > 0) +2By(dVn)~® + (dVn) >,

where we recall that if e/ y + b, > 0, the neuron is deemed activated and its output is bounded
above by B;. Otherwise, by Definition B.3, the activation is bounded by (d V n)~“. Note that
the term (d V n) = B; " can be made arbitrarily small as ¢, is some large constant no less than 4.
Therefore, we just keep the first term above. Secondly, the inner product {e;, e;/) is upper bounded

by Z;:ll 1(E,; #0)-1(Ey ; # 0) as |[El|oc < 1. Lastly, the indicator 1(E;; # 0V Ey ; # 0)

can be upper bounded by 1(E;; # 0) + 1(Ey ; # 0). For (I), we then have

n—1 Ny

TLE:(ZZ ely+5t>0) ]l(el-',—y+5t>0)

j=11I'=1

4
(I)scﬂ

2
(1{Bus # 0} + 1{ B # 0}) 1{Bi; # 0} 1{ By # 0}) (MP_E,)
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Due to symmetry in the indices [ and I’, we can multiply the constant factor C' by 2 and obtain

|:n1n1N1

Z(ZZ]I el y+b>0)-1(E; #0)-1(E,; #0)

i=1 j=1[=1

Ny B 9
ST U(Bry #£0)-Lepy + b > 0)) (3,8,

'=1

n—1n—1 2
< . { <Z]1 e/ y+b>0) 1(E,; #0) 1(E; # 0)>
1 1

=1 j=

d

Ny 2
~ (Z 1(Ep; #0) - L(ejy + b > 0)) S1(ME_pE) y]7

I'=1

where the last inequality holds by the Cauchy-Schwarz inequality. Note that for i # j:

Ny N
> (B #0) - U(Ey; #0) < Z (Hyi #0)-1(H;; #0) < p1paN.
=1 =1

Using p1p2 N to substitue one ZlNzll 1(efy +b; > 0)-1(E;; #0)-1(E;; # 0) fori # j, we
obtain

n—1
(I)<BN'°1"’2. [L

2221 e y+be>0) L(E,; #0)-1(E; #0)

j=1i#j I=1
N1 B 9
(Z ]l(El’,j 7é 0) . ]l(el—l/—y + bt > O)) . ]l(ﬂ?:OEL) y:|
'=1
B4 n—1 N1 _ 2
1 j=1 1=1

Ny
(X 08, #0) 1efy+5 > 0)) - 10of)

I'=1

]

Rearranging the order of summation and using the fact that ) _, oy 1(E;; # 0) < s for any fixed j,
we can further simplify the terms as
d

y] (H.14)

2B} = °
M < tplpZS : [Z (Z]l e y+by>0)-1(E; # 0)) L(M)—oE.)

j=1 I=1

. |:nzl (Z 1( el y+ bt > 0) - (El,j # 0))4 ) ]l(ﬂ?:o&)

j=1 I=1

Observe that the above two terms share a common structure. We define the common structure as

1 n—1 Nip B
() := g E[Z(Zuef y+bt>0>-11(Ez,j¢0>)q~11<ﬂf;oa) y}

j=1 I=1

where ¢ € {3,4}. Recall the definition S; = {l € [IV1] : E; ; # 0}. It holds that |S;| < Nyp;. We
aim to control

Ny

Z]l(el—ry—i—l_)t > 0) . ]l(El’j 75 0) = ‘Sj|_1 Z ]l(el—ry-i-l_)t > 0)

=1 leS;
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in the following. By the definition of the good event &, we have

C n—1 b +H[7 y q
amsN?;i(Z@(t};ﬁ+wmwM(01m%w>

=1 \ \eD; 1 —-H;

_1C’ = . be + Hijyi\9 o3 q
Z| Dj|?- <|D | Z ( 71) H(OL—ogb)‘f‘(PzStlog(n)))

2
leD; 1- Hl)j

bt “V‘Hl’ Yy q
=t (Z ID; M;;q)( \/1_7];2]) 1(n (pzstlog(n))q>. (H.15)

where we use the Holder’s inequality for the second line, and in the last line, we absorb the constant
factor 297! into the universal constant C' and use the fact that |S;| < |D;| < Np; < Nypy/(1 —
p1)< C1Nyp; forall j € [n — 1], where we also absorb the factor CY into the universal constant C.
By the definition of the good event &3, it holds that

— 1 [ by + Hy jy; q] by + Tig G\ 9 )
<C- — ST E|o( - A (=) Y6g(n) | (H.16)
<JX—; IPil IEZD:J' ( \/1Hl2,j) ( \/1—53,)

To evaluate the expectation term, we use the Mills ratio ®(z) < Cp(x) for some universal constant
C > 0,2 > 0and p(z) = exp(—2?2/2)/+/27 to obtain

by + Hy jy;\9 q(bs + Hyjyj)%N . ~ _
- TS < . — I s < Y
E{@( — 12.) <C-E exp( 21— B2 )]l(bt+Hl7Jyj_0) +P(b; + H; jy; > 0)
H N ’

<C- E[exp(—Wﬂ * Q)(_fi%a)

1—H2, 3 b
—oy | —— T e Y pe(—),
1+(q—1)H12,j p( Q(THﬁj+;)) ( Hl,j)

(H.17)

where the third equality holds by direct algebraic calculation for Gaussian integral. By the Mills
ratio ®(z)/p(xz) > 2! — 273 = Cz~! for z > 1, and also the fact that H, ; € [0, 1], we conclude
that the right-hand side of (H.17) is bounded by

by + Hj jy;\ 1 _ —b
E[@(—H_l’]y]> } §C|bt|¢><1t). (H.18)
2 “lp2 1
V1 Hi; VITH
Similar to the previous argument, we also have ® (— by = ) as a non-decreasing function of
q

a—1_2
=1, 241
7 +

for € [0, 1] by checking the derivative. We define i, , as the smallest real number such that the

following inequality holds:
—b —b
§ <t > <n- @(t > (H.19)

AP Ve VR
Plugging (H.18) and (H.19) into (H.16), we have that

n—1

bt + Hl,JyJ 3
——==) L(N-&)

z; IGXD: ( \/ Hl2,_]) "

<C- <n|bt| o <_bt> + @(—W)qﬂog(n)) (H.20)
A2, + 1 11— 12,
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Combining (H.15) and (H.20), we obtain

(I < Cpf - (n |be| <I><_bt> + @(—M)qt log(n) + n(p2 stlog(n))q> .

-1 1 / 2
qT ﬁg,* +3 L- ﬁq,t

q
Note that we always have f;, < 1 and h;; < 1 fort > 1. As both @(\/%’21) and
ety

- q _
P (— f}%) (when (; > —b,) are non-decreasing functions with respect to x, for the first term in

the right-hand side of (H.14), we take ¢ = 3 and #i; + = 1 to have the following upper bound:

234 n—1 Nip 3 3
e E {Z (Do y+5>0) - 1(E; £0)) - 1OEE) y}
1 j=1 =1
_ 5
< CB}pipys - <n|bt<1><2i12tl> + tlog(n) + n(past log(n))3>. (H.21)
= Jr =
33T 3

For the second term on the right-hand side of (H.14), we take ¢ = 4 and obtain

QB? n—1 N1 . B 4
N E{Z (Z]l(el y+b>0) 1(E,; # 0)) “L(MPoEL) Z/]

j=1 1=1

_ -b b 4
< CB!pt. (n 1B (I)(bt> + @(_M) tlog(n) + n(p2 stlog(n))4> .

%hi,* + % \/ 1- hit

(H.22)
We conclude by combining (H.21) and (H.22) that

_ 5 _ -5
(1) <CBlpt. (n B4 @(ﬂ) +pzsnbt¢<t1>

3 2 232
i, +3 3h3.+3

+ (q, (_Mf + p25>tlog(n) +n(p2 stlog(n))4> = V5.

\J1—hi,

Similarly, (II) can be bounded by V. We are now ready to invoke Theorem J.9. Since V' < 2V}
with probability 1, the final bound for | Z — E[Z]] is then given by

|Z ~ E[Z]] < Cv/Volog(671),

where the inequality holds with probability at least 1 — § over the randomness of standard Gaussian
vectors z_1.7. Plugging in the formula for 1}, we obtain the following upper bound

. b . =
7~ ElZ)| < OB} - (n b @() - pzsmbt@(tl)

3 1 242
§ﬁ3,* +3

2
4 V4% 4

_ 1/2
by + I 4
+ <¢) (_M) + p23>tlog(n) + n(p2 stlog(n))4> log !

NaE o

with probability 1—4. For notational convenience, we define K; as the 1/4 power of each term inside
the bracket in the above equation (see (F.9) for the definition). The fluctuation of Z is controlled by

|Z —E[Z]] < CL?*p3tslogn - K2 -logd ™,

where we plug in the definition B; = L+/tslogn and L = 5 + |b:|y; is the Lipschitz constant for
the activation function .

69



Under review as a conference paper at ICLR 2026

Expectation E[Z]. For E[|E T o(Ey;;b;)|3], we have
1 1 ~ ~ -~
~7 ElIE (B0 3] < 5 D Ellehyibr) - (bl ys )] - (s )
1 1 1,I'=1
< - B [Blle( y:00) - oGl 0[] - T

where in the first inequality, we obtain the upper bound by also adding the rows of F that are not
contained in the submatrix F to the sum. Here, we use the notation

> T
hi=(Hqa,-- o, Hiic1, Hyigay oo Hype1)

to denote the [-th row of H with the i-th entry removed. This structure comes from the definition
(E.3) where we decompose the matrix H into submatrices F, F' and the column vector 6 as the
non-zero entries in H. ; if the feature of interest is the i-th feature. In the second inequality, we use
the fact that N/N; < C1, and define ]El,l’ as the empirical expectation over [,I’ € [N]2. Invoking
Theorem E.5 with L = o 4 |b¢|v1, b = by = by + ko, we conclude that

Bror [B (| i) - oy b)) - ()|

where in the first inequality, we directly apply Theorem F.5 to the expectation term, and in the second
inequality, we use the fact that (h;, hyr) < (hy, hy) for I,I” € [Ny] and the fact that the term inside
the expectation is non-decreasing when increasing the value of (h;, h;/). Just as before, since ¢; > 4

is large enough, the first term is negligible, and we can absorb it into the constant C' and focus on
the second term:

1 . I
—5 E[IETo(Ey;;b)|3] < CL? - ®(|by]) - By

Ny (he, hyr)

¢ <|Bt| W) (g, hl’>] :

Since ||ETp(Ey;;b;)||3 is non-negative, the same upper bound applies to E[Z], where Z includes
the indicator condition 1(N3_,&,).

Finally, we plug in § = n~° to conclude that with probability at least 1 — n~¢ it holds that

1 *
Nz IET o(Byis )3 - 1(€o) - L(MPZp€.) < CL? - pist?(logn)® - K7
1

+CL? - ®(|by|) - By

Note that the joint event 1(N2_,&,) holds with probability at least 1 — n~¢ as we discussed earlier.
Therefore, we can safely drop the indicator 1(N?_;&,) in the above inequality. This completes the
proof of Theorem F.4.

H.2.4 CONCENTRATION FOR ||[F " ¢(Fy; + 6 - v @;_1;bt)||3: PROOF OF THEOREM F.6

In the following proof, we will use C' to denote universal constants that change from line to line. Let
us fix {a, ;1 }_" | and b;. Then yf ~ N(0,I,,_,). For simplicity, we will denote y; by y in the

following. Let us define the good event

€={ _max |lzrll < (14 v0)y/2log(nt)}.
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It then follows from Theorem J.2 that P(£) < (nt)™¢ < n~¢ and also [yl < (1 +

V¢)\/2t1log(nt) on &. In particular,
lo(fi y + 0w " @136 L(E) < (v + [bely) (1 + ve) /2t log(nt) + bil|v]|20—1,-1) + (n V d) " := By,

where the inequality holds by the Lipschitz continuity of ¢ in Definition B.3 and also the fact that
b; + ko < 0 for the bias. Define

N3

1
Z = e Z (fi fo) - o(fTy + 00 T @e_150) - o(fil y + Opv T w15 b) L(E).

2 =1

Using the Cauchy-Schwarz inequality, we have

N3
1
7= 722 Z ( (flTy + GZUth—U bt)2 + Sﬁ(fz'Ty + el'UT@t—l;bt)Q) “A({fi, fr) #0) - 1(E)
Ll'=1
2
< ]52 Z (FTy+ 0 @, 13 b)° 1(E), (H.23)

where the first inequality follows from ab < a? + b2, and the second inequality follows from the
fact that (f}, fi)? is nonzero for at most Nop terms when going over I’ by definition (F.1). Next,
we concentrate the right-hand side of (H.23). Note that by the Lipschitz continuity of o, we have

(i y + 00 w1500 < (2 + [bev) (1f yl + Oil|vll20—1,0-1) + (n v d) =

By the Cauchy-Schwarz inequality, we further obtain

t,D(flTy + QIUTIT),:*U bt)2 < C(y2 + |bt|71)2<(flTy)2 + (9l||7)||20471,t71)2) +C(nVv d)_QCO-
(H.24)

To this end, we apply the Cauchy-Schwarz inequality again to obtain that

N2
N T _N,ZXEZ LG #0)) - 1Al < o2 Il

Under the good event &, we have ||yl2 < (1 + v/c)/2tlog(nt). In fact, |ly||3 ~ x2_;, and we can
apply the concentration inequality for the chi-squared distribution in Theorem J.1 to obtain that with
probability at least 1 — ¢, it holds over the randomness of y that

Ny N2
1 T,\2 1 T,\2 —1
—_— 1€) < — < Cpy- - (n+logd ).
~ l§:1(fz y) L&) < ~ l:1(fz y)? < Cpz - ( gd ")

Applying a union bound over {a, ;— 1} 71 and b; similar to Theorem H.4, and since Z is uniformly
bounded, we conclude that with probability at least 1 — n~¢, it holds for all ¢ < n° that

N3
N% S (F 9P U(E) < Cpa - (n+tlog(n)). (H.25)
=1

Combining (H.23), (H.24), and (H.25), we conclude that with probability at least 1 — n ¢, it holds
for all t < n€ that

Z < Cly+ iln)?pz - (N3 1013101302, oy + pan + pstlogn).

As the good event £ holds with sufficiently high probability if we choose ¢ large enough in the
definition of £, A similar bound holds for the original quantity || F "¢ (Fy, +60-v w,_1;b;)||3. This
completes the proof of Theorem F.6.
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H.2.5 CONCENTRATION FOR (2., ET¢(FEy;;b;)): PROOF OF THEOREM F.7

In the following proof, we will use C' to denote universal constants that change from line to line.
. - L d
When treating {aT,t,l}thlfl and b; to be deterministic, we have z; = a;—1yf + /1 — af’t% -z,

where z ~ N(0, I,_1) and is independent of y;. In the following, we use y to replace y;, and « to
replace o, ;1 for notational simplicity. Therefore, the concentration we consider can be reduced to
the concentration of

1 1
o =y, BT p(By b)) + V1 =02 - — (2, BT o(By; by)),
Nl Nl
Firstly, note that when conditioned on y, (z, ET o(Ey; b;)) is a gaussian random variable with mean

zero and variance | E T o(Ey; bt)||3, it holds with probability at least 1 — § over the randomness of
1y that

1 T . 1 T . 2 -1
A= ET (B b)) < 521 BT e(Byibo)3log o,

where the second order term has already been handled in Theorem F.4. Similar to the proof of Theo-
rem H.4, we can use a covering argument over {ozT_yt_l}t_l LESTL b eRT=-1,0,...,t—1

T=—

and ¢ < n° to obtain that with probability at least 1 — n~¢, it holds for all (7, ¢) that

1 T . ¢ T N
= BT e (By )| < 5| ET By o) - tog(n).

Now it remains to control the first term. Define good event

€ = {llyll < (1+ V&) y/2tlog(ni) ).

In fact, the above good event can be directly implied by the following good event:

£={ _max sl < (14 V) v2log(nD) .

