
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TAMING POLYSEMANTICITY IN LLMS: THEORY-
GROUNDED FEATURE RECOVERY VIA SPARSE AU-
TOENCODERS

Anonymous authors
Paper under double-blind review

ABSTRACT

We study the challenge of achieving theoretically grounded feature recovery us-
ing Sparse Autoencoders (SAEs) for the interpretation of Large Language Models.
Existing SAE training algorithms often lack rigorous mathematical guarantees and
suffer from practical limitations such as hyperparameter sensitivity and instabil-
ity. We rethink this problem from the perspective of neuron activation frequencies,
and through controlled experiments, we identify a striking phenomenon we term
neuron resonance: neurons reliably learn monosemantic features when their acti-
vation frequency matches the feature’s occurrence frequency in the data. Building
on this finding, we introduce a new SAE training algorithm based on bias adapta-
tion, a technique that adaptively adjusts neural network bias parameters to ensure
appropriate activation sparsity. We theoretically prove that this algorithm correctly
recovers all monosemantic features when input data is sampled from our proposed
statistical model. Furthermore, we develop an improved empirical variant, Group
Bias Adaptation (GBA), and demonstrate its superior performance against bench-
mark methods when applied to LLMs with up to 2 billion parameters. This work
represents a foundational step in demystifying SAE training by providing the first
SAE algorithm with theoretical recovery guarantees and practical effectiveness for
LLM interpretation.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable capabilities across diverse tasks. It
is found that LLMs encode vast amounts of information by superposition (Lu et al., 2024; Xiong
et al., 2024; Elhage et al., 2022; Bengio et al., 2013)—packing multiple concepts into the same
weight or activation directions to maximize capacity. This efficiency comes at a cost: individual
neurons (or activation vectors) become polysemantic (Scherlis et al., 2022), meaning they respond
to several monosemantic features at once, making interpretation challenging.

Dictionary learning has recently been applied to disentangle polysemantic LLM representations,
with Sparse Autoencoders (SAEs) emerging as a leading approach (Cunningham et al., 2023;
Bricken et al., 2023; Templeton et al., 2024; Gao et al., 2024; Rajamanoharan et al., 2024b).
An SAE encodes an LLM’s internal activation x ∈ Rd into a high-dimensional, sparse code
z = fenc(x) ∈ RM with M ≫ d, then decodes px = fdec(z) ≈ x. By enforcing sparsity—so
only a few components of z are nonzero—each active neuron ideally reflects a single interpretable
feature. Empirically, SAEs have revealed such monosemantic features in models like Pythia-70M
(Cunningham et al., 2023) and Claude 3.5 Sonnet (Templeton et al., 2024).

Despite these promising empirical advances, existing studies on SAEs still lack rigorous guaran-
tees regarding feature recovery. Popular SAE training algorithms, which typically minimize a loss
function of the form L(x, px) = ∥x − px∥22 + λ · R(z) where R(z) is a sparsity regularizer, involve
hyperparameters like λ. For instance, methods employing Lp regularization for R(z) = ∥z∥p and
p ∈ {0, 1}. Other strong candidates include the TopK activation method (Makhzani & Frey, 2013;
Gao et al., 2024) and gated SAE (Rajamanoharan et al., 2024a). However, these methods exhibit
specific drawbacks. For example, L1 regularization is sensitive in the hyperparameter λ and often
leads to activation shrinkage, where the magnitudes of the learned features are systematically un-
derestimated (Tibshirani, 1996). TopK approaches, while enforcing a hard sparsity constraint, often
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Figure 1: Illustration of SAE architecture and neuron resonance (left) and a demo neuron (right)
learned using GBA. Left: SAE architecture and the resonance phenomenon—neurons successfully
learn features when their activation frequency p matches the feature occurrence frequency f . Right: a
neuron that activates for the concept “class”.

overlook the fact that different inputs may require varying numbers of active features, and also suffer
from inconsistency across random seeds (Paulo & Belrose, 2025), which means that they yield sets
of learned features that are sensitive to the random initialization (Paulo & Belrose, 2025).

This landscape motivates us to address fundamental questions concerning the reliability and theo-
retical underpinnings of feature recovery with SAEs:

What enables neurons to successfully recover features? Can we design a training algorithm that
provably recovers features while being practical for modern LLMs?

Let us consider what makes SAE training successful. In an ideally trained SAE, each neuron learns
a distinct monosemantic feature and activates precisely when that feature appears in the input. Thus,
the neuron will have an activation frequency p—the fraction of inputs for which it activates—that
matches the occurrence frequency f of its corresponding feature in the data. This observation raises a
natural question: if we control neurons to activate with frequency pmatching a feature’s frequency f ,
will they reliably learn that feature? Moreover, since we typically cannot know a feature’s frequency
f in advance, what conditions on a neuron’s activation frequency p enable it to learn a feature with
unknown frequency f?

To investigate these questions, we conducted controlled experiments on synthetic data with known
feature frequencies. Our experiments reveal a striking phenomenon we term neuron resonance:
Neurons reliably recover features when their activation rate matches the feature’s frequency in the
data. Like a radio tuning to a specific frequency for a clear signal, SAE neurons must “resonate” at
the right activation rate to capture their target features. Importantly, our theory shows that successful
learning requires only that p fall within a resonance band around f , not an exact match. This
flexibility enables practical feature discovery: even without knowing f in advance, we can recover
features by ensuring neurons’ activation frequencies cover a diverse range.

The resonance principle reveals a fundamental yet intuitive correspondence: common features re-
quire frequently active neurons, while rare features need selective, infrequently-firing neurons.
Based on this, we develop Group Bias Adaptation (GBA), an algorithm that creates multiple
groups of neurons with geometrically-spaced target activation frequencies (e.g., 10%, 5%, ...). Each
neuron computes zm = ϕ(w⊤

m(x − bpre) + bm), where wm ∈ Rd is the weight vector, bm ∈ R
is the bias, bpre ∈ Rd is the shared pre-bias, and ϕ is the activation function (e.g., ReLU). GBA
dynamically adjusts these biases to match the target frequencies: decreasing bias if fires too fre-
quently to increase selectivity, and increasing bias when rarely fires to encourage activation. The
direct frequency control across diverse activation ranges ensures comprehensive feature recovery
while circumventing the hyperparameter sensitivity and dead neuron problems in existing methods.

We thus provide affirmative answers to both fundamental questions posed earlier through the follow-
ing contributions. First, we discover and investigate the neuron resonance phenomenon, revealing
the principle that governs successful feature learning in SAEs from the view of neuron activation
frequency. Theoretically, we justify the resonance principle by rigorously showing that neurons
with appropriate activation frequencies can provably recover all monosemantic features when data
follows a well-defined statistical model. To our best knowledge, this provides the first dynamical
analysis and learning guarantee for SAE training. Empirically, we scale GBA to Qwen2.5-1.5B
and Gemma2-2B on Pile datasets and demonstrate its superiority: (i) achieving the Pareto frontier
in reconstruction-sparsity tradeoff comparable to TopK, (ii) significantly higher cross-seed consis-
tency than TopK, (iii) competitive performance on SAEBench (Karvonen et al., 2025) interpretabil-
ity metrics while maintaining 99% neuron aliveness, and (iv) remarkable consistency and robustness
through ablation study, requiring only simple hyperparameter rules without dataset-specific tuning.
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Related works. The related works are available in §A.

Notations. Let R+ denote the set of non-negative real numbers. We use standard Big-O and small-
o notation and use a ≳ b to hide polylog(n) factor for sufficiently large n. We denote by [n] the set
{1, 2, . . . , n} for positive integer n.

2 PRELIMINARIES
A model for feature recovery. As a motivating example, consider how a model processes “The
detective found a muddy footprint near the broken window.” The internal representation mixes
monosemantic features:

x = h1 · v1 + h2 · v2 + . . . , where v1 = “muddy footprint”, v2 = “broken window”.

Here, h1, h2 ≥ 0 are nonnegative coefficients, where negative values would imply contradictory
concepts. We formalize this as follows: Let V ∈ Rn×d be a feature matrix where each row vi is
a monosemantic feature. For N data points, each row xℓ of data matrix X ∈ RN×d is an s-sparse
mixture of features with nonnegative coefficients collected in H ∈ RN×n

+ :

X = HV ∈ RN×d. (2.1)

We focus on the superposition regime where n > d, meaning features are necessarily linearly de-
pendent (Arora et al., 2018; Olah et al., 2020; Elhage et al., 2022). Our goal is to recover V from X
without knowing H—a common challenge in model interpretation.

SAE architecture. We follow Gao et al. (2024); Cunningham et al. (2023) and use a three-layer
neural network for SAE with tied encoding and decoding weights. Let M be the width of the SAE,
and for input x ∈ Rd, its output is

f(x; Θ) =
∑M

m=1
amwmϕ(w

⊤
m(x− bpre) + bm) + bpre. (2.2)

where Θ = {wm, am, bm, bpre}Mm=1 denotes the trainable parameters. For each neuron m ∈ [M ]:
wm ∈ Rd is the tied encoder/decoder weight, am ∈ R is the output scale, bm ∈ R is the bias,
and bpre ∈ Rd centers the input. The pre-activation is ym = w⊤

m(x − bpre) + bm, and neuron m is
activated when ym > 0. When activated, neuronm contributes am·wm·ϕ(ym) to the reconstruction,
where the tied weight wm serves as both detector (encoder) and reconstructor (decoder).

Existing SAE training methods. Prior methods minimize reconstruction loss Lrec(x; Θ) =
1
2∥f(x; Θ) − x∥22 with sparsity constraints. L1 SAE adds penalty λ

∑M
m=1 ∥wm∥2 · ϕ(ym) but

suffers from shrinkage bias (Tibshirani, 1996). TopK SAE (Makhzani & Frey, 2013; Gao et al.,
2024) retains only K largest activations but exhibits extreme seed sensitivity (Paulo & Belrose,
2025). Both methods have significant limitations detailed in the introduction.

3 RETHINKING HOW SAES LEARN: NEURON RESONANCE

We rethink SAE training from the perspective of neuron activation frequency: how should a neuron’s
activation frequency p relate to a feature’s occurrence frequency f for reliable feature learning?

To investigate this, we conducted controlled experiments using synthetic data generated from (2.1).
We construct s-sparse coefficient matrices H , which have uniform feature occurrence frequency
f = s/n. The selected features can be viewed as the “concepts” in each data point, and f reflects
how often each concept appears in the data. We generate the feature matrix V by randomly sampling
n vectors from the unit sphere in Rd, mimicking independent features in high-dimensional space. To
study the relationship between neuron activation frequencies p and feature occurrence frequencies
f , we train a set of SAEs while systematically controlling p through dynamic bias adaptation. More
details can be found in §D.1 and the bias adaptation can be found in §4. We measure feature learning
success using the Feature Recovery Rate (FRR), which quantifies the percentage of features learned
by at least one neuron (see §C.2). The relationship between p, d, and FRR is shown in Figure 2.

Neuron resonance phenomenon. The results reveal a striking pattern we term neuron resonance:
neurons successfully learn features when their activation frequency p falls within a specific band
around the feature’s occurrence frequency f . The width of this resonance band depends critically on
the degree of superposition. In heavy superposition where d <

√
n (right panel), the band is narrow,
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Figure 2: Feature Recovery Rate (FRR) for varying activation frequencies p and dimensions d.
Left: Light superposition (d >

√
n, n = 128). Right: Heavy superposition (d <

√
n, n = 65536).

The resonance phenomenon is evident: optimal feature recovery occurs when neuron activation fre-
quency p aligns with feature occurrence frequency f . Here, µ stands for 10−6 and m stands for 10−3.

requiring p to closely match f . In light superposition where d >
√
n (left panel), particularly when

d > n, the band widens significantly. This widening is intuitive: when d > n, features become
nearly orthogonal and easier to separate, allowing neurons with imperfect frequency matching to still
converge to individual features due to reduced interference. Since real-world data typically exhibits
heavy superposition (n ≫ d), we expect the resonance phenomenon to persist with a narrow band
similar to the right panel of Figure 2. Here, we set s = 3, M = 512 (left) and M = 262k (right).

In §6, we theoretically characterize a feasible activation frequency range for faithful feature recovery.
A feature with occurrence frequency f is learned when neurons’ activation frequency p lies in the
resonance band f ≲ p ≲ min{

√
f, df} (up to logarithmic factors). With f = s/n, a phase transition

occurs at d =
√
n: light superposition (d >

√
n) yields a wider band p ≲

√
f , while heavy

superposition (d <
√
n) constrains it to p ≲ df , narrowing as d decreases. This phase transition and

narrowing band in heavy superposition perfectly matches our empirical findings in Figure 2.

Motivation for frequency-aware training. Existing methods cannot directly control neuron acti-
vation frequencies. They achieve this by imposing sparsity constraints: L1 SAE uses penalty terms
while TopK SAE limits the number of active neurons per input. The resonance principle indicates
that optimal feature learning requires aligning neuron activation frequencies with the natural fea-
ture frequency distribution—ranging from high-frequency features (e.g., common function words)
to low-frequency features (e.g., domain-specific terminology). This insight motivates our Group
Bias Adaptation algorithm in the next section.

4 ALGORITHM: GROUP BIAS ADAPTATION

From resonance principle to algorithm design. The neuron resonance phenomenon (§3) reveals
that successful feature learning requires matching neuron activation frequencies to feature occur-
rence rates. This insight motivates our Group Bias Adaptation (GBA) algorithm, which operational-
izes the resonance principle through two key design choices:

1. Direct frequency control: Instead of relying on indirect penalties (L1) or fixed constraints
(TopK), we directly control each neuron’s activation frequency through adaptive bias adjustment.
When a neuron fires too frequently, we decrease its bias to make it more selective; when it rarely
fires, we increase its bias to make it more active.

2. Multiple frequency bands: We partition neurons into groups with geometrically-spaced target
activation frequencies (e.g., 10%, 5%, 2.5%, ...), creating a spectrum of “resonance bands” that
automatically covers the diverse feature frequency range—from common features to rare, spe-
cialized ones. Then we use the previously described adaptive bias adjustment within each group
to maintain the desired activation frequency.

These design principles ensure: (i) sufficient sparsity for interpretability while avoiding dead neu-
rons by controlling the lowest activation frequencies, and (ii) smooth training dynamics via adaptive
bias adjustment while maintaining efficient control. The complete algorithm is presented below.

Neuron grouping strategy. To cover the diverse feature spectrum, we partition the M neurons
into K groups (default K = 10) with geometrically-spaced target activation frequencies (TAFs).
Specifically, we fix the decaying ratio pk/pk+1, yielding TAFs from 10% down to 0.01%. This
geometric spacing naturally matches the long-tail distribution of feature frequencies in language—
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Figure 3: Illustration of Group Bias Adaptation (GBA). Left: Neurons are partitioned into K
groups with geometrically-spaced target activation frequencies (TAFs) from 10% to 0.01%, creating
resonance bands that match the natural feature frequency distribution. Right: Bias adaptation mech-
anism—if a neuron over-activates (ppm > pk), we decrease its bias to make it more selective; if it
under-activates (ppm < ϵ), we increase its bias using the group baseline srk to make it more sensitive.

from common words to rare technical terms. Each group contains M/K neurons sharing the same
TAF pk within the group.

