

000 TAMING POLYSEMANICITY IN LLMS: THEORY- 001 GROUNDED FEATURE RECOVERY VIA SPARSE AU- 002 TOENCODERS 003

006 **Anonymous authors**

007 Paper under double-blind review

010 ABSTRACT

013 We study the challenge of achieving theoretically grounded feature recovery us-
 014 ing Sparse Autoencoders (SAEs) for the interpretation of Large Language Models.
 015 Existing SAE training algorithms often lack rigorous mathematical guarantees and
 016 suffer from practical limitations such as hyperparameter sensitivity and instabil-
 017 ity. We rethink this problem from the perspective of neuron activation frequencies,
 018 and through controlled experiments, we identify a striking phenomenon we term
 019 **neuron resonance**: neurons reliably learn monosemantic features when their acti-
 020 vation frequency matches the feature’s occurrence frequency in the data. Building
 021 on this finding, we introduce a new SAE training algorithm based on **bias adapta-**
 022 **tion**, a technique that adaptively adjusts neural network bias parameters to ensure
 023 appropriate activation sparsity. We theoretically prove that this algorithm correctly
 024 recovers all monosemantic features when input data is sampled from our proposed
 025 statistical model. Furthermore, we develop an improved empirical variant, Group
 026 Bias Adaptation (GBA), and demonstrate its superior performance against bench-
 027 mark methods when applied to LLMs with up to 2 billion parameters. This work
 028 represents a foundational step in demystifying SAE training by providing the first
 029 SAE algorithm with theoretical recovery guarantees and practical effectiveness for
 030 LLM interpretation.

031 1 INTRODUCTION

032 Large Language Models (LLMs) have demonstrated remarkable capabilities across diverse tasks. It
 033 is found that LLMs encode vast amounts of information by *superposition* (Lu et al., 2024; Xiong
 034 et al., 2024; Elhage et al., 2022; Bengio et al., 2013)—packing multiple concepts into the same
 035 weight or activation directions to maximize capacity. This efficiency comes at a cost: individual
 036 neurons (or activation vectors) become polysemantic (Scherlis et al., 2022), meaning they respond
 037 to several monosemantic features at once, making interpretation challenging.

038 Dictionary learning has recently been applied to disentangle polysemantic LLM representations,
 039 with Sparse Autoencoders (SAEs) emerging as a leading approach (Cunningham et al., 2023;
 040 Bricken et al., 2023; Templeton et al., 2024; Gao et al., 2024; Rajamanoharan et al., 2024b).
 041 An SAE encodes an LLM’s internal activation $x \in \mathbb{R}^d$ into a high-dimensional, sparse code
 042 $z = f_{\text{enc}}(x) \in \mathbb{R}^M$ with $M \gg d$, then decodes $\hat{x} = f_{\text{dec}}(z) \approx x$. By enforcing sparsity—so
 043 only a few components of z are nonzero—each active neuron ideally reflects a single interpretable
 044 feature. Empirically, SAEs have revealed such monosemantic features in models like Pythia-70M
 045 (Cunningham et al., 2023) and Claude 3.5 Sonnet (Templeton et al., 2024).

046 Despite these promising empirical advances, existing studies on SAEs still *lack rigorous guarantees*
 047 regarding feature recovery. Popular SAE training algorithms, which typically minimize a loss
 048 function of the form $\mathcal{L}(x, \hat{x}) = \|x - \hat{x}\|_2^2 + \lambda \cdot R(z)$ where $R(z)$ is a sparsity regularizer, involve
 049 hyperparameters like λ . For instance, methods employing L_p regularization for $R(z) = \|z\|_p$ and
 050 $p \in \{0, 1\}$. Other strong candidates include the TopK activation method (Makhzani & Frey, 2013;
 051 Gao et al., 2024) and gated SAE (Rajamanoharan et al., 2024a). However, these methods exhibit
 052 specific drawbacks. For example, L_1 regularization is sensitive in the hyperparameter λ and often
 053 leads to activation shrinkage, where the magnitudes of the learned features are systematically un-
 derestimated (Tibshirani, 1996). TopK approaches, while enforcing a hard sparsity constraint, often

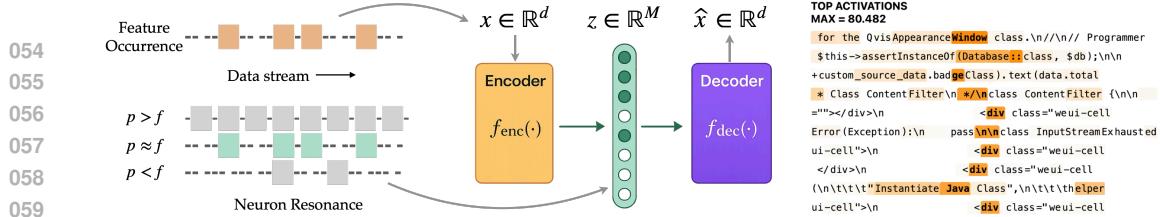


Figure 1: **Illustration of SAE architecture and neuron resonance (left) and a demo neuron (right) learned using GBA.** Left: SAE architecture and the resonance phenomenon—neurons successfully learn features when their activation frequency p matches the feature occurrence frequency f . Right: a neuron that activates for the concept “class”.

overlook the fact that different inputs may require varying numbers of active features, and also suffer from *inconsistency* across random seeds (Paulo & Belrose, 2025), which means that they yield sets of learned features that are sensitive to the random initialization (Paulo & Belrose, 2025).

This landscape motivates us to address fundamental questions concerning the reliability and theoretical underpinnings of feature recovery with SAEs:

What enables neurons to successfully recover features? Can we design a training algorithm that provably recovers features while being practical for modern LLMs?

Let us consider what makes SAE training successful. In an ideally trained SAE, each neuron learns a distinct monosemantic feature and activates precisely when that feature appears in the input. Thus, the neuron will have an *activation frequency* p —the fraction of inputs for which it activates—that matches the *occurrence frequency* f of its corresponding feature in the data. This observation raises a natural question: if we control neurons to activate with frequency p matching a feature’s frequency f , will they reliably learn that feature? Moreover, since we typically cannot know a feature’s frequency f in advance, what conditions on a neuron’s activation frequency p enable it to learn a feature with unknown frequency f ?

To investigate these questions, we conducted controlled experiments on synthetic data with known feature frequencies. Our experiments reveal a striking phenomenon we term **neuron resonance**: *Neurons reliably recover features when their activation rate matches the feature’s frequency in the data.* Like a radio tuning to a specific frequency for a clear signal, SAE neurons must “resonate” at the right activation rate to capture their target features. Importantly, our theory shows that successful learning requires only that p fall within a *resonance band* around f , not an exact match. This flexibility enables practical feature discovery: even without knowing f in advance, we can recover features by ensuring neurons’ activation frequencies cover a diverse range.

The resonance principle reveals a fundamental yet intuitive correspondence: common features require frequently active neurons, while rare features need selective, infrequently-firing neurons. Based on this, we develop **Group Bias Adaptation (GBA)**, an algorithm that creates multiple groups of neurons with geometrically-spaced target activation frequencies (e.g., 10%, 5%, ...). Each neuron computes $z_m = \phi(w_m^\top(x - b_{pre}) + b_m)$, where $w_m \in \mathbb{R}^d$ is the weight vector, $b_m \in \mathbb{R}$ is the bias, $b_{pre} \in \mathbb{R}^d$ is the shared pre-bias, and ϕ is the activation function (e.g., ReLU). GBA dynamically adjusts these biases to match the target frequencies: decreasing bias if fires too frequently to increase selectivity, and increasing bias when rarely fires to encourage activation. The direct frequency control across diverse activation ranges ensures comprehensive feature recovery while circumventing the hyperparameter sensitivity and dead neuron problems in existing methods.

We thus provide affirmative answers to both fundamental questions posed earlier through the following contributions. First, we discover and investigate the **neuron resonance phenomenon**, revealing the principle that governs successful feature learning in SAEs from the view of neuron activation frequency. **Theoretically**, we justify the resonance principle by rigorously showing that neurons with appropriate activation frequencies can provably recover all monosemantic features when data follows a well-defined statistical model. To our best knowledge, this provides the first dynamical analysis and learning guarantee for SAE training. **Empirically**, we scale GBA to Qwen2.5-1.5B and Gemma2-2B on Pile datasets and demonstrate its superiority: (i) achieving the Pareto frontier in reconstruction-sparsity tradeoff comparable to TopK, (ii) significantly higher cross-seed consistency than TopK, (iii) competitive performance on SAEbench (Karvonen et al., 2025) interpretability metrics while maintaining 99% neuron aliveness, and (iv) remarkable consistency and robustness through ablation study, requiring only simple hyperparameter rules without dataset-specific tuning.

108 **Related works.** The related works are available in §A.

109 **Notations.** Let \mathbb{R}_+ denote the set of non-negative real numbers. We use standard Big- O and small-
110 o notation and use $a \gtrsim b$ to hide $\text{polylog}(n)$ factor for sufficiently large n . We denote by $[n]$ the set
111 $\{1, 2, \dots, n\}$ for positive integer n .

113 2 PRELIMINARIES

115 **A model for feature recovery.** As a motivating example, consider how a model processes “The
116 detective found a muddy footprint near the broken window.” The internal representation mixes
117 monosemantic features:

$$118 \quad x = h_1 \cdot v_1 + h_2 \cdot v_2 + \dots, \quad \text{where } v_1 = \text{“muddy footprint”}, v_2 = \text{“broken window”}.$$

119 Here, $h_1, h_2 \geq 0$ are nonnegative coefficients, where negative values would imply contradictory
120 concepts. We formalize this as follows: Let $V \in \mathbb{R}^{n \times d}$ be a feature matrix where each row v_i is
121 a monosemantic feature. For N data points, each row x_ℓ of data matrix $X \in \mathbb{R}^{N \times d}$ is an s -sparse
122 mixture of features with nonnegative coefficients collected in $H \in \mathbb{R}_+^{N \times n}$:

$$124 \quad X = HV \in \mathbb{R}^{N \times d}. \quad (2.1)$$

125 We focus on the superposition regime where $n > d$, meaning features are necessarily linearly de-
126 pendent (Arora et al., 2018; Olah et al., 2020; Elhage et al., 2022). Our goal is to recover V from X
127 without knowing H —a common challenge in model interpretation.

128 **SAE architecture.** We follow Gao et al. (2024); Cunningham et al. (2023) and use a three-layer
129 neural network for SAE with tied encoding and decoding weights. Let M be the width of the SAE,
130 and for input $x \in \mathbb{R}^d$, its output is

$$132 \quad f(x; \Theta) = \sum_{m=1}^M a_m w_m \phi(w_m^\top (x - b_{\text{pre}}) + b_m) + b_{\text{pre}}. \quad (2.2)$$

134 where $\Theta = \{w_m, a_m, b_m, b_{\text{pre}}\}_{m=1}^M$ denotes the trainable parameters. For each neuron $m \in [M]$:
135 $w_m \in \mathbb{R}^d$ is the tied encoder/decoder weight, $a_m \in \mathbb{R}$ is the output scale, $b_m \in \mathbb{R}$ is the bias,
136 and $b_{\text{pre}} \in \mathbb{R}^d$ centers the input. The pre-activation is $y_m = w_m^\top (x - b_{\text{pre}}) + b_m$, and neuron m is
137 activated when $y_m > 0$. When activated, neuron m contributes $a_m \cdot w_m \cdot \phi(y_m)$ to the reconstruction,
138 where the tied weight w_m serves as both detector (encoder) and reconstructor (decoder).

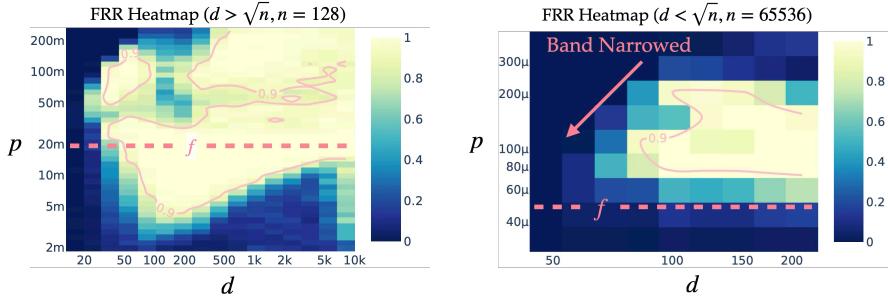
139 **Existing SAE training methods.** Prior methods minimize reconstruction loss $\mathcal{L}_{\text{rec}}(x; \Theta) =$
140 $\frac{1}{2} \|f(x; \Theta) - x\|_2^2$ with sparsity constraints. L_1 SAE adds penalty $\lambda \sum_{m=1}^M \|w_m\|_2 \cdot \phi(y_m)$ but
141 suffers from shrinkage bias (Tibshirani, 1996). TopK SAE (Makhzani & Frey, 2013; Gao et al.,
142 2024) retains only K largest activations but exhibits extreme seed sensitivity (Paulo & Belrose,
143 2025). Both methods have significant limitations detailed in the introduction.

145 3 RETHINKING HOW SAEs LEARN: NEURON RESONANCE

147 We rethink SAE training from the perspective of *neuron activation frequency*: how should a neuron’s
148 activation frequency p relate to a feature’s occurrence frequency f for reliable feature learning?

149 To investigate this, we conducted controlled experiments using synthetic data generated from (2.1).
150 We construct s -sparse coefficient matrices H , which have uniform feature occurrence frequency
151 $f = s/n$. The selected features can be viewed as the “concepts” in each data point, and f reflects
152 how often each concept appears in the data. We generate the feature matrix V by randomly sampling
153 n vectors from the unit sphere in \mathbb{R}^d , mimicking independent features in high-dimensional space. To
154 study the relationship between neuron activation frequencies p and feature occurrence frequencies
155 f , we train a set of SAEs while systematically controlling p through dynamic bias adaptation. More
156 details can be found in §D.1 and the bias adaptation can be found in §4. We measure feature learning
157 success using the Feature Recovery Rate (FRR), which quantifies the percentage of features learned
158 by at least one neuron (see §C.2). The relationship between p , d , and FRR is shown in Figure 2.

159 **Neuron resonance phenomenon.** The results reveal a striking pattern we term *neuron resonance*:
160 neurons successfully learn features when their activation frequency p falls within a specific band
161 around the feature’s occurrence frequency f . The width of this resonance band depends critically on
the degree of superposition. In heavy superposition where $d < \sqrt{n}$ (right panel), the band is narrow,

Figure 2: Feature Recovery Rate (FRR) for varying activation frequencies p and dimensions d .

Left: Light superposition ($d > \sqrt{n}, n = 128$). **Right:** Heavy superposition ($d < \sqrt{n}, n = 65536$). The resonance phenomenon is evident: optimal feature recovery occurs when neuron activation frequency p aligns with feature occurrence frequency f . Here, μ stands for 10^{-6} and m stands for 10^{-3} .

requiring p to closely match f . In light superposition where $d > \sqrt{n}$ (left panel), particularly when $d > n$, the band widens significantly. This widening is intuitive: when $d > n$, features become nearly orthogonal and easier to separate, allowing neurons with imperfect frequency matching to still converge to individual features due to reduced interference. Since real-world data typically exhibits heavy superposition ($n \gg d$), we expect the resonance phenomenon to persist with a narrow band similar to the right panel of Figure 2. Here, we set $s = 3$, $M = 512$ (left) and $M = 262k$ (right).

In §6, we theoretically characterize a feasible activation frequency range for faithful feature recovery. A feature with occurrence frequency f is learned when neurons' activation frequency p lies in the resonance band $f \lesssim p \lesssim \min\{\sqrt{f}, df\}$ (up to logarithmic factors). With $f = s/n$, a phase transition occurs at $d = \sqrt{n}$: light superposition ($d > \sqrt{n}$) yields a wider band $p \lesssim \sqrt{f}$, while heavy superposition ($d < \sqrt{n}$) constrains it to $p \lesssim df$, narrowing as d decreases. This phase transition and narrowing band in heavy superposition perfectly matches our empirical findings in Figure 2.

Motivation for frequency-aware training. Existing methods cannot directly control neuron activation frequencies. They achieve this by imposing sparsity constraints: L_1 SAE uses penalty terms while TopK SAE limits the number of active neurons per input. The resonance principle indicates that optimal feature learning requires aligning neuron activation frequencies with the natural feature frequency distribution—ranging from high-frequency features (e.g., common function words) to low-frequency features (e.g., domain-specific terminology). This insight motivates our Group Bias Adaptation algorithm in the next section.

4 ALGORITHM: GROUP BIAS ADAPTATION

From resonance principle to algorithm design. The neuron resonance phenomenon (§3) reveals that successful feature learning requires matching neuron activation frequencies to feature occurrence rates. This insight motivates our Group Bias Adaptation (GBA) algorithm, which operationalizes the resonance principle through two key design choices:

- 1. Direct frequency control:** Instead of relying on indirect penalties (L_1) or fixed constraints (TopK), we directly control each neuron's activation frequency through adaptive bias adjustment. When a neuron fires too frequently, we decrease its bias to make it more selective; when it rarely fires, we increase its bias to make it more active.
- 2. Multiple frequency bands:** We partition neurons into groups with geometrically-spaced target activation frequencies (e.g., 10%, 5%, 2.5%, ...), creating a spectrum of “resonance bands” that automatically covers the diverse feature frequency range—from common features to rare, specialized ones. Then we use the previously described adaptive bias adjustment within each group to maintain the desired activation frequency.

These design principles ensure: (i) sufficient sparsity for interpretability while avoiding dead neurons by controlling the lowest activation frequencies, and (ii) smooth training dynamics via *adaptive bias adjustment* while maintaining efficient control. The complete algorithm is presented below.

Neuron grouping strategy. To cover the diverse feature spectrum, we partition the M neurons into K groups (default $K = 10$) with geometrically-spaced target activation frequencies (TAFs). Specifically, we fix the decaying ratio p_k/p_{k+1} , yielding TAFs from 10% down to 0.01%. This geometric spacing naturally matches the long-tail distribution of feature frequencies in language—

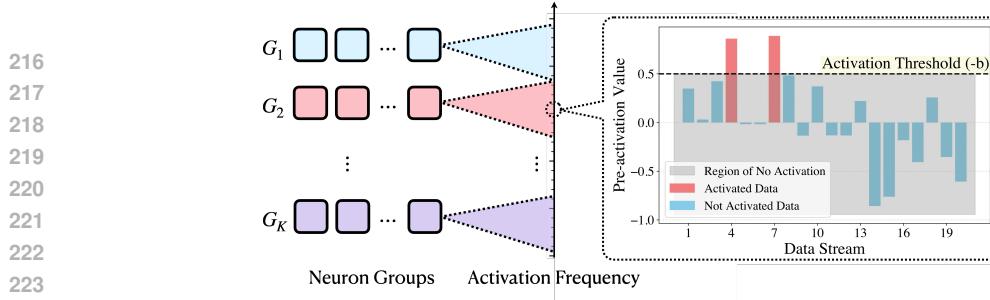


Figure 3: **Illustration of Group Bias Adaptation (GBA).** **Left:** Neurons are partitioned into K groups with geometrically-spaced target activation frequencies (TAFs) from 10% to 0.01%, creating resonance bands that match the natural feature frequency distribution. **Right:** Bias adaptation mechanism—if a neuron over-activates ($\hat{p}_m > p_k$), we decrease its bias to make it more selective; if it under-activates ($\hat{p}_m < \epsilon$), we increase its bias using the group baseline \bar{r}_k to make it more sensitive.

from common words to rare technical terms. Each group contains M/K neurons sharing the same TAF p_k within the group.

Algorithm 1 Group Bias Adaptation (GBA)

```

1: Input: data  $X$ , initialization  $\Theta^{(0)}$ , neuron groups and desired target activation frequencies
2:  $\{G_k, p_k\}_{k=1}^K$ , a first-order optimization algorithm  $\text{Opt}$ 
3: Hyperparameters:  $T, L, B, \gamma_+, \gamma_-$ , and  $\epsilon$ 
4: For all  $m \in [M]$ , initialize buffer  $\mathcal{B}_m \leftarrow \emptyset$ 
5: For  $t = 1, \dots, T$ :
6:   Forward pass, backward with reconstruction loss, optimizer step with fixed biases.
7:   Sample mini-batch  $X_t \in \mathbb{R}^{L \times d}$ , row-normalize, and compute:  $\mathcal{L}^{(t)} \leftarrow \mathcal{L}_{\text{rec}}(X_t; \Theta^{(t-1)})$ 
8:   Backward and optimizer step (exclude biases):  $\Theta^{(t)} \leftarrow \text{Opt}(\Theta^{(t-1)} \setminus \{b^{(t-1)}\}, \nabla \mathcal{L}^{(t)})$ 
9:   Append pre-activations to buffers:  $\mathcal{B}_m \leftarrow \mathcal{B}_m \cup \{y_{m,1}^{(t)}, \dots, y_{m,L}^{(t)}\}$  for all  $m$ 
10:  Bias adaptation: when buffers reach size  $B$ , update biases and clear buffers.
11:  If  $|\mathcal{B}_1| \geq B$  then
12:    Compute per-neuron activation frequency  $\hat{p}_m$  and max pre-activation  $r_m$  in buffer.
13:    Set  $\hat{p}_m \leftarrow |\mathcal{B}_m|^{-1} \sum_{y \in \mathcal{B}_m} \mathbb{1}(y > 0)$  and  $r_m \leftarrow \max\{\max_{y \in \mathcal{B}_m} y, 0\}$  for  $m \in [M]$ 
14:    Average positive max pre-activation  $r_m$  for each group as group baseline  $\bar{r}_k$ .
15:    Set  $\bar{r}_k \leftarrow (\sum_{m \in G_k} \mathbb{1}(r_m > 0))^{-1} \sum_{m \in G_k} r_m$  for  $k \in [K]$ 
16:    Adjust biases based on target activation frequency  $p_k$ .
17:    For each group  $k = 1, \dots, K$  and each neuron  $m \in G_k$ :
18:      If  $\hat{p}_m > p_k$ , set  $b_m \leftarrow \max\{b_m - \gamma_- r_m, -1\}$ 
19:      If  $\hat{p}_m < \epsilon$ , set  $b_m \leftarrow \min\{b_m + \gamma_+ \bar{r}_k, 0\}$ 
20:    Clear buffers: set  $\mathcal{B}_m \leftarrow \emptyset$  for all  $m$ 
21: Return the final SAE parameters  $\Theta^{(T)}$ 

```

Tracking activation frequencies. We measure each neuron’s empirical activation frequency using buffered pre-activations. For neuron m with weight w_m and bias b_m , the pre-activation is $y_m(x) = w_m^\top (x - b_{\text{pre}}) + b_m$. During training, we accumulate B samples in a buffer and compute the empirical frequency \hat{p}_m as shown in Algorithm 1 line 12. While the algorithm shows storing full pre-activations for clarity, the implementation is memory-efficient: we only track each neuron’s maximum pre-activation r_m and activation count, updating these statistics incrementally.

Adaptive bias updates. Biases adapt to maintain target activation frequencies through feedback control. For neuron m in group k , we compare its empirical frequency \hat{p}_m to its target p_k :

1. If $\hat{p}_m > p_k$ (over-active): decrease bias $b_m \leftarrow b_m - \gamma_- r_m$ to make the neuron more selective
2. If $\hat{p}_m < \epsilon$ (under-active): increase bias $b_m \leftarrow b_m + \gamma_+ \bar{r}_k$ to make it more sensitive

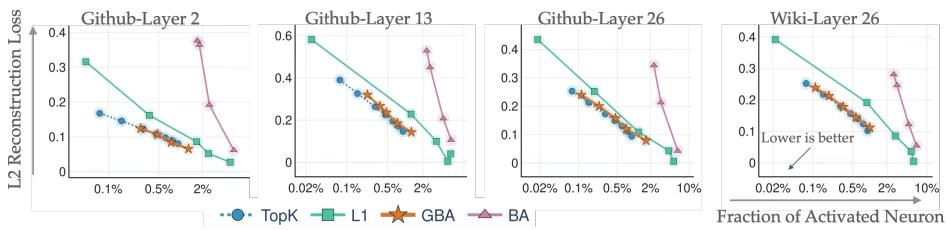
Here r_m is the neuron’s max pre-activation for proportional decrease of over-active neurons, while \bar{r}_k is the group average for boosting under-active neurons. We clamp biases to $[-1, 0]$ to prevent extreme values, which should not be loss of generality since inputs are normalized. To give a sense of how the bias adapts, we find the rates $\gamma_+ = \gamma_- = 0.01$ provide smooth adjustment to the bias

270 without oscillations in the loss when we perform one adaptation step against every 50 optimizer
 271 steps with batch size $L = 512$.

272 **Summary.** GBA integrates with standard SAE training through periodic bias adaptation. The training
 273 alternates between: (1) a gradient phase where a standard optimizer (Adam/AdamW) updates
 274 weights W and output scales a , and (2) an adaptation phase that adjusts biases when the buffer
 275 reaches B samples. Crucially, biases are excluded from gradient updates and controlled only through
 276 the adaptation mechanism. [Algorithm 1](#) presents the complete procedure. This design ensures each
 277 neuron finds its resonant features through frequency matching. The groups create “resonance bands”
 278 covering the feature spectrum, while adaptive bias control maintains target frequencies despite training
 279 dynamics. Features naturally migrate to neurons with matching activation rates.

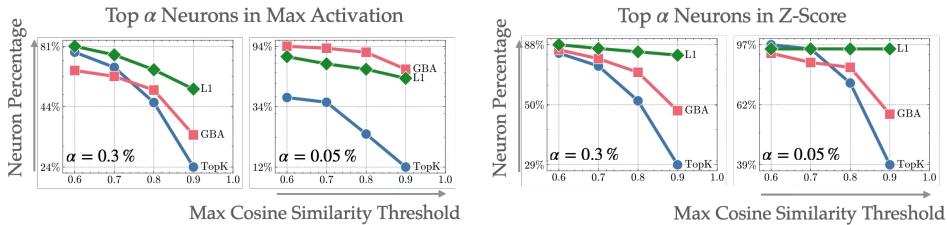
280 5 EXPERIMENTAL EVALUATIONS

282 To demonstrate the effectiveness of our proposed method, we conduct experiments on the Qwen2.5-
 283 1.5B base model ([Yang et al., 2024](#)) using Pile Github and Pile Wikipedia datasets ([Gao et al., 2020](#)). We train SAEs with 66k hidden neurons attached to the MLP outputs at layers 2, 13, and
 284 26. We evaluate each method using two metrics: (1) reconstruction loss and (2) average fraction
 285 of activated neurons per input. All methods employ JumpReLU activation ([Erichson et al., 2019](#);
 286 [Rajamanoharan et al., 2024b](#)) for optimal performance. We compare GBA against three baselines:
 287 L_1 , TopK, and Bias Adaptation (BA)—a single-group variant of GBA with fixed target activation
 288 frequency p . Additional details and comparisons between ReLU and JumpReLU are in [§D](#).
 289



299 **Figure 4: Curve for reconstruction loss and sparsity** (average fraction of neurons activated per
 300 data point). All experiments are conducted using an SAE with 66k neurons. For TopK, we vary
 301 $K \in [50, 600]$. For L_1 , we vary the penalty coefficient $\lambda \in [0.001, 0.1]$. For BA (non-grouped),
 302 we vary the target frequency $p \in [0.003, 0.1]$. For GBA, we sample within the range $K \in [3, 20]$,
 303 $p_1 \in [0.05, 0.5]$, and $p_K \in [10^{-4}, 5 \times 10^{-3}]$.

304 **Reconstruction loss and activation sparsity frontier.** We first compare the normalized ℓ_2 re-
 305 construction loss against the average fraction of activated neurons across different methods. The
 306 results are presented in [Figure 4](#), where each benchmark method (TopK, L_1 , BA) involves varying
 307 sparsity-related tuning parameters. Our method performs comparably to the best-performing bench-
 308 mark, TopK—achieving the lowest reconstruction loss among all methods for a given sparsity level.
 309 Specifically, when these methods have the same average fraction of activated neurons, GBA’s recon-
 310 struction (yellow star) is comparable to TopK’s best curve while significantly outperforming both
 311 the L_1 penalty method and the non-grouped variant BA. The consistent superiority over BA across
 312 all experiments provides strong evidence that the grouping mechanism is crucial for achieving both
 313 optimal performance.



321 **Figure 5: Fraction of neurons that have max cosine similarity exceeding threshold** for Github-
 322 Layer 26, where the max cosine similarity is evaluated for neurons from 6 different runs initialized
 323 with different seeds. We take Max Activation and Z-Score as the selecting criteria and plot within a
 324 subset of neurons that rank top- α under the criteria in all the neurons with α in $\{0.3\%, 0.05\%\}$ (i.e.,
 325 top-200 and top-30 neurons out of 66k).

324 **Consistency of recovered features.** Furthermore, we assess the consistency of the learned features across independent runs with different random seeds. Since ground truth features are unavailable, consistency serves as a proxy for the reliability of the training method. For each neuron in one run, we compute its Maximum Cosine Similarity (MCS) with neurons from another run; a high MCS indicates that a feature is consistently recovered. To avoid the influence of rarely activated neurons, we restrict our analysis to the top- α neurons—selected based on maximum activation or Z-score. The results are presented in [Figure 5](#) and [Table 1](#), and the key findings are shown as follows:

331 1. As noted in prior work, TopK is seed-sensitive ([Paulo & Belrose, 2025](#)). In our experiments, 332 GBA yields a higher percentage of neurons with high MCS. To quantify this effect, [Table 1](#) 333 reports the fraction of consistent neurons ($\text{MCS} > 0.9$) under different selection criteria; GBA 334 consistently exceeds TopK. Variability across seeds is small: all runs show tight fluctuations over 335 the $\binom{6}{2} = 15$ pairwise comparisons.

336 2. The L_1 penalty-based SAE is generally more consistent than TopK, and our results confirm this 337 trend: across most selection criteria, L_1 achieves higher consistency than both TopK and GBA. 338 However, when focusing on the most active neurons (top-0.05% by activation), GBA surpasses 339 L_1 , suggesting stronger recovery of the most salient features.

340 Combined with the reconstruction-sparsity frontier in [Figure 4](#), in our experimental setting, the 341 proposed GBA method achieves the Pareto frontier 342 in terms of reconstruction fidelity, activation 343 sparsity, and feature consistency.

344 **Interpretability.** To further evaluate the interpretability of the learned features, we employ a 345 suite of metrics by [Karvonen et al. \(2025\)](#). To 346 ensure a fair comparison, we retrain GBA SAE 347 with 66k neurons on Gemma2-2B ([Team et al., 348 2024](#)) residual stream after layer 12, and compare 349 it against TopK, JumpReLU SAE ([Rajamanoharan et al., 2024b](#)), and GatedSAE ([Rajamanoharan et al., 2024a](#)) provided in the SAE-Bench. We 350 also ensure similar L_0 sparsity among the 351 compared SAEs. The results are summarized in [Ta- 352 ble 2](#), demonstrating the competitive interpretability of GBA across all metrics.

353 Comparing GBA to JumpReLU SAE reveals that performance gains come from our training 354 algorithm. GBA’s strong reconstruction partially stems from higher alive neuron fraction ([Table 2](#)), 355 where neurons are alive if they activate above threshold for at least one input. While GatedSAE 356 also has high alive fraction, it does so at the expense of interpretability metrics (e.g., SCR, TPP, and 357 Absorption Score). GBA achieves high alive fraction without sacrificing interpretability.

Top- α Neurons	GBA (ours)	TopK
10%	0.0366 ± 0.0010	0.0317 ± 0.0006
25%	0.0146 ± 0.0004	0.0127 ± 0.0002
50%	0.0073 ± 0.0002	0.0063 ± 0.0001
100%	0.0037 ± 0.0001	0.0032 ± 0.0001

Table 1: Fraction of neurons with Maximum Cosine Similarity ($\text{MCS} > 0.9$) across different selection percentiles based on the top α selection rule in maximum activation. Results are averaged over $\binom{6}{2} = 15$ pairwise comparisons from 6 random seeds with standard deviations shown. GBA achieves higher consistency than TopK for all α .

SAE Model	L_0	Explained Variance \uparrow	Absorption Score \downarrow	SCR Metric \uparrow	Sparse Probing \uparrow	TPP Metric \uparrow	Alive Fraction \uparrow
GatedSAE	662.3	0.898	0.0351	<u>0.254</u>	0.958	0.086	<u>0.913</u>
TopK	655.7	<u>0.906</u>	0.0274	<u>0.230</u>	<u>0.959</u>	0.328	0.718
JumpReLU	605.2	<u>0.906</u>	<u>0.0052</u>	0.329	<u>0.959</u>	0.159	0.584
GBA (ours)	694.9	0.926	0.0044	0.235	0.960	0.209	0.997

Table 2: **Comparison of SAE models for Gemma2-2B with 66k neurons and similar L_0 sparsity.** Lower values are better for Absorption Score, and higher values are better for the remaining metrics. Bold indicates best performance, and underline indicates second best. GBA achieves the best or second-best performance across all metrics, demonstrating its competitive interpretability. For SCR ([Marks et al., 2024](#)) and TPP metrics, we take the average of the scores over Top-20 and Top-50 neurons as scores evaluated for these numbers tend to be more stable ([Karvonen et al., 2025](#)) while avoiding biases from too limited neuron counts.

Ablation study on GBA hyperparameters. To assess GBA’s sensitivity to hyperparameters, we perform an ablation study varying the number of groups K , Highest Target Frequency (HTF) p_1 , and Lowest Target Frequency (LTF) p_K , as shown in [Figure 6](#). The left panel reveals a key pattern: as HTF increases, performance stabilizes—scatter points converge and align with TopK’s curve, especially for $K \geq 10$. Additionally, since low HTF values (e.g., 0.05) hinder recovery of frequent

378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 features, it results in higher reconstruction loss. The middle and right panels again confirm that both reconstruction loss and sparsity stabilize when $K \geq 10$, demonstrating insensitivity to the exact number of groups. We observe a slight increase in loss when increasing the number of groups K in the middle panel. This is not detrimental but rather reflects a tradeoff: with few groups (e.g., $K = 3$), many neurons are assigned high target frequencies, resulting in denser activations (right panel) and thus lower reconstruction loss at the expense of interpretability.

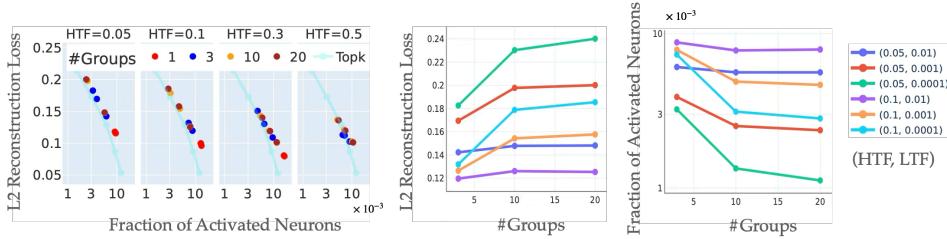


Figure 6: **Ablation study for GBA in terms of K , HTF, and LTF** for Github-Layer 26. For each run, we partition neurons into K groups with target frequencies as a geometric sequence between HTF and LTF. HTFs: $\{0.05, 0.1, 0.3, 0.5\}$; LTFs: $\{10^{-4}, 10^{-3}, 5 \times 10^{-3}\}$. **Left:** Loss vs sparsity grouped by HTF. Different colors represent different K values; dots of the same color correspond to different LTFs. **Middle & Right:** Loss and sparsity for varying K , where each curve represents a pair of HTF and LTF. Results show GBA stabilizes when HTF = 0.5 and $K \geq 10$.

Simple rule for hyperparameter selection. These results establish that GBA is nearly tuning-free with a simple selection rule: (1) set $\text{HTF} = 0.5$ as the default upper bound, since randomly initialized neurons with zero bias fire 50% of the time; (2) set $\text{LTF} = 10^{-3}$ to 10^{-4} to cover rare features while preventing dead neurons; (3) use a large number of groups for better frequency coverage and stable performance. This principled setup eliminates the need for dataset-specific tuning—in stark contrast to searching TopK’s K across 66k neurons or tuning L_1 ’s penalty coefficient λ .

6 NEURON RESONANCE: A THEORETICAL PERSPECTIVE

The neuron resonance phenomenon observed in §3 raises a fundamental question: *How does frequency matching enable reliable feature recovery, and what determines the resonance band?* We provide a theoretical analysis that justifies this phenomenon with precise recovery conditions.

To rigorously analyze the neuron resonance phenomenon, we study a simplified variant of [Algorithm 1](#) that captures its core mechanism. We consider the *Bias Adaptation* (BA) algorithm, which is essentially GBA with a single neuron group and all neurons share a fixed target activation frequency p . The SAE is trained via spherical gradient descent (weight updates normalized to unit sphere). This single-group setting isolates the activation frequency factor from other dynamics, helping us understand how neurons with frequency p selectively learn features with similar occurrence frequency.

For the data model (2.1), we assume V has i.i.d. $\mathcal{N}(0, 1)$ entries and simplify H to have exactly s -sparse rows: each row ℓ has uniform random support S_ℓ with $|S_\ell| = s$ for a constant s and entries $H_{\ell,i} = 1/\sqrt{s}$ for $i \in S_\ell$, zero otherwise. This simplified H structure is only for presentation convenience; our analysis captures more general coefficient matrices (see §B.1). The following theorem characterizes the conditions under which BA can recover all features with high probability.

Theorem 6.1. *Consider the simplified data model $X = HV$ with data size N , feature size n and feature dimension d . We train an SAE with M neurons using the BA algorithm with spherical gradient descent, target frequency p , and learning rate $\eta \gtrsim (pN)^{-1}$. Under certain regularity conditions on the SAE model (§B.2.1), for any small constants $\varsigma, \varepsilon \in (0, 1)$ such that*

$$\text{Network Width: } M \gtrsim n \cdot p^{s/(1-\varepsilon)^2} \quad (6.1)$$

$$\text{Frequency Range: } n^{-1} \lesssim p \lesssim \min\left\{n^{-(1+s^{-1})/2}, n^{-2(1+\varepsilon)^2/s}, \frac{d^{1-\varsigma}}{n}\right\} \quad (6.2)$$

with probability at least $1 - n^{-4\varepsilon}$, every feature $i \in [n]$ is recovered by at least one neuron m_i within $T = \varsigma^{-1}$ iterations in the sense that $\langle w_{m_i}^{(T)}, v_i \rangle / \|v_i\|_2 \geq 1 - o(1)$.

See §B for the full version of the theorem with detailed assumptions and the proof is in §G. To our best knowledge, **Theorem 6.1** provides the *first provable guarantee* that an SAE training algorithm can recover monosemantic features within a constant number of iterations. The theorem relies on V being Gaussian for technical convenience, but our empirical results on both synthetic (§3) and real LLM data (§5) show that the BA and GBA algorithms work well when V is non-Gaussian. Moreover, although the theorem only analyzes for a single group with frequency p for clarity of presentation, we can easily extend it to GBA with multiple groups under the same regularity conditions on the SAE model. See §B for detailed discussions.

Interpreting the theorem. The theorem reveals two critical factors for successful feature recovery:

1. **Network width:** The required width $M \gtrsim n \cdot p^{-s/(1-\varepsilon)^2}$ shows that M scales linearly with the number of features n but exponentially with sparsity s when p is fixed. The linear scaling with n is intuitive, as each neuron can learn at most one feature. This exponential dependency arises from the challenge of distinguishing features when they co-occur in the same data points. **Figure 7(a)** experimentally validates this exponential scaling. This result highlights the benefit of overparameterization in SAE training.
2. **Activation frequency range:** The condition on p translates to a “resonance band”, where features are most effectively learned when the neuron’s activation frequency p falls into the band. The upper bound depends on both the superposition level (controlled by d/n) and the feature sparsity s . **Figure 7(b)** visualizes these resonance bands for different sparsity levels. Notably, in our simplified data model, the feature occurrence frequency is $f = s/n = \Theta(n^{-1})$, so for a large constant s , we can rewrite the condition as $f \lesssim p \lesssim \min\{\sqrt{f}, df\}$, as mentioned in §3.

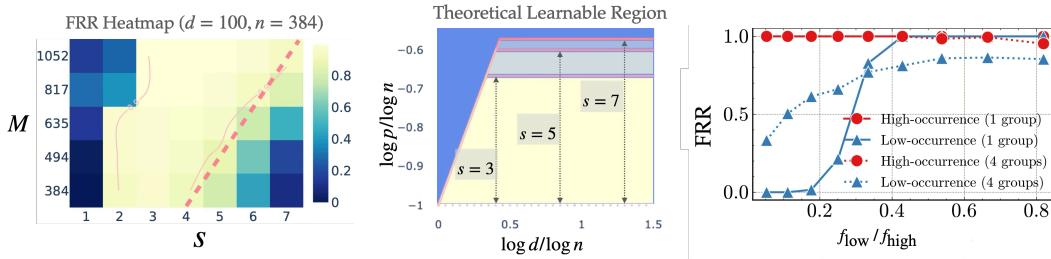


Figure 7: (a) Network width scaling: Heatmap of Feature Recovery Rate (FRR) with respect to (M, s) for the GBA algorithm with M axis in log scale, showing exponential dependency on s . **(b) Resonance bands:** Theoretical learnable region (yellow) for different sparsity values, demonstrating the transition at $d \approx \sqrt{n}$ between heavy and light superposition regimes. For large s , the upper bound approaches $\min\{\sqrt{f}, df\}$ with $f = \Theta(n^{-1})$. **(c) Feature imbalance:** FRR vs. relative occurrence $f_{\text{low}} / f_{\text{high}}$, showing GBA’s advantage over BA in handling imbalanced feature frequencies. All experiments use $(n, d) = (384, 100)$. For (c), we use $s = 3$ and $M = 1024$.

This theorem rigorously justifies the neuron resonance phenomenon by proving that neurons with frequency p optimally recover features within a specific frequency band. This insight motivates the GBA algorithm’s multi-group design: by creating groups with geometrically decaying target frequencies, we ensure coverage of the entire feasible frequency range, enabling recovery of features with diverse occurrence patterns.

GBA handles imbalanced features. As an extension to the discussion above and to build connection to the GBA algorithm, we compare the analyzed BA algorithm with GBA (with 4 groups) on data with imbalanced feature frequencies. To demonstrate the effectiveness of GBA, we construct a dataset with features divided into two groups of equal size: one group with high occurrence frequency f_{high} and the other with low frequency f_{low} . We vary the imbalance ratio $f_{\text{low}} / f_{\text{high}}$ while keeping the average frequency fixed. The results in **Figure 7(c)** show that GBA significantly outperforms BA as the imbalance increases, i.e., $f_{\text{low}} / f_{\text{high}} < 0.3$, highlighting GBA’s ability to recover features across a wide frequency spectrum, and flexibility to handle real-world data with diverse feature occurrence patterns.

Reproducibility. The anonymous source code to this project is available in the supplementary for both data processing and model training. The assumptions and proofs to the main theory can be found in §B and §G, respectively.

486 REFERENCES
487

488 Emmanuel Ameisen, Jack Lindsey, Adam Pearce, Wes Gurnee, Nicholas L Turner, Brian Chen,
489 Craig Citro, David Abrahams, Shan Carter, Basil Hosmer, et al. Circuit tracing: Revealing com-
490 putational graphs in language models. *Transformer Circuits Thread*, 2025. 16

491 Sanjeev Arora, Yuanzhi Li, Yingyu Liang, Tengyu Ma, and Andrej Risteski. Linear algebraic struc-
492 ture of word senses, with applications to polysemy. *Transactions of the Association for Compu-
493 tational Linguistics*, 6:483–495, 2018. 3

494

495 Nikita Balagansky, Yaroslav Aksnov, Daniil Laptev, Vadim Kurochkin, Gleb Gerasimov, Nikita
496 Koriagin, and Daniil Gavrilov. Train one sparse autoencoder across multiple sparsity budgets
497 to preserve interpretability and accuracy. In *Proceedings of the 2025 Conference on Empirical
498 Methods in Natural Language Processing*, pp. 10182–10190, 2025. 102

499

500 Mohsen Bayati and Andrea Montanari. The dynamics of message passing on dense graphs, with
501 applications to compressed sensing. *IEEE Transactions on Information Theory*, 57(2):764–785,
502 2011. 22, 33

503

504 Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review and new
505 perspectives. *IEEE transactions on pattern analysis and machine intelligence*, 35(8):1798–1828,
506 2013. 1

507

508 Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. Concentration inequalities using the en-
509 tropy method. *The Annals of Probability*, 31(3):1583–1614, 2003. 22, 40, 97, 98, 100

510

511 Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. *Concentration Inequalities: A Nonasym-
512 totic Theory of Independence*. Oxford University Press, 02 2013. 97

513

514 Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Conerly, Nick
515 Turner, Cem Anil, Carson Denison, Amanda Askell, Robert Lasenby, Yifan Wu, Shauna Kravec,
516 Nicholas Schiefer, Tim Maxwell, Nicholas Joseph, Zac Hatfield-Dodds, Alex Tamkin, Karina
517 Nguyen, Brayden McLean, and Josiah E Burke. Towards monosemanticity: Decomposing lan-
518 guage models with dictionary learning. *Transformer Circuits Thread*, 2023. 1, 15, 16

519

520 Alfred M Bruckstein, David L Donoho, and Michael Elad. From sparse solutions of systems of
521 equations to sparse modeling of signals and images. *SIAM review*, 51(1):34–81, 2009. 16

522

523 Bart Bussmann, Noa Nabeshima, Adam Karvonen, and Neel Nanda. Learning multi-level features
524 with matryoshka sparse autoencoders, 2025. URL <https://arxiv.org/abs/2503.17547>. 102

525

526 Emmanuel J Candès and Yaniv Plan. Near-ideal model selection by ℓ_1 minimization. *The Annals of
527 Statistics*, 37(5A), 2009. 17

528

529 David Chanin, James Wilken-Smith, Tomáš Dulka, Hardik Bhatnagar, and Joseph Bloom. A is
530 for absorption: Studying feature splitting and absorption in sparse autoencoders. *arXiv preprint
531 arXiv:2409.14507*, 2024. 108, 109

532

533 Siyu Chen, Beining Wu, Miao Lu, Zhuoran Yang, and Tianhao Wang. Can neural networks achieve
534 optimal computational-statistical tradeoff? an analysis on single-index model. In *The Thirteenth
535 International Conference on Learning Representations*, 2025. 18

536

537 Hoagy Cunningham, Aidan Ewart, Logan Riggs, Robert Huben, and Lee Sharkey. Sparse autoen-
538 coders find highly interpretable features in language models. *arXiv preprint arXiv:2309.08600*,
539 2023. 1, 3

540

541 Jacob Dunefsky, Philippe Chlenski, and Neel Nanda. Transcoders find interpretable llm feature
542 circuits. *arXiv preprint arXiv:2406.11944*, 2024. 16

543

544 Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna Kravec,
545 Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, et al. Toy models of superposi-
546 tion. *arXiv preprint arXiv:2209.10652*, 2022. 1, 3

540 N Benjamin Erichson, Zhewei Yao, and Michael W Mahoney. Jumprelu: A retrofit defense strategy
 541 for adversarial attacks. *arXiv preprint arXiv:1904.03750*, 2019. 6, 27
 542

543 Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason
 544 Phang, Horace He, Anish Thite, Noa Nabeshima, et al. The pile: An 800gb dataset of diverse text
 545 for language modeling. *arXiv preprint arXiv:2101.00027*, 2020. 6, 27

546 Leo Gao, Tom Dupré la Tour, Henk Tillman, Gabriel Goh, Rajan Troll, Alec Radford, Ilya
 547 Sutskever, Jan Leike, and Jeffrey Wu. Scaling and evaluating sparse autoencoders. *arXiv preprint*
 548 *arXiv:2406.04093*, 2024. 1, 3, 15, 106

549 Adam Karvonen, Can Rager, Johnny Lin, Curt Tigges, Joseph Bloom, David Chanin, Yeu-Tong Lau,
 550 Eoin Farrell, Callum McDougall, Kola Ayonrinde, et al. Saebench: A comprehensive benchmark
 551 for sparse autoencoders in language model interpretability. *arXiv preprint arXiv:2503.09532*,
 552 2025. 2, 7, 106, 107

553 Kishore Konda, Roland Memisevic, and David Krueger. Zero-bias autoencoders and the benefits of
 554 co-adapting features. *arXiv preprint arXiv:1402.3337*, 2014. 15

555 Kenneth Kreutz-Delgado, Joseph F Murray, Bhaskar D Rao, Kjersti Engan, Te-Won Lee, and Ter-
 556 rence J Sejnowski. Dictionary learning algorithms for sparse representation. *Neural computation*,
 557 15(2):349–396, 2003. 16

558 Beatrice Laurent and Pascal Massart. Adaptive estimation of a quadratic functional by model selec-
 559 tion. *Annals of statistics*, pp. 1302–1338, 2000. 96

560 Michel Ledoux and Michel Talagrand. *Probability in Banach Spaces: isoperimetry and processes*.
 561 Springer Science & Business Media, 2013. 97

562 Jason D Lee, Kazusato Oko, Taiji Suzuki, and Denny Wu. Neural network learns low-dimensional
 563 polynomials with sgd near the information-theoretic limit. *Advances in Neural Information Pro-
 564 cessing Systems*, 37:58716–58756, 2024. 18

565 Keming Lu, Bowen Yu, Chang Zhou, and Jingren Zhou. Large language models are super-
 566 positions of all characters: Attaining arbitrary role-play via self-alignment. *arXiv preprint*
 567 *arXiv:2401.12474*, 2024. 1

568 Alireza Makhzani and Brendan Frey. K-sparse autoencoders. *arXiv preprint arXiv:1312.5663*, 2013.
 569 1, 3, 15

570 Samuel Marks, Can Rager, Eric J Michaud, Yonatan Belinkov, David Bau, and Aaron Mueller.
 571 Sparse feature circuits: Discovering and editing interpretable causal graphs in language models.
 572 *arXiv preprint arXiv:2403.19647*, 2024. 7, 107

573 Elaine Crespo Marques, Nilson Maciel, Lirida Naviner, Hao Cai, and Jun Yang. A review of sparse
 574 recovery algorithms. *IEEE access*, 7:1300–1322, 2018. 17

575 Colin McDiarmid et al. On the method of bounded differences. *Surveys in combinatorics*, 141(1):
 576 148–188, 1989. 22, 40

577 Andrea Montanari and Yuchen Wu. Adversarial examples in random neural networks with general
 578 activations. *Mathematical Statistics and Learning*, 6(1):143–200, 2023. 22, 33

579 Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Michael Petrov, and Shan Carter.
 580 Zoom in: An introduction to circuits. *Distill*, 5(3):e00024–001, 2020. 3

581 Bruno A Olshausen and David J Field. Emergence of simple-cell receptive field properties by
 582 learning a sparse code for natural images. *Nature*, 381(6583):607–609, 1996. 16

583 Isabel Papadimitriou, Huangyuan Su, Thomas Fel, Naomi Saphra, Sham Kakade, and Stephanie
 584 Gil. Interpreting the linear structure of vision-language model embedding spaces. *arXiv preprint*
 585 *arXiv:2504.11695*, 2025. 16

586 Gonçalo Paulo and Nora Belrose. Sparse autoencoders trained on the same data learn different
 587 features. *arXiv preprint arXiv:2501.16615*, 2025. 2, 3, 7, 15, 16

594 Senthooran Rajamanoharan, Arthur Conmy, Lewis Smith, Tom Lieberum, Vikrant Varma, János
 595 Kramár, Rohin Shah, and Neel Nanda. Improving dictionary learning with gated sparse autoen-
 596 coders. *arXiv preprint arXiv:2404.16014*, 2024a. 1, 7, 15

597 Senthooran Rajamanoharan, Tom Lieberum, Nicolas Sonnerat, Arthur Conmy, Vikrant Varma, János
 598 Kramár, and Neel Nanda. Jumping ahead: Improving reconstruction fidelity with jumprelu sparse
 599 autoencoders. *arXiv preprint arXiv:2407.14435*, 2024b. 1, 6, 7, 15, 24, 27

600 Ron Rubinstein, Alfred M Bruckstein, and Michael Elad. Dictionaries for sparse representation
 601 modeling. *Proceedings of the IEEE*, 98(6):1045–1057, 2010. 16

602 Adam Scherlis, Kshitij Sachan, Adam S Jermyn, Joe Benton, and Buck Shlegeris. Polysemanticity
 603 and capacity in neural networks. *arXiv preprint arXiv:2210.01892*, 2022. 1

604 Dong Shu, Xuansheng Wu, Haiyan Zhao, Mengnan Du, and Ninghao Liu. Beyond input activations:
 605 Identifying influential latents by gradient sparse autoencoders. *arXiv preprint arXiv:2505.08080*,
 606 2025. 16

607 Daniel A Spielman, Huan Wang, and John Wright. Exact recovery of sparsely-used dictionaries. In
 608 *Conference on Learning Theory*, pp. 37–1. JMLR Workshop and Conference Proceedings, 2012.
 609 16

610 Glen Taggart. Prolu: A nonlinearity for sparse autoencoders. In *AI Alignment Forum*, 2024. 15

611 Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhu-
 612 patiraju, Léonard Hussonot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, et al. Gemma
 613 2: Improving open language models at a practical size. *arXiv preprint arXiv:2408.00118*, 2024.
 614 7

615 Adly Templeton, Tom Conerly, Jonathan Marcus, Jack Lindsey, Trenton Bricken, Brian Chen, Adam
 616 Pearce, Craig Citro, Emmanuel Ameisen, Andy Jones, Hoagy Cunningham, Nicholas L Turner,
 617 Callum McDougall, Monte MacDiarmid, C. Daniel Freeman, Theodore R. Sumers, Edward Rees,
 618 Joshua Batson, Adam Jermyn, Shan Carter, Chris Olah, and Tom Henighan. Scaling monoseman-
 619 ticity: Extracting interpretable features from claude 3 sonnet. Transformer Circuits Thread, 2024.
 620 1

621 Robert Tibshirani. Regression shrinkage and selection via the lasso. *Journal of the Royal Statistical
 622 Society Series B: Statistical Methodology*, 58(1):267–288, 1996. 1, 3, 15

623 Martin J Wainwright. *High-dimensional statistics: A non-asymptotic viewpoint*, volume 48. Cam-
 624 bridge university press, 2019. 60

625 Benjamin Wright and Lee Sharkey. Addressing feature suppression in saes. In *AI Alignment Forum*,
 626 pp. 16, 2024. 15

627 Yuchen Wu and Kangjie Zhou. Lower bounds for the convergence of tensor power iteration on
 628 random overcomplete models. In *The Thirty Sixth Annual Conference on Learning Theory*, pp.
 629 3783–3820. PMLR, 2023. 22, 33

630 Zheyang Xiong, Ziyang Cai, John Cooper, Albert Ge, Vasilis Papageorgiou, Zack Sifakis, Angeliki
 631 Giannou, Ziqian Lin, Liu Yang, Saurabh Agarwal, et al. Everything everywhere all at once: Llms
 632 can in-context learn multiple tasks in superposition. *arXiv preprint arXiv:2410.05603*, 2024. 1

633 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
 634 Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. *arXiv preprint
 635 arXiv:2412.15115*, 2024. 6, 27

636

637

638

639

640

641

642

643

644

645

646

647

648	CONTENTS	
649		
650		
651	1 Introduction	1
652		
653	2 Preliminaries	3
654		
655	3 Rethinking How SAEs Learn: Neuron Resonance	3
656		
657		
658	4 Algorithm: Group Bias Adaptation	4
659		
660	5 Experimental Evaluations	6
661		
662	6 Neuron Resonance: A Theoretical Perspective	8
663		
664		
665	A Related Works	15
666		
667	B Formal Theory of SAE Training Dynamics	16
668		
669	B.1 Data Model	16
670	B.2 SAE Dynamics with Bias Adaptation	17
671	B.2.1 Simplification for Theoretical Analysis	17
672	B.2.2 Main Theorem on Training Dynamics	18
673	B.3 Details on ReLU-like Activation	20
674	B.4 Proof Overview	21
675	B.4.1 Good Initialization with Wide Network	21
676	B.4.2 Preactivations are Approximately Gaussian	21
677	B.4.3 Weight Decomposition and Concentration under Sparsity	22
678	B.4.4 State Recursion and Convergence	23
679		
680		
681		
682		
683		
684	C Supplementary Discussions	23
685		
686	C.1 Details on TopK and L_1 Training Methods	23
687	C.2 Evaluation Metrics	25
688		
689	D Additional Experiments Details	27
690		
691	D.1 Synthetic Experimental Setup	27
692	D.2 Additional Details for §5	27
693	D.3 Comparison between JumpReLU and ReLU activation	28
694		
695		
696	E Good Initialization and Gaussian Conditioning	29
697		
698	E.1 Initialization Properties	29
699	E.2 Rewriting the Gradient Descent Iteration	31
700	E.3 Gaussian Conditioning	32
701	E.4 Additional Proofs	36

702	F Concentrations Results for the SAE Dynamics	38
703		
704	F.1 Isolation of Gaussian Component	39
705	F.2 Sparse Activation	39
706	F.3 Second Order Concentration	41
707	F.4 First Order Concentration	43
708	F.5 Non-Gaussian Error Propogation	46
709		
710		
711		
712	G SAE Dynamics Analysis: Proof of Theorem B.2	46
713		
714	G.1 A General Version of the Theorem	46
715	G.2 Concentration Results Combined	49
716	G.3 A Two-State Alignment Recursion	51
717	G.4 Simplifying the Conditions of Theorem G.13	53
718		
719		
720	H Proofs for Concentration Results	55
721		
722	H.1 Proofs for Non-Gaussian Components	56
723	H.1.1 Proof of Theorem F.1	56
724	H.1.2 Additional Proofs for Theorem F.1	56
725	H.2 Proofs for Concentration Lemmas	58
726	H.2.1 Concentration for Ideal Activations	58
727	H.2.2 Activations with Non-Gaussian Component: Proof of Theorem F.3	61
728	H.2.3 Concentration for $\ E^\top \varphi(Ey_t^*; b_t)\ _2^2$: Proof of Theorem F.4	62
729	H.2.4 Concentration for $\ F^\top \varphi(Fy_t + \theta \cdot v^\top \bar{w}_{t-1}; b_t)\ _2^2$: Proof of Theorem F.6	70
730	H.2.5 Concentration for $\langle z_\tau, E^\top \varphi(Ey_t^*; b_t) \rangle$: Proof of Theorem F.7	72
731	H.2.6 Concentration for $\langle z_\tau, F^\top \varphi(Fy_t + \theta \cdot v^\top \bar{w}_{t-1}; b_t) \rangle$: Proof of Theorem F.9	74
732	H.2.7 Concentration for $\theta^\top \varphi(Fy_t^* + \theta v^\top \bar{w}_{t-1}; b_t)$: Proof of Theorem F.10	76
733	H.3 Propogation of the Non-Gaussian Error	77
734	H.3.1 Error Analysis for ΔE_t : Proof of Theorem F.12	77
735	H.3.2 Error Analysis for ΔF_t : Proof of Theorem F.13	78
736	H.4 Proofs for Technical Lemmas	79
737	H.4.1 Proof of Theorem F.5	79
738	H.4.2 Proof of Theorem F.8	79
739	H.4.3 Proof of Theorem F.11	80
740		
741		
742		
743		
744		
745		
746		
747		
748	I Proofs for SAE Dynamics Analysis	81
749		
750	I.1 Proof of Theorem G.2	81
751	I.2 Proofs for Concentration Results Combined	82
752	I.2.1 Proof of Theorem G.5	82
753	I.2.2 Proof of Theorem G.6	83
754	I.2.3 Proof of Theorem G.7	84
755		

756	I.2.4	Proof of Theorem G.8	85
757	I.3	Proofs for Recursion Analysis	86
758	I.3.1	Proof of Theorem G.10	86
759	I.3.2	Proof of Theorem G.12	88
760	I.4	Proofs for Condition Simplification	91
761	I.4.1	Proof of Theorem G.13	91
762	I.4.2	Proof of Theorem G.14	92
763	I.4.3	Proof of Theorem G.15	93
764	I.5	Proofs for Technical Lemmas	94
765	I.5.1	Proof of Theorem I.1	94
766	I.5.2	Proof of Theorem I.2	95
767	I.5.3	Proof of Theorem I.4	95
768	J	Auxiliary Lemmas	96
769	J.1	Concentration Inequalities	96
770	J.2	Efron-Stein Inequalities	97
771	K	The Use of Large Language Model	100
772	L	Revision	100
773	L.1	Discussions for Gaussian Feature Assumption	100
774	L.2	Revision for Evaluation Metrics	101
775	L.3	Enhanced Caption for Figure 2: Evidence of Phase Transition	101
776	L.4	Discussions for Geometric Spacing of Target Activation Frequencies	102
777	L.5	Clarification on Neuron Resonance	102
778	L.6	Clarification that GBA is not a Hierarchical SAE	102
779	L.7	Additional results on neuron analysis	103
780	L.8	Why Frequency-Aware Training? A Toy Example	104
781	L.9	Additional SAEbench Evaluation	106
782	A	RELATED WORKS	

SAE Training Methods. Many methods have been proposed to train SAEs, addressing the trade-off between reconstruction fidelity and sparsity-induced interpretability from various perspectives. One canonical approach is imposing an L_1 penalty on the activations [Bricken et al. \(2023\)](#). Although L_1 is a natural surrogate for enforcing L_0 sparsity, it typically suffers from activation shrinkage [Tibshirani \(1996\)](#). Several works have attempted to overcome this drawback through alternative techniques [Wright & Sharkey \(2024\)](#); [Taggart \(2024\)](#); [Rajamanoharan et al. \(2024a\)](#); [Konda et al. \(2014\)](#). In particular, [Rajamanoharan et al. \(2024b\)](#) proposed the JumpReLU activation, which achieves state-of-the-art performance despite requiring backpropagation with pseudo-derivatives because of the non-smooth nature of JumpReLU and the need for tuning the kernel density estimation bandwidth. Another representative example is the use of TopK activation [Makhzani & Frey \(2013\)](#), which has proven effective when scaled to large models [Gao et al. \(2024\)](#). However, it has been observed that features learned via TopK activation are quite sensitive to the random seed [Paulo & Belrose \(2025\)](#), raising concerns about their reliability.

Sparse Dictionary Learning. Beyond SAE training methods, there is a long history of research on sparse dictionary learning (SDL) dating back to [Olshausen & Field \(1996\)](#); [Kreutz-Delgado et al. \(2003\)](#). Numerous techniques have been developed for applications in signal processing and computer vision ([Bruckstein et al., 2009](#); [Rubinstein et al., 2010](#)). For example, [Spielman et al. \(2012\)](#) proposed a polynomial-time algorithm that can accurately recover both the dictionary and its coefficient matrix, under the assumption of sparsity in the coefficients.

Using SAEs for Model Interpretation. In recent years, SAEs have gained attention for model interpretation, particularly in the context of large language models (LLMs) ([Bricken et al., 2023](#); [Paulo & Belrose, 2025](#)). Notably, [Bricken et al. \(2023\)](#); [Dunefsky et al. \(2024\)](#); [Ameisen et al. \(2025\)](#) have identified several interesting features and circuit patterns learned by SAEs or their variants. Beyond detecting monosemantic features, [Papadimitriou et al. \(2025\)](#) found that groups of SAE-learned features remain remarkably stable across different training runs and encode cross-modal semantics. Additionally, the potential of SAE activations for steering model behavior has been explored ([Ameisen et al., 2025](#); [Shu et al., 2025](#)).

B FORMAL THEORY OF SAE TRAINING DYNAMICS

In this section, we present a formal theory of SAE training dynamics, providing rigorous guarantees for feature recovery when data follows a well-defined statistical model. However, before delving into the details of the theory, we first need to answer the following fundamental questions:

- What is the precise statistical model for data generation we should consider?
- What does it mean to recover features, and under what conditions is feature recovery even possible?

In this section, we will

- Formalize the statistical model for data generation. State the feature recovery problem and define identifiability of features, which is a pre-requisite for any recovery guarantee
- Present the full set of assumptions and result on SAE training dynamics.

Notations. Let \mathbb{R}_+ denote the set of non-negative real numbers. For two sets A and B , we denote by $A \sqcup B$ the disjoint union of A and B . We denote by $\mathbf{1}$ the all-ones vector, whose dimension will be clear from context. In the remaining of the section, we abuse the notation and use $a \gtrsim b$ to denote that $a \geq b + O(\log \log n / \log n)$ for sufficiently large n , which differs from what we use in the main text.

B.1 DATA MODEL

We consider the data model $X = HV$ from (2.1), where data matrix $X \in \mathbb{R}^{N \times d}$ is a sparse, nonnegative combination of monosemantic features $V \in \mathbb{R}^{n \times d}$ with coefficients $H \in \mathbb{R}_+^{N \times n}$. Our statistical framework requires the following [decomposable data](#) conditions:

Definition B.1 (Decomposable Data). *We say that the data matrix $X \in \mathbb{R}^{N \times d}$ is **decomposable** if there exists a positive integer $n \in \mathbb{N}$, a **nonnegative** matrix $H \in \mathbb{R}_+^{N \times n}$ and a feature matrix $V \in \mathbb{R}^{n \times d}$ such that $X = HV$. Moreover, each row of H has unit ℓ_2 norm and the ℓ_2 norm of each row of V is $\Theta(\sqrt{d})$. Furthermore, the coefficient matrix $H \in \mathbb{R}^{N \times n}$ satisfies the following three conditions:*

(H1) Row-wise sparsity: $\max_{\ell \in [N]} \|H_{\ell,:}\|_0 = s$ with $s = \Theta(1)$.

(H2) Non-degeneracy: For every $i \in [n]$, $\|H_{:,i}\|_1 / \|H_{:,i}\|_0 = \Theta(1)$.

(H3) Low co-occurrence: $\rho_2 := \max_{i \neq j} \langle \mathbf{1}\{H_{:,i} \neq 0\}, \mathbf{1}\{H_{:,j} \neq 0\} \rangle / \|H_{:,i}\|_0 \ll n^{-1/2}$.

In addition, we further assume that the feature matrix $V \in \mathbb{R}^{n \times d}$ satisfies:

(V1) Incoherence: For all $i \neq j$, $|\langle v_i, v_j \rangle| / (\|v_i\|_2 \|v_j\|_2) = o(1)$.

These conditions ensure feature recoverability: *nonnegativity* removes sign ambiguity since opposite directions yield contradictory concepts; *row-wise sparsity* (H1) limits each data point to s

864 features, essential for sparse recovery; *non-degeneracy* (H2) ensures sufficient feature magnitude
 865 when present; *low co-occurrence* (H3) and *incoherence* (V1) guarantee features are distinguishable
 866 by occurrence pattern or direction—generalizing the orthogonality assumption common in sparse
 867 recovery (Marques et al., 2018; Candès & Plan, 2009). All these conditions will be used in our
 868 theoretical analysis of SAE training dynamics.
 869

870 **Feature recovery problem.** Note that the bilinear representation $X = HV$ has two intrinsic
 871 ambiguities: (i) *feature permutation*—reordering features leaves HV unchanged; (ii) *feature scaling*—
 872 scaling features while inversely scaling coefficients preserves the product. With the data
 873 model, we can now define the feature recovery problem: given data X generated from an unknown
 874 decomposable pair (H, V) , the goal is to learn an SAE such that for each feature v_i in V , there exists
 875 a neuron m_i in the SAE with weight vector w_{m_i} satisfying

$$876 \langle w_{m_i}, v_i \rangle / \|v_i\|_2 \geq 1 - o(1).$$

877 This means each feature is closely approximated by at least one neuron, up to a small error.
 878

880 B.2 SAE DYNAMICS WITH BIAS ADAPTATION

882 In the following, we first introduce a *Bias Adaptation* (BA) algorithm, which is a simplified version
 883 of the GBA algorithm with only one group of neurons and a fixed target activation frequency (TAF)
 884 p . Then, we provide theoretical results on the training dynamics of BA, which is accompanied by
 885 synthetic experiments to validate the theoretical findings.
 886

887 B.2.1 SIMPLIFICATION FOR THEORETICAL ANALYSIS

888 We make several simplifications to the setup of SAE to facilitate theoretical analysis.
 889

890 **Decomposable data with Gaussian features.** We assume that the data matrix $X \in \mathbb{R}^{N \times n}$ is
 891 decomposable in the sense of [Definition B.1](#). Moreover, we assume that the feature matrix $V \in$
 892 $\mathbb{R}^{n \times d}$ has i.i.d. entries following $\mathcal{N}(0, 1)$. Such a choice of V satisfies the incoherence condition
 893 (V1).

895 **SAE model.** We consider a simplified version of the SAE model $f(x; \Theta)$ in [\(2.2\)](#), where the only
 896 trainable parameters are the weights $\{w_m\}_{m=1}^M$.

- 898 • (*Small output scale*) We assume that the output scale $a_m = a$ and a is sufficiently small. When
 899 computing the gradient, we rescale the $\nabla \mathcal{L}(\Theta)$ back to its original scale by multiplying a^{-1} .
- 900 • (*Fixed pre-bias*) We fix the pre-bias $b_{\text{pre}} = 0$, as the data matrix X is centered.
- 901 • (*ReLU-like smooth activation*) We use a smooth, ReLU-like activation function ϕ (see [Definition B.3](#) for details). One example is the softplus activation $\phi(x) = \log(1 + \exp(x))$.
- 902 • (*Fixed bias*) For each neuron $m \in [M]$, we fix the bias $b_m = b < 0$ throughout training,
 903 where b is a negative scalar whose value will be specified later. This fixed bias will determine
 904 the target activation frequency (TAF) p of all neurons via $p = \Phi(-b)$, where $\Phi(\cdot)$ is the tail
 905 probability function for Gaussian distribution. We will detail the intuition behind this choice
 906 later.

909 These simplifications help isolate the core aspects of feature recovery and make the analysis more
 910 tractable.
 911

912 **Bias Adaptation (BA) algorithm.** Recall that Bias Adaptation (BA) algorithm is a special case of
 913 GBA algorithm with only one group of neurons and a fixed TAF p . As our goal is to systematically
 914 understand how neurons with a specific TAF p can recover features with similar occurrence
 915 frequency, it is reasonable to try using a version of GBA algorithm with a single group and a fixed TAF
 916 p . We introduce the algorithm as follows. Here we determine the value of p implicitly by choosing
 917 a fixed bias $b < 0$, and they are related by $p = \Phi(-b)$, where $\Phi(\cdot)$ is the tail probability function for
 Gaussian distribution. That is, $\Phi(t) = \mathbb{P}(Z \geq t)$ for $Z \sim \mathcal{N}(0, 1)$.

Given the data matrix X and the SAE model $f(x; \Theta)$, we can compute the loss function as $\mathcal{L}_{\text{rec}}(\Theta) = \text{Avg}_{x \in X} (\frac{1}{2} \|f(x; \Theta) - x\|_2^2)$, and its gradient with respect to the weights $\{w_m\}_{m=1}^M$. Since only the directions of the features $\{v_i\}_{i=1}^n$ matter, we adopt spherical gradient descent to update the weights.

That is, starting from the initial weights $\{w_m^{(0)}\}_{m \in [M]}$ uniformly sampled from the unit sphere \mathbb{S}^{d-1} , for any $t \geq 1$, in the t -th iteration, we update each $w_m^{(t-1)}$ by

$$\text{BA: } w_m^{(t)} = \frac{w_m^{(t-1)} + \eta g_m^{(t)}}{\|w_m^{(t-1)} + \eta g_m^{(t)}\|_2}, \quad \text{where } g_m^{(t)} = \lim_{a \rightarrow 0} -a^{-1} \nabla_{w_m} \mathcal{L}_{\text{rec}}(\Theta^{(t-1)}). \quad (\text{B.1})$$

Here, $g_m^{(t)}$ is the rescaled negative gradient of the loss function $\mathcal{L}_{\text{rec}}(\cdot)$ with respect to the weight w_m of neuron m at iteration t . We will show that, under proper conditions, for any feature v_i , there exists at least one neuron $m_i \in [M]$ such that the alignment between $w_{m_i}^{(T)}$ and v_i is arbitrarily close to one when T is sufficiently large.

Before we proceed to the main theoretical results, we make several remarks on the above simplifications for theoretical analysis and their implications.

Fixed bias is without loss of generality. As we consider Gaussian features and always normalize $w_m^{(t)}$ to the unit sphere, it can be shown using the [Gaussian conditioning technique](#) that the pre-activations remain approximately Gaussian, i.e., $y_m(x_\ell) = \langle w_m^{(t)}, x_\ell \rangle + b \sim \mathcal{N}(b, 1)$ for a constant number of iterations t . See §B.4 for details. Therefore, to achieve the desired TAF p , it is without loss of generality to fix the bias $b < 0$ such that $\Phi(-b) = p$, which means that the pre-activations of each neuron will be non-negative for approximately p fraction of the N data points throughout the training.