For notational simplicity, we will just focus on the latter definition of the good event. It follows from
Theorem J.2 that P(€) > 1 — (tn)~¢ > 1 — n~°. Let us define

7= 50 ETplEwb0) 1), awnd VB[S (2~ 207 4],

where Z() = (y) ETo(Ey®;b,)) - 1(£®) and y¥) is given by replacing the i-th coordinate y;
with an independent copy y, ~ N(0, 1). Note that this is equivalent to replacing the i-th coordinate

of each z, with an independent copy zg). Thus, the good event £ can be also changed to &%)

accordingly. Next, we show how to control the variance V. Let us define
Zi=ey-ple yib) - 1(E) and 27 = ey @ (e yD;by) - 1(ED)
for any I € [N;]. On the joint event £ UEM U ... U E™ 1, we have by the Lipschitzness of ¢ in
Definition B.3 that
|Z1] < C(y2 + |be|y1)tlog(nt) =: By, VI € [Ny]. (H.26)

This bounds also holds for all Z l(i) for i € [n — 1]. By a reformulation, we obtain for the joint event
EU&E U...UE,_1 that

1 N1 ] 2 1 Ny ) 2
(Z - 2ZW)? = N2 (Z(Zl - Zl(l))) — N2 <Z(Zl - Zl(Z)) (B, # O))
L N=m L=

Ny Ny

i 2 i
<Nz 20 B A 0) < T (2 + (277 1(E #0)
=1 =1
Ny
5 ) o
< B2 Y (Uey+be > 0) + Le yD + 5> 0) + 2B, (n v d) ™) - LBy #0),
1

=1
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where the first inequality holds by the Cauchy-Schwarz inequality, the second one holds by (a —
b)? < 2(a? + b?), and the last line holds by Definition B.3 and the upper bound in (H.26). Since ¢
is some sufficiently large constant, we can safely ignore the term involving (n V d)~ in the sequel
(when invoking a constant factor C'). Taking a summation over i = 1,...,n — 1 on both sides and
taking the conditional expectation, we obtain that

n—1 N
V< %BZ‘ Zf: L(e/ y+b > 0) +E[L(e) y' +b; > 0)|y]) - L(Ey; #0).
i=1 [=1
Let us define
gly) = 2plB nzlill (e y+b>0)-1(E; #0).
=1 [=1
Therefore, the moment generating function of V' is controlled by

Elexp(AV)] < E [exp(Ag(y)) ~exp(AE[g(y™) | y])} <E [eXP(Ag(y)) -exp(/\g(y“)))}

for A > 0. Here, the last inequality follows from the Jensen’s inequality. To this end, we notice
that ¢ is a non-decreasing functions of y. Then by Theorem J.10, we have that Elexp(Ag(y)) -
exp(Ag(y™))] < Elexp(2Ag(y))]. Therefore, we just need to focus on the moment generating
function of g(y). Note that since ¢; is s-sparse, with probability at least 1 — § over the randomness
of y, we have

2sp1 B2 all — _ 3
gly) < %-E I(e) y + by > 0) < Cspi By - (D(|bs]) + prslogdt).
=1

where in the last inequality, we invoke Theorem H.4. This can be transformed into the following tail
bound
- v
Elexp(A\V)] < E[exp(2Ag(y))], where P(g(y) > Cspi Bf®(|by]) +v) < exp(—m>,
15754

and any v > 0. In particular, for V and V_ defined in (J.2), we always have 0 < V, < V and
0 < V_ < V. With the sub-exponential tail bound, we now invoke Condition 1 of Theorem J.8 to
conclude that with probability at least 1 — ¢ over the randomness of y,

12 —E[Z)| < OBy (y/sp1®([bi]) log 5~ + prslogd™). (H.27)

Since Z is Lipschitz over {a, ;1 }.—' | and {z, }.Z" |, we follow a similar covering argument over

the balls {S*~'}7_, with T < n°. Note that the failure probability of the joint event £ U £ U

U EM=1) s at most n'~¢. In addition, we can set § = n*C(n’CE”C) in (H.27), where ¢ is
the approximation error in the covering argument in the infinity norm. By a union bound of the
covering net of size n°c~"", we will obtain a failure probability at most n—¢ as well. By decreasing
the constant c slightly (up to 2), we can combine the two failure probabilities to obtain that for all
t < n°, it holds with probability at least 1 — n~° that

17~ E(2]] < CBy(\/sm®([bu]) - thog(n) + spr - tlog(m)).
Next, let us evaluate the expectation E[Z]. By definition,

B[] - 3Bl BT pl(Byib))]| = Bl B o(Byibe) - 10)

1 —
< E\/IE[Q/, ETo(By;by))?] - P(E).
Since P(€) < n~¢, while E[(y, ET(Ey; b))?] is at most C'(b7 + (1 + b |2)?) for some universal
constant C' by the Lipschitzness of ¢ given by Definition B.3. We can pick c in the definition of £
to be sufficiently large, Thereby, the approximation error in the expectation is negligible. We thus
just need to evaluate

Ny

1 1 ~
E]EK%ET (Ey;bt»] = EZE[e;y'w(efy;bt)] :EINN(O,I)[CCQO(x;bt)} =:01(by).
=1
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Hence, we conclude that for all 7 < ¢t — 1 and ¢t < n¢, it holds with probability at least 1 — n~° that

1 . =
e ETo(Bys; b)) — arp1 - <p1(bt)’ <@gt CBt(\/Splq)(|bt|) ~tlog(n) + spy - tlog(n))

C
1= 02y 5y 2 ET By - tog(n)
Plugging in the definition of B, = C(72 + |b¢|v1)t log(nt), we complete the proof of Theorem F.7.

H.2.6 CONCENTRATION FOR (2, F " o(Fy; + 6 - v w;_1;b;)): PROOF OF THEOREM F.9

In this proof, we will show the concentration for the term N, Yor, FTo(Fys 4+ 0 - v wy_1;b)).
Similar to the proof of Theorem F.7, when fixing {am_l}i_:l_l and {b;;}i=1, we have y; ~
N(0,1I,_1). For simplicity, we will denote y; by y in the following. Note that z, 4 Orp1Y +
\/1— af’tﬂ - z where z ~ N (0, I,,_1) is independent of y. In the sequel, we also simplify a, ;—1
to a. Therefore, the concentration we consider can be reduced to

1

1
o N. <yaFTap(Fy +6 v w_q; b)) +V1—a?- ~ <Z,FTSD(FZJ +6- ’UTU_thﬁbt»-
2 2

The concentration for the second part follows directly from the Gaussian tail bound. That said, with
probability at least 1 — 4, it holds that

1 1
e FTo(Fy +0- 0 @ 10| < = /2 FTo(Fy + 60T 15b)[3 - log oL,
N2 N2

where the rlght -hand side can be controlled by Theorem F.6. Then by a covering argument over
{ar1— 1}7_71 and b; similar to Theorem H.4 (with proper truncation of the random variables that

yields a sufficiently small error probability), we conclude that with probability at least 1 — n~°¢, it
holds forallt =1,...,Tand 7 = —1,0,...,t — 1 that

1 _ C _
A FTo(Fy+6-v w_1;b,))| < N \/IIFTsO(Fy +0-vT @ 1;0,)3 - tlog(n).
To control the first term, define good event

&= { _max |zT||Oo < (1+vc)y/2log(nt)}.

< (1 4 +/¢)y/2t1og(nt) and this good event holds with probability at
least 1 — (tn)~¢ > 1 — n~°. We define

n—1

1 .
Z=-—(Flo(Fy+0-v w_ ;b)) 1(E), and V =E|) (Z-2W) ‘ yl,
N i=1
where Z() = Ny Y y®@ FTo(Fy® 4+ 60 - vTw,_1;b,)) 1(EW).  Here, we define y* =
Z;:l_l g 12( ? with z£ ) given by replacing the i-th coordinate of z; with an independent copy,
and £ is the event defined with respect to z§ ). Let us define

= flTZl/ : go(flTy + 00 "Wy by) 1(E), Zz(i) = flTy(i) : SD(szy(i) + 00wy _1; by) ]l(g(i))v

where f; is the I-th row of F'. On the joint event £ UEW U --- U £~ we have by the Lipschitz
continuity of ¢ in Definition B.3 that

%] < C((r2 + o) - (V/T10g(m) + [vllza—1,4-1) + (n v d) =) - \/Tlog(n) = B,

where we also use the fact that b; + ¢ < 0 for the bias. Note that the (n V d)~ term is negligible
when ¢ is sufficiently large. For notation simplicity, we define b;; = b, + kg + 6,v " w,_1. This
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bound also holds for Zl(i). On the jointevent EUEM U --- U £ we have

1 (& - ’
(Z — z0)? < —Z —Z2 < — . (Z(Zz ~ Z 1(F, # 0))

2
N3 =1 2 =1
P Ny 2p N>
2 2 i
< L= 2P £0) < S 32+ (Z7)) 1(E £ 0)
=1 =1
2p232 N ~ . ~
< EN (WA y +bea > 0) + 1A YW + by > 0) + 2B, (n v d) =) L(Fy; # 0),

=1

where the first inequality holds by the Cauchy-Schwarz inequality, the second one holds by (a —
b)?2 < 2(a? + b?), and the last line holds by Definition B.3 and the upper bound for Z; and Z l(l).
We can also ignore the 25, Y(n v d)=% term by multiplying some universal constant. Taking a

summation over ¢ = 1,...,n — 1 on both sides with the conditional expectation, we obtain
Cp B2 n—1 Ng
9 ~ Lo~
EXNY (WA y + by > 0) + B[Sy +bey > 0)]) - 1(F # 0).
=1 I=1
Let us take
n—1 N2
C B
gy p2 ZZ]lfly+btz>0) (Fii: #0)
=1 I=1
CPQSB ~
= T?t Z ﬂ(flTy + bt7l > 0) S CPQSBILQ

=1

Then we have by the monotonicity of g and Theorem J.10 that E[exp(AV')] < Elexp(2Ag(y))] for
all A > 0. Invoking Theorem J.9 for this bounded variance, we obtain that with probability at least
1 — ¢ over the randomness of y, it holds that

|Z —E[Z]| < CBy\/p2s -logd L.

By a covering argument over {Oz.,-’t_l}:__:lfl and b; similar to Theorem H.4, we conclude that | Z —
E[Z]| < CByy/p2s - tlog(n) with probability at least 1 — n~¢ forall ¢t = 1,...,T and 7 =
—1,0,...,t — 1. In addition, the approximation error

B(Z) - - Blly FTolFy+ 00 01ib)| o \/PE)

by the Cauchy-Schwarz inequality and the fact that f," yo(f," y+6;v " @;_1; b;) has bounded second
moment. Therefore, by taking a sufficiently large c in the definition of the good event £, we can
make this approximation error negligible. Moreover, we also have

B[y (FTy + 00 @13 b)) = /1= 6 Eusviom [m (y/1 = 7+ 00T @13 be) .

Combining everything, we conclude that with probability at least 1 — n~¢, it holds for all ¢ =
,2TandT=—1,0,...,t — 1 that

No
1
E‘(zﬂ FTgo(FyZ + 00" w_q; b)) — Zar,t—l\/l — 9? “Egmn(o,1) [axp(\/l — 91232 + 60 w1 bt)} ‘
=1
<—\/1—04 AIFTo(Fy +0- 0T 1:6,)[3 - tlog(n)

+ Cargo1 - (2 + [belm) - (Vtlog(n) + [|v]lac—1,—1) - v/p2s - (tlog(n))*/?

This completes the proof of Theorem F.9.
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H.2.7 CONCENTRATION FOR 0" o(Fy; + 6v " w;_1;b;): PROOF OF THEOREM F.10

In the following, we will use C' to denote universal constants that change from line to line. Let f;
denote the I-th row of F. Let us first fix {a,;—1}.Z" | and b;. Then y¥ ~ N(0,1,_;). In the
sequel, we will simplify y < y;. Let us define the good event

£={ _ max |zl < (1+ve)y/2log(n)}.

It then follows from Theorem J.2 that P(€) < (nt)™¢ < n~¢ and also |yllec < (1 +

V¢)y/2tlog(nt) on . In particular,

lo(fi y + 60T w1560 1(E) < (72 + [be ) (1 + V) v/ 2t og(nt) + [[v]laa—1,-1) + (n V d) =% := By,
where the last inequality holds by noting that ¢ (+; b;) is 2 + |b¢|y1-Lipschitz by Definition B.3, and
also the fact that b, = b, + kg < 0. The target function to study is

N2
1 ~ ~
== E 0o(f, y; bed) L(E), where  byy = by + Orf[vf20—14-1.
Ny =1

Let y(*) be the vector obtained by replacing the i-th element of y; with an independent standard
Gaussian random variable y}(i). The good event £(*) is defined similarly. Deﬁne Z as the
correspondence of Z with ¥y and £®. Let us define variance V. = E[Y/] Yz — 702,
Notice that this V upper bounds both Vy = E[>."'(Z — Z0)21(Z > Z@)] and V. =
E[Y"(Z — Z0)21(Z < Z™)]. Note that when changing one coordinate in y, the total number

of terms affected in Z is at most Naps by definition (F.1). It then holds by the Cauchy-Schwarz
inequality that

C n—1 Ny LY _
V<SRS0 (e ush) 1E) — ey B 1E) 0]
=1 I=1
n—1 N2
B
Sctngylﬂ ) #0),
=1 I=1

where in the second inequality, the indicator is included since the term will be zero if f;(i) = 0.
Additionally, we invoke the bound B, to upper bound the ¢(-) term. Let us define

nlNz

CB?p C’Bps
g(y) = ”ZZ@ #0) < == 1013

i=1 [=1

By Theorem J.10, we know that the MGF of V' can be upper bounded by Elexp(A\V)] <

E [exp(2Ag(y))]. Thanks to the bounded variance, invoking Theorem J.9, we conclude that with
probability at least 1 — § over the randomness of y, it holds that

|2 ~E[Z)| < CBi)|0]l2 /5= 1og(07).
2

Next, we invoke a union covering argument over the ball St+1 for o 1—1 and also for b. Since Z
is Lipschitz and bounded, the approximation error can be made sufficiently small. Therefore, we
conclude that with probability at least 1 — n~¢, it holds for all ¢ < n¢ that

1Z - E| ]|<CBt||0||2\/ ~tlog(n).

Similar to previous proof, the error in E[Z] and N2_1]E[0T<p(Fyt + 60 - v ws_1;b;)] can be made
sufficiently small if we choose a large c in the definition of the good event £. Consequently we just
need to plug in the expectatin

L gpTor E \J1—62. vy by)].
N, [0 p(Fy;+0- v Wy 1;:0¢)] = NQZ m~No1)[9 o( Of o+ 0 v w 17bt)]

This completes the proof of Theorem F.10.
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H.3 PROPOGATION OF THE NON-GAUSSIAN ERROR

In this subsection, we analyze how to Non-Gaussian error Ay, propagates through the nonlinear
activation.

H.3.1 ERROR ANALYSIS FOR AFE;: PROOF OF THEOREM F.12

In the following proof, we will use C' to denote universal constants that change from line to line.

Bounding ||AE:||;. By definition of AE}, we have
IAE 1 = |ET@(E(y; + Aye);be) — ETo(Bysb)|ln < Vs - (B (yf + Aye); bi) — o(Byfsbe) |1

N1
<Vs(y2 4 bely) - D led Ayl - D(e) ye +be >0 Ve yf + by > 0)
=1

Ny
V53 224 [bel) - (v d) 0 L(e g+ b <0 A ¢ g + b < 0).
=1

where by = b; + Ko is the shifted bias. The first inequality follows from the fact that ||e;||; < /s
as each row ¢, is s-sparse. The second inequality holds by splitting the summation into two parts.
For the first part {/ : e; y; + b; > 0 V ¢ y; + by > 0} where the neuron is activated, we have the
term bounded by the Lipschitz continuity of ¢ times the pre-activation difference |elTAyt|. Here,
we recall from Definition B.3 that ¢ is (v2 + |b|v1)-Lipschitz continuous. For the second part
{l: el—'—yt +b: <0OA el—'—y{ +b; < 0} where the neuron is inactive, we simply apply the upper bound
on ¢ in Definition B.3 as (2 + |b:]) - (n V d) . Note that ¢ can be chosen to be a sufficiently large
constant. Thus, we just need to focus on the first part. Using the Cauchy-Schwarz inequality twice,
we have

Ny

N
Do lel Ayl L(efye +b0 > 0) <D llellz - Ay o Ller # 0) 2 - Llef ye + by > 0)
=1 =1

Ny N1
<D M(ef g b >0) > Ay ol(e #0)[3,  (H28)
=1 =1

where x o y is the Hadamard product between two vectors = and y. Note that the second term on the
right hand side can be further bounded by

N1 n—1

N1
ZHAyt ol(er #0)[3 = Z Z Ay} 1(Eri #0) < prNy - [ A3 (H.29)
=1

=1 i=1

Plugging (H.29) back into (H.28), and invoking Theorem F.3, we conclude that with probability at
least 1 — n=¢forall £ < n,

Ny
> el Ayl - 1(ef g+ b > 0) < CNy - \/(‘I’(—bt) + prstlog(n) + pa[be[ (| Aye|13) o1 [ Ayell5
=1

< ONy - ((y/pr®(=be) + pr/stlogn) - [ Agilla + prlBl - 1 Ape]3).