Algorithm 1 Group Bias Adaptation (GBA)

1: Input: data X , initialization Θ(0), neuron groups and desired target activation frequencies
{Gk, pk}Kk=1, a first-order optimization algorithm Opt

2: Hyperparameters: T , L, B, γ+, γ−, and ϵ
3: For all m ∈ [M ], initialize buffer Bm ← ∅
4: For t = 1, . . . , T :
5: ▷ Forward pass, backward with reconstruction loss, optimizer step with fixed biases.
6: Sample mini-batch Xt ∈ RL×d, row-normalize, and compute: L(t) ← Lrec(Xt; Θ

(t−1))
7: Backward and optimizer step (exclude biases): Θ(t) ← Opt(Θ(t−1) \ {b(t−1)}, ∇L(t))

8: Append pre-activations to buffers: Bm ← Bm ∪ {y(t)m,1, . . . , y
(t)
m,L} for all m

9: ▷ Bias adaptation: when buffers reach size B, update biases and clear buffers.
10: If |B1| ≥ B then
11: ▷ Compute per-neuron activation frequency ppm and max pre-activation rm in buffer.
12: Set ppm ← |Bm|−1

∑
y∈Bm

1(y > 0) and rm ← max{maxy∈Bm y, 0} for m ∈ [M ]
13: ▷ Average positive max pre-activation rm for each group as group baseline srk.
14: Set srk ←

(∑
m∈Gk

1(rm > 0)
)−1∑

m∈Gk
rm for k ∈ [K]

15: ▷ Adjust biases based on target activation frequency pk.
16: For each group k = 1, . . . ,K and each neuron m ∈ Gk:
17: If ppm > pk, set bm ← max{bm − γ−rm,−1}
18: If ppm < ϵ, set bm ← min{bm + γ+srk, 0}
19: Clear buffers: set Bm ← ∅ for all m
20: Return the final SAE parameters Θ(T )

Tracking activation frequencies. We measure each neuron’s empirical activation frequency us-
ing buffered pre-activations. For neuron m with weight wm and bias bm, the pre-activation is
ym(x) = w⊤

m(x− bpre) + bm. During training, we accumulate B samples in a buffer and compute
the empirical frequency ppm as shown in Algorithm 1 line 12. While the algorithm shows storing
full pre-activations for clarity, the implementation is memory-efficient: we only track each neuron’s
maximum pre-activation rm and activation count, updating these statistics incrementally.
Adaptive bias updates. Biases adapt to maintain target activation frequencies through feedback
control. For neuron m in group k, we compare its empirical frequency ppm to its target pk:

1. If ppm > pk (over-active): decrease bias bm ← bm − γ−rm to make the neuron more selective
2. If ppm < ϵ (under-active): increase bias bm ← bm + γ+srk to make it more sensitive

Here rm is the neuron’s max pre-activation for proportional decrease of over-active neurons, while
srk is the group average for boosting under-active neurons. We clamp biases to [−1, 0] to prevent
extreme values, which should not be loss of generality since inputs are normalized. To give a sense
of how the bias adapts, we find the rates γ+ = γ− = 0.01 provide smooth adjustment to the bias
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without oscillations in the loss when we perform one adaptation step against every 50 optimizer
steps with batch size L = 512.
Summary. GBA integrates with standard SAE training through periodic bias adaptation. The train-
ing alternates between: (1) a gradient phase where a standard optimizer (Adam/AdamW) updates
weights W and output scales a, and (2) an adaptation phase that adjusts biases when the buffer
reachesB samples. Crucially, biases are excluded from gradient updates and controlled only through
the adaptation mechanism. Algorithm 1 presents the complete procedure. This design ensures each
neuron finds its resonant features through frequency matching. The groups create “resonance bands”
covering the feature spectrum, while adaptive bias control maintains target frequencies despite train-
ing dynamics. Features naturally migrate to neurons with matching activation rates.

5 EXPERIMENTAL EVALUATIONS

To demonstrate the effectiveness of our proposed method, we conduct experiments on the Qwen2.5-
1.5B base model (Yang et al., 2024) using Pile Github and Pile Wikipedia datasets (Gao et al.,
2020). We train SAEs with 66k hidden neurons attached to the MLP outputs at layers 2, 13, and
26. We evaluate each method using two metrics: (1) reconstruction loss and (2) average fraction
of activated neurons per input. All methods employ JumpReLU activation (Erichson et al., 2019;
Rajamanoharan et al., 2024b) for optimal performance. We compare GBA against three baselines:
L1, TopK, and Bias Adaptation (BA)—a single-group variant of GBA with fixed target activation
frequency p. Additional details and comparisons between ReLU and JumpReLU are in §D.

Figure 4: Curve for reconstruction loss and sparsity (average fraction of neurons activated per
data point). All experiments are conducted using an SAE with 66k neurons. For TopK, we vary
K ∈ [50, 600]. For L1, we vary the penalty coefficient λ ∈ [0.001, 0.1]. For BA (non-grouped),
we vary the target frequency p ∈ [0.003, 0.1]. For GBA, we sample within the range K ∈ [3, 20],
p1 ∈ [0.05, 0.5], and pK ∈ [10−4, 5× 10−3].

Reconstruction loss and activation sparsity frontier. We first compare the normalized ℓ2 re-
construction loss against the average fraction of activated neurons across different methods. The
results are presented in Figure 4, where each benchmark method (TopK, L1, BA) involves varying
sparsity-related tuning parameters. Our method performs comparably to the best-performing bench-
mark, TopK—achieving the lowest reconstruction loss among all methods for a given sparsity level.
Specifically, when these methods have the same average fraction of activated neurons, GBA’s recon-
struction (yellow star) is comparable to TopK’s best curve while significantly outperforming both
the L1 penalty method and the non-grouped variant BA. The consistent superiority over BA across
all experiments provides strong evidence that the grouping mechanism is crucial for achieving both
optimal performance.

Figure 5: Fraction of neurons that have max cosine similarity exceeding threshold for Github-
Layer 26, where the max cosine similarity is evaluated for neurons from 6 different runs initialized
with different seeds. We take Max Activation and Z-Score as the selecting criteria and plot within a
subset of neurons that rank top-α under the criteria in all the neurons with α in {0.3%, 0.05%} (i.e.,
top-200 and top-30 neurons out of 66k).
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Consistency of recovered features. Furthermore, we assess the consistency of the learned fea-
tures across independent runs with different random seeds. Since ground truth features are unavail-
able, consistency serves as a proxy for the reliability of the training method. For each neuron in one
run, we compute its Maximum Cosine Similarity (MCS) with neurons from another run; a high MCS
indicates that a feature is consistently recovered. To avoid the influence of rarely activated neurons,
we restrict our analysis to the top-α neurons—selected based on maximum activation or Z-score.
The results are presented in Figure 5 and Table 1, and the key findings are shown as follows:

1. As noted in prior work, TopK is seed-sensitive (Paulo & Belrose, 2025). In our experiments,
GBA yields a higher percentage of neurons with high MCS. To quantify this effect, Table 1
reports the fraction of consistent neurons (MCS > 0.9) under different selection criteria; GBA
consistently exceeds TopK. Variability across seeds is small: all runs show tight fluctuations over
the
(
6
2

)
= 15 pairwise comparisons.

2. The L1 penalty-based SAE is generally more consistent than TopK, and our results confirm this
trend: across most selection criteria, L1 achieves higher consistency than both TopK and GBA.
However, when focusing on the most active neurons (top-0.05% by activation), GBA surpasses
L1, suggesting stronger recovery of the most salient features.

Top-α
Neurons GBA (ours) TopK

10% 0.0366 ± 0.0010 0.0317 ± 0.0006
25% 0.0146 ± 0.0004 0.0127 ± 0.0002
50% 0.0073 ± 0.0002 0.0063 ± 0.0001
100% 0.0037 ± 0.0001 0.0032 ± 0.0001

Table 1: Fraction of neurons with Maximum Co-
sine Similarity (MCS) > 0.9 across different se-
lection percentiles based on the top α selection
rule in maximum activation. Results are averaged
over

(
6
2

)
= 15 pairwise comparisons from 6 ran-

dom seeds with standard deviations shown. GBA
achieves higher consistency than TopK for all α.

Combined with the reconstruction-sparsity fron-
tier in Figure 4, in our experimental setting, the
proposed GBA method achieves the Pareto fron-
tier in terms of reconstruction fidelity, activation
sparsity, and feature consistency.

Interpretability. To further evaluate the inter-
pretability of the learned features, we employ a
suite of metrics by Karvonen et al. (2025). To
ensure a fair comparison, we retrain GBA SAE
with 66k neurons on Gemma2-2B (Team et al.,
2024) residual stream after layer 12, and compare
it against TopK, JumpReLU SAE (Rajamanoha-
ran et al., 2024b), and GatedSAE (Rajamanoha-
ran et al., 2024a) provided in the SAE-Bench. We
also ensure similar L0 sparsity among the com-
pared SAEs. The results are summarized in Ta-
ble 2, demonstrating the competitive interpretability of GBA across all metrics.

Comparing GBA to JumpReLU SAE reveals that performance gains come from our training al-
gorithm. GBA’s strong reconstruction partially stems from higher alive neuron fraction (Table 2),
where neurons are alive if they activate above threshold for at least one input. While GatedSAE
also has high alive fraction, it does so at the expense of interpretability metrics (e.g., SCR, TPP, and
Absorption Score). GBA achieves high alive fraction without sacrificing interpretability.

SAE Model L0
Explained
Variance ↑

Absorption
Score ↓

SCR
Metric ↑

Sparse
Probing ↑

TPP
Metric ↑

Alive
Fraction ↑

GatedSAE 662.3 0.898 0.0351 0.254 0.958 0.086 0.913
TopK 655.7 0.906 0.0274 0.230 0.959 0.328 0.718
JumpReLU 605.2 0.906 0.0052 0.329 0.959 0.159 0.584
GBA (ours) 694.9 0.926 0.0044 0.235 0.960 0.209 0.997

Table 2: Comparison of SAE models for Gemma2-2B with 66k neurons and similar L0 sparsity. Lower
values are better for Absorption Score, and higher values are better for the remaining metrics. Bold indicates
best performance, and underline indicates second best. GBA achieves the best or second-best performance
across all metrics, demonstrating its competitive interpretability. For SCR (Marks et al., 2024) and TPP metrics,
we take the average of the scores over Top-20 and Top-50 neurons as scores evaluated for these numbers tend
to be more stable (Karvonen et al., 2025) while avoiding biases from too limited neuron counts.
Ablation study on GBA hyperparameters. To assess GBA’s sensitivity to hyperparameters, we
perform an ablation study varying the number of groups K, Highest Target Frequency (HTF) p1,
and Lowest Target Frequency (LTF) pK , as shown in Figure 6. The left panel reveals a key pattern:
as HTF increases, performance stabilizes—scatter points converge and align with TopK’s curve,
especially for K ≥ 10. Additionally, since low HTF values (e.g., 0.05) hinder recovery of frequent
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features, it results in higher reconstruction loss. The middle and right panels again confirm that both
reconstruction loss and sparsity stabilize when K ≥ 10, demonstrating insensitivity to the exact
number of groups. We observe a slight increase in loss when increasing the number of groups K
in the middle panel. This is not detrimental but rather reflects a tradeoff: with few groups (e.g.,
K = 3), many neurons are assigned high target frequencies, resulting in denser activations (right
panel) and thus lower reconstruction loss at the expense of interpretability.

Figure 6: Ablation study for GBA in terms of K, HTF, and LTF for Github-Layer 26. For each
run, we partition neurons into K groups with target frequencies as a geometric sequence between HTF
and LTF. HTFs: {0.05, 0.1, 0.3, 0.5}; LTFs: {10−4, 10−3, 5×10−3}. Left: Loss vs sparsity grouped
by HTF. Different colors represent different K values; dots of the same color correspond to different
LTFs. Middle & Right: Loss and sparsity for varying K, where each curve represents a pair of HTF
and LTF. Results show GBA stabilizes when HTF = 0.5 and K ≥ 10.

Simple rule for hyperparameter selection. These results establish that GBA is nearly tuning-free
with a simple selection rule: (1) set HTF = 0.5 as the default upper bound, since randomly initialized
neurons with zero bias fire 50% of the time; (2) set LTF = 10−3 to 10−4 to cover rare features while
preventing dead neurons; (3) use a large number of groups for better frequency coverage and stable
performance. This principled setup eliminates the need for dataset-specific tuning—in stark contrast
to searching TopK’s K across 66k neurons or tuning L1’s penalty coefficient λ.

6 NEURON RESONANCE: A THEORETICAL PERSPECTIVE

The neuron resonance phenomenon observed in §3 raises a fundamental question: How does fre-
quency matching enable reliable feature recovery, and what determines the resonance band? We
provide a theoretical analysis that justifies this phenomenon with precise recovery conditions.

To rigorously analyze the neuron resonance phenomenon, we study a simplified variant of Algo-
rithm 1 that captures its core mechanism. We consider the Bias Adaptation (BA) algorithm, which
is essentially GBA with a single neuron group and all neurons share a fixed target activation fre-
quency p. The SAE is trained via spherical gradient descent (weight updates normalized to unit
sphere). This single-group setting isolates the activation frequency factor from other dynamics,
helping us understand how neurons with frequency p selectively learn features with similar occur-
rence frequency.

For the data model (2.1), we assume V has i.i.d. N (0, 1) entries and simplify H to have exactly
s-sparse rows: each row ℓ has uniform random support Sℓ with |Sℓ| = s for a constant s and entries
Hℓ,i = 1/

√
s for i ∈ Sℓ, zero otherwise. This simplified H structure is only for presentation

convenience; our analysis captures more general coefficient matrices (see §B.1). The following
theorem characterizes the conditions under which BA can recover all features with high probability.
Theorem 6.1. Consider the simplified data model X = HV with data size N , feature size n and
feature dimension d. We train an SAE with M neurons using the BA algorithm with spherical
gradient descent, target frequency p, and learning rate η ≳ (pN)−1. Under certain regularity
conditions on the SAE model (§B.2.1), for any small constants ς, ε ∈ (0, 1) such that

Network Width: M ≳ n · ps/(1−ε)2 (6.1)

Frequency Range: n−1 ≲ p ≲ min
{
n−(1+s−1)/2, n−2(1+ε)2/s,

d1−ς

n

}
(6.2)

with probability at least 1 − n−4ε, every feature i ∈ [n] is recovered by at least one neuron mi

within T = ς−1 iterations in the sense that ⟨w(T )
mi , vi⟩/∥vi∥2 ≥ 1− o(1).

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

See §B for the full version of the theorem with detailed assumptions and the proof is in §G. To our
best knowledge, Theorem 6.1 provides the first provable guarantee that an SAE training algorithm
can recover monosemantic features within a constant number of iterations. The theorem relies on
V being Gaussian for technical convenience, but our empirical results on both synthetic (§3) and
real LLM data (§5) show that the BA and GBA algorithms work well when V is non-Gaussian.
Moreover, although the theorem only analyzes for a single group with frequency p for clarity of pre-
sentation, we can easily extend it to GBA with multiple groups under the same regularity conditions
on the SAE model. See §B for detailed discussions.

Interpreting the theorem. The theorem reveals two critical factors for successful feature recovery:

1. Network width: The required width M ≳ n · p−s/(1−ε)2 shows that M scales linearly with
the number of features n but exponentially with sparsity s when p is fixed. The linear scaling
with n is intuitive, as each neuron can learn at most one feature. This exponential dependency
arises from the challenge of distinguishing features when they co-occur in the same data points.
Figure 7(a) experimentally validates this exponential scaling. This result highlights the benefit of
overparameterization in SAE training.

2. Activation frequency range: The condition on p translates to a “resonance band”, where fea-
tures are most effectively learned when the neuron’s activation frequency p falls into the band.
The upper bound depends on both the superposition level (controlled by d/n) and the feature
sparsity s. Figure 7(b) visualizes these resonance bands for different sparsity levels. Notably, in
our simplified data model, the feature occurrence frequency is f = s/n = Θ(n−1), so for a large
constant s, we can rewrite the condition as f ≲ p ≲ min{

√
f, fd}, as mentioned in §3.

Figure 7: (a) Network width scaling: Heatmap of Feature Recovery Rate (FRR) with respect to
(M, s) for the GBA algorithm with M axis in log scale, showing exponential dependency on s. (b)
Resonance bands: Theoretical learnable region (yellow) for different sparsity values, demonstrating
the transition at d ≈

√
n between heavy and light superposition regimes. For large s, the upper bound

approaches min{
√
f, df} with f = Θ(n−1). (c) Feature imbalance: FRR vs. relative occurrence

flow/fhigh, showing GBA’s advantage over BA in handling imbalanced feature frequencies. All exper-
iments use (n, d) = (384, 100). For (c), we use s = 3 and M = 1024.

This theorem rigorously justifies the neuron resonance phenomenon by proving that neurons with
frequency p optimally recover features within a specific frequency band. This insight motivates
the GBA algorithm’s multi-group design: by creating groups with geometrically decaying target
frequencies, we ensure coverage of the entire feasible frequency range, enabling recovery of features
with diverse occurrence patterns.