Smooth ReLU-like activation approximates ReLU. We choose a smooth activation function for technical convenience. For definition, we defer to [Definition B.3](#). These activations can be viewed as a smooth approximation to the ReLU function, as illustrated in [Figure 8](#). This class of activations encompasses functions like Softplus and shifted ELU, and closely resembles the standard ReLU activation function. We believe that a more refined analysis can also be applied to the standard ReLU activation, but we leave this as future work.

Small output scale decouples neuron dynamics. Following a common paradigm in the literature (see e.g. [Lee et al. \(2024\)](#); [Chen et al. \(2025\)](#)), we assume that the output scale of the SAE is sufficiently small. The benefit of this condition is that it [decouples the dynamics among the \$M\$ neurons](#), making the analysis more tractable. Specifically, the rescaled negative gradient of the loss $\mathcal{L}(\Theta)$ is given by

$$g_m = -a^{-1} \nabla_{w_m} \mathcal{L}(\Theta) = \sum_{\ell=1}^N (\varphi(w_m^\top x_\ell; b) x_\ell - \psi_m(x_\ell; \Theta)) \xrightarrow{a \rightarrow 0} \sum_{\ell=1}^N \varphi(w_m^\top x_\ell; b) x_\ell, \quad (\text{B.2})$$

where we define $\varphi(\cdot, \cdot)$ and $\psi_m(\cdot; \Theta)$ as

$$\varphi(u, v) = \phi(u + v) + \phi'(u + v) \cdot u,$$

$$\psi_m(x; \Theta) = \phi'(w_m^\top x + b) \cdot w_m^\top f(x; \Theta) \cdot x + \phi(w_m^\top x + b) \cdot f(x; \Theta).$$

Here, $\varphi : \mathbb{R} \mapsto \mathbb{R}$ is a *decoupled* term that depends only on each individual neuron's weight and bias, while $\psi_m : \mathbb{R}^d \mapsto \mathbb{R}^d$ is a *coupling* term that captures the interaction between the neuron and the rest of the network. Since the scale of $f(x; \Theta)$ is proportional to a , this coupling term is negligible when a is small. As a result, when a is infinitesimally small, each neuron m evolves independently of the other neurons. Furthermore, thanks to the decoupled dynamics, the restriction to a single group with a fixed TAF p does not result in any loss of generality, as the analysis of multiple groups is a straightforward extension.

B.2.2 MAIN THEOREM ON TRAINING DYNAMICS

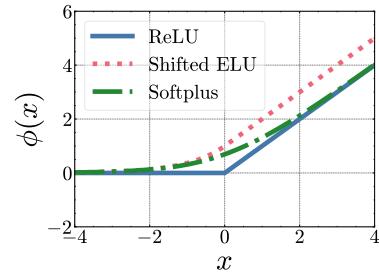


Figure 8: Smooth ReLU-like activations

972
973
974
975
976
977
978
979

Intuitively, to recover a feature v_i , it has to appear in sufficiently many data points with sufficiently large coefficients. To characterize this intuition, we introduce two key quantities based on the coefficient matrix H . First, for each feature index $i \in [n]$, let $\mathcal{D}_i = \{l \in [N] : H_{l,i} \neq 0\}$ be the set of data indices that contain feature v_i . The occurrence of the feature v_i is thus given by $|\mathcal{D}_i|/N$. We define the *maximum feature occurrence* as the largest occurrence among all features, i.e.,

$$\rho_1 = \max_{i \in [n]} \{|\mathcal{D}_i|/N\} = \max_{i \in [n]} \left\{ 1/N \cdot \sum_{l \in [N]} \mathbb{1}\{H_{l,i} \neq 0\} \right\}.$$

980
981
982
983
984
985
986
987
988

To ensure each feature v_i appears in sufficiently many data points, we require that the occurrence of each feature is comparable to ρ_1 , i.e., $|\mathcal{D}_i|/(\rho_1 N)$ is not too small for each $i \in [n]$.

Second, to measure the magnitude of coefficients associated with each feature, we define the *cut-off* level for the feature i as

$$h_i := \max \left\{ h \leq 1 : \frac{1}{|\mathcal{D}_i|} \sum_{l \in \mathcal{D}_i} \mathbb{1}\{H_{l,i} \geq h\} \geq \text{polylog}(n)^{-1} \right\}. \quad (\text{B.3})$$

991
992
993
994
995
996
997
998
999
1000

Intuitively, h_i is a critical threshold such that, among all data points containing v_i , at least a $\text{polylog}(n)^{-1}$ fraction of them have coefficients no smaller than h_i . In other words, h_i reflects the magnitude of coefficients associated with feature v_i , within the subset of data points where v_i is present. Thus, h_i can effectively be viewed as a notion of “signal strength” for feature v_i , and we should require that h_i is not too small for each $i \in [N]$.

Furthermore, we additionally introduce a global quantity called the *concentration coefficient* $h_* = h_*(H)$, whose definition is technical and deferred to (G.1) in the appendix. Intuitively, h_* characterizes the global concentration level of nonzero entries in H . For now we can intuitively understand it as the variance of the nonzero entries in H , and thus h_* will increase when the nonzero entries in H are less concentrated.

1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

With these definitions, we are now ready to state the main theorem on the training dynamics.

Theorem B.2. Let $X = HV$ be decomposable in the sense of [Definition B.1](#) with $H \in \mathbb{R}^{N \times n}$ satisfying all the conditions therein, and further assume that $V \in \mathbb{R}^{n \times d}$ has i.i.d. entries following $\mathcal{N}(0, 1)$. For this X , we train the SAE with BA algorithm given in (B.1). Let $\varsigma, \varepsilon \in (0, 1)$ be any small constants. We assume that the number of neurons M is sufficiently large:

$$\boxed{\text{Network Width: } \frac{\log M}{\log n} \gtrsim \max_{i \in [n]} \left\{ \frac{b^2}{2(1 - \varepsilon)^2 h_i^2 \log n} + 1 \right\}.} \quad (\text{B.4})$$

Moreover, we assume that the learning rate η satisfies $\log \eta \gtrsim (b^2/2 - \log N)$ and that the bias $b < 0$ is set to satisfy the following condition:

$$\boxed{\text{Bias Range: } 1 \gtrsim \frac{b^2}{2 \log n} \gtrsim \max \left\{ \frac{1}{2} + \frac{h_*^2}{2}, 2(1 + \varepsilon)^2 h_*^2, 1 - (1 - \varsigma) \cdot \frac{\log d}{\log n} \right\}.} \quad (\text{B.5})$$

Furthermore, we assume the coefficient matrix H satisfies the following feature balance condition:

$$\boxed{\text{Feature Balance: } \frac{|\mathcal{D}_i|}{\rho_1 N} \geq \text{polylog}(n)^{-1}, \quad h_i^2 \gg \frac{\log \log(n)}{\log(n)}, \quad \forall i \in [n].} \quad (\text{B.6})$$

Then, it holds with probability at least $1 - n^{-4\varepsilon}$ over the randomness of V that for any feature $i \in [n]$, there exists at least one unique neuron m_i such that after at most $T = \varsigma^{-1}$ iterations, the alignment between the weights of neuron m_i and the feature vector v_i satisfies $\langle w_{m_i}^{(T)}, v_i \rangle / \|v_i\|_2 \geq 1 - o(1)$.

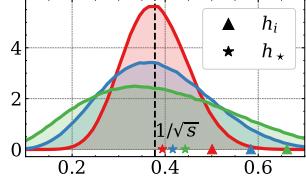


Figure 9: Relationship between s , h_* and h_i with different concentration level in H ’s non-zero entries’ empirical distribution (shadow). A less concentrated H leads to larger h_* and h_i .

1026 See §G for a detailed proof of this theorem. Theorem B.2 shows that under appropriate conditions,
 1027 **BA provably recovers all monosemantic features within a constant number of iterations**. These
 1028 conditions include that (i) the network is sufficiently wide compared to the number of features as
 1029 specified in (B.4), (ii) the bias b is chosen within a certain range as specified in (B.5), and (iii) the co-
 1030 efficient matrix H satisfies the feature balance condition in (B.6), ensuring that each feature appears
 1031 frequently enough with sufficiently large coefficients. To our best knowledge, this theorem is the
 1032 first theoretical result that proves a SAE training algorithm can provably recover all monosemantic
 1033 features.

1034
 1035 **Going from one group to multiple groups.** The analysis of BA with a single group can be nat-
 1036 urally extended to the case of multiple groups in GBA thanks to the decoupled dynamics among
 1037 neurons. Specifically, as we have shown in (B.2), each neuron m evolves *independently* when all
 1038 neurons' output scale a_m is sufficiently small. Therefore, if we have K groups of neurons, each
 1039 with M/K neurons and bias b_k for group $k \in [K]$ such that the TAF $p_k = \Phi(-b_k)$, then the same
 1040 analysis can be applied to each group separately, and we will derive the same conditions as in **The-**
 1041 **orem B.2** for each group. As a result, to learn features of a certain occurrence frequency f , we just
 1042 need to ensure that at least one group k has TAF p_k and the corresponding bias b_k satisfying the Bias
 1043 Range condition in (B.5).

1044 **Specializing Theorem B.2 to Theorem 6.1.** To relate the above theorem back to the one presented
 1045 in the main text:

- 1047 • We first note that the decomposable data condition in **Definition B.1** is always satisfied when
 1048 H is designed to have exactly s -sparse rows: each row ℓ has uniform random support S_ℓ with
 1049 $|S_\ell| = s$ for a constant s and entries $H_{\ell,i} = 1/\sqrt{s}$ for $i \in S_\ell$, zero otherwise.
- 1050 • Moreover, the feature balance condition in (B.6) is also satisfied with high probability in this
 1051 case because each feature appears in s/n fraction of data points, and $|\mathcal{D}_i| = sN/n$ for each
 1052 $i \in [n]$ by the law of large numbers, and so is $\rho_1 = s/n$.
- 1053 • Finally, in this case, the concentration coefficient h_i defined in (B.3) is equal to $1/\sqrt{s}$, as the
 1054 nonzero entries are all equal to $1/\sqrt{s}$.

1055 Hence, the remaining conditions to be checked are the network width condition in (B.4) and the
 1056 bias range condition in (B.5). We now invoke **Theorem G.1**, which states that if H has every entries
 1057 belonging to $\{0, 1/\sqrt{s}\}$, then $h_* = 1/\sqrt{s}$ as well. Therefore, by substituting $h_i = h_* = 1/\sqrt{s}$ into
 1058 (B.4) and (B.5), multiplying both sides of the inequalities by $\log n$, taking exponential, and using
 1059 the fact that

$$1061 \exp\left(\frac{b^2}{2}\right) = \frac{\Theta(\text{polylog}(n))}{p}$$

1063 by the Gaussian tail estimate for $b > \sqrt{\log n} \gg 1$ (guaranteed by the bias range condition), we
 1064 recover the conditions in **Theorem 6.1**.

1066 B.3 DETAILS ON RELU-LIKE ACTIVATION

1068 In this section, we provide the omitted details for §6. We give a formal definition of ReLU-like
 1069 activations.

1070 **Definition B.3** (ReLU-like Activation). *For the activation function $\phi : \mathbb{R} \rightarrow \mathbb{R}$, we define φ as*

$$1072 \varphi(x) = \varphi(x; 0) = \phi(x) + x \phi'(x).$$

1073 We say that ϕ is ReLU-like if it satisfies the following:

- 1075 1. (Lipschitzness) The activation function ϕ is continuously differentiable, 1-Lipschitz, and γ_1 -
 1076 smooth with $\gamma_1 = O(\text{polylog}(n))$. Furthermore, $\varphi(x)$ is γ_2 -Lipschitz with $\gamma_2 = O(\text{polylog}(n))$.
- 1077 2. (Monotonicity) The activation function ϕ is non-decreasing, and moreover, $\phi'(x) > C_0$ for some
 1078 constant $C_0 > 0$ and all $x \geq 0$.
- 1079 3. (Diminishing Tail) There exists a threshold $\kappa_0 = O((\log n)^{-1/2})$ and a sufficiently large con-
 1080 stant $c_0 > 0$ such that for all $x < -\kappa_0$, $\max\{|\phi(x)|, |\phi'(x)|, |x \phi'(x)|\} \leq n^{-c_0}$.

Lipschitzness. Under the above assumptions, we note that $\varphi(x; b)$ is L -Lipschitz in x with $L = (\gamma_2 + |b|\gamma_1) = O(\text{polylog}(n)) > 1$. The Lipschitz property of the function φ is pivotal in our analysis since it enables control over error propagation across iterations. However, this property depends on the smoothness of the activation function ϕ , a condition that the standard ReLU does not satisfy. Fortunately, many common activation functions—such as softplus, noisy ReLU, and shifted ELU (with the limit at $-\infty$ set to 0)—do satisfy this smoothness requirement. In particular, with a large smoothness parameter $\gamma_1 = \text{polylog}(n)$, we can use a smooth activation function to well approximate the ReLU function. For instance, we can take $\phi(x) = \gamma_1^{-1} \log(1 + e^{\gamma_1 x})$ for some $\gamma_1 = \text{polylog}(n)$ as a smooth approximation of the ReLU activation function.

Monotonicity. The monotonicity property ensures that neurons with large pre-activations, which indicate a good alignment with the underlying features, will also have large post-activations. This then guarantees a continuous growth of the corresponding neuron weights.

Diminishing Tail. The diminishing tail condition ensures that both the activation function ϕ and its derivative ϕ' are negligibly small when the input is below the threshold $-\kappa_0$. This property suppresses unwanted neuron activations, thereby promoting sparsity in the activations—a key factor in the successful training of the SAE.

B.4 PROOF OVERVIEW

In the following, we provide an overview of the key steps in the proof of [Theorem B.2](#).

B.4.1 GOOD INITIALIZATION WITH WIDE NETWORK

By planting a large pool of i.i.d. random neurons at initialization, we can—with *overwhelming probability*—(1) assign to each feature v_i one neuron m_i whose inner product with v_i is already very large, and (2) simultaneously ensure that this same neuron has only weak correlations with *all* the other features. Concretely, we prove that if M grows fast enough relative to n , then there exists a choice of distinct neurons $\{m_i\}_{i=1}^n$ such that

$$\begin{aligned} \text{InitCond-1: } & \langle v_i, w_{m_i}^{(0)} \rangle \geq (1 - \varepsilon) \sqrt{2 \log \frac{M}{n}}, \\ \text{InitCond-2: } & \max_{j \neq i} |\langle v_j, w_{m_i}^{(0)} \rangle| \leq \sqrt{2}(1 + \varepsilon) \sqrt{2 \log n}. \end{aligned} \quad (\text{B.7})$$

These two properties together ensure a *good initialization* for the neuron m_i dedicated to feature v_i . With $M \gg n^3$, we deduce that neuron w_{m_i} aligns *exclusively* with feature v_i . In fact, as M increases the separation between the two thresholds also increases, so $w_{m_i}^{(0)}$ is ever more strongly aligned with its own feature v_i than with any other v_j at the start. This widening margin precisely captures the *benign over-parameterization* effect: having many neurons actually promotes clean, feature-specific initialization. See [Theorem E.1](#) for more details.

B.4.2 PREACTIVATIONS ARE APPROXIMATELY GAUSSIAN

We give a brief overview of how we deal with the challenge of tracking the highly nonlinear dynamics in [\(B.1\)](#). With an abuse of notation, let us denote by w_t and b_t one neuron's weight and bias after iteration t . For the first step, the preactivations are Gaussian, i.e., $w_0^\top x_\ell + b_0 \sim \mathcal{N}(b_0, 1)$. For later steps, we expand the gradient descent update for the neuron weights w_t at iteration t . Let us denote by $\varphi_t = (\varphi(w_{t-1}^\top x_\ell; b_{t-1}))_{\ell \in [N]}$ and $g_t = X^\top \varphi_t$ the gradient computed in [\(B.2\)](#) at iteration t . By the gradient formula in [\(B.2\)](#), we have

$$w_t = \sum_{\tau=1}^t \lambda_\tau \cdot X^\top \varphi_\tau + \lambda_0 \cdot w_0, \quad \text{and} \quad Xw_t = \sum_{\tau=1}^t \lambda_\tau \cdot Xg_t + \lambda_0 \cdot Xw_0, \quad (\text{B.8})$$

for some coefficient λ_τ . Let us recall the decomposition $X = HV$. The first equality in [\(B.8\)](#) indicates that w_{t-1} only contains information of V through the $(t-1)$ -dimensional projection $\Phi = \text{span}\{\varphi_\tau^\top H\}_{\tau=1}^{t-1}$. For the second equality, the most recent component $Xg_t = HVg_t$ in the preactivations contains information from a new gradient direction—the direction of projecting g_t onto

1134 the orthogonal space of $G = \{w_0, g_1, \dots, g_{t-1}\}$, which we denote as g_t^\perp . Data X 's projection onto
 1135 this new direction can be decomposed as
 1136

$$1137 X g_t = H \cdot (\Phi^\perp V g_t^\perp + \Phi V g_t^\perp),$$

1138 where $\Phi^\perp V g_t^\perp$ is independent of all the previous updates, as the projection is orthogonal to both Φ
 1139 and G . Therefore, $V g_t^\perp$ is a high-dimensional independent Gaussian vector plus a low-dimensional
 1140 coupling term $\Phi V g_t^\perp$. The argument holds true for all iteration steps, and if $t \ll d \wedge n$, we ap-
 1141 proximately have $x_\ell w_t \sim \mathcal{N}(b_t, 1)$ thanks to the normalization of the weight w_t . This argument
 1142 can be made rigorous by use of the [Gaussian conditioning technique](#) (Wu & Zhou, 2023; Bayati &
 1143 Montanari, 2011; Montanari & Wu, 2023) in the formal proof. See §E.3 for details.

1144

B.4.3 WEIGHT DECOMPOSITION AND CONCENTRATION UNDER SPARSITY

1145 For one neuron dedicated to the target feature v_i and satisfying the initialization conditions in (B.7),
 1146 we decompose the weight w_t into two directions: 1) the projection of w_t onto the 2-dimensional
 1147 subspace spanned by w_0 and v_i ; 2) the projection of w_t onto the orthogonal space w_t^\perp . We define
 1148

$$1149 \alpha_t = \frac{\langle w_t, v_i \rangle}{\|v_i\|_2}, \quad \beta_t = \|w_t^\perp\|_2.$$

1150 Using α_t and β_t , one can compute the first and second moments of the post-activation φ_t under
 1151 the decomposition of the pre-activations (into a high-dimensional Gaussian component and a low-
 1152 dimensional coupling term) obtained by the Gaussian conditioning technique. The post-activation
 1153 φ_t then gives rise to the next-step w_{t+1} , and we thus obtain an induced recursion over α_t and β_t . As
 1154 a more concrete example, let us take learning rate $\eta = \infty$, and we can express α_t as
 1155

$$1156 \alpha_{-1,t} = \frac{\langle w_t, v_i \rangle}{\|v_i\|_2} = \frac{v_i^\top X^\top \varphi_t}{\|v_i\|_2 \cdot \|X^\top \varphi_t\|_2}$$

1157 Recall that $X = HV$. By a splitting of $V = [V_{-1}; v_i^\top]$ in the row and a splitting of $H = [H_{-i}, H_i]$
 1158 in the column, we have
 1159

$$1160 \alpha_{-1,t} = \frac{\|v_i\|_2^2 \cdot H_i^\top \varphi_t + v_i^\top V_{-i}^\top \cdot H_{-i}^\top \varphi_t}{\|v_i\|_2 \cdot \|X^\top \varphi_t\|_2} = \underbrace{\frac{\|v_i\|_2^2 \cdot H_i^\top \varphi_t}{\|X^\top \varphi_t\|_2}}_{\text{Signal}} + \underbrace{\frac{v_i^\top V_{-i}^\top \cdot H_{-i}^\top \varphi_t}{\|v_i\|_2 \cdot \|X^\top \varphi_t\|_2}}_{\text{Noise}}.$$

1161 Here, we explicitly separate the signal from the noise. Our goal is to steer the neuron toward the
 1162 direction of v_i , while treating gradient contributions from other features as noise.

1163

Controlling Moment of the Activations. To proceed, we
 1164 must tightly control both the signal and noise terms in the nu-
 1165 merator and the denominator. Concretely, this means bounding
 1166 the first moment of the activation φ_t (which enters the numerator)
 1167 and its second moment (which controls the denominator),
 1168 all while respecting the sparsity structure of φ_t . A core diffi-
 1169 culty stems from the pre-activation
 1170

$$1171 X w_t = H V w_t,$$

1172 whose entries are not independent—even under a Gaussian
 1173 approximation—because the feature rows $H_{\ell,:}$ are correlated.
 1174 This correlation invalidates the assumptions of classical con-
 1175 centration inequalities, such as Bernstein's, and the problem
 1176 only worsens once we apply the nonlinear activation. More-
 1177 over, classical concentration techniques based on the bounded-
 1178 differences property, such as McDiarmid's inequality (McDi-
 1179 armid et al., 1989), are not applicable here. This is because the bounded-differences property only
 1180 offers a uniform bound on the impact of each individual input change on the output, and it fails to
 1181 capture that the activations are sparse—remaining zero most of the time.

1182 To overcome these dependencies, we invoke the Efron-Stein inequality (Boucheron et al., 2003).
 1183 Unlike McDiarmid's bounded-differences inequality, which requires each individual input change

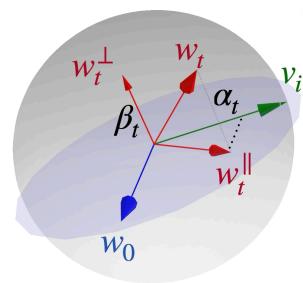


Figure 10: Visualization of the projection of w_t onto 1) the subspace spanned by w_0 and v_i and 2) the orthogonal space w_t^\perp .

1188 to have a uniformly small impact on f , Efron-Stein only demands a bound on the total conditional
 1189 variance, namely

$$1190 \quad \mathbb{E} \left[\sum_{i=1}^n (f(x) - f(x^{(i)}))^2 \mid x \right] \leq V,$$

1193 where $x^{(i)}$ denotes the vector obtained by replacing the i th coordinate of x with an independent
 1194 copy. This variance-based condition is far more flexible in the presence of both correlation and
 1195 nonlinearity, allowing us to derive the sharp moment bounds we need.

1196 B.4.4 STATE RECURSION AND CONVERGENCE

1198 We track at iteration t the *alignment* $\alpha_{-1,t}$ and the *orthogonal component* β_t of the neuron weight
 1199 w_t . By exploiting the “Gaussian-like” concentration of the pre-activation $Xw_t = HVw_t$ and
 1200 applying the refined Efron-Stein inequality to handle both feature correlations and the nonlinearity,
 1201 one obtains the coupled recurrences

$$1203 \quad \frac{1}{\alpha_{-1,t}} \leq (1 + o(1)) + \lambda_t \left(\frac{\Phi(-b)}{\rho_1 d} \frac{1}{\alpha_{-1,t-1}} + \tilde{\xi}_t \right), \quad \frac{\beta_t}{\alpha_{-1,t}} \leq \lambda_t \left(\frac{\beta_{t-1}}{\alpha_{-1,t-1}} + \tilde{\xi}_t \right).$$

1205 Here, $\lambda_t \propto \rho_1 N / |\mathcal{D}_i|$, and $\Phi(-b)$ denotes the Gaussian tail probability beyond the threshold $-b$,
 1206 which captures the activation sparsity. For clarity, we focus on the noiseless regime (i.e., assume
 1207 $\tilde{\xi}_t = 0$) so that all noise contributions are neglected. We now elaborate on these recursions in detail:
 1208

- 1209 1. Recall that we require $\beta_t \ll \alpha_{-1,t}$ since the neuron should eventually converge exclusively
 1210 in the direction of the target feature. In our framework, the minimal growth rate of the ratio
 1211 $\beta_t / \alpha_{-1,t}$ is intrinsically controlled by $\lambda_t = \tilde{O}(\rho_1 N / |\mathcal{D}_i|)$. By the definition of ρ_1 , this ratio is
 1212 inherently larger than 1. Thus, to prevent an unbounded escalation of $\beta_t / \alpha_{-1,t}$, we must restrict
 1213 λ_t to, at most, a polylogarithmic scale, i.e., $\lambda_t = \tilde{O}(1)$.
- 1214 2. If we additionally set $\Phi(-b) / (\rho_1 d) < d^{-\varsigma}$ for some $\varsigma \in (0, 1)$, then the map $\alpha_{-1,t}^{-1} \mapsto \alpha_{-1,t+1}^{-1}$ is
 1215 contractive. Hence $\alpha_{-1,t}$ grows from its initialization $\tilde{\Theta}(d^{-1/2})$ to $1 - o(1)$ in $O(1)$ steps, and the
 1216 growth rate is much faster than that of $\beta_t / \alpha_{-1,t}$ thanks to the sparsity condition $\Phi(-b) / (\rho_1 d) \ll 1$.

1219 From the above discussions, we already justify the inclusion of the **Individual Feature Occurrence**
 1220 condition $\frac{|\mathcal{D}_i|}{\rho_1 N} \geq \text{polylog}(n)^{-1}$ in (B.6) and part of the **Bias Range** condition $\frac{b^2}{2 \log n} \gtrsim 1 - (1 -$
 1221 $\varsigma) \cdot \frac{\log d}{\log n} \Leftrightarrow \Phi(-b) \ll d^{1-\varsigma} / n = \tilde{O}(d^{-\varsigma} \cdot (\rho_1 d))$ in (B.5). The remaining conditions can be derived
 1222 based on a more careful analysis, including the noise term $\tilde{\xi}_t$ and the initialization conditions (B.7).

1225 C SUPPLEMENTARY DISCUSSIONS

1227 C.1 DETAILS ON TOPK AND L_1 TRAINING METHODS

1229 We provide here more details on the training methods used in our experiments, including the Sparse
 1230 Autoencoder (SAE) with TopK activation and SAE with L_1 regularization.

1232 **Sparse Autoencoder (SAE) with TopK activation.** In an SAE with TopK activation, sparsity is
 1233 enforced by selecting only the K neurons with the highest activation values in the hidden layer. Let
 1234 $y = W(x - b_{\text{pre}}) + b$ be the pre-activation values of the hidden layer. Let $\phi(y)$ be the activations
 1235 after applying a standard activation function. The TopK selection mechanism, denoted as $S_K(\cdot)$,
 1236 operates on $\phi(y)$. For a vector $v \in \mathbb{R}^M$, $S_K(v)$ produces a vector $v' \in \mathbb{R}^M$ such that:

$$1237 \quad v'_j = \begin{cases} v_j & \text{if } v_j \text{ is among the } K \text{ largest values in } v, \\ 1238 \quad 0 & \text{otherwise} \end{cases}$$

1240 for $j \in [M]$. The post-activation in a TopK SAE is:

$$1241 \quad z = S_K(\phi(W(x - b_{\text{pre}}) + b)),$$

1242 which by definition is K -sparse. The reconstructed output is:
 1243

$$\hat{x} = \text{diag}(a) \cdot W^\top z + b_{\text{pre}}.$$

1244 Let $\Theta = (W, b_{\text{pre}}, b, a)$ be the parameters of the SAE. The loss function for the TopK SAE is the
 1245 reconstruction loss:
 1246

$$\mathcal{L}_{\text{rec}}(x; \Theta) = \|x - \hat{x}\|_2^2.$$

1247
 1248 **Sparse Autoencoder (SAE) with L_1 regularization.** In an SAE with L_1 regularization, sparsity
 1249 is encouraged by adding a penalty term to the reconstruction loss, proportional to the sum of the
 1250 absolute values of the hidden layer activations. Let $y = W(x - b_{\text{pre}}) + b$ be the pre-activation
 1251 values of the hidden layer. Let $z = \phi(y) = \phi(W(x - b_{\text{pre}}) + b)$ be the activations after applying
 1252 a standard activation function; these are the hidden layer representations that will be encouraged
 1253 towards sparsity. The reconstructed output is:
 1254

$$\hat{x} = \text{diag}(a) \cdot W^\top z + b_{\text{pre}}.$$

1255 The loss function for the L1 SAE, $\mathcal{L}(x; \Theta)$, incorporates both the reconstruction error and the L1
 1256 penalty on the hidden activations z :
 1257

$$\mathcal{L}(x; \Theta) = \|x - \hat{x}\|_2^2 + \lambda \cdot \sum_{j=1}^m |z_j| \cdot \|w_j\|_2,$$

1258 where $\lambda > 0$ is the sparsity penalty parameter that controls the strength of the regularization, m is
 1259 the number of neurons in the hidden layer, and w_j is the j -th row of the weight matrix W .
 1260

1261 **JumpReLU.** In our real-data experiments, we also consider the *JumpReLU* activation, a non-
 1262 smooth, non-monotonic function. Conceptually, it behaves like ReLU for positive inputs but intro-
 1263 duces a sharp jump for sufficiently large inputs. In our implementation, we adopt a simplified scalar
 1264 form adapted to our neuron pre-activation $w_m^\top x + b_m$:
 1265

$$\text{JumpReLU}(w_m^\top x; b_m) = \begin{cases} 0, & \text{if } w_m^\top x + b_m < 0, \\ w_m^\top x, & \text{if } w_m^\top x + b_m \geq 0. \end{cases}$$

1266 This activation acts as a hard thresholded identity: it passes the neuron's response only when the pre-
 1267 activation crosses a bias-controlled threshold. Although JumpReLU does not satisfy the smoothness
 1268 or Lipschitz conditions required in our theory (see [Definition B.3](#)), it is empirically effective and
 1269 included in our experimental comparisons [§5](#). To train SAEs with JumpReLU activation, we follow
 1270 [Rajamanoharan et al. \(2024b\)](#) and use straight-through estimators for the gradient of JumpReLU
 1271 with respect to the bias b_m . Specifically, for a small constant $\epsilon > 0$, we approximate the gradients
 1272 as
 1273

$$\frac{\partial \text{JumpReLU}(y; b)}{\partial y} = \begin{cases} 0, & \text{if } y + b < 0 \\ 1, & \text{if } y + b \geq 0 \end{cases}, \quad \frac{\partial \text{JumpReLU}(y; b)}{\partial b} \approx \begin{cases} 0, & \text{if } |y + b| > \frac{\epsilon}{2} \\ \frac{b}{\epsilon}, & \text{if } |y + b| \leq \frac{\epsilon}{2} \end{cases}$$

1274 The approximation follows the logic: the gradient with respect to b is in essence the gradient of
 1275 Heaviside step function, which can be approximated by a smoothed version over a small interval
 1276 around the threshold. Note that for GBA method, we do not apply any gradient for the bias; instead,
 1277 we update the bias through the frequency control mechanism described in [§4](#).
 1278

1279 **Activation sparsity.** For both the L1 and TopK SAE, we define the sparsity as the number of non-
 1280 zero entries in the latent z , i.e., $\|z\|_0$.
 1281

1282 **Minor notational discrepancy.** In the main text and above definition we express the activation as
 1283 $\phi(w_m^\top x + b_m)$, whereas in the definition above the JumpReLU activation is indeed as a bivariate
 1284 function of $w_m^\top x$ and b_m . This slight difference is purely notational and does not affect the un-
 1285 derlying functionality or the definition of activation sparsity. For simplicity, we always stick to
 1286 $\phi(w_m^\top x + b_m)$ in the main text, even for the JumpReLU activation.
 1287

1296 C.2 EVALUATION METRICS
12971298 We explain here the details of the evaluation metrics used in our experiments to assess how well the
1299 GBA algorithm recovers the underlying features.1300 We first introduce the *maximum activation* and *neuron Z-score*, which are used to measure the quality
1301 of the learned neurons. Then, we introduce the notion of *Max Cosine Similarity* (MCS) and *Feature*
1302 *Recovery Rate* (FRR), which are used to measure the quality of the alignment between the learned
1303 neurons and the ground-truth features, or the consistency of the learned features across different
1304 runs. We also introduce the neuron percentage, constructed from the MCS, which is used to generate
1305 [Figure 5](#).1306 We introduce maximum activation and neuron Z-score of a neuron m as follows.
13071308 **Maximum activation.** Unless specified, we define the maximum activation of a neuron m as the
1309 maximum of its pre-activations over the validation set:

1310
$$\text{Maximum Activation}(m) = \max_{x \in \text{Validation Set}} y_m(x), \quad \text{where } y_m(x) = w_m^\top (x - b_{\text{pre}}) + b_m. \quad (\text{C.1})$$

1312

1313 Note that the maximum activation is computed based on the tokens in the validation set, which is a
1314 held-out dataset separate from the training data used for evaluation purposes. It maps each neuron
1315 to a scalar, characterizing the maximum pre-activation of the neuron across all validation tokens.1316 **Neuron Z-score.** Let $\phi(\cdot)$ denote the neuron’s activation function (e.g., ReLU, or JumpReLU).
1317 For each neuron m and a minibatch $\{x_i\}_{i=1}^B$, we define its post-activation responses as

1319
$$\phi_{m,i} = \phi(w_m^\top (x_i - b_{\text{pre}}) + b_m), \quad i = 1, \dots, B,$$

1320

1321 where $w_m \in \mathbb{R}^d$ is the neuron’s weight vector and $b_m \in \mathbb{R}$ is its bias. We can compute the mean
1322 and standard deviation of these activations in the minibatch as

1323
$$\mu_m = \frac{1}{B} \sum_{i=1}^B \phi_{m,i}, \quad s_m = \sqrt{\frac{1}{B} \sum_{i=1}^B (\phi_{m,i} - \mu_m)^2}.$$

1324

1325 The Z-score of neuron m on data point x_i is defined as

1326
$$Z_{m,i} = (\phi_{m,i} - \mu_m) / s_m \in \mathbb{R}.$$

1327

1328 We can also take the maximum of the Z-scores over the batch:

1329
$$Z_m^{\max} = (\phi_{m,\max} - \mu_m) / s_m, \quad \text{where } \phi_{m,\max} = \max_{1 \leq i \leq B} \phi_{m,i}. \quad (\text{C.2})$$

1330

1331 A large value of $Z_{m,i}$ (or $Z_m^{\max} \gg 0$) indicates that on some input x_i , the neuron’s activation $\phi_{m,i}$
1332 lies multiple standard deviations above its mean. Thus, when Z_m^{\max} is large, neuron m is *well-learned*
1333 to sensitively detect certain data points within the batch. More specifically, when Z_m^{\max} is
1334 large, the two following conditions hold:1335

- **Strong Selectivity:** There exists some x_i within the batch such that $\phi_{m,i} \gg \mu_m$, i.e., the neuron’s
1336 activation $\phi_{m,i}$ “spikes” for input x_i .
- **Low Baseline Variability:** Within the whole batch, the neuron’s activation $\phi_{m,i}$ is relatively
1337 stable, i.e., the standard deviation s_m is moderate.

13381339 As a result, Z_m^{\max} serves as a quantitative measure of the neuron’s specificity on the batch of data.
1340 When generating [Figure 5](#), we use the maximum Z-score of each neuron across the whole validation
1341 set to select a subset of neurons.1342 Next, we introduce the *Max Cosine Similarity* (MCS) and *Feature Recovery Rate* (FRR) metrics,
1343 which are used to measure the quality of the alignment between the learned neurons and the ground-
1344 truth features, or the consistency of the learned features across different runs.1345 **Max Cosine Similarity (MCS) for synthetic data.** For each neuron m with weight vector $w_m \in$
1346 \mathbb{R}^d , we define

1347
$$\text{MCS}(m) = \max_{i \in [n]} \frac{\langle w_m, v_i \rangle}{\|w_m\|_2 \|v_i\|_2} \in [-1, 1].$$

1348

1349 By definition, $\text{MCS}(m) = 1$ if and only if w_m coincides with one of the true features v_i .

1350
 1351 **Max Cosine Similarity (MCS) for real data.** For real data, as we do not have access to the
 1352 ground-truth features, we define the MCS as the maximum cosine similarity between neurons across
 1353 different runs. This definition is used in [Figure 5](#). Specifically, consider the trained neurons weights
 1354 $W^{(j)} \in \mathbb{R}^{M \times d}$ for $j = 1, \dots, J$ where J is the number of runs with different random seeds. We fix
 1355 the first run as the *host run* and compute the MCS for the m -th neuron in the host run with respect
 1356 to the j -th run with $j \geq 2$ as follows:

$$1356 \quad \text{MCS}(m, j) = \max \{ \cos(W^{(j)}, w_m^{(1)}) \}.$$

1357 Here, the term inside the max is the cosine similarity between the m -th neuron in the host run and
 1358 all neurons in the j -th run, which is an M -dimensional vector. The maximum taken outside can be
 1359 interpreted as finding the best match for the m -th neuron in the host run. Now, given a threshold
 1360 τ for the MCS value, i.e., the x-axis in [Figure 5](#), we define neuron m to *have an MCS above the*
 1361 *threshold if* $\text{MCS}(m, j) \geq \tau$ *for all* $j \geq 2$. We require this condition to hold for all runs $j \geq 2$
 1362 because if the algorithm learns a consistent feature, it should be present no matter which random
 1363 seed is used. When this is the case, neuron m in the host run can find a corresponding neuron in each
 1364 of the other runs that has a cosine similarity above the threshold τ . Thus, by computing MCS for all
 1365 the neurons in the host run, we evaluate the consistency of the learned features across different runs.

1366 **Neuron percentage in [Figure 5](#).** Recall that we call the first run of the algorithm the *host run*.
 1367 Under the definition of MCS, in [Figure 5](#) we plot the **neuron percentage** as a function of the MCS
 1368 threshold τ . In particular, for any threshold τ (x-axis in [Figure 5](#)), we compute the fraction of
 1369 neurons in the host run that have an MCS above the threshold across all runs. That is, we define

$$1371 \quad \text{Neuron Percentage}(\tau) = \frac{1}{M} \sum_{m=1}^M \mathbf{1}(\text{MCS}(m, j) \geq \tau, \forall j \geq 2). \quad (\text{C.3})$$

1373 By definition, this quantity computes the fraction of neurons in the host run that have an MCS
 1374 above the threshold τ across all runs $j \geq 2$. If this quantity is large, the algorithm is able to
 1375 produce consistent results across different runs with different random seeds. Moreover, because a
 1376 considerable portion of the neurons of SAE are rarely activated, instead of enumerating over all
 1377 neurons as in [\(C.3\)](#), we can also consider the neuron percentage over a subset of neurons, denoted
 1378 by $\mathcal{M} \subseteq [M]$. Then, focusing on \mathcal{M} , we define the neuron percentage as

$$1379 \quad \text{Neuron Percentage}(\tau, \mathcal{M}) = \frac{1}{|\mathcal{M}|} \sum_{m \in \mathcal{M}} \mathbf{1}(\text{MCS}(m, j) \geq \tau, \forall j \geq 2). \quad (\text{C.4})$$

1382 In particular, in [Figure 5](#), we choose \mathcal{M} to be the top- α subset of neurons in terms of the maximum
 1383 activations or neuron Z-score in the host run, which are defined in [\(C.1\)](#) and [\(C.2\)](#), respectively.
 1384 Note that these two metrics are computed based on the validation dataset. The y-axis in [Figure 5](#) is
 1385 computed as in [\(C.4\)](#) with these two versions of \mathcal{M} .

1386 The notion of Feature Recovery Rate (FRR) is only used for synthetic data, where we have access
 1387 to the ground-truth features.

1388 **Feature Recovery Rate (FRR).** For one monosemantic feature
 1389 v_i , we say it is *recovered* if there exists a neuron $m \in [M]$ such that
 1390 the cosine similarity between the neuron and the feature is above a
 1391 certain threshold τ_{align} :

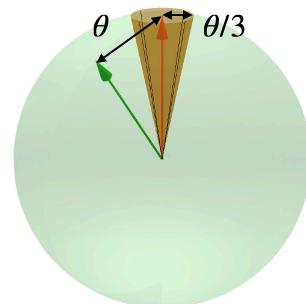
$$1393 \quad \mathbf{1}_i = \begin{cases} 1 & \text{if } \exists m \in [M] \text{ such that } |\langle \hat{w}_m, v_i \rangle| / \|v_i\|_2 \geq \tau_{\text{align}}, \\ 0 & \text{otherwise.} \end{cases}$$

1395 Then the *Feature Recovery Rate* is

$$1397 \quad \text{FRR} = \frac{1}{n} \sum_{i=1}^n \mathbf{1}_i \in [0, 1].$$

1399 In words, FRR is the fraction of ground-truth features v_i that have
 1400 been recovered, i.e., aligned to at least one learned neuron. Here,
 1401 we find the following way to define the threshold τ_{align} useful:

$$1402 \quad \tau_{\text{align}} = \cos\left(\frac{1}{3} \arccos\left(\max_{i \neq j} \frac{\langle v_i, v_j \rangle}{\|v_i\|_2 \|v_j\|_2}\right)\right). \quad (\text{C.5})$$



1403 Figure 11: An illustration of
 1404 the learnable region surrounding
 1405 the feature. Any neuron weight
 1406 within the cone has cosine simi-
 1407 larity above the threshold with
 1408 the feature.

1404 Intuitively, the angle given by \arccos in (C.5) is the smallest angle
 1405 among all pairs of features v_i and v_j in V , which is denoted by θ
 1406 in Figure 11. Then, if a neuron exhibits a cosine similarity above
 1407 the threshold τ_{align} with a feature v_i , then it lies within the cone centered at v_i with angle $\theta/3$. See
 1408 Figure 11 for an illustration. By our choice of τ_{align} , these cones associated to all monosemantic
 1409 features lie in the $d-1$ -dimensional sphere without overlapping, ensuring that each neuron exceeding
 1410 the threshold is *uniquely* aligned with a single feature.

1412 D ADDITIONAL EXPERIMENTS DETAILS

1414 We provide additional experimental results and implementation details that complement the main
 1415 findings presented in the paper.

1417 D.1 SYNTHETIC EXPERIMENTAL SETUP

1419 We generate synthetic data $X = HV$ satisfying decomposable conditions outlined in Definition B.1.
 1420 In the default setting, each row of H contains exactly s nonzero entries, each with value $1/\sqrt{s}$, and
 1421 the support of each row is chosen independently at random. We implement the BA algorithm with
 1422 a fixed TAF p , where the SAE adopts the ReLU activation. We fix the output scale $a_m = 1$ for all
 1423 $m \in [M]$ and the pre-bias $b_{\text{pre}} = 0$, and initialize the weights $w_m^{(0)}$ uniformly on the unit sphere
 1424 \mathbb{S}^{d-1} with bias $b_m^{(0)} = 0$.

1425 In synthetic experiments, we use Spherical Gaussian features. For each sample x_j ($j \in [N]$), we
 1426 randomly sample s indices (with replacement) from $[n]$ to form a multi-set S_j . The corresponding
 1427 features are then combined with a weight $1/\sqrt{s}$ to construct the reconstruction target:

$$1428 \quad x_j = \sum_{i \in S_j} v_i / \sqrt{s}.$$

1431 To evaluate feature learning of neuron m , we use the Max Cosine Similarity (MCS) metric. For any
 1432 neuron m , MCS is defined as $\max_{i \in [n]} |\langle w_m / \|w_m\|_2, v_i / \|v_i\|_2 \rangle|$. Thus, MCS measures how well
 1433 a neuron aligns with the most aligned feature in V . We say a neuron is *aligned with some feature*
 1434 if the MCS for that neuron exceeds a certain threshold. To evaluate overall feature recovery, we use
 1435 the Feature Recovery Rate (FRR) metric, defined as the proportion of features that are aligned with
 1436 at least one neuron. See §C.2 for more details on these metrics and the choice of thresholds.

1438 D.2 ADDITIONAL DETAILS FOR §5

1439 **Data and model details.** We choose the subsets of Github and Wikipedia_en of Pile (Gao
 1440 et al., 2020) without copyright as our datasets. The Github dataset is a collection of 1.2 billion
 1441 tokens from public GitHub repositories, while the Wikipedia_en subset contains 1.5 billion
 1442 tokens from English Wikipedia articles. We use the first 99.8k rows from each dataset for training
 1443 and the next 0.2k rows for validation. Each row in the dataset is truncated to the first 1024
 1444 tokens after tokenization. Therefore, the total number of tokens is roughly $N = 100m$. We use the
 1445 Qwen2.5-1.5B base model (Yang et al., 2024) as our LLM, which has 1.5 billion parameters and
 1446 MLP output dimension 1536. We attach an SAE to the output of the LLM’s MLP output at layer 2,
 1447 13, and 26 with $M = 66k$ neurons, resulting in three different SAEs for each dataset. The dimension
 1448 d of the input data points is equal to $d = 1536$. We use the JumpReLU activation (Erichson
 1449 et al., 2019; Rajamanoharan et al., 2024b) for all training methods.

1450 **Training details.** We train the SAEs using methods such as GBA, TopK, L1, and BA, where BA
 1451 is simply GBA with one group. For all these methods, we use the AdamW optimizer with a learning
 1452 rate of 10^{-4} and a weight decay of 10^{-2} . Since the sentences are truncated to 1024 with padding
 1453 token removed, we set the batch size to $L = 8192$ tokens and a buffer size of $B = 40k$ tokens. Each
 1454 run can be completed using a single NVIDIA A100 GPU with 80GB memory, and we train 8 epochs
 1455 for each method. The hyperparameters of each method are set as follows:

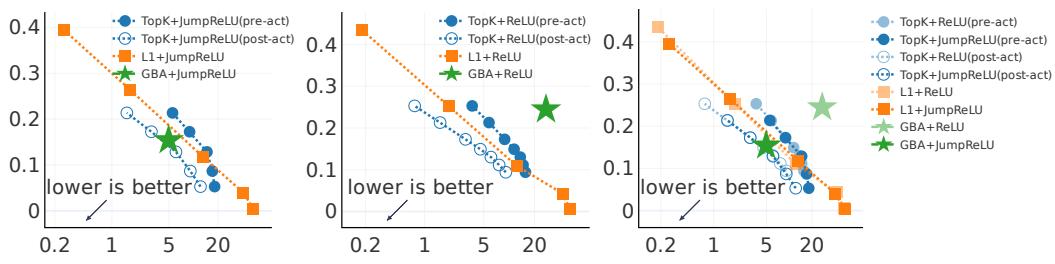
1456 \bullet For GBA, we set $K \in \{3, 10, 20\}$, $p_1 \in \{0.05, 0.1, 0.3, 0.5\}$, and $p_K \in \{10^{-4}, 10^{-3}, 5 \times$
 1457 $10^{-3}\}$, where K is the number of groups, p_1 is the target frequency of the first group,

1458 and p_K is the target frequency of the last group. In addition, we have $\{p_k\}_{k \in [K]}$ form a
 1459 geometric sequence.
 1460

- 1461 For the BA method, we set the HTF to be from $\{10^{-1}, 3 \times 10^{-2}, 10^{-2}, 3 \times 10^{-3}\}$ and vary
 1462 the choice. The other parameters are the same as GBA.
- 1463 For TopK method, we implement two versions — the pre-activation TopK and
 1464 the post-activation TopK. See §C.1 for details. We vary the value of K in
 1465 $\{50, 100, 200, 300, 400, 500, 600\}$.
- 1466 For L1 method, we vary the penalty parameter λ in $\{10^{-1}, 3 \times 10^{-2}, 10^{-2}, 3 \times 10^{-3}, 10^{-3}\}$.

1468 **D.3 COMPARISON BETWEEN JUMPRELU AND RELU ACTIVATION**

1470 For the SAE trained on the Github dataset at layer 26, we compare the performance between
 1471 JumpReLU and the standard ReLU activations across all methods considered in this paper. As
 1472 shown in Figure 12, the sparsity-loss frontiers for TopK and L1 methods are nearly identical under
 1473 both activations. However, the GBA method demonstrates a marked improvement when using
 1474 JumpReLU activation. With ReLU, decreasing the neuron bias also reduces the output magnitude.
 1475 Thus more neurons are needed to compensate for the loss of output magnitude, which leads to a less
 1476 sparse model, which degrades the sparsity-loss frontier. In contrast, JumpReLU decouples the neu-
 1477 ron output magnitude from its bias—only the activation frequency is influenced—yielding a more
 1478 robust sparsity-loss performance.



1488 Figure 12: Comparison of sparsity-loss frontier between JumpReLU and ReLU activations. The **left**
 1489 and **middle** plots show the sparsity-loss frontier with JumpReLU and ReLU activations, respectively.
 1490 The **right** plot is a combination of the two, where the faded plots represent the sparsity-loss frontier of
 1491 the ReLU activation.

1492 **Bias clamping to prevent over-sparsification.** During the bias scheduling subroutine of the GBA
 1493 algorithm (Algorithm 1), we enforce a clamp on the bias values, restricting them to the range $[-1, 0]$.
 1494 This constraint serves two primary purposes. The upper bound of 0 ensures that a neuron is only
 1495 activated when the input data exhibits a sufficient alignment with the neuron’s weight vector. Con-
 1496 sequently, allowing negative bias values ($b_m < 0$) effectively prevents excessive or premature acti-
 1497 vation of neurons.

1498 The lower bound of -1 is implemented to avoid over-deactivation and the emergence of a reinforcing
 1499 loop. We have observed experimentally that when the pre-bias (b_{pre}) significantly deviates from
 1500 zero, certain neurons may develop weights that are in opposition to the pre-bias to compensate for
 1501 this drift. As these compensatory neurons are more likely to be activated by the initial pre-bias, the
 1502 GBA algorithm might inadvertently continue to deactivate them by further reducing their bias (b_m).
 1503 This deactivation would then necessitate an increase in the neuron’s weight to maintain its influence,
 1504 leading to a counterproductive cycle of deactivation and weight growth.

1505 By limiting the bias to be no less than -1 , we effectively interrupt this reinforcing loop and promote
 1506 training stability. The rationale behind choosing -1 as the lower bound stems from the fact that
 1507 our input data is normalized. This normalization typically results in pre-activation values that are
 1508 significantly smaller than 1, with values approaching 1 only when the data strongly activates specific
 1509 neurons. Therefore, a lower bias bound of -1 provides sufficient range for deactivation without
 1510 causing the problematic feedback loop. This clamping strategy has been shown to significantly
 1511 enhance the stability of the training process.

1512 **E GOOD INITIALIZATION AND GAUSSIAN CONDITIONING**
 1513

1514 In this section, we provide proofs for two important lemmas: [Theorem E.1](#) on the initialization
 1515 properties and [Theorem E.2](#) on the Gaussian conditioning. These lemmas provide the necessary
 1516 foundation for analyzing the SAE training dynamics, enabling us to isolate and control the relevant
 1517 sources of randomness throughout the analysis.

1519 **E.1 INITIALIZATION PROPERTIES**
 1520

1521 If we initialize the network with a sufficiently large number of neurons M , then for each neuron,
 1522 there must exist a feature that aligns well with it. However, the question is how many neurons
 1523 we need to achieve a *sufficiently large alignment* and with *all features* of interest simultaneously.
 1524 [Theorem E.1](#) provides an answer to this question. In particular, we prove that when M is sufficiently
 1525 large, for each feature v_i , we can find a neuron m_i that aligns well with it (**InitCond-1**) while
 1526 maintaining a small alignment with all other features (**InitCond-2**).

1527 **Lemma E.1** (Good initialization). *Given n i.i.d. features $\{v_i\}_{i=1}^n$ with $v_i \sim \mathcal{N}(0, I_d)$ and weights
 1528 $\{w_m^{(0)}\}_{m=1}^M$ independently initialized from the uniform distribution on the unit sphere, then for any
 1529 constants $\varepsilon \in (0, 1)$ and $c > 0$ such that n^{-c} upper bound $\exp(-n^{O(\varepsilon)})$, with probability at least
 1530 $1 - n^{-c}$ over the randomness of both $\{v_i\}_{i=1}^n$ and $\{w_m^{(0)}\}_{m=1}^M$, one can select a sequence of neurons
 1531 $\{m_i\}_{i=1}^n$ satisfying the following properties:*

1532 1. For any $i \in [n]$, we have

1533
$$\text{InitCond-1} : \quad \langle v_i, w_{m_i}^{(0)} \rangle \geq (1 - \varepsilon) \sqrt{2 \log(M/n)}.$$

1534 2. For any $i \in [n]$, when conditioned on the selection of neuron m_i , which **aligns well** with
 1535 feature v_i in the sense of **InitCond-1**, the distribution of the remaining features $\{v_j\}_{j \neq i}$
 1536 remains unchanged, i.e., they are independently drawn from $\mathcal{N}(0, I_d)$.

1537 3. For any $i \in [n]$, when conditioned on selecting neuron m_i , with probability at least $1 -$
 1538 $n^{-1-4\varepsilon}$ over the randomness of $\{v_j\}_{j \neq i}$, we have

1539
$$\text{InitCond-2} : \quad \langle v_j, w_{m_i}^{(0)} \rangle \leq \sqrt{2}(1 + \varepsilon) \cdot \sqrt{2 \log n}, \quad \forall j \neq i$$

1540 *Proof of [Theorem E.1](#).* We present the proof by constructing such m_1, m_2, \dots, m_n explicitly.
 1541 Suppose we are provided with n features v_1, v_2, \dots, v_n and M neurons with initial weights
 1542 $w_1^{(0)}, w_2^{(0)}, \dots, w_M^{(0)}$. We first put all the pair-wise alignments $\langle v_i, w_m^{(0)} \rangle$ into a matrix $A \in \mathbb{R}^{n \times M}$,
 1543 where $A_{im} = \langle v_i, w_m^{(0)} \rangle$ for $i \in [n]$ and $m \in [M]$. The algorithm execute as follows for i going
 1544 from 1 to n :

1545 1. Randomly divide the M neurons into n disjoint groups $\mathcal{M}_1, \mathcal{M}_2, \dots, \mathcal{M}_n$ such that each
 1546 group \mathcal{M}_i contains M/n neurons.

1547 2. For each \mathcal{M}_i , find the neuron m_i as the one that maximizes the alignment with feature v_i ,
 1548 i.e.,

1549
$$m_i = \operatorname{argmax}_{m \in \mathcal{M}_i} A_{i,m} = \operatorname{argmax}_{m \in \mathcal{M}_i} \langle v_i, w_m^{(0)} \rangle.$$

1550 By construction, we know that the selection of m_i is independent of the selection of m_j for $i \neq j$.
 1551 It is not hard to see that the distribution of $\langle v_i, w_m^{(0)} \rangle$ is the same (up to scaling) as the distribution of
 1552 the first coordinate of a random vector uniformly distributed on the unit sphere. Therefore, for each
 1553 $i \in [n]$, each group $\{A_{i,m}\}_{m \in \mathcal{M}_i}$ is iid sampled from the following distribution:

1554
$$A_{i,m} \mid_{m \in \mathcal{M}_i} \stackrel{d}{=} \frac{Z_1 \|v_i\|_2}{\sqrt{Z_1^2 + \dots + Z_d^2}}, \quad \text{where } Z_k \sim \mathcal{N}(0, 1), \forall k \in [d].$$

1566 By the concentration for Chi-square distribution, [Theorem J.1](#), we know that the denominator and
 1567 also the norm of $\|v_i\|_2$ satisfies
 1568

$$\begin{aligned} 1569 \quad & \mathbb{P}\left(\left|\sum_{k=1}^d Z_k^2 - d\right| \geq 2\sqrt{d \log \delta^{-1}} + 2 \log \delta^{-1}\right) \leq \delta, \\ 1570 \quad & \mathbb{P}\left(\left\|v_i\right\|_2^2 - d\right| \geq 2\sqrt{d \log \delta^{-1}} + 2 \log \delta^{-1}\right) \leq \delta. \\ 1571 \quad & \\ 1572 \quad & \\ 1573 \quad & \end{aligned}$$

1574 To proceed, we label each d -dimensional random vector as $Z^{(i,m)} = (Z_1^{(i,m)}, \dots, Z_d^{(i,m)})$, where
 1575 the superscript (i, m) corresponds to feature i and neuron m . Applying a union bound over all
 1576 $n \times M/n$ pairs of (i, m) and choosing $\delta = n^{-c}/M$ for some universal constant c , we deduce that
 1577 with probability at least $1 - n^{-c}$, the following holds for all $i \in [n]$ and $m \in [M]$:

$$1578 \quad A_{i,m} \geq \frac{Z_1^{(i,m)} (d - C\sqrt{d \log(nM)} - C \log(nM))^{1/2}}{(d + C\sqrt{d \log(nM)} + C \log(nM))^{1/2}}, \\ 1579 \\ 1580$$

1581 where C is a universal constant. Moreover, by property of the maximum of Gaussian random vari-
 1582 ables in [Theorem J.4](#), it holds that
 1583

$$1584 \quad \mathbb{P}\left(\max_{m \in \mathcal{M}_i} Z_1^{(i,m)} \geq (1 - \varepsilon/2)\sqrt{2 \log(M/n)}\right) \geq 1 - \exp\left(-\frac{(M/n)^{\varepsilon - \varepsilon^2/4}}{3\sqrt{\pi \log(M/n)}}\right). \quad (\text{E.1}) \\ 1585 \\ 1586$$

1587 Here, we divide ε by 2 because
 1588

$$1588 \quad A_{i,m} \geq Z_1^{(i,m)} \cdot \frac{(d - C\sqrt{d \log(nM)} - C \log(nM))^{1/2}}{(d + C\sqrt{d \log(nM)} + C \log(nM))^{1/2}} \geq \frac{1 - \varepsilon}{1 - \varepsilon/2} Z_1^{(i,m)} \\ 1589 \\ 1590$$

1591 for small constant ε . Consequently, by multiplying both sides of the inequality inside $\mathbb{P}(\cdot)$ in (E.1)
 1592 by $\frac{1 - \varepsilon}{1 - \varepsilon/2}$, we can recast the probability statement so that the maximum of $A_{i,m}$ over all $m \in \mathcal{M}_i$
 1593 exceeds $(1 - \varepsilon)\sqrt{2 \log(M/n)}$. By taking a union bound for $i \in [n]$, the probability of successfully
 1594 finding a sequence of neurons m_1, m_2, \dots, m_n satisfying $A_{i,m} > (1 - \varepsilon)\sqrt{2 \log(M/n)}$ for all
 1595 $i \in [n]$ and $m \in [M]$ is at least
 1596

$$1597 \quad \mathbb{P}\left(\forall i \in [n] : \max_{m \in \mathcal{M}_i} A_{i,m} > (1 - \varepsilon)\sqrt{2 \log(M/n)}\right) \geq 1 - n \cdot \exp\left(-\frac{(M/n)^{\varepsilon - \varepsilon^2/4}}{3\sqrt{\pi \log(M/n)}}\right) \geq 1 - n^{-c}. \\ 1598$$

1599 where we can safely take c to some constant as the failure probability is exponentially small in n
 1600 given that $M \geq n^2$. To this end, we conclude that with probability at least $1 - n^{-c}$, we can find a
 1601 sequence of non-overlapping neurons m_1, m_2, \dots, m_n such that $A_{i,m_i} > (1 - \varepsilon)\sqrt{2 \log(M/n)}$ for
 1602 all $i \in [n]$.
 1603

1604 Observe that the selection of each neuron m_i is done independently for each feature. Consequently,
 1605 when we condition on the selection of m_i , the distribution for the remaining features $\{v_j\}_{j \neq i}$ re-
 1606 mains unchanged. This proves the second statement.

1607 It remains to analyze the probability that $A_{j,m_i} < \sqrt{2}(1 + \varepsilon) \cdot \sqrt{2 \log n}$ for all $j \in [n]$ and $i \neq j$.
 1608 By the second statement, we know that when conditioned on neuron m_i , the collection $\{A_{j,m_j}\}_{j \neq i}$
 1609 (for any fixed i) consists of $(n - 1)$ independent and identically distributed random variables with
 1610 distribution $\mathcal{N}(0, 1)$. Thus, we can apply the tail probability for the maximum of Gaussian random
 1611 variables in [Theorem J.2](#) to obtain
 1612

$$1612 \quad \mathbb{P}\left(\max_{j \in [n]: j \neq i} A_{j,m_i} > \sqrt{2}(1 + \varepsilon) \cdot \sqrt{2 \log n}\right) \leq n^{1 - 2(1 + \varepsilon)^2} \leq n^{-1 - 4\varepsilon}. \\ 1613$$

1614 Thus, we prove the last argument for [Theorem E.1](#). □
 1615

1616 A direct corollary of [Theorem E.1](#) is that **InitCond-1** and **InitCond-2** hold simultaneously for all
 1617 $i \in [n]$ and $j \neq i$ with probability at least $1 - n^{-c} - n^{-4\varepsilon} \leq 1 - n^{-\varepsilon}$ after taking a union bound
 1618 over the success of [InitCond-2](#) for all $i \in [n]$. These two conditions together imply that the neuron
 1619 m_i exclusively focuses on feature v_i at initialization, which is crucial for developing a $1 - o(1)$
 alignment with feature v_i during training.

1620
1621

E.2 REWRITING THE GRADIENT DESCENT ITERATION

1622
1623
1624
1625
1626
1627

Single neuron analysis. In the previous [Theorem E.1](#), we have shown a correspondence between each feature v_i and a neuron m_i such that the initial weight of neuron m_i aligns well with feature v_i while maintaining small alignments with all other features. In other words, m_i is the neuron that is most likely to learn feature v_i during training. As the neuron dynamics are decoupled under the small output scale assumption, we only need to analyze the dynamics of neuron m_i to understand how feature v_i is learned.

1628
1629
1630
1631
1632
1633
1634

Notation. In the following, we denote by v the feature of interest and by w_t the weight of the corresponding neuron at iteration t . Let T be the maximum number of steps considered and the time step t ranges from 0 to T . For the sake of notational convenience, we also denote the feature of interest by $w_{-1} = v$ and the normalization $\bar{w}_{-1} = v/\|v\|_2$. Meanwhile, $w_0 = \bar{w}_0$ is the initialization that is already normalized to unit length. Here, the bar notation indicates that the vector is normalized to unit length throughout the whole proof.

1635
1636
1637
1638
1639

Reformulating the iteration. In this section, we reformulate the gradient descent update [\(B.1\)](#) to isolate the contribution of a specific feature v from the remaining features. Recall that the data matrix is given by $X = HV$, where $H \in \mathbb{R}^{N \times n}$ is the weight matrix and $V \in \mathbb{R}^{n \times d}$ is the feature matrix. The gradient descent update [\(B.1\)](#) with gradient explicit in [\(B.2\)](#) is

1640
1641
1642

$$\textbf{Modified BA: } w_t = \frac{w_{t-1} + \eta g_t}{\|w_{t-1} + \eta g_t\|_2}, \quad \text{where} \quad g_t = \sum_{\ell=1}^N \varphi(w_{t-1}^\top x_\ell; b_t) x_\ell,$$

1643

which can be written in terms of H and V as:

1644
1645
1646

$$\begin{aligned} y_t &= V \bar{w}_{t-1}, & b_t &= \mathcal{A}_t(H y_t), & u_t &= H^\top \varphi(H y_t; b_t), \\ w_t &= V^\top u_t + \eta^{-1} \bar{w}_{t-1}, & \bar{w}_t &= w_t / \|w_t\|_2. \end{aligned} \tag{E.2}$$

1647
1648

Here, the meaning of these quantities are given as follows:

1649
1650
1651
1652
1653
1654
1655
1656
1657
1658

- $y_t \in \mathbb{R}^d$ is the projection of the normalized weight vector onto all the features, which we refer to as the *feature pre-activation*.
- $b_t \in \mathbb{R}$ is the bias term updated by a bias adaptation algorithm $\mathcal{A}_t(\cdot)$ that depends on the feature preactivation and time t .
- $u_t \in \mathbb{R}^n$ is the *feature post-activation* that aggregates the post-activation information from all the data points back to the feature space.
- $w_t \in \mathbb{R}^d$ is the unnormalized weight vector after one step of gradient descent update, and $\bar{w}_t \in \mathbb{R}^d$ is the normalized weight vector.

1659
1660
1661
1662
1663
1664

In our analysis, as the bias is fixed, $\mathcal{A}_t(\cdot)$ always returns the same bias value. However, we keep this general form which can be useful for adapting the current proof framework to handle more complex bias adaptation algorithms. Note that $\varphi(H y_t; b_t) \in \mathbb{R}^N$ obtained from the gradient calculation in [\(B.2\)](#) is not exactly the post-activation (recall definition $\varphi(x; b) = \phi(x + b) + \phi'(x + b)x$, where ϕ is the actual activation function.) However, in the following proof, we will abuse the notation and refer to $\varphi(H y_t; b_t)$ as the post-activation for brevity.

1665
1666
1667
1668
1669

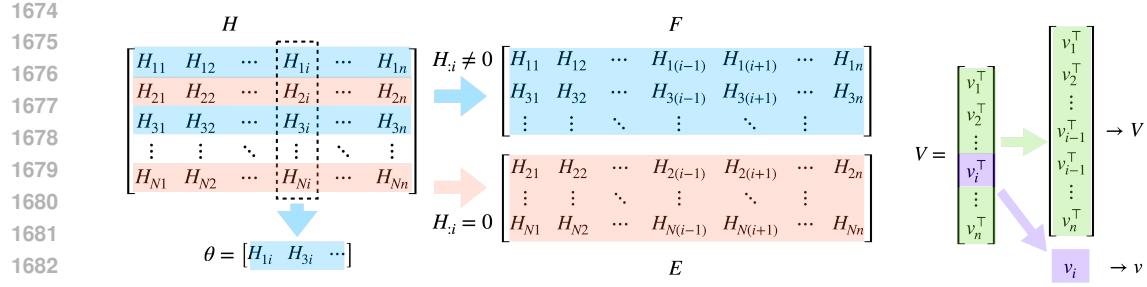
Without loss of generality, suppose v is the i -th feature. To *isolate the contribution from feature of interest v from the remaining features*, we decompose the weight matrix H into three parts: (i) θ : the non-zero entries of the i -th column, (ii) F : the rows with non-zero entries in the i -th column, and (iii) E : the remaining rows with zero entries in the i -th column. Formally, suppose v is the i -th feature, then we decompose H as follows:

1670
1671
1672

$$\theta = (H_{ki} : H_{ki} \neq 0)_{k \in [N]}, \quad F = (H_{kj} : H_{ki} \neq 0)_{k \in [N], j \in [n] \setminus \{i\}}, \quad E = (H_{kj} : H_{ki} = 0)_{k \in [N], j \in [n] \setminus \{i\}}. \tag{E.3}$$

1673

Notably, the rows of E and F do not include the i -th column of H , as it is already isolated as vector θ . See [Figure 13a](#) for an illustration of this decomposition.



(a) The weight matrix H is splitted into matrices E and F by row according to whether the corresponding entries in the i -th column are zero or not. The nonzero entries in the i -th column of H are collected as vector θ .

(b) Isolating the i -th feature from feature matrix V .

Figure 13: Illustration of the split of matrices H and V .

Using the above decomposition, we can rewrite the actual projection of the weights \bar{w}_{t-1} on each data point as

$$\begin{aligned} HV\bar{w}_{t-1} &= \text{Interleave}([F; E] \cdot V_{-i}\bar{w}_{t-1} + [\theta; \mathbf{0}] \cdot v^\top \bar{w}_{t-1}) \\ &= \text{Interleave}([F; E] \cdot y_{t,-i} + [\theta; \mathbf{0}] \cdot v^\top \bar{w}_{t-1}), \end{aligned}$$

where $[E; F]$ is the vertical concatenation of E and F , V_{-i} is the feature matrix V with the i -th row removed, and $y_{t,-i} = V_{-i}\bar{w}_{t-1}$ is the vector y_t with the i -th entry removed. The interleave operation simply restores the original order of the rows in H . Therefore, we can rewrite the original u_t in (E.2) as

$$u_t = H^\top \varphi(Hy_t; b_t) = E^\top \varphi(Ey_{t,-i}; b_t) + F^\top \varphi(Fy_{t,-i} + \theta \cdot v^\top \bar{w}_{t-1}; b_t). \quad (\text{E.4})$$

In order to avoid overcomplicated subscripts, we let V denote the feature matrix V_{-i} with the i -th row removed, and let v refer to the original i -th row of V . See Figure 13b for an illustration of this decomposition. We also rewrite $y_{t,-i}$ as y_t , and following the above notation, we still have $y_t = V\bar{w}_{t-1}$. Now with (E.4), we can explicitly separate the contribution of feature v from the remaining features in the gradient descent iteration (E.2) and obtain the following equivalent iteration:

Gradient Descent Iteration

$$\begin{aligned} \text{feature pre-activation: } & y_t = V\bar{w}_{t-1}, \quad \bar{w}_{t-1} = w_{t-1}/\|w_{t-1}\|_2, \\ \text{bias scheduling: } & b_t = \mathcal{A}_t(b_{t-1}, Ey_t, Fy_t + \theta \cdot v^\top \bar{w}_{t-1}), \\ \text{feature post-activation: } & u_t = E^\top \varphi(Ey_t; b_t) + F^\top \varphi(Fy_t + \theta \cdot v^\top \bar{w}_{t-1}; b_t), \\ \text{weight update: } & w_t = V^\top u_t + v\theta^\top \varphi(Fy_t + \theta \cdot v^\top \bar{w}_{t-1}; b_t) + \eta^{-1}\bar{w}_{t-1}, \end{aligned} \quad (\text{E.5})$$

Note that the notation in (E.5) is self-consistent with E, F, θ defined in (E.3) and V, v defined below (E.4). We will keep using this notation throughout the rest of the proof.

E.3 GAUSSIAN CONDITIONING

Since both the feature of interest v and each row of the feature matrix V follow Gaussian distributions, we can leverage the properties of Gaussian distributions to simplify the dynamics. However, the coupling between different iterations prohibits a direct application of Gaussian properties. This challenge motivates us to explicitly split the intermediate variables in (E.5) into two components: (i) a *coupling component* that lies in the subspace spanned by the previous intermediate variables, and (ii) an *independent component* that is orthogonal to this subspace. We can then apply some Gaussian concentration arguments to the orthogonal component to simplify the dynamics.

Additional notation. To achieve this, we introduce some additional notations. Let us define $P_{w_{-1:t-1}}x$ as the projection of x onto the subspace spanned by $\{w_{-1}, \dots, w_{t-1}\}$, and $P_{w_{-1:t-1}}^\perp x =$

1728 $x - P_{w_{-1:t-1}} x$ as the orthogonal projection. In the following, we use the notations $w_t^\perp = P_{w_{-1:t-1}}^\perp w_t$
 1729 to denote the new direction induced by w_t , and we define $u_t^\perp = P_{u_{1:t-1}}^\perp u_t$ in a similar manner (note
 1730 that u_t starts from $t = 1$). Note that when $t < 2$, $u_{1:t-1}$ is empty and $P_{u_{1:t-1}}^\perp$ becomes the identity
 1731 mapping. Also, we enforce $w_{-1} = w_{-1}^\perp = v$.

1733 In the following, we use the trick of Gaussian conditioning (Wu & Zhou, 2023; Bayati & Montanari,
 1734 2011; Montanari & Wu, 2023) to simplify the dynamics in (E.5). Specifically, we will define an alter-
 1735 native dynamics that is distributionally equivalent to the original one, where for each iteration, two
 1736 new independent Gaussian vectors are introduced to replace the original Gaussian components com-
 1737 ing from the V matrix. To make the presentation clearer, we will denote the variables in the original
 1738 dynamics in (E.5) by (y_t, w_t, u_t, b_t) and the variables in the alternative dynamics by $(\tilde{y}_t, \tilde{w}_t, \tilde{u}_t, \tilde{b}_t)$
 1739 in the following proofs.