Note that the ideal activation ZlNzll 1(e] yr + by > 0) has an upper bound in Theorem F.2 even
tighter than the one we use above. Therefore, we just need to double the above error term. Thereby,
we conclude that

IAEy < CNy (2 + lbrln) - (/501 @(=be) + sp1/Flog m) - [ Ayella + V5o bl - [ Agell3)

+ CN1\/§(2 + |bt|) . (Tl V d)ico.
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Bounding || AE;||3. The proof is similar to bounding || AE||;. Again, we notice that for any test
vector z € RN,

-1 N n—1 N N,
1Bl = 30 (X Eum) < Y0 (S0 £ 0)) - (Y Eia?) < oo
=1 [=1 =1 [=1 =1

Here, the first inequality holds by the Cauchy-Schwarz inequality while the second inequality holds
by the sparsity assumption on the columns of E and also the fact that Z?;ll Ef; = el = 1.
Thereby, it holds for ||AE;||3 that

Ny
IAE3 < piN1lo(E(y; + Aye)ibe) — @(Eyfibo)ll3 < prN1(va + [belya)? - Y e Ayyl?
=1

Ny
< piN1 (2 + [bey)® D lledll3 - 1Ay 0 L(er # 0)[13 < (2 + [bel71)? - (01 V1) [ A3,
=1

where the second inequality holds by the Lipschitz continuity of ¢ and the third inequality follows
from the Cauchy-Schwarz inequality. The last inequality holds by invoking (H.29). Hence, we
complete the proof of Theorem F.12.

H.3.2 ERROR ANALYSIS FOR AF};: PROOF OF THEOREM F.13

In the following proof, we will use C' to denote universal constants that change from line to line. Let
f1 be the [-th row of matrix F'. Note that

[AF | < Vs lo(F(yr + Ay) +6 - v We_1;by) — o(Fy; +0- UT@t—1§bt)||1

N2 N2
< V(e + lbelya) - D AT Ayel < V(o + [bel) - 1 Agell2 - DI filla

=1 =1
< VsNa(v2 + [bely1) - [[ Ayl

where the first inequality follows from the fact that || f;]l; < /s by the Holder’s inequality for s-
sparse f; with || f;|]2 < 1, the second inequality follows from the Lipschitzness of ¢ and the third
inequality follows from the Cauchy-Schwarz inequality. In the last inequality, we use the fact that
| fill2 < 1. Next, we turn to the bound for || AF}||2. For any test vector z € R™2, we have

—1

No 2 n—1
1Pl = >0 (3 Fum) < DIE,
=1 i=1

i=1 I=

3 llzll3 < paNa I3, (H.30)

where we recall that p; = max;c(,,—1)[|Fi[lo/N2. Since AF, = FTApp,, we have |AF,|3 <
p2Na||Apr¢||3. Next, we use the same Lipschitzness of ¢ to upper bound || Apr.||3 as

No Ny n—1
AR5 < (v2 + [bel1)® - D AT Ael < (v + [bel ) - Y _IIANZ - D Ay?, L(F; # 0)
=1 =1 i=1
n—1 Ny
<+ 1ben)® DD Ay U(FL #0) < Napa(ya + [beln)? - [Agel3, (H31)
=1 1=1

where we use the Cauchy-Schwarz inequality in the second inequality, the fact that || f;|]2 < 1 in
the third inequality, and the definition of ps in the last inequality. Combining (H.30) and (H.31), we
conclude that ||AF||2 < paNa(y2 + |be]71) - [|Aye||2. This completes the proof of Theorem F.13.
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H.4 PROOFS FOR TECHNICAL LEMMAS

H.4.1 PROOF OF THEOREM F.5

We invoke the upper bound | (z;b)| < (nV d)~¢ + L(z + b) - 1(z > —b) to obtain that

Elo(x;b)p(tx + V1 — 12 - ;b))
<(nvd)“* +2(nvd) - L -E[(x+0b)-1(z > —b)]
+ L2 -El(z+b)-1(zx > =b) - (tx + V1 — 224+ b) - 1(ex + /1 — 122 > —D)]
@

Note that E[z1(x > —b)] = p(|b|) for any b by explicit calculation, where p(z) =
exp(—x?/2)/+/2m is the standard Gaussian density function. Therefore, we have

El(z +b) - 1(z > =b)] = Elz L(z > =b)] + b Pz > —b) = p(|b]) — [B|([b]) = F([b]),
where we define F'(x) = p(z) —z®(x). We note that the function F'(x) is monotonically decreasing

for all z € R. To see this, we take the derivative of F'(x) and using the fact that p'(z) = —ap(z)
and ®'(z) = —p(x), which gives us
F'(z) = —=®(z) — 2@ (z) — xp(z) = —P(x) + zp(z) — zp(z) = —P(x) < 0. (H.32)

In particular, function F'(z) is always positive for any x € R as lim, o, F((x) = 0 by the Mills
ratio lim, _,oc 2®(x)/p(z) = 1. Therefore, F(|b]) < F(0) = 1/2 and the first two terms involving
(n V d)~° are negligible. For the last term, by marginalizing z, we have

E[(z +b) - 1(z > —b) - 1z + 1—L22—|—l_))-]l(ia:+ 1tL2Z>—5)] )
[0 16> 5 Vima (L g D) (- D)
—E[(m+b)~]l(x>b)~ 1L2~F(51+_7Lf2):|.

Since F(z) is monotonically decreasing, we can upper bound the expectation by just plugging in
x = —b to obtain that

M <E[@+b) - 1(z>-b)] V12 F( ,/ ) VI— 2. F(b)) - |b|

Next, we prove that F'(x) < 2®(x) for all z > 0. For any x > 0, we have F'(z) =
(H.32), and ®’'(x) = —p(z). Therefore,

Flx) @) _o0) [7
@) ple) = p0) [ =%

where we use the fact that ®(x)/p(z) is monotonically decreasing. Noting that lim,_,~ F'(z) =0
and lim,_, o, ®(x) = 0, we thus conclude that F'(z) < 2®(x) for all z > 0. Consequently,

(I)§2x/1—L2~F(|5|)-F(|E\ L) <4V/1— 22 0(Jp)) - (|b| L)

14+
Therefore, we conclude the proof of this proposition.

H.4.2 PROOF OF THEOREM F.8
Proof of Theorem F.8. Note that

o1(be) = ]ExNN(O,l)[QD(x; be)x]
< L-E[l(z + b > 0)(z + b)) + Efjx| L(x + by <0)]-(dVn)

<L- ( [ exp(—b?/2) + ®(|bs]) +

oo exp(—b? /2)) +C(dVn)~°.

b
V2T
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Here, the last inequality holds by the following integral calculation:

/OO xp(z)dz = p(b), ﬁoo 2?p(z)dz = bp(b) + ®(b)
b b

for the standard normal distribution p(z) = exp(—z*/2)/v/27. For by < 0, the first and the last term
cancel in the bracket, and we conclude that @y (b;) < 2Co L®(|b:|) as (d V n)~° can be sufficienlty
small. On the other hand, using the condition ¢(x; b;) > x¢'(x + b) > Cox(x + by) for z > —b,
by Definition B.3, we have

@1(b¢) > CoR[M(x + by > 0)(x + by)x] + E[p(z; b))z 1 (b < 2 < —by)] — (n vV d)”E[|z]].

Here, we recall definition ¢(x;0) = ¢(x + b) + = - ¢'(z + b). Therefore, p(x;b) > ¢(x + b) for
x > 0. By Definition B.3, we know that ¢'(z + b) > 0 for all 2. Since —b; > 0, we have for
€ [—by, —by| that
plasbe) 2 @z +by) > —(n v d)™
where the last inequality holds by the monotonicity of ¢. Therefore, we conclude that

P1(be) = CoE[L(z + by > 0)(z + b)a] = C- (nVd)™* = —= C ([be])-

Since we can make o = |bs| — |b;| log-polynomially small, e.g., kg = (log(n V d))~%, for |b;| =
O(log(n v d)©), we have 20(|b;|) > ®(|bs|) > (b(‘bt‘) . This completes the proof. O

H.4.3 PROOF OF THEOREM F.11

Proof of Theorem F.11. Lower bounding the signal term. Let us lower bound the signal term.
Note that by the monotonicity assumption in Definition B.3,

(5 00) | 4oy, = O + b)) + 29" (2 +br) | 4oy, > Co.

For x € (—by, b;), we have (x;b;) > ¢(—bs; b)) > —(d vV n)~°. Together, we conclude that

N2

> Eeonion |t 9(\1- 0o+ 0Vda1,-1;b)]|

=1
> %Z:]E N(0,1 [91 ]l(as + brvda_y 1 + b > 0) 'Co(\/ 1— 6%z +6;Vda_, t—l)]
il < zN(0,1) \/ﬁ l 5

— Ng(d\/ Tl)ico

Ny
> Z‘I)< b, 91\/(30471,1571) -Coefﬂafufl — Ny(d V)~
=1

I

1—o(1) & —b,
272 ; ( N 1) Cot?Vda_y 1,

where in the second inequality, it follows from the direct calculation of the integral of the Gaussian
that a0,y [1(xz > a)z] = p(a) > 0 with p(a) being the density of N'(0,1) at a. The —(d V
n)~ on the right-hand side is negligible. Note that the indicator is selecting the larger half of 6;,
and we can thereby obtain the following lower bound

N>

_ o 1 —b a5 _ lol3
C™'Ny-CoVda_q,.1-02Q,, where = 0, > : 02 = 2,
2-Co 1i—1 - 02Q: Q: N, ZE_ ( ] N 1) N,
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Upper bounding the signal term. To arrive at an upper bound, we use the fact that ¢(x; ;) <
(dVn)=®1(x < —b;) + La 1(z > —b;) to obtain that

No
ZEINN(OJ) {el : <P(\/ 1—07x+ 9l\/g0471,t71; bt)}
1=1

S 0V/da 1,1 +b
< L;EINA/(OJ) l911<$+ l\/:o}%-f— L 0) . (ﬂx—&—&l\/&aul)]

+ Ng(d\/ Tl)_co

No
<CLY (0i\/1 - 02+ 6;Vda_1, 1) < CLN,?Vda_1; 4,
=1

where the last second inequality holds by noting that E[1(z > a)z] = p(|a|) < 1, and the last one
holds by noting that \/ga,u,l > 1. O

I PROOFS FOR SAE DYNAMICS ANALYSIS

In this section, we provide supplementary proofs for the results used in the proof of the main theorem
in §G.

I.1 PROOF OF THEOREM G.2

Let us first prove that there must exists some i € [n] such that 62 > 1/s. Since the total sum

de n] ZleD Zl 1M]|3 = N, and there are at most N s non-zero entries in the weight
matrix H, we have the average
N n
. = Y N1
Zl 1 E (Hlﬂ > 0) Ns §

On the other hand, we also have

_ "D, - 62 _
H222371| il J < max62.

S Dl T el

It thus follows that there exists some i € [n] such that 62 > 1/s.

Proof of the first inequality. By definition of h,, we have hZ > h2 for ¢ = 4. To prove the

upper bound on h,, we just need to show that h37 L 2> @ for any j € [n]. Let us consider the kernel
function in the definition of 7, ,:

IV
/(@) —@(m)-

In particular, we aim to show that f(-) is convex for « € [0,1]. The second derivative of f(x) is

given by

— Trg—1\2 B B

f(x) :p< ‘HZ+1) : I b(iq+) )7/2 : [3(q : 1x+é> 7b2]
q q

Using the property that b < —+/3, we conclude that f”(x) > 0 for z € [0, 1], and f is convex. Now,
by definition of %, ., we have

f(ﬁ2 > max —— \D | Z f(H maxf(lg | Z le’j) maxf(QQ) @D

S D, leD, JEln]
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where the second inequality follows from the convexity of f(x) and Jensen’s inequality. Moreover,
the first derivative of f(z) is given by

y (1)

1 ) 1 1\3/2
oty 20te+g)

> 0.

7(@) = —p(

Therefore, we have by (I.1) that 2 , > @ for any j € [n] and ¢ = 4. Consequently, h} > hj , >

q,x —

max;ep] @ > 1/s. This proves the first inequality.

Proof of the second inequality. Since we have by definition of @ that

7z 1013
"D

< (1= Qi(ha)) - B2 +Q(hi) - 1 < Qilhi) + b2,
it follows from the condition 62 > Q; (h;) that

N T

?

This completes the proof of the third inequality. Hence, we have completed the proof of Theo-
rem G.2.

1.2 PROOFS FOR CONCENTRATION RESULTS COMBINED

In the following, we present the proofs of the lemmas and propositions used in §G.2.

1.2.1 PROOF OF THEOREM G.5

From ®(|b;]) > Lspi(tlogn)3, we deduce that tlogn < n, since Lspin® > 1 > &(|b])
(recalling that p; > n~1). Hence, we can directly apply Theorem G.4 in what follows. Using the
bound in Theorem F.7 together with Theorem F.8, if we further assume ®(|b;|) > Lsp; (tlogn)?,
then the desired concentration result is obtained as follows:

(e BT By 0) = (1% 0(1)) - Nore 181 (b)) = C\ /1 = a2,y - IET(Byi 0|13 - tog(n).
(12)

Here, we use theifact that [N1/N — 1| < p; < 1, where p; < 1 can also be deduced from
the condition ®(|b;|) > Lsp;(tlog(n))3. For the concentration result for (z,, F " op(Fy; + 0 -
vat_l; b;)) in Theorem F.9, we use the Stein’s lemma to derive that

Na

N- / /

TVQ E |047',t—1‘ 1-— 9l2 . Ez~,/\f(0,1) {x(p( 1-— 9121‘ + HZvat_l; bt):|
=1

No
N2|aT,t—1| _
< NS (1 - 6) - Eponion [#(y/1 — 03 + 00T @i br)|

=1
< prlar L = o(@(|be]) - |evr-1]) (1.3)

where in the second inequality we use the Lipschitzness of ¢ and in the last inequality we use
Lspy(tlogn)® < ®(|b;|). Moreover, we have

N.
Lara-1]+ 52 - (VElog(n) + lellsla 1)) - V725 - (¢log(n))*/?

< Llar 1| - p1y/pas(tlogn) + pry/pas(tlogn)®? - dla_y —1ari|
< o(®([be]) - |z 1-1]) + prv/pas(tlogn)®/? - da_y 1oz, s (14)

where in the first inequality, we use Na/N < p; by definition and in the second inequality, we use
the fact p1./p2s(tlogn)? < p1(tlogn)? < ®(|b;|) under the condition Lsp; (tlogn)? < ®(|b]).
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Moreover, by Theorem F.8, we know that $; (b;) = Q(®(|b;|)). Consequently, by combining (I.3)
and (1.4) with the upper bound in Theorem F.9, we have

|<ZT, FTQD(Fyt +0-v @ _q; bt)>|
< 0 (Nfars11(6)) + Oy /1= a2,y - /IFTo(Fy + 60T @156 - tlog(n)
+ CNLpi+/p2s(tlog n)3/2 cdor 10141 1.5)

Let us consider the good event with respect to some universal constant C' > 0:

E: {||zT||<>o < Cy/log(tn), V71 < T}.