GBA handles imbalanced features. As an extension to the discussion above and to build connec-
tion to the GBA algorithm, we compare the analyzed BA algorithm with GBA (with 4 groups) on
data with imbalanced feature frequencies. To demonstrate the effectiveness of GBA, we construct
a dataset with features divided into two groups of equal size: one group with high occurrence fre-
quency fhigh and the other with low frequency flow. We vary the imbalance ratio flow/fhigh while
keeping the average frequency fixed. The results in Figure 7(c) show that GBA significantly outper-
forms BA as the imbalance increases, i.e., flow/fhigh < 0.3, highlighting GBA’s ability to recover
features across a wide frequency spectrum, and flexibility to handle real-world data with diverse
feature occurrence patterns.

Reproducibility. The anonymous source code to this project is available in the supplementary for
both data processing and model training. The assumptions and proofs to the main theory can be
found in §B and §G, respectively.
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A RELATED WORKS

SAE Training Methods. Many methods have been proposed to train SAEs, addressing the trade-
off between reconstruction fidelity and sparsity-induced interpretability from various perspectives.
One canonical approach is imposing an L1 penalty on the activations Bricken et al. (2023). Al-
though L1 is a natural surrogate for enforcing L0 sparsity, it typically suffers from activation shrink-
age Tibshirani (1996). Several works have attempted to overcome this drawback through alterna-
tive techniques Wright & Sharkey (2024); Taggart (2024); Rajamanoharan et al. (2024a); Konda
et al. (2014). In particular, Rajamanoharan et al. (2024b) proposed the JumpReLU activation, which
achieves state-of-the-art performance despite requiring backpropagation with pseudo-derivatives be-
cause of the non-smooth nature of JumpReLU and the need for tuning the kernel density estimation
bandwidth. Another representative example is the use of TopK activation Makhzani & Frey (2013),
which has proven effective when scaled to large models Gao et al. (2024). However, it has been
observed that features learned via TopK activation are quite sensitive to the random seed Paulo &
Belrose (2025), raising concerns about their reliability.
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Sparse Dictionary Learning. Beyond SAE training methods, there is a long history of research
on sparse dictionary learning (SDL) dating back to Olshausen & Field (1996); Kreutz-Delgado et al.
(2003). Numerous techniques have been developed for applications in signal processing and com-
puter vision (Bruckstein et al., 2009; Rubinstein et al., 2010). For example, Spielman et al. (2012)
proposed a polynomial-time algorithm that can accurately recover both the dictionary and its coeffi-
cient matrix, under the assumption of sparsity in the coefficients.

Using SAEs for Model Interpretation. In recent years, SAEs have gained attention for model
interpretation, particularly in the context of large language models (LLMs) (Bricken et al., 2023;
Paulo & Belrose, 2025). Notably, Bricken et al. (2023); Dunefsky et al. (2024); Ameisen et al. (2025)
have identified several interesting features and circuit patterns learned by SAEs or their variants.
Beyond detecting monosemantic features, Papadimitriou et al. (2025) found that groups of SAE-
learned features remain remarkably stable across different training runs and encode cross-modal
semantics. Additionally, the potential of SAE activations for steering model behavior has been
explored (Ameisen et al., 2025; Shu et al., 2025).

B FORMAL THEORY OF SAE TRAINING DYNAMICS

In this section, we present a formal theory of SAE training dynamics, providing rigorous guarantees
for feature recovery when data follows a well-defined statistical model. However, before delving
into the details of the theory, we first need to answer the following fundamental questions:

• What is the precise statistical model for data generation we should consider?
• What does it mean to recover features, and under what conditions is feature recovery even

possible?

In this section, we will

• Formalize the statistical model for data generation. State the feature recovery problem and
define identifiability of features, which is a pre-requisite for any recovery guarantee

• Present the full set of assumptions and result on SAE training dynamics.

Notations. Let R+ denote the set of non-negative real numbers. For two sets A and B, we denote
by A ⊔B the disjoint union of A and B. We denote by 1 the all-ones vector, whose dimension will
be clear from context. In the remaining of the section, we abuse the notation and use a ≳ b to denote
that a ≥ b+O(log logn/ logn) for sufficiently large n, which differs from what we use in the main
text.

B.1 DATA MODEL

We consider the data model X = HV from (2.1), where data matrix X ∈ RN×d is a sparse,
nonnegative combination of monosemantic features V ∈ Rn×d with coefficients H ∈ RN×n

+ . Our
statistical framework requires the following decomposable data conditions:
Definition B.1 (Decomposable Data). We say that the data matrix X ∈ RN×d is decomposable
if there exists a positive integer n ∈ N, a nonnegative matrix H ∈ RN×n

+ and a feature matrix
V ∈ Rn×d such that X = HV. Moreover, each row of H has unit ℓ2 norm and the ℓ2 norm of each
row of V is Θ(

√
d). Furthermore, the coefficient matrix H ∈ RN×n satisfies the following three

conditions:

(H1) Row-wise sparsity: maxℓ∈[N ] ∥Hℓ,:∥0 = s with s = Θ(1).

(H2) Non-degeneracy: For every i ∈ [n], ∥H:,i∥1/∥H:,i∥0 = Θ(1).

(H3) Low co-occurrence: ρ2 :=maxi̸=j ⟨1{H:,i ̸= 0}, 1{H:,j ̸= 0}⟩/∥H:,i∥0 ≪ n−1/2.

In addition, we further assume that the feature matrix V ∈ Rn×d satisfies:
(V1) Incoherence: For all i ̸= j, |⟨vi, vj⟩|/(∥vi∥2 ∥vj∥2) = o(1).

These conditions ensure feature recoverability: nonnegativity removes sign ambiguity since op-
posite directions yield contradictory concepts; row-wise sparsity (H1) limits each data point to s
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features, essential for sparse recovery; non-degeneracy (H2) ensures sufficient feature magnitude
when present; low co-occurrence (H3) and incoherence (V1) guarantee features are distinguishable
by occurrence pattern or direction—generalizing the orthogonality assumption common in sparse
recovery (Marques et al., 2018; Candès & Plan, 2009). All these conditions will be used in our
theoretical analysis of SAE training dynamics.

Feature recovery problem. Note that the bilinear representation X = HV has two intrinsic
ambiguities: (i) feature permutation—reordering features leaves HV unchanged; (ii) feature scal-
ing—scaling features while inversely scaling coefficients preserves the product. With the data
model, we can now define the feature recovery problem: given data X generated from an unknown
decomposable pair (H,V ), the goal is to learn an SAE such that for each feature vi in V , there exists
a neuron mi in the SAE with weight vector wmi

satisfying

⟨wmi
, vi⟩/∥vi∥2 ≥ 1− o(1).

This means each feature is closely approximated by at least one neuron, up to a small error.

B.2 SAE DYNAMICS WITH BIAS ADAPTATION

In the following, we first introduce a Bias Adaptation (BA) algorithm, which is a simplified version
of the GBA algorithm with only one group of neurons and a fixed target activation frequency (TAF)
p. Then, we provide theoretical results on the training dynamics of BA, which is accompanied by
synthetic experiments to validate the theoretical findings.

B.2.1 SIMPLIFICATION FOR THEORETICAL ANALYSIS

We make several simplifications to the setup of SAE to facilitate theoretical analysis.

Decomposible data with Gaussian features. We assume that the data matrix X ∈ RN×n is
decomposable in the sense of Definition B.1. Moreover, we assume that the feature matrix V ∈
Rn×d has i.i.d. entries following N (0, 1). Such a choice of V satisfies the incoherence condition
(V1).

SAE model. We consider a simplified version of the SAE model f(x; Θ) in (2.2), where the only
trainable parameters are the weights {wm}Mm=1.

• (Small output scale) We assume that the output scale am = a and a is sufficiently small. When
computing the gradient, we rescale the ∇L(Θ) back to its original scale by multiplying a−1.

• (Fixed pre-bias) We fix the pre-bias bpre = 0, as the data matrix X is centered.

• (ReLU-like smooth activation) We use a smooth, ReLU-like activation function ϕ (see Defini-
tion B.3 for details). One example is the softplus activation ϕ(x) = log(1 + exp(x)).

• (Fixed bias) For each neuron m ∈ [M ], we fix the bias bm = b < 0 throughout training,
where b is a negative scalar whose value will be specified later. This fixed bias will determine
the target activation frequency (TAF) p of all neurons via p = Φ(−b), where Φ(·) is the tail
probability function for Gaussian distribution. We will detail the intuition behind this choice
later.

These simplifications help isolate the core aspects of feature recovery and make the analysis more
tractable.

Bias Adaptation (BA) algorithm. Recall that Bias Adaptation (BA) algorithm is a special case of
GBA algorithm with only one group of neurons and a fixed TAF p. As our goal is to systematically
understand how neurons with a specific TAF p can recover features with similar occurrence fre-
quency, it is reasonable to try using a version of GBA algorithm with a single group and a fixed TAF
p. We introduce the algorithm as follows. Here we determine the value of p implicitly by choosing
a fixed bias b < 0, and they are related by p = Φ(−b), where Φ(·) is the tail probability function for
Gaussian distribution. That is, Φ(t) = P(Z ≥ t) for Z ∼ N (0, 1).
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Given the data matrixX and the SAE model f(x; Θ), we can compute the loss function asLrec(Θ) =
Avgx∈X( 12∥f(x; Θ)− x∥22), and its gradient with respect to the weights {wm}Mm=1. Since only the
directions of the features {vi}ni=1 matter, we adopt spherical gradient descent to update the weights.
That is, starting from the initial weights {w(0)

m }m∈[M ] uniformly sampled from the unit sphere Sd−1,
for any t ≥ 1, in the t-th iteration, we update each w(t−1)

m by

BA: w(t)
m =

w
(t−1)
m + η g

(t)
m

∥w(t−1)
m + η g

(t)
m ∥2

, where g(t)m = lim
a→0
−a−1∇wm

Lrec(Θ
(t−1)). (B.1)

Here, g(t)m is the rescaled negative gradient of the loss function Lrec(·) with respect to the weight
wm of neuron m at iteration t. We will show that, under proper conditions, for any feature vi, there
exists at least one neuron mi ∈ [M ] such that the alignment between w(T )

mi and vi is arbitrarily close
to one when T is sufficiently large.

Before we proceed to the main theoretical results, we make several remarks on the above simplifi-
cations for theoretical analysis and their implications.

−4 −2 0 2 4

x
−2

0

2

4

6

φ
(x

)

ReLU

Shifted ELU

Softplus

Figure 8: Smooth ReLU-like activa-
tions

Fixed bias is without loss of generality. As we consider
Gaussian features and always normalize w

(t)
m to the unit

sphere, it can be shown using the Gaussian conditioning tech-
nique that the pre-activations remain approximately Gaussian,
i.e., ym(xl) = ⟨w(t)

m , xℓ⟩ + b ∼ N (b, 1) for a constant num-
ber of iterations t. See §B.4 for details. Therefore, to achieve
the desired TAF p, it is without loss of generality to fix the
bias b < 0 such that Φ(−b) = p, which means that the pre-
activations of each neuron will be non-negative for approxi-
mately p fraction of the N data points throughout the training.

Smooth ReLU-like activation approximates ReLU. We
choose a smooth activation function for technical convenience.
For definition, we defer to Definition B.3. These activations
can be viewed as a smooth approximation to the ReLU function, as illustrated in Figure 8. This
class of activations encompasses functions like Softplus and shifted ELU, and closely resembles the
standard ReLU activation function. We believe that a more refined analysis can also be applied to
the standard ReLU activation, but we leave this as future work.

Small output scale decouples neuron dynamics. Following a common paradigm in the litera-
ture (see e.g. Lee et al. (2024); Chen et al. (2025)), we assume that the output scale of the SAE
is sufficiently small. The benefit of this condition is that it decouples the dynamics among the M
neurons, making the analysis more tractable. Specifically, the rescaled negative gradient of the loss
L(Θ) is given by

gm = −a−1∇wm
L(Θ) =

N∑
ℓ=1

(
φ(w⊤

mxℓ; b)xℓ − ψm(xℓ; Θ)
) a→0

=

N∑
ℓ=1

φ(w⊤
mxℓ; b)xℓ , (B.2)

where we define φ(·, ·) and ψm(·; Θ) as

φ(u, v) = ϕ(u+ v) + ϕ′(u+ v) · u ,

ψm(x; Θ) = ϕ′(w⊤
mx+ b) · w⊤

mf(x; Θ) · x+ ϕ(w⊤
mx+ b) · f(x; Θ) .

Here, φ : R 7→ R is a decoupled term that depends only on each individual neuron’s weight and bias,
while ψm : Rd 7→ Rd is a coupling term that captures the interaction between the neuron and the
rest of the network. Since the scale of f(x; Θ) is proportional to a, this coupling term is negligible
when a is small. As a result, when a is infinitesimally small, each neuron m evolves independently
of the other neurons. Furthermore, thanks to the decoupled dynamics, the restriction to a single
group with a fixed TAF p does not result in any loss of generality, as the analysis of multiple groups
is a straightforward extension.

B.2.2 MAIN THEOREM ON TRAINING DYNAMICS
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Figure 9: Relationship between
s, h⋆ and hi with different
concentration level in H’s non-
zero entries’ empirical distribu-
tion (shadow). A less concen-
trated H leads to larger h⋆ and
hi.

Intuitively, to recover a feature v, it has to appear in sufficiently
many data points with sufficiently large coefficients. To charac-
terize this intuition, we introduce two key quantities based on the
coefficient matrix H . First, for each feature index i ∈ [n], let
Di = {l ∈ [N ] : Hl,i ̸= 0} be the set of data indices that con-
tain feature vi. The occurrence of the feature vi is thus given by
|Di|/N . We define the maximum feature occurrence as the largest
occurrence among all features, i.e.,

ρ1 = max
i∈[n]

{
|Di|/N

}
= max

i∈[n]

{
1/N ·

∑
l∈[N ]

1{Hl,i ̸= 0}
}
.

To ensure each feature vi appears in sufficiently many data points,
we require that the occurrence of each feature is comparable to ρ1, i.e., |Di|/(ρ1N) is not too small
for each i ∈ [n].

Second, to measure the magnitude of coefficients associated with each feature, we define the cut-off
level for the feature i as

hi := max
{
h ≤ 1 :

1

|Di|
∑

l∈Di

1{Hl,i ≥ h} ≥ polylog(n)−1
}
. (B.3)

Intuitively, hi is a critical threshold such that, among all data points containing vi, at least a
polylog(n)−1 fraction of them have coefficients no smaller than hi. In other words, hi reflects
the magnitude of coefficients associated with feature vi, within the subset of data points where vi is
present. Thus, hi can effectively be viewed as a notion of “signal strength” for feature vi, and we
should require that hi is not too small for each i ∈ [N ].

Furthermore, we additionally introduce a global quantity called the concentration coefficient h⋆ =
h⋆(H), whose definition is technical and deferred to (G.1) in the appendix. Intuitively, h⋆ character-
izes the global concentration level of nonzero entries in H . For now we can intuitively understand
it as the variance of the nonzero entries in H , and thus h⋆ will increase when the nonzero entries in
H are less concentrated.