1740 **Lemma E.2** (Alternative dynamics). *For any $t \in \mathbb{N}$, let z_{-1}, z_0, \dots, z_t and $\tilde{z}_1, \dots, \tilde{z}_t$ be sequences
 1741 of i.i.d. random vectors from $\mathcal{N}(0, I_{n-1})$ and $\mathcal{N}(0, I_{d-1})$, respectively, with mutual independence.
 1742 In addition $z_{-1:t}$ and $\tilde{z}_{1:t}$ are also independent of the initialization \bar{w}_0 and the feature of interest v .
 1743 Consider the following alternative iteration for $(\tilde{y}_t, \tilde{w}_t)$:*

$$\begin{aligned} \tilde{y}_t &= \sum_{\tau=-1}^{t-1} \tilde{\alpha}_{\tau,t-1} \cdot P_{\tilde{u}_{1:\tau}}^\perp z_\tau + \sum_{\tau=1}^{t-1} \tilde{\alpha}_{\tau,t-1} \cdot \frac{\|\tilde{w}_\tau^\perp\|_2}{\|\tilde{u}_\tau^\perp\|_2} \cdot \frac{\tilde{u}_\tau^\perp}{\|\tilde{u}_\tau^\perp\|_2}, \\ \tilde{w}_t &= \sum_{\tau=-1}^{t-1} \langle P_{\tilde{u}_{1:\tau}}^\perp z_\tau, \tilde{u}_\tau \rangle \cdot \frac{\tilde{w}_\tau^\perp}{\|\tilde{w}_\tau^\perp\|_2} + \sum_{\tau=1}^{t-1} \frac{\langle \tilde{u}_\tau^\perp, \tilde{u}_t \rangle}{\|\tilde{u}_\tau^\perp\|_2} \cdot \frac{\|\tilde{w}_\tau^\perp\|_2}{\|\tilde{u}_\tau^\perp\|_2} \cdot \frac{\tilde{w}_\tau^\perp}{\|\tilde{w}_\tau^\perp\|_2} \\ &\quad + P_{\tilde{w}_{-1:t-1}}^\perp \tilde{z}_t \cdot \|\tilde{u}_t^\perp\|_2 + v \theta^\top \varphi(F\tilde{y}_t + \theta \cdot v^\top \tilde{w}_{t-1}; b_t) + \eta^{-1} \tilde{w}_{t-1}, \end{aligned} \quad (\text{E.6})$$

1752 where we define the alignment

$$\tilde{\alpha}_{\tau,t} = \frac{\langle \tilde{w}_\tau^\perp, \tilde{w}_t \rangle}{\|\tilde{w}_\tau^\perp\|_2} \quad \text{with} \quad \tilde{w}_t = \frac{\tilde{w}_t}{\|\tilde{w}_t\|_2}.$$

1757 In addition, (b_t, \tilde{u}_t) in the alternative dynamics are updated by the same formula as in (E.5):

$$b_t = \mathcal{A}_t(b_{t-1}, E\tilde{y}_t, F\tilde{y}_t + \theta \cdot v^\top \tilde{w}_{t-1}), \quad \tilde{u}_t = E^\top \varphi(E\tilde{y}_t; b_t) + F^\top \varphi(F\tilde{y}_t + \theta \cdot v^\top \tilde{w}_{t-1}; b_t). \quad (\text{E.7})$$

1760 Then, conditioned on $\tilde{w}_{-1} = v$ (the same as our previous definition of $w_{-1} = v$) and $\tilde{w}_0 = w_0$ being
 1761 the initialization of the neuron weight, the alternative dynamics $(\tilde{y}_\tau, \tilde{w}_\tau, \tilde{u}_\tau, \tilde{b}_\tau)_{\tau=1}^t$ from (E.6) and
 1762 (E.7) and the original dynamics $(y_\tau, w_\tau, u_\tau, b_\tau)_{\tau=1}^t$ from (E.5) follow the same distribution.

1764 *Proof of Theorem E.2.* To show that the trajectory from (E.6) and (E.7) follow the same distribution
 1765 as the trajectory from (E.5), we first decompose the iteration in (E.5) in the following lemma.

1767 **Lemma E.3** (Decomposition). *For the iteration in (E.5), define the alignment between the weight
 1768 vector \bar{w}_t and the weight direction w_t^\perp as $\alpha_{\tau,t} = \langle \bar{w}_t, w_\tau^\perp \rangle / \|w_\tau^\perp\|_2$, Then, we have the following
 1769 decomposition for the preactivation vector $y_t \in \mathbb{R}^{n-1}$:*

$$y_t = \sum_{\tau=-1}^{t-1} \alpha_{\tau,t-1} \cdot P_{u_{1:\tau}}^\perp V \frac{w_\tau^\perp}{\|w_\tau^\perp\|_2} + \sum_{\tau=1}^{t-1} \alpha_{\tau,t-1} \cdot \frac{\|w_\tau^\perp\|_2}{\|u_\tau^\perp\|_2} \cdot \frac{u_\tau^\perp}{\|u_\tau^\perp\|_2},$$

1774 and the following decomposition for the unnormalized weight vector $w_t \in \mathbb{R}^d$:

$$\begin{aligned} w_t &= \sum_{\tau=-1}^{t-1} \left\langle P_{u_{1:\tau}}^\perp V \frac{w_\tau^\perp}{\|w_\tau^\perp\|_2}, u_t \right\rangle \cdot \frac{w_\tau^\perp}{\|w_\tau^\perp\|_2} + \sum_{\tau=1}^{t-1} \frac{\langle u_\tau^\perp, u_t \rangle}{\|u_\tau^\perp\|_2} \cdot \frac{\|w_\tau^\perp\|_2}{\|u_\tau^\perp\|_2} \cdot \frac{w_\tau^\perp}{\|w_\tau^\perp\|_2} \\ &\quad + P_{w_{-1:t-1}}^\perp V^\top \frac{u_\tau^\perp}{\|u_\tau^\perp\|_2} \cdot \|u_t^\perp\|_2 + v \theta^\top \varphi(Fy_t + \theta \cdot v^\top \bar{w}_{t-1}; b_t) + \eta^{-1} \bar{w}_{t-1}, \end{aligned}$$

1781 *Proof.* See §E.4 for the proof of Theorem E.3. □

1782 With the above decomposition, if we do the following substitution for y_t and w_t in the above lemma:
1783

$$1784 \quad P_{u_{1:t}}^\perp z_t \leftarrow P_{u_{1:t}}^\perp V \frac{w_t^\perp}{\|w_t^\perp\|_2}, \quad P_{w_{-1:t-1}}^\perp \tilde{z}_t \leftarrow P_{w_{-1:t-1}}^\perp V^\top \frac{u_t^\perp}{\|u_t^\perp\|_2},$$

1786 the assertion in **Theorem E.2** follows immediately. The following proof is devoted to showing that
1787 the substitution does not change the joint distribution of the whole dynamics. To show that, we just
1788 need to verify that for each iteration t , when *conditioned on all the history up to iteration $t-1$* , the
1789 two newly introduced vectors $P_{u_{1:t}}^\perp V w_t^\perp / \|w_t^\perp\|_2$ and $P_{w_{-1:t-1}}^\perp V^\top u_t^\perp / \|u_t^\perp\|_2$ still follow a standard
1790 Gaussian distribution and are independent of all the history.

1791 To proceed, we denote the original iteration in (E.5) by (y_t, w_t, u_t, b_t) and the alternative iteration
1792 in (E.6) and (E.7) by $(\tilde{y}_t, \tilde{w}_t, \tilde{u}_t, \tilde{b}_t)$. Following explicitly from the decomposition in **Theorem E.3**
1793 and the construction in (E.6), we can further derive the following dependency between the variables
1794 in both iterations.

1795 **Lemma E.4.** *For each iteration (u_t, w_t) in (E.5), it holds for any $t \geq 1$ that*

$$1797 \quad u_t \in \sigma\left(w_{-1:0}, \left\{P_{u_{1:\tau}}^\perp V \frac{w_\tau^\perp}{\|w_\tau^\perp\|_2}\right\}_{\tau=-1}^{t-1}, \left\{P_{w_{-1:\tau-1}}^\perp V^\top \frac{u_\tau^\perp}{\|u_\tau^\perp\|_2}\right\}_{\tau=1}^{t-1}\right),$$

$$1800 \quad w_t \in \sigma\left(w_{-1:0}, \left\{P_{u_{1:\tau}}^\perp V \frac{w_\tau^\perp}{\|w_\tau^\perp\|_2}\right\}_{\tau=-1}^{t-1}, \left\{P_{w_{-1:\tau-1}}^\perp V^\top \frac{u_\tau^\perp}{\|u_\tau^\perp\|_2}\right\}_{\tau=1}^t\right).$$

1802 where $\sigma(X)$ denotes the σ -algebra generated by the random variable X . For the Gaussian conditioning iteration $(\tilde{u}_t, \tilde{w}_t)$ in (E.6) and (E.7), it holds for any $t \geq 1$ that

$$1805 \quad \tilde{u}_t \in \sigma(\tilde{w}_{-1:0}, \{P_{\tilde{u}_{1:\tau}}^\perp z_\tau\}_{\tau=-1}^{t-1}, \{\tilde{z}_\tau\}_{\tau=1}^{t-1}), \quad \tilde{w}_t \in \sigma(\tilde{w}_{-1:0}, \{P_{\tilde{u}_{1:\tau}}^\perp z_\tau\}_{\tau=-1}^{t-1}, \{\tilde{z}_\tau\}_{\tau=1}^t).$$

1806 *Proof.* See §E.4 for a proof of **Theorem E.4**. □

1809 The message of the above lemma is intuitive: each iteration only inserts new randomness coming
1810 from

$$1811 \quad P_{u_{1:t-1}}^\perp V \frac{w_{t-1}^\perp}{\|w_{t-1}^\perp\|_2} \quad \text{and} \quad P_{w_{-1:t-1}}^\perp V^\top \frac{u_t^\perp}{\|u_t^\perp\|_2}$$

1814 for the original iteration, and from

$$1815 \quad P_{\tilde{u}_{1:t-1}}^\perp z_{t-1} \quad \text{and} \quad P_{\tilde{w}_{-1:t-1}}^\perp \tilde{z}_t$$

1817 for the alternative iteration. Using the dependency results, we next prove the equivalence between
1818 the trajectory $\{\tilde{w}_{-1}, \tilde{w}_0, (\tilde{y}_\tau, \tilde{w}_\tau, \tilde{u}_\tau, \tilde{b}_\tau)_{\tau=1}^t\}$ from the Gaussian conditioning and the trajectory
1819 $\{w_{-1}, w_0, (y_\tau, w_\tau, u_\tau, b_\tau)_{\tau=1}^t\}$ from the original iteration by considering the conditional distribution
1820 of the newly introduced randomness at each iteration. Let us define A_t as a realization of the
1821 random variables $(\tilde{w}_{-1:0}, z_{-1:t-1}, \tilde{z}_{1:t})$ or

$$1822 \quad \left(w_{-1:t}, \left\{P_{u_{1:\tau}}^\perp V \frac{w_\tau^\perp}{\|w_\tau^\perp\|_2}\right\}_{\tau=-1}^{t-1}, \left\{P_{w_{-1:\tau-1}}^\perp V^\top \frac{u_\tau^\perp}{\|u_\tau^\perp\|_2}\right\}_{\tau=1}^t\right).$$

1825 By property of the Gaussian ensembles, it holds that

$$1826 \quad P_{u_{1:t}}^\perp V \frac{w_t^\perp}{\|w_t^\perp\|_2} \left| \left\{ \left(w_{-1:0}, \left\{P_{u_{1:\tau}}^\perp V \frac{w_\tau^\perp}{\|w_\tau^\perp\|_2}\right\}_{\tau=-1}^{t-1}, \left\{P_{w_{-1:\tau-1}}^\perp V^\top \frac{u_\tau^\perp}{\|u_\tau^\perp\|_2}\right\}_{\tau=1}^t\right) = A_t \right\} \right. \\ 1827 \quad \stackrel{d}{=} P_{u_{1:t}}^\perp V_t \frac{w_t^\perp}{\|w_t^\perp\|_2} \left| \left\{ \left(w_{-1:0}, \left\{P_{u_{1:\tau}}^\perp V \frac{w_\tau^\perp}{\|w_\tau^\perp\|_2}\right\}_{\tau=-1}^{t-1}, \left\{P_{w_{-1:\tau-1}}^\perp V^\top \frac{u_\tau^\perp}{\|u_\tau^\perp\|_2}\right\}_{\tau=1}^t\right) = A_t \right\} \right. \\ 1828 \quad \stackrel{d}{=} P_{\tilde{u}_{1:t}}^\perp z_t \mid \{(\tilde{w}_{-1:t}, \tilde{u}_{1:t}, z_{-1:t-1}, \tilde{z}_{1:t}) = A_t\}. \quad (\text{E.8})$$

1834 where $V_t \stackrel{d}{=} V$ is an independent copy of V and is independent of all the histories. Here, the first
1835 equality holds because $P_{u_{1:t}}^\perp V w_t^\perp / \|w_t^\perp\|_2$ is orthogonal to any of the previous row/column space
1836 that we have conditioned on. In particular,

- $P_{u_{1:t}}^\perp V \frac{w_t^\perp}{\|w_t^\perp\|_2}$ is orthogonal to $\{P_{u_{1:\tau}}^\perp V \frac{w_\tau^\perp}{\|w_\tau^\perp\|_2}\}_{\tau=-1}^{t-1}$ in the column space of V since w_t^\perp is orthogonal to w_τ^\perp for any $\tau < t$.
- $P_{u_{1:t}}^\perp V \frac{w_t^\perp}{\|w_t^\perp\|_2}$ is orthogonal to $\{P_{w_{-1:\tau-1}}^\perp V^\top \frac{u_\tau^\perp}{\|u_\tau^\perp\|_2}\}_{\tau=1}^t$ in the row space of V since $P_{u_{1:t}}^\perp$ is projecting to the row space orthogonal to u_τ^\perp for any $\tau < t$.

Moreover, V is also independent of $w_{-1} = v$ and the initialization w_0 . See Figure 14 for a more intuitive explanation. Therefore, the conditional distribution of $P_{u_{1:t}}^\perp V w_t^\perp / \|w_t^\perp\|_2$ is the same as that of an $(n-t)$ -dimensional Gaussian vectors. Hence, we are able to replace V by an independent copy V_t . For the second equality, we can set $z_t = V_t w_t^\perp / \|w_t^\perp\|_2$, which is again a Gaussian vector independent of all the histories. Similarly, let B_t be a realization of $(\tilde{w}_{-1:0}, z_{-1:t-1}, \tilde{z}_{1:t-1})$ or

$$\left(w_{-1:0}, \left\{ P_{u_{1:\tau}}^\perp V \frac{w_\tau^\perp}{\|w_\tau^\perp\|_2} \right\}_{\tau=-1}^{t-1}, \left\{ P_{w_{-1:\tau-1}}^\perp V^\top \frac{u_\tau^\perp}{\|u_\tau^\perp\|_2} \right\}_{\tau=1}^{t-1} \right)$$

we similarly have for $P_{w_{-1:t-1}}^\perp V^\top u_t^\perp / \|u_t^\perp\|_2$ that

$$\begin{aligned} & P_{w_{-1:t-1}}^\perp V^\top \frac{u_t^\perp}{\|u_t^\perp\|_2} \left| \left\{ \left(w_{-1:0}, \left\{ P_{u_{1:\tau}}^\perp V \frac{w_\tau^\perp}{\|w_\tau^\perp\|_2} \right\}_{\tau=-1}^{t-1}, \left\{ P_{w_{-1:\tau-1}}^\perp V^\top \frac{u_\tau^\perp}{\|u_\tau^\perp\|_2} \right\}_{\tau=1}^{t-1} \right) = B_t \right\} \right. \\ & \quad \stackrel{d}{=} P_{\tilde{w}_{-1:t-1}}^\perp \tilde{z}_t \mid \{(\tilde{w}_{-1:0}, z_{-1:t-1}, \tilde{z}_{1:t-1}) = B_t\}. \end{aligned} \quad (\text{E.9})$$

To this end, it can be concluded that

1. The initializations (w_{-1}, w_0) and $(\tilde{w}_{-1}, \tilde{w}_0)$ are the same.
2. By (E.8) and (E.9), we have the same conditional distributions for the updates of $(P_{u_{1:t}}^\perp V w_t^\perp / \|w_t^\perp\|_2, P_{w_{-1:t-1}}^\perp V^\top u_t^\perp / \|u_t^\perp\|_2)$ and those of $(P_{\tilde{u}_{1:t}}^\perp z_t, P_{\tilde{w}_{-1:t-1}}^\perp \tilde{z}_t)$, which means the conditional distributions of (y_t, w_t) and $(\tilde{y}_t, \tilde{w}_t)$ given the past are the same.
3. The updates of (b_t, u_t) and those of $(\tilde{b}_t, \tilde{u}_t)$ are also the same.

We hence conclude that the joint distribution for the two iterations are the same for any time t . Consequently, we obtain that

$$\{\tilde{w}_{-1}, \tilde{w}_0, (\tilde{y}_\tau, \tilde{w}_\tau, \tilde{u}_\tau, \tilde{b}_\tau)_{\tau=1}^t\} \stackrel{d}{=} \{w_{-1}, w_0, (y_\tau, w_\tau, u_\tau, b_\tau)_{\tau=1}^t\}.$$

This completes the proof. \square

Since the alternative dynamics in Theorem E.2 are distributionally equivalent to the original dynamics, we work exclusively with the alternative formulation below. We emphasize the following key point when running the alternative dynamics for T steps:

The randomness in the alternative dynamics comes from the initialization \bar{w}_0 , the feature of interest v , and the random vectors $z_{-1:T}$ and $\tilde{z}_{1:T}$.

Since the system is rotation-invariant, without loss of generality, we fix the direction of the initialization \bar{w}_0 in the following analysis, and only consider the randomness over v , $z_{-1:T}$, and $\tilde{z}_{1:T}$.

Remark. In fact, the iteration in (E.6) is a reformulation of (E.5) obtained by decomposing the random matrix V into its projections along the row spaces $u_1^\perp, u_2^\perp, \dots$ and column spaces $w_1^\perp, w_2^\perp, \dots$, and then replacing the corresponding components by the following rules:

$$\begin{aligned} P_{u_{1:t}}^\perp z_t &\leftarrow P_{\tilde{u}_{1:t}}^\perp V \frac{\tilde{w}_t^\perp}{\|\tilde{w}_t^\perp\|_2}, \\ P_{w_{-1:t-1}}^\perp \tilde{z}_t &\leftarrow P_{\tilde{w}_{-1:t-1}}^\perp V^\top \frac{\tilde{u}_t^\perp}{\|\tilde{u}_t^\perp\|_2}. \end{aligned}$$

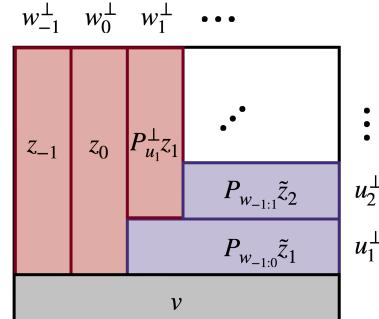


Figure 14: Illustration of the Gaussian conditioning. After removing the feature of interest v , the remaining part of V are sliced into $P_{u_{1:t}}^\perp z_t$ and

1890 For a detailed explanation, we refer interested readers to [Theorem E.3](#) and its following discussions. In essence, the terms
 1891 on the right-hand side combine to reconstruct the matrix V , as
 1892 illustrated in [Figure 14](#). A crucial property is that these terms
 1893 are orthogonal in direction; within a Gaussian ensemble, such
 1894 orthogonality implies their mutual independence. This decou-
 1895 pling of randomness across iterations considerably simplifies
 1896 the subsequent analysis.
 1897

1898 **Rewriting the initial conditions under the alternative dy-**

1899 **namics.** Let us now specify the randomness in equation [\(E.5\)](#) by describing the distributions of
 1900 the vector v and the matrix V . In the absence of any conditioning on the initialization, v and V have
 1901 i.i.d. standard normal entries. However, the neuron selected for analysis is not arbitrary; it must
 1902 satisfy the initialization conditions detailed in [Theorem E.1](#). We first restate these conditions in the
 1903 following more concise form:

$$1904 \langle v, \tilde{w}_0 \rangle \geq (1 - \varepsilon) \sqrt{2 \log(M/n)} =: \zeta_0, \quad \tilde{y}_1 = V \tilde{w}_0 \preceq \sqrt{2}(1 + \varepsilon) \cdot \sqrt{2 \log n} \cdot \mathbf{1} =: \zeta_1 \cdot \mathbf{1},$$

1906 where $a \preceq b$ indicates that every element of a is no greater than the corresponding element of b .
 1907 In fact, these two conditions induce a correlation among v , V , and the initialization \bar{w}_0 . Under the
 1908 alternative dynamics in [\(E.6\)](#) and [\(E.7\)](#), we can reformulate these conditions without involving V as
 1909 follows:

$$1910 \text{InitCond-1: } \alpha_{-1,0} \|v\|_2 \geq \zeta_0, \quad \text{InitCond-2: } y_1 = \alpha_{-1,0} z_{-1} + \alpha_{0,0} z_0 \preceq \zeta_1 \cdot \mathbf{1}, \quad (\text{E.10})$$

1911 where

$$1914 \zeta_0 := (1 - \varepsilon) \sqrt{2 \log(M/n)}, \quad \zeta_1 := \sqrt{2}(1 + \varepsilon) \sqrt{2 \log n}. \quad (\text{E.11})$$

1917 Here, we recall that $\alpha_{-1,0} = \langle v, \bar{w}_0 \rangle / \|v\|_2$ and $\alpha_{0,0} = \langle w_0^\perp, \bar{w}_0 \rangle / \|w_0^\perp\|_2$.

1919 **Decoupling the randomness.** In the following analysis, we can safely decouple the randomness
 1920 in v and w_0 from the randomness in $z_{-1:T}$ and $\tilde{z}_{1:T}$ by definition of the alternative dynamics. Not-
 1921 ably, the second initial condition in [\(E.10\)](#) only couples z_{-1} and z_0 if we treat $\alpha_{-1,0}$ and $\alpha_{0,0}$ as
 1922 deterministic quantities when conditioning on v and w_0 . In fact, if we condition on v and w_0 , the
 1923 second condition can be satisfied with probability at least $1 - n^{-\varepsilon}$ by [Theorem E.1](#).

1924 **Rewriting the alignment recurrence under the alternative dynamics.** Under the reformulation
 1925 [\(E.6\)](#), the alignment we are interested in is $\alpha_{-1,t} = \langle v, w_t \rangle / (\|v\|_2 \|w_t\|_2)$. Note that in the decom-
 1926 position of w_t , only the terms in the direction of $w_{-1}^\perp = w_{-1} = v$ contribute to the inner product
 1927 $\langle v, w_t \rangle$. Therefore, the alignment can be expressed as

$$1929 \alpha_{-1,t} = \frac{\langle z_{-1}, u_t \rangle + \|v\|_2 \cdot \theta^\top \varphi(Fy_t + \theta \cdot v^\top \bar{w}_{t-1}; b_t) + \eta^{-1} \alpha_{-1,t-1}}{\|w_t\|_2}. \quad (\text{E.12})$$

1931 This formula will be useful in the later proof.

1933 E.4 ADDITIONAL PROOFS

1935 *Proof of Theorem E.3.* The proof follows from a direct decomposition of the preactivation vector y_t
 1936 and the unnormalized weight vector w_t . By a direct decomposition of $V \bar{w}_t^\perp$, we have

$$\begin{aligned} 1938 V \bar{w}_t^\perp &= P_{u_{1:t}}^\perp V \bar{w}_t^\perp + u_t^\perp \cdot \frac{\langle u_t^\perp, V \bar{w}_t^\perp \rangle}{\|u_t^\perp\|_2^2} \cdot \mathbf{1}(t \geq 1) + P_{u_{1:t-1}} V \bar{w}_t^\perp \\ 1939 &\stackrel{(i)}{=} P_{u_{1:t}}^\perp V \bar{w}_t^\perp + u_t^\perp \cdot \frac{\langle V^\top u_t^\perp, \bar{w}_t^\perp \rangle}{\|u_t^\perp\|_2^2} \cdot \mathbf{1}(t \geq 1) \\ 1940 &\stackrel{(ii)}{=} P_{u_{1:t}}^\perp V \bar{w}_t^\perp + \frac{u_t^\perp}{\|u_t^\perp\|_2} \cdot \frac{\|w_t^\perp\|_2}{\|u_t^\perp\|_2} \cdot \|\bar{w}_t^\perp\|_2 \cdot \mathbf{1}(t \geq 1). \end{aligned}$$

1944 Here, (i) follows from the fact that for any $\tau = 1, \dots, t-1$,
1945 $V^\top u_\tau = w_\tau - v\theta^\top \varphi(Fy_\tau + \theta \cdot v^\top \bar{w}_{\tau-1}; b_\tau) - \eta^{-1} \bar{w}_{\tau-1} \in \text{span}(w_{-1:\tau})$,
1946 which is orthogonal to \bar{w}_t^\perp . In (ii), we use the fact that
1947 $V^\top u_t^\perp - w_t = V^\top u_t - w_t - V^\top P_{u_{1:t-1}} u_t$
1948 $= -v\theta^\top \varphi(Fy_t + \theta \cdot v^\top \bar{w}_{t-1}; b_t) - \eta^{-1} \bar{w}_{t-1} - V^\top P_{u_{1:t-1}} u_t \in \text{span}(w_{-1:t-1})$.
1949 Therefore, $\langle V^\top u_t^\perp, \bar{w}_t^\perp \rangle = \langle w_t, \bar{w}_t^\perp \rangle = \langle w_t^\perp, \bar{w}_t^\perp \rangle = \|w_t^\perp\|_2 \cdot \|\bar{w}_t^\perp\|_2$.
1950

1951 Using the above result, we derive for the preactivation vector y_t that
1952

$$\begin{aligned} y_t &= V\bar{w}_{t-1} = \sum_{\tau=-1}^{t-1} \frac{\langle \bar{w}_\tau^\perp, \bar{w}_{t-1} \rangle}{\|\bar{w}_\tau^\perp\|_2^2} \cdot V\bar{w}_\tau^\perp \\ &= \sum_{\tau=-1}^{t-1} \frac{\alpha_{\tau,t-1}}{\|\bar{w}_\tau^\perp\|_2} \cdot \left(P_{u_{1:\tau}}^\perp V\bar{w}_\tau^\perp + \frac{u_\tau^\perp}{\|u_\tau^\perp\|_2} \cdot \frac{\|w_\tau^\perp\|_2}{\|u_\tau^\perp\|_2} \cdot \|\bar{w}_\tau^\perp\|_2 \cdot \mathbf{1}(\tau \geq 1) \right) \\ &= \sum_{\tau=-1}^{t-1} \alpha_{\tau,t-1} \cdot P_{u_{1:\tau}}^\perp V \frac{w_\tau^\perp}{\|w_\tau^\perp\|} + \sum_{\tau=1}^{t-1} \alpha_{\tau,t-1} \cdot \frac{\|w_\tau^\perp\|_2}{\|u_\tau^\perp\|_2} \cdot \frac{u_\tau^\perp}{\|u_\tau^\perp\|_2}. \end{aligned}$$

1953 And also for the unnormalized weight vector w_t , we have
1954

$$\begin{aligned} w_t - v\theta^\top \varphi(Fy_t + \theta \cdot v^\top \bar{w}_{t-1}; b_t) - \eta^{-1} \bar{w}_{t-1} \\ &= P_{w_{-1:t-1}}^\perp V^\top u_t + \sum_{\tau=-1}^{t-1} \frac{\bar{w}_\tau^\perp}{\|\bar{w}_\tau^\perp\|_2^2} \cdot \langle V\bar{w}_\tau^\perp, u_t \rangle \\ &= P_{w_{-1:t-1}}^\perp V^\top \frac{u_t^\perp}{\|u_t^\perp\|} \cdot \|u_t^\perp\|_2 + \sum_{\tau=-1}^{t-1} \langle P_{u_{1:\tau}}^\perp V \frac{w_\tau^\perp}{\|w_\tau^\perp\|}, u_t \rangle \cdot \frac{\bar{w}_\tau^\perp}{\|\bar{w}_\tau^\perp\|_2} + \sum_{\tau=1}^{t-1} \frac{\langle u_\tau^\perp, u_t \rangle}{\|u_\tau^\perp\|_2} \cdot \frac{\|w_\tau^\perp\|_2}{\|u_\tau^\perp\|_2} \cdot \frac{\bar{w}_\tau^\perp}{\|\bar{w}_\tau^\perp\|_2}. \end{aligned}$$

1955 Therefore, we complete the proof of [Theorem E.3](#). \square
1956

1957 *Proof of Theorem E.4.* Recall that
1958

$$u_t = E^\top \varphi(Ey_t; b_t) + F^\top \varphi(Fy_t + \theta \cdot v^\top \bar{w}_{t-1}; b_t).$$

1959 This implies that u_t can be expressed as a function of y_t only. This also holds for \tilde{u}_t . For each
1960 iteration (u_t, w_t) in [\(E.5\)](#), it holds by the explicit decomposition in [Theorem E.3](#) that
1961

$$\begin{aligned} u_t &\in \sigma\left(w_{-1:t-1}, u_{1:t-1}, \left\{ P_{u_{1:\tau}}^\perp V \frac{w_\tau^\perp}{\|w_\tau^\perp\|_2} \right\}_{\tau=-1}^{t-1}\right), \\ w_t &\in \sigma\left(w_{-1:t-1}, u_{1:t}, \left\{ P_{u_{1:\tau}}^\perp V \frac{w_\tau^\perp}{\|w_\tau^\perp\|_2} \right\}_{\tau=-1}^{t-1}, P_{w_{-1:t-1}}^\perp V^\top \frac{u_t^\perp}{\|u_t^\perp\|_2} \right), \end{aligned} \quad (\text{E.13})$$

1962 where $\sigma(X)$ denotes the σ -algebra generated by the random variable X . For the Gaussian condition-
1963 ing iteration $(\tilde{u}_t, \tilde{w}_t)$ in [\(E.6\)](#) and [\(E.7\)](#), it also holds that
1964

$$\tilde{u}_t \in \sigma(\tilde{w}_{-1:t-1}, \tilde{u}_{1:t-1}, \{P_{\tilde{u}_{1:\tau}}^\perp z_\tau\}_{\tau=-1}^{t-1}), \quad \tilde{w}_t \in \sigma(\tilde{w}_{-1:t-1}, \tilde{u}_{1:t}, \{P_{\tilde{u}_{1:\tau}}^\perp z_\tau\}_{\tau=-1}^{t-1}, P_{\tilde{w}_{-1:t-1}}^\perp \tilde{z}_t).$$

1965 Notably, for u_1 (only depending on y_1) we have
1966

$$y_1 = \alpha_{-1,0} \cdot V \frac{w_{-1}}{\|w_{-1}\|_2} = \frac{\langle w_{-1}, \bar{w}_0 \rangle}{\|w_{-1}\|_2} \cdot V \frac{w_{-1}}{\|w_{-1}\|_2} \in \sigma\left(w_{-1:0}, P_{u_{1:-1}}^\perp V \frac{w_{-1}^\perp}{\|w_{-1}^\perp\|_2}\right)$$

1967 by the definition that $P_{u_{1:-1}}^\perp$ is the identity mapping and $w_{-1}^\perp = w_{-1}$. Similarly, w_1 is also measurable by
1968

$$w_1 \in \sigma\left(w_{-1:0}, P_{u_{1:-1}}^\perp V \frac{w_{-1}^\perp}{\|w_{-1}^\perp\|_2}, P_{w_{-1:0}}^\perp V^\top \frac{u_1^\perp}{\|u_1^\perp\|_2}\right).$$

1969 This verifies the base case for $t = 1$. Now we can recursively apply the dependency results in [\(E.13\)](#)
1970 for $t = 2, 3, \dots$ and obtain the desired conclusion. This completes the proof of [Theorem E.4](#). \square
1971

1998 F CONCENTRATIONS RESULTS FOR THE SAE DYNAMICS

1999
2000 **Notation.** In the following proofs, we use the **blue color box** to highlight the definitions that are
2001 used in the proofs for readers' convenience, and use the **olive color box** to highlight different versions
2002 of the conditions in (B.5) and (B.6) to inform the readers how the conditions evolve throughout the
2003 proof. We use N_1 to denote the number of rows in matrix E and N_2 to denote the number of rows
2004 in matrix F . In the statement of a lemma, we use $c > 4, C > 0$ to denote some universal constants
2005 that may change from line to line. We redefine

$$\begin{aligned} \rho_1 &:= \max \left\{ \max_{i \in [n]} \frac{\|H_{:,i}\|_0}{N}, \max_{i \neq j} \frac{\sum_{l=1}^N \mathbb{1}(H_{l,j} \neq 0) \mathbb{1}(H_{l,i} = 0)}{\sum_{l=1}^N \mathbb{1}(H_{l,i} = 0)} \right\}, \\ \rho_2 &:= \max_{i \neq j} \frac{\sum_{l=1}^N \mathbb{1}(H_{l,i} \neq 0) \mathbb{1}(H_{l,j} \neq 0)}{\sum_{l=1}^N \mathbb{1}(H_{l,i} \neq 0)}. \end{aligned} \quad (\text{F.1})$$

2006
2007 Compared to the original definition in the main text, we add an additional term in the definition of
2008 ρ_1 . We remark that this is not an issue as
2009

$$\max_{i \neq j} \frac{\sum_{l=1}^N \mathbb{1}(H_{l,j} \neq 0) \mathbb{1}(H_{l,i} = 0)}{\sum_{l=1}^N \mathbb{1}(H_{l,i} = 0)} \leq \max_{i \neq j} \frac{\|H_{:,j}\|_0}{N - \|H_{:,i}\|_0} \leq \frac{\max_{j \in [n]} \|H_{:,j}\|_0 / N}{1 - \max_{i \in [n]} \|H_{:,i}\|_0 / N}.$$

2010
2011 Since we assume in the main theorem that $\max_{i \in [n]} \|H_{:,i}\|_0 / N \ll 1$, we have
2012

$$\max_{i \neq j} \frac{\sum_{l=1}^N \mathbb{1}(H_{l,j} \neq 0) \mathbb{1}(H_{l,i} = 0)}{\sum_{l=1}^N \mathbb{1}(H_{l,i} = 0)} \leq (1 + o(1)) \cdot \max_{i \in [n]} \frac{\|H_{:,i}\|_0}{N}.$$

2013 The two terms in the definition of ρ_1 are only different up to a factor of $1 + o(1)$, and hence we can
2014 safely stick to the new definition of ρ_1 in the proof. Consequently, $\rho_1 \geq \max_{i \in [n-1]} \|E_{:,i}\|_0 / N_1$,
2015 $\rho_2 \geq \max_{i \in [n-1]} \|F_{:,i}\|_0 / N_2$. In addition, $N_1 \geq (1 - \rho_1)N$. By assuming $\rho_1 \leq 1/2$, we have
2016 $N_1 \geq N/2$. We use notation $z = x \pm y$ to indicate $z \in [x - y, x + y]$.

2017 **Initialization conditions.** In the following analysis, we focus on a single neuron whose initialization
2018 satisfies the conditions in (E.10) for a given feature of interest, v . For clarity, we restate the
2019 initialization conditions:

2020 **InitCond-1:** $\alpha_{-1,0} \|v\|_2 \geq \zeta_0$, **InitCond-2:** $y_1 = \alpha_{-1,0} z_{-1} + \alpha_{0,0} z_0 \preceq \zeta_1 \cdot \mathbf{1}$,

2021 where

$$\zeta_0 := (1 - \varepsilon) \sqrt{2 \log(M/n)}, \quad \zeta_1 := \sqrt{2} (1 + \varepsilon) \sqrt{2 \log n}.$$

2022 Once **InitCond-1** is satisfied for fixed w_0 and v , it remains to ensure that the Gaussian vectors z_{-1}
2023 and z_0 satisfy **InitCond-2**. In the subsequent analysis, we sometimes relax **InitCond-2** so as to
2024 leverage the standard Gaussian properties of z_{-1} and z_0 . In fact, if an event \mathcal{E} holds with probability
2025 $1 - p$ without enforcing **InitCond-2**, then the joint event that both **InitCond-2** and \mathcal{E} hold occurs
2026 with probability at least $1 - p - n^{-\varepsilon}$ by a union bound. *For this reason, unless otherwise specified,
2027 we*

2028 **Roadmap.** In §F.1, we decompose the pre-activation y_t into two parts: the Gaussian component
2029 y_t^* , which aggregates independent Gaussian contributions and captures the nominal dynamics, and
2030 the non-Gaussian component Δy_t , which accounts for deviations induced by cross-iteration cou-
2031 pling that is typically non-Gaussian. Using this decomposition, in §F.2 we demonstrate that only
2032 a small fraction of the training examples activate the neuron—a phenomenon we refer to as sparse
2033 activation.

2052
2053

F.1 ISOLATION OF GAUSSIAN COMPONENT

2054 As is discussed in §E.3, the key step in our analysis is to isolate the Gaussian component from the
 2055 non-Gaussian component. In the following, we decompose y_t , which is the alignments between the
 2056 weight and all features, into the Gaussian component that contains weighted sum of i.i.d. Gaussian
 2057 vectors, and a non-Gaussian part whose ℓ_2 -norm can be bounded by tracking the evolution of the
 2058 dynamics. Recall the definition of y_t in (E.6), we use the fact that $P_{u_{1:t}}^\perp z_\tau = z_\tau - P_{u_{1:t}} z_\tau$ to
 2059 decompose y_t as

$$2060 \quad y_t = \sum_{\tau=1}^{t-1} \alpha_{\tau,t-1} \cdot P_{u_{1:t}}^\perp z_\tau + \sum_{\tau=1}^{t-1} \alpha_{\tau,t-1} \cdot \frac{\|w_\tau^\perp\|_2}{\|u_\tau^\perp\|_2} \cdot \frac{u_\tau^\perp}{\|u_\tau^\perp\|_2} \\ 2061 \quad = \sum_{\tau=1}^{t-1} \alpha_{\tau,t-1} \cdot z_\tau + \left(\sum_{\tau=1}^{t-1} \alpha_{\tau,t-1} \cdot \frac{\|w_\tau^\perp\|_2}{\|u_\tau^\perp\|_2} \cdot \frac{u_\tau^\perp}{\|u_\tau^\perp\|_2} - \sum_{\tau=1}^{t-1} \alpha_{\tau,t-1} \cdot P_{u_{1:t}} z_\tau \right). \\ 2062 \\ 2063 \\ 2064 \\ 2065$$

2066 We can thus define the Gaussian component y_t^* and the non-Gaussian component Δy_t as
 2067

$$2068 \quad y_t^* := \sum_{\tau=1}^{t-1} \alpha_{\tau,t-1} \cdot z_\tau, \quad \Delta y_t := \sum_{\tau=1}^{t-1} \alpha_{\tau,t-1} \cdot \frac{\|w_\tau^\perp\|_2}{\|u_\tau^\perp\|_2} \cdot \frac{u_\tau^\perp}{\|u_\tau^\perp\|_2} - \sum_{\tau=1}^{t-1} \alpha_{\tau,t-1} \cdot P_{u_{1:t}} z_\tau. \quad (\text{F.2}) \\ 2069 \\ 2070 \\ 2071 \\ 2072$$

2073 In the above, the Gaussian component $y_t^* = \sum_{\tau=1}^{t-1} \alpha_{\tau,t-1} z_\tau$ is obtained by summing independent
 2074 Gaussian vectors $z_{-1}, z_0, \dots, z_{t-1}$ with weights $\alpha_{\tau,t-1}$. Conditional on these coefficients, y_t^* is
 2075 simply a standard Gaussian vector independent of the learned directions $w_{1:t-1}$ and $u_{1:t-1}$. In
 2076 contrast, the non-Gaussian component Δy_t quantifies the deviation of the true feature pre-activation
 2077 y_t from y_t^* due to cross-iteration coupling.

2078 In the sequel, let us recall the form of $\alpha_{\tau,t-1}$ in (E.12) and define β_{t-1} as
 2079

$$2080 \quad \alpha_{-1,t} = \frac{\langle z_{-1}, u_t \rangle + \|v\|_2 \cdot \theta^\top \varphi(Fy_t + \theta \cdot v^\top \bar{w}_{t-1}; b_t) + \eta^{-1} \alpha_{-1,t-1}}{\|w_t\|_2}, \\ 2081 \\ 2082 \\ 2083 \\ 2084 \quad \beta_{t-1} := \sqrt{\sum_{\tau=1}^{t-1} \alpha_{\tau,t-1}^2} = \|P_{w_{-1:0}}^\perp \bar{w}_{t-1}\|_2. \quad (\text{F.3}) \\ 2085 \\ 2086$$

2087 Here, $\alpha_{-1,t}$ is the alignment between \bar{w}_t and the feature of interest $v = w_{-1}$, and β_t is the norm
 2088 of the projection of \bar{w}_t onto the subspace orthogonal to both \bar{w}_{-1} and \bar{w}_0 . Tracking $\alpha_{-1,t}$ quantifies
 2089 how far the neuron has progressed from its initialization \bar{w}_0 toward the feature direction \bar{w}_{-1} .
 2090 Ideally, we want $\alpha_{-1,t} \rightarrow 1$, indicating strong alignment with the feature while remaining con-
 2091 fined to the plane spanned by \bar{w}_{-1} and \bar{w}_0 . In contrast, β_t measures the extent to which the neuron
 2092 drifts away from that plane due to the influence of irrelevant features. We can build an interesting
 2093 connection between the non-Gaussian component Δy_t and β_{t-1} as stated in the following lemma.

2094 **Lemma F.1** (Upper bound the non-Gaussian component Δy_t). *Suppose $T \leq \sqrt{d}$ and $d \in$
 2095 $(n^{1/c_1}, n^{c_1})$ for some universal constant $c_1 > 1$. For all $t = 1, \dots, T$, it holds with probability
 2096 at least $1 - n^{-c}$ for some universal constants $c, C > 0$ that*

$$2097 \quad \|\Delta y_t\|_2^2 \leq Cd \cdot \beta_{t-1}^2. \\ 2098 \\ 2099$$

2100 *Proof.* See §H.1.1 for a detailed proof. □

2101
2102 F.2 SPARSE ACTIVATION
2103

2104 Before we move on to studying the evolution of $\alpha_{-1,t}$ and β_t defined in (F.3), we first present con-
 2105 centration results for the neuron’s activation frequency. To leverage the benefits of sparse activation,
 we analyze how the scheduled bias b_t induces sparsity in the neuron.

Concentration for ideal activation. We will first study the ideal case where $\Delta y_t = 0$, and then move on to the real case in [Theorem F.2](#) where we replace y_t^* with y_t in [Theorem F.3](#). For more generality, we present a full version in [Theorem H.4](#) and derive [Theorem F.2](#) as a direct corollary. In the following, recall that e_l is the l -th row of matrix E , which is a submatrix of H defined in [\(E.3\)](#). We study the activation frequency of the neuron on the set of data that does not contain the feature v (i.e., the rows contained in E).

Corollary F.2 (Concentration for ideal activation). *Let e_l be the l -th row of matrix E . For κ_0 as the threshold defined in [Definition B.3](#), we denote by $\bar{b}_t = b_t + \kappa_0$. Let $y_t^* = \sum_{\tau=-1}^{t-1} \alpha_{\tau, t-1} z_\tau$ with z_τ being the i.i.d. standard Gaussian vectors. It holds for all $t \leq T \leq n^c$, $\alpha_{t-1} = (\alpha_{-1, t-1}, \dots, \alpha_{t-1, t-1})^\top \in \mathbb{S}^t$, $b_t \in \mathbb{R}$ and any $\delta \in (\exp(-n/4), 1)$ that with probability at least $1 - \delta$ over the randomness of $z_{-1:T}$, the following holds:*

$$\frac{1}{N_1} \sum_{l=1}^{N_1} \mathbb{1}(e_l^\top y_t^* + \bar{b}_t > 0) \leq C \cdot (\Phi(-\bar{b}_t) + \rho_1 s t \log(n) + \rho_1 s \log(\delta^{-1})). \quad (\text{F.4})$$

Proof. This is a direct corollary of [Theorem H.4](#). □

Here, a neuron is considered active when its ideal pre-activation $e_l^\top y_t^* + b_t$ exceeds the threshold $-\kappa_0$. In the idealized setting (i.e., as $N_1 \rightarrow \infty$, and $y_t^* \sim \mathcal{N}(0, I_{n-1})$), the expected activation frequency is exactly $\Phi(-\bar{b}_t)$, making the $\Phi(-\bar{b}_t)$ term tight. The additional terms in the bound capture the empirical fluctuations in the activation frequency due to data coupling. In particular, the parameter ρ_1 quantifies the maximum fraction of data coupled through a single feature, thereby governing the fluctuation term. A key point to note is that $\alpha_{t-1} \in \mathbb{S}^t$ also depends on the randomness of $z_{-1:T}$, hence how to approximate y_t^* with random Gaussian vector is not straightforward. In the proof, we decouple the dependence of y_t^* on α_{t-1} by proving a concentration result for all α_{t-1} that form a covering net of \mathbb{S}^t , and then take a union bound over the covering net of size $n^{O(t)}$. This gives rise to the $t \log n$ factor in the bound when taking the logarithm of the covering number.

Efron-Stein inequality for handling data correlation. In proving the lemma, we use a refined version of the Efron-Stein inequality ([Boucheron et al., 2003](#)) to overcome challenges caused by data correlation. In our setting, two data points may be correlated if they share the same feature, which violates the independence assumption required by classical concentration results such as Bernstein's inequality.

Traditional techniques based on the bounded-differences property—for example, McDiarmid's inequality ([McDiarmid et al., 1989](#))—would treat the left-hand side (LHS) of [\(F.4\)](#) as a function

$$f(y_t^*(1), \dots, y_t^*(n-1))$$

of $(n-1)$ variables, where $y_t^*(i)$ is the i -th coordinate of y_t^* . Since altering a single coordinate of y_t^* has the same effect as modifying the projection of \bar{w}_t onto a single feature, and because each feature influences at most a $\rho_1 N_1$ fraction of the terms in the sum on the LHS, we obtain the bounded-differences property

$$|f(y_t^*(1), \dots, y_t^*(i), \dots, y_t^*(n-1)) - f(y_t^*(1), \dots, y_t^*(i)', \dots, y_t^*(n-1))| \leq \rho_1.$$

Consequently, McDiarmid's inequality would yield a fluctuation bound of order

$$\sqrt{\sum_{i=1}^{n-1} \rho_1^2} \approx \rho_1 \sqrt{n},$$

which is clearly suboptimal. Unlike McDiarmid's bounded-differences inequality, which requires each individual input change to have a uniformly small impact on f , Efron-Stein only demands a weaker bound on the variance incurred by altering one coordinate. We defer interested readers to [§H.2.1](#) for a detailed proof.

2160 **Concentration for original activation.** To fully characterize the behavior of the activation, we
 2161 also need to take into account the non-Gaussian component Δy . This gives rise to the following
 2162 lemma.

2163 **Lemma F.3** (Activation with non-Gaussian component). *Following the setup of Theorem F.2, sup-
 2164 pose $\bar{b}_t < -2$. Then for all $t \leq T \leq n^c$, $\alpha_{t-1} \in \mathbb{S}^t$ and $b_t \in \mathbb{R}$, it holds with probability at least
 2165 $1 - n^{-c}$ over the randomness of $z_{-1:T}$ that*

$$2167 \quad \frac{1}{N_1} \sum_{l=1}^{N_1} \mathbb{1}(e_l^\top y_t + \bar{b}_t > 0) \leq C \cdot (\Phi(-\bar{b}_t) + \rho_1 s t \log(n) + \rho_1 |\bar{b}_t|^2 \|\Delta y_t\|_2^2).$$

2170 *Proof.* See §H.2.2 for a detailed proof. □

2173 The fluctuation term in the upper bound now depends on both ρ_1 and the ℓ_2 norm of the non-
 2174 Gaussian Δy_t . This is because a larger $\|\Delta y_t\|_2$ can shift the pre-activations further away from the
 2175 ideal Gaussian case, thereby in the worst case, increasing the activation frequency.

2176 **Concentration for $\alpha_{-1,t}$ and β_t .** We next aim to characterize the evolution of the parameters
 2177 $\alpha_{-1,t}$ and β_t defined in (F.3). Note that in the formula of $\alpha_{-1,t}$

$$2179 \quad \alpha_{-1,t-1} = \frac{\langle z_{-1}, u_t \rangle + \|v\|_2 \cdot \theta^\top \varphi(Fy_t + \theta \cdot v^\top \bar{w}_{t-1}; b_t) + \eta^{-1} \alpha_{-1,t-1}}{\|w_t\|_2},$$

2182 we can decompose the first term in the numerator as follows:

$$2183 \quad \langle z_{-1}, u_t \rangle = \langle z_{-1}, E^\top \varphi(Ey_t; b_t) \rangle + \langle z_{-1}, F^\top \varphi(Fy_t + \theta \cdot v^\top \bar{w}_{t-1}; b_t) \rangle$$

2185 according to the defintion of u_t in (E.5). Here, E and F are the submatrices of H defined in (E.3),
 2186 where E corresponds to the rows not containing the feature of interest v , and F corresponds to the
 2187 rows containing v . To this end, we just need to control

$$2188 \quad \langle z_\tau, E^\top \varphi(Ey_t; b_t) \rangle, \quad \langle z_\tau, F^\top \varphi(Fy_t + \theta \cdot v^\top \bar{w}_{t-1}; b_t) \rangle, \quad (\text{F.5})$$

2190 for general $\tau \in [-1 : T]$ and then specialize to $\tau = -1$. Note that the above two terms for general τ
 2191 will also be used in computing the norm of $\|w_t\|_2$ later. Let us just consider a simplified case where
 2192 z_τ is independent of y_t (which does not hold in general). To control the fluctuation of the above
 2193 terms, it is important to compute the second-order moments with respect to the randomness of z_τ .
 2194 As a concrete example, for the first term, we have the second-order moment computed as

$$2195 \quad \mathbb{E}_{z_\tau \sim \mathcal{N}(0, I_{n-1})} [\langle z_\tau, E^\top \varphi(Ey_t; b_t) \rangle^2] = \|E^\top \varphi(Ey_t; b_t)\|_2^2.$$

2197 The second-order moment of the second term can be computed similarly. Therefore, as a first step,
 2198 we will focus on the follwoing two terms:

$$2199 \quad \|E^\top \varphi(Ey_t; b_t)\|_2^2, \quad \|F^\top \varphi(Fy_t + \theta \cdot v^\top \bar{w}_{t-1}; b_t)\|_2^2. \quad (\text{F.6})$$

2201 In §F.3, we will first present concentration results for the second-order terms in (F.6) and then use
 2202 them to derive the concentration results for the two first-order terms in (F.5). In addition, we will
 2203 also derive the concentration result for the term $\theta^\top \varphi(Fy_t + \theta \cdot v^\top \bar{w}_{t-1}; b_t)$ as in the numerator of
 2204 $\alpha_{-1,t-1}$.

2206 F.3 SECOND ORDER CONCENTRATION

2208 In this subsection, we present concentration results for the second-order terms with respect to the
 2209 Gaussian component y_t^* defined in (F.2):

$$2210 \quad \|E^\top \varphi(Ey_t^*; b_t)\|_2^2 \quad \text{and} \quad \|F^\top \varphi(Fy_t^* + \theta \cdot v^\top \bar{w}_{t-1}; b_t)\|_2^2. \quad (\text{F.7})$$

2212 We will bridge the gap between these two terms and the original terms in (F.5) by using the analysis
 2213 of the non-Gaussian component Δy_t in §F.5. For now, let us focus on the two terms in (F.7). We
 now present our concentration result formally in the following lemma.

2214
 2215 **Lemma F.4** (Second-order concentration for E -related term). *Under Definition B.3, let $\bar{b}_t = b_t +$
 2216 $\kappa_0 < 0$, and assume further that $-\bar{b}_t = \Theta(\sqrt{\log n})$ and $-\bar{b}_t < \zeta_1$, with ζ_1 defined in (E.11) as
 2217 required by **InitCond-2**. Suppose $\rho_1 < 1 - 1/C_1$ for some universal constant $C_1 > 0$. Then with
 2218 probability at least $1 - n^{-c}$ over the randomness of standard Gaussian vectors $z_{-1:T}$, it holds for
 2219 all $t \leq T$ with $T \leq n^c$ that*

$$2220 \frac{1}{N_1^2} \|E^\top \varphi(Ey_t^*; b_t)\|_2^2 \cdot \mathbb{1}(\mathcal{E}_0) \leq CL^2 \cdot \rho_1^2 st^2 (\log n)^2 \cdot \mathcal{K}_t^2 \\ 2221 + CL^2 \cdot \Phi(|\bar{b}_t|) \cdot \hat{\mathbb{E}}_{l,l'} \left[\Phi \left(|\bar{b}_t| \sqrt{\frac{1 - \langle h_l, h_{l'} \rangle}{1 + \langle h_l, h_{l'} \rangle}} \right) \langle h_l, h_{l'} \rangle \right]. \quad (\text{F.8})$$

2226 where $\hat{\mathbb{E}}_{l,l'}$ denotes the empirical average over $l, l' \in [N]$, h_l denotes the l -th row of H , $L =$
 2227 $\gamma_2 + |b_t| \gamma_1$, and \mathcal{E}_0 is the event such that z_{-1} and z_0 satisfy **InitCond-2**. Here we define \mathcal{K}_t as
 2228

$$2229 \mathcal{K}_t := \left(n |\bar{b}_t| \Phi \left(\frac{-\bar{b}_t}{\sqrt{\frac{3}{4} \hbar_{4,*}^2 + \frac{1}{4}}} \right) \right)^{1/4} + \left(\rho_2 s n |\bar{b}_t| \Phi \left(\frac{-\bar{b}_t}{\sqrt{\frac{2}{3} \hbar_{3,*}^2 + \frac{1}{3}}} \right) \right)^{1/4} \\ 2230 + \left(\Phi \left(-\frac{\bar{b}_t + \hbar_{4,t} \zeta_t}{\sqrt{1 - \hbar_{4,t}^2}} \right) + (\rho_2 s)^{1/4} \right) \cdot (t \log(n))^{1/4} + n^{1/4} \rho_2 s t \log(n), \quad (\text{F.9})$$

2237 In the above definition, we let $\hbar_{q,*}$ and $\hbar_{q,t}$ for any positive $q > 1$ and time $t \geq 1$ be the smallest
 2238 real values in $[0, 1]$ such that the following inequalities hold:

$$2239 \max_{j \in [n]} \frac{1}{|\mathcal{D}_j|} \sum_{l \in \mathcal{D}_j} \Phi \left(\frac{-\bar{b}_t}{\sqrt{\frac{q-1}{q} H_{l,j}^2 + \frac{1}{q}}} \right) \leq \Phi \left(\frac{-\bar{b}_t}{\sqrt{\frac{q-1}{q} \hbar_{q,*}^2 + \frac{1}{q}}} \right), \quad (\text{F.10})$$

$$2243 \max_{j \in [n]} \frac{1}{|\mathcal{D}_j|} \sum_{l \in \mathcal{D}_j} \Phi \left(-\frac{\bar{b}_t + H_{l,j} \zeta_t}{\sqrt{1 - H_{l,j}^2}} \right)^q \leq \Phi \left(-\frac{\bar{b}_t + \hbar_{q,t} \zeta_t}{\sqrt{1 - \hbar_{q,t}^2}} \right)^q. \quad (\text{F.11})$$

2245 Here $\mathcal{D}_j = \{l \in [N] : h_{l,j} \neq 0\}$ is the set of row indices in matrix H that has non-zero entries in
 2246 the j -th column, and $\zeta_t = \zeta_1 + \mathbb{1}(t \geq 2) \cdot C(\beta_{t-1} + |\alpha_{-1,t-1}| + |\alpha_{-1,0}|) \sqrt{t \log(nt)}$ with the value
 2247 ζ_1 in **InitCond-2** and $\beta_{t-1} = \sqrt{\sum_{\tau=1}^{t-1} \alpha_{\tau,t-1}^2}$.
 2249

2250 *Proof.* See §H.2.3 for a detailed proof. □

2252 **Validity of the definition of $\hbar_{q,t}$ and $\hbar_{q,*}$.** The definitions of $\hbar_{q,*}$ and $\hbar_{q,1}$ are valid as the right-
 2253 hand sides (RHSs) of the above two inequalities are strictly increasing in terms of $\hbar_{q,*}$ and $\hbar_{q,1}$,
 2254 respectively, under the condition $-\bar{b}_t < \zeta_1$.

2256 • To see this for $\hbar_{q,*}$, we note that $\Phi(\cdot)$ is a strictly decreasing function, while $\frac{-\bar{b}_t}{\sqrt{\frac{q-1}{q} H_{l,j}^2 + \frac{1}{q}}}$ is
 2257 also strictly decreasing in terms of $H_{l,j}$. Therefore, the composition of the two functions is
 2258 strictly increasing in terms of $\hbar_{q,*}$.

2260 • To see this for $\hbar_{q,t}$, observe that $\zeta_t \geq \zeta_1 > -c_1 = -\bar{b}_t$, since the bias is fixed at $b_t = b$ in
 2261 the current algorithm. Moreover, the derivative of the right-hand side of the inequality in (F.11)
 2262 with respect to $\hbar_{q,t}$ is

$$2264 \frac{d}{dx} \Phi \left(-\frac{\bar{b}_t + x \zeta_1}{\sqrt{1 - x^2}} \right)^q = q \Phi \left(-\frac{\bar{b}_t + x \zeta_1}{\sqrt{1 - x^2}} \right)^{q-1} \cdot p \left(-\frac{\bar{b}_t + x \zeta_1}{\sqrt{1 - x^2}} \right) \cdot \frac{\zeta_1 - (-\bar{b}_t)x}{(1 - x^2)^{3/2}} > 0. \quad (\text{F.12})$$

2266 Therefore, the definitions of $\hbar_{q,*}$ and $\hbar_{q,t}$ as the smallest real values satisfying the inequalities in
 2267 (F.10) and (F.11) are valid.

2268 **Heuristic derivation for $\|E^\top \varphi(Ey_t^*; b_t)\|_2^2$.** The first term involves the submatrix E . Before we
 2269 present the concentration result, let us derive heuristically what the concentration result should look
 2270 like. Let us denote by e_l the l -th row of matrix E . We can compute the expectation of the squared
 2271 norm as

$$2273 \quad \frac{1}{N_1^2} \cdot \mathbb{E}[\|E^\top \varphi(Ey_t^*; b_t)\|_2^2] = \frac{1}{N_1^2} \sum_{l, l'=1}^{N_1} \mathbb{E}[\varphi(e_l^\top y_t^*; b_t) \cdot \varphi(e_{l'}^\top y_t^*; b_t)] \cdot \langle e_l, e_{l'} \rangle.$$

2276 If we assume $\alpha_{:, t-1}$ are fixed, then y_t^* is just a standard Gaussian vector, and

$$2278 \quad (e_l^\top y_t^*, e_{l'}^\top y_t^*) \sim \mathcal{N}\left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 & \langle e_l, e_{l'} \rangle \\ \langle e_l, e_{l'} \rangle & 1 \end{bmatrix}\right).$$

2280 This fact enables a direct upper bound on the expectation, as detailed in [Theorem F.5](#).

2281 **Lemma F.5.** *Let $\bar{b} = b + \kappa_0 < 0$. Suppose $|\varphi(x; b)| \leq (n \vee d)^{-c_0} + L(x + \bar{b}) \cdot \mathbf{1}(x > -\bar{b})$ for
 2282 some $L > 0$ and $c_0 > 0$ under [Definition B.3](#). For two independent $x, z \sim \mathcal{N}(0, 1)$ and $\iota \in (0, 1)$,
 2283 it holds that*

$$2285 \quad \mathbb{E}[\varphi(x; b)\varphi(\iota x + \sqrt{1 - \iota^2} \cdot z; b)] \leq CL(n \vee d)^{-c_0} + C(L^2 + 1) \cdot \Phi(|\bar{b}|) \cdot \Phi\left(|\bar{b}| \sqrt{\frac{1 - \iota}{1 + \iota}}\right).$$

2288 *Proof.* See [§H.4.1](#) for a detailed proof. □

2290 By relaxing the rows $e_l, e_{l'}$ of E to the corresponding rows $h_l, h_{l'}$ of H , we derive the second term
 2291 in the concentration result [\(F.8\)](#). The first fluctuation term is obtained again via the Efron-Stein
 2292 inequality, which needs a careful analysis up to the 4-th moment. In particular, we also apply a
 2293 uniform bound over the sphere \mathbb{S}^t for α_{t-1} , which gives rise to the dependency on t in the definition
 2294 of \mathcal{K}_t in [\(F.9\)](#).

2295 We now turn to the second term in [\(F.7\)](#), which is $\|F^\top \varphi(Fy_t^* + \theta \cdot v^\top \bar{w}_{t-1}; b_t)\|_2^2$.

2296 **Lemma F.6 (Second-order concentration for F -related term).** *Under [Definition B.3](#), suppose $b_t \leq -\kappa_0$ and let $L = \gamma_2 + |b_t|\gamma_1$. For all $t \leq T \leq n^c$, it holds with probability at least $1 - n^{-c}$ over
 2297 the randomness of standard Gaussian vectors $z_{-1:T}$ that*

$$2300 \quad \frac{1}{N_2^2} \|F^\top \varphi(Fy_t^* + \theta \cdot v^\top \bar{w}_{t-1}; b_t)\|_2^2 \leq CL^2 \rho_2 \cdot (\overline{\theta^2} \|v\|_2^2 \alpha_{-1, t-1}^2 + \rho_2 n + \rho_2 t \log n),$$

2303 where $\overline{\theta^2} = \|\theta\|_2^2 / N_2$.

2305 *Proof.* See [§H.2.4](#) for a detailed proof. □

2307 F.4 FIRST ORDER CONCENTRATION

2309 In this subsection, we continue to present the concentration results on the first order terms specified
 2310 in [\(F.5\)](#). Let's first consider the concentration for $\langle z_\tau, E^\top \varphi(Ey_t^*; b_t) \rangle$.

2312 **Heuristic derivation for $\langle z_\tau, E^\top \varphi(Ey_t^*; b_t) \rangle$.** Let us recall that $y_t^* = \sum_{\tau=1}^{t-1} \alpha_{\tau, t-1} z_\tau$, and we
 2313 can rewrite the term as

$$2315 \quad \langle z_\tau, E^\top \varphi(Ey_t^*; b_t) \rangle = \sum_{l=1}^{N_1} e_l^\top z_\tau \cdot \varphi(e_l^\top y_t^*; b_t)$$

2318 for e_l being the l -th row of matrix E . Moreover, we have for any fixed $\alpha_{t-1} = (\alpha_{-1, t-1}, \dots, \alpha_{t-1, t-1})^\top \in \mathbb{S}^t$ and by the fact that $\|e_l\|_2 = 1$ for all $l \in [N_1]$, we have

$$2321 \quad (e_l^\top z_\tau, e_l^\top y_t^*) \sim \mathcal{N}\left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 & \alpha_{\tau, t-1} \\ \alpha_{\tau, t-1} & 1 \end{bmatrix}\right) \quad (\text{F.13})$$

2322 where $j \in [n - 1]$ is the entry index of the vectors. Hence, the term we are interested in should be
 2323 close to

$$2325 \sum_{l=1}^{N_1} \mathbb{E}_{\zeta, \xi \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0,1)} [(\alpha_{\tau,t-1} \zeta + \sqrt{1 - \alpha_{\tau,t-1}^2} \cdot \xi) \cdot \varphi(\zeta; b_t)] = N_1 \cdot \alpha_{\tau,t-1} \cdot \hat{\varphi}_1(b_t),$$

2328 where we define

$$2330 \hat{\varphi}_1(b) = \mathbb{E}_{u \sim \mathcal{N}(0,1)} [\varphi(u; b)u].$$

2332 Building on this intuition, the following lemma provides the concentration result in more detail.

2334 **Lemma F.7** (First-order concentration for E -related term). *Under the condition of Theorem F.4, let*
 2335 *$L = \gamma_2 + |b_t| \gamma_1$. For all $t \leq T \leq n^c$, it holds with probability at least $1 - n^{-c}$ over the randomness*
 2336 *of standard Gaussian vectors $z_{-1:T}$ that*

$$2337 \left| \frac{1}{N_1} \langle z_{\tau}, E^{\top} \varphi(Ey_t^*; b_t) \rangle - \alpha_{\tau,t-1} \cdot \hat{\varphi}_1(b_t) \right| \\ 2338 \leq CL\alpha_{\tau,t-1} t \log(n) \cdot (\sqrt{s\rho_1\Phi(|\bar{b}_t|)t \log(n)} + s\rho_1 t \log(n)) \\ 2339 \\ 2340 + \frac{C}{N_1} \sqrt{1 - \alpha_{\tau,t-1}^2} \cdot \sqrt{\|E^{\top} \varphi(Ey_t^*; b_t)\|_2^2 \cdot t \log(n)}. \\ 2341 \\ 2342$$

2344 *Proof.* See §H.2.5 for a detailed proof. □

2347 In the above lemma, we bound the deviation of the first-order term $\langle z_{\tau}, E^{\top} \varphi(Ey_t^*; b_t) \rangle$ from its
 2348 expectation $\alpha_{\tau,t-1} \cdot \hat{\varphi}_1(b_t)$ by some ρ_1 and $\Phi(|\bar{b}_t|)$ -dependent fluctuation terms. The dependence on
 2349 $\Phi(|\bar{b}_t|)$ is consistent with the intuition that sparser activation which avoids unnecessary activations
 2350 on other features except the one of interest, often leads to less fluctuation. The following lemma
 2351 provides upper and lower bound for $\hat{\varphi}_1(b_t)$.

2352 **Lemma F.8** (Upper and lower bounds for $\hat{\varphi}_1(b_t)$). *Suppose Definition B.3 holds and let $\bar{b}_t = b_t +$
 2353 $\kappa_0 < 0$, $L = \gamma_2 + |b_t| \gamma_1$. If $|\bar{b}_t| = \omega(1)$, and $\kappa_0 |\bar{b}_t| = O(1)$, then*

$$2355 \frac{C_0}{4} \cdot \Phi(|\bar{b}_t|) \leq \hat{\varphi}_1(b_t) \leq 2 \cdot C_0 L \Phi(|\bar{b}_t|).$$

2358 *Proof.* See §H.4.2 for a detailed proof. □

2360 The message from Theorem F.8 is quite straightforward: the expectation term $\hat{\varphi}_1(b_t)$ is on the same
 2361 order as the activation sparsity level $\Phi(|\bar{b}_t|)$.

2364 **Heuristic derivation for $\langle z_{\tau}, F^{\top} \varphi(Fy_t^* + \theta \cdot v^{\top} \bar{w}_{t-1}; b_t) \rangle$.** Similar to the previous case, we still
 2365 use the approximation in (F.13) except that this time each row f_l of F has norm $\sqrt{1 - \theta_l^2}$, and have
 2366

$$2367 (f_l^{\top} z_{\tau}, f_l^{\top} y_t^*) \sim \mathcal{N} \left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, (1 - \theta_l^2) \cdot \begin{bmatrix} 1 & \alpha_{\tau,t-1} \\ \alpha_{\tau,t-1} & 1 \end{bmatrix} \right).$$

2369 This leads to the following approximation:

$$2371 \langle z_{\tau}, F^{\top} \varphi(Fy_t^* + \theta \cdot v^{\top} \bar{w}_{t-1}; b_t) \rangle \approx \sum_{l=1}^{N_2} \alpha_{\tau,t-1} \sqrt{1 - \theta_l^2} \cdot \mathbb{E}_{x \sim \mathcal{N}(0,1)} [x \varphi(\sqrt{1 - \theta_l^2} x + \theta_l v^{\top} \bar{w}_{t-1}; b_t)].$$

2374 We now present the formal concentration result for $\langle z_{\tau}, F^{\top} \varphi(Fy_t^* + \theta \cdot v^{\top} \bar{w}_{t-1}; b_t) \rangle$ in the following
 2375 lemma.

2376 **Lemma F.9** (First-order concentration for F -related term). *Under Definition B.3, suppose $\bar{b}_t =$
 2377 $b_t + \kappa_0 \leq 0$ and let $L = \gamma_2 + |b_t|\gamma_1$. For all $\tau < t \leq T$ with $T \leq n^c$, it holds with probability at
 2378 least $1 - n^{-c}$ over the randomness of standard Gaussian vectors $z_{-1:T}$ that*

$$\begin{aligned} 2380 \quad & \frac{1}{N_2} \left| \langle z_\tau, F^\top \varphi(Fy_t^* + \theta \cdot v^\top \bar{w}_{t-1}; b_t) \rangle - \sum_{l=1}^{N_2} \alpha_{\tau,t-1} \sqrt{1 - \theta_l^2} \cdot \mathbb{E}_{x \sim \mathcal{N}(0,1)} \left[x \varphi(\sqrt{1 - \theta_l^2} x + \theta_l v^\top \bar{w}_{t-1}; b_t) \right] \right| \\ 2381 \quad & \leq CL \alpha_{\tau,t-1} \cdot (\sqrt{t \log(n)} + \|v\|_2 \alpha_{-1,t-1}) \cdot \sqrt{\rho_2 s} \cdot (t \log(n))^{3/2} \\ 2382 \quad & \quad + \frac{C}{N_2} \sqrt{1 - \alpha_{\tau,t-1}^2} \cdot \sqrt{\|F^\top \varphi(Fy + \theta \cdot v^\top \bar{w}_{t-1}; b_t)\|_2^2 \cdot t \log(n)}. \end{aligned}$$

2383 *Proof.* See §H.2.6 for a detailed proof. \square

2384 **Heuristic derivation for $\theta^\top \varphi(Fy_t + \theta \cdot v^\top \bar{w}_{t-1}; b_t)$.** The last term we need to control is
 2385 $\theta^\top \varphi(Fy_t^* + \theta \cdot v^\top \bar{w}_{t-1}; b_t)$. Using the Gaussian approximation $f_l^\top y_t^* \sim \mathcal{N}(0, 1 - \theta_l^2)$ as in the
 2386 previous case, we have

$$2387 \quad \theta^\top \varphi(Fy_t^* + \theta \cdot v^\top \bar{w}_{t-1}; b_t) \approx \sum_{l=1}^{N_2} \theta_l \cdot \mathbb{E}_{x \sim \mathcal{N}(0,1)} \left[\varphi(\sqrt{1 - \theta_l^2} x + \theta_l v^\top \bar{w}_{t-1}; b_t) \right].$$

2388 For our convenience, let us define

$$2389 \quad \psi_t := \frac{\sqrt{d}}{N} \sum_{l=1}^{N_2} \mathbb{E}_{x \sim \mathcal{N}(0,1)} \left[\theta_l \cdot \varphi(\sqrt{1 - \theta_l^2} x + \theta_l v^\top \bar{w}_{t-1}; b_t) \right], \quad (\text{F.14})$$

2404 and it follows that $\theta^\top \varphi(Fy_t^* + \theta \cdot v^\top \bar{w}_{t-1}; b_t) \approx N \cdot \psi_t / \sqrt{d}$. Lastly, we present the concentration
 2405 for $\theta^\top \varphi(Fy_t^* + \theta \cdot v^\top \bar{w}_{t-1}; b_t)$.