As we increase the constant C, the failure probability of the event £ can be made polynomially
small, e.g., 1 — n~°¢ for some other constant ¢ > 0 (See Theorem J.2). Conditioned on the success
of this event, we have for the non-Gaussian components that

(20, AE}) + (27, AF,)| < C\/log(tn) - (|AE:|1 + [|AF 1)
< CLN/log(n) - (v/sp1(\/ @(|be]) + \/sprtlogn) - VdBi_1 + v/5p1|be|dBF ;)
+ CLN+/log(n) - leﬁpl
< CLN\/logn - (\/sp1d®([bs])Be—1 + v/spr|be|dB7,), (L6)

where in the second inequality, we invoke Theorem F.12 and Theorem F.13 to bound the ¢; norm of
the error terms, and also the fact that ¢ is at most polynomial in n. In the last inequality, we use the

fact that || Ayl < \/aﬂt,l by Theorem F.1. Now, we combine the derived concentration results in
(1.2), (5) and (1.6) with 1 — a2, < 1 and the upper bound for | ET o (Ey;; by)[13 + |1 F T o(Fy: +

6 - v w;_1;b;)||% in Theorem G.4 to obtain that
(zr us) = (2, ETV@(Byf ;b)) 4+ (20, FT@(Fyy + 60 -0 wy_15b0)) + (27, AEy) + (20, AF})
= Nay 131(b) - (1 £ 0(1)) £ CNLpy\/p2s(tlogn)>/? - dlo s 1141
+ CNpyLy/tlogn - & + CLN\/logn - (\/sp1d®([bs)Be—1 + V'sp1[bi|dB7 ).

Hence, we complete the proof of the Theorem G.5.

[.2.2  PROOF OF THEOREM G.6
Recall by definition of wy, (v, w;)/||v||2 can be decomposed into

<U7wt>
0]l

= (z_1,u) + ||v||2 - GTgo(Fyt +6 v wq; b) + n_la,lyt,l. @7

Taking 7 = —1 in Theorem G.5, we have
(z_1,u) = Na_1,181(b;) - (1 + 0(1)) = CNLpy/pas(tlogn)®? - dja_y ,_1|?
+ CNpyLy/tlogn - & + CLN\/logn - (\/sp1d®(|bs])Bi—1 + V'sp1 [be|dB7 ).
1.8)
Moreover, by a direct decomposition of the second term, we have
[v]120T o(Fye + 6 - 0" @p—15b1) = [[v]] 20T @ (Fyi + 60" @-15b) + [[v]|26 T Ay
= [[vll28 "o (Fy; +6 v we—1;b;) £ [[0]|2]|6]]2 -

Notice that ||v|s = v/d- (14 C+/log(n)/d) with probability at least 1 —n ¢ by concentration of x>
random variables (see Theorem J.1). By Theorem F.13, we have |[Agp |2 < v/paNoL - ||Ayl2 <
vV p2NodLP;_1. Therefore,

[0ll2]|0l]2 - [Aprllz < CVd-\/N2b2 - L\/psNodLp;—1 < CLN prds/p2Bi—1.
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Now, combining the concentration results for 8 " (F Tyf + 6 - v w,_1;b;) in Theorem F.10, we
obtain that

[v]l20" @(Fy; +6 - v @;_1;b;)
= (1+0(1))Ntpy = C NLp1/pa 5 (tlogn)*>?da_1, 1+ C NLpidy/p2Bi—1.  (19)

Furthermore, we have by Theorem F.11 that N, 2 Co02Q; - N, do_1 t—1. Under the conditions

Ny  — _
20002Q, > maX{Lph/pgs(tlogn)S/Q, Ld~'®(|by]), L tlognpli},
N da_q 41

we conclude by also noting that \/Zia,l,t,l > 1 that
Ny > maX{CNLpl Vp2s(tlog n)3/2 ~da_1 -1, Na_1,-1¢1(bs), CNpiL/tlogn - ft}.
Now we plug (1.9) and (I1.8) into (I.7) to obtain

(v, wy)

[[v]]2 =(1+0(1))Ntpy +n "a_14-1

+ CLN+/dpyslogn - (\/ (1be]) + /prdpas=t + /prd|bs|Be— 1)'ﬁt—1~ 1.10)

Finally, under the conditions /Zs log n|b|8;—1 < 1, stlogn - ®(|b;|) < p1d, we have

Vidpislogn - (\/@(b]) + /prdpas=' + v/ p1d|be| Be—1) < Cpad.

Here, we use the fact that ps logn < 1, which can be deduced from the following inequality under
the condition %COQQQt > Lp1./pas(tlogn)3/2:

p1 2 fcerQt > Lp1+/p2s(tlogn)®/? > pi+/p2logn.

Moreover, under the condition

Ny  — _
“20002Q, > CLp; - br1 7
N Q141

we conclude that the second line of (I.10) can be upper bounded by o(N). Hence, the proof of
Theorem G.6 is completed.

1.2.3 PROOF OF THEOREM G.7

Recall from the definition of w; that

t—1

S (wtiu) ks
IR =7l = 3 (o) = Pz + ) )’
T=1 T T
+ || —1:t— 1Zt||2 ||ut HQ (Ill)

Lemma L1. Assume that T < v/d and d € (n'/**,n") for some universal constant ¢; € (0,1).
Then there exist universal constants ¢, C' > 0 such that with probability at least 1 — n™° over the
randomness of i.i.d. standard Gaussian vectors z_1.1, for all t € [T,

t—1
Toup) Jlwr |
Z< urer 21 Ut) +Z( [lu||2 HUJ_H ) +H 11 tH2 Hut ||2 <Cd- ||Ut||2
T=1
Proof. See §1.5.1 for a detailed proof. O

Lemma L.2 (Upper Bound for |ju;|2). If tlogn < n, —b; = O(y/logn), p1 < 1, it holds with
probability at least 1 — n=¢ for all t < T < \/d that

lulla < CNLp1 (& + VdBi—1).
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Proof. See §1.5.2 for a detailed proof. O

Combining Theorems 1.1 and 1.2, it holds with probability at least 1 — n = for all ¢ < \/d,

t—1

72:1< wrr 2 Ut) +Z( |uJ_H; |||Z)JT_||||22) + (1P e 1Zt||2 Hut ||2
< CVd - |lugllz < CNLpi V(& + Vipi—1). (L12)
It remains to upper bound "' (z;,u;)2. Recall that 5, = \/1 —a? g
A /Zi 11 047_ +_1- Using Theorem G.5, we conclude that

t—1

Z(zT, u)2 < CNBy_181(be) - (1 £ 0(1)) + CNLpy\/pzs(tlogn)®? - dla_1+ 1|81

T=1

+ CNpyLt\/logn - & + CLN+/tlogn - (\/Spld‘b \bt\)+\fp1|bt|d5t 1) B
< CNpyLty/logn - & + CLN p1dB:—1, (1.13)

where in the first inequality, the 5,1 terms in the first line is obtained by the Pythagorean sum with
respect to v, 41 for7 = 1,...,¢— 1. In the second line, an additional v/ — 1 factor is added to the

upper bound for |{z,,u;)| since \/Zt;:ll 22 < /t-max,—;1,__ ¢ 1|2z,|. In the last inequality, we

use the conditions /pa5(tlogn)3/? < 1, ®(|bs|) < pid(stlogn)~?, and v/stlogn|b:|B:—1 < 1
to upper bound all the terms containing 3;_1 by CLNp1dfB;—1. Plugging (I.12) and (I.13) into
(I.11), we obtain

| Pa o will2 < CVd - |lugl2 + C Z(ZT?ut>2 +n7 B < CNLPl\/g(ft + \/aﬁtq) +n7 B

T=1

Here, we use the fact that t/logn < \/3, which is implied by the condition p;d(st log n)_l >
®(|b]) > Lspy(tlog(n))?®. Lastly, by condition ™' < N®(|b;|) and the fact that Lpyd > ®(|b;|)
by assumption, we can absorb the ' 3;_; term into the C N Lp,d3;_; term. Hence, we complete
the proof of Theorem G.7.

1.2.4 PROOF OF THEOREM G.8

Recall by definition of w; that

[[vl13

By Theorem G.6, we already have (v,w:)/||v]l2 = (1 £ o(1))Nt. It remains to characterize
(z0,ut). We have by Theorem G.5 that

(z0,ut) = Nagt—1P1(b) - (1 £ 0(1)) £ CNLpy+/pas(t logn)?’/2 “dlog 101 1—1]
+ CNpiLy/tlogn - &§ + CLN - (\/5 log(n)prd®(|be]) 4 /s log(n)p1 [be|dBi—1) - Br—1
= Nag-141(b) - (1 £0(1)) £ CNLp1+/p2s(tlog ")3/2 “dlagi—10-1,4-1]
+ CNpyL/tlogn - & + CLNp1dB;—1

Here, in the last term we use the condition +/ts logn\l_)t\ﬂtq < 1 to upper bound
Vslogn|b|fi—1 < 1, and pid(stlogn)~' > ®(|bs]) to upper bound +/slog(n)p1d®(|b;|) <

v, w; )2 2
1Py twr]l2 = \/ 0% ) - Yane).
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Cp1d. Note that the fluctuation terms are similar to the one for (z_1,u;) in the proof of Theo-
rem G.6. Specifically, under the same conditions

N- — _
—20092Qt > maX{Lph/pgs(tlogn)?’/Q, L+/tlognpy & , Lp1 Bit }
N do_14-1 Q141

we have

Ny > CNL- rnax{ph/pgs(tlog n)3/2 ~dlag—10—14-1], prv/tlogn - &, pldﬂt_l}.

Thus, we conclude that (2, u;) = Nag—161(b) - (1 £ 0(1)) £ o(Ny). Thus,

U, Wt 2 _
||Pw71:0wt||2 = \/< ||’U||2> + (<ZO7ut> +n 1040,75—1)2
2

= /(N9 - (1% 0(1)))% + (Naos 181 (be) - (1 £ (1)) £+ o(Nth) + 7~ a0, 1)
= (1 0(1)) - |/(Ne)? + (N - 11 (b))

Here, the last inequality holds by also noting that n=* < N®(|b;|) < CN@;(b;). This completes
the proof.

1.3 PROOFS FOR RECURSION ANALYSIS

1.3.1 PROOF OF THEOREM G.10

What we need to prove here is that all the conditions in Theorem G.9 hold for the current time step
t if the conditions in Theorem G.10 hold. This is because the conditions in Theorem G.9 are the
union of the conditions in Theorems G.4 to G.8. In the following, we check all the listed conditions
one by one.

Step I: Checking all conditions in Theorem G.9. For the first step, we divide the conditions in
Theorem G.9 into three groups.

Group 1: Implication of Cond.(i) and Cond.(I). We first notice that since ¢ < 7', conditions
—by = O(/logn) < &1, kolb| = O(1), /pzs(tlogn)®? <1, 5=t <« N®(|bs|) A NadCob2Q),

are guaranteed by Cond.(i). Here, we need to be more careful about condition 1~ < NodC62(),,
as @, is a function of ¢, and what we directly have in Cond.(i) is for (); only. By definition @Q); =

Niz ZZNZQI 1 (9; > ﬁl_l), we note that (); is nondecreasing in a_; ;1. Therefore, we have the

following fact:
FactL3. Ifa_1:-1 > a1, then Qy > Q1.

In fact, the condition a—; ;1 > «_1 is automatically guaranteed by Cond.(I). Therefore, the

condition 17_1 < NgdCoﬁQt will hold for all successive ¢ as long as it holds for ¢ = 1 and
a_1,4-1 = a_1,. Meanwhile, we also have by the same reasoning that

Vda_14-1 > Vda_19>1

where the last inequality is guaranteed by InitCond-1. The condition /fslogn|b:|8;—1 < 1 is
guaranteed by Cond.(I) as well.

Group 2: Implication of Cond.(ii) to Cond.(iii). = The direct implication of Cond.(ii) is that
prd(stlogn) ™t > ®(|bs|) > Lspi(tlog(n))®.
Similarly, the direct implication of Cond.(IT) and Cond.(iii) is that

N 62 7 —
W20002Qt > max{Lpl\/@(tlogn)?)m’ Ld71®(|bt|)7 Lpl 515 1 }

Q_1t—1
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Here, we use t@ fact that t < T and the monotonicity of J; in Theorem I.3. It remains to check
whether 32 C02Q; > L+/tlog np; da_ff, holds.

t—1

Group 3: Implication of Cond.(ii),Cond.(iii), Cond.(I) and Cond.(II).  To verify this inequality
%COQQQt > Ly/tlognpy da_glt,,,_l , we just need to show that & /a_1 ;1 < C&;/a_1 o for some
universal constant C' > 0, as the corresponding inequality for the latter is already guaranteed by

Cond.(iii). Recall the definition of &, in Theorem G.4, the ratio &, /a_1 ;1 is given by

(  Vstlog(m)Ki+ pll\/‘I’(“’tU Bue| @ ([0l Ty ) (hosh)| + povi

+ ,DQd.
a1t a_1t—1
(1.14)
We obtain the above formula by the nonnegativity of a_; ;1 guaranteed by Cond.(I).
Proposition L4. If —b, < \/21og n for some universal constant & > 0, then for t > 2,
Ki <t-(Ki+Cylogn - (81 + 11|+ [a_10])).
Proof. See §1.5.3 for a detailed proof. O

Combining (I.14), Theorem 1.4 and the fact that v 1 > t2a,1’0 > a_1 0 by Cond.(I), we have
21 K _
& < Vst log(n)Kq 4 C\/th log(n)3/2( Bi—1 + 2)

a_14-1 Qa_14-1 Q1,41
pi "\ @D - Br @ (Bl ) tush] + o/
+ + v/ p2d
Q_1,t—-1
fl 2 3/2 ﬂtfl
< + Vst log(n) (7 + 2)7 (L15)
a_1,0 Q_1,t—1

where in the second inequality, we directly plug in the definition of {; with ¢ = 1 in (I.14) and use
the fact that vy 41 > t2a,1’0 to upper bound the first term in the right-hand side. Furthermore,
for each term in Cond.(I), we have the following relationship:

N. _
WQ <p1, Cof?2Q,=0(1), L=Q(1),

where the first inequality holds by direct definition of p; in (F.1), the second equality holds by noting
that 62 < 1, Q; < 1 and Cy is a universal constant, and the last inequality holds by ??. Together,
we have the following implication:

Ny  — _ _
JCOGQQt > Ly Bi—1 N Bi—1 <1
N a_1¢—1 a_1¢—1

Therefore, we can further simplify the upper bound in (I.15) to
&t < 3!
Q_1,t—1 a_1,0

Using (I.16), in order for condition %6’0972@]5 > Ly/tlognpy dajt,t,l to hold, we just need to
ensure

+ C/st? log(n)*/? - 1(t > 2). (1.16)

No . — No . —
W20°92Qt > Ly/tlog np WQCOGQQt > CLd ' pyVst5(logn)?.

doa_10’
The first one is clearly given by Cond.(iii), and the second one is satisfied because we have by using
Cond.(ii) and Cond.(iii) that

No  — _
W20092Qt > Ld='®([b|) > L2d ' pys(Tlog(n))? = CLd~ ' pyVst5(log n)>.