With these definitions, we are now ready to state the main theorem on the training dynamics.
Theorem B.2. Let X = HV be decomposable in the sense of Definition B.1 with H ∈ RN×n

satisfying all the conditions therein, and further assume that V ∈ Rn×d has i.i.d. entries following
N (0, 1). For this X , we train the SAE with BA algorithm given in (B.1). Let ς, ε ∈ (0, 1) be any
small constants. We assume that the number of neurons M is sufficiently large:

Network Width:
logM

log n
≳ max

i∈[n]

{
b2

2(1− ε)2h2i log n
+ 1

}
. (B.4)

Moreover, we assume that the learning rate η satisfies log η ≳ (b2/2− logN) and that the bias
b < 0 is set to satisfy the following condition:

Bias Range: 1 ≳
b2

2 logn
≳ max

{1
2
+
h2⋆
2
, 2(1 + ε)2h2⋆, 1− (1− ς) · log d

logn

}
. (B.5)

Furthermore, we assume the coefficient matrix H satisfies the following feature balance condition:

Feature Balance:
|Di|
ρ1N

≥ polylog(n)−1, h2i ≫
log log(n)

log(n)
, ∀i ∈ [n]. (B.6)

Then, it holds with probability at least 1−n−4ε over the randomness of V that for any feature i ∈ [n],
there exists at least one unique neuron mi such that after at most T = ς−1 iterations, the alignment
between the weights of neuron mi and the feature vector vi satisfies ⟨w(T )

mi , vi⟩/∥vi∥2 ≥ 1− o(1).
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See §G for a detailed proof of this theorem. Theorem B.2 shows that under appropriate conditions,
BA provably recovers all monosemantic features within a constant number of iterations. These
conditions include that (i) the network is sufficiently wide compared to the number of features as
specified in (B.4), (ii) the bias b is chosen within a certain range as specified in (B.5), and (iii) the co-
efficient matrix H satisfies the feature balance condition in (B.6), ensuring that each feature appears
frequently enough with sufficiently large coefficients. To our best knowledge, this theorem is the
first theoretical result that proves a SAE training algorithm can provably recover all monosemantic
features.

Going from one group to multiple groups. The analysis of BA with a single group can be nat-
urally extended to the case of multiple groups in GBA thanks to the decoupled dynamics among
neurons. Specifically, as we have shown in (B.2), each neuron m evolves independently when all
neurons’ output scale am is sufficiently small. Therefore, if we have K groups of neurons, each
with M/K neurons and bias bk for group k ∈ [K] such that the TAF pk = Φ(−bk), then the same
analysis can be applied to each group separately, and we will derive the same conditions as in The-
orem B.2 for each group. As a result, to learn features of a certain occurrence frequency f , we just
need to ensure that at least one group k has TAF pk and the corresponding bias bk satisfying the Bias
Range condition in (B.5).

Specializing Theorem B.2 to Theorem 6.1. To relate the above theorem back to the one presented
in the main text:

• We first note that the decomposable data condition in Definition B.1 is always satisfied when
H is designed to have exactly s-sparse rows: each row ℓ has uniform random support Sℓ with
|Sℓ| = s for a constant s and entries Hℓ,i = 1/

√
s for i ∈ Sℓ, zero otherwise.

• Moreover, the feature balance condition in (B.6) is also satisfied with high probability in this
case because each feature appears in s/n fraction of data points, and |Di| = sN/n for each
i ∈ [n] by the law of large numbers, and so is ρ1 = s/n.

• Finally, in this case, the concentration coefficient hi defined in (B.3) is equal to 1/
√
s, as the

nonzero entries are all equal to 1/
√
s.

Hence, the remaining conditions to be checked are the network width condition in (B.4) and the
bias range condition in (B.5). We now invoke Theorem G.1, which states that if H has every entries
belonging to {0, 1/

√
s}, then h⋆ = 1/

√
s as well. Therefore, by substituting hi = h⋆ = 1/

√
s into

(B.4) and (B.5), multiplying both sides of the inequalities by log n, taking exponential, and using
the fact that

exp
(b2
2

)
=

Θ(polylog(n))

p

by the Gaussian tail estimate for b >
√
logn ≫ 1 (guaranteed by the bias range condition), we

recover the conditions in Theorem 6.1.

B.3 DETAILS ON RELU-LIKE ACTIVATION

In this section, we provide the omitted details for §6. We give a formal definition of ReLU-like
activations.

Definition B.3 (ReLU-like Activation). For the activation function ϕ : R→ R, we define φ as

φ(x) = φ(x; 0) = ϕ(x) + xϕ′(x).

We say that ϕ is ReLU-like if it satisfies the following:

1. (Lipschitzness) The activation function ϕ is continuously differentiable, 1-Lipschitz, and γ1-
smooth with γ1 = O(polylog(n)). Furthermore, φ(x) is γ2-Lipschitz with γ2 = O(polylog(n)).

2. (Monotonicity) The activation function ϕ is non-decreasing, and moreover, ϕ′(x) > C0 for some
constant C0 > 0 and all x ≥ 0.

3. (Diminishing Tail) There exists a threshold κ0 = O((logn)−1/2) and a sufficiently large con-
stant c0 > 0 such that for all x < −κ0, max{|ϕ(x)|, |ϕ′(x)|, |xϕ′(x)|} ≤ n−c0 .
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Lipschitzness. Under the above assumptions, we note that φ(x; b) is L-Lipschitz in x with L =
(γ2 + |b|γ1) = O(polylog(n)) > 1. The Lipschitz property of the function φ is pivotal in our
analysis since it enables control over error propagation across iterations. However, this property
depends on the smoothness of the activation function ϕ, a condition that the standard ReLU does not
satisfy. Fortunately, many common activation functions—such as softplus, noisy ReLU, and shifted
ELU (with the limit at −∞ set to 0)—do satisfy this smoothness requirement. In particular, with
a large smoothness parameter γ1 = polylog(n), we can use a smooth activation function to well
approximate the ReLU function. For instance, we can take ϕ(x) = γ−1

1 log(1 + eγ1x) for some
γ1 = polylog(n) as a smooth approximation of the ReLU activation function.

Monotonicity. The monotonicity property ensures that neurons with large pre-activations, which
indicate a good alignment with the underlying features, will also have large post-activations. This
then guarantees a continuous growth of the corresponding neuron weights.

Diminishing Tail. The diminishing tail condition ensures that both the activation function ϕ and
its derivative ϕ′ are negligibly small when the input is below the threshold −κ0. This property
suppresses unwanted neuron activations, thereby promoting sparsity in the activations—a key factor
in the successful training of the SAE.

B.4 PROOF OVERVIEW

In the following, we provide an overview of the key steps in the proof of Theorem B.2.

B.4.1 GOOD INITIALIZATION WITH WIDE NETWORK

By planting a large pool of i.i.d. random neurons at initialization, we can—with overwhelming prob-
ability—(1) assign to each feature vi one neuron mi whose inner product with vi is already very
large, and (2) simultaneously ensure that this same neuron has only weak correlations with all the
other features. Concretely, we prove that if M grows fast enough relative to n, then there exists a
choice of distinct neurons {mi}ni=1 such that

InitCond-1: ⟨vi, w(0)
mi
⟩ ≥ (1− ε)

√
2 log

M

n
,

InitCond-2: max
j ̸=i

∣∣⟨vj , w(0)
mi
⟩
∣∣ ≤ √2(1 + ε)

√
2 logn. (B.7)

These two properties together ensure a good initialization for the neuron mi dedicated to feature
vi. With M ≫ n3, we deduce that neuron wmi aligns exclusively with feature vi. In fact, as M
increases the separation between the two thresholds also increases, so w(0)

mi is ever more strongly
aligned with its own feature vi than with any other vj at the start. This widening margin precisely
captures the benign over-parameterization effect: having many neurons actually promotes clean,
feature-specific initialization. See Theorem E.1 for more details.

B.4.2 PREACTIVATIONS ARE APPROXIMATELY GAUSSIAN

We give a brief overview of how we deal with the challenge of tracking the highly nonlinear dynam-
ics in (B.1). With an abuse of notation, let us denote by wt and bt one neuron’s weight and bias after
iteration t. For the first step, the preactivations are Gaussian, i.e., w⊤

0 xℓ + b0 ∼ N (b0, 1). For later
steps, we expand the gradient descent update for the neuron weights wt at iteration t. Let us denote
by φt = (φ(w⊤

t−1xℓ; bt−1))ℓ∈[N ] and gt = X⊤φt the gradient computed in (B.2) at iteration t. By
the gradient formula in (B.2), we have

wt =

t∑
τ=1

λτ ·X⊤φτ + λ0 · w0, and Xwt =

t∑
τ=1

λτ ·Xgt + λ0 ·Xw0, (B.8)

for some coefficient λτ . Let us recall the decomposition X = HV . The first equality in (B.8)
indicates that wt−1 only contains information of V through the (t− 1)-dimensional projection Φ =
span{φ⊤

τ H}t−1
τ=1. For the second equality, the most recent component Xgt = HV gt in the pre-

activations contains information from a new gradient direction—the direction of projecting gt onto
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the orthogonal space of G = {w0, g1, . . . , gt−1}, which we denote as g⊥t . Data X’s projection onto
this new direction can be decomposed as

Xgt = H · (Φ⊥V g⊥t +ΦV g⊥t ),

where Φ⊥V g⊥t is independent of all the previous updates, as the projection is orthogonal to both Φ
and G. Therefore, V g⊥t is a high-dimensional independent Gaussian vector plus a low-dimensional
coupling term ΦV g⊥t . The argument holds true for all iteration steps, and if t ≪ d ∧ n, we ap-
proximately have xℓwt ∼ N (bt, 1) thanks to the normalization of the weight wt. This argument
can be made rigorous by use of the Gaussian conditioning technique (Wu & Zhou, 2023; Bayati &
Montanari, 2011; Montanari & Wu, 2023) in the formal proof. See §E.3 for details.

B.4.3 WEIGHT DECOMPOSITION AND CONCENTRATION UNDER SPARSITY

For one neuron dedicated to the target feature vi and satisfying the initialization conditions in (B.7),
we decompose the weight wt into two directions: 1) the projection of wt onto the 2-dimensional
subspace spanned by w0 and vi; 2) the projection of wt onto the orthogonal space w⊥

t . We define

αt =
⟨wt, vi⟩
∥vi∥2

, βt = ∥w⊥
t ∥2.

Using αt and βt, one can compute the first and second moments of the post-activation φt under
the decomposition of the pre-activations (into a high-dimensional Gaussian component and a low-
dimensional coupling term) obtained by the Gaussian conditioning technique. The post-activation
φt then gives rise to the next-step wt+1, and we thus obtain an induced recursion over αt and βt. As
a more concrete example, let us take learning rate η =∞, and we can express αt as

α−1,t =
⟨wt, vi⟩
∥vi∥2

=
v⊤i X

⊤φt

∥vi∥2 · ∥X⊤φt∥2
Recall that X = HV . By a splitting of V = [V−1; v

⊤
i ] in the row and a splitting of H = [H−i, Hi]

in the column, we have

α−1,t =
∥vi∥22 ·H⊤

i φt + v⊤i V
⊤
−i ·H⊤

−iφt

∥vi∥2 · ∥X⊤φt∥2
=
∥vi∥22 ·H⊤

i φt

∥X⊤φt∥2︸ ︷︷ ︸
Signal

+
v⊤i V

⊤
−i ·H⊤

−iφt

∥vi∥2 · ∥X⊤φt∥2︸ ︷︷ ︸
Noise

.

Here, we explicitly separate the signal from the noise. Our goal is to steer the neuron toward the
direction of vi, while treating gradient contributions from other features as noise.

Figure 10: Visualization of the
projection of wt onto 1) the sub-
space spanned by w0 and vi and 2)
the orthogonal space w⊥

t .

Controlling Moment of the Activations. To proceed, we
must tightly control both the signal and noise terms in the nu-
merator and the denominator. Concretely, this means bounding
the first moment of the activation φt (which enters the numera-
tor) and its second moment (which controls the denominator),
all while respecting the sparsity structure of φt. A core diffi-
culty stems from the pre-activation

Xwt = H V wt,

whose entries are not independent—even under a Gaussian
approximation—because the feature rows Hℓ,: are correlated.
This correlation invalidates the assumptions of classical con-
centration inequalities, such as Bernstein’s, and the problem
only worsens once we apply the nonlinear activation. More-
over, classical concentration techniques based on the bounded-
differences property, such as McDiarmid’s inequality (McDi-
armid et al., 1989), are not applicable here. This is because the bounded-differences property only
offers a uniform bound on the impact of each individual input change on the output, and it fails to
capture that the activations are sparse—remaining zero most of the time.

To overcome these dependencies, we invoke the Efron-Stein inequality (Boucheron et al., 2003).
Unlike McDiarmid’s bounded-differences inequality, which requires each individual input change
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to have a uniformly small impact on f , Efron-Stein only demands a bound on the total conditional
variance, namely

E
[ n∑
i=1

(
f(x)− f(x(i))

)2 ∣∣∣ x] ≤ V,

where x(i) denotes the vector obtained by replacing the ith coordinate of x with an independent
copy. This variance-based condition is far more flexible in the presence of both correlation and
nonlinearity, allowing us to derive the sharp moment bounds we need.

B.4.4 STATE RECURSION AND CONVERGENCE

We track at iteration t the alignment α−1,t and the orthogonal component βt of the neuron weight
wt. By exploiting the “Gaussian-like” concentration of the pre-activation Xwt = H V wt and
applying the refined Efron-Stein inequality to handle both feature correlations and the nonlinearity,
one obtains the coupled recurrences

1

α−1,t
≤ (1 + o(1)) + λt

(
Φ(−b)
ρ1d

1
α−1,t−1

+ rξt

)
,

βt
α−1,t

≤ λt
(

βt−1

α−1,t−1
+ rξt

)
.

Here, λt ∝ ρ1N/|Di|, and Φ(−b) denotes the Gaussian tail probability beyond the threshold −b,
which captures the activation sparsity. For clarity, we focus on the noiseless regime (i.e., assume
rξt = 0) so that all noise contributions are neglected. We now elaborate on these recursions in detail:

1. Recall that we require βt ≪ α−1,t since the neuron should eventually converge exclusively
in the direction of the target feature. In our framework, the minimal growth rate of the ratio
βt/α−1,t is intrinsically controlled by λt = rO(ρ1N/|Di|). By the definition of ρ1, this ratio is
inherently larger than 1. Thus, to prevent an unbounded escalation of βt/α−1,t, we must restrict
λt to, at most, a polylogarithmic scale, i.e., λt = rO(1).

2. If we additionally set Φ(−b)/(ρ1d) < d−ς for some ς ∈ (0, 1), then the map α−1
−1,t 7→ α−1

−1,t+1 is
contractive. Hence α−1,t grows from its initialization rΘ(d−1/2) to 1−o(1) inO(1) steps, and the
growth rate is much faster than that of βt/α−1,t thanks to the sparsity condition Φ(−b)/(ρ1d)≪
1.

From the above discussions, we already justify the inclusion of the Individual Feature Occurrence
condition |Di|

ρ1N
≥ polylog(n)−1 in (B.6) and part of the Bias Range condition b2

2 logn ≳ 1 − (1 −
ς) · log d

logn ⇔ Φ(−b)≪ d1−ς/n = rO(d−ς · (ρ1d)) in (B.5). The remaining conditions can be derived

based on a more careful analysis, including the noise term rξt and the initialization conditions (B.7).

C SUPPLEMENTARY DISCUSSIONS

C.1 DETAILS ON TOPK AND L1 TRAINING METHODS

We provide here more details on the training methods used in our experiments, including the Sparse
Autoencoder (SAE) with TopK activation and SAE with L1 regularization.

Sparse Autoencoder (SAE) with TopK activation. In an SAE with TopK activation, sparsity is
enforced by selecting only the K neurons with the highest activation values in the hidden layer. Let
y = W (x − bpre) + b be the pre-activation values of the hidden layer. Let ϕ(y) be the activations
after applying a standard activation function. The TopK selection mechanism, denoted as SK(·),
operates on ϕ(y). For a vector v ∈ RM , SK(v) produces a vector v′ ∈ RM such that:

v′j =

{
vj if vj is among the K largest values in v,

0 otherwise

for j ∈ [M ]. The post-activation in a TopK SAE is:

z = SK

(
ϕ(W (x− bpre) + b)

)
,
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which by definition is K-sparse. The reconstructed output is:

px = diag(a) ·W⊤z + bpre.

Let Θ = (W, bpre, b, a) be the parameters of the SAE. The loss function for the TopK SAE is the
reconstruction loss:

Lrec(x; Θ) = ||x− px||22.

Sparse Autoencoder (SAE) with L1 regularization. In an SAE with L1 regularization, sparsity
is encouraged by adding a penalty term to the reconstruction loss, proportional to the sum of the
absolute values of the hidden layer activations. Let y = W (x − bpre) + b be the pre-activation
values of the hidden layer. Let z = ϕ(y) = ϕ(W (x − bpre) + b) be the activations after applying
a standard activation function; these are the hidden layer representations that will be encouraged
towards sparsity. The reconstructed output is:

px = diag(a) ·W⊤z + bpre.