2406 **Lemma F.10** (First-order concentration for signal term). *Under Definition B.3, suppose $\bar{b}_t = b_t +$
 2407 $\kappa_0 \leq 0$ and let $L = \gamma_2 + |b_t|\gamma_1$. For all $t \leq T \leq n^c$, it holds with probability at least $1 - n^{-c}$ over
 2408 the randomness of standard Gaussian vectors $z_{-1:T}$ that*

$$2409 \quad \left| \frac{1}{N_2} \theta^\top \varphi(Fy_t^* + \theta \cdot v^\top \bar{w}_{t-1}; b_t) - \frac{\psi_t N}{\sqrt{d} N_2} \right| \leq CL(\sqrt{t \log(n)} + \|v\|_2 \alpha_{-1,t-1}) \cdot \sqrt{\rho_2 s \bar{\theta}^2} \cdot t \log(n).$$

2413 *Proof.* See §H.2.7 for a detailed proof. \square

2416 Lastly, we provide a useful bound for the term ψ_t defined in (F.14) in the following lemma, which
 2417 is related to the *strength* of the weight vector θ for the feature of interest. To quantify the strength,
 2418 we make the following definition

$$2420 \quad Q_t := \frac{1}{N_2} \sum_{l=1}^{N_2} \mathbb{1} \left(\theta_l > \frac{-b_t}{\sqrt{d} \alpha_{-1,t-1}} \right), \quad \bar{\theta}^2 := \frac{\|\theta\|_2^2}{N_2}. \quad (\text{F.15})$$

2424 **Lemma F.11** (Bounds for the signal term). *Under Definition B.3, it holds for ψ_t defined in Theorem F.10 that*

$$2427 \quad C^{-1} \bar{\theta}^2 Q_t \cdot N_2 d \alpha_{-1,t-1} \leq N \psi_t \leq CL \bar{\theta}^2 \cdot N_2 d \alpha_{-1,t-1}.$$

2429 *Proof.* See §H.4.3 for a detailed proof. \square

2430 F.5 NON-GAUSSIAN ERROR PROPOGATION
24312432 In the following, let us define the following error terms
2433

2434
$$\begin{aligned}\Delta E_t &= E^\top \varphi(Ey_t; b_t) - E^\top \varphi(Ey_t^*; b_t), \\ \Delta F_t &= F^\top \varphi(Fy_t + \theta \cdot v^\top \bar{w}_{t-1}; b_t) - F^\top \varphi(Fy_t^* + \theta \cdot v^\top \bar{w}_{t-1}; b_t), \\ \Delta \varphi_{F,t} &= \varphi(Fy_t + \theta \cdot v^\top \bar{w}_{t-1}; b_t) - \varphi(Fy_t^* + \theta \cdot v^\top \bar{w}_{t-1}; b_t).\end{aligned}$$

2435

2436 The last piece of the puzzle is to control the error propagation in the dynamics due to the non-
2437 Gaussian component Δy_t in the pre-activation. Let us recall the error terms
2438

2439
$$\begin{aligned}\Delta E_t &= E^\top \varphi(Ey_t; b_t) - E^\top \varphi(Ey_t^*; b_t) \\ \Delta F_t &= F^\top \varphi(Fy_t + \theta \cdot v^\top \bar{w}_{t-1}; b_t) - F^\top \varphi(Fy_t^* + \theta \cdot v^\top \bar{w}_{t-1}; b_t).\end{aligned}$$

2440

2441 We are interested in how the error Δy_t propagates through the nonlinear function φ in the update.
24422443 **Lemma F.12** (Error propogation for ΔE_t). *Under Definition B.3 on the activation function, let*
2444 $\bar{b}_t = b_t + \kappa_0$, $L = \gamma_2 + |b_t|\gamma_1$ *and suppose* $\bar{b}_t < -2$. *For all* $t \leq T \leq n^c$, *it holds with probability*
2445 *at least* $1 - n^{-c}$ *over the randomness of standard Gaussian vectors* $z_{-1:T}$ *that*
2446

2447
$$\begin{aligned}\|\Delta E_t\|_1 &\leq CLN_1 \cdot \left((\sqrt{s\rho_1\Phi(-\bar{b}_t)} + s\rho_1\sqrt{t\log n}) \cdot \|\Delta y_t\|_2 + \sqrt{s}\rho_1|\bar{b}_t| \cdot \|\Delta y_t\|_2^2 \right) \\ &\quad + CN_1\sqrt{s}(2 + |b_t|) \cdot (n \vee d)^{-c_0},\end{aligned}$$

2448

2449 and the ℓ_2 norm of ΔE_t are bounded as $\|\Delta E_t\|_2 \leq (\gamma_2 + |b_t|\gamma_1) \cdot \rho_1 N_1 \|\Delta y_t\|_2$.
24502451 *Proof.* See §H.3.1 for a detailed proof. □
24522453 In the above lemma, we incorporate the sparsity in the activation to obtain a more refined bound for
2454 $\|\Delta E_t\|_1$. Next, we also present the error bound for ΔF_t .
24552456 **Lemma F.13** (Error propogation for ΔF_t). *Define* $\Delta \varphi_{F,t} = \varphi(Fy_t + \theta \cdot v^\top \bar{w}_{t-1}; b_t) - \varphi(Fy_t^* +$
2457 $\theta \cdot v^\top \bar{w}_{t-1}; b_t)$. *The following bounds hold:*
24582459

- 2460 1. $\|\Delta F_t\|_1 \leq \sqrt{s}N_2L \cdot \|\Delta y_t\|_2$.
- 2461 2. $\|\Delta F_t\|_2 \leq \rho_2 N_2 L \cdot \|\Delta y_t\|_2$.
- 2462 3. $\|\Delta \varphi_{F,t}\|_2 \leq \sqrt{\rho_2 N_2} L \cdot \|\Delta y_t\|_2$.

24632464 *Proof.* See §H.3.2 for a detailed proof. □
24652466 G SAE DYNAMICS ANALYSIS: PROOF OF THEOREM B.2
24672468 In the sequel, we will first state a more general version of Theorem B.2, accompanied by the full
2469 details on the related definitions and assumptions that are mentioned in the main text. Then we will
2470 present the proof of the theorem.
24712472 G.1 A GENERAL VERSION OF THE THEOREM
24732474 In the follwoing, we first state the definition of the *concentration coefficient* h_* and a general version
2475 of the main theorem. Then, we present the rigorous definition of the ReLU-like activation function.
24762477 **Details on concentration parameters h_* .** To measure the magnitude of coefficients associated
2478 with each feature, we recall in the definition of the *cut-off* level for feature i in (B.3) as
2479

2480
$$h_i := \max \left\{ h \leq 1 : \frac{1}{|\mathcal{D}_i|} \sum_{l \in \mathcal{D}_i} \mathbb{1}\{H_{l,i} \geq h\} \geq \text{polylog}(n)^{-1} \right\}.$$

2481

2482 To measure the concentration level of the global coefficients across all features, we define the *con-
2483 centration coefficient* h_* as follows. We first recall the definitions of $\hbar_{q,*}$ and $\hbar_{q,t}$ from Theorem F.4

(with $t = 1$ for any $q > 1$). In particular, $\hbar_{q,*}$ and $\hbar_{q,1}$ are defined as the *smallest* numbers satisfying the following inequalities:

$$\max_{j \in [n]} \frac{1}{|\mathcal{D}_j|} \sum_{l \in \mathcal{D}_j} \Phi\left(\frac{-\bar{b}_t}{\sqrt{\frac{q-1}{q} H_{l,j}^2 + \frac{1}{q}}}\right) \leq \Phi\left(\frac{-\bar{b}_t}{\sqrt{\frac{q-1}{q} \hbar_{q,*}^2 + \frac{1}{q}}}\right),$$

$$\max_{j \in [n]} \frac{1}{|\mathcal{D}_j|} \sum_{l \in \mathcal{D}_j} \Phi\left(-\frac{\bar{b}_t + H_{l,j} \zeta_1}{\sqrt{1 - H_{l,j}^2}}\right)^q \leq \Phi\left(-\frac{\bar{b}_t + \hbar_{q,1} \zeta_1}{\sqrt{1 - \hbar_{q,1}^2}}\right)^q.$$

Here, $\mathcal{D}_j = \{l \in [N] : H_{l,j} \neq 0\}$ is the set of row indices in matrix H that has non-zero entries in the j -th column, and $\zeta_1 = 2(1 + \varepsilon)\sqrt{\log n}$ that is formally defined in (E.11). Here, $\Phi(\cdot)$ is the tail probability function of the standard Gaussian distribution, i.e., $\Phi(x) = \int_x^\infty e^{-u^2/2}/\sqrt{2\pi} \cdot du$. The definitions of $\hbar_{q,*}$ and $\hbar_{q,1}$ are valid as the right-hand sides (RHSs) of the above two inequalities are strictly increasing in terms of $\hbar_{q,*}$ and $\hbar_{q,1}$, respectively. We defer readers to the discussion under **Theorem F.4**. We define the *concentration coefficient* for the weight matrix H , denoted by h_* , as the *smallest* number such that

$$\max\{\hbar_{4,*}^2, \hbar_{3,*}^2, \hbar_{4,1}^2\} \leq h_*, \quad \sum_{j=1}^n \frac{1}{|\mathcal{D}_j|^2} \sum_{l,l' \in \mathcal{D}_j} \Phi\left(|\bar{b}| \sqrt{\frac{1 - H_{l,j} H_{l',j}}{1 + H_{l,j} H_{l',j}}}\right) \leq n \Phi\left(|\bar{b}| \sqrt{\frac{1 - h_*^2}{1 + h_*^2}}\right), \quad (\text{G.1})$$

In fact, the RHS of the last inequality in (G.1) is also strictly increasing in terms of h_* , and hence the definition is valid. In the extreme case where H does not have any diversity in its nonzero entries, we have the following simple relationship between s_* , s_i and s :

Proposition G.1 (Concentrated coefficient H). *If $H_{lj} \in \{0, 1/\sqrt{s}\}$ for all $l \in [N]$ and $j \in [n]$, then $h_* = h_i = 1/\sqrt{s}$.*

In this extreme case, every row of H has exactly s non-zero entries, and the non-zero entries are all equal to $1/\sqrt{s}$. In the following, let us define $\bar{\theta}_i^2 = \|\theta_i\|_2^2/N_2$ and $\hat{\mathbb{Q}}_i(x) = |\mathcal{D}_i|^{-1} \sum_{l \in \mathcal{D}_i} \mathbb{1}(H_{l,i} \geq x)$ for $x \in [0, 1]$. The following proposition relates s_i and s_* to the sparsity s through inequalities that must be satisfied.

Proposition G.2 (General coefficient). *Recall the definitions of h_i in (B.3) and h_* in (G.1). Suppose the bias $b < -\sqrt{3}$, then for any feature $i \in [n]$ satisfying the conditions in (B.5) and (B.6) and that $\bar{\theta}_i^2 > \hat{\mathbb{Q}}_i(h_i)$, we have the following inequalities:*

$$h_* \geq 1/\sqrt{s}, \quad h_i \geq \sqrt{\bar{\theta}_i^2 - \hat{\mathbb{Q}}_i(h_i)}.$$

Proof. See §I.1 for a detailed proof. □

General version of Theorem B.2. In the following, we will let $s_* = 1/h_*^2$. To ensure consistency in the notation, we will also define $s_i = 1/h_i^2$ for h_i defined in (B.3). We give a more general version of **Theorem B.2** in the following theorem, which will be formally proved in the remaining part of this section.

Theorem G.3. *For feature $i \in [n]$, let us take some small constant $\varepsilon \in (0, 1)$ and define $Q^{(i)}$ as*

$$Q^{(i)} = \hat{\mathbb{Q}}^{(i)}\left(\frac{-b/\sqrt{\log n}}{(1 - \varepsilon)\sqrt{2(\log n M - 1)}}\right).$$

Suppose

$$\frac{\log \eta}{\log n} \gtrsim \frac{b^2/2 - \log N}{\log n}.$$

For any feature $i \in [n]$, consider the following joint conditions for ρ_2 , d , $Q^{(i)}$ and bias $b < 0$ with respect to constant parameter $\varsigma \in (0, 1)$:

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547

Individual Feature Occurrence: $\frac{\|H_{:,i}\|_0}{\rho_1 N} \geq \text{polylog}(n)^{-1}$,

Limited Feature Co-occurrence: $\log_n(\rho_2^{-1}) \gtrsim \max\left\{-4 \log_n Q^{(i)}, \frac{1}{2} - \log_n Q^{(i)}\right\}$,

Bias Range: $1 \gtrsim \frac{b^2}{2 \log n} \gtrsim \max\left\{\frac{1}{2} + \frac{h_\star^2}{2} - (1 + h_\star^2) \log_n Q^{(i)}, \frac{1}{4} + \frac{h_\star^2}{4} - (3h_\star^2 + 1) \log_n Q^{(i)}, \right.$

$$\left. (\sqrt{2}h_\star(1 + \varepsilon) + \sqrt{-(1 - h_\star^2) \log_n Q_1})^2, 1 - (1 - \varsigma) \log_n d - \log_n Q^{(i)}\right\}$$
.

2548 Here $x \gtrsim y$ means $x \geq y + O(\log \log(n)/\log(n))$. Then with probability at least $1 - n^{-4\varepsilon}$ over the
 2549 randomness of the features V , for any feature i such that there exists some constant ς_i satisfying the
 2550 above conditions, there exists at least one unique neuron m_i and after at most $T_i = \max\{(2\varsigma_i)^{-1}, 1\}$
 2551 steps of training, we have $\langle w_{m_i}^{T_i}, v_i \rangle / \|v_i\|_2 \geq 1 - o(1)$.

2552 **Relationship between Theorem B.2 and Theorem G.3.** The main difference between Theorem B.2 and Theorem G.3 is that the latter allows $Q^{(i)}$ to have a larger range of values, while
 2553 the former requires $Q^{(i)} = \hat{Q}^{(i)}(h_i)$ to be strictly larger than $\text{polylog}(n)^{-1}$. A direct consequence
 2554 of this restriction in Theorem B.2 is that the range of M is smaller compared to that in Theorem G.3.
 2555 However, the conditions in Theorem G.3 have $Q^{(i)}$ and ρ_2, b coupled together, which makes it difficult
 2556 to gain a clear understanding, while in Theorem B.2, we decouple the conditions by enforcing
 2557 the range of $Q^{(i)}$. Specifically,

2560 1. The condition $Q^{(i)} \geq \text{polylog}(n)^{-1}$ is equivalent to

$$\frac{-b}{(1 - \varepsilon) \sqrt{2(\log_n M - 1)}} \leq h_i$$

2564 by recalling the definition of h_i . This gives the range of M as in (B.4) if we require all the
 2565 features to be learned simultaneously. In fact, if the condition is satisfied for only a subset
 2566 of features, our theorem still holds on that subset of features.

2567 2. The individual feature occurrence condition is the same in both theorems, and the limited
 2568 feature co-occurrence condition in Theorem G.3 will reduce to $\rho_2 \ll n^{-1/2-o(1)}$, which is
 2569 already implied by the data condition in Definition B.1.

2570 3. The bias range condition in Theorem G.3 will reduce to the version in Theorem B.2 by
 2571 removing the terms that involve $Q^{(i)}$ as $\log \log(n)/\log(n)$ gap is already enforced by the
 2572 \gtrsim notation.

2574 Moreover, we assume that $s \geq 3$ as mandated in Theorem B.2. Since $s_\star \leq s$ by Theorem G.2, if
 2575 $s_\star \leq s \leq 2$ the following inequality

$$1 \gtrsim \frac{b^2}{2 \log n} \gtrsim \frac{1}{s_\star} \left(\sqrt{2}(1 + \varepsilon) + \sqrt{-(s_\star - 1) \log_n Q^{(i)}} \right)^2$$

2579 cannot hold, because the right-hand side would exceed 1.

2581 **Roadmap for the proof of Theorem G.3.** The remaining part of this section is organized as
 2582 follows:

- 2584 • **Concentration simplification:** In §G.2, we will combine the concentration results derived in
 2585 §F to derive explicitly the simplified concentration results for the atomic terms in (F.3) for the
 2586 evolution of $\alpha_{-1,t}$ and β_t .
- 2587 • **Conditions for strong alignment:** In §G.3, we formulate a set of conditions Cond.(i)
 2588 to Cond.(iii), Cond.(I) and Cond.(II) that will yield a simple two-state recursion. Building
 2589 upon these conditions, we further identify Cond.(iv) to Cond.(vi) that will guarantee a strong
 2590 alignment $\alpha_{-1,T} = 1 - o(1)$ with only $T = O(1)$ steps of training.
- 2591 • **Conditions simplification:** In §G.4, we further simplified the series of conditions into a more
 2592 concise form as in (G.12), which yields the full list of conditions in Theorem G.3.

2592 **Notation.** Following the convention in §F, we let $\bar{b}_t = b_t + \kappa_0$ where $\kappa_0 = O((\log n)^{-1/2})$ is
 2593 defined in [Definition B.3](#). Recall the definition $\zeta_1 = 2(1 + \varepsilon)\sqrt{\log n}$ and $\zeta_0 = (1 - \varepsilon)\sqrt{2\log n}$ in
 2594 [\(E.11\)](#) for some small constant $\varepsilon \in (0, 1)$. We let C be a universal constant that may vary from line
 2595 to line.

2596

2597 **G.2 CONCENTRATION RESULTS COMBINED**

2598

2599 We now combine the concentration results for the second-order terms in [Theorem F.4](#) and [Theo-](#)
 2600 [rem F.6](#) under the assumption that $t \log n \ll n$. In particular, by taking the square root of the upper
 2601 bounds in these lemmas and noting that $\|v\|_2^2 = O(d)$ holds with probability at least $1 - n^{-c}$ (see
 2602 [Theorem J.1](#)), we can express the combined square-root upper bound as

2603

2604

2605

2606

2607

2608

$$\xi_t = \sqrt{s}t \log n \mathcal{K}_t + \rho_1^{-1} \sqrt{\Phi(|\bar{b}_t|) \cdot \hat{\mathbb{E}}_{l,l'} \left[\Phi \left(|\bar{b}_t| \sqrt{\frac{1 - \langle h_l, h_{l'} \rangle}{1 + \langle h_l, h_{l'} \rangle}} \right) \langle h_l, h_{l'} \rangle \right]} + \sqrt{\rho_2 d} |\alpha_{-1,t-1}| + \rho_2 \sqrt{n}.$$

2609

We formally state the combination of the above two lemmas in the following corollary.

2610

2611

2612

2613

Corollary G.4 (Second-order concentration combined). *Then under the conditions $t \log n \ll n$, $-\bar{b}_t = \Theta(\sqrt{\log n}) < \zeta_1$, $\rho_1 \ll 1$, it holds for all $t \leq T \leq n^c$ with probability at least $1 - n^{-c}$ over the randomness of standard Gaussian vectors $z_{-1:T}$ and v that*

2614

2615

2616

$$\sqrt{\|E^\top \varphi(Ey_t^*; b_t)\|_2^2 + \|F^\top \varphi(Fy_t + \theta \cdot v^\top \bar{w}_{t-1}; b_t)\|_2^2} \leq CLN \rho_1 \xi_t.$$

2617

Here, the constant C hides some factors from using the inequality $\sqrt{a} + \sqrt{b} \leq \sqrt{2(a + b)}$. We
 2618 refrain from a detailed proof here. With the second order concentration results in [Theorem G.4](#),
 2619 we can now derive the first-order concentration results for the terms $\langle z_\tau, u_t \rangle$ based on [Theorem F.7](#)
 2620 and [Theorem F.8](#). To further simplify the concentration bound, we impose the additional condition
 2621 $\Phi(|\bar{b}_t|) \gg L s \rho_1 (t \log(n))^3$, which in particular holds if $\Phi(|\bar{b}_t|) \gg n^{-1} \text{polylog}(n)$. This require-
 2622 ment is reasonable because it ensures that the neuron is not activated too rarely compared to the
 2623 average occurrence frequency (s/n) of the features.

2624

2625

2626

Lemma G.5 (First-order concentration combined). *If $\Phi(|\bar{b}_t|) \gg L s \rho_1 (t \log(n))^3$, $-\bar{b}_t = \Theta(\sqrt{\log n}) < \zeta_1$, $\kappa_0 |\bar{b}_t| = O(1)$, for all $t \leq T \leq n^c$, it holds with probability at least $1 - n^{-c}$ over the randomness of standard Gaussian vectors $z_{-1:T}$ that*

2627

2628

2629

2630

$$\langle z_\tau, u_t \rangle = N \alpha_{\tau,t-1} \hat{\varphi}_1(b_t) \cdot (1 \pm o(1)) \pm CN L \rho_1 \sqrt{\rho_2 s} (t \log n)^{3/2} \cdot d |\alpha_{\tau,t-1} \alpha_{-1,t-1}|$$

$$\pm CN \rho_1 L \sqrt{t \log n} \cdot \xi_t \pm CLN \sqrt{\log n} \cdot (\sqrt{s \rho_1 d \Phi(|\bar{b}_t|)} + \sqrt{s \rho_1} |\bar{b}_t| d \beta_{t-1}) \cdot \beta_{t-1},$$

2631

where ξ_t is defined in [Theorem G.4](#).

2632

2633

Proof. See §I.2.1 for a detailed proof. □

2634

2635

In order to derive the recursion for $\alpha_{-1,t}$ in (F.3), we need to control the numerator

2636

2637

2638

$$\alpha_{-1,t} \|w_t\|_2 = \frac{\langle v, w_t \rangle}{\|v\|_2} = \langle z_{-1}, u_t \rangle + \|v\|_2 \cdot \theta^\top \varphi(Fy_t + \theta \cdot v^\top \bar{w}_{t-1}; b_t) + \eta^{-1} \alpha_{-1,t-1}.$$

2639

2640

Using [Theorem G.5](#) and the concentration for the second term in [Theorem F.10](#), we derive the following lemma for $\langle v, w_t \rangle / \|v\|_2$.

2641

2642

2643

Lemma G.6 (Concentration for numerator in α -recursion). *Suppose $\rho_1 d (st \log n)^{-1} \gg \Phi(|\bar{b}_t|) \gg L s \rho_1 (t \log(n))^3$, $-\bar{b}_t = \Theta(\sqrt{\log n}) < \zeta_1$, $\kappa_0 |\bar{b}_t| = O(1)$, $\sqrt{ts \log n} |\bar{b}_t| \beta_{t-1} \ll 1$, and $\sqrt{d} \alpha_{-1,t-1} \gg 1$. Furthermore, assume that*

2644

2645

$$\frac{N_2}{N} C_0 \bar{\theta}^2 Q_t \gg \max \left\{ L \rho_1 \sqrt{\rho_2 s} (t \log n)^{3/2}, L d^{-1} \Phi(|\bar{b}_t|), L \sqrt{t \log n} \rho_1 \frac{\xi_t}{d \alpha_{-1,t-1}}, L \rho_1 \frac{\beta_{t-1}}{\alpha_{-1,t-1}} \right\}.$$

2646 If $\eta^{-1} \ll N_2 d C_0 \bar{\theta}^2 Q_t$ Then it holds with probability at least $1 - n^{-c}$ over the randomness of
 2647 standard Gaussian vectors $z_{-1:T}$ and v that

$$\frac{\langle v, w_t \rangle}{\|v\|_2} = (1 \pm o(1)) N \psi_t.$$

2651 *Proof.* See §I.2.2 for a detailed proof. \square

2653 Now that we have characterized the “numerator” for α -recursion. It remains to control the “denominator” $\|w_t\|_2$. In what follows, we will decompose the norm $\|w_t\|_2$ into two parts: the projection
 2654 onto the subspace spanned by $w_{-1:0}$ and the projection onto the orthogonal compliment of this sub-
 2655 space. For $P_{w_{-1:0}}^\perp w_t$ being the projection onto the orthogonal complement of the subspace spanned
 2656 by $w_{-1:0}$, we have the following bound.

2657 **Lemma G.7.** Suppose $\rho_1 d(st \log n)^{-1} \gg \Phi(|\bar{b}_t|) \gg L s \rho_1 (t \log(n))^3$, $-\bar{b}_t = \Theta(\sqrt{\log n}) < \zeta_1$,
 2658 $\kappa_0 |\bar{b}_t| = O(1)$, $\sqrt{ts \log n} |\bar{b}_t| \beta_{t-1} \ll 1$, $\sqrt{d} \alpha_{-1,t-1} \gg 1$, $\sqrt{\rho_2 s} (t \log n)^{3/2} \ll 1$, and $\eta^{-1} \ll$
 2659 $N \Phi(|\bar{b}_t|)$. Then, for all $t \leq T \leq \sqrt{d}$, it holds with probability at least $1 - n^{-c}$ over the randomness
 2660 of standard Gaussian vectors $z_{-1:T}$ and v that

$$\|P_{w_{-1:0}}^\perp w_t\|_2 \leq C N L \rho_1 \sqrt{d} (\xi_t + \sqrt{d} \beta_{t-1}).$$

2665 *Proof.* See §I.2.3 for a detailed proof. \square

2666 For $P_{w_{-1:0}} w_t$ being the projection onto the subspace spanned by $w_{-1:0}$, we have the following
 2667 bound.

2668 **Lemma G.8.** Suppose $\rho_1 d(st \log n)^{-1} \gg \Phi(|\bar{b}_t|) \gg L s \rho_1 (t \log(n))^3$, $-\bar{b}_t = \Theta(\sqrt{\log n}) < \zeta_1$,
 2669 $\kappa_0 |\bar{b}_t| = O(1)$, $\sqrt{ts \log n} |\bar{b}_t| \beta_{t-1} \ll 1$, and $\sqrt{d} \alpha_{-1,t-1} \gg 1$. Furthermore, assume for some
 2670 constant $C_0 > 0$ that

$$\frac{N_2}{N} C_0 \bar{\theta}^2 Q_t \gg \max \left\{ L \rho_1 \sqrt{\rho_2 s} (t \log n)^{3/2}, L d^{-1} \Phi(|\bar{b}_t|), L \sqrt{t \log n} \rho_1 \frac{\xi_t}{d \alpha_{-1,t-1}}, L \rho_1 \frac{\beta_{t-1}}{\alpha_{-1,t-1}} \right\}.$$

2671 If $\eta^{-1} \ll N_2 d C_0 \bar{\theta}^2 Q_t \wedge N \Phi(|\bar{b}_t|)$, then it holds with probability at least $1 - n^{-c}$ over the randomness
 2672 of standard Gaussian vectors $z_{-1:T}$ and v that

$$\|P_{w_{-1:0}} w_t\|_2 = (1 \pm o(1)) \cdot \sqrt{(N \psi_t)^2 + (N \alpha_{0,t-1} \hat{\varphi}_1(b_t))^2}.$$

2679 *Proof.* See §I.2.4 for a detailed proof. \square

2680 Combining the results from **Theorems G.7** and **G.8**, we obtain the upper bound for $\|w_t\|_2$.

2681 **Lemma G.9.** Suppose $\rho_1 d(st \log n)^{-1} \gg \Phi(|\bar{b}_t|) \gg L s \rho_1 (t \log(n))^3$, $-\bar{b}_t = \Theta(\sqrt{\log n})$, $\kappa_0 |\bar{b}_t| =$
 2682 $O(1)$, $\sqrt{ts \log n} |\bar{b}_t| \beta_{t-1} \ll 1$, $\sqrt{d} \alpha_{-1,t-1} \gg 1$ and $\sqrt{\rho_2 s} (t \log n)^{3/2} \ll 1$. Furthermore, assume for some constant $C_0 > 0$ that

$$\frac{N_2}{N} C_0 \bar{\theta}^2 Q_t \gg \max \left\{ L \rho_1 \sqrt{\rho_2 s} (t \log n)^{3/2}, L d^{-1} \Phi(|\bar{b}_t|), L \sqrt{t \log n} \rho_1 \frac{\xi_t}{d \alpha_{-1,t-1}}, L \rho_1 \frac{\beta_{t-1}}{\alpha_{-1,t-1}} \right\}.$$

2683 If $\eta^{-1} \ll N_2 d C_0 \bar{\theta}^2 Q_t \wedge N \Phi(|\bar{b}_t|)$, then it holds for all $t \leq T \leq \sqrt{d}$ with probability at least $1 - n^{-c}$
 2684 over the randomness of standard Gaussian vectors $z_{-1:T}$ and v that

$$\|w_t\|_2 \leq (1 \pm o(1)) \cdot \sqrt{(N \psi_t)^2 + (N \hat{\varphi}_1(b_t))^2} + C N L \rho_1 \sqrt{d} \xi_t.$$

2693 *Proof of Theorem G.9.* By the triangle inequality, it holds that

$$\begin{aligned} \|w_t\|_2 &\leq \|P_{w_{-1:0}} w_t\|_2 + \|P_{w_{-1:0}}^\perp w_t\|_2 \\ &\leq (1 + o(1)) \sqrt{(N \psi_t)^2 + (N \alpha_{0,t-1} \hat{\varphi}_1(b_t))^2} + C N L \rho_1 \sqrt{d} (\xi_t + \sqrt{d} \beta_{t-1}). \end{aligned}$$

2694 By condition $\frac{N_2}{N} C_0 \bar{\theta}^2 Q_t \gg L \rho_1 \frac{\beta_{t-1}}{\alpha_{-1,t-1}}$ and the lower bound $N \psi_t \geq C \bar{\theta}^2 Q_t N_2 d \alpha_{-1,t-1}$ shown in
 2695 **Theorem F.11**, we have $N \psi_t \gg C N L \rho_1 d \beta_{t-1}$ satisfied and can be absorbed into the upper bound
 2696 of $\|P_{w_{-1:0}} w_t\|_2$. Hence, we conclude the proof. \square

When we derive the above lemmas step by step, we collect all the conditions used in the final **Theorem G.9**. In the following proof, we will be focusing on the conditions listed in the statement of this lemma.

G.3 A TWO-STATE ALIGNMENT RECURSION

From now on, we adhere to the fact that the bias remains fixed throughout the dynamics. Thus, we drop the time index in b_t (writing it simply as b) and define $\bar{b} = b + \kappa_0$. To further simplify the conditions in the previous section, we have the following lemma.

Lemma G.10. *Consider fixing the bias to be $b < 0$ and $\bar{b} = b + \kappa_0 < 0$. Suppose **InitCond-1** and **InitCond-2** hold. With the following conditions at initialization:*

$$(i) -\bar{b} = \Theta(\sqrt{\log n}) < \zeta_1, \kappa_0 |\bar{b}| = O(1), \sqrt{\rho_2 s} (T \log n)^{3/2} \ll 1, \eta^{-1} \ll N_2 d C_0 \bar{\theta}^2 Q_1 \wedge N \Phi(|\bar{b}|).$$

$$(ii) \rho_1 d (s T \log n)^{-1} \gg \Phi(|\bar{b}|) \gg L s \rho_1 (T \log n)^3.$$

$$(iii) \frac{N_2}{N} C_0 \bar{\theta}^2 Q_1 \gg \max \left\{ L \rho_1 \sqrt{\rho_2 s} (T \log n)^{3/2}, L d^{-1} \Phi(|\bar{b}|), L \sqrt{T \log n} \rho_1 \cdot \frac{\xi_1}{d \alpha_{-1,0}} \right\}.$$

If for some time step $t \leq T \leq \sqrt{d}$ we have

$$(I) \alpha_{-1,t-1} \geq t^2 \alpha_{-1,0}, \sqrt{T s \log n} |\bar{b}| \beta_{t-1} \ll 1,$$

$$(II) \frac{N_2}{N} C_0 \bar{\theta}^2 Q_t \gg L \rho_1 \frac{\beta_{t-1}}{\alpha_{-1,t-1}}.$$

Let us define

$$\lambda_0 = \frac{C L \rho_1}{C_0 \bar{\theta}^2 \cdot N_2 / N}, \quad \lambda_t = \frac{\lambda_0}{Q_t}, \quad \tilde{\xi}_t = \frac{1}{\sqrt{d}} \left(\frac{\xi_1}{\alpha_{-1,0}} + C \sqrt{s t^2} (\log n)^{3/2} \cdot \mathbb{1}(t \geq 2) \right)$$

for some sufficiently large constant $C > 0$. Under the above conditions, we have the following conclusions:

- (1). All the conditions in **Theorem G.9** hold for $t \leq T$;
- (2). Then with probability at least $1 - n^{-c}$ over the randomness of standard Gaussian vectors $z_{-1:T}$ and v , we have the following two-state alignment recursion:

Two-State Alignment Recursion

$$\frac{\beta_t}{\alpha_{-1,t}} \leq \lambda_t \cdot \left(\tilde{\xi}_t + \frac{\beta_{t-1}}{\alpha_{-1,t-1}} \right), \quad \frac{1}{\alpha_{-1,t}} \leq (1 + o(1)) + \lambda_t \cdot \left(\frac{\Phi(|\bar{b}|)}{\rho_1 d} \cdot \frac{1}{\alpha_{-1,t-1}} + \tilde{\xi}_t \right).$$

Proof. See §I.3.1 for a detailed proof. □

From the above lemma, we can obtain the following observations:

- The ratio $\lambda_t \Phi(|\bar{b}|) / \rho_1 d$ controls the growth of the alignment $\alpha_{-1,t}$. In order for the alignment to grow faster, we need a smaller activation frequency $\Phi(|\bar{b}|)$, i.e., a larger bias $|\bar{b}|$ in the absolute value.
- The term λ_t controls the growth of the ratio $\beta_t / \alpha_{-1,t}$. By definition, we know that $\lambda_t \geq 1$.
- The maximum alignment achievable is $1 - o(1)$.

Therefore, the best we can do is to set λ_t as close to 1 as possible while exploiting a small ratio $\Phi(|\bar{b}|) / \rho_1 d$ to ensure that the alignment $\alpha_{-1,t}$ goes to 1 before the ratio $\beta_t / \alpha_{-1,t}$ blows up. Since

2754 $\beta_0 = 0$, we have $\beta_1/\alpha_{-1,1} = \lambda_1 \cdot \tilde{\xi}_1$. This means we also need a small initial value $\tilde{\xi}_1$ to avoid a
 2755 large ratio $\beta_1/\alpha_{-1,1}$ at the beginning. In the sequel, we quantitatively analyze the evolution of the
 2756 above recursions. Before we proceed, by definition $Q_t = \frac{1}{N_2} \sum_{l=1}^{N_2} \mathbb{1}(\theta_l > \frac{-b}{\sqrt{d}\alpha_{-1,t-1}})$, we note
 2757 that Q_t is nondecreasing in $\alpha_{-1,t-1}$. Therefore, we have the following fact:
 2758

2759 **Fact G.11.** *If $\alpha_{-1,t-1} \geq \alpha_{-1,1}$, then $Q_t \geq Q_2$ and $\lambda_t \leq \lambda_2$.*

2760 **Expanding the recursions.** Let us define $T_0 + 1$ as the minimum of t such that either of the
 2761 following conditions fails:
 2762

2763 **T_0 -Cond.(1).** Cond.(I) or Cond.(II);

2764 **T_0 -Cond.(2).** $\alpha_{-1,t-1} \geq \alpha_{-1,1}$;

2765 **T_0 -Cond.(3).** $t < \log(n)$.

2766 In other word, T_0 is the *stopping time* up to which all the conditions above hold. We have $\lambda_t \leq \lambda_2$
 2767 by **Theorem G.11** and the definition $\lambda_t = \lambda_0/Q_t$. To obtain a simple recursion for $\alpha_{-1,t}$, we take
 2768

$$2769 \quad C_1 = \left(1 + o(1) + \frac{\lambda_2 \xi_1}{\sqrt{d}\alpha_{-1,0}} + \frac{C\lambda_2 \sqrt{s}T_0^2(\log n)^{3/2}}{\sqrt{d}}\right) \cdot \frac{1}{1 - \lambda_2 \Phi(|\bar{b}|)/\rho_1 d}. \quad (\text{G.2})$$

2770 Here, we take the $o(1)$ term above to be the maximum of all the $o(1)$ terms in the recursion for $\alpha_{-1,t}$
 2771 for any $t \leq T_0$. For $2 \leq t \leq T_0$, we have from subtracting C_1 from both sides of the recursion for
 2772 $\alpha_{-1,t}$ that
 2773

$$2774 \quad \frac{1}{\alpha_{-1,t}} - C_1 \leq (1 + o(1)) + \lambda_t \cdot \left(\frac{\Phi(|\bar{b}|)}{\rho_1 d} \cdot \frac{1}{\alpha_{-1,t-1}} + \frac{1}{\sqrt{d}} \left(\frac{\xi_1}{\alpha_{-1,0}} + C\sqrt{s}T_0^2(\log n)^{3/2} \cdot \mathbb{1}(t \geq 2) \right) \right) \\ 2775 \quad - \underbrace{\left(1 + o(1) + \frac{\lambda_2 \xi_1}{\sqrt{d}\alpha_{-1,0}} + \frac{C\lambda_2 \sqrt{s}T_0^2(\log n)^{3/2}}{\sqrt{d}} \right) - \frac{C_1 \lambda_2 \Phi(|\bar{b}|)}{\rho_1 d}}_{-C_1} \\ 2776 \quad \leq \frac{\lambda_2 \Phi(|\bar{b}|)}{\rho_1 d} \cdot \left(\frac{1}{\alpha_{-1,t-1}} - C_1 \right), \quad \forall 2 \leq t \leq T_0. \quad (\text{G.3})$$

2777 Using the fact that

$$2778 \quad \frac{1}{\alpha_{-1,1}} - C_1 \leq 1 + o(1) + \left(\frac{\lambda_1 \Phi(|\bar{b}|)}{\rho_1 d} + \frac{\lambda_1 \xi_1}{\sqrt{d}} \right) \cdot \frac{1}{\alpha_{-1,0}} - C_1 \\ 2779 \quad \leq \left(\frac{\lambda_1 \Phi(|\bar{b}|)}{\rho_1 d} + \frac{\lambda_1 \xi_1}{\sqrt{d}} \right) \cdot \frac{1}{\alpha_{-1,0}}, \quad (\text{G.4})$$

2780 we obtain that

$$2781 \quad \frac{1}{\alpha_{-1,t}} \leq \left(\frac{\lambda_2 \Phi(|\bar{b}|)}{\rho_1 d} \right)^{t-1} \cdot \left(\frac{\lambda_1 \Phi(|\bar{b}|)}{\rho_1 d} + \frac{\lambda_1 \xi_1}{\sqrt{d}} \right) \cdot \frac{1}{\alpha_{-1,0}} + C_1, \quad \forall 1 \leq t \leq T_0. \quad (\text{G.5})$$

2782 In the above formula, we can extend t to allow $t = 1$ as

$$2783 \quad \frac{1}{\alpha_{-1,1}} \leq 1 + o(1) + \left(\frac{\lambda_1 \Phi(|\bar{b}|)}{\rho_1 d} + \frac{\lambda_1 \xi_1}{\sqrt{d}} \right) \cdot \frac{1}{\alpha_{-1,0}} \leq C_1 + \left(\frac{\lambda_1 \Phi(|\bar{b}|)}{\rho_1 d} + \frac{\lambda_1 \xi_1}{\sqrt{d}} \right) \cdot \frac{1}{\alpha_{-1,0}}.$$

2784 For the ratio $\beta_t/\alpha_{-1,t}$, we use the fact that $\lambda_t \leq \lambda_2$ for $2 \leq t \leq T_0$ and also that

$$2785 \quad \tilde{\xi}_t \leq \frac{1}{\sqrt{d}} \left(\frac{\xi_1}{\alpha_{-1,0}} + C\sqrt{s}T_0^2(\log n)^{3/2} \right), \quad 2 \leq t \leq T_0$$

2786 to expand the recursion for $\beta_t/\alpha_{-1,t}$ as follows:

$$2787 \quad \frac{\beta_t}{\alpha_{-1,t}} \leq \frac{1}{\sqrt{d}} \left(\frac{\xi_1}{\alpha_{-1,0}} + C\sqrt{s}T_0^2(\log n)^{3/2} \right) \cdot \sum_{\tau=2}^t \lambda_2^{t-\tau+1} + \lambda_2^{t-1} \cdot \frac{\beta_1}{\alpha_{-1,1}} \\ 2788 \quad \leq \frac{T_0}{\sqrt{d}} \left(\frac{\xi_1}{\alpha_{-1,0}} + C\sqrt{s}T_0^2 \log(n)^{3/2} \right) \cdot \lambda_2^{t-1} + \lambda_2^{t-1} \cdot \frac{\lambda_1 \xi_1}{\sqrt{d}\alpha_{-1,0}} \\ 2789 \quad = \frac{\lambda_2^{t-1}}{\sqrt{d}} \cdot \left((T_0 + \lambda_1) \cdot \frac{\xi_1}{\alpha_{-1,0}} + C\sqrt{s}T_0^3 \log(n)^{3/2} \right), \quad \forall 1 \leq t \leq T_0, \quad (\text{G.6})$$

2808 where in the second inequality, we use the fact that $\lambda_2 \geq 1$ and the recursion for the ratio that
 2809

$$2810 \quad \frac{\beta_1}{\alpha_{-1,1}} \leq \lambda_1 \tilde{\xi}_1 = \frac{\lambda_1 \xi_1}{\sqrt{d} \alpha_{-1,0}}. \quad (G.7)$$

2813 Also in the last equality of (G.6), we can relax the condition to allow $t = 1$ as the right-hand side
 2814 for $t = 1$ clearly upper bounds the right-hand side of (G.7). Using the results derived in (G.5) and
 2815 (G.6), we now have the following statement. Now, building upon the results derived in (G.5) and
 2816 (G.6), we have the following lemma, which summarizes the additional conditions needed to ensure
 2817 that the alignment $\alpha_{-1,t}$ can be driven to $1 - o(1)$.
 2818

2819 **Lemma G.12.** *Let $\varsigma \in (0, 1)$ be a constant. Take $\epsilon = C' \log \log n / (\varsigma \log d)$ for some sufficiently
 2820 large constant $C' > 0$. Suppose **InitCond-1** and **InitCond-2**, **Cond.(i)** to **Cond.(iii)** hold. Under the
 2821 following conditions*

2822 (iv) $\lambda_0 = \Theta(\text{polylog}(n))$.

2823 (v) $\lambda_0^{-1} Q_1 \cdot d^{-\varsigma} = \Phi(|\bar{b}|) / \rho_1 d$.

2824 (vi) $\xi_1 / Q_1 \ll d^{-\epsilon} / (\lambda_0 \sqrt{s} \log n)$.

2825 *there exists a time $t^* \leq ((2\varsigma)^{-1} \vee 1) \wedge T_0$ such that $\alpha_{-1,t} = 1 - o(1)$, where T_0 is the stopping time
 2826 before and at which **T₀-Cond.(1)** to **T₀-Cond.(3)** hold.*

2827 *Proof.* See §I.3.2 for a detailed proof of the lemma. □

2828 Since $t^* \leq T_0$, **Cond.(I)** and **Cond.(II)** hold for all $t \leq t^*$ automatically. In summary, in **Theorem G.12**, we have shown that under **Cond.(i)** to **Cond.(vi)**, the alignment $\alpha_{-1,t}$ can be driven to $1 - o(1)$ in constant time steps.

2836 G.4 SIMPLIFYING THE CONDITIONS OF **THEOREM G.13**

2837 To finish the proof of **Theorem B.2**, it remains to simplify the conditions in **Theorem G.12**. As a
 2838 first step, we have the following lemma.

2839 **Lemma G.13.** *Under **InitCond-1**, **InitCond-2**, and **Definition B.3**, **Cond.(i)** to **Cond.(vi)** hold upon
 2840 the following conditions for some constant $\varsigma \in (0, 1)$ and $\epsilon = C' \log \log n / (\varsigma \log d)$ for some
 2841 sufficiently large constant $C' > 0$:*

$$2844 \quad \frac{Q_1}{\lambda_0} \cdot d^{-\varsigma} = \frac{\Phi(|\bar{b}|)}{\rho_1 d} \gg \max \left\{ d^{\epsilon - \varsigma} \sqrt{s} \log n \cdot \xi_1, \frac{L s \log(n)^3}{d} \right\}, \quad (G.8)$$

$$2845 \quad \lambda_0 = O(\text{polylog}(n)), \quad \eta^{-1} \ll N \Phi(|\bar{b}|).$$

2849 *Proof.* See §I.4.1 for a detailed proof. □

2850 Next, we will plug in the definition of ξ_1 into the above condition to obtain the statement in **Theo-
 2851 rem B.2**. In what follows, let us define h_* as the smallest number such that

$$2852 \quad \max\{\hbar_{4,*}^2, \hbar_{3,*}^2, \hbar_{4,1}^2\} \leq h_*^2, \quad \sum_{j=1}^n \frac{1}{|\mathcal{D}_j|^2} \sum_{l,l' \in \mathcal{D}_j} \Phi \left(|\bar{b}| \sqrt{\frac{1 - H_{l,j} H_{l',j}}{1 + H_{l,j} H_{l',j}}} \right) \leq n \Phi \left(|\bar{b}| \sqrt{\frac{1 - h_*^2}{1 + h_*^2}} \right), \quad (G.9)$$

2853 where $\hbar_{4,*}^2$, $\hbar_{3,*}^2$ and $\hbar_{4,1}^2$ are defined in **Theorem F.4**. The definition is valid as the right-hand sides
 2854 of both inequalities are increasing in h_* . In addition, we notice that $h_* \leq 1$ always holds, as $h_* = 1$
 2855 gives the trivial upper bounds for all the inequalities in (G.9). In fact, the quantity h_* characterize
 2856 the concentration level for the empirical distribution of $\{H_{l,j}\}_{l \in \mathcal{D}_j}$.
 2857

2862 **Lemma G.14.** *If $(1 - h_\star^2)/(1 + h_\star^2) = \Theta(1)$ for h_\star defined in (G.9), it holds that*

$$2864 \quad \hat{\mathbb{E}}_{l,l'} \left[\Phi \left(|\bar{b}| \sqrt{\frac{1 - \langle h_l, h_{l'} \rangle}{1 + \langle h_l, h_{l'} \rangle}} \right) \langle h_l, h_{l'} \rangle \right] \leq C n \rho_1^2 \cdot \Phi(|\bar{b}|)^{\frac{1-h_\star^2}{1+h_\star^2}} + \rho_1 \rho_2 s^2. \quad (\text{G.10})$$

2867 *Proof.* See §I.4.2 for a detailed proof. \square

2869 Next, we also upper bound \mathcal{K}_1 in terms of h_\star .

2870 **Lemma G.15.** *Under the conditions that $\zeta_1 h_\star / |\bar{b}| < 1 - \nu$ for some small constant $\nu \in (0, 1)$ and*
2871 *$\Phi(|\bar{b}|) \geq \rho_1$, it holds for some sufficiently large constant $C > 0$ that*

$$2873 \quad C^{-1} \mathcal{K}_1 \leq (n |\bar{b}|)^{1/4} \Phi(|\bar{b}|)^{\frac{1}{3h_\star^2+1}} + (\rho_2 s n |\bar{b}|)^{1/4} \cdot \Phi(|\bar{b}|)^{\frac{3}{8h_\star^2+4}} \\ 2874 \quad + (\Phi(|\bar{b}|)^{\frac{(1-h_\star \zeta_1/|\bar{b}|)^2}{1-h_\star^2}} + (\rho_2 s)^{1/4}) \cdot (\log n)^{1/4} + n^{1/4} \rho_2 s \log n.$$

2877 *Proof.* See §I.4.3 for a detailed proof. \square

2879 In the following, let us take $s = O(\text{polylog}(n))$, $L = O(\text{polylog}(n))$ and

$$2881 \quad d = n^{x_0}, \quad \rho_1 = n^{-x_1}, \quad \rho_2 = n^{-x_2}, \quad \Phi(|\bar{b}|) = n^{-1+x_3}. \quad (\text{G.11})$$

2883 Using the above configurations, we have by the Mill's ratio that

$$2885 \quad |\bar{b}| = \sqrt{2(1-x_3) \log n \pm O(\log \log(n))}.$$

2886 In the following, we use the notation $x \lesssim y$ to denote that $x \leq y + O(\log \log(n)/\log n)$, and $x \simeq y$
2887 to denote that $x \lesssim y$ and $y \lesssim x$. Consequently, we have $|\bar{b}|/\sqrt{\log n} \simeq \sqrt{2(1-x_3)}$, and

$$2889 \quad \frac{\zeta_1}{|\bar{b}|} \simeq \frac{2(1+\varepsilon)\sqrt{\log n}}{\sqrt{2(1-x_3)\log n}} = (1+\varepsilon) \cdot \sqrt{\frac{2}{1-x_3}}$$

2891 With Theorems G.14 and G.15, we can now upper bound ξ_1 as

$$2893 \quad \log_n \mathcal{K}_1 \lesssim \max \left\{ \frac{1}{4} + \frac{x_3 - 1}{3h_\star^2 + 1}, \frac{1 - x_2}{4} + \frac{3(x_3 - 1)}{8h_\star^2 + 4}, -\frac{(\sqrt{1-x_3} - \sqrt{2}h_\star(1+\varepsilon))^2}{1-h_\star^2}, -\frac{x_2}{4}, \frac{1}{4} - x_2 \right\}.$$

2895 In addition, using Theorem G.14, the second term in the definition of ξ_1 is upper bounded as

$$2897 \quad \log_n \left(\rho_1^{-1} \sqrt{\Phi(|\bar{b}|) \hat{\mathbb{E}}_{l,l'} \left[\Phi \left(|\bar{b}| \sqrt{\frac{1 - \langle h_l, h_{l'} \rangle}{1 + \langle h_l, h_{l'} \rangle}} \right) \langle h_l, h_{l'} \rangle \right]} \right) \lesssim \max \left\{ \frac{x_3 + h_\star^2}{1 + h_\star^2} - \frac{1}{2}, \frac{x_3 - x_2 + x_1 - 1}{2} \right\}.$$

2900 Therefore, ξ_1 is upper bounded as

$$2901 \quad \log_n \xi_1 \lesssim \max \left\{ \frac{1}{4} + \frac{x_3 - 1}{3h_\star^2 + 1}, \frac{1 - x_2}{4} + \frac{3(x_3 - 1)}{8h_\star^2 + 4}, -\frac{(\sqrt{1-x_3} - \sqrt{2}h_\star(1+\varepsilon))^2}{1-h_\star^2}, \right. \\ 2902 \quad \left. -\frac{x_2}{4}, \frac{1}{4} - x_2, \frac{x_3}{2} + \frac{(1-h_\star^2)(x_3 - 1)}{2(1+h_\star^2)}, \frac{x_3 - x_2 + x_1 - 1}{2}, -\frac{x_2}{2}, \frac{1}{2} - x_2 \right\}.$$

2906 Plugging this bound into the first inequality in (G.8), we have the following reformulation:

$$2908 \quad \log_n Q_1 \simeq x_3 - (1-\varsigma)x_0 \gtrsim \log_n \xi_1, \quad x_3 \gtrsim 0.$$

2909 where we note that $\epsilon = O(\log \log(n)/\log n)$ and can be ignored in the context of \simeq notation.
2910 Therefore, we just need to solve the following inequality system:

$$2911 \quad \log_n Q_1 \gtrsim \max \left\{ \frac{1}{4} + \frac{x_3 - 1}{3h_\star^2 + 1}, \frac{1 - x_2}{4} + \frac{3(x_3 - 1)}{8h_\star^2 + 4}, -\frac{(\sqrt{1-x_3} - \sqrt{2}h_\star(1+\varepsilon))^2}{1-h_\star^2}, \right. \\ 2912 \quad \left. -\frac{x_2}{4}, \frac{1}{4} - x_2, \frac{x_3}{2} + \frac{(1-h_\star^2)(x_3 - 1)}{2(1+h_\star^2)}, \frac{x_3 - x_2 + x_1 - 1}{2}, -\frac{x_2}{2}, \frac{1}{2} - x_2 \right\}$$

$$2915 \quad 0 \lesssim x_3 \simeq (1-\varsigma)x_0 + \log_n Q_1, \quad 0 \lesssim x_2 \lesssim 1, \quad x_0 \gtrsim 0, \quad 0 \lesssim x_1 \lesssim 1,$$

Solving this inequality system, we arrive at the following conditions that ensures (G.8):

$$\begin{aligned}
 1 &\gtrsim x_2 \gtrsim \max\left\{-4 \log_n Q_1, \frac{1}{2} - \log_n Q_1\right\}, \quad \log_n\left(\frac{N_2}{\rho_1 N}\right) \gtrsim 0, \quad \eta^{-1} \ll N\Phi(|\bar{b}|) \\
 0 &\lesssim x_3 \lesssim \min\left\{\frac{1}{2} - \frac{h_\star^2}{2} + (1 + h_\star^2) \log_n Q_1, \frac{3}{4} - \frac{h_\star^2}{4} + (3h_\star^2 + 1) \log_n Q_1, \right. \\
 &\quad \left. 1 - \left(\sqrt{2}h_\star(1 + \varepsilon) + \sqrt{-(1 - h_\star^2) \log_n Q_1}\right)^2, (1 - \varsigma)x_0 + \log_n Q_1\right\},
 \end{aligned} \tag{G.12}$$

Now, the first condition involving $x_2 = \log_n(\rho_2^{-1})$ can be transformed into the **Limited Feature Co-occurrence** condition in [Theorem G.3](#). The second condition $\log_n(N_2/\rho_1 N) \gtrsim 0$ can be transformed into the **Individual Feature Occurrence** condition in [Theorem G.3](#) by noting that $N_2 = \|H_{:,i}\|_0$ for feature i of interest. The third condition $\eta^{-1} \ll N\Phi(|\bar{b}|)$ can be transformed into

$$\log \eta \geq -\log N - \log \Phi(|\bar{b}|) + O(\log \log n),$$

where the second term on the right-hand side can be further upper bounded as

$$-\log \Phi(|\bar{b}|) \leq \frac{\bar{b}^2}{2} + O(\log \log n) \leq \frac{b^2}{2} + O(\log \log n + |\bar{b}|\kappa_0 + \kappa_0^2) \simeq \frac{b^2}{2} + O(\log \log n),$$

where we use the Mill's ratio in the first inequality and the fact that $\kappa_0 = O((\log n)^{-1/2})$ and $|\bar{b}| < \sqrt{2 \log n}$ in the second inequality. Therefore, a sufficient condition will be

$$\frac{\log \eta}{\log n} \gtrsim \frac{b^2/2 - \log N}{\log n}.$$

The last condition involving

$$x_3 = 1 - \frac{|b|^2 \pm O(\log \log(n))}{2 \log n} = 1 - \frac{|b|^2 \pm O(\log \log(n) + |b|\kappa_0 + \kappa_0^2)}{2 \log n} \simeq 1 - \frac{b^2}{2 \log n}$$

can be transformed into the **Limited Feature Co-occurrence** condition in [Theorem G.3](#). Lastly, we remind the readers that Q_1 is also lower bounded as a function of x_3 , which is shown in the following proposition.

Proposition G.16. *Under **InitCond-1** and the reparameterization in (G.11), we have*

$$Q_1 \geq \hat{\mathbb{Q}}\left(\frac{-b/\sqrt{\log n}}{(1 - \varepsilon)\sqrt{\log_n M - 1}}\right), \quad \text{where} \quad \hat{\mathbb{Q}}(x) := \frac{1}{N_2} \sum_{l=1}^{N_2} \mathbb{1}(\theta_l \geq x)$$

is the tail function for the empirical distribution of θ_l .

Proof of Theorem G.16. By **InitCond-1**, we have $\sqrt{d}\alpha_{-1,0} \geq (1 - \varepsilon)\sqrt{2 \log(M/n)}$. Recall the definition of Q_t in (F.15), we have by the non-increasing property of $\hat{\mathbb{Q}}(\cdot)$ that

$$Q_1 = \hat{\mathbb{Q}}\left(\frac{|b|}{\sqrt{d}\alpha_{-1,0}}\right) \geq \hat{\mathbb{Q}}\left(\frac{-b}{(1 - \varepsilon)\sqrt{2 \log(M/n)}}\right).$$

This completes the proof of [Theorem G.16](#). \square

Note that using the lower bound on Q_1 only strengthens the conditions in (G.12). Hence, we can directly plug in the lower bound of Q_1 into all the conditions in (G.12), and this gives us the final statement of [Theorem G.3](#).

H PROOFS FOR CONCENTRATION RESULTS

In this section, we provide proof for the concentration results presented in the previous section. We first provide proofs for [Theorem F.1](#) that controls the norm of the non-Gaussian component Δy_t . Then we give the proof for the concentrations of the second-order and first-order terms in the decomposition of the alignment recursion. Finally, we provide the proof for the error propagation in the dynamics due to the non-Gaussian component Δy_t .

2970 H.1 PROOFS FOR NON-GAUSSIAN COMPONENTS
29712972 In this subsection, we provide the proofs that are related to the Gaussian & non-Gaussian compo-
2973 nents. In particular, we provide the proof for **Theorem F.1** that controls the norm of the non-Gaussian
2974 component Δy_t .2975 H.1.1 PROOF OF **THEOREM F.1**
29762977 By definition of Δy_t in (F.2), we further define
2978

2979
$$\Delta y_t^{(1)} = \sum_{\tau=1}^{t-1} \alpha_{\tau,t-1} \cdot \frac{\|w_{\tau}^{\perp}\|_2}{\|u_{\tau}^{\perp}\|_2} \cdot \frac{u_{\tau}^{\perp}}{\|u_{\tau}^{\perp}\|_2}, \quad \Delta y_t^{(2)} = - \sum_{\tau=1}^{t-1} \alpha_{\tau,t-1} \cdot P_{u_{1:\tau}} z_{\tau},$$

2980
2981

2982 and thus $\Delta y_t = \Delta y_t^{(1)} + \Delta y_t^{(2)}$. The proof of **Theorem F.1** is then based on the bounding the ℓ_2
2983 norm of $\Delta y_t^{(1)}$ and $\Delta y_t^{(2)}$ respectively. To proceed with controlling the norm $\|\Delta y_t^{(1)}\|_2$, we first
2984 control the ratio $\|w_{\tau}^{\perp}\|_2/\|u_{\tau}^{\perp}\|_2$ via the following lemma.
29852986 **Lemma H.1** (Ratio $\|w_{\tau}^{\perp}\|_2/\|u_{\tau}^{\perp}\|_2$). *Take some total step $T \leq \sqrt{d}$ and suppose $d \in (n^{1/c_1}, n^{c_1})$ for some universal constant $c_1 \in (0, 1)$. For all $t = 1, \dots, T$, it holds with probability at least $1 - n^{-c}$ for some universal constant $c, C > 0$ that*
2987
2988

2989
$$\left| \frac{\|w_{\tau}^{\perp}\|_2}{\|u_{\tau}^{\perp}\|_2} - \sqrt{d} \right| \leq C(\log n)^{1/2}, \quad \left| \frac{\|w_{\tau}^{\perp}\|_2^2}{\|u_{\tau}^{\perp}\|_2^2} - d \right| \leq C\sqrt{d \log n}.$$

2990
2991

2992 *Proof.* See §H.1.2 for a detailed proof. □
29932994 With **Theorem H.1**, we can now control the ℓ_2 norm of $\Delta y_t^{(1)}$ and $\Delta y_t^{(2)}$ respectively with the
2995 following two lemmas.
29962997 **Lemma H.2** (ℓ_2 norm of $\Delta y_t^{(1)}$). *Under the conditions in **Theorem H.1**, for all $t = 1, \dots, T$, it
2998 holds with probability at least $1 - n^{-c}$ for some universal constant $c, C > 0$ that*
2999

3000
$$(d - C\sqrt{d \log n}) \cdot \|P_{w_{-1:0}}^{\perp} \bar{w}_{t-1}\|_2^2 \leq \|\Delta y_t^{(1)}\|_2^2 \leq (d + C\sqrt{d \log n}) \cdot \|P_{w_{-1:0}}^{\perp} \bar{w}_{t-1}\|_2^2.$$

3001

3002 *Proof.* See §H.1.2 for a detailed proof. □
30033004 **Lemma H.3** (ℓ_2 norm of $\Delta y_t^{(2)}$). *Under the conditions in **Theorem H.1**, for all $t = 1, \dots, T$, it
3005 holds with probability at least $1 - n^{-c}$ for some universal constants $c, C > 0$ that*
3006

3007
$$\|\Delta y_t^{(2)}\|_2^2 \leq C(t + \log n) \cdot \|P_{w_{-1:0}}^{\perp} \bar{w}_{t-1}\|_2^2.$$

3008

3008 *Proof.* See §H.1.2 for a detailed proof. □
30093010 Combining **Theorem H.2** and **Theorem H.3**, we complete the proof of **Theorem F.1** by additionally
3011 noting that
3012

3013
$$\|\Delta y_t\|_2^2 \leq 2\|\Delta y_t^{(1)}\|_2^2 + 2\|\Delta y_t^{(2)}\|_2^2 \leq 2(d + C\sqrt{d \log n} + C(t + \log n)) \cdot \|P_{w_{-1:0}}^{\perp} \bar{w}_{t-1}\|_2^2.$$

3014

3014 As the first term $d\|P_{w_{-1:0}}^{\perp} \bar{w}_{t-1}\|_2^2 = d\beta_{t-1}^2$ is the leading term, we conclude the proof of **Theo-
3015 rem F.1**.
30163017 H.1.2 ADDITIONAL PROOFS FOR **THEOREM F.1**
30183019 *Proof of **Theorem H.1**.* Recall from (E.6) that
3020

3021
$$w_t = \sum_{\tau=-1}^{t-1} \langle P_{u_{1:\tau}}^{\perp} z_{\tau}, u_t \rangle \cdot \frac{w_{\tau}^{\perp}}{\|w_{\tau}^{\perp}\|_2} + \sum_{\tau=1}^{t-1} \langle u_{\tau}^{\perp}, u_t \rangle \cdot \frac{\|w_{\tau}^{\perp}\|_2}{\|u_{\tau}^{\perp}\|_2} \cdot \frac{w_{\tau}^{\perp}}{\|w_{\tau}^{\perp}\|_2} + P_{w_{-1:t-1}}^{\perp} \tilde{z}_t \cdot \|u_t^{\perp}\|_2
3022 + v\theta^{\top} \varphi(Fy_t + \theta \cdot v^{\top} \bar{w}_{t-1}; b_t) + \eta^{-1} \bar{w}_{t-1}.$$

3023

3024 Applying projection $P_{w_{-1:t-1}}^\perp$ to both sides, we have
 3025

$$w_t^\perp = P_{w_{-1:t-1}}^\perp w_t = P_{w_{-1:t-1}}^\perp \tilde{z}_t \cdot \|u_t^\perp\|_2,$$

3026 which implies that $\|w_t^\perp\|_2/\|u_t^\perp\|_2 = \|P_{w_{-1:t-1}}^\perp \tilde{z}_t\|_2$. Note that \tilde{z}_t is independent of $\sigma(w_{-1:t-1})$ and
 3027 follows standard Gaussian distribution. Therefore, $\|w_t^\perp\|_2^2/\|u_t^\perp\|_2^2 \sim \chi^2(d-t-1)$ and we have by
 3028 the concentration in [Theorem J.1](#) that with probability at least $1 - n^{-c}$ for all $t \in [T]$,
 3029

$$3031 \left| \frac{\|w_t^\perp\|_2^2}{\|u_t^\perp\|_2^2} - d \right| \leq T + 2\sqrt{d \log(Tn^c)} + 2\log(Tn^c) \leq C\sqrt{d \log(n)},$$

3032 where the last inequality holds by conditions $T \leq \sqrt{d}$ and $d \in (n^{1/c_1}, n^{c_1})$. Therefore, we conclude
 3033 that with probability at least $1 - n^{-c}$ for all $t \in [T]$,
 3034

$$3036 \left| \frac{\|w_t^\perp\|_2}{\|u_t^\perp\|_2} - \sqrt{d} \right| \leq C(\log n)^{1/2}.$$

3037 This completes the proof of [Theorem H.1](#). \square
 3038

3039 *Proof of Theorem H.2.* By definition of $\Delta y_t^{(1)}$, we have
 3040

$$3042 \left| \|\Delta y_t^{(1)}\|_2^2 - d \|P_{w_{-1:0}}^\perp \bar{w}_{t-1}\|_2^2 \right| = \left| \sum_{\tau=1}^{t-1} \alpha_{\tau,t-1}^2 \cdot \left(\frac{\|w_\tau^\perp\|_2^2}{\|u_\tau^\perp\|_2^2} - d \right) \right| \leq \sup_{\tau=1, \dots, t-1} \left| \frac{\|w_\tau^\perp\|_2^2}{\|u_\tau^\perp\|_2^2} - d \right| \cdot \sum_{\tau=1}^{t-1} \alpha_{\tau,t-1}^2$$

$$3045 \leq C\sqrt{d \log n} \cdot \|P_{w_{-1:0}}^\perp \bar{w}_{t-1}\|_2^2,$$

3046 where the first equality holds by $\sum_{\tau=1}^{t-1} \alpha_{\tau,t-1}^2 = 1$ according to the definition of $\alpha_{\tau,t}$, and the
 3047 second inequality holds by [Theorem H.1](#) with probability at least $1 - n^{-c}$. \square
 3048

3049 *Proof of Theorem H.3.* By rewriting the definition of $\Delta y_t^{(2)}$, we have
 3050

$$3052 \Delta y_t^{(2)} = \sum_{\tau=1}^{t-1} \sum_{j=\tau}^{t-1} \alpha_{j,t-1} \frac{u_\tau^\perp}{\|u_\tau^\perp\|_2} z_j.$$

3053 We note that when conditioned on $\{\alpha_{\tau,T-1}\}_{\tau=1}^{T-1}$ and $u_{1:T-1}$, the random variables $\{\frac{u_\tau^\perp}{\|u_\tau^\perp\|_2} z_j\}_{j,\tau}$
 3054 for any $1 \leq \tau \leq j \leq t-1$ are i.i.d. standard Gaussian. Let us denote the filtration
 3055 $\mathcal{F} = \sigma(\{\alpha_{\tau,T-1}\}_{\tau=1}^{T-1}, u_{1:T-1})$. Therefore, we have
 3056

$$3059 \Delta y_t^{(2)} | \mathcal{F} \stackrel{d}{=} \sum_{\tau=1}^{t-1} \sqrt{\sum_{j=\tau}^{t-1} \alpha_{j,t-1}^2} \cdot \frac{u_\tau^\perp}{\|u_\tau^\perp\|_2} \cdot z'_\tau,$$

3060 where $\{z'_\tau\}_{\tau=1}^{t-1}$ are i.i.d. standard Gaussian independent of the filtration \mathcal{F} . Hence,
 3061

$$3064 \|\Delta y_t^{(2)}\|_2^2 | \mathcal{F} \stackrel{d}{=} \sum_{\tau=1}^{t-1} \sum_{j=\tau}^{t-1} \alpha_{j,t-1}^2 \cdot (z'_\tau)^2.$$

3066 Using the concentration of χ^2 distribution in [Theorem J.1](#) gives us
 3067

$$3068 \mathbb{P} \left(\left| \|\Delta y_t^{(2)}\|_2^2 - \sum_{\tau=1}^{t-1} \sum_{j=\tau}^{t-1} \alpha_{j,t-1}^2 \right| \geq C \sqrt{\sum_{\tau=1}^{t-1} \left(\sum_{j=\tau}^{t-1} \alpha_{j,t-1}^2 \right)^2 \cdot \log(n)} + C \sum_{\tau=1}^t \alpha_{\tau,t-1}^2 \log(nT) \mid \mathcal{F} \right) \leq \frac{n^{-c}}{T}.$$

3071 Each term inside the probability can be upper bounded by
 3072

$$3073 \sqrt{\sum_{\tau=1}^{t-1} \left(\sum_{j=\tau}^{t-1} \alpha_{j,t-1}^2 \right)^2} \leq \sqrt{t} \cdot (1 - \alpha_{-1,t-1}^2 - \alpha_{0,t-1}^2) = \sqrt{t} \cdot \|P_{w_{-1:0}}^\perp \bar{w}_{t-1}\|_2^2,$$

$$3076 \sum_{\tau=1}^t \alpha_{\tau,t-1}^2 = 1 - \alpha_{-1,t-1}^2 - \alpha_{0,t-1}^2 = \|P_{w_{-1:0}}^\perp \bar{w}_{t-1}\|_2^2, \quad \sum_{\tau=1}^{t-1} \sum_{j=\tau}^{t-1} \alpha_{j,t-1}^2 \leq t \|P_{w_{-1:0}}^\perp \bar{w}_{t-1}\|_2^2.$$

3078 Therefore, we conclude that when conditioning on \mathcal{F} , it holds with probability at least $1 - n^{-c}$ and
 3079 for all $t = 1, \dots, T$ that

$$3080 \|\Delta y_t^{(2)}\|_2^2 \leq C(t + \sqrt{t \log n} + \log n) \cdot \|P_{w_{-1:0}}^\perp \bar{w}_{t-1}\|_2^2 \leq C(t + \log n) \cdot \|P_{w_{-1:0}}^\perp \bar{w}_{t-1}\|_2^2,$$

3082 where C is a universal constant that changes from line to line. Here, we also use the condition that
 3083 $T \leq n$. Now, since for any event in the filtration \mathcal{F} , the failure probability is at most n^{-c} , we can
 3084 safely remove the conditioning and conclude the proof of [Theorem H.3](#). \square

3086 H.2 PROOFS FOR CONCENTRATION LEMMAS

3088 In this subsection, we first provide a formal lemma that characterizes the sparsity of the activations
 3089 when tuning the bias b_t to be some negative value. Building upon this result, we then provide the
 3090 proofs for the concentration results concerning the recursion of the alignment.

3091 H.2.1 CONCENTRATION FOR IDEAL ACTIVATIONS

3093 The statement of the following lemma slightly generalize beyond the settings in [\(F.2\)](#) for technical
 3094 convenience. Specifically, we want to understand how the neuron's activation frequency concen-
 3095 trates around $\Phi(-b_t)$. As we have the coefficient matrix H decomposed into E and F , we want
 3096 to have a general result that can be applied to all of them. Therefore, we consider a general sparse
 3097 weight matrix G in the following lemma.

3098 **Lemma H.4** (Concentration for Activations). *Let $G \in \mathbb{R}_+^{L \times n}$ be a nonnegative weight matrix whose
 3099 rows $(g_l)_{l \in [L]}$ satisfy $\|g_l\|_2 = 1$, and assume that G is sparse in both rows and columns:*

- 3101 • For every coordinate $i \in [n]$, the i th column satisfies $\|G_{:,i}\|_0 \leq \rho L$ for some $\rho \in [n^{-1}, 1]$.
- 3102 • For every row $l \in [L]$, we have $\|g_l\|_0 \leq s$.

3104 For any integer $t \leq n^c$ (with some fixed constant $c > 0$), define

$$3106 y_t = \sum_{\tau=-1}^{t-1} \alpha_{\tau, t-1} z_\tau,$$

3108 where the vectors $z_\tau \in \mathbb{R}^n$ (for $\tau = -1, 0, \dots, t-1$) are independent standard Gaussian random
 3109 vectors, and the coefficients $\alpha_{t-1} = (\alpha_{\tau, t-1})_{\tau=-1}^{t-1} \in \mathbb{S}^t$ belong to the unit sphere in \mathbb{R}^{t+1} . Next, let
 3110 $b_t \in \mathbb{R}$ be an arbitrary bias and let $\vartheta_t \in \mathbb{R}^{t+1}$ and $\varsigma = (\varsigma_l)_{l \in [L]} \in \mathbb{R}_+^L$ be fixed vectors. For each
 3111 neuron $l \in [L]$, define its shifted bias by

$$3113 b_{t,l} = b_t - \varsigma_l \alpha_{t-1}^\top \vartheta_t.$$

3114 Then, for any failure probability $\delta \in (\exp(-n/4), 1)$, there exists a universal constant $C > 0$ such
 3115 that with probability at least $1 - \delta$ (over the randomness of the Gaussian vectors $\{z_\tau\}_{\tau=-1}^{t-1}$) the
 3116 following holds simultaneously for all choices of $\alpha_{t-1} \in \mathbb{S}^t$ and $b_t \in \mathbb{R}$:

$$3118 \frac{1}{L} \sum_{l=1}^L \mathbb{1}\{g_l^\top y_t > b_{t,l}\} \leq C \left(\frac{1}{L} \sum_{l=1}^L \Phi(b_{t,l}) + \rho s t \log(n(1 + \|\varsigma\|_\infty \|\vartheta_t\|_\infty)) + \rho s \log(\delta^{-1}) \right),$$

3121 where $\Phi(\cdot)$ denotes the standard Gaussian tail probability. In particular, if t , α_{t-1} and b_t are also
 3122 fixed, then with probability at least $1 - \delta$ it holds that

$$3124 \frac{1}{L} \sum_{l=1}^L \mathbb{1}\{g_l^\top y_t > b_{t,l}\} \leq C \left(\frac{1}{L} \sum_{l=1}^L \Phi(b_{t,l}) + \rho s \log(\delta^{-1}) \right).$$

3127 **Reduction to Theorem F.2.** We remark that when take G to be the weight matrix E , L to be N_1 ,
 3128 n to be $n - 1$, ρ to be ρ_1 , b_t to be \bar{b}_t , and letting $\vartheta_t = \mathbf{0}$, we directly obtain [Theorem F.2](#) as a special
 3129 case. In the remaining of this subsection, we will present the proof of this lemma.

3130 **Proof of Theorem H.4.** In the following proof, we will use C to denote universal constants that
 3131 change from line to line.