Here, the first inequality holds by the second condition in Cond.(iii), the second inequality holds
by Cond.(ii), and the last inequality holds by noting that we are considering any ¢ < 7'. The last

inequality shows that the last condition %C()ﬁ@t > Ly/tlognpy &t also holds automati-

do—1 ¢—1
cally under the conditions in Theorem G.10. To this end, we have shown that all the conditions in
Theorem G.9 hold for ¢ if the conditions in Theorem G.10 are satisfied.
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Step II: Deriving the recursion. As we have shown in the previous step, all the conditions in
Theorem G.9 hold for ¢ if the conditions in Theorem G.10 hold. Therefore, we can safely apply all
the concentration results derived in §G.2. We next show how to use the previous derived concen-
tration result on (v, wy)/[|v]|2, | Pu_y.owel|2, and || Py wql|2 to control the recursion of B, /a1

and 1/a_1 4. Since B is the projection of w, onto the P,,_, , direction, and or_; ; is the projection
of w; onto the v direction, we have

Be _ Mvlle- 1P, gwillz . CLpVd(& + Vdpi-1)
a1t <v7wt> a Coﬁ@t - NQ/N cdo_q -1
DR L S <1( S oyt log(n)¥2 - 1(t > 2) + 5“1).
Co62Q; - No/N Vd\a_io Q141
where in the first inequality, we use the upper bound for [| P | wyl|2 in Theorem G.7 and the lower
bound for (v, wy)/||v||2 in Theorem G.6 as (v, w;)/||v]|2 > (1 — o(1))Nvpy > NCy02Q, - No/N -

do_1,4+—1 by the lower bound of v; in Theorem F.11. The second inequality holds by plugging in
the upper bound for §;/a_; ;—1 in (1.16). Similarly, we have by definition of a1 ; that

U flvlle - flwellz o (1 +0(1)) - VU + ¢1(b)% + CLpy Vg,
Q-1 (vyw) 7~ (1—0(1)) ¥
_ (o1 V(CoQy - No/N - da_14-1)* + (CLO(B]))” + CLp Ve,
- CooﬁQt : Nz/N : dOé—l,t—l
CLp, . <<I>(b|) 1 n i( &1
T Cof2Q; - No/N pid  a_1-1 Vd\a—ip
+(1+0(1)).

where in the second inequality, we plug in the lower bound for ¢; and the upper bound for @1 (b;) in
Theorem F.8. The last inequality holds by the triangle inequality and the upper bound for &; /ov_1 ¢—1
in (I.16). This completes the proof of Theorem G.10.

+ CVst? log(n)¥/2 - 1(t > 2)))

1.3.2 PROOF OF THEOREM G.12

In the following proof, let us take 77 = max{(2s)~!,1}. As our goal is to establish that (G.5) and
(G.6) holds for all t < T7, we just need to show that Cond.(I) and Cond.(IT) hold for all ¢ < T7, as
they are the only conditions that might be violated over time, and the other conditions only depend
on the initial conditions.

Initial step. For ¢ = 1, we have a_1;,-1 = a_10 and 3,1 = By = 0. Hence, Cond.(I)
and Cond.(II) hold trivially. Before we start the proof, we first derive some useful inequalities.

Useful inequalities. For \;, we have by Cond.(v) and Cond.(vi) that
CLpq pldl_< Aoé1 d—¢
= —— = —, A& = < < 1. L.17)
CoPQr NN ey 8T g € Vslogn (
Using the above two inequalities, we have by (G.4) that

1

MP(b) | Mid 1 12— 12—
<1+ o(1) + ( +22)- <1+ 0(1) + (dY25 +1) < 3+ dV/2.
o SUHo+ (B4 ) e S Lol )
In fact, we have the ratio oz_170/a_171 as
D10 (3 4+dY2 ) a1 < (3d7Y2 +d5) - C/log M < 1. (L18)

a_11

Here, we use the fact that «_1, 9 = O(v/log M) with sufficiently high probability 1 — n—¢, and
M = poly(n). The above inequality demonstrates that cv_; ; is guaranteed to grow in the first step.
Thus, by definition of ), in (F.15), we conclude that

N2 N2

1 —b 1 - - N
QQ:EZn(@zm) > 5 20> pl(sa = +a7)) =5,

=1
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where we take v = |b|(3d~/? +d~°) = O(y/Togn - d='/?) and denote the right-hand side of the
above inequality as Q4. Since 6, € [0, 1], we have

92 -2 62
1—v2 2

)

Na
— 1
= 07<Q 1P+ (1-Q) P =Q51 -1+ = Q5>
N21:1

where the last inequality holds from ?? that 62 = Q(polylog(n)~') > v2. In the sequel, we will

use Qo > @/2 as the lower bound for Q. By definition of T, we have T} = (2¢)~* v 1 = ©(1).
In addition, for A5, we have
N = 20 o 2o O(polylog(n)) (L.19)
= — < — = O(polylog(n)), .
T Qe 62
where in the inequality we use the lower bound for Q2 and in the last equality we use 62 =
Q(polylog(n)~1) in 2? and Ao = O(polylog(n)) in Cond.(iv).

We now have for the coefficient Ao ®(|b|)/(p1d) that
X2(B) _ Mo®(H) _ @ud= _ -
pid Q2p1d Q2 7
where the second identity holds from Cond.(v) and the last inequality holds by noting that a1 ; >
a_1 o by the first step’s calculation in (I.18) and using the monotonicity of ¢); in Theorem 1.3. Next,
we upper bound the quantity C in (G.2):

B Ao Cha/5T¢ (logn) /2y 1
Cr=(1rolt) + 8 Vi) T
ME | Cypolylog(n)y 1
< (1o + Vo 1o Nz Ber=
< (140l + ZE) - (1 o(1) = 1+ o(1),

where in the first inequality, we use the fact that Ay < A; by the fact Q2 > @)1, and we invoke
the upper bound T < logn and Ay = O(polylog(n)) in (I.19). In the last inequality, we use the

previous bound for ;&5 in (I.17) together with the fact that \/ga,l,o > 1 by InitCond-1.

Induction step. Suppose the induction hypothesis holds for 1, 2, . . . ; t. We will show that Cond.(I)
and Cond.(II) hold for ¢ + 1 < T} as well. To this end, it is evident that a_; ; is always growing

before reaching C, which is evident from (G.3) by noting that Ao ®(|b|)/p1d < d= < 1.
We first look at the recursion of cv_1 ;. By (G.5), the ratio av_1 o/c_1,, is bounded by

a_1.0 M ®([D)\ 1 MP(B) M&
< R B S P
a1y = ( Pld > ( pld + \/a ) + 010471,0
(i _ —€ C\log M o B
< g—st=1) . S, ) < s(t—1)—(sA1/2) 1/2+€
<d (d + ?dbgn) + (1 +0(1)) 7 <cd +d

The first term on the right-hand side is decaying exponentially fast with respect to t. The second
term is much smaller than 1/7{ given that Ty < logn by definition. Therefore, both terms are much
smaller than 1/ T02. This implies the first condition in Cond.(I) holds for ¢ + 1.

Next, we look at the conditions involving ;. By previous analysis on 73 and the upper bound in
(I.19), we obtain

A3 < (polylog(n))®) V! = O(polylog(n)).
By recursion of 3;/ca_1 4 in (G.6), we have

B Ay &1 3 3/2
< - (T4 . 751
e Va (( o+ A1) 1o + CV/sT log(n) )
polylog(n) A&t
< . + C+/spolylog(n
) (2L 0y polyiog(n)

d—¢ C'/s polylog(n) ) < d~ < polylog(n)
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Here, the second inequality holds by the upper bound for )\gl_l and also the fact that Ty + Ay <
2A1 logn since Ay > 1 and Ty < logn. In the second inequality, we use the upper bound for A\;&;

in (I.17) and the fact that \/goz_m > 1 by InitCond-1. The last inequality holds because ¢ < 1/2
by definition. Using the above inequality with the fact that «_; ; < 1, we obtain

8, < d~ < polylog(n) » L
b= Vs VToslogn|b|’

where the last inequality holds by noting that both T, and |b| are at most O(polylog(n)). This
implies that the second condition in Cond.(I) holds for ¢ + 1.

Eventually, for Cond.(II), we have

Co02Q: - No/N Qi _ Q2 R 1
CLpy A Ao T 2X (pO Y Og(n) )

Therefore, the left-hand side of the above inequality is also much larger than 3; /a._1 ;. To this end,
we have finished the induction step and proved that Cond.(I) and Cond.(II) hold for all ¢ < T7.

Final step. According to the recursion in (G.5), let us consider the real value t* that satisfies

M®(B)\ -1 MB(B)  M& 1 o
(“}ﬂ?i") ‘ ( md | Va )' a_li)——log(d) (1.20)

for some small constant ¢y > 0 to be determined later. We first note that we can obtain the ¢ A 1/2
factor by the inequality for A; in (I.17) that

7 7 T 7 —1/2—c
A2 ®(|b]) < A1 ®(]b]) < A1 @(]b]) + )\1517 and A1 ®(]b]) + A1é1 <d 4 d
p1d p1d pd Vd p1d Vd Vslogn

Using the above inequality (I.21), and taking a logarithm of both sides with base d for (G.5), we
have for ¢* that

(1.21)

—1/2—e¢

+\/§10gn

1 log log d
)+10gd( )2_60 og log 7

1 (d—<
084 @_1,0 IOg d

which implies that

1 -t 1 cologlogd 1/2
t* <logy( —————) (1 ( ) < = (20)'Vv1="T.
- Ogd(d_g * Lf/glﬁ;;) (Ogd aie) " logd ) S <A1 (26) '

(1.22)

In the second inequality, we use the fact that by InitCond-1,

=) = logy([lll2) —log,((1 =) v/2Iog(M/m)) <

Therefore, we can take cq to be small enough but still on a constant level such that

1 loglog(M/n)
2 2logd

1
! (
Ogda

1 loglog(M/n) < 1 cologlogd
2 2logd -2 2logd

This justifies the second inequality in (I.22). Thus, there must exists some time ¢ < 77 such that
(I.20) holds. For this time ¢, we already have

1 A®([b))\ =1 () | M
altS( Pld) <P1d +\/g

This implies that a._q1 ; = 1 — o(1).

1
) +01<d™+ 0y < 1+0(1).
a_10
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Checking ov_1+—1 > a_1,;. An additional step is needed to show that a«_; ;1 > «_1; for all
t > 2 and before t* is reached. This is required because we want to ensure that before time t*, we
always have a_; ;1 > «_1 1, and the stopping time 7j will not prohibit us from reaching ¢*. In
fact, we have by (G.3) that

L ()\2<I>(|5|))t_2. (L _ Cl) 1.

Q_1.t Pld a_1,1

Therefore, the ratio av_1 4—1 /1,1 is bounded by

t—2

a_11 < (z\z‘I’(W)) ] (1 B 0104—1,1) 4 Cray.
a_1,t—1 p1d

We consider two cases. If Ci—1,1 > 1, we can just stop the gradient at t = 1 and obtain a_; ; =

1—o0(1) since C; = 1+0(1). In this case, we reach strong alignment in just one step. In another case

where Cia_1,1 < 1, since Ao ®(|b])/(p1d) < d~°, we have the above ratio strictly upper bounded

by 1. Hence, the condition w_1 ;—1 > «_1 1 holds for all ¢ > 2 and before ¢* is reached.

In both cases, we have shown that a1 ;1 > a_1,; hold for 2 < ¢ < t*. As we have shown that
Cond.(I) and Cond.(IT) hold for all ¢ < 73 from the induction step, t* < 77 from the final step,
and 77 < log(n) by definition, we conclude that 7j-Cond.(1) to Tp-Cond.(3) in the definition of the
stopping time 7j hold for all ¢ < ¢*. In other words, we have shown that T, > ¢*.

Thus, we complete the proof of Theorem G.12.

1.4 PROOFS FOR CONDITION SIMPLIFICATION

1.4.1 PROOF OF THEOREM G.13

Let us take ¢t* as the maximum number of iterations considered. In the following, we first provide
a sufficient condition for Cond.(iii), Cond.(v) and Cond.(vi) to hold. Then, we give a reformulation
of Cond.(i), Cond.(ii) and Cond.(iv).

A sufficient condition for Cond.(iii) to hold is given by

(16])
% > max{./pgs(logn ‘3/2 | ‘ , V1ogn - 51} (1.23)
0

under the condition dae_1,0 > 1. On the other hand, we note that Cond.(v) and Cond.(vi) can be
reformulated as

PR ] i)
Ao
Since d¢+/slogn - &1 > v/logn - £, we can safely delete the last term in (I.23). Also by noting that

d~° < 1, we can safely delete the second term in (I.23). Furthermore, by definition of £;, which we
recall as follows:

> d%/slogn - &. (1.24)

<I>(|5| 1 - <hl,hl/>) hu, )

L+ (g, hyr) * Veadlaciol + pavin,

& = /5 logn Ky + py 'y | (J0)) - Bu

we conclude that §; > v/pada_1,0 > /p2. Therefore,
d*/slogn - & > d\/pzslogn > /pas(logn)*/?,

where in the last inequality, we use the definition ¢ = C’loglogn/(clogd) > loglogn/logd.
Therefore, the first term in (I.23) can also be deleted. In summary, Cond.(iii) is automatically implied
by (1.24).

A reformulation of Cond.(ii) gives

1 o(|b Lsl 3
o ®(B])  Lslog(n)*

1.25
slogn pid d @:25)
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In the following, we will simplify the above condition. Note that

B([Bl)/(prd) = Qu/Mod ™5 < d~* < (slogn)™!
holds by using \g = O(polylog(n)) according to Cond.(iv) and A} Q1 -d~< = ®(|b|)/(p1d) accord-
ing to Cond.(v). Therefore, we can safely remove the first inequality in (1.25).

In the following, we aim to remove the condition ,/p2s(t*logn)3/? < 1 in Cond.(i). As
Q1/X0 > d+/slogn - & by Cond.(vi), we conclude that & < Q1/X\g < 1. By definition of
&, this condition directly implies that ps < n~'/2. Therefore, we can safely delete the condition
V/P25(t* logn)®/? < 1in Cond.(i).

To this end, we can summarize Cond.(ii), Cond.(iii), Cond.(v) and Cond.(vi) into one condition as
follows:

Qi _ () Lslog(n)?
o d=s = d > max{d Vslogn - &, T}’

and Cond.(i) and Cond.(iv) can be summarized into

d _
o = O(polylog(n)), ro = O((logn)~/2), 5=t < N (%0 Ao(fB])).

Note that in the last condition, we have p1d/Ao > ®(|b|) according to the first equality in (.4.1).
Hence, we only need to keep =1 < N®(|b]). This completes the proof of Theorem G.13.

1.4.2 PROOF OF THEOREM G.14

To prove this lemma, we need to upper bound the expectation term on the left-hand side of (G.10).

Recall that ]El,l’ is given by uniformly samples ,!’ from [N], and that (h;, hy) < 1 always holds.
We can upper bound the expectation term as follows:

= 3 (I ) A bl = 1)

J=1l,l/EDJ 1+<hl,hl/>
1y o L= (o)
‘P(b 7)-1 hy o hylloe > 2
+NQZ || 1+<hl,hl/> (”lo l|| = )
Jj=11,l'eD;
1 ¢ I N
< @(b #) 1(1h o hr >9),
=N PN T ) T 2 Lo hr]e > 2)
J=1LUED; R j=111'e€D;

where in the identity, we split the summation according to whether how many non-zero entries are
shared between two rows h; and h; in the H matrix. In the last inequality, we drop the indicator for
the case ||h; o hy/]|o = 1 and use the fact that ®(-) < 1 for the case ||h; o hyr||o > 2. For the first
term, we use the fact that |D;|/N < p; forall j € [n] to obtain

I & |1 —H, ;Hy; "o 1 —H, H
N (I)(b >J 7]>< 2, ‘I)(b ,J ,j)
2 Z Z ‘ 1 1+ H;Hy ;7 — A1 Z |D,|? Z 1o 1+ H; ;Hy ;

j=1Ll'eD j=1 LU'eD;
1o
S =)
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where the last inequality holds by the definition of h, in (G.9). In addition, the second term is upper
bounded by

N2Z > Aoyl > 2) < Z >y Z]l (Hy; #0)-1(Hy j #0)

j=11,l'eD; =1 j€ln]: i#5: [/=1
Hy j#0 Hj ;70

2

N
1
S max — Hl/ -1 Hl/_‘ 7£ 0
lE[N] N i 7621 #J g ( ! )
Hy ;#0,Hy ;j#0
1
< — N - py-ps < $2p1po.
_lIIel%N Z P11 P2 > S P1pP2

i,jE[n]i#]
Hy i #0,H) j#0

In the first inequality, we notice that if ||h; o hy/||o > 2, then there must exist two different feature
indices 7 # j such that both h;, by are non-zero at these two indices. This is indeed reflected in
the constraints H; ; # 0, H;; # 0 and the two indicators 1(Hy ; # 0) - 1(Hy ; # 0). Therefore,
summing over all posible (4,5) pairs gives an upper bound for the second term. In the second
inequality, we change the average over [ to be the maximum over /, and in the third inequality, we
use the definition of p, and p; in (F.1) to upper bound sum of the double indicator term. The last
inequality holds by noting that each row h; is s-sparse. Combining the above two bounds, we obtain
that

" 1= e
E {@<|bt| 1<ll>><hz,hz/>] < npi - (|bt|

h2
+
S 1) oot

1+ h2
lfh,*

< Cnpt - B([be]) ™+ + prpas?,

where in the last inequality, we use the Mills ratio

o0 7) < (1) v ee( i o)

1h 2
1-h2

exp(~53) T < Ca .