The loss function for the L1 SAE, L(x; Θ), incorporates both the reconstruction error and the L1
penalty on the hidden activations z:

L(x; Θ) = ∥x− px∥22 + λ ·
m∑
j=1

|zj | · ∥wj∥2,

where λ > 0 is the sparsity penalty parameter that controls the strength of the regularization, m is
the number of neurons in the hidden layer, and wj is the j-th row of the weight matrix W .

JumpReLU. In our real-data experiments, we also consider the JumpReLU activation, a non-
smooth, non-monotonic function. Conceptually, it behaves like ReLU for positive inputs but intro-
duces a sharp jump for sufficiently large inputs. In our implementation, we adopt a simplified scalar
form adapted to our neuron pre-activation w⊤

mx+ bm:

JumpReLU(w⊤
mx; bm) =

{
0, if w⊤

mx+ bm < 0,

w⊤
mx, if w⊤

mx+ bm ≥ 0.

This activation acts as a hard thresholded identity: it passes the neuron’s response only when the pre-
activation crosses a bias-controlled threshold. Although JumpReLU does not satisfy the smoothness
or Lipschitz conditions required in our theory (see Definition B.3), it is empirically effective and
included in our experimental comparisons §5. To train SAEs with JumpReLU activation, we follow
Rajamanoharan et al. (2024b) and use straight-through estimators for the gradient of JumpReLU
with respect to the bias bm. Specifically, for a small constant ϵ > 0, we approximate the gradients
as

∂JumpReLU(y; b)

∂y
=

{
0, if y + b < 0

1, if y + b ≥ 0
,

∂JumpReLU(y; b)

∂b
≈
{
0, if |y + b| > ϵ

2
b
ϵ , if |y + b| ≤ ϵ

2 .

The approximation follows the logic: the gradient with respect to b is in essence the gradient of
Heaviside step function, which can be approximated by a smoothed version over a small interval
around the threshold. Note that for GBA method, we do not apply any gradient for the bias; instead,
we update the bias through the frequency control mechanism described in §4.

Activation sparsity. For both the L1 and TopK SAE, we define the sparsity as the number of non-
zero entries in the latent z, i.e., ∥z∥0.

Minor notational discrepancy. In the main text and above definition we express the activation as
ϕ(w⊤

mx + bm), whereas in the definition above the JumpReLU activation is indeed as a bivariate
function of w⊤

mx and bm. This slight difference is purely notational and does not affect the un-
derlying functionality or the definition of activation sparsity. For simplicity, we always stick to
ϕ(w⊤

mx+ bm) in the main text, even for the JumpReLU activation.
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C.2 EVALUATION METRICS

We explain here the details of the evaluation metrics used in our experiments to assess how well the
GBA algorithm recovers the underlying features.

We first introduce the maximum activation and neuron Z-score, which are used to measure the quality
of the learned neurons. Then, we introduce the notion of Max Cosine Similarity (MCS) and Feature
Recovery Rate (FRR), which are used to measure the quality of the alignment between the learned
neurons and the ground-truth features, or the consistency of the learned features across different
runs. We also introduce the neuron percentage, constructed from the MCS, which is used to generate
Figure 5.

We introduce maximum activation and neuron Z-score of a neuron m as follows.

Maximum activation. Unless specified, we define the maximum activation of a neuron m as the
maximum of its pre-activations over the validation set:

Maximum Activation(m) = max
x∈Validation Set

ym(x), where ym(x) = w⊤
m(x− bpre) + bm.

(C.1)
Note that the maximum activation is computed based on the tokens in the validation set, which is a
held-out dataset separate from the training data used for evaluation purposes. It maps each neuron
to a scalar, characterizing the maximum pre-activation of the neuron across all validation tokens.

Neuron Z-score. Let ϕ(·) denote the neuron’s activation function (e.g., ReLU, or JumpReLU).
For each neuron m and a minibatch {xi}Bi=1, we define its post-activation responses as

ϕm,i = ϕ
(
w⊤

m(xi − bpre) + bm
)
, i = 1, . . . , B,

where wm ∈ Rd is the neuron’s weight vector and bm ∈ R is its bias. We can compute the mean
and standard deviation of these activations in the minibatch as

µm =
1

B

B∑
i=1

ϕm,i, sm =

√√√√ 1

B

B∑
i=1

(
ϕm,i − µm

)2
.

The Z-score of neuron m on data point xi is defined as
Zm,i = (ϕm,i − µm)/sm ∈ R.

We can also take the maximum of the Z-scores over the batch:
Zmax
m = (ϕm,max − µm)/sm , where ϕm,max = max

1≤i≤B
ϕm,i. (C.2)

A large value of Zm,i (or Zmax
m ≫ 0) indicates that on some input xi, the neuron’s activation ϕm,i

lies multiple standard deviations above its mean. Thus, when Zmax
m is large, neuron m is well-

learned to sensitively detect certain data points within the batch. More specifically, when Zmax
m is

large, the two following conditions hold:

• Strong Selectivity: There exists some xi within the batch such that ϕm,i ≫ µm, i.e., the neuron’s
activation ϕm,i “spikes” for input xi.

• Low Baseline Variability: Within the whole batch, the neuron’s activation ϕm,i is relatively
stable, i.e., the standard deviation sm is moderate.

As a result, Zmax
m serves as a quantitative measure of the neuron’s specificity on the batch of data.

When generating Figure 5, we use the maximum Z-score of each neuron across the whole validation
set to select a subset of neurons.

Next, we introduce the Max Cosine Similarity (MCS) and Feature Recovery Rate (FRR) metrics,
which are used to measure the quality of the alignment between the learned neurons and the ground-
truth features, or the consistency of the learned features across different runs.

Max Cosine Similarity (MCS) for synthetic data. For each neuron m with weight vector wm ∈
Rd, we define

MCS(m) = max
i∈[n]

⟨wm, vi⟩
∥wm∥2 ∥vi∥2

∈ [−1, 1].

By definition, MCS(m) = 1 if and only if wm coincides with one of the true features vi.
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Max Cosine Similarity (MCS) for real data. For real data, as we do not have access to the
ground-truth features, we define the MCS as the maximum cosine similarity between neurons across
different runs. This definition is used in Figure 5. Specifically, consider the trained neurons weights
W (j) ∈ RM×d for j = 1, . . . , J where J is the number of runs with different random seeds. We fix
the first run as the host run and compute the MCS for the m-th neuron in the host run with respect
to the j-th run with j ≥ 2 as follows:

MCS(m, j) = max
{
cos(W (j), w(1)

m )
}
.

Here, the term inside the max is the cosine similarity between the m-th neuron in the host run and
all neurons in the j-th run, which is an M -dimensional vector. The maximum taken outside can be
interpreted as finding the best match for the m-th neuron in the host run. Now, given a threshold
τ for the MCS value, i.e., the x-axis in Figure 5, we define neuron m to have an MCS above the
threshold if MCS(m, j) ≥ τ for all j ≥ 2. We require this condition to hold for all runs j ≥ 2
because if the algorithm learns a consistent feature, it should be present no matter which random
seed is used. When this is the case, neuronm in the host run can find a corresponding neuron in each
of the other runs that has a cosine similarity above the threshold τ . Thus, by computing MCS for all
the neurons in the host run, we evaluate the consistency of the learned features across different runs.

Neuron percentage in Figure 5. Recall that we call the first run of the algorithm the host run.
Under the definition of MCS, in Figure 5 we plot the neuron percentage as a function of the MCS
threshold τ . In particular, for any threshold τ (x-axis in Figure 5), we compute the fraction of
neurons in the host run that have an MCS above the threshold across all runs. That is, we define

Neuron Percentage(τ) =
1

M

M∑
m=1

1
(
MCS(m, j) ≥ τ, ∀j ≥ 2

)
. (C.3)

By definition, this quantity computes the fraction of neurons in the host run that have an MCS
above the threshold τ across all runs j ≥ 2. If this quantity is large, the algorithm is able to
produce consistent results across different runs with different random seeds. Moreover, because a
considerable portion of the neurons of SAE are rarely activated, instead of enumerating over all
neurons as in (C.3), we can also consider the neuron percentage over a subset of neurons, denoted
byM⊆ [M ]. Then, focusing onM, we define the neuron percentage as

Neuron Percentage(τ,M) =
1

|M|
∑

m∈M
1
(
MCS(m, j) ≥ τ, ∀j ≥ 2

)
. (C.4)

In particular, in Figure 5, we chooseM to be the top-α subset of neurons in terms of the maximum
activations or neuron Z-score in the host run, which are defined in (C.1) and (C.2), respectively.
Note that these two metrics are computed based on the validation dataset. The y-axis in Figure 5 is
computed as in (C.4) with these two versions ofM.

The notion of Feature Recovery Rate (FRR) is only used for synthetic data, where we have access
to the ground-truth features.

Figure 11: An illustration of
the learnable region surrounding
the feature. Any neuron weight
within the cone has cosine sim-
ilarity above the threshold with
the feature.

Feature Recovery Rate (FRR). For one monosemantic feature
vi, we say it is recovered if there exists a neuronm ∈ [M ] such that
the cosine similarity between the neuron and the feature is above a
certain threshold τalign:

1i =

{
1 if ∃m ∈ [M ] such that

∣∣⟨ pwm, vi⟩
∣∣/∥vi∥2 ≥ τalign,

0 otherwise.

Then the Feature Recovery Rate is

FRR =
1

n

n∑
i=1

1i ∈ [0, 1].

In words, FRR is the fraction of ground-truth features vi that have
been recovered, i.e., aligned to at least one learned neuron. Here,
we find the following way to define the threshold τalign useful:

τalign = cos
(1
3
arccos

(
max
i̸=j

⟨vi, vj⟩
∥vi∥2 ∥vj∥2

))
. (C.5)
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Intuitively, the angle given by arccos in (C.5) is the smallest angle
among all pairs of features vi and vj in V , which is denoted by θ
in Figure 11. Then, if a neuron exhibits a cosine similarity above
the threshold τalign with a feature vi, then it lies within the cone centered at vi with angle θ/3. See
Figure 11 for an illustration. By our choice of τalign, these cones associated to all monosemantic
features lie in the d−1-dimensional sphere without overlapping, ensuring that each neuron exceeding
the threshold is uniquely aligned with a single feature.

D ADDITIONAL EXPERIMENTS DETAILS

We provide additional experimental results and implementation details that complement the main
findings presented in the paper.

D.1 SYNTHETIC EXPERIMENTAL SETUP

We generate synthetic dataX = HV satisfying decomposable conditions outlined in Definition B.1.
In the default setting, each row of H contains exactly s nonzero entries, each with value 1/

√
s, and

the support of each row is chosen independently at random. We implement the BA algorithm with
a fixed TAF p, where the SAE adopts the ReLU activation. We fix the output scale am = 1 for all
m ∈ [M ] and the pre-bias bpre = 0, and initialize the weights w(0)

m uniformly on the unit sphere
Sd−1 with bias b(0)m = 0.

In synthetic experiments, we use Spherical Gaussian features. For each sample xj (j ∈ [N ]), we
randomly sample s indices (with replacement) from [n] to form a multi-set Sj . The corresponding
features are then combined with a weight 1/

√
s to construct the reconstruction target:

xj =
∑
i∈Sj

vi/
√
s.

To evaluate feature learning of neuron m, we use the Max Cosine Similarity (MCS) metric. For any
neuron m, MCS is defined as maxi∈[n] |⟨wm/∥wm∥2, vi/∥vi∥2⟩|. Thus, MCS measures how well
a neuron aligns with the most aligned feature in V . We say a neuron is aligned with some feature
if the MCS for that neuron exceeds a certain threshold. To evaluate overall feature recovery, we use
the Feature Recovery Rate (FRR) metric, defined as the proportion of features that are aligned with
at least one neuron. See §C.2 for more details on these metrics and the choice of thresholds.

D.2 ADDITIONAL DETAILS FOR §5

Data and model details. We choose the subsets of Github and Wikipedia_en of Pile (Gao
et al., 2020) without copyright as our datasets. The Github dataset is a collection of 1.2 billion
tokens from public GitHub repositories, while the Wikipedia_en subset contains 1.5 billion
tokens from English Wikipedia articles. We use the first 99.8k rows from each dataset for train-
ing and the next 0.2k rows for validation. Each row in the dataset is truncated to the first 1024
tokens after tokenization. Therefore, the total number of tokens is roughly N = 100m. We use the
Qwen2.5-1.5B base model (Yang et al., 2024) as our LLM, which has 1.5 billion parameters and
MLP output dimension 1536. We attach an SAE to the output of the LLM’s MLP output at layer 2,
13, and 26 with M = 66k neurons, resulting in three different SAEs for each dataset. The dimen-
sion d of the input data points is equal to d = 1536. We use the JumpReLU activation (Erichson
et al., 2019; Rajamanoharan et al., 2024b) for all training methods.

Training details. We train the SAEs using methods such as GBA, TopK, L1, and BA, where BA
is simply GBA with one group. For all these methods, we use the AdamW optimizer with a learning
rate of 10−4 and a weight decay of 10−2. Since the sentences are truncated to 1024 with padding
token removed, we set the batch size to L = 8192 tokens and a buffer size of B = 40k tokens. Each
run can be completed using a single NVIDIA A100 GPU with 80GB memory, and we train 8 epochs
for each method. The hyperparameters of each method are set as follows:

• For GBA, we set K ∈ {3, 10, 20}, p1 ∈ {0.05, 0.1, 0.3, 0.5}, and pK ∈ {10−4, 10−3, 5×
10−3}, where K is the number of groups, p1 is the target frequency of the first group,
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and pK is the target frequency of the last group. In addition, we have {pk}k∈[K] form a
geometric sequence.

• For the BA method, we set the HTF to be from {10−1, 3×10−2, 10−2, 3×10−3} and vary
the choice. The other parameters are the same as GBA.

• For TopK method, we implement two versions — the pre-activation TopK and
the post-activation TopK. See §C.1 for details. We vary the value of K in
{50, 100, 200, 300, 400, 500, 600}.

• For L1 method, we vary the penalty parameter λ in {10−1, 3×10−2, 10−2, 3×10−3, 10−3}.

D.3 COMPARISON BETWEEN JUMPRELU AND RELU ACTIVATION

For the SAE trained on the Github dataset at layer 26, we compare the performance between
JumpReLU and the standard ReLU activations across all methods considered in this paper. As
shown in Figure 12, the sparsity-loss frontiers for TopK and L1 methods are nearly identical un-
der both activations. However, the GBA method demonstrates a marked improvement when using
JumpReLU activation. With ReLU, decreasing the neuron bias also reduces the output magnitude.
Thus more neurons are needed to compensate for the loss of output magnitude, which leads to a less
sparse model, which degrades the sparsity-loss frontier. In contrast, JumpReLU decouples the neu-
ron output magnitude from its bias—only the activation frequency is influenced—yielding a more
robust sparsity-loss performance.

0.2 1 5 20
0

0.1

0.2

0.3

0.4 TopK+JumpReLU(pre-act)
TopK+JumpReLU(post-act)
L1+JumpReLU
GBA+JumpReLU

lower is better

0.2 1 5 20
0

0.1

0.2

0.3

0.4
TopK+ReLU(pre-act)
TopK+ReLU(post-act)
L1+ReLU
GBA+ReLU

lower is better

0.2 1 5 20
0

0.1

0.2

0.3

0.4
TopK+ReLU(pre-act)
TopK+JumpReLU(pre-act)
TopK+ReLU(post-act)
TopK+JumpReLU(post-act)
L1+ReLU
L1+JumpReLU
GBA+ReLU
GBA+JumpReLU

lower is better

Figure 12: Comparison of sparsity-loss frontier between JumpReLU and ReLU activations. The left
and middle plots show the sparsity-loss frontier with JumpReLU and ReLU activations, respectively.
The right plot is a combination of the two, where the faded plots represent the sparsity-loss frontier of
the ReLU activation.