3132 **Step I: Concentration for fixed α_{t-1} , b_t and ϑ_t .** When fixing α_{t-1} , b_t and ϑ_t , note that
 3133

$$3134 \quad b_{t,l} = b_t - \varsigma_l \alpha_{t-1}^\top \vartheta_t$$

3135 is also fixed and the only randomness comes from the Gaussian vectors $z_{-1}, z_0, \dots, z_{t-1}$. In particular,
 3136 $y_t \sim \mathcal{N}(0, I_n)$ since $\|\alpha_{t-1}\|_2 = 1$ by assumption. In the sequel, the discussion will be focused
 3137 on one time step t and we omit the subscript t for simplicity. The following is a table of the notations
 3138 we will use in the proof:
 3139

$y \leftarrow y_t$	$y_t = \sum_{\tau=-1}^{t-1} \alpha_{\tau,t-1} z_\tau$
$b_l \leftarrow b_{t,l}$	$b_{t,l} = b_t - \varsigma_l \alpha_{t-1}^\top \vartheta_t$
$\alpha \leftarrow \alpha_{t-1}$	$\alpha_{t-1} = (\alpha_{\tau,t-1})_{\tau=-1}^{t-1} \in \mathbb{S}^t$
$y^{(i)}$	$y^{(i)}$ is the vector y with the i -th coordinate y_i replaced by an independent copy $y'_i \sim \mathcal{N}(0, 1)$
Z	$Z = L^{-1} \sum_{l=1}^L \mathbb{1}(g_l^\top y > b_{t,l})$
$Z^{(i)}$	$Z^{(i)} = L^{-1} \sum_{l=1}^L \mathbb{1}(g_l^\top y^{(i)} > b_{t,l})$

3152 Table 3: Summary of notations used in the proof of **Theorem H.4**.
 3153
 3154

3155 Define $Z = L^{-1} \sum_{l=1}^L \mathbb{1}(g_l^\top y > b_l)$. To study the concentration of Z , we need to analyze the
 3156 fluctuations when we change one coordinate of y . This leads us to the definition of $y^{(i)}$ in Table 3
 3157 with the corresponding $Z^{(i)} = L^{-1} \sum_{l=1}^L \mathbb{1}(g_l^\top y^{(i)} > b_{t,l})$. Let us also define the Exceedance-
 3158 Perturbed Variance (EPV) as follows:
 3159

$$3160 \quad V_+ = \mathbb{E} \left[\sum_{i=1}^n (Z^{(i)} - Z)^2 \mathbb{1}(Z > Z^{(i)}) \mid y \right].$$

3163 In the definition of EPV, we only count the contribution from the i -th coordinate of y when Z
 3164 exceeds its perturbed counterpart $Z^{(i)}$. Next, we show that V_+ is actually controlled by Z itself up
 3165 to a small factor. In particular, for the term inside the expectation in the definition of V_+ , we have

$$3166 \quad \sum_{i=1}^n (Z^{(i)} - Z)^2 \mathbb{1}(Z > Z^{(i)}) = \sum_{i=1}^n (Z^{(i)} - Z)^2 \mathbb{1}(y_i > y'_i)$$

$$3167 \quad \leq \frac{1}{L^2} \sum_{i=1}^n \left(\sum_{l=1}^L \mathbb{1}(g_{l,i} \neq 0) \cdot \mathbb{1}(g_l^\top y > b_{t,l}) \right)^2$$

$$3168 \quad \leq \frac{\rho}{L} \cdot \sum_{i=1}^n \sum_{l=1}^L \mathbb{1}(g_{l,i} \neq 0) \cdot \mathbb{1}(g_l^\top y > b_{t,l}) = \rho s Z.$$

3169 where
 3170

- 3171 • in the first identity, we use the fact that Z is monotone in the i -th coordinate y_i due to the
 3172 **nonnegativity** of the weight matrix G .
- 3173 • In the first inequality, we use the fact that $0 \leq \mathbb{1}(g_l^\top y > b_{t,l}) - \mathbb{1}(g_l^\top y^{(i)} > b_{t,l}) \leq$
 3174 $\mathbb{1}(g_l^\top y > b_{t,l})$ thanks to the condition $y_i > y'_i$ which is guaranteed by the condition $Z > Z^{(i)}$.
 3175
- 3176 • In the last line, we use the Cauchy-Schwarz inequality with the fact that $\sum_{l=1}^L \mathbb{1}(g_{l,i} \neq 0) \mathbb{1}(g_l^\top y > b_{t,l}) \leq \sum_{l=1}^L \mathbb{1}(g_{l,i} \neq 0) \leq \rho L$. Then, by also noting that each g_l is also
 3177 **s -sparse**, we obtain the last equality.

Meanwhile, the mean of Z is simply $\mathbb{E}[Z] = L^{-1} \sum_{l=1}^L \Phi(b_{t,l})$, where we use the fact that $\|g_l\|_2 = 1$ by assumption and $g^\top y \sim \mathcal{N}(0, 1)$. Invoking [Theorem J.5](#), we conclude that for fixed α and b_t , we have with probability at least $1 - \delta$,

$$Z \leq \mathbb{E}[Z] + C\sqrt{\rho s \mathbb{E}[Z] \log \delta^{-1}} + C\rho s \log \delta^{-1} \leq C \cdot \left(\frac{1}{L} \sum_{l=1}^L \Phi(b_{t,l}) + \rho s \log(\delta^{-1}) \right) \quad (\text{H.1})$$

for some universal constant $C > 0$. Here, we directly apply the inequality $\sqrt{ab} \leq a + b$ for $a, b > 0$ in the last inequality. In the following, we will apply a union bound on α_{t-1}, b_t to extend the above bound to arbitrary choices of α_{t-1} and b_t .

Step II: Union bound over α_{t-1} and b_t . In the following argument, we will also drop the subscript t . Since Z is a function of α and b , we use the following notation:

$$Z(\alpha, b) = \frac{1}{L} \sum_{l=1}^L \mathbb{1} \left(\sum_{\tau=-1}^{t-1} \alpha_\tau g_l^\top z_\tau > b - \varsigma_l \alpha^\top \vartheta \right).$$

It is sufficient to construct a covering net for the pair (α, b) . Since the Gaussian vectors z_τ are unbounded, we first introduce a truncation step in our covering argument. By applying the Chernoff bound for Gaussian tails and then taking a union bound over all indices $\tau = -1, 0, \dots, t-1$, we deduce that with probability at least

$$1 - (t+1)n \cdot \exp(-n/2) \geq 1 - \exp(-n/4)/2,$$

we have

$$\max_{\tau=-1,0,\dots,t-1} \|z_\tau\|_\infty \leq \sqrt{n}.$$

In what follows we condition on this high-probability event.

For $\alpha \in \mathbb{S}^t$, we take a uniform covering net on the sphere, denoted by \mathcal{N}_α , such that for any α , there exists $\alpha' \in \mathcal{N}_\alpha$ satisfying $\|\alpha - \alpha'\|_\infty \leq \epsilon$. The covering number is upper bounded by $|\mathcal{N}_\alpha| \leq \epsilon^{-t}$. See for example Example 5.8 in [Wainwright \(2019\)](#). To proceed, let us define

$$\mu = (t+1) \cdot (\sqrt{stn} + \|\varsigma\|_\infty \|\vartheta\|_\infty).$$

The intuition for this definition is that μ represents the Lipschitz constant of $\sum_{\tau=-1}^{t-1} \alpha_\tau g_l^\top z_\tau + \varsigma_l \alpha^\top \vartheta$ with respect to any perturbation on α in the ℓ_∞ -norm. For b , leveraging the Gaussian tail property, we define the following covering net with size at most $4\mu\epsilon^{-1} + 4$:

$$\mathcal{N}_b = \{k \cdot \mu \cdot \epsilon \mid k \in \mathbb{Z}, k \in [-\lceil 2\epsilon^{-1} \rceil, \lceil 2\epsilon^{-1} \rceil] \} \cup \{-\infty\}.$$

There are three special points in \mathcal{N}_b : $-\infty$, the minimal finite point $b_{\min} = -\lceil 2\epsilon^{-1} \rceil \cdot \mu \cdot \epsilon$, and the maximal point $b_{\max} = \lceil 2\epsilon^{-1} \rceil \cdot \mu \cdot \epsilon$. For any $\alpha \in \mathbb{S}^t$ and $b \in \mathbb{R}$, we pick $\hat{\alpha} = \operatorname{argmin}_{\alpha' \in \mathcal{N}_\alpha} \|\alpha - \alpha'\|_\infty$ and $\hat{b} = \operatorname{argmax}\{b' \in \mathcal{N}_b : b' < b - \mu \cdot \epsilon\}$. Therefore, we have by the monotonicity of the indicator function that

$$Z(\alpha, b) \leq \frac{1}{L} \sum_{l=1}^L \mathbb{1} \left(\sum_{\tau=-1}^{t-1} \hat{\alpha}_\tau g_l^\top z_\tau > b - \varsigma_l \hat{\alpha}^\top \vartheta - \mu \cdot \epsilon \right) \leq Z(\hat{\alpha}, \hat{b}). \quad (\text{H.2})$$

On the other hand, for $\hat{b}_l = \hat{b} - \varsigma_l \hat{\alpha}^\top \vartheta$, using the definition of $\hat{\alpha}$ and \hat{b} , it holds that

$$\begin{aligned} \Phi(\hat{b}_l) &\leq \Phi(b_l - 3\mu \cdot \epsilon) \cdot \mathbb{1}(-b_{\min} \leq \hat{b}_l < b_{\max}) + \mathbb{1}(\hat{b}_l = -\infty) \\ &\quad + \Phi(2\mu - \varsigma_l \alpha^\top \vartheta) \cdot \mathbb{1}(\hat{b}_l = b_{\max}). \end{aligned}$$

The above inequality holds by considering three cases:

- When $\hat{b}_l \in [-b_{\min}, b_{\max}]$, we have b_l close to \hat{b}_l up to an approximation error of $3\mu \cdot \epsilon$, where one $\mu \cdot \epsilon$ comes from the approximation between α and $\hat{\alpha}$ and the other $2\mu \cdot \epsilon$ comes from the approximation between b_l and \hat{b}_l .

- When $\hat{b}_l = -\infty$, we simply upper bound the tail probability by 1.
- When $\hat{b}_l = b_{\max}$, we have $\Phi(\hat{b}_l) = \Phi(b_{\max} - \varsigma_l \alpha^\top \vartheta) \geq \Phi(2\mu - \varsigma_l \alpha^\top \vartheta)$.

Next, we characterize in each case the approximation error between $\Phi(b_l)$ and the bound given above, which are $\Phi(b_l - 3\mu \cdot \epsilon)$, 1, and $\Phi(2\mu - \varsigma_l \alpha^\top \vartheta)$ respectively. In particular,

- For the first case $\hat{b}_l \in [-b_{\min}, b_{\max}]$, we have the approximation error $\Phi(b_l - 3\mu \cdot \epsilon) - \Phi(b_l)$ directly bounded by $3\mu\epsilon$ by Lipschitz continuity of the Gaussian tail function.
- For the second case $\hat{b}_l = -\infty$, it must hold that $b_l < b_{\min} + \mu\epsilon$, and the approximation error is thus upper bounded by $1 - \Phi(b_{l,l}) = 1 - \Phi(b_l - \varsigma_l \alpha^\top \vartheta) \leq \exp(-(|b_{\min}| - (1 + \epsilon)\mu)^2/2) \leq \exp(-\mu^2/4)$.
- For the third case $\hat{b}_l = b_{\max}$, it must hold that $b_l > b_{\max} - 2\mu$. Hence, the approximation error is upper bounded by $\Phi(2\mu - \varsigma_l \alpha^\top \vartheta) - \Phi(b_{l,l}) \leq \Phi(2\mu - \varsigma_l \alpha^\top \vartheta) \leq \exp(-(2\mu - \mu)^2/2) \leq \exp(-\mu^2/4)$.

Combining these three cases, we conclude that

$$\Phi(\hat{b}_l) \leq \Phi(b_l) + \exp(-\mu^2/4) + 3\mu \cdot \epsilon. \quad (\text{H.3})$$

If we choose the covering net parameter $\epsilon = \rho\mu^{-1}$, then the upper bound can be simplified as $\Phi(\hat{b}_l) \leq \Phi(b_l) + \exp(-n/4) + 3\rho$. Since ρ is at least $1/n$, we can further conclude that $\Phi(\hat{b}_l) \leq \Phi(b_l) + 4\rho$ given that $\exp(-n/4) \ll 1/n \leq \rho$. Lastly, note that the log cardinality of the joint covering net is upper bounded by

$$\log(|\mathcal{N}_\alpha|) + \log(|\mathcal{N}_b|) \leq t \log(\epsilon^{-1}) + \log(4\mu\epsilon^{-1}) \leq Ct \log(n(1 + \|\varsigma\|_\infty \|\vartheta\|_\infty)) \quad (\text{H.4})$$

given that $\epsilon = \rho\mu^{-1} > (n\mu)^{-1}$. Here, for the last inequality, we use the fact that $\log(\mu) = \log((t+1)(\sqrt{stn} + \|\varsigma\|_\infty \|\vartheta\|_\infty)) \leq C \log(n(1 + \|\varsigma\|_\infty \|\vartheta\|_\infty))$ since $t \leq n^c$ for some constant $c > 0$ and $s \leq n$. We can also apply a similar argument for every $t < n^c$. This only increases the size of the covering net by a factor n^c . Combining (H.1), (H.2) and (H.3) with the log cardinality (H.4), we conclude that with probability at least $1 - \delta$ for all α, b_t and $\delta > \exp(-n/4)$ that

$$\begin{aligned} Z(\alpha_{t-1}, b_t) &\leq Z(\hat{\alpha}_{t-1}, \hat{b}_t) \leq C \cdot \left(\frac{1}{L} \sum_{l=1}^L \Phi(\hat{b}_{l,t}) + \rho st \log(n(1 + \|\varsigma\|_\infty \|\vartheta\|_\infty)) + \rho s \log(\delta^{-1}) \right) \\ &\leq C \cdot \left(\frac{1}{L} \sum_{l=1}^L \Phi(b_{l,t}) + \rho st \log(n(1 + \|\varsigma\|_\infty \|\vartheta\|_\infty)) + \rho s \log(\delta^{-1}) \right), \end{aligned}$$

where in the second inequality, we apply a union bound on the joint covering net for α and b and also for all $t \leq n^c$. In the last inequality, we just need a change in the constant factor C to absorb the approximation error 4ρ for the approximation error $\Phi(b_{l,t}) - \Phi(\hat{b}_{l,t})$. Here, the lower bound $\delta > \exp(-n/4)$ is to ensure that the good event $\max_{\tau=-1,0,\dots,t-1} \|z_\tau\|_\infty \leq \sqrt{tn}$ holds true. This concludes the proof of [Theorem H.4](#). \square

H.2.2 ACTIVATIONS WITH NON-GAUSSIAN COMPONENT: PROOF OF [THEOREM F.3](#)

In the following proof, we will use C to denote universal constants that change from line to line. Let us denote by $\bar{b}_t = b_t + \kappa_0$ as the shifted bias. Let us pick $\varrho_t > 0$ to be specified later. For any $l \in [N_1]$, the neuron is activated only if either of the following two conditions hold:

1. $e_l^\top y_t^* + \bar{b}_t > -\varrho_t$;
2. $e_l^\top y_t^* + \bar{b}_t \leq -\varrho_t$ and $e_l^\top \Delta y_t > \varrho_t$.

3294 For the first case, by [Theorem F.2](#), we have with probability at least $1 - \delta$ that
 3295

$$3296 \quad \frac{1}{N_1} \sum_{l=1}^{N_1} \mathbb{1}(e_l^\top y_t^* + \bar{b}_t > -\varrho_t) \leq C \cdot (\Phi(-\bar{b}_t - \varrho_t) + \rho_1 s t \log(n) + \rho_1 s \log(\delta^{-1})). \quad (\text{H.5})$$

3299 For the second case, we only need to control $N_1^{-1} \sum_{l=1}^{N_1} \mathbb{1}(e_l^\top \Delta y_t > \varrho_t)$. We have the following
 3300 upper bound
 3301

$$\begin{aligned} 3302 \quad \frac{1}{N_1} \sum_{l=1}^{N_1} \mathbb{1}(e_l^\top \Delta y_t > \varrho_t) &\leq \frac{1}{N_1} \sum_{l=1}^{N_1} \mathbb{1}\left(\|e_l\|_2^2 \cdot \sum_{i=1}^{n-1} \Delta y_{t,i}^2 \mathbb{1}(E_{l,i} \neq 0) > \varrho_t^2\right) \\ 3303 \\ 3304 \\ 3305 \\ 3306 \\ 3307 \\ 3308 \\ 3309 \\ 3310 \end{aligned} = \frac{1}{N_1} \sum_{l=1}^{N_1} \mathbb{1}\left(\sum_{i=1}^{n-1} \Delta y_{t,i}^2 \mathbb{1}(E_{l,i} \neq 0) > \varrho_t^2\right) \\ \leq \frac{1}{N_1 \varrho_t^2} \sum_{l=1}^{N_1} \sum_{i=1}^{n-1} \Delta y_{t,i}^2 \mathbb{1}(E_{l,i} \neq 0) \leq \frac{\rho_1}{\varrho_t^2} \cdot \|\Delta y_t\|_2^2, \quad (\text{H.6})$$

3311 where the first inequality holds by the Cauchy-Schwarz inequality and the following equality holds
 3312 by the fact that $\|e_l\|_2 = 1$. The second inequality follows from the fact that $\mathbb{1}(x > a) \leq x/a$ for
 3313 any $a > 0$ and $x > 0$. The last inequality holds by noting that $\|E_{:,i}\|_0 \leq \rho_1 N_1$. Combining [\(H.5\)](#)
 3314 and [\(H.6\)](#), we conclude that with probability at least $1 - n^{-c}$,
 3315

$$3316 \quad \frac{1}{N_1} \sum_{l=1}^{N_1} \mathbb{1}(e_l^\top y_t > \bar{b}_t) \leq C \cdot (\Phi(-\bar{b}_t - \varrho_t) + \rho_1 s t \log(n)) + \frac{\rho_1}{\varrho_t^2} \cdot \|\Delta y_t\|_2^2. \quad (\text{H.7})$$

3319 Let us pick $\varrho_t = |\bar{b}_t|^{-1}$. Note that by assumption $\bar{b}_t < -2$, we have $-\bar{b}_t - \varrho_t > 3/2$ and by
 3320 the Mills ratio inequality $(x^{-1} - x^{-3}) < \Phi(x)/p(x) < x^{-1} - x^{-3} + 3x^{-5}$ for $x > 0$, where
 3321 $p(x) = \exp(-x^2/2)/\sqrt{2\pi}$ is the density for standard Gaussian distribution, we have
 3322

$$\begin{aligned} 3323 \quad \Phi(-\bar{b}_t - \varrho_t) &\leq \frac{1 + 3(|\bar{b}_t| - \varrho_t)^{-4}}{\sqrt{2\pi} \cdot (|\bar{b}_t| - \varrho_t)} \cdot \exp\left(-\frac{(|\bar{b}_t| - \varrho_t)^2}{2}\right) \\ 3324 \\ 3325 \\ 3326 \\ 3327 \\ 3328 \end{aligned} \leq \frac{1 - |\bar{b}_t|^{-2}}{\sqrt{2\pi} |\bar{b}_t|} \cdot \exp\left(-\frac{|\bar{b}_t|^2}{2}\right) \cdot \frac{(1 + 3(|\bar{b}_t| - |\bar{b}_t|^{-1})^{-4}) |\bar{b}_t|}{(|\bar{b}_t| - |\bar{b}_t|^{-1})(1 - |\bar{b}_t|^{-2})} \cdot \exp\left(\frac{2 - |\bar{b}_t|^{-2}}{2}\right) \leq C \Phi(-\bar{b}_t),$$

3329 where in the last inequality, we note that the highlighted ratios are bounded by a universal constant.
 3330 Combining [\(H.7\)](#) and [\(H.8\)](#), we conclude the proof of [Theorem F.3](#).

3331 H.2.3 CONCENTRATION FOR $\|E^\top \varphi(Ey_t^*; b_t)\|_2^2$: PROOF OF [THEOREM F.4](#)

3332 When treating $\{\alpha_{\tau,t-1}\}_{\tau=-1}^{t-1}$ and b_t to be deterministic, it follows that $y_t^* \sim \mathcal{N}(0, 1)$. When conditioned on the good event \mathcal{E} , we always have $\|y_t^*\|_\infty \leq (1 + c) \sqrt{2(t+1) \log(nt)}$. In the following, we use y to replace y_t^* for notation simplicity. We use y_j to denote the j -th coordinate of y . Let $\bar{b}_t = b_t + \kappa_0$.

3333
 3334 **Good event on bounded Gaussian vectors.** Let \mathcal{E}_0 denote the event that **InitCond-2** is satisfied
 3335 by the vectors $z_{-1:0}$. Throughout the proof, C will denote a universal constant whose value may
 3336 change from line to line. Fix a time step $t \geq 1$ (we omit the subscript t for notational simplicity).
 3337 Define the “good event”
 3338

$$3339 \quad \mathcal{E}_1 = \left\{ \max_{\tau=-1,0,\dots,t-1} \|z_\tau\|_\infty \leq (1 + c) \sqrt{2 \log(nt)} \right\}.$$

3340 Then, by [Theorem J.2](#) (applied to the i.i.d. standard Gaussian vectors $z_{-1:t-1}$), we have
 3341

$$3342 \quad \mathbb{P}(\mathcal{E}_1) \geq 1 - (nt)^{-c} \geq 1 - n^{-c}.$$

3348 **Good event on the activation sparsity.** Let us define $\mathcal{S}_j = \{l \in [N_1] : E_{l,j} \neq 0\}$. It holds that
 3349 $|\mathcal{S}_j| \leq N_1 \rho_1$. In addition, we define event \mathcal{E}_2 as
 3350

$$3351 \quad \mathcal{E}_2 = \left\{ \begin{array}{l} \forall j \in [n-1] \\ \forall \alpha_{t-1} \in \mathbb{S}^t \\ \forall b_t \in \mathbb{R} \end{array} \right. , \quad \sum_{l \in \mathcal{S}_j} \mathbb{1}(e_l^\top y + \bar{b}_t > 0) \leq C \cdot \left(\sum_{l \in \mathcal{S}_j} \Phi\left(-\frac{\bar{b}_t + E_{l,j} y_j}{\sqrt{1 - E_{l,j}^2}}\right) + |\mathcal{S}_j| \rho_2 s t \log(n) \right) \left. \right\} .$$

3354 To show that \mathcal{E}_2 holds with high probability, let us define \tilde{E} as the submatrix of E by keeping the
 3355 rows indexed by \mathcal{S}_j while removing the j -th column. We also normalize each row of \tilde{E} to have
 3356 ℓ_2 -norm equal to one. We then have
 3357

- 3358 1. $\|\tilde{E}_{l,:}\|_2 = 1$, $\|\tilde{E}_{l,:}\|_0 \leq s$ and $\|\tilde{E}_{l,:}\|_0 \leq \sum_{l=1}^N \mathbb{1}(H_{l,j} \neq 0) \mathbb{1}(H_{l,k} \neq 0) \leq |\mathcal{S}_j| \rho_2$, where
 3359 the last inequality holds by definition of ρ_2 .

- 3360 2. It holds that

$$3361 \quad |\mathcal{S}_j|^{-1} \sum_{l \in \mathcal{S}_j} \mathbb{1}(e_l^\top y + \bar{b}_t > 0) = |\mathcal{S}_j|^{-1} \sum_{l \in \mathcal{S}_j} \mathbb{1}\left(\tilde{e}_l^\top y_{-j} + \frac{\bar{b}_t + E_{l,j} y_j}{\sqrt{1 - E_{l,j}^2}} > 0\right),$$

3364 where \tilde{e}_l is the l -th row of \tilde{E} and y_{-j} is the vector y with the j -th coordinate removed.
 3365

3366 In the following, we use $z_{\tau,j}$ to denote the j -th coordinate of z_τ , and $y_j = \sum_{\tau=-1}^{t-1} \alpha_{\tau,t-1} z_{\tau,j}$.
 3367 We denote by $z_{\tau,-j}$ the vector z_τ with the j -th coordinate removed. Therefore, we can invoke
 3368 **Theorem H.4** with the configurations

$$3369 \quad G \leftarrow \tilde{E}, \rho \leftarrow \rho_2, \vartheta \leftarrow (z_{-1,j}, z_{0,j}, \dots, z_{t-1,j}),$$

$$3370 \quad \varsigma_l \leftarrow E_{l,j} / \sqrt{1 - E_{l,j}^2}, b_t \leftarrow -\bar{b}_t / \sqrt{1 - E_{l,j}^2} \text{ and } z_\tau \leftarrow z_{\tau,-j}$$

3373 to obtain that with probability at least $1 - \delta/n$ over the randomness of standard Gaussian vectors
 3374 $z_{-1:t-1,-j}$, and for fixed t , α_{t-1} , b_t and $\vartheta = (z_{-1,j}, z_{0,j}, \dots, z_{t-1,j})$,

$$3375 \quad \sum_{l \in \mathcal{S}_j} \mathbb{1}(e_l^\top y + \bar{b}_t > 0) \leq C \cdot \left(\sum_{l \in \mathcal{S}_j} \Phi\left(-\frac{\bar{b}_t + E_{l,j} y_j}{\sqrt{1 - E_{l,j}^2}}\right) + |\mathcal{S}_j| \rho_2 s \log(n\delta^{-1}) \right)$$

$$3376 \quad \leq C \cdot \left(\sum_{l \in \mathcal{D}_j} \Phi\left(-\frac{\bar{b}_t + H_{l,j} y_j}{\sqrt{1 - H_{l,j}^2}}\right) + |\mathcal{S}_j| \rho_2 s \log(n\delta^{-1}) \right), \quad (\text{H.9})$$

3381 where C is a universal constant independent of t , α_{t-1} , b_t and ϑ . Here, in the last inequality, we
 3382 define $\mathcal{D}_j = \{l \in [N] : H_{l,j} \neq 0\}$ as the set of rows in matrix H that have nonzero j -th coordinate.
 3383 Since E is just a submatrix of H , adding more rows to the summation does not decrease the target
 3384 value in the second inequality. Note that $z_{-1:t-1,-j}$ are independent of $z_{-1:t-1,j}$. We thus conclude
 3385 that the above bound holds with probability at least $1 - \delta/n$ over the randomness of $z_{-1:t-1}$. Further
 3386 applying the union bound for all $j \in [n-1]$, we conclude that (H.9) holds with probability at least
 3387 $1 - \delta$ for all $j \in [n-1]$.

3388 Note that the randomness discussed above is only over $z_{-1:t-1}$. We invoke a covering argument over
 3389 $\alpha_{t-1} \in \mathbb{S}^t$ and $b_t \in \mathbb{R}$ similar to the proof of **Theorem H.4**. Since the argument is largely the same,
 3390 we will not repeat it here. The size of the covering net is $n^{O(t+1)}$, and we can pick $\delta = n^{-c-O(t+1)}$
 3391 in (H.9), which gives us the upper bound in the definition of \mathcal{E}_2 with probability at least $1 - n^{-c}$.
 3392

3393 **Refined upper bound on y .** We work with a fixed time step t and aim to bound every coordinate
 3394 y_j for $j \in [n-1]$. Here, we recall definitions

$$3395 \quad y_j = \sum_{\tau=-1}^{t-1} \alpha_{\tau,t-1} z_{\tau,j}, \quad \beta_{t-1} = \sqrt{\sum_{\tau=1}^{t-1} \alpha_{\tau,t-1}^2}$$

3398 where β_{t-1} represents the ℓ_2 -norm of the component of \bar{w}_{t-1} in the subspace orthogonal to $w_{-1:0}$.
 3399 (Recall that the coefficients $\{\alpha_{\tau,t-1}\}_{\tau=1}^{t-1}$ arise when projecting \bar{w}_{t-1} onto the orthonormal basis
 3400

$$3401 \quad \left\{ \bar{w}_{-1}, \frac{w_0^\perp}{\|w_0^\perp\|}, \frac{w_1^\perp}{\|w_1^\perp\|}, \dots, \frac{w_{t-1}^\perp}{\|w_{t-1}^\perp\|} \right\}.$$

3402 To leverage **InitCond-2**, we make a change of basis for the first two directions, namely, we replace
 3403

$$3404 \quad \left\{ \bar{w}_{-1}, \frac{w_0^\perp}{\|w_0^\perp\|} \right\} \quad \text{with} \quad \left\{ \bar{w}_0, \tilde{w} \right\}, \quad \text{where} \quad \tilde{w} = \alpha_{0,0} \bar{w}_{-1} - \alpha_{-1,0} \frac{w_0^\perp}{\|w_0^\perp\|}.$$

3406 Note that \tilde{w} is orthogonal to \bar{w}_0 . The projection of \bar{w}_{t-1} onto the direction \tilde{w} satisfies
 3407

$$3408 \quad |\langle \bar{w}_{t-1}, \tilde{w} \rangle| = |\alpha_{0,0} \alpha_{-1,t-1} - \alpha_{-1,0} \alpha_{0,t-1}| \leq |\alpha_{-1,t-1}| + |\alpha_{-1,0}|.$$

3409 Since \bar{w}_0 , \tilde{w} , and $\{w_\tau^\perp / \|w_\tau^\perp\|\}_{\tau=1}^{t-1}$ form an orthonormal basis, the component of \bar{w}_{t-1} orthogonal
 3410 to \bar{w}_0 is bounded by $\beta_{t-1} + |\alpha_{-1,t-1}| + |\alpha_{-1,0}|$. Moreover, we can also decompose y_t into the new
 3411 basis as follows:
 3412

$$3413 \quad y_t = \langle \bar{w}_0, \bar{w}_{t-1} \rangle (\alpha_{-1,0} z_{-1} + \alpha_{0,0} z_0) + \langle \tilde{w}, \bar{w}_{t-1} \rangle (\alpha_{0,0} z_{-1} - \alpha_{-1,0} z_0) + \sum_{\tau=1}^{t-1} \alpha_{\tau,t-1} z_\tau \\ 3414 \\ 3415 \\ 3416 \quad = \langle \bar{w}_0, \bar{w}_{t-1} \rangle y_1 + \langle \tilde{w}, \bar{w}_{t-1} \rangle (\alpha_{0,0} z_{-1} - \alpha_{-1,0} z_0) + \sum_{\tau=1}^{t-1} \alpha_{\tau,t-1} z_\tau \\ 3417$$

3418 Under **InitCond-2** the first term, $\langle \bar{w}_0, \bar{w}_{t-1} \rangle y_1$, is bounded by ζ_1 . Moreover, since both
 3419

$$3420 \quad \alpha_{0,0} z_{-1} - \alpha_{-1,0} z_0 \quad \text{and} \quad \{z_\tau\}_{\tau=1}^{t-1}$$

3421 have their entries bounded by $2(1+c)\sqrt{\log(nt)}$ on the good event \mathcal{E}_1 , the contribution from the
 3422 subspace orthogonal to \bar{w}_0 is bounded by
 3423

$$3424 \quad C(\beta_{t-1} + |\alpha_{-1,t-1}| + |\alpha_{-1,0}|) \sqrt{t \log(nt)}.$$

3425 Thus, by the triangle inequality, for every coordinate j we have under event \mathcal{E}_0 and \mathcal{E}_1 that
 3426

$$3427 \quad y_j \leq \zeta_1 + C(\beta_{t-1} + |\alpha_{-1,t-1}| + |\alpha_{-1,0}|) \sqrt{t \log(nt)} =: \zeta_t. \quad (\text{H.10})$$

3428 **Good event on the Bernstein concentration.** In the following, we will use another good event to
 3429 control the upper bound in the definition of \mathcal{E}_2 . Consider the function $\Phi(-(\bar{b}_t + xy_j)/\sqrt{1-x^2})^q$
 3430 for $q \geq 1$. We demonstrate that this function is Lipschitz continuous and monotonically increasing
 3431 on the interval $x \in [0, 1]$ if $y_j > -\bar{b}_t$ by taking the derivative with respect to x :
 3432

$$3433 \quad \frac{d}{dx} \Phi\left(-\frac{\bar{b}_t + xy_j}{\sqrt{1-x^2}}\right)^q = q \Phi\left(-\frac{\bar{b}_t + xy_j}{\sqrt{1-x^2}}\right)^{q-1} \cdot p\left(-\frac{\bar{b}_t + xy_j}{\sqrt{1-x^2}}\right) \cdot \frac{y_j - (-\bar{b}_t)x}{(1-x^2)^{3/2}} > 0.$$

3434 Using the upper bound for y specified in (H.10), we can define the *critical value* $\hbar_{q,t}$ as the smallest
 3435 real number such that the following inequality holds:
 3436

$$3437 \quad \frac{1}{|\mathcal{D}_j|} \sum_{l \in \mathcal{D}_j} \Phi\left(-\frac{\bar{b}_t + H_{l,j} y_j}{\sqrt{1-H_{l,j}^2}}\right)^q \mathbb{1}(\mathcal{E}_0 \cap \mathcal{E}_1) \leq \max_{j \in [n]} \frac{1}{|\mathcal{D}_j|} \sum_{l \in \mathcal{D}_j} \Phi\left(-\frac{\bar{b}_t + H_{l,j} \zeta_t}{\sqrt{1-H_{l,j}^2}}\right)^q \leq \Phi\left(-\frac{\bar{b}_t + \hbar_{q,t} \zeta_t}{\sqrt{1-\hbar_{q,t}^2}}\right)^q. \quad (\text{H.11})$$

3438 As we will only be using $q \in \{3, 4\}$ in the following proof, we define the event \mathcal{E}_3 as the event such
 3439 that for all $q \in \{3, 4\}$, $\alpha_{t-1} \in \mathbb{S}^t$, $b_t \in \mathbb{R}$ and $j \in [n-1]$,
 3440

$$3441 \quad \mathcal{E}_3 : \quad \sum_{j=1}^{n-1} \frac{1}{|\mathcal{D}_j|} \sum_{l \in \mathcal{D}_j} \Phi\left(-\frac{\bar{b}_t + H_{l,j} y_j}{\sqrt{1-H_{l,j}^2}}\right)^q \mathbb{1}(\mathcal{E}_0) \mathbb{1}(\mathcal{E}_1) \\ 3442 \\ 3443 \quad \leq C \cdot \left(\sum_{j=1}^{n-1} \frac{1}{|\mathcal{D}_j|} \sum_{l \in \mathcal{D}_j} \mathbb{E}\left[\Phi\left(-\frac{\bar{b}_t + H_{l,j} y_j}{\sqrt{1-H_{l,j}^2}}\right)^q\right] + \Phi\left(-\frac{\bar{b}_t + \hbar_{q,t} \zeta_t}{\sqrt{1-\hbar_{q,t}^2}}\right)^q t \log(n) \right),$$

3444 where C is a universal constant independent of t , α_{t-1} , b_t and ζ_t . To show the event \mathcal{E}_3 holds
 3445 with high probability, we can apply the Bernstein concentration inequality in [Theorem J.3](#) for the
 3446 bounded random variables
 3447

$$3448 \quad \frac{1}{|\mathcal{D}_j|} \sum_{l \in \mathcal{D}_j} \Phi\left(-\frac{\bar{b}_t + H_{l,j} y_j}{\sqrt{1-H_{l,j}^2}}\right)^q.$$

That is, for fixed α_{t-1} , b_t and with probability at least $1 - \delta$ over the randomness of $z_{-1:t-1}$, we have

$$\begin{aligned}
& \sum_{j=1}^{n-1} \frac{1}{|\mathcal{D}_j|} \sum_{l \in \mathcal{D}_j} \Phi\left(-\frac{\bar{b}_t + H_{l,j}y_j}{\sqrt{1 - H_{l,j}^2}}\right)^q \mathbb{1}(\mathcal{E}_0) \mathbb{1}(\mathcal{E}_1) \\
& \leq \sqrt{2 \log \delta^{-1} \cdot \sum_{j=1}^{n-1} \mathbb{E}\left[\left(\frac{1}{|\mathcal{D}_j|} \sum_{l \in \mathcal{D}_j} \Phi\left(-\frac{\bar{b}_t + H_{l,j}y_j}{\sqrt{1 - H_{l,j}^2}}\right)^q\right)^2 \mathbb{1}(\mathcal{E}_0 \cap \mathcal{E}_1)\right]} \\
& \quad + \sum_{j=1}^{n-1} \frac{1}{|\mathcal{D}_j|} \sum_{l \in \mathcal{D}_j} \mathbb{E}\left[\Phi\left(-\frac{\bar{b}_t + H_{l,j}y_j}{\sqrt{1 - H_{l,j}^2}}\right)^q\right] + \frac{1}{3} \Phi\left(-\frac{\bar{b}_t + \hbar_{q,t}\zeta_t}{\sqrt{1 - \hbar_{q,t}^2}}\right)^q \log(\delta^{-1}).
\end{aligned}$$

Moreover, we have for the second moment term that

$$\begin{aligned}
& \mathbb{E}\left[\left(\frac{1}{|\mathcal{D}_j|} \sum_{l \in \mathcal{D}_j} \Phi\left(-\frac{\bar{b}_t + H_{l,j}y_j}{\sqrt{1 - H_{l,j}^2}}\right)^q\right)^2 \mathbb{1}(\mathcal{E}_0 \cap \mathcal{E}_1)\right] \\
& \leq \sum_{j=1}^{n-1} \frac{1}{|\mathcal{D}_j|^2} \cdot \sum_{l \in \mathcal{D}_j} \mathbb{E}\left[\Phi\left(-\frac{\bar{b}_t + H_{l,j}y_j}{\sqrt{1 - H_{l,j}^2}}\right)^q \cdot \mathbb{1}(\mathcal{E}_0 \cap \mathcal{E}_1)\right] \cdot \sum_{l' \in \mathcal{D}_j} \Phi\left(-\frac{\bar{b}_t + H_{l',j}\zeta_t}{\sqrt{1 - H_{l',j}^2}}\right)^q \\
& \leq \sum_{j=1}^{n-1} \left(\frac{1}{|\mathcal{D}_j|} \sum_{l \in \mathcal{D}_j} \mathbb{E}\left[\Phi\left(-\frac{\bar{b}_t + H_{l,j}y_j}{\sqrt{1 - H_{l,j}^2}}\right)^q\right] \right) \cdot \Phi\left(-\frac{\bar{b}_t + \hbar_{q,t}\zeta_t}{\sqrt{1 - \hbar_{q,t}^2}}\right)^q,
\end{aligned}$$

where in the first inequality, we invoke the upper bound in (H.11). Using the fact that $\sqrt{a \cdot b} \leq a + b$ for $a, b \geq 0$, we derive that

$$\begin{aligned}
& \sum_{j=1}^{n-1} \frac{1}{|\mathcal{D}_j|} \sum_{l \in \mathcal{D}_j} \Phi\left(-\frac{\bar{b}_t + H_{l,j}y_j}{\sqrt{1 - H_{l,j}^2}}\right)^q \mathbb{1}(\mathcal{E}_0) \mathbb{1}(\mathcal{E}_1) \\
& \leq C \cdot \left(\sum_{j=1}^{n-1} \frac{1}{|\mathcal{D}_j|} \sum_{l \in \mathcal{D}_j} \mathbb{E}\left[\Phi\left(-\frac{\bar{b}_t + H_{l,j}y_j}{\sqrt{1 - H_{l,j}^2}}\right)^q\right] + \frac{1}{3} \Phi\left(-\frac{\bar{b}_t + \hbar_{q,t}\zeta_t}{\sqrt{1 - \hbar_{q,t}^2}}\right)^q \log(\delta^{-1}) \right). \tag{H.12}
\end{aligned}$$

Now, we apply the covering argument over $\alpha_{t-1} \in \mathbb{S}^t$ and $b_t \in \mathbb{R}$ similar to the proof of [Theorem H.4](#). The size of the covering net is $n^{O(t+1)}$, and we can pick $\delta = n^{-c-O(t+1)}$ in (H.12), which gives us the upper bound in the definition of \mathcal{E}_3 with $\mathbb{P}(\mathcal{E}_3) \geq 1 - n^{-c}$.

The Perturbed Variance. Given the good events $\mathcal{E}_0, \mathcal{E}_1, \mathcal{E}_2$, and \mathcal{E}_3 , we define

$$Z = \frac{1}{N_1^2} \sum_{l,l'=1}^{N_1} Z_{l,l'}, \quad \text{where } Z_{l,l'} = \varphi(e_l^\top y; b_t) \cdot \varphi(e_{l'}^\top y; b_t) \cdot \langle e_l, e_{l'} \rangle \cdot \mathbb{1}(\mathcal{E}_0 \cap \mathcal{E}_1 \cap \mathcal{E}_2 \cap \mathcal{E}_3). \tag{H.13}$$

For concentration of Z , we consider the following Perturbed Variance (PV) defined as

$$V := \mathbb{E}\left[\sum_{i=1}^{n-1} (Z - Z^{(i)})^2 \mid y\right],$$

where the perturbed term $Z^{(i)}$ is defined as follows:

$$Z^{(i)} = \frac{1}{N_1^2} \sum_{l,l'=1}^{N_1} Z_{l,l'}^{(i)}, \quad \text{where } Z_{l,l'}^{(i)} = \varphi(e_l^\top y^{(i)}; b_t) \cdot \varphi(e_{l'}^\top y^{(i)}; b_t) \cdot \langle e_l, e_{l'} \rangle \cdot \mathbb{1}(\bigcap_{\ell=0}^3 \mathcal{E}_\ell^{(i)}).$$

3510 Here, $y^{(i)} = \sum_{\tau=-1}^{t-1} \alpha_{\tau, t-1} z_{\tau}^{(i)}$ and $z_{\tau}^{(i)}$ is given by replacing the i -th coordinate of z_{τ} by an
 3511 independent $\mathcal{N}(0, 1)$ random variable. In addition, the good events $\{\mathcal{E}_t^{(i)}\}_{t=0}^3$ are defined similarly
 3512 to \mathcal{E}_t , but using $z_{-1:t-1}^{(i)}$ instead of $z_{-1:t-1}$. We begin by noting the elementary inequality $(a-b)^2 \leq$
 3513 $2a^2 + 2b^2$. Thus, we obtain
 3514

$$\begin{aligned} 3516 \quad V &\leq \frac{2}{N_1^4} \mathbb{E} \left[\underbrace{\sum_{i=1}^{n-1} \left(\sum_{l,l'=1}^{N_1} Z_{l,l'} \mathbb{1}\{E_{l,i} \neq 0 \vee E_{l',i} \neq 0\} \right)^2}_{(I)} \middle| y \right] \\ 3517 \\ 3518 \\ 3519 \\ 3520 \\ 3521 \quad &+ \frac{2}{N_1^4} \mathbb{E} \left[\underbrace{\sum_{i=1}^{n-1} \left(\sum_{l,l'=1}^{N_1} Z_{l,l'}^{(i)} \mathbb{1}\{E_{l,i} \neq 0 \vee E_{l',i} \neq 0\} \right)^2}_{(II)} \middle| y \right], \\ 3522 \\ 3523 \\ 3524 \\ 3525 \end{aligned}$$

3526 where the upper bound is obtained by the following reasoning. For each perturbed quantity $Z^{(i)}$, we
 3527 have
 3528

$$3529 \quad Z - Z^{(i)} = \frac{1}{N_1^2} \sum_{l,l'=1}^{N_1} (Z_{l,l'} - Z_{l,l'}^{(i)}) \cdot \mathbb{1}\{E_{l,i} \neq 0 \vee E_{l',i} \neq 0\}. \\ 3530 \\ 3531$$

3533 Note that the difference $Z_{l,l'} - Z_{l,l'}^{(i)}$ is nonzero only when at least one of the vectors e_l or $e_{l'}$ has a
 3534 nonzero i th coordinate. The two terms (I) and (II) correspond to the contributions from the original
 3535 and the perturbed parts, respectively. In what follows we focus on an upper bound for the term (I);
 3536 the term (II) can be estimated by a completely analogous argument.
 3537

3538 **Controlling Term (I).** Due to the L -Lipschitz continuity of φ with $L = \gamma_2 + |b_t|\gamma_1$, on the good
 3539 event \mathcal{E}_1 , the absolute value of $\varphi(e_l^\top y; b_t)$ is bounded by $|\varphi(e_l^\top y; b_t)| \leq |\varphi(0; b_t)| + L \cdot |e_l^\top y|$,
 3540 which can be further bounded as
 3541

$$3542 \quad |\varphi(e_l^\top y; b_t)| \leq (d \vee n)^{-c_0} + L\sqrt{s} \cdot \|y\|_\infty \leq C L \sqrt{ts \log(n)} := B_t, \\ 3543$$

3544 where we used that $t \leq n^c$, $\|e_l\|_1 \leq \sqrt{s}$, and that $(d \vee n)^{-c_0} \leq 1 \leq L\sqrt{ts \log(n)}$. Note that
 3545 the same bound holds for $\varphi(e_l^\top y^{(i)}; b_t)$ on the corresponding good event $\mathcal{E}_1^{(i)}$. For $Z_{l,l'}$ defined in
 3546 (H.13), we first upper bound $\varphi(e_l^\top y; b_t) \cdot \varphi(e_{l'}^\top y; b_t)$ by
 3547

$$3548 \quad \varphi(e_l^\top y; b_t) \cdot \varphi(e_{l'}^\top y; b_t) \leq B_t^2 \mathbb{1}(e_l^\top y + \bar{b}_t > 0) \mathbb{1}(e_{l'}^\top y + \bar{b}_t > 0) + 2B_t (d \vee n)^{-c_0} + (d \vee n)^{-2c_0}, \\ 3549$$

3550 where we recall that if $e_l^\top y + \bar{b}_t > 0$, the neuron is deemed activated and its output is bounded
 3551 above by B_t . Otherwise, by [Definition B.3](#), the activation is bounded by $(d \vee n)^{-c_0}$. Note that
 3552 the term $(d \vee n)^{-c_0} B_t^{-1}$ can be made arbitrarily small as [c₀ is some large constant no less than 4](#).
 3553 Therefore, we just keep the first term above. Secondly, the inner product $\langle e_l, e_{l'} \rangle$ is upper bounded
 3554 by $\sum_{j=1}^{n-1} \mathbb{1}(E_{l,j} \neq 0) \cdot \mathbb{1}(E_{l',j} \neq 0)$ as $\|E\|_\infty \leq 1$. Lastly, the indicator $\mathbb{1}(E_{l,i} \neq 0 \vee E_{l',i} \neq 0)$
 3555 can be upper bounded by $\mathbb{1}(E_{l,i} \neq 0) + \mathbb{1}(E_{l',i} \neq 0)$. For (I), we then have
 3556

$$\begin{aligned} 3557 \quad (I) &\leq \frac{CB_t^4}{N_1^4} \cdot \mathbb{E} \left[\sum_{i=1}^{n-1} \left(\sum_{j=1}^{n-1} \sum_{l,l'=1}^{N_1} \mathbb{1}(e_l^\top y + \bar{b}_t > 0) \mathbb{1}(e_{l'}^\top y + \bar{b}_t > 0) \right. \right. \\ 3558 \\ 3559 &\quad \left. \left. \cdot \left(\mathbb{1}\{E_{l,i} \neq 0\} + \mathbb{1}\{E_{l',i} \neq 0\} \right) \mathbb{1}\{E_{l,j} \neq 0\} \mathbb{1}\{E_{l',j} \neq 0\} \right)^2 \cdot \mathbb{1}(\bigcap_{i=0}^3 \mathcal{E}_i) \middle| y \right]. \\ 3560 \\ 3561 \\ 3562 \\ 3563 \end{aligned}$$

3564 Due to symmetry in the indices l and l' , we can multiply the constant factor C by 2 and obtain
 3565

$$\begin{aligned}
 3566 \quad (I) &\leq \frac{CB_t^4}{N_1^4} \cdot \mathbb{E} \left[\sum_{i=1}^{n-1} \left(\sum_{j=1}^{n-1} \sum_{l=1}^{N_1} \mathbb{1}(e_l^\top y + \bar{b}_t > 0) \cdot \mathbb{1}(E_{l,i} \neq 0) \cdot \mathbb{1}(E_{l,j} \neq 0) \right. \right. \\
 3567 &\quad \cdot \left. \sum_{l'=1}^{N_1} \mathbb{1}(E_{l',j} \neq 0) \cdot \mathbb{1}(e_{l'}^\top y + \bar{b}_t > 0) \right)^2 \cdot \mathbb{1}(\cap_{\iota=0}^3 \mathcal{E}_\iota) \mid y \left. \right] \\
 3572 &\leq \frac{CB_t^4}{N_1^4} \cdot \mathbb{E} \left[\sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \left(\sum_{l=1}^{N_1} \mathbb{1}(e_l^\top y + \bar{b}_t > 0) \cdot \mathbb{1}(E_{l,i} \neq 0) \cdot \mathbb{1}(E_{l,j} \neq 0) \right)^2 \right. \\
 3573 &\quad \cdot \left. \left(\sum_{l'=1}^{N_1} \mathbb{1}(E_{l',j} \neq 0) \cdot \mathbb{1}(e_{l'}^\top y + \bar{b}_t > 0) \right)^2 \cdot \mathbb{1}(\cap_{\iota=0}^3 \mathcal{E}_\iota) \mid y \right],
 3575 \\
 3576 \\
 3577
 \end{aligned}$$

3578 where the last inequality holds by the Cauchy-Schwarz inequality. Note that for $i \neq j$:
 3579

$$\begin{aligned}
 3580 \quad \sum_{l=1}^{N_1} \mathbb{1}(E_{l,i} \neq 0) \cdot \mathbb{1}(E_{l,j} \neq 0) &\leq \sum_{l=1}^N \mathbb{1}(H_{l,i} \neq 0) \cdot \mathbb{1}(H_{l,j} \neq 0) \leq \rho_1 \rho_2 N.
 3581 \\
 3582 \\
 3583
 \end{aligned}$$

3584 Using $\rho_1 \rho_2 N$ to substitute one $\sum_{l=1}^{N_1} \mathbb{1}(e_l^\top y + \bar{b}_t > 0) \cdot \mathbb{1}(E_{l,i} \neq 0) \cdot \mathbb{1}(E_{l,j} \neq 0)$ for $i \neq j$, we
 3585 obtain

$$\begin{aligned}
 3586 \quad (I) &\leq \frac{B_t^4 N \rho_1 \rho_2}{N_1^4} \cdot \mathbb{E} \left[\sum_{j=1}^{n-1} \sum_{i \neq j} \sum_{l=1}^{N_1} \mathbb{1}(e_l^\top y + \bar{b}_t > 0) \cdot \mathbb{1}(E_{l,i} \neq 0) \cdot \mathbb{1}(E_{l,j} \neq 0) \right. \\
 3587 &\quad \cdot \left. \left(\sum_{l'=1}^{N_1} \mathbb{1}(E_{l',j} \neq 0) \cdot \mathbb{1}(e_{l'}^\top y + \bar{b}_t > 0) \right)^2 \cdot \mathbb{1}(\cap_{\iota=0}^3 \mathcal{E}_\iota) \mid y \right] \\
 3588 \\
 3589 &\quad + \frac{B_t^4}{N_1^4} \cdot \mathbb{E} \left[\sum_{j=1}^{n-1} \left(\sum_{l=1}^{N_1} \mathbb{1}(e_l^\top y + \bar{b}_t > 0) \cdot \mathbb{1}(E_{l,j} \neq 0) \right)^2 \right. \\
 3590 &\quad \cdot \left. \left(\sum_{l'=1}^{N_1} \mathbb{1}(E_{l',j} \neq 0) \cdot \mathbb{1}(e_{l'}^\top y + \bar{b}_t > 0) \right)^2 \cdot \mathbb{1}(\cap_{\iota=0}^3 \mathcal{E}_\iota) \mid y \right].
 3591 \\
 3592 \\
 3593 \\
 3594 \\
 3595 \\
 3596 \\
 3597 \\
 3598
 \end{aligned}$$

3599 Rearranging the order of summation and using the fact that $\sum_{i \neq j} \mathbb{1}(E_{l,i} \neq 0) \leq s$ for any fixed j ,
 3600 we can further simplify the terms as

$$\begin{aligned}
 3601 \quad (I) &\leq \frac{2B_t^4 \rho_1 \rho_2 s}{N_1^3} \cdot \mathbb{E} \left[\sum_{j=1}^{n-1} \left(\sum_{l=1}^{N_1} \mathbb{1}(e_l^\top y + \bar{b}_t > 0) \cdot \mathbb{1}(E_{l,j} \neq 0) \right)^3 \cdot \mathbb{1}(\cap_{\iota=0}^3 \mathcal{E}_\iota) \mid y \right] \\
 3602 &\quad + \frac{2B_t^4}{N_1^4} \cdot \mathbb{E} \left[\sum_{j=1}^{n-1} \left(\sum_{l=1}^{N_1} \mathbb{1}(e_l^\top y + \bar{b}_t > 0) \cdot \mathbb{1}(E_{l,j} \neq 0) \right)^4 \cdot \mathbb{1}(\cap_{\iota=0}^3 \mathcal{E}_\iota) \mid y \right]. \quad (H.14)
 3603 \\
 3604 \\
 3605 \\
 3606 \\
 3607
 \end{aligned}$$

3608 Observe that the above two terms share a common structure. We define the common structure as
 3609

$$\begin{aligned}
 3610 \quad (III) &:= \frac{1}{N_1^q} \cdot \mathbb{E} \left[\sum_{j=1}^{n-1} \left(\sum_{l=1}^{N_1} \mathbb{1}(e_l^\top y + \bar{b}_t > 0) \cdot \mathbb{1}(E_{l,j} \neq 0) \right)^q \cdot \mathbb{1}(\cap_{\iota=0}^3 \mathcal{E}_\iota) \mid y \right],
 3611 \\
 3612
 \end{aligned}$$

3613 where $q \in \{3, 4\}$. Recall the definition $\mathcal{S}_j = \{l \in [N_1] : E_{l,j} \neq 0\}$. It holds that $|\mathcal{S}_j| \leq N_1 \rho_1$. We
 3614 aim to control
 3615

$$\begin{aligned}
 3616 \quad \sum_{l=1}^{N_1} \mathbb{1}(e_l^\top y + \bar{b}_t > 0) \cdot \mathbb{1}(E_{l,j} \neq 0) &= |\mathcal{S}_j|^{-1} \sum_{l \in \mathcal{S}_j} \mathbb{1}(e_l^\top y + \bar{b}_t > 0)
 3617
 \end{aligned}$$

3618 in the following. By the definition of the good event \mathcal{E}_2 , we have
3619

$$\begin{aligned}
3620 \quad (III) &\leq \frac{C}{N_1^q} \cdot \sum_{j=1}^{n-1} \left(\left(\sum_{l \in \mathcal{D}_j} \Phi \left(-\frac{\bar{b}_t + H_{l,j} y_j}{\sqrt{1 - H_{l,j}^2}} \right) + |\mathcal{S}_j| \rho_2 st \log(n) \right)^q \mathbb{1}(\cap_{\iota=0}^3 \mathcal{E}_\iota) \right) \\
3621 \\
3622 &\leq \frac{2^{q-1} C}{N_1^q} \cdot \sum_{j=1}^{n-1} |\mathcal{D}_j|^q \cdot \left(\frac{1}{|\mathcal{D}_j|} \sum_{l \in \mathcal{D}_j} \Phi \left(-\frac{\bar{b}_t + H_{l,j} y_j}{\sqrt{1 - H_{l,j}^2}} \right)^q \mathbb{1}(\cap_{\iota=0}^3 \mathcal{E}_\iota) + (\rho_2 st \log(n))^q \right) \\
3623 \\
3624 &\leq C \rho_1^q \cdot \left(\sum_{j=1}^{n-1} \frac{1}{|\mathcal{D}_j|} \sum_{l \in \mathcal{D}_j} \Phi \left(-\frac{\bar{b}_t + H_{l,j} y_j}{\sqrt{1 - H_{l,j}^2}} \right)^q \mathbb{1}(\cap_{\iota=0}^3 \mathcal{E}_\iota) + n (\rho_2 st \log(n))^q \right). \quad (H.15)
\end{aligned}$$

3625 where we use the Hölder's inequality for the second line, and in the last line, we absorb the constant
3626 factor 2^{q-1} into the universal constant C and use the fact that $|\mathcal{S}_j| \leq |\mathcal{D}_j| \leq N \rho_1 \leq N_1 \rho_1 / (1 - \rho_1) \leq C_1 N_1 \rho_1$ for all $j \in [n-1]$, where we also absorb the factor C_1^q into the universal constant C .
3627 By the definition of the good event \mathcal{E}_3 , it holds that

$$\begin{aligned}
3628 \quad &\sum_{j=1}^{n-1} \frac{1}{|\mathcal{D}_j|} \sum_{l \in \mathcal{D}_j} \Phi \left(-\frac{\bar{b}_t + H_{l,j} y_j}{\sqrt{1 - H_{l,j}^2}} \right)^q \mathbb{1}(\cap_{\iota=0}^3 \mathcal{E}_\iota) \\
3629 &\leq C \cdot \left(\sum_{j=1}^{n-1} \frac{1}{|\mathcal{D}_j|} \sum_{l \in \mathcal{D}_j} \mathbb{E} \left[\Phi \left(-\frac{\bar{b}_t + H_{l,j} y_j}{\sqrt{1 - H_{l,j}^2}} \right)^q \right] + \Phi \left(-\frac{\bar{b}_t + \hbar_{q,t} \zeta_t}{\sqrt{1 - \hbar_{q,t}^2}} \right)^q t \log(n) \right). \quad (H.16)
\end{aligned}$$

3630 To evaluate the expectation term, we use the Mills ratio $\Phi(x) \leq Cp(x)$ for some universal constant
3631 $C > 0$, $x > 0$ and $p(x) = \exp(-x^2/2)/\sqrt{2\pi}$ to obtain

$$\begin{aligned}
3632 \quad \mathbb{E} \left[\Phi \left(-\frac{\bar{b}_t + H_{l,j} y_j}{\sqrt{1 - H_{l,j}^2}} \right)^q \right] &\leq C \cdot \mathbb{E} \left[\exp \left(-\frac{q(\bar{b}_t + H_{l,j} y_j)^2}{2(1 - H_{l,j}^2)} \right) \mathbb{1}(\bar{b}_t + H_{l,j} y_j \leq 0) \right] + \mathbb{P}(\bar{b}_t + H_{l,j} y_j > 0) \\
3633 &\leq C \cdot \mathbb{E} \left[\exp \left(-\frac{q(\bar{b}_t + H_{l,j} y_j)^2}{2(1 - H_{l,j}^2)} \right) \right] + \Phi \left(-\frac{\bar{b}_t}{H_{l,j}} \right) \\
3634 &= C \sqrt{\frac{1 - H_{l,j}^2}{1 + (q-1)H_{l,j}^2}} \cdot \exp \left(-\frac{\bar{b}_t^2}{2(\frac{q-1}{q}H_{l,j}^2 + \frac{1}{q})} \right) + \Phi \left(-\frac{\bar{b}_t}{H_{l,j}} \right), \quad (H.17)
\end{aligned}$$

3635 where the third equality holds by direct algebraic calculation for Gaussian integral. By the Mills
3636 ratio $\Phi(x)/p(x) \geq x^{-1} - x^{-3} = Cx^{-1}$ for $x \gg 1$, and also the fact that $H_{l,j} \in [0, 1]$, we conclude
3637 that the right-hand side of (H.17) is bounded by

$$\mathbb{E} \left[\Phi \left(-\frac{\bar{b}_t + H_{l,j} y_j}{\sqrt{1 - H_{l,j}^2}} \right)^q \right] \leq C |\bar{b}_t| \Phi \left(\frac{-\bar{b}_t}{\sqrt{\frac{q-1}{q} H_{l,j}^2 + \frac{1}{q}}} \right). \quad (H.18)$$

3638 Similar to the previous argument, we also have $\Phi \left(-\frac{\bar{b}_t}{\sqrt{\frac{q-1}{q} x^2 + \frac{1}{q}}} \right)$ as a non-decreasing function of x
3639 for $x \in [0, 1]$ by checking the derivative. We define $\hbar_{q,*}$ as the smallest real number such that the
3640 following inequality holds:

$$\sum_{j=1}^n \frac{1}{|\mathcal{D}_j|} \sum_{l \in \mathcal{D}_j} \Phi \left(\frac{-\bar{b}_t}{\sqrt{\frac{q-1}{q} H_{l,j}^2 + \frac{1}{q}}} \right) \leq n \cdot \Phi \left(\frac{-\bar{b}_t}{\sqrt{\frac{q-1}{q} \hbar_{q,*}^2 + \frac{1}{q}}} \right). \quad (H.19)$$

3641 Plugging (H.18) and (H.19) into (H.16), we have that

$$\begin{aligned}
3642 \quad &\sum_{j=1}^{n-1} \frac{1}{|\mathcal{D}_j|} \sum_{l \in \mathcal{D}_j} \Phi \left(-\frac{\bar{b}_t + H_{l,j} y_j}{\sqrt{1 - H_{l,j}^2}} \right)^q \mathbb{1}(\cap_{\iota=0}^3 \mathcal{E}_\iota) \\
3643 &\leq C \cdot \left(n |\bar{b}_t| \Phi \left(\frac{-\bar{b}_t}{\sqrt{\frac{q-1}{q} \hbar_{q,*}^2 + \frac{1}{q}}} \right) + \Phi \left(-\frac{\bar{b}_t + \hbar_{q,t} \zeta_t}{\sqrt{1 - \hbar_{q,t}^2}} \right)^q t \log(n) \right). \quad (H.20)
\end{aligned}$$

Combining (H.15) and (H.20), we obtain

$$(III) \leq C\rho_1^q \cdot \left(n |\bar{b}_t| \Phi\left(\frac{-\bar{b}_t}{\sqrt{\frac{q-1}{q} \hbar_{q,\star}^2 + \frac{1}{q}}} \right) + \Phi\left(-\frac{\bar{b}_t + \hbar_{q,t}\zeta_t}{\sqrt{1 - \hbar_{q,t}^2}} \right)^q t \log(n) + n(\rho_2 s t \log(n))^q \right).$$

Note that we always have $\hbar_{q,\star} \leq 1$ and $\hbar_{q,t} \leq 1$ for $t \geq 1$. As both $\Phi\left(\frac{-\bar{b}_t}{\sqrt{\frac{q-1}{q} x^2 + \frac{1}{q}}} \right)$ and $\Phi\left(-\frac{\bar{b}_t + x\zeta_t}{\sqrt{1 - x^2}} \right)^q$ (when $\zeta_t > -\bar{b}_t$) are non-decreasing functions with respect to x , for the first term in the right-hand side of (H.14), we take $q = 3$ and $\hbar_{q,t} = 1$ to have the following upper bound:

$$\begin{aligned} & \frac{2B_t^4 \rho_1 \rho_2 s}{N_1^3} \cdot \mathbb{E} \left[\sum_{j=1}^{n-1} \left(\sum_{l=1}^{N_1} \mathbb{1}(e_l^\top y + \bar{b}_t > 0) \cdot \mathbb{1}(E_{l,j} \neq 0) \right)^3 \cdot \mathbb{1}(\cap_{\iota=0}^3 \mathcal{E}_\iota) \mid y \right] \\ & \leq C B_t^4 \rho_1^4 \rho_2 s \cdot \left(n |\bar{b}_t| \Phi\left(\frac{-\bar{b}_t}{\sqrt{\frac{2}{3} \hbar_{3,\star}^2 + \frac{1}{3}}} \right) + t \log(n) + n(\rho_2 s t \log(n))^3 \right). \end{aligned} \quad (\text{H.21})$$

For the second term on the right-hand side of (H.14), we take $q = 4$ and obtain

$$\begin{aligned} & \frac{2B_t^4}{N_1^4} \cdot \mathbb{E} \left[\sum_{j=1}^{n-1} \left(\sum_{l=1}^{N_1} \mathbb{1}(e_l^\top y + \bar{b}_t > 0) \cdot \mathbb{1}(E_{l,j} \neq 0) \right)^4 \cdot \mathbb{1}(\cap_{\iota=0}^3 \mathcal{E}_\iota) \mid y \right] \\ & \leq C B_t^4 \rho_1^4 \cdot \left(n |\bar{b}_t| \Phi\left(\frac{-\bar{b}_t}{\sqrt{\frac{3}{4} \hbar_{4,\star}^2 + \frac{1}{4}}} \right) + \Phi\left(-\frac{\bar{b}_t + \hbar_{4,t}\zeta_t}{\sqrt{1 - \hbar_{4,t}^2}} \right)^4 t \log(n) + n(\rho_2 s t \log(n))^4 \right). \end{aligned} \quad (\text{H.22})$$

We conclude by combining (H.21) and (H.22) that

$$\begin{aligned} (\text{I}) & \leq C B_t^4 \rho_1^4 \cdot \left(n |\bar{b}_t| \Phi\left(\frac{-\bar{b}_t}{\sqrt{\frac{3}{4} \hbar_{4,\star}^2 + \frac{1}{4}}} \right) + \rho_2 s n |\bar{b}_t| \Phi\left(\frac{-\bar{b}_t}{\sqrt{\frac{2}{3} \hbar_{3,\star}^2 + \frac{1}{3}}} \right) \right. \\ & \quad \left. + \left(\Phi\left(-\frac{\bar{b}_t + \hbar_{4,t}\zeta_t}{\sqrt{1 - \hbar_{4,t}^2}} \right)^4 + \rho_2 s \right) t \log(n) + n(\rho_2 s t \log(n))^4 \right) =: V_0. \end{aligned}$$

Similarly, (II) can be bounded by V_0 . We are now ready to invoke **Theorem J.9**. Since $V \leq 2V_0$ with probability 1, the final bound for $|Z - \mathbb{E}[Z]|$ is then given by

$$|Z - \mathbb{E}[Z]| \leq C \sqrt{V_0 \log(\delta^{-1})},$$

where the inequality holds with probability at least $1 - \delta$ over the randomness of standard Gaussian vectors $z_{-1:T}$. Plugging in the formula for V_0 , we obtain the following upper bound

$$\begin{aligned} |Z - \mathbb{E}[Z]| & \leq C B_t^2 \rho_1^2 \cdot \left(n |\bar{b}_t| \Phi\left(\frac{-\bar{b}_t}{\sqrt{\frac{3}{4} \hbar_{4,\star}^2 + \frac{1}{4}}} \right) + \rho_2 s n |\bar{b}_t| \Phi\left(\frac{-\bar{b}_t}{\sqrt{\frac{2}{3} \hbar_{3,\star}^2 + \frac{1}{3}}} \right) \right. \\ & \quad \left. + \left(\Phi\left(-\frac{\bar{b}_t + \hbar_{4,t}\zeta_t}{\sqrt{1 - \hbar_{4,t}^2}} \right)^4 + \rho_2 s \right) t \log(n) + n(\rho_2 s t \log(n))^4 \right)^{1/2} \cdot \log \delta^{-1} \end{aligned}$$

with probability $1 - \delta$. For notational convenience, we define \mathcal{K}_t as the $1/4$ power of each term inside the bracket in the above equation (see (F.9) for the definition). The fluctuation of Z is controlled by

$$|Z - \mathbb{E}[Z]| \leq C L^2 \rho_1^2 t s \log n \cdot \mathcal{K}_t^2 \cdot \log \delta^{-1},$$

where we plug in the definition $B_t = L \sqrt{ts \log n}$ and $L = \gamma_2 + |\bar{b}_t| \gamma_1$ is the Lipschitz constant for the activation function φ .

3726 **Expectation $\mathbb{E}[Z]$.** For $\mathbb{E}[\|E^\top \varphi(Ey_t^*; b_t)\|_2^2]$, we have

$$\begin{aligned} 3728 \quad & \frac{1}{N_1^2} \cdot \mathbb{E}[\|E^\top \varphi(Ey_t^*; b_t)\|_2^2] \leq \frac{1}{N_1^2} \sum_{l,l'=1}^N \mathbb{E}[|\varphi(\tilde{h}_l^\top y; b_t) \cdot \varphi(\tilde{h}_{l'}^\top y; b_t)|] \cdot \langle \tilde{h}_l, \tilde{h}_{l'} \rangle \\ 3729 \quad & \leq C_1^2 \cdot \hat{\mathbb{E}}_{l,l'} \left[\mathbb{E}[|\varphi(\tilde{h}_l^\top y; b_t) \cdot \varphi(\tilde{h}_{l'}^\top y; b_t)|] \cdot \langle \tilde{h}_l, \tilde{h}_{l'} \rangle \right], \\ 3730 \quad & \end{aligned}$$

3731 where in the first inequality, we obtain the upper bound by also adding the rows of F that are not
3732 contained in the submatrix E to the sum. Here, we use the notation

$$3733 \quad \tilde{h}_l = (H_{l,1}, \dots, H_{l,i-1}, H_{l,i+1}, \dots, H_{l,n-1})^\top \\ 3734 \quad$$

3735 to denote the l -th row of H with the i -th entry removed. This structure comes from the definition
3736 (E.3) where we decompose the matrix H into submatrices E , F and the column vector θ as the
3737 non-zero entries in $H_{:,i}$ if the feature of interest is the i -th feature. In the second inequality, we use
3738 the fact that $N/N_1 \leq C_1$, and define $\hat{\mathbb{E}}_{l,l'}$ as the empirical expectation over $l, l' \in [N]^2$. Invoking
3739 **Theorem F.5** with $L = \gamma_2 + |b_t|\gamma_1$, $\bar{b} = b_t = b_t + \kappa_0$, we conclude that

$$\begin{aligned} 3743 \quad & \hat{\mathbb{E}}_{l,l'} \left[\mathbb{E}[|\varphi(\tilde{h}_l^\top y; b_t) \cdot \varphi(\tilde{h}_{l'}^\top y; b_t)|] \cdot \langle \tilde{h}_l, \tilde{h}_{l'} \rangle \right] \\ 3744 \quad & \leq CL \cdot (n \vee d)^{-c_0} + CL^2 \cdot \Phi(|\bar{b}_t|) \cdot \hat{\mathbb{E}}_{l,l'} \left[\Phi \left(|\bar{b}_t| \sqrt{\frac{1 - \langle \tilde{h}_l, \tilde{h}_{l'} \rangle}{1 + \langle \tilde{h}_l, \tilde{h}_{l'} \rangle}} \right) \langle \tilde{h}_l, \tilde{h}_{l'} \rangle \right] \\ 3745 \quad & \leq CL \cdot (n \vee d)^{-c_0} + CL^2 \cdot \Phi(|\bar{b}_t|) \cdot \hat{\mathbb{E}}_{l,l'} \left[\Phi \left(|\bar{b}_t| \sqrt{\frac{1 - \langle h_l, h_{l'} \rangle}{1 + \langle h_l, h_{l'} \rangle}} \right) \langle h_l, h_{l'} \rangle \right], \\ 3746 \quad & \end{aligned}$$

3747 where in the first inequality, we directly apply **Theorem F.5** to the expectation term, and in the second
3748 inequality, we use the fact that $\langle \tilde{h}_l, \tilde{h}_{l'} \rangle \leq \langle h_l, h_{l'} \rangle$ for $l, l' \in [N_1]$ and the fact that the term inside
3749 the expectation is non-decreasing when increasing the value of $\langle \tilde{h}_l, \tilde{h}_{l'} \rangle$. Just as before, since $c_0 > 4$
3750 is large enough, the first term is negligible, and we can absorb it into the constant C and focus on
3751 the second term:

$$3756 \quad \frac{1}{N_1^2} \cdot \mathbb{E}[\|E^\top \varphi(Ey_t^*; b_t)\|_2^2] \leq CL^2 \cdot \Phi(|\bar{b}_t|) \cdot \hat{\mathbb{E}}_{l,l'} \left[\Phi \left(|\bar{b}_t| \sqrt{\frac{1 - \langle h_l, h_{l'} \rangle}{1 + \langle h_l, h_{l'} \rangle}} \right) \langle h_l, h_{l'} \rangle \right].$$

3759 Since $\|E^\top \varphi(Ey_t^*; b_t)\|_2^2$ is non-negative, the same upper bound applies to $\mathbb{E}[Z]$, where Z includes
3760 the indicator condition $\mathbb{1}(\cap_{i=0}^3 \mathcal{E}_i)$.

3762 Finally, we plug in $\delta = n^{-c}$ to conclude that with probability at least $1 - n^{-c}$ it holds that

$$\begin{aligned} 3764 \quad & \frac{1}{N_1^2} \|E^\top \varphi(Ey_t^*; b_t)\|_2^2 \cdot \mathbb{1}(\mathcal{E}_0) \cdot \mathbb{1}(\cap_{i=0}^3 \mathcal{E}_i) \leq CL^2 \cdot \rho_1^2 st^2 (\log n)^2 \cdot \mathcal{K}_t^2 \\ 3765 \quad & \quad + CL^2 \cdot \Phi(|\bar{b}_t|) \cdot \hat{\mathbb{E}}_{l,l'} \left[\Phi \left(|\bar{b}_t| \sqrt{\frac{1 - \langle h_l, h_{l'} \rangle}{1 + \langle h_l, h_{l'} \rangle}} \right) \langle h_l, h_{l'} \rangle \right]. \\ 3766 \quad & \end{aligned}$$

3769 Note that the joint event $\mathbb{1}(\cap_{i=1}^3 \mathcal{E}_i)$ holds with probability at least $1 - n^{-c}$ as we discussed earlier.
3770 Therefore, we can safely drop the indicator $\mathbb{1}(\cap_{i=1}^3 \mathcal{E}_i)$ in the above inequality. This completes the
3771 proof of **Theorem F.4**.