- 1
< Clby|7t-

=~ | t| m
and the above inequalities hold as long as (1 — h2)/(1 + h2) is on a constant level. Therefore, we
have proved Theorem G.14.

1.4.3 PROOF OF THEOREM G.15

Recall the definition /C; in (F.9) as
B 1/4
—b

2312 1
3h3.+3

K= n\5|<1> + pgsnb|<I><
3ﬁ2
4*

+ <(I>( bt P, 1<1> + (p2s) 1/ ) (log(n))l/4 +n'%py s log(n).

\J1-hi,

To upper bound the above terms, let us consider the following inequality for any 7 € (0,1) and
|b] > 1:

- 1 b2\ 1 1 72(b|? |b| L
® <. L < _ -
Pl < 7= exp( - ) o = Var exp(- ) B2+ 1
1 2|b|2 2 1 2 — 2
< -2 < —-®(p)7 1.26
<o) (|b|2+1> =N 1() 1.26)
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where in the first and the last inequalities, we use the Mills’ ratio bound that z/(z% + 1) <
®(x)/p(x) < 7! forall z > 0. Now, we can apply (1.26) to upper bound the first term in K;
as

1/4

T _B -\ 1/4 - hzl 1 -

nlile( =) | < Cll) o) T < cnlp)
3 K2 +l

4 "% 4

_ 1
Yia(p e, 127

where the last inequality holds because h, < h4 , by definition. Similarly, we can upper bound the
second term as

1/4
_ —b _ _ 3 _ _ 3
pasnli (e ) | < Clpasmli) - BB < ClpasnB) - (5
V.t 5
(1.28)
Here, the third term also follows from the above inequality as
b+h b+ h, _ (=heg/ieDp?
@(,w) < q)(,;g) <C- (I)(‘bD 1—h2 , (1.29)

VAR V1-h3

where in the first inequality, we use the derivative in (F.12) and the fact that ¢;/|b] = ©(1) > 1,
which is given by the definition (; = (1 4 €)2+/logn in (E.11), to conclude that increasing £ 1 to
h, will only increase the value of the whole term. In the second inequality, we apply (1.26) with

1= hG/lb
V1—h2

Here, we cl_aim 7 € (0,1) because by cor_ldition (1hy < 1 — v for some constant v > 0, we have
1 — h.(1/]b] > 0, and by noting that (1 /|b] > 1, we have

1—h,
< —==+1-h,<1.
TS Vion, =

In addition, since |b| < \/2Zlogn by condition ®(|b]) > p; > n~!, we also have ¢;/|b| > 1.
Consequently, we obtain that

€ (0,1).

-1 _+/p -1
VhP =1  Vhi? -1
as h, < 1. Therefore, we can apply (1.26) with 7 = (h;* — ¢1/[b|)/V/hs? — 1 € (0,1) in the last

inequality in (I.29). Now, we can combine (1.27), (1.28) and (I1.29) to obtain the desired result in
Theorem G.15.

1.5 PROOFS FOR TECHNICAL LEMMAS
1.5.1 PROOF OF THEOREM I.1

By Cauchy-Schwartz, it holds that

t—1 t—1
D (Purzrue)? < NPy, el - 3.
T=1 T=1

One thing to be noted is that z, is independent of the filtration o(u1.,). Consiquently, when con-
ditioned on uy.,, || Py, ., z-||3 ~ X2. By the concentration of x? distribution in Theorem J.1 with a
union bound over all 7 € [T'], we obtain that with probability at least 1 — n ¢ for some universal
constant ¢, C' > 0 that

| Py 20]13 < 74 Cy/Tlog(nT) + Clog(nT) < C(t +logn), VYrel[t—1], te][T).
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Therefore, we have that with probability at least 1 — n™°:

t—1
> (Purzrw)® < O +tlogn) - ull3, vt € [T). (1.30)

T=1
For the second term, it follows from Theorem H.1 that with probability at least 1 — n=¢:

t—1

(ug, ue) Jlwr ]l
T 1wz <Cd- —C'd e Utll5, V€ [T). 1.31)
;( 12 HU$||2> Z | L||2 1P el (7]

For the last term [Py, .~ ZtHQ |lui-||2, we also note that 2; is independent of the filtration
o(w_1:4-1). Therefore |Px ., Zl3 ~ x3_,,1- We have by Theorem J.1 with a union bound

over all ¢ € [T, and with probability at least 1 — n ™ that

|Po %3 <d—t+1+Cy/(d—t+1)log(nT)+ Clog(nT) < Cd, Vte [T]. (132)

Combining (I.31) and (I.32), we have with probability at least 1 — n~¢ and for all ¢ € [T:

o (udug) w22 )
2 ST L PE R 13 < Cd - (| Py wel3 F Il 13) = Cd - [lugl3-
Z A\t Tt

(1.33)

Now we combine (1.30) and (I.33) to obtain the desired result in Theorem I.1.

1.5.2 PROOF OF THEOREM 1.2
Recall that
up =B o(By;;b) + F o(Fy; +0-v w_1;b) + AE, + AF.

By the triangular inequality, we have

luellz < 20/ 1ET @By b3 + 1FT o (g +0 - vT @13 b) |3+ 2y I AE3 + | AF

By Theorem G.4, we have

VIET@(Eyt:b)l3 + |1FT o(Fye + 6 vT@1:b,)[3 < CLNpiés.

By Theorems F.12 and F.13, and the fact that N; < N and Ny < Np;, we derive that

VIAE3 + A3 < CLpuNVaB, -1 + CLprpoVdBy—r < CLNpy vy

This completes the proof of Theorem 1.2.

1.5.3 PROOF OF THEOREM 1.4

We recall from the definition of K; that
1/4 B 1/4

. 5 . 3
Ki=|nly <I><31) + pgsn|b|(1><21)
wlzﬁi*‘i“z ghg,*‘i’*

3

+ ¢<*%) + (pas) " | - (t1og(m) " + 1M pa s t1og(n),
V11—,

The terms that implicitly change with ¢ is (; and 74 ;. Recall that

G=¢+1({t>2)C( )
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with (; = V2 (14 €)v/2log n. Moreover, by definition of f4 ¢, we can rewrite the term as
1/4

b+ figsGr 1 b+ Hy G\
O i\t s )

To understand how the change in (; affects the term, we take the derivatives for positive power g:

%CI)(_ \b/1+—x§2)q =G - q@(— %)q_l . (_ \I/)1+_w§2> . \/fic 72 > 0.

Here, we have the second derivative larger than 0 since ¢; > ¢; = v2(1 + ¢)y/2logn > |b] by
assumption. Now, our goal is to upper bound the derivative with respect to (. We discuss in two
cases:

. glorx € [(1+1b]/¢)/2,1], wehave b+ ¢ € [(b+()/2,b+ (], = > (1 +1/v/2)/2 and
us
) s e e
<gq- sup p(Z)w-fL < gq-supp(z)-z=O(1).
22 \/I (VDA e =20
«For 2 € [0,(1 + [b]/¢)/2], we have v1—22 > /1—(1+b/()2/4 >
\/1 — (1 +1/v/2)2/4 = Q(1). Thus

d b+ zC \4 ¢
— () <gq- = O(y/logn).
() = NOTERYN :

Therefore, we conclude that for ¢ = 1, it holds for any H; ; € [0, 1] that

b+ H b+ Hp
‘D(—\/%) — ‘P(—\/ﬁ) < Cylogn - (Be—1 + |a—1t—1] + |a—10]).  (1.35)
1,5 l,j

Since [[z]la — |ylla < |z = ylla < m"*||z — y[|o for any z,y € R™ by the triangle inequality, we
conclude that the same upper bound in (I1.35) holds for each j in (1.34) as well. Therefore, the same
upper bound also holds after taking the maximum over j € [n] in (1.34). Therefore, we obtain that

Ke <t-(Ki+Cylogn- (Bi—1 + la—14-1] + la—10])).
This completes the proof of Theorem I.4.

J AUXILIARY LEMMAS

J.1 CONCENTRATION INEQUALITIES

Lemma J.1 (Chi-square concentration, Lemma 1 in Laurent & Massart (2000)). Let X;,..., X,
be independent random variables such that X; ~ N(0,1) for all i. Let a € R’} be a vector with
nonnegative entries. Then the following holds for any 6 € (0,1):

P ( > 2¢/||al3log 61 + 2[|al| 0 10g5—1> <.

n
> aiX? —|lal
i=1
Lemma J.2 (Tail probability for the maximum Gaussian random variables). Let X;,..., X, be
o?-subgaussian random variables with mean 0. Then for any t > 0,

t2
P<v1111ax X¢Z\/2021ogn+t>§exp< 5 )

202
In particular, if X1, ..., X, are independent standard normal random variables, then for any ¢ > 1,

P ( max X; > c\/210gn) < nt=e.
i=1,....,n
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Lemma J.3 (Bernstein’s inequality). Let X1, ..., X,, be independent random variables with | X; —
E[X;]| < C foralli € [n]. Then for any § € (0,1),

n 92.p—157 X.1-1 -1 -1
P<‘1ZX¢EX¢ S\/ n=t 3" Var[X;] -logé N C'logd > S1_
nia

n 3n
Lemma J.4. Let X1,..., X, be independent standard normal random variables and define M,, =
maxi<i<n X;. Then for any fixed € € (0, 1) and all sufficiently large n with 2(1 —€)* logn > 1 that

2e—e?
n
<(1—e)/ < - .
]P’(Mn_(l €) 210gn>_exp< 3 7r10gn>

Proof. Since X1,..., X, "= N(0,1), it holds for any = € R

P(M, < z) = (1 - ®(x))",

where ®(x) is the standard normal tail distribution function. In order to upper bound (1 — ®(x))"
when z = (1 — €)y/2logn, we use a well-known lower bound for the Gaussian tail. Specifically,
for all x > 0 (see, e.g., Ledoux & Talagrand (2013) or Boucheron et al. (2013)),

T 1 2
D(x) > Ax) = i Ee*‘” /2,
Hence, further applying the fact that 1 — A(x) < exp(—A(x)), we get
P(M, <z) < (1-A(z))" < exp(—nA(z)).
Now, for = (1 — €)y/2logn, we have

z  (1—e¢)y/2logn - V2

I+a22  1+2(1—¢€2logn ~ 3(1—e€)yIogn’
where the inequality holds for sufficiently large n such that 2(1 — €)% logn > 1. Thus,

1 2
A > - =97
(@)= 3(1 —e)y/mlogn "

Substituting this lower bound into our earlier inequality gives

1 2
P(Mn< 1—€)y/21 )< E———C)
= (1—€)y2logn —exp< 3(1—e)/rlogn

n26—62
- <_ 3v/mlog n) '
This completes the proof. O

J.2 EFRON-STEIN INEQUALITIES

Let Z be a function of independent random variables X1, ..., X,, with domain X
Z=f(X1,...,Xn), .1
where f : X™ — R is a measurable function. Let X1, ..., X/, be independent copies of X1, ..., Xp,.

Define the modified versions of Z where one coordinate is replaced by its independent copy:
Z0 = f(X1, o, X1, X)Xty -, X))
Define the deviation terms:

Vi=E|> (Z-2Z9)21{z> 2D} | X,,.. .,Xn] 7
i=1

Vo=E > (Z2-2Z9Y1{Z <29} | X,,... ,Xn] . (J.2)
=1

The following lemma is borrowed from Theorem 5 in Boucheron et al. (2003) for the case where
V4 is dominated by some linear transformation of Z.
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Lemma J.5 (Efron-Stein for dominated variance). For Z and V. defined in (J.1) and (J.2), respec-
tively, suppose that there exist positive constants a and b such that V,. < aZ + b. Then there is a
universal constant C > 0 such that for any 6 € (0, 1), with probability at least 1 — 6,

Z <E[Z]+C-+/(a-E[Z] +b)log(1/5) + C - alog(1/6).

The following lemma is borrowed from Theorem 2 in Boucheron et al. (2003).
Lemma J.6 (Efron-Stein for the moment generating function). Forall § > 0and A € (0,1/0),

Y, AV4
_ < — 1.
logE [exp (AM(Z — E[Z]))] < Y logE [exp( 7 )]
On the other hand, for all 8 > 0 and A € (0,1/0),
DY AV_
— - < — .
logE[exp (—A(Z — E[Z]))] < Y logE {exp( 7 )}

The following lemma is borrowed from Lemma 11 in Boucheron et al. (2003) for transforming the
upper bound on moment generating function (MGF) bound into an exponential tail bound.

Lemma J.7. Suppose for any \ € (0,1/a), there exists a constant V > 0 such that:
A2V
log E AZ -E[Z2])] < .
o8 Elexp(A(Z ~ BIZ))] < 1
Then there exists some universal constant C' such that for any 6 € (0, 1), with probability at least
1-4:

Z —E[Z] <C-+/Vlog(1/§) + C -alog(1/9).

With the above lemmas, we can derive the following Efron-Stein inequality for sub-exponential
variance.

Lemma J.8 (Efron-Stein inequality for sub-exponential variance). Suppose either of the following
two conditions is satisfied:

1. The variance V.. for Z satisfies that E[exp(AVy)] < Elexp(AVY)] for any X > 0, where
V. is a-subexponential with a € (0,1):
Q(v):=P(V. >V +v) < exp(—v/a).
when V. exceeds some threshold V' > 0.

2. The moment generating function of V. satisfies
Aa
1—aX

log Elexp(AVy)] < AV +
forsome V >0,0<a < 1landany0 <\ < a~'/2.

Then, with probability at least 1 — 6, it holds that

Z —E[Z] <C-\/Vog(6-1) +C - alog(6™").

Similarly, if V_ satisfies either of the two conditions, then with probability at least 1 — 6, it holds

that
E[Z] - Z < C-/Viog(s=1) + C-alog(6™1).

Proof. We just prove the first condition and the second condition can be implied by the proof. We
explicit calculate the MGF for V. The case for V_ can be handled similarly. Take parameter
X € (0,a='/?), we have for the moment generating function of V. that

Elexp(AV4)] = exp(AV) - (vlgtr)l Q)+ A- exp(A-v) - Q(v)dv)

oo

0+

< exp(\V) - (1 +A- /oo exp(—(a™' = A)- v)dv)

0+

A Aa
p=) _/\> = exp(AV) - <1+ l—a/\>'

98

= exp(AV) - (1 +



Under review as a conference paper at ICLR 2026

where we use 04 and 0_ to denote the limit from the right and left side of 0, respectively. Here,

in the first line, we use integration by parts to obtain an integration term with respect to the tail

probability Q(v). In the final line, we have the denominator 1 — aX > 0 since A < a~*/2 < a~! for
€ (0,1). Taking the logarithm on both side, we obtain that

Aa
1—a\

log E[exp(AV)] < AV +log(1 4+ Aa/(1 —aX)) < AV +

Now, we apply Theorem J.6 with ) replaced by A/ for some 6 € (a\, A\™!) to obtain that

g Elexp(\(Z - B{ZD)] < 25 e Eloxn ()] < 5+ (v + =575

N (V +a)
— (1=X)(1—aN/0)
Note that such a 6 exists since A < a~'/2. In particular, we have by the constraint on \ that

aX < v/a < \7'. Let us just pick # = +/a and further restrict ourselves to A < a~'/?/2 to obtain
that

A2(V +a) < N(V +a)
(I- a2 = (1-2)0/a)

Now, we invoke Theorem J.7 and conclude that there exists universal constant C' > 0 such that

Z-E[Z]<C-\/(V+a) log(6—1)+C-a-log(6™) <2C - (/Vlog(6~1) + va - log(671)).