Bias clamping to prevent over-sparsification. During the bias scheduling subroutine of the GBA
algorithm (Algorithm 1), we enforce a clamp on the bias values, restricting them to the range [−1, 0].
This constraint serves two primary purposes. The upper bound of 0 ensures that a neuron is only
activated when the input data exhibits a sufficient alignment with the neuron’s weight vector. Con-
sequently, allowing negative bias values (bm < 0) effectively prevents excessive or premature acti-
vation of neurons.

The lower bound of−1 is implemented to avoid over-deactivation and the emergence of a reinforcing
loop. We have observed experimentally that when the pre-bias (bpre) significantly deviates from
zero, certain neurons may develop weights that are in opposition to the pre-bias to compensate for
this drift. As these compensatory neurons are more likely to be activated by the initial pre-bias, the
GBA algorithm might inadvertently continue to deactivate them by further reducing their bias (bm).
This deactivation would then necessitate an increase in the neuron’s weight to maintain its influence,
leading to a counterproductive cycle of deactivation and weight growth.

By limiting the bias to be no less than−1, we effectively interrupt this reinforcing loop and promote
training stability. The rationale behind choosing −1 as the lower bound stems from the fact that
our input data is normalized. This normalization typically results in pre-activation values that are
significantly smaller than 1, with values approaching 1 only when the data strongly activates specific
neurons. Therefore, a lower bias bound of −1 provides sufficient range for deactivation without
causing the problematic feedback loop. This clamping strategy has been shown to significantly
enhance the stability of the training process.

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

E GOOD INITIALIZATION AND GAUSSIAN CONDITIONING

In this section, we provide proofs for two important lemmas: Theorem E.1 on the initialization
properties and Theorem E.2 on the Gaussian conditioning. These lemmas provide the necessary
foundation for analyzing the SAE training dynamics, enabling us to isolate and control the relevant
sources of randomness throughout the analysis.

E.1 INITIALIZATION PROPERTIES

If we initialize the network with a sufficiently large number of neurons M , then for each neuron,
there must exist a feature that aligns well with it. However, the question is how many neurons
we need to achieve a sufficiently large alignment and with all features of interest simultaneously.
Theorem E.1 provides an answer to this question. In particular, we prove that whenM is sufficiently
large, for each feature vi, we can find a neuron mi that aligns well with it (InitCond-1) while
maintaining a small alignment with all other features (InitCond-2).

Lemma E.1 (Good initialization). Given n i.i.d. features {vi}ni=1 with vi ∼ N (0, Id) and weights
{w(0)

m }Mm=1 independently initialized from the uniform distribution on the unit sphere, then for any
constants ε ∈ (0, 1) and c > 0 such that n−c upper bound exp(−nO(ε)), with probability at least
1−n−c over the randomness of both {vi}ni=1 and {w(0)

m }Mm=1, one can select a sequence of neurons
{mi}ni=1 satisfying the following properties:

1. For any i ∈ [n], we have

InitCond-1 : ⟨vi, w(0)
mi
⟩ ≥ (1− ε)

√
2 log(M/n).

2. For any i ∈ [n], when conditioned on the selection of neuron mi, which aligns well with
feature vi in the sense of InitCond-1, the distribution of the remaining features {vj}j ̸=i

remains unchanged, i.e., they are independently drawn from N (0, Id).

3. For any i ∈ [n], when conditioned on selecting neuron mi, with probability at least 1 −
n−1−4ε over the randomness of {vj}j ̸=i, we have

InitCond-2 : ⟨vj , w(0)
mi
⟩ ≤
√
2(1 + ε) ·

√
2 logn, ∀j ̸= i

Proof of Theorem E.1. We present the proof by constructing such m1,m2, . . . ,mn explicitly.
Suppose we are provided with n features v1, v2, . . . , vn and M neurons with initial weights
w

(0)
1 , w

(0)
2 , . . . , w

(0)
M . We first put all the pair-wise alignments ⟨vi, w(0)

m ⟩ into a matrix A ∈ Rn×M ,
where Aim = ⟨vi, w(0)

m ⟩ for i ∈ [n] and m ∈ [M ]. The algorithm execute as follows for i going
from 1 to n:

1. Randomly divide the M neurons into n disjoint groupsM1,M2, . . . ,Mn such that each
groupMi contains M/n neurons.

2. For eachMi, find the neuron mi as the one that maximizes the alignment with feature vi,
i.e.,

mi = argmax
m∈Mi

Ai,m = argmax
m∈Mi

⟨vi, w(0)
m ⟩.

By construction, we know that the selection of mi is independent of the selection of mj for i ̸= j.
It is not hard to see that the distribution of ⟨vi, w(0)

m ⟩ is the same (up to scaling) as the distribution of
the first coordinate of a random vector uniformly distributed on the unit sphere. Therefore, for each
i ∈ [n], each group {Ai,m}Mi

is iid sampled from the following distribution:

Ai,m

∣∣
m∈Mi

d
=

Z1∥vi∥2√
Z2
1 + . . .+ Z2

d

, where Zk ∼ N (0, 1),∀k ∈ [d].
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By the concentration for Chi-square distribution, Theorem J.1, we know that the denominator and
also the norm of ∥vi∥2 satisfies

P
(∣∣∣ d∑

k=1

Z2
k − d

∣∣∣ ≥ 2
√
d log δ−1 + 2 log δ−1

)
≤ δ,

P
(∣∣∣∥vi∥22 − d∣∣∣ ≥ 2

√
d log δ−1 + 2 log δ−1

)
≤ δ.

To proceed, we label each d-dimensional random vector as Z(i,m) = (Z
(i,m)
1 , . . . , Z

(i,m)
d ), where

the superscript (i,m) corresponds to feature i and neuron m. Applying a union bound over all
n ×M/n pairs of (i,m) and choosing δ = n−c/M for some universal constant c, we deduce that
with probability at least 1− n−c, the following holds for all i ∈ [n] and m ∈ [M ]:

Ai,m ≥
Z

(i,m)
1

(
d− C

√
d log(nM)− C log(nM)

)1/2(
d+ C

√
d log(nM) + C log(nM)

)1/2 ,

where C is a universal constant. Moreover, by property of the maximum of Gaussian random vari-
ables in Theorem J.4, it holds that

P
(

max
m∈Mi

Z
(i,m)
1 ≥ (1− ε/2)

√
2 log(M/n)

)
≥ 1− exp

(
− (M/n)ε−ε2/4

3
√
π log(M/n)

)
. (E.1)

Here, we divide ε by 2 because

Ai,m ≥ Z(i,m)
1 ·

(
d− C

√
d log(nM)− C log(nM)

)1/2(
d+ C

√
d log(nM) + C log(nM)

)1/2 ≥ 1− ε
1− ε/2

Z
(i,m)
1

for small constant ε. Consequently, by multiplying both sides of the inequality inside P(·) in (E.1)
by 1−ε

1−ε/2 , we can recast the probability statement so that the maximum of Ai,m over all m ∈ Mi

exceeds (1− ε)
√

2 log(M/n). By taking a union bound for i ∈ [n], the probability of successfully
finding a sequence of neurons m1,m2, . . . ,mn satisfying Ai,m > (1 − ε)

√
2 log(M/n) for all

i ∈ [n] and m ∈ [M ] is at least

P
(
∀i ∈ [n] : max

m∈Mi

Ai,m > (1− ε)
√

2 log(M/n)
)
≥ 1− n · exp

(
− (M/n)ε−ε2/4

3
√
π log(M/n)

)
≥ 1− n−c.

where we can safely take c to some constant as the failure probability is exponentially small in n
given that M ≥ n2. To this end, we conclude that with probability at least 1 − n−c, we can find a
sequence of non-overlapping neurons m1,m2, . . . ,mn such that Ai,mi > (1− ε)

√
2 log(M/n) for

all i ∈ [n].

Observe that the selection of each neuron mi is done independently for each feature. Consequently,
when we condition on the selection of mi, the distribution for the remaining features {vj}j ̸=i re-
mains unchanged. This proves the second statement.

It remains to analyze the probability that Aj,mi
<
√
2(1 + ε) ·

√
2 logn for all j ∈ [n] and i ̸= j.

By the second statement, we know that when conditioned on neuron mi, the collection {Aj,mj}j ̸=i

(for any fixed i) consists of (n − 1) independent and identically distributed random variables with
distribution N (0, 1). Thus, we can apply the tail probability for the maximum of Gaussian random
variables in Theorem J.2 to obtain

P
(

max
j∈[n]:j ̸=i

Aj,mi >
√
2(1 + ε) ·

√
2 logn

)
≤ n1−2(1+ε)2 ≤ n−1−4ε.

Thus, we prove the last argument for Theorem E.1.

A direct corollary of Theorem E.1 is that InitCond-1 and InitCond-2 hold simultaneously for all
i ∈ [n] and j ̸= i with probability at least 1 − n−c − n−4ε ≤ 1 − n−ε after taking a union bound
over the success of InitCond-2 for all i ∈ [n]. These two conditions together imply that the neuron
mi exclusively focuses on feature vi at initialization, which is crucial for developing a 1 − o(1)
alignment with feature vi during training.
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E.2 REWRITING THE GRADIENT DESCENT ITERATION

Single neuron analysis. In the previous Theorem E.1, we have shown a correspondence between
each feature vi and a neuron mi such that the initial weight of neuron mi aligns well with feature
vi while maintaining small alignments with all other features. In other words, mi is the neuron that
is most likely to learn feature vi during training. As the neuron dynamics are decoupled under the
small output scale assumption, we only need to analyze the dynamics of neuron mi to understand
how feature vi is learned.

Notation. In the following, we denote by v the feature of interest and by wt the weight of the
corresponding neuron at iteration t. Let T be the maximum number of steps considered and the
time step t ranges from 0 to T . For the sake of notational convenience, we also denote the feature
of interest by w−1 = v and the normalization sw−1 = v/∥v∥2. Meanwhile, w0 = sw0 is the
initialization that is already normalized to unit length. Here, the bar notation indicates that the
vector is normalized to unit length throughout the whole proof.

Reformulating the iteration. In this section, we reformulate the gradient descent update (B.1)
to isolate the contribution of a specific feature v from the remaining features. Recall that the data
matrix is given by X = HV , where H ∈ RN×n is the weight matrix and V ∈ Rn×d is the feature
matrix. The gradient descent update (B.1) with gradient explicit in (B.2) is

Modified BA: wt =
wt−1 + η gt
∥wt−1 + η gt∥2

, where gt =

N∑
ℓ=1

φ(w⊤
t−1xℓ; bt)xℓ,

which can be written in terms of H and V as:

yt = V swt−1, bt = At(Hyt), ut = H⊤φ(Hyt; bt),

wt = V ⊤ut + η−1
swt−1, swt = wt/∥wt∥2.

(E.2)

Here, the meaning of these quantities are given as follows:

• yt ∈ Rd is the projection of the normalized weight vector onto all the features, which we refer
to as the feature pre-activation.

• bt ∈ R is the bias term updated by a bias adaptation algorithmAt(·) that depends on the feature
preactivation and time t.

• ut ∈ Rn is the feature post-activation that aggregates the post-activation information from all
the data points back to the feature space.

• wt ∈ Rd is the unnormalized weight vector after one step of gradient descent update, and
swt ∈ Rd is the normalized weight vector.

In our analysis, as the bias is fixed,At(·) always returns the same bias value. However, we keep this
general form which can be useful for adapting the current proof framework to handle more complex
bias adaptation algorithms. Note that φ(Hyt; bt) ∈ RN obtained from the gradient calculation in
(B.2) is not exactly the post-activation (recall definition φ(x; b) = ϕ(x+ b) + ϕ′(x+ b)x, where ϕ
is the actual activation function. ) However, in the following proof, we will abuse the notation and
refer to φ(Hyt; bt) as the post-activation for brevity.

Without loss of generality, suppose v is the i-th feature. To isolate the contribution from feature of
interest v from the remaining features, we decompose the weight matrix H into three parts: (i) θ:
the non-zero entries of the i-th column, (ii) F : the rows with non-zero entries in the i-th column,
and (iii) E: the remaining rows with zero entries in the i-th column. Formally, suppose v is the i-th
feature, then we decompose H as follows:

θ =
(
Hki : Hki ̸= 0

)
k∈[N ]

, F =
(
Hkj : Hki ̸= 0

)
k∈[N ],j∈[n]\{i}, E =

(
Hkj : Hki = 0

)
k∈[N ],j∈[n]\{i}.

(E.3)

Notably, the rows of E and F do not include the i-th column of H , as it is already isolated as vector
θ. See Figure 13a for an illustration of this decomposition.
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(a) The weight matrix H is splitted into matrices E and F by row according
to whether the corresponding entries in the i-th column are zero or not. The
nonzero entries in the i-th column of H are collected as vector θ.

(b) Isolating the i-th fea-
ture from feature matrix
V .

Figure 13: Illustration of the split of matrices H and V .

Using the above decomposition, we can rewrite the actual projection of the weights swt−1 on each
data point as

HV swt−1 = Interleave
(
[F ;E] · V−i swt−1 + [θ;0] · v⊤ swt−1

)
= Interleave

(
[F ;E] · yt,−i + [θ;0] · v⊤ swt−1

)
,

where [E;F ] is the vertical concatenation of E and F , V−i is the feature matrix V with the i-th
row removed, and yt,−i = V−i swt−1 is the vector yt with the i-th entry removed. The interleave
operation simply restores the original order of the rows in H . Therefore, we can rewrite the original
ut in (E.2) as

ut = H⊤φ(Hyt; bt) = E⊤φ(Eyt,−i; bt) + F⊤φ(Fyt,−i + θ · v⊤ swt−1; bt). (E.4)

In order to avoid overcomplicated subscripts, we let V denote the feature matrix V−i with the i-th
row removed, and let v refer to the original i-th row of V . See Figure 13b for an illustration of this
decomposition. We also rewrite yt,−i as yt, and following the above notation, we still have yt =
V swt−1. Now with (E.4), we can explicitly separate the contribution of feature v from the remaining
features in the gradient descent iteration (E.2) and obtain the following equivalent iteration:

Gradient Descent Iteration

feature pre-activation: yt = V swt−1, swt−1 = wt−1/∥wt−1∥2,
bias scheduling: bt = At(bt−1, Eyt, Fyt + θ · v⊤ swt−1),

feature post-activation: ut = E⊤φ(Eyt; bt) + F⊤φ(Fyt + θ · v⊤ swt−1; bt),

weight update: wt = V ⊤ut + vθ⊤φ(Fyt + θ · v⊤ swt−1; bt) + η−1
swt−1,

(E.5)

Note that the notation in (E.5) is self-consistent with E,F, θ defined in (E.3) and V, v defined below
(E.4). We will keep using this notation throughout the rest of the proof.

E.3 GAUSSIAN CONDITIONING

Since both the feature of interest v and each row of the feature matrix V follow Gaussian distribu-
tions, we can leverage the properties of Gaussian distributions to simplify the dynamics. However,
the coupling between different iterations prohibits a direct application of Gaussian properties. This
challenge motivates us to explicitly split the intermediate variables in (E.5) into two components: (i)
a coupling component that lies in the subspace spanned by the previous intermediate variables, and
(ii) an independent component that is orthogonal to this subspace. We can then apply some Gaussian
concentration arguments to the orthogonal component to simplify the dynamics.

Additional notation. To achieve this, we introduce some additional notations. Let us define
Pw−1:t−1x as the projection of x onto the subspace spanned by {w−1, . . . , wt−1}, and P⊥

w−1:t−1
x =
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x−Pw−1:t−1
x as the orthogonal projection. In the following, we use the notationsw⊥

t = P⊥
w−1:t−1

wt

to denote the new direction induced by wt, and we define u⊥t = P⊥
u1:t−1

ut in a similar manner (note
that ut starts from t = 1). Note that when t < 2, u1:t−1 is empty and P⊥

u1:t−1
becomes the identity

mapping. Also, we enforce w−1 = w⊥
−1 = v.