3773 H.2.4 CONCENTRATION FOR $\|F^\top \varphi(Fy_t + \theta \cdot v^\top \bar{w}_{t-1}; b_t)\|_2^2$: PROOF OF **THEOREM F.6**

3775 In the following proof, we will use C to denote universal constants that change from line to line. Let
3776 us fix $\{\alpha_{\tau,t-1}\}_{\tau=-1}^{t-1}$ and b_t . Then $y_t^* \sim \mathcal{N}(0, I_{n-1})$. For simplicity, we will denote y_t^* by y in the
3777 following. Let us define the good event

$$3778 \quad \mathcal{E} = \left\{ \max_{\tau=-1,0,\dots,t-1} \|z_\tau\|_\infty \leq (1 + \sqrt{c}) \sqrt{2 \log(nt)} \right\}.$$

3780 It then follows from [Theorem J.2](#) that $\mathbb{P}(\bar{\mathcal{E}}) \leq (nt)^{-c} \leq n^{-c}$, and also $\|y\|_\infty \leq (1 + \sqrt{c})\sqrt{2t \log(nt)}$ on \mathcal{E} . In particular,

3783 $|\varphi(f_l^\top y + \theta_l v^\top \bar{w}_{t-1}; b_t)| \mathbb{1}(\mathcal{E}) \leq (\gamma_2 + |b_t|\gamma_1)((1 + \sqrt{c})\sqrt{2t \log(nt)} + \theta_l \|v\|_2 \alpha_{-1,t-1}) + (n \vee d)^{-c_0} := B_t,$

3785 where the inequality holds by the Lipschitz continuity of φ in [Definition B.3](#) and also the fact that $b_t + \kappa_0 \leq 0$ for the bias. Define

3787 $Z = \frac{1}{N_2^2} \sum_{l,l'=1}^{N_2} \langle f_l, f_{l'} \rangle \cdot \varphi(f_l^\top y + \theta_l v^\top \bar{w}_{t-1}; b_t) \cdot \varphi(f_{l'}^\top y + \theta_{l'} v^\top \bar{w}_{t-1}; b_t) \mathbb{1}(\mathcal{E}).$

3791 Using the Cauchy-Schwarz inequality, we have

3792 $Z \leq \frac{1}{N_2^2} \sum_{l,l'=1}^{N_2} (\varphi(f_l^\top y + \theta_l v^\top \bar{w}_{t-1}; b_t)^2 + \varphi(f_{l'}^\top y + \theta_{l'} v^\top \bar{w}_{t-1}; b_t)^2) \cdot \mathbb{1}(\langle f_l, f_{l'} \rangle \neq 0) \cdot \mathbb{1}(\mathcal{E})$

3793 $\leq \frac{2\rho_2}{N_2} \sum_{l=1}^{N_2} \varphi(f_l^\top y + \theta_l v^\top \bar{w}_{t-1}; b_t)^2 \mathbb{1}(\mathcal{E}),$ (H.23)

3799 where the first inequality follows from $ab \leq a^2 + b^2$, and the second inequality follows from the
3800 fact that $\langle f_l, f_{l'} \rangle^2$ is nonzero for at most $N_2 \rho_2$ terms when going over l' by definition (F.1). Next,
3801 we concentrate the right-hand side of (H.23). Note that by the Lipschitz continuity of φ , we have

3802 $|\varphi(f_l^\top y + \theta_l v^\top \bar{w}_{t-1}; b_t)| \leq (\gamma_2 + |b_t|\gamma_1)(|f_l^\top y| + \theta_l \|v\|_2 \alpha_{-1,t-1}) + (n \vee d)^{-c_0}.$

3804 By the Cauchy-Schwarz inequality, we further obtain

3806 $\varphi(f_l^\top y + \theta_l v^\top \bar{w}_{t-1}; b_t)^2 \leq C(\gamma_2 + |b_t|\gamma_1)^2 ((f_l^\top y)^2 + (\theta_l \|v\|_2 \alpha_{-1,t-1})^2) + C(n \vee d)^{-2c_0}.$ (H.24)

3809 To this end, we apply the Cauchy-Schwarz inequality again to obtain that

3810 $\frac{1}{N_2} \sum_{l=1}^{N_2} (f_l^\top y)^2 \leq \frac{1}{N_2} \sum_{l=1}^{N_2} \left(\sum_{j=1}^{n-1} y(j)^2 \mathbb{1}(f_l(j) \neq 0) \right) \cdot \|f_l\|_2^2 \leq \rho_2 \cdot \|y\|_2^2.$

3814 Under the good event \mathcal{E} , we have $\|y\|_2 \leq (1 + \sqrt{c})\sqrt{2t \log(nt)}$. In fact, $\|y\|_2^2 \sim \chi_{n-1}^2$, and we can
3815 apply the concentration inequality for the chi-squared distribution in [Theorem J.1](#) to obtain that with
3816 probability at least $1 - \delta$, it holds over the randomness of y that

3817 $\frac{1}{N_2} \sum_{l=1}^{N_2} (f_l^\top y)^2 \mathbb{1}(\mathcal{E}) \leq \frac{1}{N_2} \sum_{l=1}^{N_2} (f_l^\top y)^2 \leq C\rho_2 \cdot (n + \log \delta^{-1}).$

3821 Applying a union bound over $\{\alpha_{\tau,t-1}\}_{\tau=-1}^{t-1}$ and b_t similar to [Theorem H.4](#), and since Z is uniformly
3822 bounded, we conclude that with probability at least $1 - n^{-c}$, it holds for all $t \leq n^c$ that

3823 $\frac{1}{N_2} \sum_{l=1}^{N_2} (f_l^\top y)^2 \mathbb{1}(\mathcal{E}) \leq C\rho_2 \cdot (n + t \log(n)).$ (H.25)

3827 Combining (H.23), (H.24), and (H.25), we conclude that with probability at least $1 - n^{-c}$, it holds
3828 for all $t \leq n^c$ that

3830 $Z \leq C(\gamma_2 + |b_t|\gamma_1)^2 \rho_2 \cdot \left(N_2^{-1} \|\theta\|_2^2 \|v\|_2^2 \alpha_{-1,t-1}^2 + \rho_2 n + \rho_2 t \log n \right).$

3832 As the good event \mathcal{E} holds with sufficiently high probability if we choose c large enough in the
3833 definition of \mathcal{E} , a similar bound holds for the original quantity $\|F^\top \varphi(Fy_t + \theta \cdot v^\top \bar{w}_{t-1}; b_t)\|_2^2$. This
completes the proof of [Theorem F.6](#).

3834 H.2.5 CONCENTRATION FOR $\langle z_\tau, E^\top \varphi(Ey_t^*; b_t) \rangle$: PROOF OF **THEOREM F.7**
 3835
 3836 In the following proof, we will use C to denote universal constants that change from line to line.
 3837 When treating $\{\alpha_{\tau, t-1}\}_{\tau=-1}^{t-1}$ and b_t to be deterministic, we have $z_\tau \stackrel{d}{=} \alpha_{\tau, t-1} y_t^* + \sqrt{1 - \alpha_{\tau, t-1}^2} \cdot z$,
 3838 where $z \sim \mathcal{N}(0, I_{n-1})$ and is independent of y_t^* . In the following, we use y to replace y_t^* , and α to
 3839 replace $\alpha_{\tau, t-1}$ for notational simplicity. Therefore, the concentration we consider can be reduced to
 3840 the concentration of

3841
 3842
$$\alpha \cdot \frac{1}{N_1} \langle y, E^\top \varphi(Ey; b_t) \rangle + \sqrt{1 - \alpha^2} \cdot \frac{1}{N_1} \langle z, E^\top \varphi(Ey; b_t) \rangle,$$

 3843

3844 Firstly, note that when conditioned on y , $\langle z, E^\top \varphi(Ey; b_t) \rangle$ is a gaussian random variable with mean
 3845 zero and variance $\|E^\top \varphi(Ey; b_t)\|_2^2$, it holds with probability at least $1 - \delta$ over the randomness of
 3846 y that

3847
 3848
$$\frac{1}{N_1} |\langle z, E^\top \varphi(Ey; b_t) \rangle| \leq \frac{1}{N_1} \sqrt{2\|E^\top \varphi(Ey; b_t)\|_2^2 \log \delta^{-1}},$$

 3849

3850 where the second order term has already been handled in **Theorem F.4**. Similar to the proof of **Theo-**
 3851 **rem H.4**, we can use a covering argument over $\{\alpha_{\tau, t-1}\}_{\tau=-1}^{t-1} \in \mathbb{S}^{t+1}$, $b_t \in \mathbb{R}$, $\tau = -1, 0, \dots, t-1$
 3852 and $t \leq n^c$ to obtain that with probability at least $1 - n^{-c}$, it holds for all (τ, t) that

3853
 3854
$$\frac{1}{N_1} |\langle z, E^\top \varphi(Ey; b_t) \rangle| \leq \frac{C}{N_1} \sqrt{\|E^\top \varphi(Ey; b_t)\|_2^2 \cdot t \log(n)}.$$

3855 Now it remains to control the first term. Define good event

3856
 3857
$$\mathcal{E} = \{\|y\|_\infty \leq (1 + \sqrt{c}) \sqrt{2t \log(nt)}\}.$$

3858 In fact, the above good event can be directly implied by the following good event:

3859
 3860
$$\mathcal{E} = \left\{ \max_{\tau=-1, 0, \dots, t-1} \|z_\tau\|_\infty \leq (1 + \sqrt{c}) \sqrt{2 \log(nt)} \right\}.$$

 3861

3862 For notational simplicity, we will just focus on the latter definition of the good event. It follows from
 3863 **Theorem J.2** that $\mathbb{P}(\mathcal{E}) \geq 1 - (tn)^{-c} \geq 1 - n^{-c}$. Let us define

3864
 3865
$$Z = \frac{1}{N_1} \langle y, E^\top \varphi(Ey; b_t) \rangle \cdot \mathbb{1}(\mathcal{E}), \quad \text{and} \quad V := \mathbb{E} \left[\sum_{i=1}^{n-1} (Z - Z^{(i)})^2 \mid y \right],$$

 3866

3867 where $Z^{(i)} = \langle y^{(i)}, E^\top \varphi(Ey^{(i)}; b_t) \rangle \cdot \mathbb{1}(\mathcal{E}^{(i)})$ and $y^{(i)}$ is given by replacing the i -th coordinate y_i
 3868 with an independent copy $y'_i \sim \mathcal{N}(0, 1)$. Note that this is equivalent to replacing the i -th coordinate
 3869 of each z_τ with an independent copy $z_\tau^{(i)}$. Thus, the good event \mathcal{E} can be also changed to $\mathcal{E}^{(i)}$
 3870 accordingly. Next, we show how to control the variance V . Let us define

3871
 3872
$$Z_l = e_l^\top y \cdot \varphi(e_l^\top y; b_t) \cdot \mathbb{1}(\mathcal{E}) \quad \text{and} \quad Z_l^{(i)} = e_l^\top y^{(i)} \cdot \varphi(e_l^\top y^{(i)}; b_t) \cdot \mathbb{1}(\mathcal{E}^{(i)})$$

 3873

3874 for any $l \in [N_1]$. On the joint event $\mathcal{E} \cup \mathcal{E}^{(1)} \cup \dots \cup \mathcal{E}^{(n-1)}$, we have by the Lipschitzness of φ in
 3875 **Definition B.3** that

3876
 3877
$$|Z_l| \leq C(\gamma_2 + |b_t| \gamma_1) t \log(nt) =: B_t, \quad \forall l \in [N_1]. \quad (\text{H.26})$$

3878 This bounds also holds for all $Z_l^{(i)}$ for $i \in [n-1]$. By a reformulation, we obtain for the joint event
 3879 $\mathcal{E} \cup \mathcal{E}_1 \cup \dots \cup \mathcal{E}_{n-1}$ that

3880
 3881
$$(Z - Z^{(i)})^2 = \frac{1}{N_1^2} \cdot \left(\sum_{l=1}^{N_1} (Z_l - Z_l^{(i)}) \right)^2 = \frac{1}{N_1^2} \cdot \left(\sum_{l=1}^{N_1} (Z_l - Z_l^{(i)}) \cdot \mathbb{1}(E_{l,i} \neq 0) \right)^2$$

 3882
 3883
$$\leq \frac{\rho_1}{N_1} \cdot \sum_{l=1}^{N_1} (Z_l - Z_l^{(i)})^2 \cdot \mathbb{1}(E_{l,i} \neq 0) \leq \frac{2\rho_1}{N_1} \cdot \sum_{l=1}^{N_1} (Z_l^2 + (Z_l^{(i)})^2) \cdot \mathbb{1}(E_{l,i} \neq 0)$$

 3884
 3885
$$\leq \frac{2\rho_1}{N_1} B_t^2 \cdot \sum_{l=1}^{N_1} (\mathbb{1}(e_l^\top y + \bar{b}_t > 0) + \mathbb{1}(e_l^\top y^{(i)} + \bar{b}_t > 0) + 2B_t^{-1}(n \vee d)^{-c_0}) \cdot \mathbb{1}(E_{l,i} \neq 0),$$

 3886
 3887

3888 where the first inequality holds by the Cauchy-Schwarz inequality, the second one holds by $(a - b)^2 \leq 2(a^2 + b^2)$, and the last line holds by [Definition B.3](#) and the upper bound in [\(H.26\)](#). Since c_0
 3889 is some sufficiently large constant, we can safely ignore the term involving $(n \vee d)^{-c_0}$ in the sequel
 3890 (when invoking a constant factor C). Taking a summation over $i = 1, \dots, n - 1$ on both sides and
 3891 taking the conditional expectation, we obtain that
 3892

$$3893 V \leq \frac{C\rho_1}{N_1} B_t^2 \cdot \sum_{i=1}^{n-1} \sum_{l=1}^{N_1} (\mathbb{1}(e_l^\top y + \bar{b}_t > 0) + \mathbb{E}[\mathbb{1}(e_l^\top y^{(i)} + \bar{b}_t > 0) | y]) \cdot \mathbb{1}(E_{l,i} \neq 0).$$

3896 Let us define

$$3897 g(y) = \frac{2\rho_1 B_t^2}{N_1} \cdot \sum_{i=1}^{n-1} \sum_{l=1}^{N_1} \mathbb{1}(e_l^\top y + \bar{b}_t > 0) \cdot \mathbb{1}(E_{l,i} \neq 0).$$

3900 Therefore, the moment generating function of V is controlled by

$$3902 \mathbb{E}[\exp(\lambda V)] \leq \mathbb{E}[\exp(\lambda g(y)) \cdot \exp(\lambda \mathbb{E}[g(y^{(i)}) | y])] \leq \mathbb{E}[\exp(\lambda g(y)) \cdot \exp(\lambda g(y^{(i)}))]$$

3903 for $\lambda > 0$. Here, the last inequality follows from the Jensen's inequality. To this end, we notice
 3904 that g is a non-decreasing functions of y . Then by [Theorem J.10](#), we have that $\mathbb{E}[\exp(\lambda g(y)) \cdot$
 3905 $\exp(\lambda g(y^{(i)}))] \leq \mathbb{E}[\exp(2\lambda g(y))]$. Therefore, we just need to focus on the moment generating
 3906 function of $g(y)$. Note that since e_l is s -sparse, with probability at least $1 - \delta$ over the randomness
 3907 of y , we have

$$3909 g(y) \leq \frac{2s\rho_1 B_t^2}{N_1} \cdot \sum_{l=1}^{N_1} \mathbb{1}(e_l^\top y + \bar{b}_t > 0) \leq C s \rho_1 B_t^2 \cdot (\Phi(|\bar{b}_t|) + \rho_1 s \log \delta^{-1}).$$

3911 where in the last inequality, we invoke [Theorem H.4](#). This can be transformed into the following tail
 3912 bound

$$3914 \mathbb{E}[\exp(\lambda V)] \leq \mathbb{E}[\exp(2\lambda g(y))], \quad \text{where } \mathbb{P}(g(y) > C s \rho_1 B_t^2 \Phi(|\bar{b}_t|) + v) \leq \exp\left(-\frac{v}{C \rho_1^2 s^2 B_t^2}\right),$$

3916 and any $v > 0$. In particular, for V_+ and V_- defined in [\(J.2\)](#), we always have $0 \leq V_+ \leq V$ and
 3917 $0 \leq V_- \leq V$. With the sub-exponential tail bound, we now invoke [Condition 1 of Theorem J.8](#) to
 3918 conclude that with probability at least $1 - \delta$ over the randomness of y ,

$$3919 |Z - \mathbb{E}[Z]| \leq C B_t \left(\sqrt{s \rho_1 \Phi(|\bar{b}_t|) \log \delta^{-1}} + \rho_1 s \log \delta^{-1} \right). \quad (\text{H.27})$$

3921 Since Z is Lipschitz over $\{\alpha_{\tau, t-1}\}_{\tau=-1}^{t-1}$ and $\{z_\tau\}_{\tau=-1}^{t-1}$, we follow a similar covering argument over
 3922 the balls $\{\mathbb{S}^{t-1}\}_{t=1}^T$ with $T \leq n^c$. Note that the failure probability of the joint event $\mathcal{E} \cup \mathcal{E}^{(1)} \cup$
 3923 $\dots \cup \mathcal{E}^{(n-1)}$ is at most n^{1-c} . In addition, we can set $\delta = n^{-c} (n^{-c} \varepsilon^{n^c})$ in [\(H.27\)](#), where ϵ is
 3924 the approximation error in the covering argument in the infinity norm. By a union bound of the
 3925 covering net of size $n^c \varepsilon^{-n^c}$, we will obtain a failure probability at most n^{-c} as well. By decreasing
 3926 the constant c slightly (up to 2), we can combine the two failure probabilities to obtain that for all
 3927 $t \leq n^c$, it holds with probability at least $1 - n^{-c}$ that

$$3928 |Z - \mathbb{E}[Z]| \leq C B_t \left(\sqrt{s \rho_1 \Phi(|\bar{b}_t|) \cdot t \log(n)} + s \rho_1 \cdot t \log(n) \right).$$

3930 Next, let us evaluate the expectation $\mathbb{E}[Z]$. By definition,

$$3931 \left| \mathbb{E}[Z] - \frac{1}{N_1} \mathbb{E}[\langle y, E^\top \varphi(Ey; b_t) \rangle] \right| = \frac{1}{N_1} \mathbb{E}[\langle y, E^\top \varphi(Ey; b_t) \rangle \cdot \mathbb{1}(\bar{\mathcal{E}})] \\ 3932 \leq \frac{1}{N_1} \sqrt{\mathbb{E}[\langle y, E^\top \varphi(Ey; b_t) \rangle^2] \cdot \mathbb{P}(\bar{\mathcal{E}})}.$$

3936 Since $\mathbb{P}(\bar{\mathcal{E}}) \leq n^{-c}$, while $\mathbb{E}[\langle y, E^\top \varphi(Ey; b_t) \rangle^2]$ is at most $C(\bar{b}_t^2 + (\gamma_1 + |\bar{b}_t| \gamma_2)^2)$ for some universal
 3937 constant C by the Lipschitzness of φ given by [Definition B.3](#). We can pick c in the definition of \mathcal{E}
 3938 to be sufficiently large, Thereby, the approximation error in the expectation is negligible. We thus
 3939 just need to evaluate

$$3940 \frac{1}{N_1} \mathbb{E}[\langle y, E^\top \varphi(Ey; b_t) \rangle] = \frac{1}{N_1} \sum_{l=1}^{N_1} \mathbb{E}[e_l^\top y \cdot \varphi(e_l^\top y; b_t)] = \mathbb{E}_{x \sim \mathcal{N}(0, 1)}[x \varphi(x; b_t)] =: \hat{\varphi}_1(b_t).$$

3942 Hence, we conclude that for all $\tau \leq t-1$ and $t \leq n^c$, it holds with probability at least $1 - n^{-c}$ that
 3943

$$3944 \left| \frac{1}{N_1} \langle z_\tau, E^\top \varphi(Ey_t; b_t) \rangle - \alpha_{\tau, t-1} \cdot \hat{\varphi}_1(b_t) \right| \leq \alpha_{\tau, t-1} \cdot CB_t \left(\sqrt{s\rho_1 \Phi(|\bar{b}_t|) \cdot t \log(n)} + s\rho_1 \cdot t \log(n) \right) \\ 3945 \\ 3946 + \sqrt{1 - \alpha_{\tau, t-1}^2} \cdot \frac{C}{N_1} \sqrt{2 \|E^\top \varphi(Ey; b_t)\|_2^2 \cdot t \log(n)}. \\ 3947$$

3948 Plugging in the definition of $B_t = C(\gamma_2 + |b_t|\gamma_1)t \log(nt)$, we complete the proof of [Theorem F.7](#).
 3949

3950 H.2.6 CONCENTRATION FOR $\langle z_\tau, F^\top \varphi(Fy_t + \theta \cdot v^\top \bar{w}_{t-1}; b_t) \rangle$: PROOF OF [THEOREM F.9](#)

3951 In this proof, we will show the concentration for the term $N_2^{-1} \langle z_\tau, F^\top \varphi(Fy_t + \theta \cdot v^\top \bar{w}_{t-1}; b_t) \rangle$.
 3952 Similar to the proof of [Theorem F.7](#), when fixing $\{\alpha_{\tau, t-1}\}_{\tau=-1}^{t-1}$ and $\{b_{t,l}\}_{l=1}^t$, we have $y_t^* \sim$
 3953 $\mathcal{N}(0, I_{n-1})$. For simplicity, we will denote y_t^* by y in the following. Note that $z_\tau \stackrel{d}{=} \alpha_{\tau, t-1} y +$
 3954 $\sqrt{1 - \alpha_{\tau, t-1}^2} \cdot z$ where $z \sim \mathcal{N}(0, I_{n-1})$ is independent of y . In the sequel, we also simplify $\alpha_{\tau, t-1}$
 3955 to α . Therefore, the concentration we consider can be reduced to
 3956

$$3957 \alpha \cdot \frac{1}{N_2} \langle y, F^\top \varphi(Fy + \theta \cdot v^\top \bar{w}_{t-1}; b_t) \rangle + \sqrt{1 - \alpha^2} \cdot \frac{1}{N_2} \langle z, F^\top \varphi(Fy + \theta \cdot v^\top \bar{w}_{t-1}; b_t) \rangle.$$

3958 The concentration for the second part follows directly from the Gaussian tail bound. That said, with
 3959 probability at least $1 - \delta$, it holds that
 3960

$$3961 \frac{1}{N_2} |\langle z, F^\top \varphi(Fy + \theta \cdot v^\top \bar{w}_{t-1}; b_t) \rangle| \leq \frac{1}{N_2} \cdot \sqrt{2 \|F^\top \varphi(Fy + \theta \cdot v^\top \bar{w}_{t-1}; b_t)\|_2^2 \cdot \log \delta^{-1}},$$

3962 where the right-hand side can be controlled by [Theorem F.6](#). Then by a covering argument over
 3963 $\{\alpha_{\tau, t-1}\}_{\tau=-1}^{t-1}$ and b_t similar to [Theorem H.4](#) (with proper truncation of the random variables that
 3964 yields a sufficiently small error probability), we conclude that with probability at least $1 - n^{-c}$, it
 3965 holds for all $t = 1, \dots, T$ and $\tau = -1, 0, \dots, t-1$ that
 3966

$$3967 \frac{1}{N_2} |\langle z, F^\top \varphi(Fy + \theta \cdot v^\top \bar{w}_{t-1}; b_t) \rangle| \leq \frac{C}{N_2} \cdot \sqrt{\|F^\top \varphi(Fy + \theta \cdot v^\top \bar{w}_{t-1}; b_t)\|_2^2 \cdot t \log(n)}.$$

3968 To control the first term, define good event
 3969

$$3970 \mathcal{E} = \left\{ \max_{\tau=-1, 0, \dots, t-1} \|z_\tau\|_\infty \leq (1 + \sqrt{c}) \sqrt{2 \log(nt)} \right\}.$$

3971 On this good event, $\|y\|_\infty \leq (1 + \sqrt{c}) \sqrt{2 t \log(nt)}$ and this good event holds with probability at
 3972 least $1 - (tn)^{-c} \geq 1 - n^{-c}$. We define
 3973

$$3974 Z = \frac{1}{N_2} \langle y, F^\top \varphi(Fy + \theta \cdot v^\top \bar{w}_{t-1}; b_t) \rangle \mathbb{1}(\mathcal{E}), \quad \text{and} \quad V = \mathbb{E} \left[\sum_{i=1}^{n-1} (Z - Z^{(i)})^2 \mid y \right],$$

3975 where $Z^{(i)} = N_2^{-1} \langle y^{(i)}, F^\top \varphi(Fy^{(i)} + \theta \cdot v^\top \bar{w}_{t-1}; b_t) \rangle \mathbb{1}(\mathcal{E}^{(i)})$. Here, we define $y^{(i)} =$
 3976 $\sum_{j=-1}^{t-1} \alpha_{j, t-1} z_j^{(i)}$ with $z_j^{(i)}$ given by replacing the i -th coordinate of z_j with an independent copy,
 3977 and $\mathcal{E}^{(i)}$ is the event defined with respect to $z_j^{(i)}$. Let us define
 3978

$$3979 Z_l = f_l^\top y \cdot \varphi(f_l^\top y + \theta_l v^\top \bar{w}_{t-1}; b_t) \mathbb{1}(\mathcal{E}), \quad Z_l^{(i)} = f_l^\top y^{(i)} \cdot \varphi(f_l^\top y^{(i)} + \theta_l v^\top \bar{w}_{t-1}; b_t) \mathbb{1}(\mathcal{E}^{(i)}),$$

3980 where f_l is the l -th row of F . On the joint event $\mathcal{E} \cup \mathcal{E}^{(1)} \cup \dots \cup \mathcal{E}^{(n-1)}$, we have by the Lipschitz
 3981 continuity of φ in [Definition B.3](#) that
 3982

$$3983 |Z_l| \leq C((\gamma_2 + |b_t|\gamma_1) \cdot (\sqrt{t \log(n)} + \|v\|_2 \alpha_{-1, t-1}) + (n \vee d)^{-c_0}) \cdot \sqrt{t \log(n)} := B_t,$$

3984 where we also use the fact that $b_t + \kappa_0 \leq 0$ for the bias. Note that the $(n \vee d)^{-c_0}$ term is negligible
 3985 when c_0 is sufficiently large. For notation simplicity, we define $\tilde{b}_{t,l} = b_t + \kappa_0 + \theta_l v^\top \bar{w}_{t-1}$. This
 3986

3996 bound also holds for $Z_l^{(i)}$. On the joint event $\mathcal{E} \cup \mathcal{E}^{(1)} \cup \dots \cup \mathcal{E}^{(n-1)}$, we have
3997
3998
$$(Z - Z^{(i)})^2 \leq \frac{1}{N_2^2} \sum_{l=1}^{N_2} (Z_l - Z_l^{(i)})^2 \leq \frac{1}{N_2^2} \cdot \left(\sum_{l=1}^{N_2} (Z_l - Z_l^{(i)})^2 \mathbb{1}(F_{l,i} \neq 0) \right)^2$$

3999
4000
$$\leq \frac{\rho_2}{N_2} \sum_{l=1}^{N_2} (Z_l - Z_l^{(i)})^2 \mathbb{1}(F_{l,i} \neq 0) \leq \frac{2\rho_2}{N_2} \sum_{l=1}^{N_2} (Z_l^2 + (Z_l^{(i)})^2) \mathbb{1}(F_{l,i} \neq 0)$$

4001
4002
4003
$$\leq \frac{2\rho_2 B_t^2}{N_2} \sum_{l=1}^{N_2} (\mathbb{1}(f_l^\top y + \tilde{b}_{t,l} > 0) + \mathbb{1}(f_l^\top y^{(i)} + \tilde{b}_{t,l} > 0) + 2B_t^{-1}(n \vee d)^{-c_0}) \mathbb{1}(F_{l,i} \neq 0),$$

4004
4005
4006

4007 where the first inequality holds by the Cauchy-Schwarz inequality, the second one holds by $(a -$
4008 $b)^2 \leq 2(a^2 + b^2)$, and the last line holds by [Definition B.3](#) and the upper bound for Z_l and $Z_l^{(i)}$.
4009 We can also ignore the $2B_t^{-1}(n \vee d)^{-c_0}$ term by multiplying some universal constant. Taking a
4010 summation over $i = 1, \dots, n-1$ on both sides with the conditional expectation, we obtain
4011

4012
$$V \leq \frac{C\rho_2 B_t^2}{N_2} \sum_{i=1}^{n-1} \sum_{l=1}^{N_2} (\mathbb{1}(f_l^\top y + \tilde{b}_{t,l} > 0) + \mathbb{E}[\mathbb{1}(f_l^\top y^{(i)} + \tilde{b}_{t,l} > 0)]) \cdot \mathbb{1}(F_{l,i} \neq 0).$$

4013
4014

4015 Let us take
4016

4017
$$g(y) := \frac{C\rho_2 B_t^2}{N_2} \sum_{i=1}^{n-1} \sum_{l=1}^{N_2} \mathbb{1}(f_l^\top y + \tilde{b}_{t,l} > 0) \mathbb{1}(F_{l,i} \neq 0)$$

4018
4019
$$= \frac{C\rho_2 s B_t^2}{N_2} \sum_{l=1}^{N_2} \mathbb{1}(f_l^\top y + \tilde{b}_{t,l} > 0) \leq C\rho_2 s B_t^2.$$

4020
4021
4022

4023 Then we have by the monotonicity of g and [Theorem J.10](#) that $\mathbb{E}[\exp(\lambda V)] \leq \mathbb{E}[\exp(2\lambda g(y))]$ for
4024 all $\lambda > 0$. Invoking [Theorem J.9](#) for this bounded variance, we obtain that with probability at least
4025 $1 - \delta$ over the randomness of y , it holds that

4026
$$|Z - \mathbb{E}[Z]| \leq CB_t \sqrt{\rho_2 s} \cdot \log \delta^{-1}.$$

4027

4028 By a covering argument over $\{\alpha_{\tau,t-1}\}_{\tau=-1}^{t-1}$ and b_t similar to [Theorem H.4](#), we conclude that $|Z -$
4029 $\mathbb{E}[Z]| \leq CB_t \sqrt{\rho_2 s} \cdot t \log(n)$ with probability at least $1 - n^{-c}$ for all $t = 1, \dots, T$ and $\tau =$
4030 $-1, 0, \dots, t-1$. In addition, the approximation error
4031

4032
$$\left| \mathbb{E}[Z] - \frac{1}{N_2} \mathbb{E}[\langle y, F^\top \varphi(Fy + \theta \cdot v^\top \bar{w}_{t-1}; b_t) \rangle] \right| \propto \sqrt{\mathbb{P}(\mathcal{E})}$$

4033

4034 by the Cauchy-Schwarz inequality and the fact that $f_l^\top y \varphi(f_l^\top y + \theta_l v^\top \bar{w}_{t-1}; b_t)$ has bounded second
4035 moment. Therefore, by taking a sufficiently large c in the definition of the good event \mathcal{E} , we can
4036 make this approximation error negligible. Moreover, we also have
4037

4038
$$\mathbb{E}[f_l^\top y \varphi(f_l^\top y + \theta_l v^\top \bar{w}_{t-1}; b_t)] = \sqrt{1 - \theta_l^2} \cdot \mathbb{E}_{x \sim \mathcal{N}(0,1)} [x \varphi(\sqrt{1 - \theta_l^2} x + \theta_l v^\top \bar{w}_{t-1}; b_t)].$$

4039

4040 Combining everything, we conclude that with probability at least $1 - n^{-c}$, it holds for all $t =$
4041 $1, \dots, T$ and $\tau = -1, 0, \dots, t-1$ that
4042

4043
$$\frac{1}{N_2} \left| \langle z_\tau, F^\top \varphi(Fy_t^\star + \theta \cdot v^\top \bar{w}_{t-1}; b_t) \rangle - \sum_{l=1}^{N_2} \alpha_{\tau,t-1} \sqrt{1 - \theta_l^2} \cdot \mathbb{E}_{x \sim \mathcal{N}(0,1)} [x \varphi(\sqrt{1 - \theta_l^2} x + \theta_l v^\top \bar{w}_{t-1}; b_t)] \right|$$

4044
4045
$$\leq \frac{C}{N_2} \sqrt{1 - \alpha_{\tau,t-1}^2} \cdot \sqrt{\|F^\top \varphi(Fy + \theta \cdot v^\top \bar{w}_{t-1}; b_t)\|_2^2 \cdot t \log(n)}$$

4046
4047
$$+ C\alpha_{\tau,t-1} \cdot (\gamma_2 + |b_t| \gamma_1) \cdot (\sqrt{t \log(n)} + \|v\|_2 \alpha_{-1,t-1}) \cdot \sqrt{\rho_2 s} \cdot (t \log(n))^{3/2}$$

4048
4049

This completes the proof of [Theorem F.9](#).

4050 H.2.7 CONCENTRATION FOR $\theta^\top \varphi(Fy_t^\star + \theta v^\top \bar{w}_{t-1}; b_t)$: PROOF OF **THEOREM F.10**
4051

4052 In the following, we will use C to denote universal constants that change from line to line. Let f_l
4053 denote the l -th row of F . Let us first fix $\{\alpha_{\tau,t-1}\}_{\tau=1}^{t-1}$ and b_t . Then $y_t^\star \sim \mathcal{N}(0, I_{n-1})$. In the
4054 sequel, we will simplify $y \leftarrow y_t^\star$. Let us define the good event

$$4055 \quad \mathcal{E} = \left\{ \max_{\tau=-1,0,\dots,t-1} \|z_\tau\|_\infty \leq (1 + \sqrt{c}) \sqrt{2 \log(nt)} \right\}. \\ 4056$$

4057 It then follows from **Theorem J.2** that $\mathbb{P}(\bar{\mathcal{E}}) \leq (nt)^{-c} \leq n^{-c}$, and also $\|y\|_\infty \leq (1 +$
4058 $\sqrt{c}) \sqrt{2t \log(nt)}$ on \mathcal{E} . In particular,

$$4060 \quad |\varphi(f_l^\top y + \theta_l v^\top \bar{w}_{t-1}; b_t)| \mathbb{1}(\mathcal{E}) \leq (\gamma_2 + |b_t| \gamma_1) ((1 + \sqrt{c}) \sqrt{2t \log(nt)} + \|v\|_2 \alpha_{-1,t-1}) + (n \vee d)^{-c_0} := B_t.$$

4061 where the last inequality holds by noting that $\varphi(\cdot; b_t)$ is $\gamma_2 + |b_t| \gamma_1$ -Lipschitz by **Definition B.3**, and
4062 also the fact that $\bar{b}_t = b_t + \kappa_0 \leq 0$. The target function to study is
4063

$$4064 \quad Z = \frac{1}{N_2} \sum_{l=1}^{N_2} \theta_l \varphi(f_l^\top y; \tilde{b}_{t,l}) \mathbb{1}(\mathcal{E}), \quad \text{where } \tilde{b}_{t,l} = b_{t,l} + \theta_l \|v\|_2 \alpha_{-1,t-1}.$$

4067 Let $y^{(i)}$ be the vector obtained by replacing the i -th element of y_t with an independent standard
4068 Gaussian random variable $y_t'(i)$. The good event $\mathcal{E}^{(i)}$ is defined similarly. Define $Z^{(i)}$ as the
4069 correspondence of Z with $y^{(i)}$ and $\mathcal{E}^{(i)}$. Let us define variance $V = \mathbb{E}[\sum_{i=1}^{n-1} (Z - Z^{(i)})^2]$.
4070 Notice that this V upper bounds both $V_+ = \mathbb{E}[\sum_{i=1}^{n-1} (Z - Z^{(i)})^2 \mathbb{1}(Z > Z^{(i)})]$ and $V_- =$
4071 $\mathbb{E}[\sum_{i=1}^{n-1} (Z - Z^{(i)})^2 \mathbb{1}(Z < Z^{(i)})]$. Note that when changing one coordinate in y , the total number
4072 of terms affected in Z is at most $N_2 \rho_2$ by definition (F.1). It then holds by the Cauchy-Schwarz
4073 inequality that

$$4074 \quad V \leq \frac{C \rho_2}{N_2} \sum_{i=1}^{n-1} \sum_{l=1}^{N_2} \theta_l^2 \cdot \mathbb{E}[(\varphi(f_l^\top y; \tilde{b}_{t,l}) \mathbb{1}(\mathcal{E}) - \varphi(f_l^\top y^{(i)}; \tilde{b}_{t,l}) \mathbb{1}(\bar{\mathcal{E}}))^2 | y] \\ 4075 \\ 4076 \leq \frac{C B_t^2 \rho_2}{N_2} \sum_{i=1}^{n-1} \sum_{l=1}^{N_2} \theta_l^2 \mathbb{1}(f_l(i) \neq 0),$$

4080 where in the second inequality, the indicator is included since the term will be zero if $f_l(i) = 0$.
4081 Additionally, we invoke the bound B_t to upper bound the $\varphi(\cdot)$ term. Let us define
4082

$$4083 \quad g(y) := \frac{C B_t^2 \rho_2}{N_2} \sum_{i=1}^{n-1} \sum_{l=1}^{N_2} \theta_l^2 \cdot \mathbb{1}(f_l(i) \neq 0) \leq \frac{C B_t^2 \rho_2 s}{N_2} \|\theta\|_2^2.$$

4086 By **Theorem J.10**, we know that the MGF of V can be upper bounded by $\mathbb{E}[\exp(\lambda V)] \leq$
4087 $\mathbb{E}[\exp(2\lambda g(y))]$. Thanks to the bounded variance, invoking **Theorem J.9**, we conclude that with
4088 probability at least $1 - \delta$ over the randomness of y , it holds that

$$4089 \quad |Z - \mathbb{E}[Z]| \leq C B_t \|\theta\|_2 \sqrt{\frac{\rho_2 s}{N_2} \log(\delta^{-1})}.$$

4092 Next, we invoke a union covering argument over the ball \mathbb{S}^{t+1} for $\alpha_{\tau,t-1}$ and also for b_t . Since Z
4093 is Lipschitz and bounded, the approximation error can be made sufficiently small. Therefore, we
4094 conclude that with probability at least $1 - n^{-c}$, it holds for all $t \leq n^c$ that

$$4095 \quad |Z - \mathbb{E}[Z]| \leq C B_t \|\theta\|_2 \sqrt{\frac{\rho_2 s}{N_2} \cdot t \log(n)}.$$

4097 Similar to previous proof, the error in $\mathbb{E}[Z]$ and $N_2^{-1} \mathbb{E}[\theta^\top \varphi(Fy_t + \theta \cdot v^\top \bar{w}_{t-1}; b_t)]$ can be made
4098 sufficiently small if we choose a large c in the definition of the good event \mathcal{E} . Consequently we just
4099 need to plug in the expectatin
4100

$$4101 \quad \frac{1}{N_2} \mathbb{E}[\theta^\top \varphi(Fy_t + \theta \cdot v^\top \bar{w}_{t-1}; b_t)] = \frac{1}{N_2} \sum_{l=1}^{N_2} \mathbb{E}_{x \sim \mathcal{N}(0,1)} [\theta_l \cdot \varphi(\sqrt{1 - \theta_l^2} \cdot x + \theta_l \cdot v^\top \bar{w}_{t-1}; b_t)].$$

4103 This completes the proof of **Theorem F.10**.

4104 **H.3 PROPOGATION OF THE NON-GAUSSIAN ERROR**
 4105

4106 In this subsection, we analyze how to Non-Gaussian error Δy_t propagates through the nonlinear
 4107 activation.

4109 **H.3.1 ERROR ANALYSIS FOR ΔE_t : PROOF OF THEOREM F.12**
 4110

4111 In the following proof, we will use C to denote universal constants that change from line to line.
 4112

4113 **Bounding $\|\Delta E_t\|_1$.** By definition of ΔE_t , we have
 4114

$$\begin{aligned} \|\Delta E_t\|_1 &= \|E^\top \varphi(E(y_t^* + \Delta y_t); b_t) - E^\top \varphi(Ey_t^*; b_t)\|_1 \leq \sqrt{s} \cdot \|\varphi(E(y_t^* + \Delta y_t); b_t) - \varphi(Ey_t^*; b_t)\|_1 \\ &\leq \sqrt{s}(\gamma_2 + |b_t|\gamma_1) \cdot \sum_{l=1}^{N_1} |e_l^\top \Delta y_t| \cdot \mathbb{1}(e_l^\top y_t + \bar{b}_t > 0 \vee e_l^\top y_t^* + \bar{b}_t > 0) \\ &\quad + \sqrt{s} \cdot \sum_{l=1}^{N_1} 2(2 + |b_t|) \cdot (n \vee d)^{-c_0} \cdot \mathbb{1}(e_l^\top y_t + \bar{b}_t \leq 0 \wedge e_l^\top y_t^* + \bar{b}_t \leq 0). \end{aligned}$$

4122 where $\bar{b}_t = b_t + \kappa_0$ is the shifted bias. The first inequality follows from the fact that $\|e_l\|_1 \leq \sqrt{s}$
 4123 as each row e_l is s -sparse. The second inequality holds by splitting the summation into two parts.
 4124 For the first part $\{l : e_l^\top y_t + \bar{b}_t > 0 \vee e_l^\top y_t^* + \bar{b}_t > 0\}$ where the neuron is activated, we have the
 4125 term bounded by the Lipschitz continuity of φ times the pre-activation difference $|e_l^\top \Delta y_t|$. Here,
 4126 we recall from [Definition B.3](#) that φ is $(\gamma_2 + |b_t|\gamma_1)$ -Lipschitz continuous. For the second part
 4127 $\{l : e_l^\top y_t + \bar{b}_t \leq 0 \wedge e_l^\top y_t^* + \bar{b}_t \leq 0\}$ where the neuron is inactive, we simply apply the upper bound
 4128 on φ in [Definition B.3](#) as $(2 + |b_t|) \cdot (n \vee d)^{-c_0}$. Note that c_0 can be chosen to be a sufficiently large
 4129 constant. Thus, we just need to focus on the first part. Using the Cauchy-Schwarz inequality twice,
 4130 we have

$$\begin{aligned} \sum_{l=1}^{N_1} |e_l^\top \Delta y_t| \cdot \mathbb{1}(e_l^\top y_t + \bar{b}_t > 0) &\leq \sum_{l=1}^{N_1} \|e_l\|_2 \cdot \|\Delta y_t \circ \mathbb{1}(e_l \neq 0)\|_2 \cdot \mathbb{1}(e_l^\top y_t + \bar{b}_t > 0) \\ &\leq \sqrt{\sum_{l=1}^{N_1} \mathbb{1}(e_l^\top y_t + \bar{b}_t > 0) \cdot \sum_{l=1}^{N_1} \|\Delta y_t \circ \mathbb{1}(e_l \neq 0)\|_2^2}, \quad (\text{H.28}) \end{aligned}$$

4138 where $x \circ y$ is the Hadamard product between two vectors x and y . Note that the second term on the
 4139 right hand side can be further bounded by
 4140

$$\sum_{l=1}^{N_1} \|\Delta y_t \circ \mathbb{1}(e_l \neq 0)\|_2^2 = \sum_{l=1}^{N_1} \sum_{i=1}^{n-1} \Delta y_{t,i}^2 \cdot \mathbb{1}(E_{l,i} \neq 0) \leq \rho_1 N_1 \cdot \|\Delta y_t\|_2^2. \quad (\text{H.29})$$

4144 Plugging (H.29) back into (H.28), and invoking [Theorem F.3](#), we conclude that with probability at
 4145 least $1 - n^{-c}$ for all $t \leq n^c$,
 4146

$$\begin{aligned} \sum_{l=1}^{N_1} |e_l^\top \Delta y_t| \cdot \mathbb{1}(e_l^\top y_t + \bar{b}_t > 0) &\leq CN_1 \cdot \sqrt{(\Phi(-\bar{b}_t) + \rho_1 st \log(n) + \rho_1 |\bar{b}_t|^2 \|\Delta y_t\|_2^2) \rho_1 \|\Delta y_t\|_2^2} \\ &\leq CN_1 \cdot \left((\sqrt{\rho_1 \Phi(-\bar{b}_t)} + \rho_1 \sqrt{st \log n}) \cdot \|\Delta y_t\|_2 + \rho_1 |\bar{b}_t| \cdot \|\Delta y_t\|_2^2 \right). \end{aligned}$$

4152 Note that the ideal activation $\sum_{l=1}^{N_1} \mathbb{1}(e_l^\top y_t^* + \bar{b}_t > 0)$ has an upper bound in [Theorem F.2](#) even
 4153 tighter than the one we use above. Therefore, we just need to double the above error term. Thereby,
 4154 we conclude that
 4155

$$\begin{aligned} \|\Delta E_t\|_1 &\leq CN_1(\gamma_2 + |b_t|\gamma_1) \cdot \left((\sqrt{s\rho_1 \Phi(-\bar{b}_t)} + s\rho_1 \sqrt{t \log n}) \cdot \|\Delta y_t\|_2 + \sqrt{s\rho_1} |\bar{b}_t| \cdot \|\Delta y_t\|_2^2 \right) \\ &\quad + CN_1 \sqrt{s} (2 + |b_t|) \cdot (n \vee d)^{-c_0}. \end{aligned}$$

4158 **Bounding $\|\Delta E_t\|_2^2$.** The proof is similar to bounding $\|\Delta E_t\|_1$. Again, we notice that for any test
 4159 vector $x \in \mathbb{R}^{N_1}$,

$$4160 \quad 4161 \quad \|E^\top x\|_2^2 = \sum_{i=1}^{n-1} \left(\sum_{l=1}^{N_1} E_{l,i} x_l \right)^2 \leq \sum_{i=1}^{n-1} \left(\sum_{l=1}^{N_1} \mathbb{1}(E_{l,i} \neq 0) \right) \cdot \left(\sum_{l=1}^{N_1} E_{l,i}^2 x_l^2 \right) \leq \rho_1 N_1 \|x\|_2^2.$$

4162 Here, the first inequality holds by the Cauchy-Schwarz inequality while the second inequality holds
 4163 by the sparsity assumption on the columns of E and also the fact that $\sum_{i=1}^{n-1} E_{l,i}^2 = \|e_l\|_2^2 = 1$.
 4164 Thereby, it holds for $\|\Delta E_t\|_2^2$ that

$$4165 \quad 4166 \quad \|\Delta E_t\|_2^2 \leq \rho_1 N_1 \|\varphi(E(y_t^* + \Delta y_t); b_t) - \varphi(Ey_t^*; b_t)\|_2^2 \leq \rho_1 N_1 (\gamma_2 + |b_t| \gamma_1)^2 \cdot \sum_{l=1}^{N_1} |e_l^\top \Delta y_t|^2 \\ 4167 \quad 4168 \leq \rho_1 N_1 (\gamma_2 + |b_t| \gamma_1)^2 \cdot \sum_{l=1}^{N_1} \|e_l\|_2^2 \cdot \|\Delta y_t \circ \mathbb{1}(e_l \neq 0)\|_2^2 \leq (\gamma_2 + |b_t| \gamma_1)^2 \cdot (\rho_1 N_1)^2 \|\Delta y_t\|_2^2,$$

4169 where the second inequality holds by the Lipschitz continuity of φ and the third inequality follows
 4170 from the Cauchy-Schwarz inequality. The last inequality holds by invoking (H.29). Hence, we
 4171 complete the proof of [Theorem F.12](#).

4172 H.3.2 ERROR ANALYSIS FOR ΔF_t : PROOF OF [THEOREM F.13](#)

4173 In the following proof, we will use C to denote universal constants that change from line to line. Let
 4174 f_l be the l -th row of matrix F . Note that

$$4175 \quad 4176 \quad \|\Delta F_t\|_1 \leq \sqrt{s} \cdot \|\varphi(F(y_t^* + \Delta y_t) + \theta \cdot v^\top \bar{w}_{t-1}; b_t) - \varphi(Fy_t^* + \theta \cdot v^\top \bar{w}_{t-1}; b_t)\|_1 \\ 4177 \quad 4178 \leq \sqrt{s}(\gamma_2 + |b_t| \gamma_1) \cdot \sum_{l=1}^{N_2} |f_l^\top \Delta y_t| \leq \sqrt{s}(\gamma_2 + |b_t| \gamma_1) \cdot \|\Delta y_t\|_2 \cdot \sum_{l=1}^{N_2} \|f_l\|_2 \\ 4179 \quad 4180 \leq \sqrt{s} N_2 (\gamma_2 + |b_t| \gamma_1) \cdot \|\Delta y_t\|_2,$$

4181 where the first inequality follows from the fact that $\|f_l\|_1 \leq \sqrt{s}$ by the Hölder's inequality for s -sparse
 4182 f_l with $\|f_l\|_2 \leq 1$, the second inequality follows from the Lipschitzness of φ and the third
 4183 inequality follows from the Cauchy-Schwarz inequality. In the last inequality, we use the fact that
 4184 $\|f_l\|_2 \leq 1$. Next, we turn to the bound for $\|\Delta F_t\|_2$. For any test vector $x \in \mathbb{R}^{N_2}$, we have

$$4185 \quad 4186 \quad \|F^\top x\|_2^2 = \sum_{i=1}^{n-1} \left(\sum_{l=1}^{N_2} F_{l,i} x_l \right)^2 \leq \sum_{i=1}^{n-1} \|F_{:,i}\|_2^2 \cdot \|x\|_2^2 \leq \rho_2 N_2 \|x\|_2^2, \quad (\text{H.30})$$

4187 where we recall that $\rho_2 = \max_{i \in [n-1]} \|F_{:,i}\|_0 / N_2$. Since $\Delta F_t = F^\top \Delta \varphi_{F,t}$, we have $\|\Delta F_t\|_2^2 \leq$
 4188 $\rho_2 N_2 \|\Delta \varphi_{F,t}\|_2^2$. Next, we use the same Lipschitzness of φ to upper bound $\|\Delta \varphi_{F,t}\|_2^2$ as

$$4189 \quad 4190 \quad \|\Delta \varphi_{F,t}\|_2^2 \leq (\gamma_2 + |b_t| \gamma_1)^2 \cdot \sum_{l=1}^{N_2} |f_l^\top \Delta y_t|^2 \leq (\gamma_2 + |b_t| \gamma_1)^2 \cdot \sum_{l=1}^{N_2} \|f_l\|_2^2 \cdot \sum_{i=1}^{n-1} \Delta y_{t,i}^2 \mathbb{1}(F_{l,i} \neq 0) \\ 4191 \quad 4192 \leq (\gamma_2 + |b_t| \gamma_1)^2 \cdot \sum_{i=1}^{n-1} \sum_{l=1}^{N_2} \Delta y_{t,i}^2 \mathbb{1}(F_{l,i} \neq 0) \leq N_2 \rho_2 (\gamma_2 + |b_t| \gamma_1)^2 \cdot \|\Delta y_t\|_2^2, \quad (\text{H.31})$$

4193 where we use the Cauchy-Schwarz inequality in the second inequality, the fact that $\|f_l\|_2 \leq 1$ in
 4194 the third inequality, and the definition of ρ_2 in the last inequality. Combining (H.30) and (H.31), we
 4195 conclude that $\|\Delta F_t\|_2 \leq \rho_2 N_2 (\gamma_2 + |b_t| \gamma_1) \cdot \|\Delta y_t\|_2$. This completes the proof of [Theorem F.13](#).

4212 H.4 PROOFS FOR TECHNICAL LEMMAS
42134214 H.4.1 PROOF OF THEOREM F.5
42154216 We invoke the upper bound $|\varphi(x; b)| \leq (n \vee d)^{-c_0} + L(x + \bar{b}) \cdot \mathbb{1}(x > -\bar{b})$ to obtain that
4217

4218
$$\begin{aligned} \mathbb{E}[\varphi(x; b)\varphi(\iota x + \sqrt{1 - \iota^2} \cdot z; b)] \\ \leq (n \vee d)^{-2c_0} + 2(n \vee d)^{-c_0} \cdot L \cdot \mathbb{E}[(x + \bar{b}) \cdot \mathbb{1}(x > -\bar{b})] \\ + L^2 \cdot \underbrace{\mathbb{E}[(x + \bar{b}) \cdot \mathbb{1}(x > -\bar{b}) \cdot (\iota x + \sqrt{1 - \iota^2} z + \bar{b}) \cdot \mathbb{1}(\iota x + \sqrt{1 - \iota^2} z > -\bar{b})]}_{(I)}. \end{aligned}$$

4223 Note that $\mathbb{E}[x \mathbb{1}(x > -\bar{b})] = p(|\bar{b}|)$ for any \bar{b} by explicit calculation, where $p(x) = \exp(-x^2/2)/\sqrt{2\pi}$ is the standard Gaussian density function. Therefore, we have
4224

4225
$$\mathbb{E}[(x + \bar{b}) \cdot \mathbb{1}(x > -\bar{b})] = \mathbb{E}[x \mathbb{1}(x > -\bar{b})] + \bar{b} \cdot \mathbb{P}(x > -\bar{b}) = p(|\bar{b}|) - |\bar{b}| \Phi(|\bar{b}|) = F(|\bar{b}|),$$

4227 where we define $F(x) = p(x) - x\Phi(x)$. We note that the function $F(x)$ is monotonically decreasing
4228 for all $x \in \mathbb{R}$. To see this, we take the derivative of $F(x)$ and using the fact that $p'(x) = -xp(x)$
4229 and $\Phi'(x) = -p(x)$, which gives us

4230
$$F'(x) = -\Phi(x) - x\Phi'(x) - xp(x) = -\Phi(x) + xp(x) - xp(x) = -\Phi(x) < 0. \quad (\text{H.32})$$

4231

4232 In particular, function $F(x)$ is always positive for any $x \in \mathbb{R}$ as $\lim_{x \rightarrow \infty} F(x) = 0$ by the Mills
4233 ratio $\lim_{x \rightarrow \infty} x\Phi(x)/p(x) = 1$. Therefore, $F(|\bar{b}|) \leq F(0) = 1/2$ and the first two terms involving
4234 $(n \vee d)^{-c_0}$ are negligible. For the last term, by marginalizing z , we have

4235
$$\begin{aligned} \mathbb{E}[(x + \bar{b}) \cdot \mathbb{1}(x > -\bar{b}) \cdot (\iota x + \sqrt{1 - \iota^2} z + \bar{b}) \cdot \mathbb{1}(\iota x + \sqrt{1 - \iota^2} z > -\bar{b})] \\ = \mathbb{E} \left[(x + \bar{b}) \cdot \mathbb{1}(x > -\bar{b}) \cdot \sqrt{1 - \iota^2} \cdot \left(\frac{\iota x + \bar{b}}{\sqrt{1 - \iota^2}} \cdot \Phi \left(-\frac{\bar{b} + \iota x}{\sqrt{1 - \iota^2}} \right) + p \left(-\frac{\bar{b} + \iota x}{\sqrt{1 - \iota^2}} \right) \right) \right] \\ = \mathbb{E} \left[(x + \bar{b}) \cdot \mathbb{1}(x > -\bar{b}) \cdot \sqrt{1 - \iota^2} \cdot F \left(-\frac{\bar{b} + \iota x}{\sqrt{1 - \iota^2}} \right) \right]. \end{aligned}$$

4242 Since $F(x)$ is monotonically decreasing, we can upper bound the expectation by just plugging in
4243 $x = -\bar{b}$ to obtain that

4244
$$(I) \leq \mathbb{E}[(x + \bar{b}) \cdot \mathbb{1}(x > -\bar{b})] \cdot \sqrt{1 - \iota^2} \cdot F \left(-\bar{b} \sqrt{\frac{1 - \iota}{1 + \iota}} \right) = \sqrt{1 - \iota^2} \cdot F(|\bar{b}|) \cdot F \left(|\bar{b}| \sqrt{\frac{1 - \iota}{1 + \iota}} \right).$$

4245

4247 Next, we prove that $F(x) \leq 2\Phi(x)$ for all $x > 0$. For any $x > 0$, we have $F'(x) = -\Phi(x)$ by
4248 (H.32), and $\Phi'(x) = -p(x)$. Therefore,

4249
$$\frac{F'(x)}{\Phi'(x)} = \frac{\Phi(x)}{p(x)} \leq \frac{\Phi(0)}{p(0)} = \sqrt{\frac{\pi}{2}} \leq 2,$$

4250

4252 where we use the fact that $\Phi(x)/p(x)$ is monotonically decreasing. Noting that $\lim_{x \rightarrow \infty} F(x) = 0$
4253 and $\lim_{x \rightarrow \infty} \Phi(x) = 0$, we thus conclude that $F(x) \leq 2\Phi(x)$ for all $x > 0$. Consequently,

4254
$$(I) \leq 2\sqrt{1 - \iota^2} \cdot F(|\bar{b}|) \cdot F \left(|\bar{b}| \sqrt{\frac{1 - \iota}{1 + \iota}} \right) \leq 4\sqrt{1 - \iota^2} \cdot \Phi(|\bar{b}|) \cdot \Phi \left(|\bar{b}| \sqrt{\frac{1 - \iota}{1 + \iota}} \right).$$

4255

4257 Therefore, we conclude the proof of this proposition.

4258 H.4.2 PROOF OF THEOREM F.8
42594260 *Proof of Theorem F.8.* Note that
4261

4262
$$\begin{aligned} \hat{\varphi}_1(b_t) &= \mathbb{E}_{x \sim \mathcal{N}(0,1)}[\varphi(x; b_t)x] \\ &\leq L \cdot \mathbb{E}[\mathbb{1}(x + \bar{b}_t > 0)(x + \bar{b}_t)x] + \mathbb{E}[|x| \mathbb{1}(x + \bar{b}_t \leq 0)] \cdot (d \vee n)^{-c_0} \\ &\leq L \cdot \left(\frac{|\bar{b}_t|}{\sqrt{2\pi}} \exp(-\bar{b}_t^2/2) + \Phi(|\bar{b}_t|) + \frac{\bar{b}_t}{\sqrt{2\pi}} \exp(-\bar{b}_t^2/2) \right) + C(d \vee n)^{-c_0}. \end{aligned}$$

4266 Here, the last inequality holds by the following integral calculation:
4267

$$4268 \int_{\bar{b}}^{\infty} xp(x)dx = p(\bar{b}), \quad \int_{\bar{b}}^{\infty} x^2 p(x)dx = \bar{b}p(\bar{b}) + \Phi(\bar{b})$$

4271 for the standard normal distribution $p(x) = \exp(-x^2/2)/\sqrt{2\pi}$. For $\bar{b}_t < 0$, the first and the last term
4272 cancel in the bracket, and we conclude that $\hat{\varphi}_1(b_t) \leq 2C_0L\Phi(|\bar{b}_t|)$ as $(d \vee n)^{-c_0}$ can be sufficiently
4273 small. On the other hand, using the condition $\varphi(x; b_t) \geq x\phi'(x + b) \geq C_0x(x + b_t)$ for $x \geq -b_t$
4274 by [Definition B.3](#), we have

$$4275 \hat{\varphi}_1(b_t) \geq C_0\mathbb{E}[\mathbb{1}(x + b_t > 0)(x + b_t)x] + \mathbb{E}[\varphi(x; b_t)x \mathbb{1}(-\bar{b}_t \leq x \leq -b_t)] - (n \vee d)^{-c_0}\mathbb{E}[|x|].$$

4277 Here, we recall definition $\varphi(x; b) = \phi(x + b) + x \cdot \phi'(x + b)$. Therefore, $\varphi(x; b) \geq \phi(x + b)$ for
4278 $x > 0$. By [Definition B.3](#), we know that $\phi'(x + b) \geq 0$ for all x . Since $-\bar{b}_t > 0$, we have for
4279 $x \in [-\bar{b}_t, -b_t]$ that

$$4281 \varphi(x; b_t) \geq \phi(x + b_t) \geq -(n \vee d)^{-c_0},$$

4283 where the last inequality holds by the monotonicity of ϕ . Therefore, we conclude that

$$4285 \hat{\varphi}_1(b_t) \geq C_0\mathbb{E}[\mathbb{1}(x + b_t > 0)(x + b_t)x] - C \cdot (n \vee d)^{-c_0} \geq \frac{C_0}{2}\Phi(|b_t|).$$

4287 Since we can make $\kappa_0 = |b_t| - |\bar{b}_t|$ log-polynomially small, e.g., $\kappa_0 = (\log(n \vee d))^{-C}$, for $|\bar{b}_t| =$
4288 $\Theta(\log(n \vee d)^C)$, we have $2\Phi(|\bar{b}_t|) \geq \Phi(|b_t|) \geq \frac{\Phi(|\bar{b}_t|)}{2}$. This completes the proof. \square
4289

4291 H.4.3 PROOF OF [THEOREM F.11](#)

4293 *Proof of [Theorem F.11](#). Lower bounding the signal term.* Let us lower bound the signal term.
4294 Note that by the monotonicity assumption in [Definition B.3](#),

$$4295 \varphi(x; b_t) \big|_{x > -b_t} = \phi(x + b_t) + x\phi'(x + b_t) \big|_{x > -b_t} \geq C_0x.$$

4297 For $x \in (-\bar{b}_t, b_t)$, we have $\varphi(x; b_t) \geq \varphi(-\bar{b}_t; b_t) \geq -(d \vee n)^{-c_0}$. Together, we conclude that

$$\begin{aligned} 4300 & \sum_{l=1}^{N_2} \mathbb{E}_{x \sim \mathcal{N}(0,1)} \left[\theta_l \cdot \varphi \left(\sqrt{1 - \theta_l^2}x + \theta_l\sqrt{d}\alpha_{-1,t-1}; b_t \right) \right] \\ 4301 & \geq \sum_{l=1}^{N_2} \mathbb{E}_{x \sim \mathcal{N}(0,1)} \left[\theta_l \mathbb{1} \left(x + \frac{\theta_l\sqrt{d}\alpha_{-1,t-1} + b_t}{\sqrt{1 - \theta_l^2}} > 0 \right) \cdot C_0 \left(\sqrt{1 - \theta_l^2}x + \theta_l\sqrt{d}\alpha_{-1,t-1} \right) \right] \\ 4302 & \quad - N_2(d \vee n)^{-c_0} \\ 4303 & \geq \sum_{l=1}^{N_2} \Phi \left(\frac{-b_t - \theta_l\sqrt{d}\alpha_{-1,t-1}}{\sqrt{1 - \theta_l^2}} \right) \cdot C_0\theta_l^2\sqrt{d}\alpha_{-1,t-1} - N_2(d \vee n)^{-c_0} \\ 4304 & \geq \frac{1 - o(1)}{2} \sum_{l=1}^{N_2} \mathbb{1} \left(\theta_l > \frac{-b_t}{\sqrt{d}\alpha_{-1,t-1}} \right) \cdot C_0\theta_l^2\sqrt{d}\alpha_{-1,t-1}, \end{aligned}$$

4313 where in the second inequality, it follows from the direct calculation of the integral of the Gaussian
4314 that $\mathbb{E}_{x \sim \mathcal{N}(0,1)}[\mathbb{1}(x > a)x] = p(a) > 0$ with $p(a)$ being the density of $\mathcal{N}(0, 1)$ at a . The $-(d \vee$
4315 $n)^{-c_0}$ on the right-hand side is negligible. Note that the indicator is selecting the larger half of θ_l ,
4316 and we can thereby obtain the following lower bound

$$4318 C^{-1}N_2 \cdot C_0\sqrt{d}\alpha_{-1,t-1} \cdot \bar{\theta}^2 Q_t, \quad \text{where } Q_t = \frac{1}{N_2} \sum_{l=1}^{N_2} \mathbb{1} \left(\theta_l > \frac{-b_t}{\sqrt{d}\alpha_{-1,t-1}} \right), \quad \bar{\theta}^2 = \frac{\|\theta\|_2^2}{N_2}.$$

4320 **Upper bounding the signal term.** To arrive at an upper bound, we use the fact that $\varphi(x; b_t) \leq$
 4321 $(d \vee n)^{-c_0} \mathbb{1}(x < -\bar{b}_t) + Lx \mathbb{1}(x \geq -\bar{b}_t)$ to obtain that
 4322

$$\begin{aligned} & \sum_{l=1}^{N_2} \mathbb{E}_{x \sim \mathcal{N}(0,1)} \left[\theta_l \cdot \varphi \left(\sqrt{1-\theta_l^2} x + \theta_l \sqrt{d} \alpha_{-1,t-1}; b_t \right) \right] \\ & \leq L \sum_{l=1}^{N_2} \mathbb{E}_{x \sim \mathcal{N}(0,1)} \left[\theta_l \mathbb{1} \left(x + \frac{\theta_l \sqrt{d} \alpha_{-1,t-1} + b_t}{\sqrt{1-\theta_l^2}} > 0 \right) \cdot \left(\sqrt{1-\theta_l^2} x + \theta_l \sqrt{d} \alpha_{-1,t-1} \right) \right] \\ & \quad + N_2 (d \vee n)^{-c_0} \\ & \leq CL \sum_{l=1}^{N_2} (\theta_l \sqrt{1-\theta_l^2} + \theta_l^2 \sqrt{d} \alpha_{-1,t-1}) \leq CL N_2 \bar{\theta}^2 \sqrt{d} \alpha_{-1,t-1}, \end{aligned}$$

4329 where the last second inequality holds by noting that $\mathbb{E}[\mathbb{1}(x > a)x] = p(|a|) \leq 1$, and the last one
 4330 holds by noting that $\sqrt{d} \alpha_{-1,t-1} \gg 1$. \square

I PROOFS FOR SAE DYNAMICS ANALYSIS

4333 In this section, we provide supplementary proofs for the results used in the proof of the main theorem
 4334 in §G.

I.1 PROOF OF THEOREM G.2

4343 Let us first prove that there must exists some $i \in [n]$ such that $\bar{\theta}_i^2 \geq 1/s$. Since the total sum
 4344 $\sum_{j \in [n]} \sum_{l \in \mathcal{D}_j} H_{l,j}^2 = \sum_{l=1}^N \|h_l\|_2^2 = N$, and there are at most Ns non-zero entries in the weight
 4345 matrix H , we have the average

$$4347 \bar{H}^2 := \frac{\sum_{l=1}^N \sum_{j=1}^n H_{l,j}^2}{\sum_{l=1}^N \sum_{j=1}^n \mathbb{1}(H_{l,j} > 0)} \geq \frac{N}{Ns} = \frac{1}{s}.$$

4350 On the other hand, we also have

$$4352 \bar{H}^2 = \frac{\sum_{j=1}^n |\mathcal{D}_j| \cdot \bar{\theta}_j^2}{\sum_{j=1}^n |\mathcal{D}_j|} \leq \max_{j \in [n]} \bar{\theta}_j^2.$$

4355 It thus follows that there exists some $i \in [n]$ such that $\bar{\theta}_i^2 \geq 1/s$.

4356 **Proof of the first inequality.** By definition of h_* , we have $h_*^2 \geq \hbar_{q,*}^2$ for $q = 4$. To prove the
 4357 upper bound on h_* , we just need to show that $\hbar_{q,*}^2 \geq \bar{\theta}_j^2$ for any $j \in [n]$. Let us consider the kernel
 4358 function in the definition of $\hbar_{q,*}$:

$$4360 f(x) = \Phi \left(\frac{-\bar{b}}{\sqrt{\frac{q-1}{q}x + \frac{1}{q}}} \right).$$

4363 In particular, we aim to show that $f(\cdot)$ is convex for $x \in [0, 1]$. The second derivative of $f(x)$ is
 4364 given by

$$4366 f''(x) = p \left(\frac{-\bar{b}}{\sqrt{\frac{q-1}{q}x + \frac{1}{q}}} \right) \cdot \frac{\bar{b} \left(\frac{q-1}{q} \right)^2}{4 \left(\frac{q-1}{q}x + \frac{1}{q} \right)^{7/2}} \cdot \left[3 \left(\frac{q-1}{q}x + \frac{1}{q} \right) - \bar{b}^2 \right].$$

4369 Using the property that $\bar{b} < -\sqrt{3}$, we conclude that $f''(x) \geq 0$ for $x \in [0, 1]$, and f is convex. Now,
 4370 by definition of $\hbar_{q,*}$, we have

$$4372 f(\hbar_{q,*}^2) \geq \max_{j \in [n]} \frac{1}{|\mathcal{D}_j|} \sum_{l \in \mathcal{D}_j} f(H_{l,j}^2) \geq \max_{j \in [n]} f \left(\frac{1}{|\mathcal{D}_j|} \sum_{l \in \mathcal{D}_j} H_{l,j}^2 \right) = \max_{j \in [n]} f(\bar{\theta}_j^2), \quad (I.1)$$

4374 where the second inequality follows from the convexity of $f(x)$ and Jensen's inequality. Moreover,
 4375 the first derivative of $f(x)$ is given by
 4376

$$4377 f'(x) = -p \left(\frac{-\bar{b}}{\sqrt{\frac{q-1}{q}x + \frac{1}{q}}} \right) \frac{\bar{b}(\frac{q-1}{q})}{2(\frac{q-1}{q}x + \frac{1}{q})^{3/2}} > 0.$$

4380 Therefore, we have by (I.1) that $\hbar_{q,*}^2 \geq \bar{\theta}_j^2$ for any $j \in [n]$ and $q = 4$. Consequently, $\hbar_*^2 \geq \hbar_{4,*}^2 \geq$
 4381 $\max_{j \in [n]} \bar{\theta}_j^2 \geq 1/s$. This proves the first inequality.
 4382

4383 **Proof of the second inequality.** Since we have by definition of $\bar{\theta}_i^2$ that
 4384

$$4386 \bar{\theta}_i^2 = \frac{\|\theta_i\|_2^2}{|\mathcal{D}_i|} \leq (1 - \hat{\mathbb{Q}}_i(h_i)) \cdot h_i^2 + \hat{\mathbb{Q}}(h_i) \cdot 1 \leq \hat{\mathbb{Q}}_i(h_i) + h_i^2,$$

4388 it follows from the condition $\bar{\theta}_i^2 > \hat{\mathbb{Q}}_i(h_i)$ that
 4389

$$4390 h_i \geq \sqrt{\bar{\theta}_i^2 - \hat{\mathbb{Q}}(s_i^{-1/2})}.$$

4392 This completes the proof of the third inequality. Hence, we have completed the proof of **Theo-**
 4393 **rem G.2.**
 4394

4395 I.2 PROOFS FOR CONCENTRATION RESULTS COMBINED

4397 In the following, we present the proofs of the lemmas and propositions used in §G.2.
 4398

4399 I.2.1 PROOF OF THEOREM G.5

4400 From $\Phi(|\bar{b}_t|) \gg Ls\rho_1(t \log n)^3$, we deduce that $t \log n \ll n$, since $Ls\rho_1 n^3 \gg 1 \geq \Phi(|\bar{b}_t|)$
 4401 (recalling that $\rho_1 \geq n^{-1}$). Hence, we can directly apply **Theorem G.4** in what follows. Using the
 4402 bound in **Theorem F.7** together with **Theorem F.8**, if we further assume $\Phi(|\bar{b}_t|) \gg Ls\rho_1(t \log n)^3$,
 4403 then the desired concentration result is obtained as follows:
 4404

$$4405 \langle z_\tau, E^\top \varphi(Ey_t^*; b_t) \rangle = (1 \pm o(1)) \cdot N\alpha_{\tau,t-1}\hat{\varphi}_1(b_t) \pm C\sqrt{1 - \alpha_{\tau,t-1}^2} \cdot \sqrt{\|E^\top \varphi(Ey_t^*; b_t)\|_2^2 \cdot t \log(n)}. \quad (\text{I.2})$$

4408 Here, we use the fact that $|N_1/N - 1| \leq \rho_1 \ll 1$, where $\rho_1 \ll 1$ can also be deduced from
 4409 the condition $\Phi(|\bar{b}_t|) \gg Ls\rho_1(t \log(n))^3$. For the concentration result for $\langle z_\tau, F^\top \varphi(Fy_t + \theta \cdot$
 4410 $v^\top \bar{w}_{t-1}; b_t) \rangle$ in **Theorem F.9**, we use the Stein's lemma to derive that
 4411

$$4412 \begin{aligned} & \frac{N_2}{N} \sum_{l=1}^{N_2} |\alpha_{\tau,t-1}| \sqrt{1 - \theta_l^2} \cdot \mathbb{E}_{x \sim \mathcal{N}(0,1)} \left[x \varphi \left(\sqrt{1 - \theta_l^2} x + \theta_l v^\top \bar{w}_{t-1}; b_t \right) \right] \\ & \leq \frac{N_2 |\alpha_{\tau,t-1}|}{N} \sum_{l=1}^{N_2} (1 - \theta_l^2) \cdot \mathbb{E}_{x \sim \mathcal{N}(0,1)} \left[\varphi' \left(\sqrt{1 - \theta_l^2} x + \theta_l v^\top \bar{w}_{t-1}; b_t \right) \right] \\ & \leq \rho_1 |\alpha_{\tau,t-1}| L = o(\Phi(|\bar{b}_t|) \cdot |\alpha_{\tau,t-1}|) \end{aligned} \quad (\text{I.3})$$

4419 where in the second inequality we use the Lipschitzness of φ and in the last inequality we use
 4420 $Ls\rho_1(t \log n)^3 \ll \Phi(|\bar{b}_t|)$. Moreover, we have
 4421

$$4422 \begin{aligned} & L|\alpha_{\tau,t-1}| \cdot \frac{N_2}{N} \cdot (\sqrt{t \log(n)} + \|v\|_2 |\alpha_{\tau,t-1}|) \cdot \sqrt{\rho_2 s} \cdot (t \log(n))^{3/2} \\ & \leq L|\alpha_{\tau,t-1}| \cdot \rho_1 \sqrt{\rho_2 s} (t \log n)^2 + \rho_1 \sqrt{\rho_2 s} (t \log n)^{3/2} \cdot d|\alpha_{\tau,t-1} \alpha_{\tau,t-1}| \\ & \leq o(\Phi(|\bar{b}_t|) \cdot |\alpha_{\tau,t-1}|) + \rho_1 \sqrt{\rho_2 s} (t \log n)^{3/2} \cdot d|\alpha_{\tau,t-1} \alpha_{\tau,t-1}|. \end{aligned} \quad (\text{I.4})$$