A similar bound holds for the lower tail with the condition on V_. Hence, we complete the proof.
O

log Elexp(A(Z - E[2]))] <

Lemma J.9 (Efron-Stein inequality for bounded variance). Suppose that max{V,,V_} <V, with
probability at least 1 — exp(—a) for some a > n° and Vi > n~2 for some universal constant
c1,¢2 > 0. Also assume that max{V,,V_} is uniformly bounded by Vy with Vi < n for some
universal constant cg3 > 0. Then, with probability at least 1 — 0, it holds that

1Z —E[Z]| < C- (v/Volog(6-1) + Va~1Vilog(671)).

Proof. By Theorem J.6, we have for the moment generating function (MGF) of V. that

log Efexp(A(Z — E[2)))] < 155 -log E[exp( 7))

< 20 a(on(0) s (1) v, 1)

A A(Vi = V)
< : A= V) - VY
<1 (/\V0+9€Xp( 7 a)

In the following, we take 8 = 2A(V; — V}))/a, and the above upper bound can be simplified as

log Elexp(MZ ~ E[Z)))] < — (3 e (vo . M)
)\2 exp(—a/2)
Vo)/a ( ot 22 (" VO)/G)
Similarly for V_, we also have
)\2

log E[exp(—=A(Z — E[Z]))] <

exp(—a/2)
~To)/a <V° o - vo>/a>'

Therefore, in the following, we only need to consider the upper tail and the lower tail can be directly
implied. As long as 1/(2\%(V; — V4)/a) is polynomially in n, we will have exp(—a/2)/(2A\2(V; —
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Vo)/a) < Vp. Take t to be the deviation of Z from its mean, i.e., t = |Z — E[Z]|, we have By
Lemma 11 of Boucheron et al. (2003), we conclude by using the Chernoff bound that

2,
log P(Z — E[Z] > 1) < in { A2V _M}
re(0/a2(vi—vo)) L1 = A/2(Vi — Vp)/a
t2

< - )
T 2(4Vy +t\/2a (VL — V)/3)

where the last inequality holds as long as ¢ satisfies

t\/2a71(Vh — Vo)\—1/2 _ exp(—a/4)
17(1 ) > SR 13
+ oV > 7 (J.3)
The lower bound holds similarly. A sufficient condition for (J.3) to hold is
> 8exp(—a/4)

T V20N (V) — )

This condition will be automatically satisfied if we pick t = C - (1/Vplog(6—1) + y/a= (V4 — Vo)
log(é *1). Therefore, we conclude that with probability at least 1 — 4, it holds that

1Z-E[Z]| < C - (VVolog(6~1) + Va1 Vilog(6™")).
This completes the proof. O

Lemma J.10. Let w = (w1, wa, ..., wq) be a random vector, and let w'D denote the vector where
the i-th coordinate w; is replaced by an independent copy w}, while all other coordinates remain
unchanged. Suppose that f : R — R and g : R® — R are both nondecreasing/nonincreasing
functions with respect to the coordinate w;. Then, we have the inequality:

E[f(w)g(w)] > E[f(w)g(w)].
Proof of Theorem J.10. By the monotonicity of f and g, we have:

(f(w) = f(w)) - (g(w) = g(w™)) > 0.

Expanding the product and taking expectations, we obtain:

E[f(w)g(w)] —E[f(w)g(w)] —E[f(wD)g(w)] +E[f(w?)g(w™)] = 0.

By the symmetry of expectations, the first and last terms are equal, and the second and third terms
are also equal, so we obtain the desired inequality:

E[f(w)g(w)] > E[f(w)g(w™)].
This completes the proof. O

K THE USE OF LARGE LANGUAGE MODEL
We acknowledge the use of a large language model (LLM) primarily to improve the grammar and

clarity of this manuscript. The LLM was also used to assist with debugging and generating boiler-
plate code snippets, which were reviewed and validated by the authors.

L REVISION

L.1 DISCUSSIONS FOR GAUSSIAN FEATURE ASSUMPTION

In our current theory, we assume that the features are Gaussian distributed. This is primarily used to
obtain clean, closed-form concentration bounds on:

1. (§B.4.1) Inner products between different feature directions, so we can control interference
between features when multiple are active, and
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2. (§B.4.2) Pre-activations y = w ' x and their sparsity under the data model X = HV.

In specific, we employ the Gaussian conditioning technique, which allows us to decompose a high
dimensional Gaussian random vector into components that are explicitly dependent on the condi-
tioning event and components that are independent Gaussian noise. Theoretically extending these
probabilistic techniques to non-Gaussian settings is a non-trivial task and out of the scope of this
paper.

One generalization of the Gaussian conditioning technique involves using features uniformly sam-
pled from the unit sphere in our synthetic experiment (§3). This setup better reflects real-world
scenarios where features in LLMs are often normalized through layer-normalization. Despite the
different feature distribution, we still observe the resonance phenomenon predicted by our theory.
This is evident when inspecting the Feature Recovery Rate (FRR) in Figure 2, plotted for varying
activation frequencies p and dimensions d. This observation suggests that our theory is robust to the
specific distribution of features.

In addition, the empirical results on real LLM activations further confirm that the proposed GBA
method works well when V’s rows are just the features learned by the LLM, which are non-Gaussian.

L.2 REVISION FOR EVALUATION METRICS

We provide brief definitions of key evaluation metrics used in this paper, and they will be incorpo-
rated in the main text in the revision.

Feature Recovery Rate (FRR). For synthetic experiments, FRR is the fraction of ground-truth
features (v;) such that at least one neuron’s weight (w,,) has cosine similarity with (v;) above a
threshold (7yjgn). Formally:

Z Talign

1 - my Vg
FRR= - 1 {Hme ) ; Lm Vil
n [[win|2[|vil2

Max Cosine Similarity (MCS). For real-data experiments, MCS measures the maximum cosine
similarity between a neuron in one run and all neurons in another run, used to assess cross-seed
consistency.

Neuron Z-score. For a neuron m with activations {¢,, ;} on a batch, the Z-score is Z2* =
(Pm,max — Mm)/Sm Where @, max is the maximum activation, i, is the mean activation, and s,
is the standard deviation for activation. High Z-scores indicate neurons that selectively activate for
specific patterns.

Highest/Lowest Target Frequency (HTF/LTF). In GBA, neurons are partitioned into K groups
with target activation frequencies {py } &, arranged as a geometric sequence. HTF is p; (the largest
frequency, e.g., 0.5) and LTF is pg (the smallest frequency, e.g., 1073-10~%).

Top-« selection rule. For a given fraction o € (0, 1], this rule sorts neurons by a scalar metric
(max activation or Z-score) and selects the top « fraction for evaluation. This focuses analysis on
the most active or significant neurons, as only a small fraction typically capture meaningful features.

L.3 ENHANCED CAPTION FOR FIGURE 2: EVIDENCE OF PHASE TRANSITION

In the revision, we will add the following enhanced explanation to the caption of Figure 2:

Figure 2: Feature Recovery Rate (FRR) for varying activation frequencies p and dimensions d. In
the left panel (light superposition, d > /n), the high-FRR region forms a wide band in p above
/. In the right panel (heavy superposition, d < 1/n), the high-FRR region collapses into a narrow
diagonal band, where p must track f tightly. The contrast between wide and narrow resonance
bands provides empirical evidence for the theoretical phase transition at d = +/n, showing that the
same feature frequency f yields different learning tolerances depending on superposition level.
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L.4 DISCUSSIONS FOR GEOMETRIC SPACING OF TARGET ACTIVATION FREQUENCIES

In our Group Bias Adaptation (GBA) method, we assign neurons into K groups with Target Activa-
tion Frequencies (TAFs) {pk}f:l that are geometrically spaced between a Highest Target Frequency
(HTF) and a Lowest Target Frequency (LTF). This design choice is motivated by several theoretical
and practical considerations:

1. Theoretic guided group allocation. The theoretical resonance condition depends on p
being within at least a multiplicative band around f (can be even wider though if we have
less superposition). A geometric grid guarantees that for any feature frequency f within
[pK, p1], there exists some group with TAF py within a constant factor of f, regardless of
the exact exponent of the empirical feature distribution.

2. Better coverage in log-frequency space. Geometric spacing minimizes the number of
groups K needed to cover a wide frequency range [px, p1] to just logarithmic in the ratio
p1/pK. Empirically, we show in Figure 6 that having K > 10 groups is sufficient for
covering much of the frequency spectrum. However, other spacing (such as Zipfian) would
potentially require many more groups to achieve similar coverage, as the frequency decay
is slower than geometric. This would dilute the number of neurons per group, and we might
risk missing features in that frequency range.

L.5 CLARIFICATION ON NEURON RESONANCE

Intuitively, once a neuron has already learned a single feature, then its activation frequency will
match the feature’s occurrence frequency. Our work, however, is about the reverse direction under a
concrete training procedure:

If a group of neurons are trained to activate at frequency p, under suitable conditions these neurons
can provably recover features with frequency lying in a corresponding “resonance band”.

This is a non-trivial statement because at random initialization, the neurons do not align with any
features, and the training dynamics must guide them to do so if they are tuned at the right frequency.
This result justifies that a more active way of training Sparse Autoencoders (SAEs) is plausible, and
provides a theoretical foundation for our GBA algorithm.

L.6 CLARIFICATION THAT GBA 1S NOT A HIERARCHICAL SAE

One might wonder whether GBA with multiple frequency groups is essentially the same as Ma-
tryoshka SAEs (Bussmann et al.) or Hierarchical TopK SAEs (Balagansky et al., 2025) that are
designed to recover hierarchical features. However, we would like to clarify that GBA is fundamen-
tally different from these models, esentially because GBA uses a single loss for all groups, while
hierarchical SAEs or Matryoshka SAEs use multiple losses, each applied to a subset of the neurons.

As a consequence, one limitation of GBA is that it is not guaranteed to separate hierarchical features.
This does not violate our theoretical analysis, since we assume that the feature coefficient matrix H
has uniformly random supports, which rules out hierarchical feature structures.

To make this distinction more concrete, consider the following minimal example. Let a, b € R? be
unit vectors with b # +a, and suppose the dataset consists only of the two inputs

ze€{a+b a-0b},

i.e., the high-level feature a always co-occurs with either b or —b. Under a single global reconstruc-
tion loss (the structure used by GBA), there is no penalty for representing the data by the two basis
vectors a + b and a — b themselves. In other words, the model can minimize loss by learning neurons
aligned with a + b and a — b, without ever isolating a or b individually. By contrast, hierarchical or
multi-loss SAEs (e.g., Matryoshka) impose intermediate reconstruction objectives or capacity con-
straints at different levels. A high-level group that must explain the input with very few neurons (or
with its own reconstruction loss) is incentivized to capture the common component a rather than
the signed combinations a =+ b. Thus the multi-loss design can force a decomposition that separates
high- and low-level factors.
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Furthermore, this distinction explains why GBA is primarily compared against other single-loss
SAEs (TopK, JumpReLU, L;) in our experiments, rather than Matryoshka. Notably, despite not
being designed for hierarchical feature recovery, GBA still demonstrates competitive performance
on SAEBench compared to more advanced models like Matryoshka, as shown in Table 2. We
believe that extending GBA to handle hierarchical feature decomposition is an interesting direction
for future work, and it remains an insteresting research question on how to apply frequency-aware
training in that context.

L.7 ADDITIONAL RESULTS ON NEURON ANALYSIS

We further provide additional studies on the neurons learned by the GBA and TopK methods in
terms of the three metrics used in the main experiment: maximum activation, Z-score, and maximum
cosine similarity across different runs with different random seeds. All the other setup is the same as
in Figure 4. These metrics are computed based on the validation part of Github dataset, with the
hook position at the MLP output of layer 26. For the Z-score, we compute the largest value among
the tokens in the validation set, and for the maximum cosine similarity, we compute the smaller
value among the two additional runs. See §C.2 for rigorous definitions of these metrics. In addition,
for each neuron m, we also compute the activation fraction (or activation rate), which is defined as
the fraction of tokens where pre-activations of neuron m are non-negative.

Thus, for each neuron m, we have four metrics: maximum activation, Z-score, maximum cosine
similarity, and activation fraction. We generate scatter plots by plotting the Z-score against the other
three metrics. The results for GBA and TopK are presented in Figure 15 and Figure 16, respectively.

Z-score v.s. maximum activation. In Figure 15 (left), we present the scatter plot of the Z-score
versus the maximum activation of neurons, which is shown in the logarithmic scale with base 10. We
observe an almost linear relationship between the two metrics, indicating that neurons with higher
Z-scores also exhibit higher maximum activations. Notably, at the upper end of the distribution, a
subset of neurons attains even higher Z-scores. This behavior suggests that these neurons capture
a “cleaner” feature and fire exclusively when the feature is present. By the definition of the Z-
score, for neurons with the same maximum activation, a higher Z-score implies a lower variance.
In other words, these neurons’ activations tend to be bimodal—predominantly near a baseline when
the feature is absent and significantly higher when the feature is present. This is consistent with the
dashboard results for individual neurons as we shown in Figure 17.

Z-Score vs Max Activation Z-Score vs Activation Fraction Z-Score vs Max Cosine Similarity

- B o s
Z-Score (log10) Z-Score Z-Score

Max Cosine Similarity

Max Activation (log10)

Activation Frequency (Iog10)

Figure 15: Scatter plots for all SAE neurons illustrating neuron properties for the GBA method:
Z-score versus Maximum Activation, Fraction of Non-negative Pre-Activations (i.e., activation fre-
quency), and Maximum Cosine Similarity across different runs with different random seed. The 66k-
neuron SAE is trained on the GitHub dataset with a hook at the MLP output of layer 26.

Z-score v.s. activation fraction. In Figure 15 (middle), we present a scatter plot of the Z-score
versus the activation fraction, which is shown in the logarithmic scale with base 10. Neurons with
higher Z-scores generally exhibit an activation fraction near 10~2 to 10~ '. This suggests that they
predominantly capture infrequent yet salient features. Comparing to the TopK method, we observe
that the GBA method is more effective in capturing infrequent features, which is primarily due
to the fact that we purposefully assign groups with both high and low target activation frequency.
Additionally, the neuron grouping mechanism effectively adapts to diverse feature occurrence fre-
quencies, underscoring the adaptivity of our approach. Additionally, we observe several neurons
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with activation frequencies exceeding the HTF of 0.1 (by our default configurations). This behavior
is facilitated by the bias-clamping mechanism, which prevents biases from becoming excessively
negative, as discussed in §4.

On the contrary, we observe in Figure 16 (middle) that TopK is good at capturing frequent features,
but for infrequent features, it has very low Z-scores compared to the GBA method. This fact again
underscores the effectiveness of our approach in capturing infrequent features.

Z-score v.s. MCS. In Figure 15 (right), we present a scatter plot of the Z-score versus maximum
cosine similarity across different runs with distinct random seeds. Recall that a higher maximum
cosine similarity indicates more consistent feature recovery, and we observe that neurons with higher
Z-scores tend to exhibit higher levels of consistency. This result supports the effectiveness of GBA
in reliably extracting salient features.

Z-Score vs Max Activation Z-Score vs Activation Fraction 2Z-Score vs Max Cosine Similarity

Max Activation (log10)

Activation Frequency (log10)
Max Cosine Similarity

Z-Score (log10) Z-Score Z-Score

Figure 16: Scatter plots SAE neurons illustrating neuron properties trained using TopK with K =
300. The other configurations are the same as Figure 15
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Figure 17: Feature dashboard for neuron 4688 in the GBA-SAE model trained on Pile Github at layer
26’s MLP output position. This neuron exhibits a clear bimodal activation pattern, and is activated
before outputting the “class” token.

L.8 WHY FREQUENCY-AWARE TRAINING? A TOY EXAMPLE

To illustrate the benefits of frequency-aware training, we present a simple toy example, where we
will show that standard TopK/L1 SAEs can fail to recover the ground-truth features.