In the following, we use the trick of Gaussian conditioning (Wu & Zhou, 2023; Bayati & Montanari,
2011; Montanari & Wu, 2023) to simplify the dynamics in (E.5). Specifically, we will define an al-
ternative dynamics that is distributionally equivalent to the original one, where for each iteration, two
new independent Gaussian vectors are introduced to replace the original Gaussian components com-
ing from the V matrix. To make the presentation clearer, we will denote the variables in the original
dynamics in (E.5) by (yt, wt, ut, bt) and the variables in the alternative dynamics by (ryt, rwt, rut,rbt)
in the following proofs.

Lemma E.2 (Alternative dynamics). For any t ∈ N, let z−1, z0, . . . , zt and rz1, . . . , rzt be sequences
of i.i.d. random vectors from N (0, In−1) and N (0, Id−1), respectively, with mutual independence.
In addition z−1:t and rz1:t are also independent of the initialization sw0 and the feature of interest v.
Consider the following alternative iteration for (ryt, rwt):

ryt =

t−1∑
τ=−1

rατ,t−1 · P⊥
ru1:τ

zτ +

t−1∑
τ=1

rατ,t−1 ·
∥ rw⊥

τ ∥2
∥ru⊥τ ∥2

· ru⊥τ
∥ru⊥τ ∥2

, (E.6)

rwt =

t−1∑
τ=−1

⟨P⊥
ru1:τ

zτ , rut⟩ ·
rw⊥
τ

∥ rw⊥
τ ∥2

+

t−1∑
τ=1

⟨ru⊥τ , rut⟩
∥ru⊥τ ∥2

· ∥ rw⊥
τ ∥2

∥ru⊥τ ∥2
· rw⊥

τ

∥ rw⊥
τ ∥2

+ P⊥
rw−1:t−1

rzt · ∥ru⊥t ∥2 + v θ⊤φ(F ryt + θ · v⊤ r

swt−1; bt) + η−1
r

swt−1,

where we define the alignment

rατ,t =
⟨ rw⊥

τ , r

swt⟩
∥ rw⊥

τ ∥2
with r

swt =
rwt

∥ rwt∥2
.

In addition, (bt, rut) in the alternative dynamics are updated by the same formula as in (E.5):

bt = At(bt−1, Eryt, F ryt + θ · v⊤ r

swt−1), rut = E⊤φ(Eryt; bt) + F⊤φ(F ryt + θ · v⊤ r

swt−1; bt).
(E.7)

Then, conditioned on rw−1 = v (the same as our previous definition ofw−1 = v) and rw0 = w0 being
the initialization of the neuron weight, the alternative dynamics (ryτ , rwτ , ruτ ,rbτ )

t
τ=1 from (E.6) and

(E.7) and the original dynamics (yτ , wτ , uτ , bτ )
t
τ=1 from (E.5) follow the same distribution.

Proof of Theorem E.2. To show that the trajectory from (E.6) and (E.7) follow the same distribution
as the trajectory from (E.5), we first decompose the iteration in (E.5) in the following lemma.

Lemma E.3 (Decomposition). For the iteration in (E.5), define the alignment between the weight
vector swt and the weight direction w⊥

t as ατ,t = ⟨ swt, w
⊥
τ ⟩/∥w⊥

τ ∥2, Then, we have the following
decomposition for the preactivation vector yt ∈ Rn−1:

yt =

t−1∑
τ=−1

ατ,t−1 · P⊥
u1:τ

V
w⊥

τ

∥w⊥
τ ∥2

+

t−1∑
τ=1

ατ,t−1 ·
∥w⊥

τ ∥2
∥u⊥τ ∥2

· u⊥τ
∥u⊥τ ∥2

,

and the following decomposition for the unnormalized weight vector wt ∈ Rd:

wt =

t−1∑
τ=−1

〈
P⊥
u1:τ

V
w⊥

τ

∥w⊥
τ ∥2

, ut

〉
· w⊥

τ

∥w⊥
τ ∥2

+

t−1∑
τ=1

⟨u⊥τ , ut⟩
∥u⊥τ ∥2

· ∥w
⊥
τ ∥2

∥u⊥τ ∥2
· w⊥

τ

∥w⊥
τ ∥2

+ P⊥
w−1:t−1

V ⊤ u⊥τ
∥u⊥τ ∥2

· ∥u⊥t ∥2 + vθ⊤φ(Fyt + θ · v⊤ swt−1; bt) + η−1
swt−1,

Proof. See §E.4 for the proof of Theorem E.3.

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

With the above decomposition, if we do the following substitution for yt and wt in the above lemma:

P⊥
u1:t

zt ← P⊥
u1:t

V
w⊥

t

∥w⊥
t ∥2

, P⊥
w−1:t−1

rzt ← P⊥
w−1:t−1

V ⊤ u⊥t
∥u⊥t ∥2

,

the assertion in Theorem E.2 follows immediately. The following proof is devoted to showing that
the substitution does not change the joint distribution of the whole dynamics. To show that, we just
need to verify that for each iteration t, when conditioned on all the history up to iteration t− 1, the
two newly introduced vectors P⊥

u1:t
V w⊥

t /∥w⊥
t ∥2 and P⊥

w−1:t−1
V ⊤u⊥t /∥u⊥t ∥2 still follow a standard

Gaussian distribution and are independent of all the history.

To proceed, we denote the original iteration in (E.5) by (yt, wt, ut, bt) and the alternative iteration
in (E.6) and (E.7) by (ryt, rwt, rut,rbt). Following explicitly from the decomposition in Theorem E.3
and the construction in (E.6), we can further derive the following dependency between the variables
in both iterations.

Lemma E.4. For each iteration (ut, wt) in (E.5), it holds for any t ≥ 1 that

ut ∈ σ
(
w−1:0,

{
P⊥
u1:τ

V
w⊥

τ

∥w⊥
τ ∥2

}t−1

τ=−1

,

{
P⊥
w−1:τ−1

V ⊤ u⊥τ
∥u⊥τ ∥2

}t−1

τ=1

)
,

wt ∈ σ
(
w−1:0,

{
P⊥
u1:τ

V
w⊥

τ

∥w⊥
τ ∥2

}t−1

τ=−1

,

{
P⊥
w−1:τ−1

V ⊤ u⊥τ
∥u⊥τ ∥2

}t

τ=1

)
.

where σ(X) denotes the σ-algebra generated by the random variable X . For the Gaussian condi-
tioning iteration (rut, rwt) in (E.6) and (E.7), it holds for any t ≥ 1 that

rut ∈ σ( rw−1:0, {P⊥
ru1:τ

zτ}t−1
τ=−1, {rzτ}

t−1
τ=1), rwt ∈ σ( rw−1:0, {P⊥

ru1:τ
zτ}t−1

τ=−1, {rzτ}tτ=1).

Proof. See §E.4 for a proof of Theorem E.4.

The message of the above lemma is intuitive: each iteration only inserts new randomness coming
from

P⊥
u1:t−1

V
w⊥

t−1

∥w⊥
t−1∥2

and P⊥
w−1:t−1

V ⊤ u⊥t
∥u⊥t ∥2

for the original iteration, and from

P⊥
ru1:t−1

zt−1 and P⊥
rw−1:t−1

rzt

for the alternative iteration. Using the dependency results, we next prove the equivalence between
the trajectory { rw−1 , rw0, (ryτ , rwτ , ruτ ,rbτ )

t
τ=1} from the Gaussian conditioning and the trajectory

{w−1 , w0, (yτ , wτ , uτ , bτ )
t
τ=1} from the original iteration by considering the conditional distribu-

tion of the newly introduced randomness at each iteration. Let us define At as a realization of the
random variables ( rw−1:0, z−1:t−1, rz1:t) or(

w−1:t,

{
P⊥
u1:τ

V
w⊥

τ

∥w⊥
τ ∥2

}t−1

τ=−1

,

{
P⊥
w−1:τ−1

V ⊤ u⊥τ
∥u⊥τ ∥2

}t

τ=1

)
.

By property of the Gaussian ensembles, it holds that

P⊥
u1:t

V
w⊥

t

∥w⊥
t ∥2

∣∣∣∣∣
{(

w−1:0,

{
P⊥
u1:τ

V
w⊥

τ

∥w⊥
τ ∥2

}t−1

τ=−1

,

{
P⊥
w−1:τ−1

V ⊤ u⊥τ
∥u⊥τ ∥2

}t

τ=1

)
= At

}
d
= P⊥

u1:t
Vt

w⊥
t

∥w⊥
t ∥2

∣∣∣∣∣
{(

w−1:0,

{
P⊥
u1:τ

V
w⊥

τ

∥w⊥
τ ∥2

}t−1

τ=−1

,

{
P⊥
w−1:τ−1

V ⊤ u⊥τ
∥u⊥τ ∥2

}t

τ=1

)
= At

}
d
= P⊥

ru1:t
zt |
{
( rw−1:t, ru1:t, z−1:t−1, rz1:t) = At

}
. (E.8)

where Vt
d
= V is an independent copy of V and is independent of all the histories. Here, the first

equality holds because P⊥
u1:t

V w⊥
t /∥w⊥

t ∥2 is orthogonal to any of the previous row/column space
that we have conditioned on. In particular,
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• P⊥
u1:t

V
w⊥

t

∥w⊥
t ∥2

is orthogonal to {P⊥
u1:τ

V
w⊥

τ

∥w⊥
τ ∥2
}t−1
τ=−1 in the column space of V since w⊥

t is

orthogonal to w⊥
τ for any τ < t.

• P⊥
u1:t

V
w⊥

t

∥w⊥
t ∥2

is orthogonal to {P⊥
w−1:τ−1

V ⊤ u⊥
τ

∥u⊥
τ ∥2
}tτ=1 in the row space of V since P⊥

u1:t
is

projecting to the row space orthogonal to u⊥τ for any τ < t.

Moreover, V is also independent of w−1 = v and the initialization w0. See Figure 14 for a more
intuitive explanation. Therefore, the conditional distribution of P⊥

u1:t
V w⊥

t /∥w⊥
t ∥2 is the same as

that of an (n− t)-dimensional Gaussian vectors. Hence, we are able to replace V by an independent
copy Vt. For the second equality, we can set zt = Vtw

⊥
t /∥w⊥

t ∥2, which is again a Gaussian vector
independent of all the histories. Similarly, let Bt be a realization of ( rw−1:0, z−1:t−1, rz1:t−1) or(

w−1:0,

{
P⊥
u1:τ

V
w⊥

τ

∥w⊥
τ ∥2

}t−1

τ=−1

,

{
P⊥
w−1:τ−1

V ⊤ u⊥τ
∥u⊥τ ∥2

}t−1

τ=1

)
we similarly have for P⊥

w−1:t−1
V ⊤u⊥t /∥u⊥t ∥2 that

P⊥
w−1:t−1

V ⊤ u⊥t
∥u⊥t ∥2

∣∣∣∣∣
{(

w−1:0,

{
P⊥
u1:τ

V
w⊥

τ

∥w⊥
τ ∥2

}t−1

τ=−1

,

{
P⊥
w−1:τ−1

V ⊤ u⊥τ
∥u⊥τ ∥2

}t−1

τ=1

)
= Bt

}
d
= P⊥

rw−1:t−1
rzt |
{
( rw−1:0, z−1:t−1, rz1:t−1) = Bt

}
. (E.9)

To this end, it can be concluded that

1. The initializations (w−1, w0) and ( rw−1, rw0) are the same.

2. By (E.8) and (E.9), we have the same conditional distributions for the updates of
(P⊥

u1:t
V w⊥

t /∥w⊥
t ∥2, P⊥

w−1:t−1
V ⊤u⊥t /∥u⊥t ∥2) and those of (P⊥

ru1:t
zt, P

⊥
rw−1:t−1

rzt), which
means the conditional distributions of (yt, wt) and (ryt, rwt) given the past are the same.

3. The updates of (bt, ut) and those of (rbt, rut) are also the same.

We hence conclude that the joint distribution for the two iterations are the same for any time t.
Consequently, we obtain that

{ rw−1 , rw0, (ryτ , rwτ , ruτ ,rbτ )
t
τ=1}

d
= {w−1 , w0, (yτ , wτ , uτ , bτ )

t
τ=1}.

This completes the proof.

Since the alternative dynamics in Theorem E.2 are distributionally equivalent to the original dynam-
ics, we work exclusively with the alternative formulation below. We emphasize the following key
point when running the alternative dynamics for T steps:

The randomness in the alternative dynamics comes from the initialization sw0, the feature of
interest v, and the random vectors z−1:T and rz1:T .

Since the system is rotation-invariant, without loss of generality, we fix the direction of the initial-
ization sw0 in the following analysis, and only consider the randomness over v, z−1:T , and rz1:T .

Figure 14: Illustration of the Gaus-
sian conditioning. After removing the
feature of interest v, the remaining
part of V are sliced into P⊥

u1:t
zt and

P⊥
w−1:t−1

rzt that are orthogonal to each
other.

Remark. In fact, the iteration in (E.6) is a reformulation
of (E.5) obtained by decomposing the random matrix V into
its projections along the row spaces u⊥1 , u

⊥
2 , . . . and column

spaces w⊥
1 , w

⊥
2 , . . ., and then replacing the corresponding

components by the following rules:

P⊥
u1:t

zt ← P⊥
ru1:t

V
rw⊥
t

∥ rw⊥
t ∥2

,

P⊥
w−1:t−1

rzt ← P⊥
rw−1:t−1

V ⊤ ru⊥t
∥ru⊥t ∥2

.
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For a detailed explanation, we refer interested readers to The-
orem E.3 and its following discussions. In essence, the terms
on the right-hand side combine to reconstruct the matrix V , as
illustrated in Figure 14. A crucial property is that these terms
are orthogonal in direction; within a Gaussian ensemble, such
orthogonality implies their mutual independence. This decou-
pling of randomness across iterations considerably simplifies
the subsequent analysis.

Rewriting the initial conditions under the alternative dy-
namics. Let us now specify the randomness in equation (E.5) by describing the distributions of
the vector v and the matrix V . In the absence of any conditioning on the initialization, v and V have
i.i.d. standard normal entries. However, the neuron selected for analysis is not arbitrary; it must
satisfy the initialization conditions detailed in Theorem E.1. We first restate these conditions in the
following more concise form:

⟨v, r

sw0⟩ ≥ (1− ε)
√

2 log(M/n)=: ζ0, ry1 = V r

sw0 ⪯
√
2(1 + ε) ·

√
2 logn · 1=: ζ1 · 1,

where a ⪯ b indicates that every element of a is no greater than the corresponding element of b.
In fact, these two conditions induce a correlation among v, V , and the initialization sw0. Under the
alternative dynamics in (E.6) and (E.7), we can reformulate these conditions without involving V as
follows:

InitCond-1: α−1,0 ∥v∥2 ≥ ζ0, InitCond-2: y1 = α−1,0z−1 + α0,0z0 ⪯ ζ1 · 1, (E.10)

where

ζ0 :=(1− ε)
√

2 log(M/n), ζ1 :=
√
2(1 + ε)

√
2 logn .

(E.11)

Here, we recall that α−1,0 = ⟨v, sw0⟩/∥v∥2 and α0,0 = ⟨w⊥
0 , sw0⟩/∥w⊥

0 ∥2.

Decoupling the randomness. In the following analysis, we can safely decouple the randomness
in v and w0 from the randomness in z−1:T and rz1:T by definition of the alternative dynamics. No-
tably, the second initial condition in (E.10) only couples z−1 and z0 if we treat α−1,0 and α0,0 as
deterministic quantities when conditioning on v and w0. In fact, if we condition on v and w0, the
second condition can be satisfied with probability at least 1− n−ε by Theorem E.1.

Rewriting the alignment recurrence under the alternative dynamics. Under the reformulation
(E.6), the alignment we are interested in is α−1,t = ⟨v, wt⟩/(∥v∥2∥wt∥2). Note that in the decom-
position of wt, only the terms in the direction of w⊥

−1 = w−1 = v contribute to the inner product
⟨v, wt⟩. Therefore, the alignment can be expressed as

α−1,t =
⟨z−1, ut⟩+ ∥v∥2 · θ⊤φ(Fyt + θ · v⊤ swt−1; bt) + η−1α−1,t−1

∥wt∥2
. (E.12)

This formula will be useful in the later proof.