4427 where in the first inequality, we use $N_2/N \leq \rho_1$ by definition and in the second inequality, we use
 4428 the fact $\rho_1 \sqrt{\rho_2 s} (t \log n)^2 \leq \rho_1 (t \log n)^2 \ll \Phi(|\bar{b}_t|)$ under the condition $Ls\rho_1(t \log n)^3 \ll \Phi(|\bar{b}_t|)$.
 4429

4428 Moreover, by **Theorem F.8**, we know that $\hat{\varphi}_1(b_t) = \Omega(\Phi(|\bar{b}_t|))$. Consequently, by combining (I.3)
 4429 and (I.4) with the upper bound in **Theorem F.9**, we have
 4430

$$\begin{aligned} 4431 & |\langle z_\tau, F^\top \varphi(Fy_t + \theta \cdot v^\top \bar{w}_{t-1}; b_t) \rangle| \\ 4432 & \leq o(N|\alpha_{\tau,t-1}|\hat{\varphi}_1(b_t)) + C\sqrt{1 - \alpha_{\tau,t-1}^2} \cdot \sqrt{\|F^\top \varphi(Fy_t + \theta \cdot v^\top \bar{w}_{t-1}; b_t)\|_2^2 \cdot t \log(n)} \\ 4433 & + CNL\rho_1\sqrt{\rho_2 s}(t \log n)^{3/2} \cdot d|\alpha_{\tau,t-1}\alpha_{-1,t-1}|. \end{aligned} \quad (\text{I.5})$$

4434 Let us consider the good event with respect to some universal constant $C > 0$:
 4435

$$\begin{aligned} 4436 & \mathcal{E} : \left\{ \|z_\tau\|_\infty \leq C\sqrt{\log(tn)}, \quad \forall \tau \leq T \right\}. \end{aligned}$$

4437 As we increase the constant C , the failure probability of the event \mathcal{E} can be made polynomially
 4438 small, e.g., $1 - n^{-c}$ for some other constant $c > 0$ (See **Theorem J.2**). Conditioned on the success
 4439 of this event, we have for the non-Gaussian components that
 4440

$$\begin{aligned} 4441 & |\langle z_\tau, \Delta E_t \rangle + \langle z_\tau, \Delta F_t \rangle| \leq C\sqrt{\log(tn)} \cdot (\|\Delta E_t\|_1 + \|\Delta F_t\|_1) \\ 4442 & \leq CLN\sqrt{\log(n)} \cdot (\sqrt{s\rho_1}(\sqrt{\Phi(|\bar{b}_t|)} + \sqrt{s\rho_1 t \log n}) \cdot \sqrt{d}\beta_{t-1} + \sqrt{s\rho_1}|\bar{b}_t|d\beta_{t-1}^2) \\ 4443 & + CLN\sqrt{\log(n)} \cdot \rho_1\sqrt{sd}\beta_{t-1} \\ 4444 & \leq CLN\sqrt{\log n} \cdot (\sqrt{s\rho_1 d\Phi(|\bar{b}_t|)}\beta_{t-1} + \sqrt{s\rho_1}|\bar{b}_t|d\beta_{t-1}^2), \end{aligned} \quad (\text{I.6})$$

4445 where in the second inequality, we invoke **Theorem F.12** and **Theorem F.13** to bound the ℓ_1 norm of
 4446 the error terms, and also the fact that t is at most polynomial in n . In the last inequality, we use the
 4447 fact that $\|\Delta y_t\|_2 \leq \sqrt{d}\beta_{t-1}$ by **Theorem F.1**. Now, we combine the derived concentration results in
 4448 (I.2), (I.5) and (I.6) with $1 - \alpha_{\tau,t-1}^2 \leq 1$ and the upper bound for $\|E^\top \varphi(Ey_t^*; b_t)\|_2^2 + \|F^\top \varphi(Fy_t + \theta \cdot v^\top \bar{w}_{t-1}; b_t)\|_2^2$ in **Theorem G.4** to obtain that
 4449

$$\begin{aligned} 4450 & \langle z_\tau, u_t \rangle = \langle z_\tau, E^\top \varphi(Ey_t^*; b_t) \rangle + \langle z_\tau, F^\top \varphi(Fy_t + \theta \cdot v^\top \bar{w}_{t-1}; b_t) \rangle + \langle z_\tau, \Delta E_t \rangle + \langle z_\tau, \Delta F_t \rangle \\ 4451 & = N\alpha_{\tau,t-1}\hat{\varphi}_1(b_t) \cdot (1 \pm o(1)) \pm CLN\rho_1\sqrt{\rho_2 s}(t \log n)^{3/2} \cdot d|\alpha_{\tau,t-1}\alpha_{-1,t-1}| \\ 4452 & \pm CN\rho_1L\sqrt{t \log n} \cdot \xi_t \pm CLN\sqrt{\log n} \cdot (\sqrt{s\rho_1 d\Phi(|\bar{b}_t|)}\beta_{t-1} + \sqrt{s\rho_1}|\bar{b}_t|d\beta_{t-1}^2). \end{aligned}$$

4453 Hence, we complete the proof of the **Theorem G.5**.
 4454

4455 I.2.2 PROOF OF THEOREM G.6

4456 Recall by definition of w_t , $\langle v, w_t \rangle / \|v\|_2$ can be decomposed into
 4457

$$\frac{\langle v, w_t \rangle}{\|v\|_2} = \langle z_{-1}, u_t \rangle + \|v\|_2 \cdot \theta^\top \varphi(Fy_t + \theta \cdot v^\top \bar{w}_{t-1}; b_t) + \eta^{-1}\alpha_{-1,t-1}. \quad (\text{I.7})$$

4458 Taking $\tau = -1$ in **Theorem G.5**, we have
 4459

$$\begin{aligned} 4460 & \langle z_{-1}, u_t \rangle = N\alpha_{-1,t-1}\hat{\varphi}_1(b_t) \cdot (1 \pm o(1)) \pm CLN\rho_1\sqrt{\rho_2 s}(t \log n)^{3/2} \cdot d|\alpha_{-1,t-1}|^2 \\ 4461 & \pm CN\rho_1L\sqrt{t \log n} \cdot \xi_t \pm CLN\sqrt{\log n} \cdot (\sqrt{s\rho_1 d\Phi(|\bar{b}_t|)}\beta_{t-1} + \sqrt{s\rho_1}|\bar{b}_t|d\beta_{t-1}^2). \end{aligned} \quad (\text{I.8})$$

4462 Moreover, by a direct decomposition of the second term, we have
 4463

$$\begin{aligned} 4464 & \|v\|_2 \theta^\top \varphi(Fy_t + \theta \cdot v^\top \bar{w}_{t-1}; b_t) = \|v\|_2 \theta^\top \varphi(Fy_t^* + \theta \cdot v^\top \bar{w}_{t-1}; b_t) + \|v\|_2 \theta^\top \Delta \varphi_{F,t} \\ 4465 & = \|v\|_2 \theta^\top \varphi(Fy_t^* + \theta \cdot v^\top \bar{w}_{t-1}; b_t) \pm \|v\|_2 \|\theta\|_2 \cdot \|\Delta \varphi_{F,t}\|_2. \end{aligned}$$

4466 Notice that $\|v\|_2 = \sqrt{d} \cdot (1 \pm C\sqrt{\log(n)/d})$ with probability at least $1 - n^{-c}$ by concentration of χ^2
 4467 random variables (see **Theorem J.1**). By **Theorem F.13**, we have $\|\Delta \varphi_{F,t}\|_2 \leq \sqrt{\rho_2 N_2 L} \cdot \|\Delta y_t\|_2 \leq$
 4468 $\sqrt{\rho_2 N_2 d} L \beta_{t-1}$. Therefore,
 4469

$$\|v\|_2 \|\theta\|_2 \cdot \|\Delta \varphi_{F,t}\|_2 \leq C\sqrt{d} \cdot \sqrt{N_2 \theta^2} \cdot L\sqrt{\rho_2 N_2 d} L \beta_{t-1} \leq CLN\rho_1 d\sqrt{\rho_2} \beta_{t-1}.$$

Now, combining the concentration results for $\theta^\top \varphi(F^\top y_t^* + \theta \cdot v^\top \bar{w}_{t-1}; b_t)$ in [Theorem F.10](#), we obtain that

$$\begin{aligned} & \|v\|_2 \theta^\top \varphi(F y_t + \theta \cdot v^\top \bar{w}_{t-1}; b_t) \\ &= (1 \pm o(1)) N \psi_t \pm C N L \rho_1 \sqrt{\rho_2 s} (t \log n)^{3/2} d \alpha_{-1,t-1} \pm C N L \rho_1 d \sqrt{\rho_2} \beta_{t-1}. \end{aligned} \quad (\text{I.9})$$

Furthermore, we have by [Theorem F.11](#) that $N \psi_t \gtrsim C_0 \bar{\theta}^2 Q_t \cdot N_2 d \alpha_{-1,t-1}$. Under the conditions

$$\frac{N_2}{N} C_0 \bar{\theta}^2 Q_t \gg \max \left\{ L \rho_1 \sqrt{\rho_2 s} (t \log n)^{3/2}, L d^{-1} \Phi(|\bar{b}_t|), L \sqrt{t \log n} \rho_1 \frac{\xi_t}{d \alpha_{-1,t-1}} \right\},$$

we conclude by also noting that $\sqrt{d} \alpha_{-1,t-1} \gg 1$ that

$$N \psi_t \gg \max \left\{ C N L \rho_1 \sqrt{\rho_2 s} (t \log n)^{3/2} \cdot d \alpha_{-1,t-1}, N \alpha_{-1,t-1} \hat{\varphi}_1(b_t), C N \rho_1 L \sqrt{t \log n} \cdot \xi_t \right\}.$$

Now we plug (I.9) and (I.8) into (I.7) to obtain

$$\begin{aligned} \frac{\langle v, w_t \rangle}{\|v\|_2} &= (1 \pm o(1)) N \psi_t + \eta^{-1} \alpha_{-1,t-1} \\ &\quad \pm C L N \sqrt{d \rho_1 s \log n} \cdot \left(\sqrt{\Phi(|\bar{b}_t|)} + \sqrt{\rho_1 d \rho_2 s^{-1}} + \sqrt{\rho_1 d} |\bar{b}_t| \beta_{t-1} \right) \cdot \beta_{t-1}. \end{aligned} \quad (\text{I.10})$$

Finally, under the conditions $\sqrt{ts \log n} |\bar{b}_t| \beta_{t-1} \ll 1$, $st \log n \cdot \Phi(|\bar{b}_t|) \ll \rho_1 d$, we have

$$\sqrt{d \rho_1 s \log n} \cdot \left(\sqrt{\Phi(|\bar{b}_t|)} + \sqrt{\rho_1 d \rho_2 s^{-1}} + \sqrt{\rho_1 d} |\bar{b}_t| \beta_{t-1} \right) \leq C \rho_1 d.$$

Here, we use the fact that $\rho_2 \log n \ll 1$, which can be deduced from the following inequality under the condition $\frac{N_2}{N} C_0 \bar{\theta}^2 Q_t \gg L \rho_1 \sqrt{\rho_2 s} (t \log n)^{3/2}$:

$$\rho_1 \gtrsim \frac{N_2}{N} C_0 \bar{\theta}^2 Q_t \gg L \rho_1 \sqrt{\rho_2 s} (t \log n)^{3/2} \geq \rho_1 \sqrt{\rho_2 \log n}.$$

Moreover, under the condition

$$\frac{N_2}{N} C_0 \bar{\theta}^2 Q_t \gg C L \rho_1 \cdot \frac{\beta_{t-1}}{\alpha_{-1,t-1}},$$

we conclude that the second line of (I.10) can be upper bounded by $o(N \psi_t)$. Hence, the proof of [Theorem G.6](#) is completed.

I.2.3 PROOF OF THEOREM G.7

Recall from the definition of w_t that

$$\begin{aligned} \|P_{w_{-1:0}}^\perp (w_t - \eta^{-1} \bar{w}_{t-1})\|_2^2 &= \sum_{\tau=1}^{t-1} \left(\langle z_\tau, u_t \rangle - \langle P_{u_{1:\tau}} z_\tau, u_t \rangle + \frac{\langle u_\tau^\perp, u_t \rangle}{\|u_\tau^\perp\|_2} \cdot \frac{\|w_\tau^\perp\|_2}{\|u_\tau^\perp\|_2} \right)^2 \\ &\quad + \|P_{w_{-1:t-1}}^\perp \tilde{z}_t\|_2^2 \cdot \|u_t^\perp\|_2^2. \end{aligned} \quad (\text{I.11})$$

Lemma I.1. Assume that $T \leq \sqrt{d}$ and $d \in (n^{1/c_1}, n^{c_1})$ for some universal constant $c_1 \in (0, 1)$. Then there exist universal constants $c, C > 0$ such that with probability at least $1 - n^{-c}$ over the randomness of i.i.d. standard Gaussian vectors $z_{-1:T}$, for all $t \in [T]$,

$$\sum_{\tau=1}^{t-1} \langle P_{u_{1:\tau}} z_\tau, u_t \rangle^2 + \sum_{\tau=1}^{t-1} \left(\frac{\langle u_\tau^\perp, u_t \rangle}{\|u_\tau^\perp\|_2} \cdot \frac{\|w_\tau^\perp\|_2}{\|u_\tau^\perp\|_2} \right)^2 + \|P_{w_{-1:t-1}}^\perp \tilde{z}_t\|_2^2 \cdot \|u_t^\perp\|_2^2 \leq C d \cdot \|u_t\|_2^2.$$

Proof. See §I.5.1 for a detailed proof. \square

Lemma I.2 (Upper Bound for $\|u_t\|_2^2$). If $t \log n \ll n$, $-\bar{b}_t = \Theta(\sqrt{\log n})$, $\rho_1 \ll 1$, it holds with probability at least $1 - n^{-c}$ for all $t \leq T < \sqrt{d}$ that

$$\|u\|_2 \leq C N L \rho_1 (\xi_t + \sqrt{d} \beta_{t-1}).$$

4536 *Proof.* See §I.5.2 for a detailed proof. □

4537
4538 Combining **Theorems I.1** and **I.2**, it holds with probability at least $1 - n^{-c}$ for all $t \leq \sqrt{d}$,

$$\begin{aligned} 4540 \quad & \sqrt{\sum_{\tau=1}^{t-1} \langle P_{u_{1:\tau}} z_\tau, u_t \rangle^2} + \sum_{\tau=1}^{t-1} \left(\frac{\langle u_\tau^\perp, u_t \rangle}{\|u_\tau^\perp\|_2} \cdot \frac{\|w_\tau^\perp\|_2}{\|u_\tau^\perp\|_2} \right)^2 + \|P_{w_{-1:t-1}}^\perp \tilde{z}_t\|_2^2 \cdot \|u_t^\perp\|_2^2 \\ 4541 \quad & \leq C\sqrt{d} \cdot \|u_t\|_2 \leq CNL\rho_1\sqrt{d}(\xi_t + \sqrt{d}\beta_{t-1}). \end{aligned} \quad (\text{I.12})$$

4545 It remains to upper bound $\sum_{\tau=1}^{t-1} \langle z_\tau, u_t \rangle^2$. Recall that $\beta_{t-1} = \sqrt{1 - \alpha_{-1,t-1}^2 - \alpha_{0,t-1}^2} = \sqrt{\sum_{\tau=1}^{t-1} \alpha_{\tau,t-1}^2}$. Using **Theorem G.5**, we conclude that

$$\begin{aligned} 4549 \quad & \sqrt{\sum_{\tau=1}^{t-1} \langle z_\tau, u_t \rangle^2} \leq CN\beta_{t-1}\hat{\varphi}_1(b_t) \cdot (1 \pm o(1)) + CNL\rho_1\sqrt{\rho_2 s}(t \log n)^{3/2} \cdot d|\alpha_{-1,t-1}|\beta_{t-1} \\ 4550 \quad & + CN\rho_1 Lt\sqrt{\log n} \cdot \xi_t + CLN\sqrt{t \log n} \cdot (\sqrt{s\rho_1 d\Phi(|\bar{b}_t|)} + \sqrt{s\rho_1}|\bar{b}_t|d\beta_{t-1}) \cdot \beta_{t-1} \\ 4551 \quad & \leq CN\rho_1 Lt\sqrt{\log n} \cdot \xi_t + CLN\rho_1 d\beta_{t-1}, \end{aligned} \quad (\text{I.13})$$

4556 where in the first inequality, the β_{t-1} terms in the first line is obtained by the Pythagorean sum with
4557 respect to $\alpha_{\tau,t-1}$ for $\tau = 1, \dots, t-1$. In the second line, an additional $\sqrt{t-1}$ factor is added to the
4558 upper bound for $|\langle z_\tau, u_t \rangle|$ since $\sqrt{\sum_{\tau=1}^{t-1} x_\tau^2} \leq \sqrt{t} \cdot \max_{\tau=1,\dots,t-1} |x_\tau|$. In the last inequality, we
4559 use the conditions $\sqrt{\rho_2 s}(t \log n)^{3/2} \ll 1$, $\Phi(|\bar{b}_t|) \ll \rho_1 d(st \log n)^{-1}$, and $\sqrt{s \log n}|\bar{b}_t|\beta_{t-1} \ll 1$
4560 to upper bound all the terms containing β_{t-1} by $CLN\rho_1 d\beta_{t-1}$. Plugging (I.12) and (I.13) into
4561 (I.11), we obtain
4562

$$4563 \quad \|P_{w_{-1:0}}^\perp w_t\|_2 \leq C\sqrt{d} \cdot \|u_t\|_2 + C\sqrt{\sum_{\tau=1}^{t-1} \langle z_\tau, u_t \rangle^2 + \eta^{-1}\beta_{t-1}^2} \leq CNL\rho_1\sqrt{d}(\xi_t + \sqrt{d}\beta_{t-1}) + \eta^{-1}\beta_{t-1}.$$

4567 Here, we use the fact that $t\sqrt{\log n} \leq \sqrt{d}$, which is implied by the condition $\rho_1 d(st \log n)^{-1} \gg \Phi(|\bar{b}_t|) \gg L\rho_1(t \log n)^3$. Lastly, by condition $\eta^{-1} \ll N\Phi(|\bar{b}_t|)$ and the fact that $L\rho_1 d \gg \Phi(|\bar{b}_t|)$
4568 by assumption, we can absorb the $\eta^{-1}\beta_{t-1}$ term into the $CLN\rho_1 d\beta_{t-1}$ term. Hence, we complete
4569 the proof of **Theorem G.7**.
4570

4572 I.2.4 PROOF OF THEOREM G.8

4573 Recall by definition of w_t that

$$4576 \quad \|P_{w_{-1:0}} w_t\|_2 = \sqrt{\frac{\langle v, w_t \rangle^2}{\|v\|_2^2} + (\langle z_0, u_t \rangle + \eta^{-1}\alpha_{0,t-1})^2}.$$

4579 By **Theorem G.6**, we already have $\langle v, w_t \rangle / \|v\|_2 = (1 \pm o(1))N\psi_t$. It remains to characterize
4580 $\langle z_0, u_t \rangle$. We have by **Theorem G.5** that

$$\begin{aligned} 4581 \quad & \langle z_0, u_t \rangle = N\alpha_{0,t-1}\hat{\varphi}_1(b_t) \cdot (1 \pm o(1)) \pm CNL\rho_1\sqrt{\rho_2 s}(t \log n)^{3/2} \cdot d|\alpha_{0,t-1}\alpha_{-1,t-1}| \\ 4582 \quad & \pm CN\rho_1 L\sqrt{t \log n} \cdot \xi_t \pm CLN \cdot (\sqrt{s \log(n)\rho_1 d\Phi(|\bar{b}_t|)} + \sqrt{s \log(n)}\rho_1|\bar{b}_t|d\beta_{t-1}) \cdot \beta_{t-1} \\ 4583 \quad & = N\alpha_{0,t-1}\hat{\varphi}_1(b_t) \cdot (1 \pm o(1)) \pm CNL\rho_1\sqrt{\rho_2 s}(t \log n)^{3/2} \cdot d|\alpha_{0,t-1}\alpha_{-1,t-1}| \\ 4584 \quad & \pm CN\rho_1 L\sqrt{t \log n} \cdot \xi_t \pm CLN\rho_1 d\beta_{t-1} \end{aligned}$$

4585 Here, in the last term we use the condition $\sqrt{ts \log n}|\bar{b}_t|\beta_{t-1} \ll 1$ to upper bound
4586 $\sqrt{s \log n}|\bar{b}_t|\beta_{t-1} \ll 1$, and $\rho_1 d(st \log n)^{-1} \gg \Phi(|\bar{b}_t|)$ to upper bound $\sqrt{s \log(n)\rho_1 d\Phi(|\bar{b}_t|)} \leq$
4587

4590 $C\rho_1 d$. Note that the fluctuation terms are similar to the one for $\langle z_{-1}, u_t \rangle$ in the proof of [Theorem G.6](#). Specifically, under the same conditions
 4591
 4592

$$4593 \frac{N_2}{N} C_0 \bar{\theta}^2 Q_t \gg \max \left\{ L\rho_1 \sqrt{\rho_2 s} (t \log n)^{3/2}, L\sqrt{t \log n} \rho_1 \frac{\xi_t}{d\alpha_{-1,t-1}}, L\rho_1 \frac{\beta_{t-1}}{\alpha_{-1,t-1}} \right\}$$

4595 we have
 4596

$$4597 N\psi_t \gg CNL \cdot \max \left\{ \rho_1 \sqrt{\rho_2 s} (t \log n)^{3/2} \cdot d|\alpha_{0,t-1} \alpha_{-1,t-1}|, \rho_1 \sqrt{t \log n} \cdot \xi_t, \rho_1 d\beta_{t-1} \right\}.$$

4598 Thus, we conclude that $\langle z_0, u_t \rangle = N\alpha_{0,t-1} \hat{\varphi}_1(b_t) \cdot (1 \pm o(1)) \pm o(N\psi_t)$. Thus,
 4599

$$4600 \begin{aligned} \|P_{w_{-1,0}} w_t\|_2 &= \sqrt{\frac{\langle v, w_t \rangle^2}{\|v\|_2^2} + (\langle z_0, u_t \rangle + \eta^{-1} \alpha_{0,t-1})^2} \\ 4601 &= \sqrt{(N\psi_t \cdot (1 \pm o(1)))^2 + (N\alpha_{0,t-1} \hat{\varphi}_1(b_t) \cdot (1 \pm o(1)) \pm o(N\psi_t) + \eta^{-1} \alpha_{0,t-1})^2} \\ 4602 &= (1 \pm o(1)) \cdot \sqrt{(N\psi_t)^2 + (N\alpha_{0,t-1} \hat{\varphi}_1(b_t))^2}. \end{aligned}$$

4603 Here, the last inequality holds by also noting that $\eta^{-1} \ll N\Phi(|\bar{b}_t|) \leq CN\hat{\varphi}_1(b_t)$. This completes
 4604 the proof.
 4605

4610 I.3 PROOFS FOR RECURSION ANALYSIS

4611 I.3.1 PROOF OF [THEOREM G.10](#)

4612 What we need to prove here is that all the conditions in [Theorem G.9](#) hold for the current time step
 4613 t if the conditions in [Theorem G.10](#) hold. This is because the conditions in [Theorem G.9](#) are the
 4614 union of the conditions in [Theorems G.4](#) to [G.8](#). In the following, we check all the listed conditions
 4615 one by one.
 4616

4617 **Step I: Checking all conditions in [Theorem G.9](#).** For the first step, we divide the conditions in
 4618 [Theorem G.9](#) into three groups.
 4619

4620 **Group 1: Implication of [Cond.\(i\)](#) and [Cond.\(I\)](#).** We first notice that since $t \leq T$, conditions
 4621

$$4622 -\bar{b}_t = \Theta(\sqrt{\log n}) < \zeta_1, \quad \kappa_0 |\bar{b}_t| = O(1), \quad \sqrt{\rho_2 s} (t \log n)^{3/2} \ll 1, \quad \eta^{-1} \ll N\Phi(|\bar{b}_t|) \wedge N_2 d C_0 \bar{\theta}^2 Q_t$$

4623 are guaranteed by [Cond.\(i\)](#). Here, we need to be more careful about condition $\eta^{-1} \ll N_2 d C_0 \bar{\theta}^2 Q_t$,
 4624 as Q_t is a function of t , and what we directly have in [Cond.\(i\)](#) is for Q_1 only. By definition $Q_t =$
 4625 $\frac{1}{N_2} \sum_{l=1}^{N_2} \mathbf{1}(\theta_l > \frac{-b}{\sqrt{d\alpha_{-1,t-1}}})$, we note that Q_t is nondecreasing in $\alpha_{-1,t-1}$. Therefore, we have the
 4626 following fact:
 4627

4628 **Fact I.3.** *If $\alpha_{-1,t-1} \geq \alpha_{-1,0}$, then $Q_t \geq Q_1$.*
 4629

4630 In fact, the condition $\alpha_{-1,t-1} \geq \alpha_{-1,0}$ is automatically guaranteed by [Cond.\(I\)](#). Therefore, the
 4631 condition $\eta^{-1} \ll N_2 d C_0 \bar{\theta}^2 Q_t$ will hold for all successive t as long as it holds for $t = 1$ and
 4632 $\alpha_{-1,t-1} \geq \alpha_{-1,0}$. Meanwhile, we also have by the same reasoning that
 4633

$$\sqrt{d\alpha_{-1,t-1}} \geq \sqrt{d\alpha_{-1,0}} \gg 1$$

4634 where the last inequality is guaranteed by **InitCond-1**. The condition $\sqrt{ts \log n} |\bar{b}_t| \beta_{t-1} \ll 1$ is
 4635 guaranteed by [Cond.\(I\)](#) as well.
 4636

4637 **Group 2: Implication of [Cond.\(ii\)](#) to [Cond.\(iii\)](#).** The direct implication of [Cond.\(ii\)](#) is that
 4638

$$4639 \rho_1 d (st \log n)^{-1} \gg \Phi(|\bar{b}_t|) \gg L s \rho_1 (t \log n)^3.$$

4640 Similarly, the direct implication of [Cond.\(II\)](#) and [Cond.\(iii\)](#) is that
 4641

$$4642 \frac{N_2}{N} C_0 \bar{\theta}^2 Q_t \gg \max \left\{ L\rho_1 \sqrt{\rho_2 s} (t \log n)^{3/2}, Ld^{-1} \Phi(|\bar{b}_t|), L\rho_1 \frac{\beta_{t-1}}{\alpha_{-1,t-1}} \right\}.$$

4644 Here, we use the fact that $t \leq T$ and the monotonicity of Q_t in [Theorem I.3](#). It remains to check
 4645 whether $\frac{N_2}{N} C_0 \bar{\theta}^2 Q_t \gg L \sqrt{t \log n} \rho_1 \frac{\xi_t}{d\alpha_{-1,t-1}}$ holds.
 4646

4647 **Group 3: Implication of Cond.(ii), Cond.(iii), Cond.(I) and Cond.(II).** To verify this inequality
 4648 $\frac{N_2}{N} C_0 \bar{\theta}^2 Q_t \gg L \sqrt{t \log n} \rho_1 \frac{\xi_t}{d\alpha_{-1,t-1}}$, we just need to show that $\xi_t / \alpha_{-1,t-1} \leq C \xi_1 / \alpha_{-1,0}$ for some
 4649 universal constant $C > 0$, as the corresponding inequality for the latter is already guaranteed by
 4650 [Cond.\(iii\)](#). Recall the definition of ξ_t in [Theorem G.4](#), the ratio $\xi_t / \alpha_{-1,t-1}$ is given by
 4651

$$4652 \frac{\xi_t}{\alpha_{-1,t}} = \frac{\sqrt{s} t \log(n) \mathcal{K}_t + \rho_1^{-1} \sqrt{\Phi(|\bar{b}_t|) \cdot \hat{\mathbb{E}}_{l,l'} [\Phi(|\bar{b}_t| \sqrt{\frac{1-\langle h_l, h_{l'} \rangle}{1+\langle h_l, h_{l'} \rangle}}) \langle h_l, h_{l'} \rangle]} + \rho_2 \sqrt{n}}{\alpha_{-1,t-1}} + \sqrt{\rho_2 d}. \quad (I.14)$$

4655 We obtain the above formula by the nonnegativity of $\alpha_{-1,t-1}$ guaranteed by [Cond.\(I\)](#).

4656 **Proposition I.4.** *If $-\bar{b}_t \leq \sqrt{2 \log n}$ for some universal constant $\kappa > 0$, then for $t \geq 2$,*

$$4657 \mathcal{K}_t \leq t \cdot (\mathcal{K}_1 + C \sqrt{\log n} \cdot (\beta_{t-1} + |\alpha_{-1,t-1}| + |\alpha_{-1,0}|)).$$

4658 *Proof.* See [§I.5.3](#) for a detailed proof. □

4659 Combining (I.14), [Theorem I.4](#) and the fact that $\alpha_{-1,t-1} \geq t^2 \alpha_{-1,0} \geq \alpha_{-1,0}$ by [Cond.\(I\)](#), we have

$$4660 \frac{\xi_t}{\alpha_{-1,t-1}} \leq \frac{\sqrt{s} t^2 \log(n) \mathcal{K}_1}{\alpha_{-1,t-1}} + C \sqrt{s} t^2 \log(n)^{3/2} \left(\frac{\beta_{t-1}}{\alpha_{-1,t-1}} + 2 \right) \\ 4661 + \frac{\rho_1^{-1} \sqrt{\Phi(|\bar{b}_t|) \cdot \hat{\mathbb{E}}_{l,l'} [\Phi(|\bar{b}_t| \sqrt{\frac{1-\langle h_l, h_{l'} \rangle}{1+\langle h_l, h_{l'} \rangle}}) \langle h_l, h_{l'} \rangle]} + \rho_2 \sqrt{n}}{\alpha_{-1,t-1}} + \sqrt{\rho_2 d} \\ 4662 \leq \frac{\xi_1}{\alpha_{-1,0}} + C \sqrt{s} t^2 \log(n)^{3/2} \left(\frac{\beta_{t-1}}{\alpha_{-1,t-1}} + 2 \right), \quad (I.15)$$

4663 where in the second inequality, we directly plug in the definition of ξ_1 with $t = 1$ in (I.14) and use
 4664 the fact that $\alpha_{-1,t-1} \geq t^2 \alpha_{-1,0}$ to upper bound the first term in the right-hand side. Furthermore,
 4665 for each term in [Cond.\(II\)](#), we have the following relationship:

$$4666 \frac{N_2}{N} \leq \rho_1, \quad C_0 \bar{\theta}^2 Q_t = O(1), \quad L = \Omega(1),$$

4667 where the first inequality holds by direct definition of ρ_1 in (F.1), the second equality holds by noting
 4668 that $\bar{\theta}^2 \leq 1$, $Q_t \leq 1$ and C_0 is a universal constant, and the last inequality holds by [??](#). Together,
 4669 we have the following implication:

$$4670 \frac{N_2}{N} C_0 \bar{\theta}^2 Q_t \gg L \rho_1 \frac{\beta_{t-1}}{\alpha_{-1,t-1}} \Rightarrow \frac{\beta_{t-1}}{\alpha_{-1,t-1}} \ll 1$$

4671 Therefore, we can further simplify the upper bound in (I.15) to

$$4672 \frac{\xi_t}{\alpha_{-1,t-1}} \leq \frac{\xi_1}{\alpha_{-1,0}} + C \sqrt{s} t^2 \log(n)^{3/2} \cdot \mathbb{1}(t \geq 2). \quad (I.16)$$

4673 Using (I.16), in order for condition $\frac{N_2}{N} C_0 \bar{\theta}^2 Q_t \gg L \sqrt{t \log n} \rho_1 \frac{\xi_t}{d\alpha_{-1,t-1}}$ to hold, we just need to
 4674 ensure

$$4675 \frac{N_2}{N} C_0 \bar{\theta}^2 Q_t \gg L \sqrt{t \log n} \rho_1 \frac{\xi_1}{d\alpha_{-1,0}}, \quad \frac{N_2}{N} C_0 \bar{\theta}^2 Q_t \gg C L d^{-1} \rho_1 \sqrt{st^5} (\log n)^2.$$

4676 The first one is clearly given by [Cond.\(iii\)](#), and the second one is satisfied because we have by using
 4677 [Cond.\(ii\)](#) and [Cond.\(iii\)](#) that

$$4678 \frac{N_2}{N} C_0 \bar{\theta}^2 Q_t \gg L d^{-1} \Phi(|\bar{b}|) \gg L^2 d^{-1} \rho_1 s (T \log(n))^3 \gtrsim C L d^{-1} \rho_1 \sqrt{st^5} (\log n)^2.$$

4679 Here, the first inequality holds by the second condition in [Cond.\(iii\)](#), the second inequality holds
 4680 by [Cond.\(ii\)](#), and the last inequality holds by noting that we are considering any $t \leq T$. The last
 4681 inequality shows that the last condition $\frac{N_2}{N} C_0 \bar{\theta}^2 Q_t \gg L \sqrt{t \log n} \rho_1 \frac{\xi_t}{d\alpha_{-1,t-1}}$ also holds automatically
 4682 under the conditions in [Theorem G.10](#). To this end, we have shown that all the conditions in
 4683 [Theorem G.9](#) hold for t if the conditions in [Theorem G.10](#) are satisfied.

4698
4699
4700
4701
4702
4703
Step II: Deriving the recursion. As we have shown in the previous step, all the conditions in
4704 **Theorem G.9** hold for t if the conditions in **Theorem G.10** hold. Therefore, we can safely apply all
4705 the concentration results derived in §G.2. We next show how to use the previous derived concen-
4706 tration result on $\langle v, w_t \rangle / \|v\|_2$, $\|P_{w_{-1:0}} w_t\|_2$, and $\|P_{w_{-1:0}}^\perp w_t\|_2$ to control the recursion of $\beta_t / \alpha_{-1,t}$
4707 and $1/\alpha_{-1,t}$. Since β_t is the projection of w_t onto the $P_{w_{-1:0}}$ direction, and $\alpha_{-1,t}$ is the projection
4708 of w_t onto the v direction, we have

$$\begin{aligned} \frac{\beta_t}{\alpha_{-1,t}} &= \frac{\|v\|_2 \cdot \|P_{w_{-1:0}}^\perp w_t\|_2}{\langle v, w_t \rangle} \leq \frac{CL\rho_1\sqrt{d}(\xi_t + \sqrt{d}\beta_{t-1})}{C_0\bar{\theta}^2 Q_t \cdot N_2/N \cdot d\alpha_{-1,t-1}} \\ &\leq \frac{CL\rho_1}{C_0\bar{\theta}^2 Q_t \cdot N_2/N} \cdot \left(\frac{1}{\sqrt{d}} \left(\frac{\xi_1}{\alpha_{-1,0}} + C\sqrt{st^2 \log(n)^{3/2}} \cdot \mathbb{1}(t \geq 2) \right) + \frac{\beta_{t-1}}{\alpha_{-1,t-1}} \right). \end{aligned}$$

4709 where in the first inequality, we use the upper bound for $\|P_{w_{-1:0}}^\perp w_t\|_2$ in **Theorem G.7** and the lower
4710 bound for $\langle v, w_t \rangle / \|v\|_2$ in **Theorem G.6** as $\langle v, w_t \rangle / \|v\|_2 \geq (1 - o(1))N\psi_t \gtrsim NC_0\bar{\theta}^2 Q_t \cdot N_2/N \cdot$
4711 $d\alpha_{-1,t-1}$ by the lower bound of ψ_t in **Theorem F.11**. The second inequality holds by plugging in
4712 the upper bound for $\xi_t / \alpha_{-1,t-1}$ in (I.16). Similarly, we have by definition of $\alpha_{-1,t}$ that
4713

$$\begin{aligned} \frac{1}{\alpha_{-1,t}} &= \frac{\|v\|_2 \cdot \|w_t\|_2}{\langle v, w_t \rangle} \leq \frac{(1 + o(1)) \cdot \sqrt{\psi_t^2 + \hat{\varphi}_1(b)^2} + CL\rho_1\sqrt{d}\xi_t}{(1 - o(1)) \cdot \psi_t} \\ &\leq \frac{(1 + o(1)) \cdot \sqrt{(C_0\bar{\theta}^2 Q_t \cdot N_2/N \cdot d\alpha_{-1,t-1})^2 + (CL\Phi(|\bar{b}|))^2} + CL\rho_1\sqrt{d}\xi_t}{C_0\bar{\theta}^2 Q_t \cdot N_2/N \cdot d\alpha_{-1,t-1}} \\ &\leq \frac{CL\rho_1}{C_0\bar{\theta}^2 Q_t \cdot N_2/N} \cdot \left(\frac{\Phi(|\bar{b}|)}{\rho_1 d} \cdot \frac{1}{\alpha_{-1,t-1}} + \frac{1}{\sqrt{d}} \left(\frac{\xi_1}{\alpha_{-1,0}} + C\sqrt{st^2 \log(n)^{3/2}} \cdot \mathbb{1}(t \geq 2) \right) \right) \\ &\quad + (1 + o(1)). \end{aligned}$$

4723 where in the second inequality, we plug in the lower bound for ψ_t and the upper bound for $\hat{\varphi}_1(b_t)$ in
4724 **Theorem F.8**. The last inequality holds by the triangle inequality and the upper bound for $\xi_t / \alpha_{-1,t-1}$
4725 in (I.16). This completes the proof of **Theorem G.10**.

I.3.2 PROOF OF THEOREM G.12

4728 In the following proof, let us take $T_1 = \max\{(2\varsigma)^{-1}, 1\}$. As our goal is to establish that (G.5) and
4729 (G.6) holds for all $t \leq T_1$, we just need to show that **Cond.(I)** and **Cond.(II)** hold for all $t \leq T_1$, as
4730 they are the only conditions that might be violated over time, and the other conditions only depend
4731 on the initial conditions.

4732 **Initial step.** For $t = 1$, we have $\alpha_{-1,t-1} = \alpha_{-1,0}$ and $\beta_{t-1} = \beta_0 = 0$. Hence, **Cond.(I)**
4733 and **Cond.(II)** hold trivially. Before we start the proof, we first derive some useful inequalities.

4736 **Useful inequalities.** For λ_1 , we have by **Cond.(v)** and **Cond.(vi)** that

$$\lambda_1 = \frac{CL\rho_1}{C_0\bar{\theta}^2 Q_1 \cdot N_2/N} = \frac{\rho_1 d^{1-\varsigma}}{\Phi(|\bar{b}|)}, \quad \lambda_1 \xi_1 = \frac{\lambda_0 \xi_1}{Q_1} \ll \frac{d^{-\epsilon}}{\sqrt{s} \log n} \ll 1. \quad (\text{I.17})$$

4740 Using the above two inequalities, we have by (G.4) that

$$\frac{1}{\alpha_{-1,1}} \leq 1 + o(1) + \left(\frac{\lambda_1 \Phi(|\bar{b}|)}{\rho_1 d} + \frac{\lambda_1 \xi_1}{\sqrt{d}} \right) \cdot \frac{1}{\alpha_{-1,0}} \leq 1 + o(1) + (d^{1/2-\varsigma} + 1) \leq 3 + d^{1/2-\varsigma}.$$

4743 In fact, we have the ratio $\alpha_{-1,0} / \alpha_{-1,1}$ as

$$\frac{\alpha_{-1,0}}{\alpha_{-1,1}} \leq (3 + d^{1/2-\varsigma}) \cdot \alpha_{-1,0} \leq (3d^{-1/2} + d^{-\varsigma}) \cdot C\sqrt{\log M} \ll 1. \quad (\text{I.18})$$

4747 Here, we use the fact that $\alpha_{-1,0} = O(\sqrt{\log M})$ with sufficiently high probability $1 - n^{-c}$, and
4748 $M = \text{poly}(n)$. The above inequality demonstrates that $\alpha_{-1,1}$ is guaranteed to grow in the first step.
4749 Thus, by definition of Q_t in (F.15), we conclude that

$$Q_2 = \frac{1}{N_2} \sum_{l=1}^{N_2} \mathbb{1} \left(\theta_l \geq \frac{-b}{\sqrt{d}\alpha_{-1,1}} \right) \geq \frac{1}{N_2} \sum_{l=1}^{N_2} \mathbb{1} \left(\theta_l \geq |b|(3d^{-1/2} + d^{-\varsigma}) \right) =: Q_2^\nu,$$

4752 where we take $\nu = |b|(3d^{-1/2} + d^{-\varsigma}) = O(\sqrt{\log n} \cdot d^{-\varsigma \wedge 1/2})$ and denote the right-hand side of the
 4753 above inequality as Q_2^ν . Since $\theta_l \in [0, 1]$, we have

$$4755 \quad \overline{\theta^2} = \frac{1}{N_2} \sum_{l=1}^{N_2} \theta_l^2 \leq Q_2^\nu \cdot 1^2 + (1 - Q_2^\nu) \cdot \nu^2 = Q_2^\nu(1 - \nu^2) + \nu^2 \Rightarrow Q_2^\nu \geq \frac{\overline{\theta^2} - \nu^2}{1 - \nu^2} \geq \frac{\overline{\theta^2}}{2},$$

4757 where the last inequality holds from ?? that $\overline{\theta^2} = \Omega(\text{polylog}(n)^{-1}) \gg \nu^2$. In the sequel, we will
 4758 use $Q_2 \geq \overline{\theta^2}/2$ as the lower bound for Q_2 . By definition of T_1 , we have $T_1 = (2\varsigma)^{-1} \vee 1 = \Theta(1)$.
 4759 In addition, for λ_2 , we have

$$4760 \quad \lambda_2 = \frac{\lambda_0}{Q_2} \leq \frac{2\lambda_0}{\overline{\theta^2}} = O(\text{polylog}(n)), \quad (\text{I.19})$$

4763 where in the inequality we use the lower bound for Q_2 and in the last equality we use $\overline{\theta^2} = \Omega(\text{polylog}(n)^{-1})$ in ?? and $\lambda_0 = O(\text{polylog}(n))$ in **Cond.(iv)**.

4765 We now have for the coefficient $\lambda_2 \Phi(|\bar{b}|)/(\rho_1 d)$ that

$$4766 \quad \frac{\lambda_2 \Phi(|\bar{b}|)}{\rho_1 d} = \frac{\lambda_0 \Phi(|\bar{b}|)}{Q_2 \rho_1 d} = \frac{Q_1 d^{-\varsigma}}{Q_2} \leq d^{-\varsigma},$$

4768 where the second identity holds from **Cond.(v)** and the last inequality holds by noting that $\alpha_{-1,1} \geq \alpha_{-1,0}$ by the first step's calculation in (I.18) and using the monotonicity of Q_t in **Theorem L.3**. Next,
 4769 we upper bound the quantity C_1 in (G.2):

$$4772 \quad C_1 = \left(1 + o(1) + \frac{\lambda_2 \xi_1}{\sqrt{d} \alpha_{-1,0}} + \frac{C \lambda_2 \sqrt{s} T_0^2 (\log n)^{3/2}}{\sqrt{d}}\right) \cdot \frac{1}{1 - \lambda_2 \Phi(|\bar{b}|)/\rho_1 d} \\ 4773 \quad \leq \left(1 + o(1) + \frac{\lambda_1 \xi_1}{\sqrt{d} \alpha_{-1,0}} + \frac{C \sqrt{s} \text{polylog}(n)}{\sqrt{d}}\right) \cdot \frac{1}{1 - d^{-\epsilon}} \\ 4774 \quad \leq \left(1 + o(1) + \frac{d^{-\epsilon}}{\sqrt{s} \log n}\right) \cdot (1 + o(1)) = 1 + o(1),$$

4779 where in the first inequality, we use the fact that $\lambda_2 \leq \lambda_1$ by the fact $Q_2 \geq Q_1$, and we invoke
 4780 the upper bound $T_0 \leq \log n$ and $\lambda_2 = O(\text{polylog}(n))$ in (I.19). In the last inequality, we use the
 4781 previous bound for $\lambda_1 \xi_1$ in (I.17) together with the fact that $\sqrt{d} \alpha_{-1,0} \geq 1$ by **InitCond-1**.

4782 **Induction step.** Suppose the induction hypothesis holds for $1, 2, \dots, t$. We will show that **Cond.(I)**
 4783 and **Cond.(II)** hold for $t+1 \leq T_1$ as well. To this end, it is evident that $\alpha_{-1,t}$ is always growing
 4784 before reaching C_1 , which is evident from (G.3) by noting that $\lambda_2 \Phi(|\bar{b}|)/\rho_1 d \leq d^{-\varsigma} < 1$.

4786 We first look at the recursion of $\alpha_{-1,t}$. By (G.5), the ratio $\alpha_{-1,0}/\alpha_{-1,t}$ is bounded by

$$4787 \quad \frac{\alpha_{-1,0}}{\alpha_{-1,t}} \leq \left(\frac{\lambda_2 \Phi(|\bar{b}|)}{\rho_1 d}\right)^{t-1} \cdot \left(\frac{\lambda_1 \Phi(|\bar{b}|)}{\rho_1 d} + \frac{\lambda_1 \xi_1}{\sqrt{d}}\right) + C_1 \alpha_{-1,0} \\ 4788 \quad \leq d^{-\varsigma(t-1)} \cdot \left(d^{-\varsigma} + \frac{d^{-\epsilon}}{\sqrt{s} \log n}\right) + (1 + o(1)) \cdot \frac{C \sqrt{\log M}}{\sqrt{d}} \leq C d^{-\varsigma(t-1) - (\varsigma \wedge 1/2)} + d^{-1/2+\epsilon}.$$

4792 The first term on the right-hand side is decaying exponentially fast with respect to t . The second
 4793 term is much smaller than $1/T_0^2$ given that $T_0 \leq \log n$ by definition. Therefore, both terms are much
 4794 smaller than $1/T_0^2$. This implies the first condition in **Cond.(I)** holds for $t+1$.

4795 Next, we look at the conditions involving β_t . By previous analysis on T_1 and the upper bound in
 4796 (I.19), we obtain

$$4797 \quad \lambda_2^{T_1-1} \leq (\text{polylog}(n))^{(2\varsigma)^{-1} \vee 1} = O(\text{polylog}(n)).$$

4798 By recursion of $\beta_t/\alpha_{-1,t}$ in (G.6), we have

$$4800 \quad \frac{\beta_t}{\alpha_{-1,t}} \leq \frac{\lambda_2^{t-1}}{\sqrt{d}} \cdot \left((T_0 + \lambda_1) \cdot \frac{\xi_1}{\alpha_{-1,0}} + C \sqrt{s} T_0^3 \log(n)^{3/2}\right) \\ 4801 \quad \leq \frac{\text{polylog}(n)}{\sqrt{d}} \cdot \left(\frac{\lambda_1 \xi_1}{\alpha_{-1,0}} + C \sqrt{s} \text{polylog}(n)\right) \\ 4802 \quad \leq \text{polylog}(n) \cdot \left(\frac{d^{-\epsilon}}{\sqrt{s} \log n} + \frac{C \sqrt{s} \text{polylog}(n)}{\sqrt{d}}\right) \leq \frac{d^{-\epsilon} \text{polylog}(n)}{\sqrt{s}}.$$

4806 Here, the second inequality holds by the upper bound for $\lambda_2^{T_1-1}$ and also the fact that $T_0 + \lambda_1 \leq$
 4807 $2\lambda_1 \log n$ since $\lambda_1 \geq 1$ and $T_0 \leq \log n$. In the second inequality, we use the upper bound for $\lambda_1 \xi_1$
 4808 in (I.17) and the fact that $\sqrt{d}\alpha_{-1,0} \geq 1$ by **InitCond-1**. The last inequality holds because $\epsilon < 1/2$
 4809 by definition. Using the above inequality with the fact that $\alpha_{-1,t} \leq 1$, we obtain
 4810

$$4811 \beta_t \leq \frac{d^{-\epsilon} \text{polylog}(n)}{\sqrt{s}} \ll \frac{1}{\sqrt{T_0 s \log n} |\bar{b}|},$$

4814 where the last inequality holds by noting that both T_0 and $|\bar{b}|$ are at most $O(\text{polylog}(n))$. This
 4815 implies that the second condition in **Cond.(I)** holds for $t + 1$.

4816 Eventually, for **Cond.(II)**, we have
 4817

$$4818 \frac{C_0 \bar{\theta}^2 Q_t \cdot N_2 / N}{CL\rho_1} = \frac{Q_t}{\lambda_0} \geq \frac{Q_2}{\lambda_0} \geq \frac{\bar{\theta}^2}{2\lambda_0} = \Omega(\text{polylog}(n)^{-1}).$$

4821 Therefore, the left-hand side of the above inequality is also much larger than $\beta_t / \alpha_{-1,t}$. To this end,
 4822 we have finished the induction step and proved that **Cond.(I)** and **Cond.(II)** hold for all $t \leq T_1$.
 4823

4824 **Final step.** According to the recursion in (G.5), let us consider the real value t^* that satisfies
 4825

$$4826 \left(\frac{\lambda_2 \Phi(|\bar{b}|)}{\rho_1 d} \right)^{t^*-1} \cdot \left(\frac{\lambda_1 \Phi(|\bar{b}|)}{\rho_1 d} + \frac{\lambda_1 \xi_1}{\sqrt{d}} \right) \cdot \frac{1}{\alpha_{-1,0}} = \log(d)^{-c_0} \quad (\text{I.20})$$

4828 for some small constant $c_0 > 0$ to be determined later. We first note that we can obtain the $\varsigma \wedge 1/2$
 4829 factor by the inequality for λ_1 in (I.17) that
 4830

$$4831 \frac{\lambda_2 \Phi(|\bar{b}|)}{\rho_1 d} \leq \frac{\lambda_1 \Phi(|\bar{b}|)}{\rho_1 d} \leq \frac{\lambda_1 \Phi(|\bar{b}|)}{\rho_1 d} + \frac{\lambda_1 \xi_1}{\sqrt{d}}, \quad \text{and} \quad \frac{\lambda_1 \Phi(|\bar{b}|)}{\rho_1 d} + \frac{\lambda_1 \xi_1}{\sqrt{d}} \leq d^{-\varsigma} + \frac{d^{-1/2-\epsilon}}{\sqrt{s} \log n} \quad (\text{I.21})$$

4834 Using the above inequality (I.21), and taking a logarithm of both sides with base d for (G.5), we
 4835 have for t^* that

$$4837 t^* \cdot \log_d \left(d^{-\varsigma} + \frac{d^{-1/2-\epsilon}}{\sqrt{s} \log n} \right) + \log_d \left(\frac{1}{\alpha_{-1,0}} \right) \geq -\frac{c_0 \log \log d}{\log d},$$

4839 which implies that
 4840

$$4841 t^* \leq \log_d \left(\frac{1}{d^{-\varsigma} + \frac{d^{-1/2-\epsilon}}{\sqrt{s} \log n}} \right)^{-1} \cdot \left(\log_d \left(\frac{1}{\alpha_{-1,0}} \right) + \frac{c_0 \log \log d}{\log d} \right) \leq \frac{1/2}{\varsigma \wedge 1/2} = (2\varsigma)^{-1} \vee 1 = T_1. \quad (\text{I.22})$$

4845 In the second inequality, we use the fact that by **InitCond-1**,
 4846

$$4847 \log_d \left(\frac{1}{\alpha_{-1,0}} \right) = \log_d (\|v\|_2) - \log_d ((1 - \varepsilon) \sqrt{2 \log(M/n)}) \leq \frac{1}{2} - \frac{\log \log(M/n)}{2 \log d}.$$

4850 Therefore, we can take c_0 to be small enough but still on a constant level such that
 4851

$$4852 \frac{1}{2} - \frac{\log \log(M/n)}{2 \log d} \leq \frac{1}{2} - \frac{c_0 \log \log d}{2 \log d}.$$

4854 This justifies the second inequality in (I.22). Thus, there must exist some time $t \leq T_1$ such that
 4855 (I.20) holds. For this time t , we already have
 4856

$$4857 \frac{1}{\alpha_{-1,t}} \leq \left(\frac{\lambda_2 \Phi(|\bar{b}|)}{\rho_1 d} \right)^{t-1} \cdot \left(\frac{\lambda_1 \Phi(|\bar{b}|)}{\rho_1 d} + \frac{\lambda_1 \xi_1}{\sqrt{d}} \right) \cdot \frac{1}{\alpha_{-1,0}} + C_1 \leq d^{-\varsigma} + C_1 \leq 1 + o(1).$$

4859 This implies that $\alpha_{-1,t} = 1 - o(1)$.
 4860

4860 **Checking** $\alpha_{-1,t-1} \geq \alpha_{-1,1}$. An additional step is needed to show that $\alpha_{-1,t-1} \geq \alpha_{-1,1}$ for all
 4861 $t \geq 2$ and before t^* is reached. This is required because we want to ensure that before time t^* , we
 4862 always have $\alpha_{-1,t-1} \geq \alpha_{-1,1}$, and the stopping time T_0 will not prohibit us from reaching t^* . In
 4863 fact, we have by (G.3) that

$$4864 \quad \frac{1}{\alpha_{-1,t}} \leq \left(\frac{\lambda_2 \Phi(|\bar{b}|)}{\rho_1 d} \right)^{t-2} \cdot \left(\frac{1}{\alpha_{-1,1}} - C_1 \right) + C_1.$$

4867 Therefore, the ratio $\alpha_{-1,t-1}/\alpha_{-1,1}$ is bounded by

$$4869 \quad \frac{\alpha_{-1,1}}{\alpha_{-1,t-1}} \leq \left(\frac{\lambda_2 \Phi(|\bar{b}|)}{\rho_1 d} \right)^{t-2} \cdot (1 - C_1 \alpha_{-1,1}) + C_1 \alpha_{-1,1}.$$

4871 We consider two cases. If $C_1 \alpha_{-1,1} \geq 1$, we can just stop the gradient at $t = 1$ and obtain $\alpha_{-1,1} =$
 4872 $1 - o(1)$ since $C_1 = 1 + o(1)$. In this case, we reach strong alignment in just one step. In another case
 4873 where $C_1 \alpha_{-1,1} < 1$, since $\lambda_2 \Phi(|\bar{b}|)/(\rho_1 d) \leq d^{-\varsigma}$, we have the above ratio strictly upper bounded
 4874 by 1. Hence, the condition $\alpha_{-1,t-1} \geq \alpha_{-1,1}$ holds for all $t \geq 2$ and before t^* is reached.

4875 In both cases, we have shown that $\alpha_{-1,t-1} \geq \alpha_{-1,1}$ hold for $2 \leq t \leq t^*$. As we have shown that
 4876 **Cond.(I)** and **Cond.(II)** hold for all $t \leq T_1$ from the induction step, $t^* \leq T_1$ from the final step,
 4877 and $T_1 \leq \log(n)$ by definition, we conclude that **T_0 -Cond.(1)** to **T_0 -Cond.(3)** in the definition of the
 4878 stopping time T_0 hold for all $t \leq t^*$. In other words, we have shown that $T_0 \geq t^*$.

4879 Thus, we complete the proof of **Theorem G.12**.

4880 I.4 PROOFS FOR CONDITION SIMPLIFICATION

4881 I.4.1 PROOF OF THEOREM G.13

4882 Let us take t^* as the maximum number of iterations considered. In the following, we first provide
 4883 a sufficient condition for **Cond.(iii)**, **Cond.(v)** and **Cond.(vi)** to hold. Then, we give a reformulation
 4884 of **Cond.(i)**, **Cond.(ii)** and **Cond.(iv)**.

4885 A sufficient condition for **Cond.(iii)** to hold is given by

$$4886 \quad \frac{Q_1}{\lambda_0} \gg \max \left\{ \sqrt{\rho_2 s} (\log n)^{3/2}, \frac{\Phi(|\bar{b}|)}{\rho_1 d}, \sqrt{\log n} \cdot \xi_1 \right\} \quad (\text{I.23})$$

4887 under the condition $d\alpha_{-1,0} \geq 1$. On the other hand, we note that **Cond.(v)** and **Cond.(vi)** can be
 4888 reformulated as

$$4889 \quad \frac{Q_1}{\lambda_0} \cdot d^{-\varsigma} = \frac{\Phi(|\bar{b}|)}{\rho_1 d} \gg d^{\epsilon - \varsigma} \sqrt{s} \log n \cdot \xi_1. \quad (\text{I.24})$$

4890 Since $d^\epsilon \sqrt{s} \log n \cdot \xi_1 \gg \sqrt{\log n} \cdot \xi_1$, we can safely delete the last term in (I.23). Also by noting that
 4891 $d^{-\varsigma} \ll 1$, we can safely delete the second term in (I.23). Furthermore, by definition of ξ_1 , which we
 4892 recall as follows:

$$4893 \quad \xi_1 = \sqrt{s} \log n \mathcal{K}_1 + \rho_1^{-1} \sqrt{\Phi(|\bar{b}|) \cdot \hat{\mathbb{E}}_{l,l'} \left[\Phi \left(|\bar{b}| \sqrt{\frac{1 - \langle h_l, h_{l'} \rangle}{1 + \langle h_l, h_{l'} \rangle}} \right) \langle h_l, h_{l'} \rangle \right]} + \sqrt{\rho_2 d} |\alpha_{-1,0}| + \rho_2 \sqrt{n},$$

4894 we conclude that $\xi_1 \geq \sqrt{\rho_2 d} \alpha_{-1,0} \geq \sqrt{\rho_2}$. Therefore,

$$4895 \quad d^\epsilon \sqrt{s} \log n \cdot \xi_1 \geq d^\epsilon \sqrt{\rho_2 s} \log n \geq \sqrt{\rho_2 s} (\log n)^{3/2},$$

4896 where in the last inequality, we use the definition $\epsilon = C' \log \log n / (\varsigma \log d) \geq \log \log n / \log d$.
 4897 Therefore, the first term in (I.23) can also be deleted. In summary, **Cond.(iii)** is automatically implied
 4898 by (I.24).

4899 A reformulation of **Cond.(ii)** gives

$$4900 \quad \frac{1}{s \log n} \gg \frac{\Phi(|\bar{b}|)}{\rho_1 d} \gg \frac{L s \log(n)^3}{d}. \quad (\text{I.25})$$

4914
4915

In the following, we will simplify the above condition. Note that

4916
4917

$$\Phi(|\bar{b}|)/(\rho_1 d) = Q_1/\lambda_0 d^{-\varsigma} \leq d^{-\varsigma} \ll (s \log n)^{-1}$$

4918
4919holds by using $\lambda_0 = \Theta(\text{polylog}(n))$ according to [Cond.\(iv\)](#) and $\lambda_0 Q_1 \cdot d^{-\varsigma} = \Phi(|\bar{b}|)/(\rho_1 d)$ according to [Cond.\(v\)](#). Therefore, we can safely remove the first inequality in [\(I.25\)](#).

4920

4921
4922In the following, we aim to remove the condition $\sqrt{\rho_2 s}(t^* \log n)^{3/2} \ll 1$ in [Cond.\(i\)](#). As $Q_1/\lambda_0 \gg d^\epsilon \sqrt{s} \log n \cdot \xi_1$ by [Cond.\(vi\)](#), we conclude that $\xi_1 \ll Q_1/\lambda_0 < 1$. By definition of ξ_1 , this condition directly implies that $\rho_2 \ll n^{-1/2}$. Therefore, we can safely delete the condition $\sqrt{\rho_2 s}(t^* \log n)^{3/2} \ll 1$ in [Cond.\(i\)](#).

4923

4924
4925To this end, we can summarize [Cond.\(ii\)](#), [Cond.\(iii\)](#), [Cond.\(v\)](#) and [Cond.\(vi\)](#) into one condition as follows:

4926

4927
4928

$$\frac{Q_1}{\lambda_0} \cdot d^{-\varsigma} = \frac{\Phi(|\bar{b}|)}{\rho_1 d} \gg \max \left\{ d^{\epsilon-\varsigma} \sqrt{s} \log n \cdot \xi_1, \frac{L s \log(n)^3}{d} \right\},$$

4929

4930
4931and [Cond.\(i\)](#) and [Cond.\(iv\)](#) can be summarized into

4932

4933
4934

$$\lambda_0 = O(\text{polylog}(n)), \quad \kappa_0 = O((\log n)^{-1/2}), \quad \eta^{-1} \ll N \cdot \left(\frac{\rho_1 d}{\lambda_0} \wedge \Phi(|\bar{b}|) \right).$$

4935

4936

Note that in the last condition, we have $\rho_1 d / \lambda_0 \gg \Phi(|\bar{b}|)$ according to the first equality in [\(I.4.1\)](#). Hence, we only need to keep $\eta^{-1} \ll N \Phi(|\bar{b}|)$. This completes the proof of [Theorem G.13](#).

4937

4938
4939I.4.2 PROOF OF [THEOREM G.14](#)

4940

4941

To prove this lemma, we need to upper bound the expectation term on the left-hand side of [\(G.10\)](#). Recall that $\hat{\mathbb{E}}_{l, l'}$ is given by uniformly samples l, l' from $[N]$, and that $\langle h_l, h_{l'} \rangle \leq 1$ always holds. We can upper bound the expectation term as follows:

4942

4943
4944

$$\begin{aligned} \hat{\mathbb{E}}_{l, l'} \left[\Phi \left(|\bar{b}_l| \sqrt{\frac{1 - \langle h_l, h_{l'} \rangle}{1 + \langle h_l, h_{l'} \rangle}} \right) \langle h_l, h_{l'} \rangle \right] &\leq \frac{1}{N^2} \sum_{j=1}^n \sum_{l, l' \in \mathcal{D}_j} \Phi \left(|\bar{b}| \sqrt{\frac{1 - \langle h_l, h_{l'} \rangle}{1 + \langle h_l, h_{l'} \rangle}} \right) \\ &= \frac{1}{N^2} \sum_{j=1}^n \sum_{l, l' \in \mathcal{D}_j} \Phi \left(|\bar{b}| \sqrt{\frac{1 - \langle h_l, h_{l'} \rangle}{1 + \langle h_l, h_{l'} \rangle}} \right) \cdot \mathbb{1}(\|h_l \circ h_{l'}\|_\infty = 1) \\ &\quad + \frac{1}{N^2} \sum_{j=1}^n \sum_{l, l' \in \mathcal{D}_j} \Phi \left(|\bar{b}| \sqrt{\frac{1 - \langle h_l, h_{l'} \rangle}{1 + \langle h_l, h_{l'} \rangle}} \right) \cdot \mathbb{1}(\|h_l \circ h_{l'}\|_\infty \geq 2) \\ &\leq \frac{1}{N^2} \sum_{j=1}^n \sum_{l, l' \in \mathcal{D}_j} \Phi \left(|\bar{b}| \sqrt{\frac{1 - H_{l,j} H_{l',j}}{1 + H_{l,j} H_{l',j}}} \right) + \frac{1}{N^2} \sum_{j=1}^n \sum_{l, l' \in \mathcal{D}_j} \mathbb{1}(\|h_l \circ h_{l'}\|_\infty \geq 2), \end{aligned}$$

4945

4946

where in the identity, we split the summation according to whether how many non-zero entries are shared between two rows h_l and $h_{l'}$ in the H matrix. In the last inequality, we drop the indicator for the case $\|h_l \circ h_{l'}\|_\infty = 1$ and use the fact that $\Phi(\cdot) \leq 1$ for the case $\|h_l \circ h_{l'}\|_\infty \geq 2$. For the first term, we use the fact that $|\mathcal{D}_j|/N \leq \rho_1$ for all $j \in [n]$ to obtain

4947

4948
4949

$$\begin{aligned} \frac{1}{N^2} \sum_{j=1}^n \sum_{l, l' \in \mathcal{D}_j} \Phi \left(|\bar{b}| \sqrt{\frac{1 - H_{l,j} H_{l',j}}{1 + H_{l,j} H_{l',j}}} \right) &\leq \rho_1^2 \cdot \sum_{j=1}^n \frac{1}{|\mathcal{D}_j|^2} \sum_{l, l' \in \mathcal{D}_j} \Phi \left(|\bar{b}| \sqrt{\frac{1 - H_{l,j} H_{l',j}}{1 + H_{l,j} H_{l',j}}} \right) \\ &\leq n \rho_1^2 \cdot \Phi \left(|\bar{b}_t| \sqrt{\frac{1 - h_\star^2}{1 + h_\star^2}} \right), \end{aligned}$$

4968 where the last inequality holds by the definition of h_* in (G.9). In addition, the second term is upper
 4969 bounded by
 4970

$$\begin{aligned}
 4971 \frac{1}{N^2} \sum_{j=1}^n \sum_{l, l' \in \mathcal{D}_j} \mathbb{1}(\|h_l \circ h_{l'}\|_\infty \geq 2) &\leq \frac{1}{N^2} \sum_{l=1}^N \sum_{\substack{j \in [n]: \\ H_{l,j} \neq 0}} \sum_{\substack{i \neq j: \\ H_{l,i} \neq 0}} \sum_{l'=1}^N \mathbb{1}(H_{l',i} \neq 0) \cdot \mathbb{1}(H_{l',j} \neq 0) \\
 4972 &\leq \max_{l \in [N]} \frac{1}{N} \sum_{\substack{i, j \in [n]: i \neq j \\ H_{l,i} \neq 0, H_{l,j} \neq 0}} \sum_{l'=1}^N \mathbb{1}(H_{l',i} \neq 0) \cdot \mathbb{1}(H_{l',j} \neq 0) \\
 4973 &\leq \max_{l \in [N]} \frac{1}{N} \sum_{\substack{i, j \in [n]: i \neq j \\ H_{l,i} \neq 0, H_{l,j} \neq 0}} N \cdot \rho_1 \cdot \rho_2 \leq s^2 \rho_1 \rho_2.
 \end{aligned}$$

4981 In the first inequality, we notice that if $\|h_l \circ h_{l'}\|_\infty \geq 2$, then there must exist two different feature
 4982 indices $i \neq j$ such that both $h_l, h_{l'}$ are non-zero at these two indices. This is indeed reflected in
 4983 the constraints $H_{l,j} \neq 0, H_{l,i} \neq 0$ and the two indicators $\mathbb{1}(H_{l',i} \neq 0) \cdot \mathbb{1}(H_{l',j} \neq 0)$. Therefore,
 4984 summing over all possible (i, j) pairs gives an upper bound for the second term. In the second
 4985 inequality, we change the average over l to be the maximum over l , and in the third inequality, we
 4986 use the definition of ρ_2 and ρ_1 in (F.1) to upper bound sum of the double indicator term. The last
 4987 inequality holds by noting that each row h_l is s -sparse. Combining the above two bounds, we obtain
 4988 that

$$\begin{aligned}
 4989 \hat{\mathbb{E}}_{l, l'} \left[\Phi \left(|\bar{b}_t| \sqrt{\frac{1 - \langle h_l, h_{l'} \rangle}{1 + \langle h_l, h_{l'} \rangle}} \right) \langle h_l, h_{l'} \rangle \right] &\leq n \rho_1^2 \cdot \Phi \left(|\bar{b}_t| \sqrt{\frac{1 - h_*^2}{1 + h_*^2}} \right) + \rho_1 \rho_2 s^2 \\
 4990 &\leq C n \rho_1^2 \cdot \Phi(|\bar{b}_t|)^{\frac{1-h_*^2}{1+h_*^2}} + \rho_1 \rho_2 s^2,
 \end{aligned}$$

4994 where in the last inequality, we use the Mills ratio
 4995

$$\begin{aligned}
 4996 \Phi \left(|\bar{b}_t| \sqrt{\frac{1 - h_*^2}{1 + h_*^2}} \right) &\leq \left(|\bar{b}_t| \sqrt{\frac{1 - h_*^2}{1 + h_*^2}} \right)^{-1} \cdot \frac{1}{\sqrt{2\pi}} \exp \left(-\frac{1 - h_*^2}{1 + h_*^2} \cdot \frac{\bar{b}_t^2}{2} \right) \\
 4997 &\leq C |\bar{b}_t|^{-1} \cdot \frac{1}{\sqrt{2\pi}} \exp \left(-\frac{\bar{b}_t^2}{2} \right)^{\frac{1-h_*^2}{1+h_*^2}} \leq C \Phi(|\bar{b}_t|)^{\frac{1-h_*^2}{1+h_*^2}},
 \end{aligned}$$

5002 and the above inequalities hold as long as $(1 - h_*^2)/(1 + h_*^2)$ is on a constant level. Therefore, we
 5003 have proved [Theorem G.14](#).

5004 I.4.3 PROOF OF [THEOREM G.15](#)

5006 Recall the definition \mathcal{K}_t in (F.9) as
 5007

$$\begin{aligned}
 5008 \mathcal{K}_1 &:= \left(n |\bar{b}| \Phi \left(\frac{-\bar{b}}{\sqrt{\frac{3}{4} \hbar_{4,*}^2 + \frac{1}{4}}} \right) \right)^{1/4} + \left(\rho_2 s n |\bar{b}| \Phi \left(\frac{-\bar{b}}{\sqrt{\frac{2}{3} \hbar_{3,*}^2 + \frac{1}{3}}} \right) \right)^{1/4} \\
 5009 &\quad + \left(\Phi \left(-\frac{\bar{b} + \hbar_{4,1} \zeta_1}{\sqrt{1 - \hbar_{4,1}^2}} \right) + (\rho_2 s)^{1/4} \right) \cdot (\log(n))^{1/4} + n^{1/4} \rho_2 s \log(n).
 \end{aligned}$$

5015 To upper bound the above terms, let us consider the following inequality for any $\tau \in (0, 1)$ and
 5016 $|\bar{b}| \geq 1$:

$$\begin{aligned}
 5017 \Phi(\tau |\bar{b}|) &\leq \frac{1}{\sqrt{2\pi}} \cdot \exp \left(-\frac{\tau^2 |\bar{b}|^2}{2} \right) \cdot \frac{1}{\tau |\bar{b}|} \leq \frac{1}{\sqrt{2\pi}} \cdot \exp \left(-\frac{\tau^2 |\bar{b}|^2}{2} \right) \cdot \frac{|\bar{b}|}{|\bar{b}|^2 + 1} \cdot 2\tau^{-1} \\
 5018 &\leq \frac{1}{(\sqrt{2\pi})^{\tau^2}} \cdot \exp \left(-\frac{\tau^2 |\bar{b}|^2}{2} \right) \cdot \left(\frac{|\bar{b}|}{|\bar{b}|^2 + 1} \right)^{\tau^2} \cdot 2\tau^{-1} \leq \frac{2}{\tau} \cdot \Phi(|\bar{b}|)^{\tau^2},
 \end{aligned} \tag{I.26}$$

5022 where in the first and the last inequalities, we use the Mills' ratio bound that $x/(x^2 + 1) \leq$
 5023 $\Phi(x)/p(x) \leq x^{-1}$ for all $x > 0$. Now, we can apply (I.26) to upper bound the first term in \mathcal{K}_t
 5024 as

$$5026 \quad \left(n |\bar{b}| \Phi \left(\frac{-\bar{b}}{\sqrt{\frac{3}{4} \hbar_{4,*}^2 + \frac{1}{4}}} \right) \right)^{1/4} \leq C(n |\bar{b}|)^{1/4} \Phi(|\bar{b}|)^{\frac{1}{3\hbar_{4,*}^2 + 1}} \leq C(n |\bar{b}|)^{1/4} \Phi(|\bar{b}|)^{\frac{1}{3\hbar_*^2 + 1}}, \quad (\text{I.27})$$

5029 where the last inequality holds because $\hbar_* \leq \hbar_{4,*}$ by definition. Similarly, we can upper bound the
 5030 second term as

$$5032 \quad \left(\rho_2 s n |\bar{b}| \Phi \left(\frac{-\bar{b}}{\sqrt{\frac{2}{3} \hbar_{3,*}^2 + \frac{1}{3}}} \right) \right)^{1/4} \leq C(\rho_2 s n |\bar{b}|)^{1/4} \cdot \Phi(|\bar{b}|)^{\frac{3}{8\hbar_{3,*}^2 + 4}} \leq C(\rho_2 s n |\bar{b}|)^{1/4} \cdot \Phi(|\bar{b}|)^{\frac{3}{8\hbar_*^2 + 4}}. \quad (\text{I.28})$$

5036 Here, the third term also follows from the above inequality as

$$5038 \quad \Phi \left(-\frac{\bar{b} + \hbar_{4,1} \zeta_1}{\sqrt{1 - \hbar_{4,1}^2}} \right) \leq \Phi \left(-\frac{\bar{b} + \hbar_* \zeta_1}{\sqrt{1 - \hbar_*^2}} \right) \leq C \cdot \Phi(|\bar{b}|)^{\frac{(1 - \hbar_* \zeta_1 / |\bar{b}|)^2}{1 - \hbar_*^2}}, \quad (\text{I.29})$$

5041 where in the first inequality, we use the derivative in (F.12) and the fact that $\zeta_1 / |\bar{b}| = \Theta(1) > 1$,
 5042 which is given by the definition $\zeta_1 = (1 + \varepsilon) 2 \sqrt{\log n}$ in (E.11), to conclude that increasing $\hbar_{4,1}$ to
 5043 \hbar_* will only increase the value of the whole term. In the second inequality, we apply (I.26) with

$$5045 \quad \tau = \frac{1 - \hbar_* \zeta_1 / |\bar{b}|}{\sqrt{1 - \hbar_*^2}} \in (0, 1).$$

5048 Here, we claim $\tau \in (0, 1)$ because by condition $\zeta_1 \hbar_* < 1 - \nu$ for some constant $\nu > 0$, we have
 5049 $1 - \hbar_* \zeta_1 / |\bar{b}| > 0$, and by noting that $\zeta_1 / |\bar{b}| > 1$, we have

$$5051 \quad \tau < \frac{1 - \hbar_*}{\sqrt{1 - \hbar_*^2}} = \sqrt{1 - \hbar_*} \leq 1.$$

5053 In addition, since $|\bar{b}| \leq \sqrt{2 \log n}$ by condition $\Phi(|\bar{b}|) \geq \rho_1 \geq n^{-1}$, we also have $\zeta_1 / |\bar{b}| > 1$.
 5054 Consequently, we obtain that

$$5056 \quad \frac{\hbar_*^{-1} - \zeta_1 / |\bar{b}|}{\sqrt{\hbar_*^{-2} - 1}} \leq \frac{\hbar_*^{-1} - 1}{\sqrt{\hbar_*^{-2} - 1}} \leq 1$$

5058 as $\hbar_* < 1$. Therefore, we can apply (I.26) with $\tau = (\hbar_*^{-1} - \zeta_1 / |\bar{b}|) / \sqrt{\hbar_*^{-2} - 1} \in (0, 1)$ in the last
 5059 inequality in (I.29). Now, we can combine (I.27), (I.28) and (I.29) to obtain the desired result in
 5060 **Theorem G.15**.