Data Generation. We randomly sample n = 128 features {v;}?_; € S¢~! with d = 42 dimen-
sions. We consider the dataset to be heavily imbalanced in the sense that different data could contain
dramatically different number of active features. Speicifically, we consider two types of data points:

1. Type A: with probability 0.5, we sample s = 3 features uniformly at random from {v;}?_,,
take their sum and />-normalize as the data point x.
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Figure 18: Feature dashboard for neuron 10984 in the GBA-SAE model trained on Pile Github at
layer 26’s MLP output position. This neuron activates uniquely when the model is going to generate
names of operating system such as “Ubuntu”, “Windows”, and “macOS”. This is a good example of a
neuron that captures a concept rather than a specific token.

2. Type B: with probability 0.5, we sample s = 20 features uniformly at random from
{v; }1_,, take their sum and ¢5-normalize as the data point z.

Thus, Type A data points are sparse combinations of a few features, while Type B data points
are denser combinations of many features. This specific data generation resemble the real-world
scenario where different data points could contain different number of active features. Note that the
only challenge here is the imbalance in the number of active features, while the feature frequencies
are all uniform at f = (3 + 20)/2n ~ 0.09.

Why it could be a challenge for standard SAEs. Standard SAEs like TopK regularized SAEs
typically assume a fixed sparsity level across all data points. For example, a TopK SAE with K = 10
assumes that each data point can be represented by activating only 10 neurons. While this K value
could be suitable for learing Type A data points (which only need 3 active features), it is too small
for Type B data points (which need 20 active features). Hence, the model could struggle to learn
real features from Type B data points.

Training Setup. We consider training TopK SAEs as our baseline method and make comparison
with our proposed GBA method. For all SAEs, we set the number of neurons to be M = 8192. We
consider the following configurations:

1. TopK SAE: We train TopK SAEs with M = 8192 neurons and sweep K € {20, 30, 50}.
These values correspond to different sparsity assumptions: K = 20 matches exactly the
sparsity of the dense (Type B) samples, while K = 30 and K = 50 represent over-
estimates. This setup evaluates the model’s robustness to fixed-sparsity constraints when
the true data sparsity varies significantly.

2. GBA SAE: We train two varients of GBA SAEs: (i) Full coverage: We set HTF=0.5,
LTF=0.001 just like in our main experiments with 10 groups. This setup ensures that the
target frequencies perfectly cover the feature frequency f ~ 0.09, allowing us to assess
GBA’s effectiveness when the frequency range is well-specified. (ii) Misspecified cov-
erage: We set HTF=0.01, LTF=0.001 with 10 groups, which does not cover the feature
frequency f =~ 0.09. This setup tests GBA’s robustness to imperfect frequency range spec-
ifications.

Results. We present the results in Table 4. We observe that:

* TopK SAE’s performance is highly sensitive to K: When K = 20, the model perfectly
matches the sparsity of Type B samples, achieving a perfect FRR of 100% at MCS >
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0.8 and 98.4% at MCS > 0.9. However, as K increases to 30 and 50, the FRR drops
significantly, especially at the higher MCS threshold of 0.9. This indicates that to recover
features accurately, the sparsity level must be carefully tuned to the data distribution, which
may not be feasible in practice.

* GBA SAE with full coverage excels: The GBA model with full frequency coverage
achieves perfect FRR of 100% at both MCS thresholds, demonstrating its ability to adap-
tively learn features across varying sparsity levels in the data. The 100% FRR is not sur-
prising here as predicted by our theoretical analysis. On the other hand, if we misspecify
the frequency coverage, the FRR drops significantly. These results again validate that it is
indeed the frequency-aware training that enables effective feature recovery.

Method FRR (MCS > 0.8) FRR (MCS > 0.9)
TopK=20 100.0% 98.4%
TopK=30 98.4% 24.2%
TopK=50 94.5% 23.4%

GBA Full coverage 100.0% 100.0%
GBA Misspecified coverage 38.3% 3.9%

Table 4: Feature Recovery Rate (FRR) across different methods and Maximum Cosine Similarity
(MCS) thresholds. Here, a feature is considered recovered if at least one neuron’s weight has a
cosine similarity with the feature above the specified MCS threshold (0.8 or 0.9).

L.9 ADDITIONAL SAEBENCH EVALUATION

We provide additional comparison of GBA with other SAE variants on SAEBench (Karvonen et al.,
2025) in Table 2.

For GBA, we always fix HTF = 0.5 and number of groups K = 20. To create GBA run with
different L sparsity, we vary the LTF from 1073 to 10~%, and also also vary the number of neurons
assigned to each group and ., the coefficient that controls how much we increase the bias for dead
neurons in each group (See line 18 of Algorithm 1). Specifically, we allocate more neurons to groups
with lower target frequencies while also decrease v, if we want to achieve a higher overall sparsity
level Ly. For this experiment, we train a groups of GBA models with final L values ranging from
132.9 to 694.9.

Why we do not target the very high sparsity (extremely low L() regime? In our sparsest run
(Lo = 132.9), we set LTF = 10~%, v, = 10~* and allocated a linearly increasing number of
neurons to groups with lower target frequencies. Empirically, we find that

1. Further decreasing the LTF, ~, or assigning more neurons to low-frequency groups dramati-
cally exacerbates the percentage of dead neurons, with the fraction of dead neurons exceeding
50%. This behavior is expected, as extremely low target frequencies (e.g., < 10~4) are difficult
to maintain stable given limited batch sizes, making neurons prone to becoming permanently
inactive. This constraint is fundamentally different from TopK methods, where sparsity can be
globally hardcoded by the parameter K.

2. Further tuning these hyperparameters does not effectively reduce the Ly value. One evidence
is from our ablation studies in Figure 6, where the lowest achievable sparsity is about 0.2%,
which corresponds to Ly =~ 132 for our setup with 66k neurons.

3. The 100 ~ 700 region of L already covers a wide range of sparsity levels that are of practical
interest, whereas similar range of L has also been used in prior SAE works (Gao et al., 2024).

Consequently, to evaluate the performance of GBA in a reasonable configuration setting, we do not
make further attempt to push GBA into the extremely low L, regime in this experiment.

We provide the comparison results of GBA with other SAE varients in Figure 19. Here, we only
train the GBA models with different L values, and the results of the other SAE models are taken
from Karvonen et al. (2025), where the SAE baselines are all trained with the same data and LLM
architecture as ours.

106



Under review as a conference paper at ICLR 2026

Sparse Probing

RAVEL Disentanglement

Explained Variance

Explained Variance Absorption Score SCR Score
% 0.4+
5 b .\V\'
= e ~
g 1071 4 Ny RN ¢ o
L;,:) \\‘x N T - e 5 031
g o--Sg -7~ 3
N e Jus. il
= A A Q
2 1024 . & 0.2
Q
< ((\/’*
T T T T : T 0.1 T T T
200 400 600 200 400 600 200 400 600
L0 L0 LO
Sparse Probing TPP Score Alive Fraction
0.960 “ e 1.0
0.958 1 o & ; & L 4 .g
’ S 191 e S .l
g 10 b | v € 08
S o =
0.956 1 7S & =
<
e 0.6 1
0.954 e
200 400 600 200 400 600 200 400 600
LO LO Lo
RAVEL Disentanglement RAVEL Cause RAVEL Isolation
0.750 o 0757 g
¥ 8
E ke
0.725 1 O 0.70 1 2
z .
07007 < 0.65 z
~ %
0.675 1
i T T T 060 L e T T T T T T
200 400 600 200 400 600 200 400 600
L0 L0 LO
® Standard ® BatchTopK v  GatedSAE ¢ JumpRelu % GBA
m  TopK A MatryoshkaBatchTopK

Figure 19: SAEBench Evaluation Results. We compare GBA with other SAE variants across mul-
tiple metrics. Here, we constrain the comparison to SAE models with Lg values between 100 and
500 to ensure a fair evaluation. For SCR (Marks et al., 2024) and TPP metrics, we take the aver-
age of the scores over Top-20 and Top-50 neurons as scores evaluated for these numbers tend to be
more stable (Karvonen et al., 2025) while avoiding biases from too limited neuron counts. All the
metrics except Absorption Score are better when higher, while Absorption Score is better when lower.
GBA demonstrates competitive performance across Explained Variance, Absorption Score, TPP Score,
Alive Fraction (for high L¢), and RAVEL Isolation metrics.

GBA method demonstrates a distinct performance profile compared to standard Sparse Autoencoder
(SAE) baselines. Key observations include:

1. Explained Variance: GBA consistently achieves the highest explained variance across all scru-

tinized L levels (ranging from 100 to 400), significantly outperforming Standard and PAnneal
baselines while maintaining a slight edge over BatchTopK and Matryoshka models.

Absorption Score: GBA achieves the lowest Absorption Score (approaching 10~2 on the log
scale), which is significantly better than Standard, TopK, and GatedSAE (hovering around
10~1). This indicates that GBA features are consistently activated when their corresponding
input features are present, demonstrating effective feature capture. We add more discussions
on this point later.

. SCR Score: GBA significantly underperforms on the Spurious Correlation Removal (SCR)
metric when we push the Ly value to 132.9. One possible reason for such a sharp drop is
that many neurons in the model are allocated to extremely low-frequency groups (with target
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frequencies below 10~?), and the model can fail to capture spurious features that are used for
the SCR task.

4. Sparse Probing: In the sparse probing classification task, GBA remains competitive with an
accuracy of approximately 0.953 ~ 0.957. However, it is marginally outperformed by other
varients, which achieve slightly higher linear separability at similar sparsity levels.

5. TPP Score: GBA shows competitive performance on the TPP metric compared to other SAE
varients, and is on par with BatchTopK and outperform JumpReLU and GatedSAE, demon-
strating its ability to capture features with high causal disentanglement quality.

6. Alive Fraction: The method exhibits exceptional stability with a near-perfect alive fraction
(= 1.0) for L values above 300. However, for lower L, values (e.g., 132.9), the alive fraction
decreases to around 0.75. The reason for this drop lies in how we configure GBA for achieving
low Lg values, which involves setting very low target frequencies for some groups, assigning
more neurons to low-frequency groups, and using a small v value. All these factors contribute
to an increased likelihood of neurons becoming permanently inactive.

7. RAVEL Metrics: GBA performs competitively on the RAVEL suite, particularly in RAVEL
Isolation and RAVEL Disentanglement. The performance trend improves as Lg increases, sug-
gesting the features recovered are causally distinct and well-separated.

The tables for similar Ly SAE comparison are also available in Table 6 and Table 5 for L around
300 and 100, respectively.

Further Discussion on Absorption Score. GBA demonstrates particularly strong performance on
the Absorption Score, achieving values significantly lower than other methods. To ensure this low
score reflects genuine feature disentanglement rather than trivial artifacts, we additionally evaluate
the Mean F1 score for the first-letter prediction task, following Chanin et al. (2024). Formally, the
F1 score is defined as the harmonic mean of precision and recall:

2 - Precision - Recall

F 1= . . )
Precision + Recall
<. TP TP . . . ps
where Precision = 5 TP and Recall = TPIEN" with TP, FP, and FN denoting true positives,

false positives, and false negatives, respectively. This metric evaluates the utility of the top-%k neu-
rons—selected via cosine similarity with a task-specific probe—in predicting the first letter of a
token. A high Mean F1 score confirms that the unabsorbed features are semantically meaningful.

As shown in Figure 20, GBA consistently achieves Mean F1 scores in the range of 0.6-0.7 across
different sparsity levels. Such an Mean F1 Score matches and is even slightly better than those
reported in (Chanin et al., 2024). This suggests that GBA successfully recovers accurate, task-
relevant features, thereby validating that its low Absorption Score reflects genuine disentanglement
rather than artifacts. Furthermore, the Mean F1 score increases only mildly with k, implying that the
top neuron alone captures most of the predictive power for this task—a strong indicator of minimal
feature absorption.
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Figure 20: Mean F1 Score Comparison. We compare the Mean F1 score of the top-k neurons for the
first letter prediction task in our trained GBA SAEs with different Lo values. Notably, across different
sparsity levels, we find that GBA consistently achieves Mean F1 scores around 0.6 ~ 0.7, while
standard SAEs usually have Mean F1 scores below 0.5 for these Lg levels as reported in (Chanin et al.,
2024). This indicates that GBA indeed learns SAE latents that are accurate in capturing meaningful
features and the low Absorption Score is not due to trivial artifacts.

Metric GatedSAE TopK BatchTopK Matryoshka JumpReLU (S Er[:) Standard
Lo 175.2 173.4 168.6 166.7 162.5 1329 1253
Explained Variance T 0.812 0.816 0.816 0.793 0.812 0.859 0.730
Absorption Score | 0.2657 0.0838  0.0424 0.0083 0.0821  0.0022 0.3529
SCR Metric 1 0.323 0.321 0.349 0.391 0.303 0.107  0.209
Sparse Probing 1 0.957 0.956 0.956 0.957 0.958 0954 0954
TPP Metric 1 0.072 0.100 0.094 0.209 0.105 0.144  0.018
Alive Fraction 1 0.890 0.910 0.856 0.897 0.719 0.723  0.719
RAVEL Disent. 1 0.730 0.709 0.714 0.739 0.728 0.710  0.665
RAVEL Cause 1 0.710 0.677 0.676 0.735 0.710 0.658  0.603
RAVEL Isolation 1 0.751 0.742 0.752 0.743 0.747 0.762  0.727

Table 5: Performance comparison of SAE models with Lo between 100 ~ 200 on SAEBench. Arrows
indicate whether higher (1) or lower (]) values are better. Bold indicates best performance, and underline
indicates second best. GBA achieves the best performance in 3 out of 9 metrics, and for TPP metric GBA is

also the second best.

Metric Standard GatedSAE BatchTopK Matryoshka TopK ((0} 1113;:‘) JumpReLU
Lo 468.9 408.7 3394 338.1 3344 309.0 305.3
Explained Variance T 0.816 0.871 0.859 0.840 0.859  0.902 0.855
Absorption Score | 0.1355 0.0696 0.0347 0.0158  0.0269 0.0041  0.0424
SCR Metric 1 0.228 0.294 0.268 0.331 0.332  0.296 0.309
Sparse Probing 0.958 0.959 0.957 0.957 0.958 0.956 0.958
TPP Metric 1 0.026 0.086 0.267 0.312 0.213  0.184 0.099
Alive Fraction 1 0.743 0.918 0.770 0.828 0.872  0.970 0.711
RAVEL Disent. 1 0.709 0.764 0.729 0.742 0.725 0.737 0.737
RAVEL Cause 1 0.670 0.749 0.697 0.710 0.700  0.694 0.731
RAVEL Isolation 1 0.748 0.778 0.761 0.773 0.749  0.779 0.742

Table 6: Performance comparison of SAE models with Lo between 300 ~ 400 on SAEBench. Arrows
indicate whether higher (1) or lower (]) values are better. Bold indicates best performance, and underline
indicates second best. GBA (ours) achieves the best performance in 4 out of 9 metrics, particularly excelling
in Explained Variance and Absorption Score.
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Metric Standard BatchTopK (CO} Eﬁ) Matryoshka GatedSAE TopK JumpReLU
Lo 835.1 695.6 694.9 675.7 662.3 655.7 605.2
Explained Variance 1 0.852 0.902 0.926 0.891 0.898 0.906 0.906
Absorption Score | 0.0873 0.0724  0.0044  0.0157 0.0351  0.0274  0.0052
SCR Metric 1 0.239 0.242 0.235 0.306 0.254 0.230 0.329
Sparse Probing 1 0.958 0.956 0.960 0.957 0.958 0.959 0.959
TPP Metric 1 0.025 0.340 0.209 0.365 0.086 0.328 0.159
Alive Fraction 1 0.750 0.601 0.997 0.531 0913 0.718 0.584
RAVEL Disent. 1 0.731 0.751 0.748 0.746 0.767 0.749 0.755
RAVEL Cause 1 0.680 0.725 0.724 0.706 0.768 0.723 0.734
RAVEL Isolation 1 0.781 0.777 0.772 0.785 0.766 0.775 0.775

Table 7: Performance comparison of SAE models with L, between 600 ~ 850 on SAEBench. Arrows
indicate whether higher (1) or lower (]) values are better. Bold indicates best performance, and underline
indicates second best.
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