5062 I.5 PROOFS FOR TECHNICAL LEMMAS

5064 I.5.1 PROOF OF THEOREM I.1

5066 By Cauchy-Schwartz, it holds that

$$5068 \quad \sum_{\tau=1}^{t-1} \langle P_{u_{1:\tau}} z_\tau, u_t \rangle^2 \leq \sum_{\tau=1}^{t-1} \|P_{u_{1:\tau}} z_\tau\|_2^2 \cdot \|u_t\|_2^2.$$

5071 One thing to be noted is that z_τ is independent of the filtration $\sigma(u_{1:\tau})$. Consequently, when
 5072 conditioned on $u_{1:\tau}$, $\|P_{u_{1:\tau}} z_\tau\|_2^2 \sim \chi_\tau^2$. By the concentration of χ^2 distribution in **Theorem J.1** with a
 5073 union bound over all $\tau \in [T]$, we obtain that with probability at least $1 - n^{-c}$ for some universal
 5074 constant $c, C > 0$ that

$$5075 \quad \|P_{u_{1:\tau}} z_\tau\|_2^2 \leq \tau + C \sqrt{\tau \log(nT)} + C \log(nT) \leq C(t + \log n), \quad \forall \tau \in [t-1], \quad t \in [T].$$

5076 Therefore, we have that with probability at least $1 - n^{-c}$:
5077

$$5078 \sum_{\tau=1}^{t-1} \langle P_{u_{1:\tau}} z_\tau, u_t \rangle^2 \leq C(t^2 + t \log n) \cdot \|u_t\|_2^2, \quad \forall t \in [T]. \quad (I.30)$$

5081 For the second term, it follows from **Theorem H.1** that with probability at least $1 - n^{-c}$:
5082

$$5083 \sum_{\tau=1}^{t-1} \left(\frac{\langle u_\tau^\perp, u_t \rangle}{\|u_\tau^\perp\|_2} \cdot \frac{\|w_\tau^\perp\|_2}{\|u_\tau^\perp\|_2} \right)^2 \leq Cd \cdot \sum_{\tau=1}^{t-1} \frac{\langle u_\tau^\perp, u_t \rangle^2}{\|u_\tau^\perp\|_2^2} = Cd \cdot \|P_{u_{1:t-1}} u_t\|_2^2, \quad \forall t \in [T]. \quad (I.31)$$

5086 For the last term $\|P_{w_{-1:t-1}}^\perp \tilde{z}_t\|_2^2 \cdot \|u_t^\perp\|_2^2$, we also note that \tilde{z}_t is independent of the filtration
5087 $\sigma(w_{-1:t-1})$. Therefore, $\|P_{w_{-1:t-1}}^\perp \tilde{z}_t\|_2^2 \sim \chi_{d-t+1}^2$. We have by **Theorem J.1** with a union bound
5088 over all $t \in [T]$, and with probability at least $1 - n^{-c}$ that
5089

$$5090 \|P_{w_{-1:t-1}}^\perp \tilde{z}_t\|_2^2 \leq d - t + 1 + C\sqrt{(d - t + 1) \log(nT)} + C \log(nT) \leq Cd, \quad \forall t \in [T]. \quad (I.32)$$

5091 Combining (I.31) and (I.32), we have with probability at least $1 - n^{-c}$ and for all $t \in [T]$:
5092

$$5093 \sum_{\tau=1}^{t-1} \left(\frac{\langle u_\tau^\perp, u_t \rangle}{\|u_\tau^\perp\|_2} \cdot \frac{\|w_\tau^\perp\|_2}{\|u_\tau^\perp\|_2} \right)^2 + \|P_{w_{-1:t-1}}^\perp \tilde{z}_t\|_2^2 \cdot \|u_t^\perp\|_2^2 \leq Cd \cdot (\|P_{u_{1:t-1}} u_t\|_2^2 + \|u_t^\perp\|_2^2) = Cd \cdot \|u_t\|_2^2. \quad (I.33)$$

5097 Now we combine (I.30) and (I.33) to obtain the desired result in **Theorem I.1**.
5098

5099 I.5.2 PROOF OF THEOREM I.2

5100 Recall that

$$5102 u_t = E^\top \varphi(Ey_t^*; b_t) + F^\top \varphi(Fy_t^* + \theta \cdot v^\top \bar{w}_{t-1}; b_t) + \Delta E_t + \Delta F_t.$$

5104 By the triangular inequality, we have

$$5106 \|u_t\|_2 \leq 2\sqrt{\|E^\top \varphi(Ey_t^*; b_t)\|_2^2 + \|F^\top \varphi(Fy_t^* + \theta \cdot v^\top \bar{w}_{t-1}; b_t)\|_2^2} + 2\sqrt{\|\Delta E_t\|_2^2 + \|\Delta F_t\|_2^2}$$

5108 By **Theorem G.4**, we have

$$5110 \sqrt{\|E^\top \varphi(Ey_t^*; b_t)\|_2^2 + \|F^\top \varphi(Fy_t^* + \theta \cdot v^\top \bar{w}_{t-1}; b_t)\|_2^2} \leq CLN\rho_1\xi_t.$$

5112 By **Theorems F.12** and **F.13**, and the fact that $N_1 \leq N$ and $N_2 \leq N\rho_1$, we derive that

$$5113 \sqrt{\|\Delta E_t\|_2^2 + \|\Delta F_t\|_2^2} \leq CL\rho_1 N\sqrt{d}\beta_{t-1} + CL\rho_1\rho_2\sqrt{d}\beta_{t-1} \leq CLN\rho_1\sqrt{d}\beta_{t-1}.$$

5115 This completes the proof of **Theorem I.2**.
5116

5117 I.5.3 PROOF OF THEOREM I.4

5119 We recall from the definition of \mathcal{K}_t that

$$5120 \mathcal{K}_t = \left(n |\bar{b}| \Phi \left(\frac{-\bar{b}}{\sqrt{\frac{3}{4} \hbar_{4,\star}^2 + \frac{1}{4}}} \right) \right)^{1/4} + \left(\rho_2 s n |\bar{b}| \Phi \left(\frac{-\bar{b}}{\sqrt{\frac{2}{3} \hbar_{3,\star}^2 + \frac{1}{3}}} \right) \right)^{1/4} \\ 5121 + \left(\Phi \left(\frac{-\bar{b} + \hbar_{4,t}\zeta_t}{\sqrt{1 - \hbar_{4,t}^2}} \right) + (\rho_2 s)^{1/4} \right) \cdot (t \log(n))^{1/4} + n^{1/4} \rho_2 s t \log(n),$$

5128 The terms that implicitly change with t is ζ_t and $\hbar_{4,t}$. Recall that
5129

$$\zeta_t = \zeta_1 + \mathbb{1}(t \geq 2) \cdot C(\beta_{t-1} + |\alpha_{-1,t-1}| + |\alpha_{-1,0}|)$$

5130 with $\zeta_1 = \sqrt{2}(1 + \varepsilon)\sqrt{2 \log n}$. Moreover, by definition of $\hbar_{4,t}$, we can rewrite the term as
5131

$$5132 \quad 5133 \quad 5134 \quad \Phi\left(-\frac{\bar{b} + \hbar_{4,t}\zeta_t}{\sqrt{1 - \hbar_{4,t}^2}}\right) = \max_{j \in [n]} \left(\frac{1}{|\mathcal{D}_j|} \sum_{l \in \mathcal{D}_j} \Phi\left(-\frac{\bar{b} + H_{l,j}\zeta_t}{\sqrt{1 - H_{l,j}^2}}\right)^4 \right)^{1/4}. \quad (I.34)$$

5135 To understand how the change in ζ_t affects the term, we take the derivatives for positive power q :
5136

$$5137 \quad \frac{d}{d\zeta} \Phi\left(-\frac{\bar{b} + x\zeta}{\sqrt{1 - x^2}}\right)^q \Big|_{\zeta=\zeta_t} = q \Phi\left(-\frac{\bar{b} + x\zeta}{\sqrt{1 - x^2}}\right)^{q-1} \cdot p\left(-\frac{\bar{b} + x\zeta}{\sqrt{1 - x^2}}\right) \cdot \frac{\zeta x}{\sqrt{1 - x^2}} > 0.$$

5139 Here, we have the second derivative larger than 0 since $\zeta_t \geq \zeta_1 = \sqrt{2}(1 + \varepsilon)\sqrt{2 \log n} > |\bar{b}|$ by
5140 assumption. Now, our goal is to upper bound the derivative with respect to ζ . We discuss in two
5141 cases:

5142 • For $x \in [(1 + |\bar{b}|/\zeta)/2, 1]$, we have $\bar{b} + x\zeta \in [(\bar{b} + \zeta)/2, \bar{b} + \zeta]$, $x \geq (1 + 1/\sqrt{2})/2$ and
5143 thus

$$5144 \quad \frac{d}{d\zeta} \Phi\left(-\frac{\bar{b} + x\zeta}{\sqrt{1 - x^2}}\right)^q \leq q \cdot p\left(-\frac{\bar{b} + x\zeta}{\sqrt{1 - x^2}}\right) \cdot \frac{\bar{b} + x\zeta}{\sqrt{1 - x^2}} \cdot \frac{\zeta x}{\bar{b} + \zeta x} \\ 5145 \quad \leq q \cdot \sup_{z \geq \sqrt{1 - (1 + 1/\sqrt{2})^2/4}} p(z) \cdot z \cdot \frac{\zeta}{\bar{b} + \zeta} \leq q \cdot \sup_{z \geq 0} p(z) \cdot z = O(1).$$

5146 • For $x \in [0, (1 + |\bar{b}|/\zeta)/2]$, we have $\sqrt{1 - x^2} \geq \sqrt{1 - (1 + |\bar{b}|/\zeta)^2/4} \geq$
5147 $\sqrt{1 - (1 + 1/\sqrt{2})^2/4} = \Omega(1)$. Thus

$$5148 \quad \frac{d}{d\zeta} \Phi\left(-\frac{\bar{b} + x\zeta}{\sqrt{1 - x^2}}\right)^q \leq q \cdot \frac{\zeta}{\sqrt{1 - (1 + 1/\sqrt{2})^2/4}} = O(\sqrt{\log n}).$$

5149 Therefore, we conclude that for $q = 1$, it holds for any $H_{l,j} \in [0, 1]$ that

$$5150 \quad \Phi\left(-\frac{\bar{b} + H_{l,j}\zeta_t}{\sqrt{1 - H_{l,j}^2}}\right) - \Phi\left(-\frac{\bar{b} + H_{l,j}\zeta_1}{\sqrt{1 - H_{l,j}^2}}\right) \leq C\sqrt{\log n} \cdot (\beta_{t-1} + |\alpha_{-1,t-1}| + |\alpha_{-1,0}|). \quad (I.35)$$

5151 Since $\|x\|_4 - \|y\|_4 \leq \|x - y\|_4 \leq m^{1/4}\|x - y\|_\infty$ for any $x, y \in \mathbb{R}^m$ by the triangle inequality, we
5152 conclude that the same upper bound in (I.35) holds for each j in (I.34) as well. Therefore, the same
5153 upper bound also holds after taking the maximum over $j \in [n]$ in (I.34). Therefore, we obtain that

$$5154 \quad \mathcal{K}_t \leq t \cdot (\mathcal{K}_1 + C\sqrt{\log n} \cdot (\beta_{t-1} + |\alpha_{-1,t-1}| + |\alpha_{-1,0}|)).$$

5155 This completes the proof of [Theorem I.4](#).

J AUXILIARY LEMMAS

J.1 CONCENTRATION INEQUALITIES

5156 **Lemma J.1** (Chi-square concentration, Lemma 1 in [Laurent & Massart \(2000\)](#)). *Let X_1, \dots, X_n be independent random variables such that $X_i \sim \mathcal{N}(0, 1)$ for all i . Let $a \in \mathbb{R}_+^n$ be a vector with nonnegative entries. Then the following holds for any $\delta \in (0, 1)$:*

$$5157 \quad \mathbb{P}\left(\left|\sum_{i=1}^n a_i X_i^2 - \|a\|_1\right| \geq 2\sqrt{\|a\|_2^2 \log \delta^{-1}} + 2\|a\|_\infty \log \delta^{-1}\right) \leq \delta.$$

5158 **Lemma J.2** (Tail probability for the maximum Gaussian random variables). *Let X_1, \dots, X_n be σ^2 -subgaussian random variables with mean 0. Then for any $t > 0$,*

$$5159 \quad 5160 \quad \mathbb{P}\left(\max_{i=1, \dots, n} X_i \geq \sqrt{2\sigma^2 \log n} + t\right) \leq \exp\left(-\frac{t^2}{2\sigma^2}\right).$$

5161 In particular, if X_1, \dots, X_n are independent standard normal random variables, then for any $c > 1$,

$$5162 \quad \mathbb{P}\left(\max_{i=1, \dots, n} X_i \geq c\sqrt{2 \log n}\right) \leq n^{1-c^2}.$$

5184
 5185 **Lemma J.3** (Bernstein's inequality). *Let X_1, \dots, X_n be independent random variables with $|X_i -$
 5186 $\mathbb{E}[X_i]| \leq C$ for all $i \in [n]$. Then for any $\delta \in (0, 1)$,*

$$5187 \quad \mathbb{P}\left(\left|\frac{1}{n} \sum_{i=1}^n X_i - \mathbb{E}X_i\right| \leq \sqrt{\frac{2 \cdot n^{-1} \sum_{i=1}^n \text{Var}[X_i] \cdot \log \delta^{-1}}{n}} + \frac{C \log \delta^{-1}}{3n}\right) \geq 1 - \delta.$$

5189 **Lemma J.4.** *Let X_1, \dots, X_n be independent standard normal random variables and define $M_n =$
 5190 $\max_{1 \leq i \leq n} X_i$. Then for any fixed $\epsilon \in (0, 1)$ and all sufficiently large n with $2(1 - \epsilon)^2 \log n \geq 1$ that*

$$5192 \quad \mathbb{P}\left(M_n \leq (1 - \epsilon)\sqrt{2 \log n}\right) \leq \exp\left(-\frac{n^{2\epsilon-\epsilon^2}}{3\sqrt{\pi \log n}}\right).$$

5195 *Proof.* Since $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} N(0, 1)$, it holds for any $x \in \mathbb{R}$

$$5197 \quad \mathbb{P}(M_n \leq x) = (1 - \Phi(x))^n,$$

5198 where $\Phi(x)$ is the standard normal tail distribution function. In order to upper bound $(1 - \Phi(x))^n$
 5199 when $x = (1 - \epsilon)\sqrt{2 \log n}$, we use a well-known lower bound for the Gaussian tail. Specifically,
 5200 for all $x > 0$ (see, e.g., [Ledoux & Talagrand \(2013\)](#) or [Boucheron et al. \(2013\)](#)),

$$5201 \quad \Phi(x) \geq \Delta(x) := \frac{x}{1 + x^2} \frac{1}{\sqrt{2\pi}} e^{-x^2/2}.$$

5203 Hence, further applying the fact that $1 - \Delta(x) \leq \exp(-\Delta(x))$, we get

$$5205 \quad \mathbb{P}(M_n \leq x) \leq (1 - \Delta(x))^n \leq \exp(-n\Delta(x)).$$

5206 Now, for $x = (1 - \epsilon)\sqrt{2 \log n}$, we have

$$5207 \quad \frac{x}{1 + x^2} = \frac{(1 - \epsilon)\sqrt{2 \log n}}{1 + 2(1 - \epsilon)^2 \log n} \geq \frac{\sqrt{2}}{3(1 - \epsilon)\sqrt{\log n}},$$

5210 where the inequality holds for sufficiently large n such that $2(1 - \epsilon)^2 \log n \geq 1$. Thus,

$$5211 \quad \Delta(x) \geq \frac{1}{3(1 - \epsilon)\sqrt{\pi \log n}} n^{-(1-\epsilon)^2}.$$

5213 Substituting this lower bound into our earlier inequality gives

$$5215 \quad \mathbb{P}\left(M_n \leq (1 - \epsilon)\sqrt{2 \log n}\right) \leq \exp\left(-\frac{1}{3(1 - \epsilon)\sqrt{\pi \log n}} n^{1-(1-\epsilon)^2}\right)$$

$$5218 \quad = \exp\left(-\frac{n^{2\epsilon-\epsilon^2}}{3\sqrt{\pi \log n}}\right).$$

5220 This completes the proof. □

5222 J.2 EFRON-STEIN INEQUALITIES

5224 Let Z be a function of independent random variables X_1, \dots, X_n with domain \mathcal{X} :

$$5225 \quad Z = f(X_1, \dots, X_n), \tag{J.1}$$

5226 where $f : \mathcal{X}^n \rightarrow \mathbb{R}$ is a measurable function. Let X'_1, \dots, X'_n be independent copies of X_1, \dots, X_n .
 5227 Define the modified versions of Z where one coordinate is replaced by its independent copy:

$$5229 \quad Z^{(i)} = f(X_1, \dots, X_{i-1}, X'_i, X_{i+1}, \dots, X_n).$$

5230 Define the deviation terms:

$$5231 \quad V_+ = \mathbb{E}\left[\sum_{i=1}^n (Z - Z^{(i)})^2 \mathbb{1}\{Z > Z^{(i)}\} \mid X_1, \dots, X_n\right],$$

$$5234 \quad V_- = \mathbb{E}\left[\sum_{i=1}^n (Z - Z^{(i)})^2 \mathbb{1}\{Z < Z^{(i)}\} \mid X_1, \dots, X_n\right]. \tag{J.2}$$

5237 The following lemma is borrowed from Theorem 5 in [Boucheron et al. \(2003\)](#) for the case where
 V_+ is dominated by some linear transformation of Z .

5238 **Lemma J.5** (Efron-Stein for dominated variance). *For Z and V_+ defined in (J.1) and (J.2), respectively, suppose that there exist positive constants a and b such that $V_+ \leq aZ + b$. Then there is a universal constant $C > 0$ such that for any $\delta \in (0, 1)$, with probability at least $1 - \delta$,*

$$5242 \quad Z \leq \mathbb{E}[Z] + C \cdot \sqrt{(a \cdot \mathbb{E}[Z] + b) \log(1/\delta)} + C \cdot a \log(1/\delta).$$

5243 The following lemma is borrowed from Theorem 2 in [Boucheron et al. \(2003\)](#).

5244 **Lemma J.6** (Efron-Stein for the moment generating function). *For all $\theta > 0$ and $\lambda \in (0, 1/\theta)$,*

$$5246 \quad \log \mathbb{E} [\exp(\lambda(Z - \mathbb{E}[Z]))] \leq \frac{\lambda\theta}{1 - \lambda\theta} \log \mathbb{E} \left[\exp \left(\frac{\lambda V_+}{\theta} \right) \right].$$

5248 *On the other hand, for all $\theta > 0$ and $\lambda \in (0, 1/\theta)$,*

$$5249 \quad \log \mathbb{E} [\exp(-\lambda(Z - \mathbb{E}[Z]))] \leq \frac{\lambda\theta}{1 - \lambda\theta} \log \mathbb{E} \left[\exp \left(\frac{\lambda V_-}{\theta} \right) \right].$$

5252 The following lemma is borrowed from Lemma 11 in [Boucheron et al. \(2003\)](#) for transforming the
5253 upper bound on moment generating function (MGF) bound into an exponential tail bound.

5254 **Lemma J.7.** *Suppose for any $\lambda \in (0, 1/a)$, there exists a constant $V > 0$ such that:*

$$5255 \quad \log \mathbb{E} [\exp(\lambda(Z - \mathbb{E}[Z]))] \leq \frac{\lambda^2 V}{1 - \lambda a}.$$

5257 *Then there exists some universal constant C such that for any $\delta \in (0, 1)$, with probability at least
5258 $1 - \delta$:*

$$5260 \quad Z - \mathbb{E}[Z] \leq C \cdot \sqrt{V \log(1/\delta)} + C \cdot a \log(1/\delta).$$

5261 With the above lemmas, we can derive the following Efron-Stein inequality for sub-exponential
5262 variance.

5263 **Lemma J.8** (Efron-Stein inequality for sub-exponential variance). *Suppose either of the following
5264 two conditions is satisfied:*

5266 1. *The variance V_+ for Z satisfies that $\mathbb{E}[\exp(\lambda V_+)] \leq \mathbb{E}[\exp(\lambda V'_+)]$ for any $\lambda > 0$, where
5267 V'_+ is a -subexponential with $a \in (0, 1)$:*

$$5268 \quad Q(v) := \mathbb{P}(V'_+ > V + v) \leq \exp(-v/a).$$

5269 *when V_+ exceeds some threshold $V > 0$.*

5271 2. *The moment generating function of V_+ satisfies*

$$5272 \quad \log \mathbb{E} [\exp(\lambda V_+)] \leq \lambda V + \frac{\lambda a}{1 - a\lambda}$$

5274 *for some $V > 0, 0 < a < 1$ and any $0 < \lambda < a^{-1/2}$.*

5275 *Then, with probability at least $1 - \delta$, it holds that*

$$5277 \quad Z - \mathbb{E}[Z] \leq C \cdot \sqrt{V \log(\delta^{-1})} + C \cdot \sqrt{a \log(\delta^{-1})}.$$

5278 *Similarly, if V_- satisfies either of the two conditions, then with probability at least $1 - \delta$, it holds
5279 that*

$$5280 \quad \mathbb{E}[Z] - Z \leq C \cdot \sqrt{V \log(\delta^{-1})} + C \cdot \sqrt{a \log(\delta^{-1})}.$$

5282 *Proof.* We just prove the first condition and the second condition can be implied by the proof. We
5283 explicit calculate the MGF for V_+ . The case for V_- can be handled similarly. Take parameter
5284 $\lambda \in (0, a^{-1/2})$, we have for the moment generating function of V_+ that

$$5286 \quad \begin{aligned} \mathbb{E}[\exp(\lambda V_+)] &= \exp(\lambda V) \cdot \left(\lim_{v \rightarrow 0^-} Q(v) + \lambda \cdot \int_{0^+}^{\infty} \exp(\lambda \cdot v) \cdot Q(v) dv \right) \\ 5287 &\leq \exp(\lambda V) \cdot \left(1 + \lambda \cdot \int_{0^+}^{\infty} \exp(-(a^{-1} - \lambda) \cdot v) dv \right) \\ 5288 &= \exp(\lambda V) \cdot \left(1 + \frac{\lambda}{a^{-1} - \lambda} \right) = \exp(\lambda V) \cdot \left(1 + \frac{\lambda \cdot a}{1 - a\lambda} \right). \end{aligned}$$

where we use 0_+ and 0_- to denote the limit from the right and left side of 0, respectively. Here, in the first line, we use integration by parts to obtain an integration term with respect to the tail probability $Q(v)$. In the final line, we have the denominator $1 - a\lambda > 0$ since $\lambda < a^{-1/2} < a^{-1}$ for $a \in (0, 1)$. Taking the logarithm on both side, we obtain that

$$\log \mathbb{E}[\exp(\lambda V_+)] \leq \lambda V + \log(1 + \lambda a / (1 - a\lambda)) \leq \lambda V + \frac{\lambda a}{1 - a\lambda}.$$

Now, we apply [Theorem J.6](#) with λ replaced by λ/θ for some $\theta \in (a\lambda, \lambda^{-1})$ to obtain that

$$\begin{aligned} \log \mathbb{E}[\exp(\lambda(Z - \mathbb{E}[Z]))] &\leq \frac{\lambda\theta}{1 - \lambda\theta} \log \mathbb{E}\left[\exp\left(\frac{\lambda V_+}{\theta}\right)\right] \leq \frac{\lambda^2}{1 - \lambda\theta} \cdot \left(V + \frac{a}{1 - a\lambda/\theta}\right) \\ &\leq \frac{\lambda^2(V + a)}{(1 - \lambda\theta)(1 - a\lambda/\theta)}. \end{aligned}$$

Note that such a θ exists since $\lambda < a^{-1/2}$. In particular, we have by the constraint on λ that $a\lambda < \sqrt{a} < \lambda^{-1}$. Let us just pick $\theta = \sqrt{a}$ and further restrict ourselves to $\lambda < a^{-1/2}/2$ to obtain that

$$\log \mathbb{E}[\exp(\lambda(Z - \mathbb{E}[Z]))] \leq \frac{\lambda^2(V + a)}{(1 - \lambda\sqrt{a})^2} \leq \frac{\lambda^2(V + a)}{(1 - 2\lambda\sqrt{a})}.$$

Now, we invoke [Theorem J.7](#) and conclude that there exists universal constant $C > 0$ such that

$$Z - \mathbb{E}[Z] \leq C \cdot \sqrt{(V + a) \cdot \log(\delta^{-1})} + C \cdot \sqrt{a} \cdot \log(\delta^{-1}) \leq 2C \cdot (\sqrt{V \log(\delta^{-1})} + \sqrt{a} \cdot \log(\delta^{-1})).$$

A similar bound holds for the lower tail with the condition on V_- . Hence, we complete the proof. \square

Lemma J.9 (Efron-Stein inequality for bounded variance). *Suppose that $\max\{V_+, V_-\} \leq V_0$ with probability at least $1 - \exp(-a)$ for some $a > n^{c_1}$ and $V_0 > n^{-c_2}$ for some universal constant $c_1, c_2 > 0$. Also assume that $\max\{V_+, V_-\}$ is uniformly bounded by V_1 with $V_1 \leq n^{c_3}$ for some universal constant $c_3 > 0$. Then, with probability at least $1 - \delta$, it holds that*

$$|Z - \mathbb{E}[Z]| \leq C \cdot (\sqrt{V_0 \log(\delta^{-1})} + \sqrt{a^{-1}V_1} \log(\delta^{-1})).$$

Proof. By [Theorem J.6](#), we have for the moment generating function (MGF) of V_+ that

$$\begin{aligned} \log \mathbb{E}[\exp(\lambda(Z - \mathbb{E}[Z]))] &\leq \frac{\lambda\theta}{1 - \lambda\theta} \cdot \log \mathbb{E}\left[\exp\left(\frac{\lambda V_+}{\theta}\right)\right] \\ &\leq \frac{\lambda\theta}{1 - \lambda\theta} \cdot \log\left(\exp\left(\frac{\lambda V_0}{\theta}\right) + \exp\left(\frac{\lambda V_1}{\theta}\right) \cdot \mathbb{P}(V_+ \geq V_0)\right) \\ &\leq \frac{\lambda}{1 - \lambda\theta} \cdot \left(\lambda V_0 + \theta \exp\left(\frac{\lambda(V_1 - V_0)}{\theta} - a\right)\right). \end{aligned}$$

In the following, we take $\theta = 2\lambda(V_1 - V_0)/a$, and the above upper bound can be simplified as

$$\begin{aligned} \log \mathbb{E}[\exp(\lambda(Z - \mathbb{E}[Z]))] &\leq \frac{\lambda^2}{1 - 2\lambda^2(V_1 - V_0)/a} \cdot \left(V_0 + \frac{\exp(-a/2)}{2\lambda^2(V_1 - V_0)/a}\right) \\ &\leq \frac{\lambda^2}{1 - \lambda\sqrt{2(V_1 - V_0)/a}} \cdot \left(V_0 + \frac{\exp(-a/2)}{2\lambda^2(V_1 - V_0)/a}\right). \end{aligned}$$

Similarly for V_- , we also have

$$\log \mathbb{E}[\exp(-\lambda(Z - \mathbb{E}[Z]))] \leq \frac{\lambda^2}{1 - \lambda\sqrt{2(V_1 - V_0)/a}} \cdot \left(V_0 + \frac{\exp(-a/2)}{2\lambda^2(V_1 - V_0)/a}\right).$$

Therefore, in the following, we only need to consider the upper tail and the lower tail can be directly implied. As long as $1/(2\lambda^2(V_1 - V_0)/a)$ is polynomially in n , we will have $\exp(-a/2)/(2\lambda^2(V_1 - V_0)/a)$ is polynomially in n .

$V_0)/a) \leq V_0$. Take t to be the deviation of Z from its mean, i.e., $t = |Z - \mathbb{E}[Z]|$, we have By Lemma 11 of [Boucheron et al. \(2003\)](#), we conclude by using the Chernoff bound that

$$\begin{aligned} \log \mathbb{P}(Z - \mathbb{E}[Z] \geq t) &\leq \inf_{\lambda \in (0, \sqrt{a/2(V_1 - V_0)})} \left\{ \frac{\lambda^2 \cdot 2V_0}{1 - \lambda \sqrt{2(V_1 - V_0)/a}} - t\lambda \right\} \\ &\leq -\frac{t^2}{2(4V_0 + t\sqrt{2a^{-1}(V_1 - V_0)/3})}, \end{aligned}$$

where the last inequality holds as long as t satisfies

$$1 - \left(1 + \frac{t\sqrt{2a^{-1}(V_1 - V_0)}}{2V_0}\right)^{-1/2} \geq \frac{\exp(-a/4)}{V_0}. \quad (\text{J.3})$$

The lower bound holds similarly. A sufficient condition for [\(J.3\)](#) to hold is

$$t \geq \frac{8 \exp(-a/4)}{\sqrt{2a^{-1}(V_1 - V_0)}}.$$

This condition will be automatically satisfied if we pick $t = C \cdot (\sqrt{V_0 \log(\delta^{-1})} + \sqrt{a^{-1}(V_1 - V_0) \log(\delta^{-1})})$. Therefore, we conclude that with probability at least $1 - \delta$, it holds that

$$|Z - \mathbb{E}[Z]| \leq C \cdot (\sqrt{V_0 \log(\delta^{-1})} + \sqrt{a^{-1}V_1 \log(\delta^{-1})}).$$

This completes the proof. \square

Lemma J.10. *Let $w = (w_1, w_2, \dots, w_d)$ be a random vector, and let $w^{(i)}$ denote the vector where the i -th coordinate w_i is replaced by an independent copy w'_i , while all other coordinates remain unchanged. Suppose that $f : \mathbb{R}^d \rightarrow \mathbb{R}$ and $g : \mathbb{R}^d \rightarrow \mathbb{R}$ are both nondecreasing/nonincreasing functions with respect to the coordinate w_i . Then, we have the inequality:*

$$\mathbb{E}[f(w)g(w)] \geq \mathbb{E}[f(w)g(w^{(i)})].$$

Proof of [Theorem J.10](#). By the monotonicity of f and g , we have:

$$(f(w) - f(w^{(i)})) \cdot (g(w) - g(w^{(i)})) \geq 0.$$

Expanding the product and taking expectations, we obtain:

$$\mathbb{E}[f(w)g(w)] - \mathbb{E}[f(w)g(w^{(i)})] - \mathbb{E}[f(w^{(i)})g(w)] + \mathbb{E}[f(w^{(i)})g(w^{(i)})] \geq 0.$$

By the symmetry of expectations, the first and last terms are equal, and the second and third terms are also equal, so we obtain the desired inequality:

$$\mathbb{E}[f(w)g(w)] \geq \mathbb{E}[f(w)g(w^{(i)})].$$

This completes the proof. \square

K THE USE OF LARGE LANGUAGE MODEL

We acknowledge the use of a large language model (LLM) primarily to improve the grammar and clarity of this manuscript. The LLM was also used to assist with debugging and generating boilerplate code snippets, which were reviewed and validated by the authors.

L REVISION

L.1 DISCUSSIONS FOR GAUSSIAN FEATURE ASSUMPTION

In our current theory, we assume that the features are Gaussian distributed. This is primarily used to obtain clean, closed-form concentration bounds on:

1. ([§B.4.1](#)) Inner products between different feature directions, so we can control interference between features when multiple are active, and

5400 2. (§B.4.2) Pre-activations $y = w^\top x$ and their sparsity under the data model $X = HV$.
 5401

5402 In specific, we employ the Gaussian conditioning technique, which allows us to decompose a high
 5403 dimensional Gaussian random vector into components that are explicitly dependent on the condi-
 5404 tioning event and components that are independent Gaussian noise. Theoretically extending these
 5405 probabilistic techniques to non-Gaussian settings is a non-trivial task and out of the scope of this
 5406 paper.

5407 One generalization of the Gaussian conditioning technique involves using features uniformly sam-
 5408 pled from the unit sphere in our synthetic experiment (§3). This setup better reflects real-world
 5409 scenarios where features in LLMs are often normalized through layer-normalization. Despite the
 5410 different feature distribution, we still observe the resonance phenomenon predicted by our theory.
 5411 This is evident when inspecting the Feature Recovery Rate (FRR) in Figure 2, plotted for varying
 5412 activation frequencies p and dimensions d . This observation suggests that our theory is robust to the
 5413 specific distribution of features.

5414 In addition, the empirical results on real LLM activations further confirm that the proposed GBA
 5415 method works well when V ’s rows are just the features learned by the LLM, which are non-Gaussian.
 5416

5417 L.2 REVISION FOR EVALUATION METRICS

5419 We provide brief definitions of key evaluation metrics used in this paper, and they will be incorpo-
 5420 rated in the main text in the revision.

5422 **Feature Recovery Rate (FRR).** For synthetic experiments, FRR is the fraction of ground-truth
 5423 features (v_i) such that at least one neuron’s weight (w_m) has cosine similarity with (v_i) above a
 5424 threshold (τ_{align}) . Formally:

$$5426 \quad \text{FRR} = \frac{1}{n} \sum_{i=1}^n \mathbb{1} \left[\exists m \in [M] : \frac{|\langle w_m, v_i \rangle|}{\|w_m\|_2 \|v_i\|_2} \geq \tau_{\text{align}} \right]$$

5429 **Max Cosine Similarity (MCS).** For real-data experiments, MCS measures the maximum cosine
 5430 similarity between a neuron in one run and all neurons in another run, used to assess cross-seed
 5431 consistency.

5433 **Neuron Z-score.** For a neuron m with activations $\{\phi_{m,i}\}$ on a batch, the Z-score is $Z_m^{\max} =$
 5434 $(\phi_{m,\max} - \mu_m)/s_m$ where $\phi_{m,\max}$ is the maximum activation, μ_m is the mean activation, and s_m
 5435 is the standard deviation for activation. High Z-scores indicate neurons that selectively activate for
 5436 specific patterns.

5438 **Highest/Lowest Target Frequency (HTF/LTF).** In GBA, neurons are partitioned into K groups
 5439 with target activation frequencies $\{p_k\}_{k=1}^K$ arranged as a geometric sequence. HTF is p_1 (the largest
 5440 frequency, e.g., 0.5) and LTF is p_K (the smallest frequency, e.g., 10^{-3} – 10^{-4}).

5442 **Top- α selection rule.** For a given fraction $\alpha \in (0, 1]$, this rule sorts neurons by a scalar metric
 5443 (max activation or Z-score) and selects the top α fraction for evaluation. This focuses analysis on
 5444 the most active or significant neurons, as only a small fraction typically capture meaningful features.

5446 L.3 ENHANCED CAPTION FOR FIGURE 2: EVIDENCE OF PHASE TRANSITION

5448 In the revision, we will add the following enhanced explanation to the caption of Figure 2:

5449 Figure 2: Feature Recovery Rate (FRR) for varying activation frequencies p and dimensions d . In
 5450 the left panel (light superposition, $d > \sqrt{n}$), the high-FRR region forms a **wide band** in p above
 5451 f . In the right panel (heavy superposition, $d < \sqrt{n}$), the high-FRR region collapses into a **narrow**
 5452 **diagonal band**, where p must track f tightly. The contrast between wide and narrow resonance
 5453 bands provides empirical evidence for the theoretical phase transition at $d \approx \sqrt{n}$, showing that the
 same feature frequency f yields different learning tolerances depending on superposition level.

5454 L.4 DISCUSSIONS FOR GEOMETRIC SPACING OF TARGET ACTIVATION FREQUENCIES
5455

5456 In our Group Bias Adaptation (GBA) method, we assign neurons into K groups with Target Activation
5457 Frequencies (TAFs) $\{p_k\}_{k=1}^K$ that are geometrically spaced between a Highest Target Frequency
5458 (HTF) and a Lowest Target Frequency (LTf). This design choice is motivated by several theoretical
5459 and practical considerations:

5460 1. **Theoretic guided group allocation.** The theoretical resonance condition depends on p
5461 being within **at least a multiplicative** band around f (can be even wider though if we have
5462 less superposition). A geometric grid guarantees that for any feature frequency f within
5463 $[p_K, p_1]$, there exists some group with TAF p_k within a constant factor of f , regardless of
5464 the exact exponent of the empirical feature distribution.

5465 2. **Better coverage in log-frequency space.** Geometric spacing minimizes the number of
5466 groups K needed to cover a wide frequency range $[p_K, p_1]$ to just logarithmic in the ratio
5467 p_1/p_K . Empirically, we show in Figure 6 that having $K > 10$ groups is sufficient for
5468 covering much of the frequency spectrum. However, other spacing (such as Zipfian) would
5469 potentially require many more groups to achieve similar coverage, as the frequency decay
5470 is slower than geometric. This would dilute the number of neurons per group, and we might
5471 risk missing features in that frequency range.

5473 L.5 CLARIFICATION ON NEURON RESONANCE
5474

5475 Intuitively, once a neuron has already learned a single feature, then its activation frequency will
5476 match the feature's occurrence frequency. Our work, however, is about the *reverse* direction under a
5477 concrete training procedure:

5478 *If a group of neurons are trained to activate at frequency p , under suitable conditions these neurons
5479 can provably recover features with frequency lying in a corresponding “resonance band”.*

5481 This is a non-trivial statement because at random initialization, the neurons do not align with any
5482 features, and the training dynamics must guide them to do so if they are tuned at the right frequency.
5483 This result justifies that a more active way of training Sparse Autoencoders (SAEs) is plausible, and
5484 provides a theoretical foundation for our GBA algorithm.

5486 L.6 CLARIFICATION THAT GBA IS NOT A HIERARCHICAL SAE
5487

5488 One might wonder whether GBA with multiple frequency groups is essentially the same as Ma-
5489 tryoshka SAEs (Bussmann et al.) or Hierarchical TopK SAEs (Balagansky et al., 2025) that are
5490 designed to recover hierarchical features. However, we would like to clarify that GBA is fundamen-
5491 tally different from these models, essentially because GBA uses a *single loss* for all groups, while
5492 hierarchical SAEs or Matryoshka SAEs use *multiple losses*, each applied to a subset of the neurons.

5493 As a consequence, one limitation of GBA is that it is not guaranteed to separate hierarchical features.
5494 This does not violate our theoretical analysis, since we assume that the feature coefficient matrix H
5495 has uniformly random supports, which rules out hierarchical feature structures.

5496 To make this distinction more concrete, consider the following minimal example. Let $a, b \in \mathbb{R}^d$ be
5497 unit vectors with $b \neq \pm a$, and suppose the dataset consists only of the two inputs

$$5498 \quad x \in \{a + b, a - b\},$$

5500 i.e., the high-level feature a always co-occurs with either b or $-b$. Under a single global reconstruc-
5501 tion loss (the structure used by GBA), there is no penalty for representing the data by the two basis
5502 vectors $a + b$ and $a - b$ themselves. In other words, the model can minimize loss by learning neurons
5503 aligned with $a + b$ and $a - b$, without ever isolating a or b individually. By contrast, hierarchical or
5504 multi-loss SAEs (e.g., Matryoshka) impose intermediate reconstruction objectives or capacity
5505 constraints at different levels. A high-level group that must explain the input with very few neurons (or
5506 with its own reconstruction loss) is incentivized to capture the common component a rather than
5507 the signed combinations $a \pm b$. Thus the multi-loss design can force a decomposition that separates
5508 high- and low-level factors.

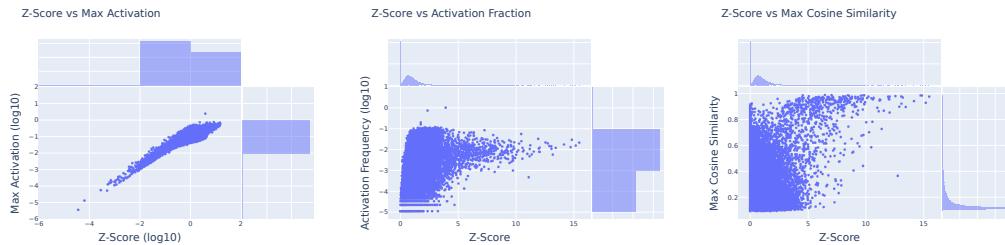
Furthermore, this distinction explains why GBA is primarily compared against other single-loss SAEs (TopK, JumpReLU, L_1) in our experiments, rather than Matryoshka. Notably, despite not being designed for hierarchical feature recovery, GBA still demonstrates competitive performance on SAEBench compared to more advanced models like Matryoshka, as shown in [Table 2](#). We believe that extending GBA to handle hierarchical feature decomposition is an interesting direction for future work, and it remains an interesting research question on how to apply frequency-aware training in that context.

5516 L.7 ADDITIONAL RESULTS ON NEURON ANALYSIS

We further provide additional studies on the neurons learned by the GBA and TopK methods in terms of the three metrics used in the main experiment: maximum activation, Z-score, and maximum cosine similarity across different runs with different random seeds. All the other setup is the same as in [Figure 4](#). These metrics are computed based on the validation part of Github dataset, with the hook position at the MLP output of layer 26. For the Z-score, we compute the largest value among the tokens in the validation set, and for the maximum cosine similarity, we compute the smaller value among the two additional runs. See [§C.2](#) for rigorous definitions of these metrics. In addition, for each neuron m , we also compute the *activation fraction* (or activation rate), which is defined as the fraction of tokens where pre-activations of neuron m are non-negative.

Thus, for each neuron m , we have four metrics: maximum activation, Z-score, maximum cosine similarity, and activation fraction. We generate scatter plots by plotting the Z-score against the other three metrics. The results for GBA and TopK are presented in [Figure 15](#) and [Figure 16](#), respectively.

Z-score v.s. maximum activation. In [Figure 15](#) (left), we present the scatter plot of the Z-score versus the maximum activation of neurons, which is shown in the logarithmic scale with base 10. We observe an [almost linear relationship](#) between the two metrics, indicating that neurons with higher Z-scores also exhibit higher maximum activations. Notably, at the upper end of the distribution, a subset of neurons attains even higher Z-scores. This behavior suggests that these neurons capture a “cleaner” feature and fire exclusively when the feature is present. By the definition of the Z-score, for neurons with the same maximum activation, a higher Z-score implies a lower variance. In other words, these neurons’ activations tend to be bimodal—predominantly near a baseline when the feature is absent and significantly higher when the feature is present. This is consistent with the dashboard results for individual neurons as we shown in [Figure 17](#).



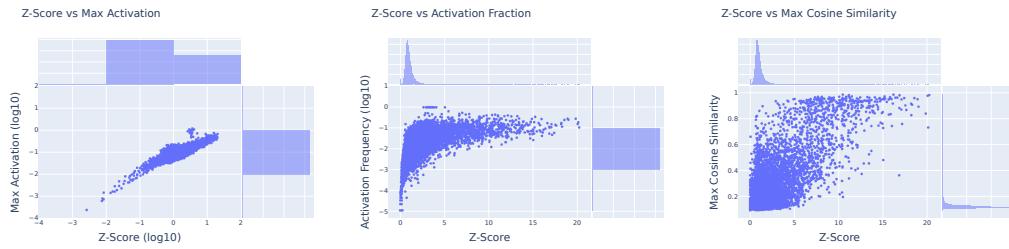
5549 **Figure 15:** Scatter plots for all SAE neurons illustrating neuron properties for the GBA method:
5550 Z-score versus Maximum Activation, Fraction of Non-negative Pre-Activations (i.e., activation fre-
5551 quency), and Maximum Cosine Similarity across different runs with different random seed. The 66k-
5552 neuron SAE is trained on the GitHub dataset with a hook at the MLP output of layer 26.

Z-score v.s. activation fraction. In [Figure 15](#) (middle), we present a scatter plot of the Z-score versus the activation fraction, which is shown in the logarithmic scale with base 10. [Neurons with higher Z-scores generally exhibit an activation fraction near \$10^{-3}\$ to \$10^{-1}\$](#) . This suggests that they predominantly capture infrequent yet salient features. Comparing to the TopK method, we observe that the GBA method is more effective in capturing infrequent features, which is primarily due to the fact that we purposefully assign groups with both high and low target activation frequency. Additionally, the neuron grouping mechanism effectively adapts to diverse feature occurrence frequencies, underscoring the adaptivity of our approach. Additionally, we observe several neurons

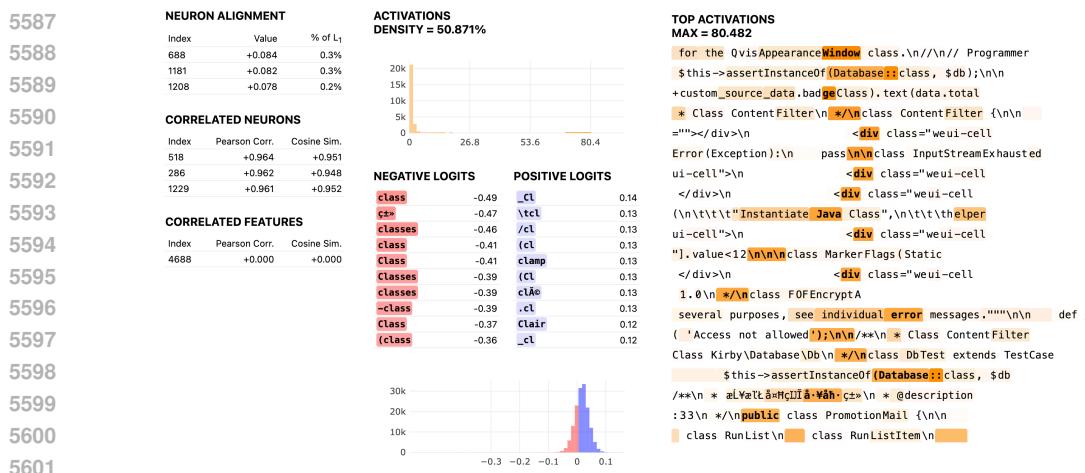
5562 with activation frequencies exceeding the HTF of 0.1 (by our default configurations). This behavior
 5563 is facilitated by the bias-clamping mechanism, which prevents biases from becoming excessively
 5564 negative, as discussed in §4.

5565 On the contrary, we observe in [Figure 16](#) (middle) that TopK is good at capturing frequent features,
 5566 but for infrequent features, it has very low Z-scores compared to the GBA method. [This fact again](#)
 5567 [underscores the effectiveness of our approach in capturing infrequent features.](#)

5569 **Z-score v.s. MCS.** In [Figure 15](#) (right), we present a scatter plot of the Z-score versus maximum
 5570 cosine similarity across different runs with distinct random seeds. Recall that a higher maximum
 5571 cosine similarity indicates more consistent feature recovery, and we observe that [neurons with higher](#)
 5572 [Z-scores tend to exhibit higher levels of consistency](#). This result supports the effectiveness of GBA
 5573 in reliably extracting salient features.



5583 [Figure 16](#): Scatter plots SAE neurons illustrating neuron properties trained using TopK with $K =$
 5584 300. The other configurations are the same as [Figure 15](#)



5602 [Figure 17](#): Feature dashboard for neuron 4688 in the GBA-SAE model trained on Pile Github at layer
 5603 26's MLP output position. This neuron exhibits a clear bimodal activation pattern, and is activated
 5604 before outputting the "class" token.

5606 L.8 WHY FREQUENCY-AWARE TRAINING? A TOY EXAMPLE

5608 To illustrate the benefits of frequency-aware training, we present a simple toy example, where we
 5609 will show that standard TopK/L1 SAEs can fail to recover the ground-truth features.

5611 **Data Generation.** We randomly sample $n = 128$ features $\{v_i\}_{i=1}^n \in \mathbb{S}^{d-1}$ with $d = 42$ dimensions.
 5612 We consider the dataset to be *heavily imbalanced* in the sense that different data could contain
 5613 dramatically different number of active features. Specifically, we consider two types of data points:

5614 1. **Type A:** with probability 0.5, we sample $s = 3$ features uniformly at random from $\{v_i\}_{i=1}^n$,
 5615 take their sum and ℓ_2 -normalize as the data point x .

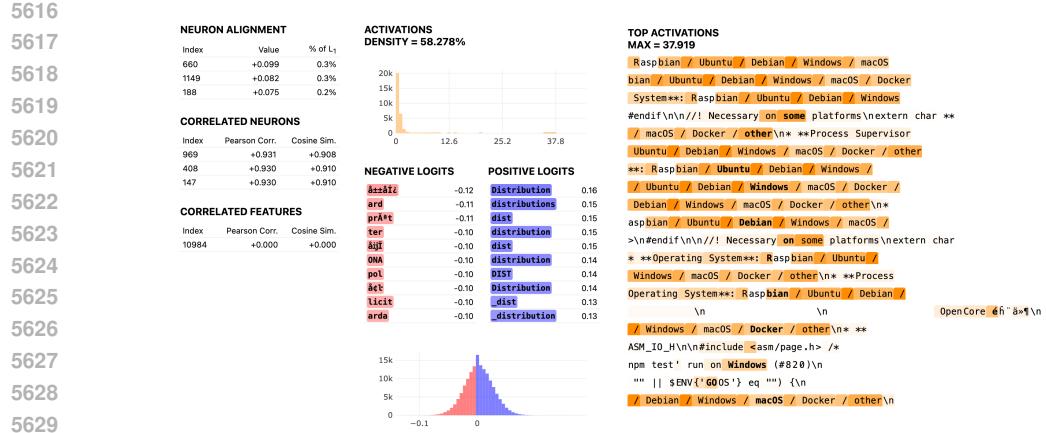


Figure 18: Feature dashboard for neuron 10984 in the GBA-SAE model trained on Pile Github at layer 26’s MLP output position. This neuron activates uniquely when the model is going to generate names of operating system such as “Ubuntu”, “Windows”, and “macOS”. This is a good example of a neuron that captures a concept rather than a specific token.

2. **Type B:** with probability 0.5, we sample $s = 20$ features uniformly at random from $\{v_i\}_{i=1}^n$, take their sum and ℓ_2 -normalize as the data point x .

Thus, Type A data points are sparse combinations of a few features, while Type B data points are denser combinations of many features. This specific data generation resemble the real-world scenario where different data points could contain different number of active features. Note that the only challenge here is the *imbalance* in the number of active features, while the feature frequencies are all uniform at $f = (3 + 20)/2n \approx 0.09$.

Why it could be a challenge for standard SAEs. Standard SAEs like TopK regularized SAEs typically assume a *fixed sparsity level* across all data points. For example, a TopK SAE with $K = 10$ assumes that each data point can be represented by activating only 10 neurons. While this K value could be suitable for learning Type A data points (which only need 3 active features), it is too small for Type B data points (which need 20 active features). Hence, the model could struggle to learn real features from Type B data points.

Training Setup. We consider training TopK SAEs as our baseline method and make comparison with our proposed GBA method. For all SAEs, we set the number of neurons to be $M = 8192$. We consider the following configurations:

1. **TopK SAE:** We train TopK SAEs with $M = 8192$ neurons and sweep $K \in \{20, 30, 50\}$. These values correspond to different sparsity assumptions: $K = 20$ matches exactly the sparsity of the dense (Type B) samples, while $K = 30$ and $K = 50$ represent over-estimates. This setup evaluates the model’s robustness to fixed-sparsity constraints when the true data sparsity varies significantly.
2. **GBA SAE:** We train two variants of GBA SAEs: (i) **Full coverage:** We set HTF=0.5, LTF=0.001 just like in our main experiments with 10 groups. This setup ensures that the target frequencies perfectly cover the feature frequency $f \approx 0.09$, allowing us to assess GBA’s effectiveness when the frequency range is well-specified. (ii) **Misspecified coverage:** We set HTF=0.01, LTF=0.001 with 10 groups, which does not cover the feature frequency $f \approx 0.09$. This setup tests GBA’s robustness to imperfect frequency range specifications.

Results. We present the results in Table 4. We observe that:

- **TopK SAE’s performance is highly sensitive to K :** When $K = 20$, the model perfectly matches the sparsity of Type B samples, achieving a perfect FRR of 100% at $MCS \geq$

5670 0.8 and 98.4% at $MCS \geq 0.9$. However, as K increases to 30 and 50, the FRR drops
 5671 significantly, especially at the higher MCS threshold of 0.9. This indicates that to recover
 5672 features accurately, the sparsity level must be carefully tuned to the data distribution, which
 5673 may not be feasible in practice.

5674 • **GBA SAE with full coverage excels:** The GBA model with full frequency coverage
 5675 achieves perfect FRR of 100% at both MCS thresholds, demonstrating its ability to adaptively
 5676 learn features across varying sparsity levels in the data. The 100% FRR is not surprising
 5677 here as predicted by our theoretical analysis. On the other hand, if we misspecify
 5678 the frequency coverage, the FRR drops significantly. These results again validate that it is
 5679 indeed the frequency-aware training that enables effective feature recovery.

Method	FRR (MCS ≥ 0.8)	FRR (MCS ≥ 0.9)
TopK=20	100.0%	98.4%
TopK=30	98.4%	24.2%
TopK=50	94.5%	23.4%
GBA Full coverage	100.0%	100.0%
GBA Misspecified coverage	38.3%	3.9%

5688 Table 4: Feature Recovery Rate (FRR) across different methods and Maximum Cosine Similarity
 5689 (MCS) thresholds. Here, a feature is considered recovered if at least one neuron’s weight has a
 5690 cosine similarity with the feature above the specified MCS threshold (0.8 or 0.9).

5692 L.9 ADDITIONAL SAE BENCH EVALUATION

5694 We provide additional comparison of GBA with other SAE variants on SAE Bench (Karvonen et al.,
 5695 2025) in Table 2.

5696 For GBA, we always fix $HTF = 0.5$ and number of groups $K = 20$. To create GBA run with
 5697 different L_0 sparsity, we vary the LTF from 10^{-3} to 10^{-4} , and also also vary the number of neurons
 5698 assigned to each group and γ_+ , the coefficient that controls how much we increase the bias for dead
 5699 neurons in each group (See line 18 of Algorithm 1). Specifically, we allocate more neurons to groups
 5700 with lower target frequencies while also decrease γ_+ if we want to achieve a higher overall sparsity
 5701 level L_0 . For this experiment, we train a groups of GBA models with final L_0 values ranging from
 5702 132.9 to 694.9.

5703 **Why we do not target the very high sparsity (extremely low L_0) regime?** In our sparsest run
 5704 ($L_0 = 132.9$), we set $LTF = 10^{-4}$, $\gamma_+ = 10^{-4}$ and allocated a linearly increasing number of
 5705 neurons to groups with lower target frequencies. Empirically, we find that

- 5707 1. Further decreasing the LTF, γ_+ or assigning more neurons to low-frequency groups dramati-
 5708 cally exacerbates the percentage of dead neurons, with the fraction of dead neurons exceeding
 5709 50%. This behavior is expected, as extremely low target frequencies (e.g., $< 10^{-4}$) are difficult
 5710 to maintain stable given limited batch sizes, making neurons prone to becoming permanently
 5711 inactive. This constraint is fundamentally different from TopK methods, where sparsity can be
 5712 globally hardcoded by the parameter K .
- 5713 2. Further tuning these hyperparameters does not effectively reduce the L_0 value. One evidence
 5714 is from our ablation studies in Figure 6, where the lowest achievable sparsity is about 0.2%,
 5715 which corresponds to $L_0 \approx 132$ for our setup with 66k neurons.
- 5716 3. The $100 \sim 700$ region of L_0 already covers a wide range of sparsity levels that are of practical
 5717 interest, whereas similar range of L_0 has also been used in prior SAE works (Gao et al., 2024).

5718 Consequently, to evaluate the performance of GBA in a reasonable configuration setting, we do not
 5719 make further attempt to push GBA into the extremely low L_0 regime in this experiment.

5721 We provide the comparison results of GBA with other SAE variants in Figure 19. Here, we only
 5722 train the GBA models with different L_0 values, and the results of the other SAE models are taken
 5723 from Karvonen et al. (2025), where the SAE baselines are all trained with the same data and LLM
 architecture as ours.

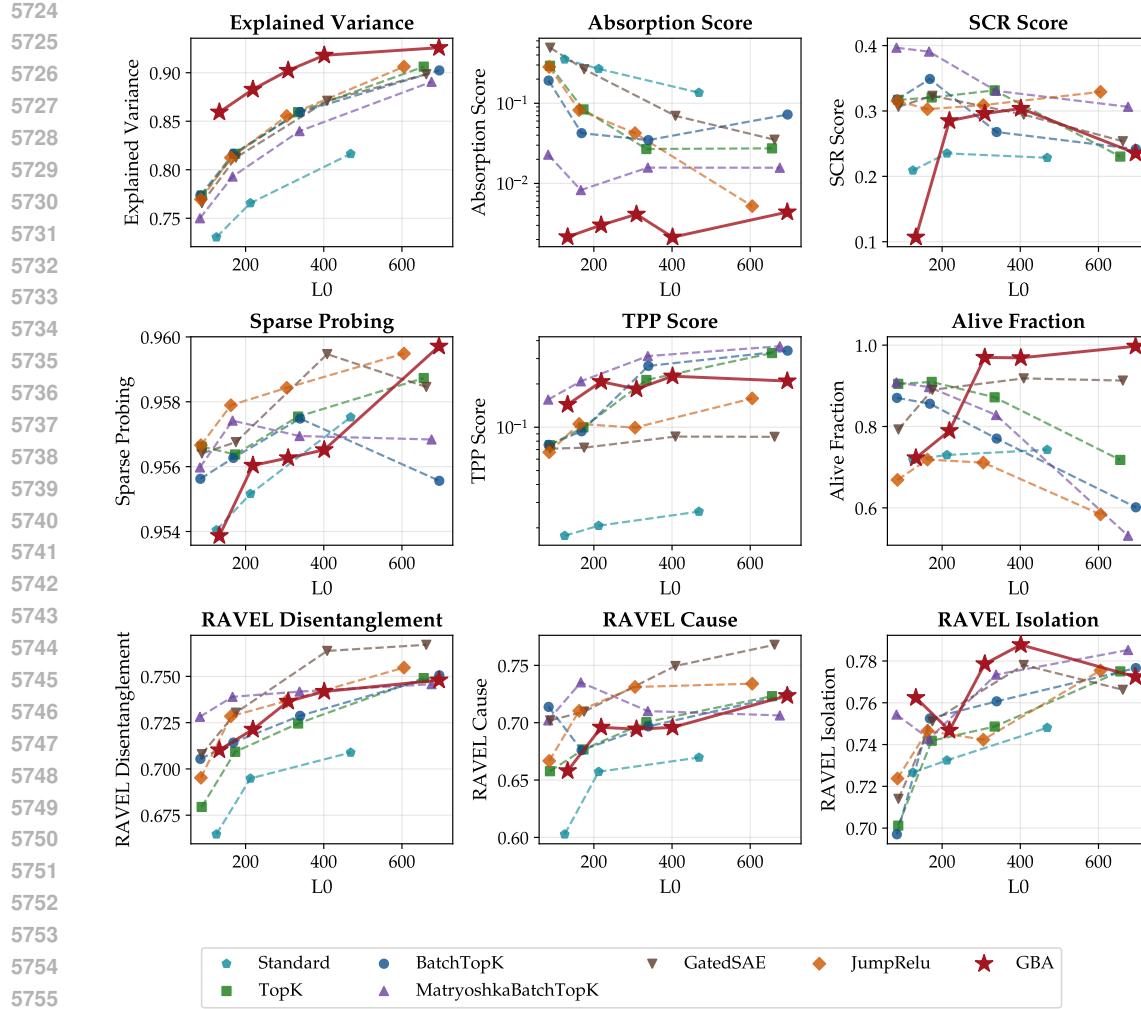


Figure 19: **SAEBench Evaluation Results.** We compare GBA with other SAE variants across multiple metrics. Here, we constrain the comparison to SAE models with L_0 values between 100 and 500 to ensure a fair evaluation. For SCR (Marks et al., 2024) and TPP metrics, we take the average of the scores over Top-20 and Top-50 neurons as scores evaluated for these numbers tend to be more stable (Karvonen et al., 2025) while avoiding biases from too limited neuron counts. All the metrics except Absorption Score are better when higher, while Absorption Score is better when lower. GBA demonstrates competitive performance across Explained Variance, Absorption Score, TPP Score, Alive Fraction (for high L_0), and RAVEL Isolation metrics.

GBA method demonstrates a distinct performance profile compared to standard Sparse Autoencoder (SAE) baselines. Key observations include:

- Explained Variance:** GBA consistently achieves the highest explained variance across all scrutinized L_0 levels (ranging from 100 to 400), significantly outperforming Standard and PAnneal baselines while maintaining a slight edge over BatchTopK and Matryoshka models.
- Absorption Score:** GBA achieves the lowest Absorption Score (approaching 10^{-2} on the log scale), which is significantly better than Standard, TopK, and GatedSAE (hovering around 10^{-1}). This indicates that GBA features are consistently activated when their corresponding input features are present, demonstrating effective feature capture. We add more discussions on this point later.
- SCR Score:** GBA significantly underperforms on the Spurious Correlation Removal (SCR) metric when we push the L_0 value to 132.9. One possible reason for such a sharp drop is that many neurons in the model are allocated to extremely low-frequency groups (with target

5778 frequencies below 10^{-3}), and the model can fail to capture spurious features that are used for
 5779 the SCR task.

5780 4. **Sparse Probing:** In the sparse probing classification task, GBA remains competitive with an
 5781 accuracy of approximately $0.953 \sim 0.957$. However, it is marginally outperformed by other
 5782 variants, which achieve slightly higher linear separability at similar sparsity levels.

5783 5. **TPP Score:** GBA shows competitive performance on the TPP metric compared to other SAE
 5784 variants, and is on par with BatchTopK and outperform JumpReLU and GatedSAE, demon-
 5785 strating its ability to capture features with high causal disentanglement quality.

5786 6. **Alive Fraction:** The method exhibits exceptional stability with a near-perfect alive fraction
 5787 (≈ 1.0) for L_0 values above 300. However, for lower L_0 values (e.g., 132.9), the alive fraction
 5788 decreases to around 0.75. The reason for this drop lies in how we configure GBA for achieving
 5789 low L_0 values, which involves setting very low target frequencies for some groups, assigning
 5790 more neurons to low-frequency groups, and using a small γ_+ value. All these factors contribute
 5791 to an increased likelihood of neurons becoming permanently inactive.

5792 7. **RAVEL Metrics:** GBA performs competitively on the RAVEL suite, particularly in *RAVEL*
 5793 *Isolation* and *RAVEL Disentanglement*. The performance trend improves as L_0 increases, sug-
 5794 gesting the features recovered are causally distinct and well-separated.

5795

5796 The tables for similar L_0 SAE comparison are also available in [Table 6](#) and [Table 5](#) for L_0 around
 5797 300 and 100, respectively.

5798

5799 **Further Discussion on Absorption Score.** GBA demonstrates particularly strong performance on
 5800 the Absorption Score, achieving values significantly lower than other methods. To ensure this low
 5801 score reflects genuine feature disentanglement rather than trivial artifacts, we additionally evaluate
 5802 the **Mean F1 score** for the first-letter prediction task, following [Chanin et al. \(2024\)](#). Formally, the
 5803 F1 score is defined as the harmonic mean of precision and recall:

$$5804 F_1 = \frac{2 \cdot \text{Precision} \cdot \text{Recall}}{\text{Precision} + \text{Recall}},$$

5805

5806 where $\text{Precision} = \frac{\text{TP}}{\text{TP} + \text{FP}}$ and $\text{Recall} = \frac{\text{TP}}{\text{TP} + \text{FN}}$, with TP, FP, and FN denoting true positives,
 5807 false positives, and false negatives, respectively. This metric evaluates the utility of the top- k neu-
 5808 rons—selected via cosine similarity with a task-specific probe—in predicting the first letter of a
 5809 token. A high Mean F1 score confirms that the unabsorbed features are semantically meaningful.

5810 As shown in [Figure 20](#), GBA consistently achieves Mean F1 scores in the range of 0.6–0.7 across
 5811 different sparsity levels. Such an Mean F1 Score matches and is even slightly better than those
 5812 reported in [\(Chanin et al., 2024\)](#). This suggests that GBA successfully recovers accurate, task-
 5813 relevant features, thereby validating that its low Absorption Score reflects genuine disentanglement
 5814 rather than artifacts. Furthermore, the Mean F1 score increases only mildly with k , implying that the
 5815 top neuron alone captures most of the predictive power for this task—a strong indicator of minimal
 5816 feature absorption.

5817

5818
 5819
 5820
 5821
 5822
 5823
 5824
 5825
 5826
 5827
 5828
 5829
 5830
 5831

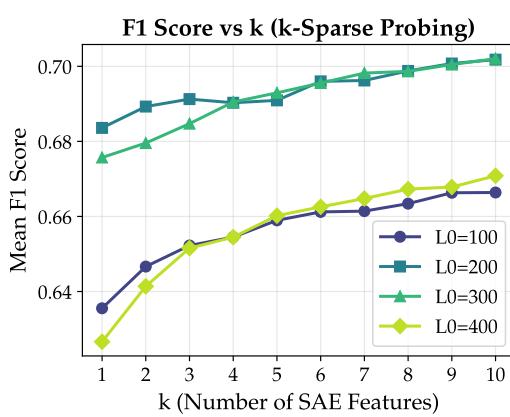


Figure 20: **Mean F1 Score Comparison.** We compare the Mean F1 score of the top- k neurons for the first letter prediction task in our trained GBA SAEs with different L_0 values. Notably, across different sparsity levels, we find that GBA consistently achieves Mean F1 scores around $0.6 \sim 0.7$, while standard SAEs usually have Mean F1 scores below 0.5 for these L_0 levels as reported in (Chanin et al., 2024). This indicates that GBA indeed learns SAE latents that are accurate in capturing meaningful features and the low Absorption Score is not due to trivial artifacts.

Metric	GatedSAE	TopK	BatchTopK	Matryoshka	JumpReLU	GBA (ours)	Standard
L_0	175.2	173.4	168.6	166.7	162.5	132.9	125.3
Explained Variance \uparrow	0.812	<u>0.816</u>	<u>0.816</u>	0.793	0.812	0.859	0.730
Absorption Score \downarrow	0.2657	0.0838	0.0424	<u>0.0083</u>	0.0821	0.0022	0.3529
SCR Metric \uparrow	0.323	0.321	<u>0.349</u>	0.391	0.303	0.107	0.209
Sparse Probing \uparrow	0.957	0.956	0.956	<u>0.957</u>	0.958	0.954	0.954
TPP Metric \uparrow	0.072	0.100	0.094	0.209	0.105	<u>0.144</u>	0.018
Alive Fraction \uparrow	0.890	0.910	0.856	<u>0.897</u>	0.719	0.723	0.719
RAVEL Disent. \uparrow	<u>0.730</u>	0.709	0.714	0.739	0.728	0.710	0.665
RAVEL Cause \uparrow	0.710	0.677	0.676	0.735	<u>0.710</u>	0.658	0.603
RAVEL Isolation \uparrow	0.751	0.742	<u>0.752</u>	0.743	<u>0.747</u>	0.762	0.727

Table 5: **Performance comparison of SAE models with L_0 between 100 \sim 200 on SAEbench.** Arrows indicate whether higher (\uparrow) or lower (\downarrow) values are better. Bold indicates best performance, and underline indicates second best. GBA achieves the best performance in 3 out of 9 metrics, and for TPP metric GBA is also the second best.

Metric	Standard	GatedSAE	BatchTopK	Matryoshka	TopK	GBA (ours)	JumpReLU
L_0	468.9	408.7	339.4	338.1	334.4	309.0	305.3
Explained Variance \uparrow	0.816	<u>0.871</u>	0.859	0.840	0.859	0.902	0.855
Absorption Score \downarrow	0.1355	0.0696	0.0347	<u>0.0158</u>	0.0269	0.0041	0.0424
SCR Metric \uparrow	0.228	0.294	0.268	<u>0.331</u>	0.332	0.296	0.309
Sparse Probing \uparrow	0.958	0.959	0.957	0.957	0.958	0.956	<u>0.958</u>
TPP Metric \uparrow	0.026	0.086	<u>0.267</u>	0.312	0.213	0.184	0.099
Alive Fraction \uparrow	0.743	<u>0.918</u>	0.770	0.828	0.872	0.970	0.711
RAVEL Disent. \uparrow	0.709	0.764	0.729	<u>0.742</u>	0.725	0.737	0.737
RAVEL Cause \uparrow	0.670	0.749	0.697	<u>0.710</u>	0.700	0.694	<u>0.731</u>
RAVEL Isolation \uparrow	0.748	<u>0.778</u>	0.761	0.773	0.749	0.779	0.742

Table 6: **Performance comparison of SAE models with L_0 between 300 \sim 400 on SAEbench.** Arrows indicate whether higher (\uparrow) or lower (\downarrow) values are better. Bold indicates best performance, and underline indicates second best. **GBA (ours)** achieves the best performance in 4 out of 9 metrics, particularly excelling in Explained Variance and Absorption Score.

5886
 5887
 5888
 5889
 5890
 5891
 5892
 5893
 5894
 5895
 5896
 5897
 5898
 5899
 5900
 5901
 5902
 5903
 5904
 5905

Metric	Standard	BatchTopK	GBA (ours)	Matryoshka	GatedSAE	TopK	JumpReLU
L_0	835.1	695.6	694.9	675.7	662.3	655.7	605.2
Explained Variance \uparrow	0.852	0.902	0.926	0.891	0.898	0.906	0.906
Absorption Score \downarrow	0.0873	0.0724	0.0044	0.0157	0.0351	0.0274	0.0052
SCR Metric \uparrow	0.239	0.242	0.235	<u>0.306</u>	0.254	0.230	0.329
Sparse Probing \uparrow	0.958	0.956	0.960	0.957	0.958	0.959	<u>0.959</u>
TPP Metric \uparrow	0.025	<u>0.340</u>	0.209	0.365	0.086	0.328	0.159
Alive Fraction \uparrow	0.750	0.601	0.997	0.531	<u>0.913</u>	0.718	0.584
RAVEL Disent. \uparrow	0.731	0.751	0.748	0.746	0.767	0.749	<u>0.755</u>
RAVEL Cause \uparrow	0.680	0.725	0.724	0.706	0.768	0.723	<u>0.734</u>
RAVEL Isolation \uparrow	<u>0.781</u>	0.777	0.772	0.785	0.766	0.775	0.775

5918 Table 7: **Performance comparison of SAE models with L_0 between 600 \sim 850 on SAEbench.** Arrows
 5919 indicate whether higher (\uparrow) or lower (\downarrow) values are better. Bold indicates best performance, and underline
 5920 indicates second best.

5921
 5922
 5923
 5924
 5925
 5926
 5927
 5928
 5929
 5930
 5931
 5932
 5933
 5934
 5935
 5936
 5937
 5938
 5939