E.4 ADDITIONAL PROOFS

Proof of Theorem E.3. The proof follows from a direct decomposition of the preactivation vector yt
and the unnormalized weight vector wt. By a direct decomposition of V sw⊥

t , we have

V sw⊥
t = P⊥

u1:t
V sw⊥

t + u⊥t ·
⟨u⊥t , V sw⊥

t ⟩
∥u⊥t ∥22

· 1(t ≥ 1) + Pu1:t−1
V sw⊥

t

(i)
= P⊥

u1:t
V sw⊥

t + u⊥t ·
⟨V ⊤u⊥t , sw⊥

t ⟩
∥u⊥t ∥22

· 1(t ≥ 1)

(ii)
= P⊥

u1:t
V sw⊥

t +
u⊥t
∥u⊥t ∥2

· ∥w
⊥
t ∥2

∥u⊥t ∥2
· ∥ sw⊥

t ∥2 · 1(t ≥ 1).
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Here, (i) follows from the fact that for any τ = 1, . . . , t− 1,

V ⊤uτ = wτ − vθ⊤φ(Fyτ + θ · v⊤ swτ−1; bτ )− η−1
swτ−1 ∈ span(w−1:τ ),

which is orthogonal to sw⊥
t . In (ii), we use the fact that

V ⊤u⊥t − wt = V ⊤ut − wt − V ⊤Pu1:t−1
ut

= −vθ⊤φ(Fyt + θ · v⊤ swt−1; bt)− η−1
swt−1 − V ⊤Pu1:t−1

ut ∈ span(w−1:t−1).

Therefore, ⟨V ⊤u⊥t , sw⊥
t ⟩ = ⟨wt, sw⊥

t ⟩ = ⟨w⊥
t , sw⊥

t ⟩ = ∥w⊥
t ∥2 · ∥ sw⊥

t ∥2.

Using the above result, we derive for the preactivation vector yt that

yt = V swt−1 =

t−1∑
τ=−1

⟨ sw⊥
τ , swt−1⟩
∥ sw⊥

τ ∥22
· V sw⊥

τ

=

t−1∑
τ=−1

ατ,t−1

∥ sw⊥
τ ∥2
·
(
P⊥
u1:τ

V sw⊥
τ +

u⊥τ
∥u⊥τ ∥2

· ∥w
⊥
τ ∥2

∥u⊥τ ∥2
· ∥ sw⊥

τ ∥2 · 1(τ ≥ 1)
)

=

t−1∑
τ=−1

ατ,t−1 · P⊥
u1:τ

V
w⊥

τ

∥w⊥
τ ∥

+

t−1∑
τ=1

ατ,t−1 ·
∥w⊥

τ ∥2
∥u⊥τ ∥2

· u⊥τ
∥u⊥τ ∥2

.

And also for the unnormalized weight vector wt, we have

wt − vθ⊤φ(Fyt + θ · v⊤ swt−1; bt)− η−1
swt−1

= P⊥
w−1:t−1

V ⊤ut +

t−1∑
τ=−1

sw⊥
τ

∥ sw⊥
τ ∥22
· ⟨V sw⊥

τ , ut⟩

= P⊥
w−1:t−1

V ⊤ u⊥t
∥u⊥t ∥

· ∥u⊥t ∥2 +
t−1∑

τ=−1

⟨P⊥
u1:τ

V
w⊥

τ

∥w⊥
τ ∥

, ut⟩ ·
sw⊥
τ

∥ sw⊥
τ ∥2

+

t−1∑
τ=1

⟨u⊥τ , ut⟩
∥u⊥τ ∥2

· ∥w
⊥
τ ∥2

∥u⊥τ ∥2
· sw⊥

τ

∥ sw⊥
τ ∥2

.

Therefore, we complete the proof of Theorem E.3.

Proof of Theorem E.4. Recall that

ut = E⊤φ(Eyt; bt) + F⊤φ(Fyt + θ · v⊤ swt−1; bt).

This implies that ut can be expressed as a function of yt only. This also holds for rut. For each
iteration (ut, wt) in (E.5), it holds by the explicit decomposition in Theorem E.3 that

ut ∈ σ
(
w−1:t−1, u1:t−1,

{
P⊥
u1:τ

V
w⊥

τ

∥w⊥
τ ∥2

}t−1

τ=−1

)
,

wt ∈ σ
(
w−1:t−1, u1:t,

{
P⊥
u1:τ

V
w⊥

τ

∥w⊥
τ ∥2

}t−1

τ=−1

, P⊥
w−1:t−1

V ⊤ u⊥t
∥u⊥t ∥2

)
, (E.13)

where σ(X) denotes the σ-algebra generated by the random variable X . For the Gaussian condi-
tioning iteration (rut, rwt) in (E.6) and (E.7), it also holds that

rut ∈ σ
(

rw−1:t−1, ru1:t−1, {P⊥
ru1:τ

zτ}t−1
τ=−1

)
, rwt ∈ σ

(
rw−1:t−1, ru1:t, {P⊥

ru1:τ
zτ}t−1

τ=−1, P
⊥
rw−1:t−1

rzt
)
.

Notably, for u1 (only depending on y1) we have

y1 = α−1,0 · V
w−1

∥w−1∥2
=
⟨w−1, sw0⟩
∥w−1∥2

· V w−1

∥w−1∥2
∈ σ
(
w−1:0, P

⊥
u1:−1

V
w⊥

−1

∥w⊥
−1∥2

)
by the definition that P⊥

u1:−1
is the identity mapping and w⊥

−1 = w−1. Similarly, w1 is also measur-
able by

w1 ∈ σ
(
w−1:0, P

⊥
u1:−1

V
w⊥

−1

∥w⊥
−1∥2

, P⊥
w−1:0

V ⊤ u⊥1
∥u⊥1 ∥2

)
.

This verifies the base case for t = 1. Now we can recursively apply the dependency results in (E.13)
for t = 2, 3, . . . and obtain the desired conclusion. This completes the proof of Theorem E.4.

37



1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

F CONCENTRATIONS RESULTS FOR THE SAE DYNAMICS

Notation. In the following proofs, we use the blue color box to highlight the definitions that are
used in the proofs for readers’ convenience, and use the olive color box to highlight different versions
of the conditions in (B.5) and (B.6) to inform the readers how the conditions evolve throughout the
proof. We use N1 to denote the number of rows in matrix E and N2 to denote the number of rows
in matrix F . In the statement of a lemma, we use c > 4, C > 0 to denote some universal constants
that may change from line to line. We redefine

ρ1 :=max
{
max
i∈[n]

∥H:,i∥0
N

, max
i̸=j

∑N
l=1 1(Hl,j ̸= 0)1(Hl,i = 0)∑N

l=1 1(Hl,i = 0)

}
,

ρ2 :=max
i̸=j

∑N
l=1 1(Hl,i ̸= 0)1(Hl,j ̸= 0)∑N

l=1 1(Hl,i ̸= 0)
.

(F.1)

Compared to the original definition in the main text, we add an additional term in the definition of
ρ1. We remark that this is not an issue as

max
i̸=j

∑N
l=1 1(Hl,j ̸= 0)1(Hl,i = 0)∑N

l=1 1(Hl,i = 0)
≤ max

i̸=j

∥H:,j∥0
N − ∥H:,i∥0

≤
maxj∈[n]∥H:,j∥0/N

1−maxi∈[n]∥H:,i∥0/N
.

Since we assume in the main theorem that maxi∈[n]∥H:,i∥0/N ≪ 1, we have

max
i̸=j

∑N
l=1 1(Hl,j ̸= 0)1(Hl,i = 0)∑N

l=1 1(Hl,i = 0)
≤ (1 + o(1)) ·max

i∈[n]

∥H:,i∥0
N

.

The two terms in the definition of ρ1 are only different up to a factor of 1 + o(1), and hence we can
safely stick to the new definition of ρ1 in the proof. Consequently, ρ1 ≥ maxi∈[n−1]∥E:,i∥0/N1,
ρ2 ≥ maxi∈[n−1]∥F:,i∥0/N2. In addition, N1 ≥ (1 − ρ1)N . By assuming ρ1 ≤ 1/2, we have
N1 ≥ N/2. We use notation z = x± y to indicate z ∈ [x− y, x+ y].

Initialization conditions. In the following analysis, we focus on a single neuron whose initializa-
tion satisfies the conditions in (E.10) for a given feature of interest, v. For clarity, we restate the
initialization conditions:

InitCond-1: α−1,0 ∥v∥2 ≥ ζ0, InitCond-2: y1 = α−1,0z−1 + α0,0z0 ⪯ ζ1 · 1,

where

ζ0 :=(1− ε)
√

2 log(M/n), ζ1 :=
√
2(1 + ε)

√
2 logn .

Once InitCond-1 is satisfied for fixed w0 and v, it remains to ensure that the Gaussian vectors z−1

and z0 satisfy InitCond-2. In the subsequent analysis, we sometimes relax InitCond-2 so as to
leverage the standard Gaussian properties of z−1 and z0. In fact, if an event E holds with probabiity
1 − p without enforcing InitCond-2, then the joint event that both InitCond-2 and E hold occurs
with probability at least 1− p− n−ε by a union bound. For this reason, unless otherwise specified,
we

Roadmap. In §F.1, we decompose the pre-activation yt into two parts: the Gaussian component
y⋆t , which aggregates independent Gaussian contributions and captures the nominal dynamics, and
the non-Gaussian component ∆yt, which accounts for deviations induced by cross-iteration cou-
pling that is typically non-Gaussian. Using this decomposition, in §F.2 we demonstrate that only
a small fraction of the training examples activate the neuron—a phenomenon we refer to as sparse
activation.
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F.1 ISOLATION OF GAUSSIAN COMPONENT

As is discussed in §E.3, the key step in our analysis is to isolate the Gaussian component from the
non-Gaussian component. In the following, we decompose yt, which is the alignments between the
weight and all features, into the Gaussian component that contains weighted sum of i.i.d. Gaussian
vectors, and a non-Gaussian part whose ℓ2-norm can be bounded by tracking the evolution of the
dynamics. Recall the definition of yt in (E.6), we use the fact that P⊥

u1:τ
zτ = zτ − Pu1:τ

zτ to
decompose yt as

yt =

t−1∑
τ=−1

ατ,t−1 · P⊥
u1:τ

zτ +

t−1∑
τ=1

ατ,t−1 ·
∥w⊥

τ ∥2
∥u⊥τ ∥2

· u⊥τ
∥u⊥τ ∥2

=

t−1∑
τ=−1

ατ,t−1 · zτ +
(t−1∑
τ=1

ατ,t−1 ·
∥w⊥

τ ∥2
∥u⊥τ ∥2

· u⊥τ
∥u⊥τ ∥2

−
t−1∑
τ=1

ατ,t−1 · Pu1:τ
zτ

)
.

We can thus define the Gaussian component y⋆t and the non-Gaussian component ∆yt as

y⋆t :=

t−1∑
τ=−1

ατ,t−1 · zτ , ∆yt :=

t−1∑
τ=1

ατ,t−1 ·
∥w⊥

τ ∥2
∥u⊥τ ∥2

· u⊥τ
∥u⊥τ ∥2

−
t−1∑
τ=1

ατ,t−1 · Pu1:τ
zτ . (F.2)

In the above, the Gaussian component y⋆t =
∑t−1

τ=−1 ατ,t−1zτ is obtained by summing independent
Gaussian vectors z−1, z0, . . . , zt−1 with weights ατ,t−1. Conditional on these coefficients, y⋆t is
simply a standard Gaussian vector independent of the learned directions w1:t−1 and u1:t−1. In
contrast, the non-Gaussian component ∆yt quantifies the deviation of the true feature pre-activation
yt from y⋆t due to cross-iteration coupling.

In the sequel, let us recall the form of ατ,t−1 in (E.12) and define βt−1 as

α−1,t =
⟨z−1, ut⟩+ ∥v∥2 · θ⊤φ(Fyt + θ · v⊤ swt−1; bt) + η−1α−1,t−1

∥wt∥2
,

βt−1 :=

√√√√t−1∑
τ=1

α2
τ,t−1 = ∥P⊥

w−1:0
swt−1∥2.

(F.3)

Here, α−1,t is the alignment between swt and the feature of interest v = w−1, and βt is the norm
of the projection of swt onto the subspace orthogonal to both sw−1 and sw0. Tracking α−1,t quanti-
fies how far the neuron has progressed from its initialization sw0 toward the feature direction sw−1.
Ideally, we want α−1,t → 1, indicating strong alignment with the feature while remaining con-
fined to the plane spanned by sw−1 and sw0. In contrast, βt measures the extent to which the neuron
drifts away from that plane due to the influence of irrelevant features. We can build an interesting
connection between the non-Gaussian component ∆yt and βt−1 as stated in the following lemma.

Lemma F.1 (Upper bound the non-Gaussian component ∆yt). Suppose T ≤
√
d and d ∈

(n1/c1 , nc1) for some universal constant c1 > 1. For all t = 1, . . . , T , it holds with probability
at least 1− n−c for some universal constants c, C > 0 that

∥∆yt∥22 ≤ Cd · β2
t−1.

Proof. See §H.1.1 for a detailed proof.

F.2 SPARSE ACTIVATION

Before we move on to studying the evolution of α−1,t and βt defined in (F.3), we first present con-
centration results for the neuron’s activation frequency. To leverage the benefits of sparse activation,
we analyze how the scheduled bias bt induces sparsity in the neuron.
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Concentration for ideal activation. We will first study the ideal case where ∆yt = 0, and then
move on to the real case in Theorem F.2 where we replace y⋆t with yt in Theorem F.3. For more
generality, we present a full version in Theorem H.4 and derive Theorem F.2 as a direct corollary. In
the following, recall that el is the l-th row of matrix E, which is a submatrix of H defined in (E.3).
We study the activation frequency of the neuron on the set of data that does not contain the feature
v (i.e., the rows contained in E).

Corollary F.2 (Concentration for ideal activation). Let el be the l-th row of matrix E. For κ0 as
the threshold defined in Definition B.3, we denote by sbt = bt + κ0. Let y⋆t =

∑t−1
τ=−1 ατ,t−1zτ

with zτ being the i.i.d. standard Gaussian vectors. It holds for all t ≤ T ≤ nc, αt−1 =
(α−1,t−1, . . . , αt−1,t−1)

⊤ ∈ St, bt ∈ R and any δ ∈ (exp(−n/4), 1) that with probability at
least 1− δ over the randomness of z−1:T , the following holds:

1

N1

N1∑
l=1

1(e⊤l y
⋆
t +sbt > 0) ≤ C ·

(
Φ(−sbt) + ρ1st log(n) + ρ1s log(δ

−1)
)
. (F.4)

Proof. This is a direct corollary of Theorem H.4.

Here, a neuron is considered active when its ideal pre-activation e⊤l y
⋆
t + bt exceeds the threshold

−κ0. In the idealized setting (i.e., as N1 → ∞, and y⋆t ∼ N (0, In−1)), the expected activation
frequency is exactly Φ(−sbt), making the Φ(−sbt) term tight. The additional terms in the bound
capture the empirical fluctuations in the activation frequency due to data coupling. In particular,
the parameter ρ1 quantifies the maximum fraction of data coupled through a single feature, thereby
governing the fluctuation term. A key point to note is that αt−1 ∈ St also depends on the randomness
of z−1:T , hence how to approximate y⋆t with random Gaussian vector is not straightforward. In the
proof, we decouple the dependence of y⋆t on αt−1 by proving a concentration result for all αt−1 that
form a covering net of St, and then take a union bound over the covering net of size nO(t). This
gives rise to the t logn factor in the bound when taking the logarithm of the covering number.

Efron-Stein inequality for handling data correlation. In proving the lemma, we use a refined
version of the Efron-Stein inequality (Boucheron et al., 2003) to overcome challenges caused by data
correlation. In our setting, two data points may be correlated if they share the same feature, which
violates the independence assumption required by classical concentration results such as Bernstein’s
inequality.

Traditional techniques based on the bounded-differences property—for example, McDiarmid’s in-
equality (McDiarmid et al., 1989)—would treat the left-hand side (LHS) of (F.4) as a function

f
(
y⋆t (1), . . . , y

⋆
t (n− 1)

)
of (n − 1) variables, where y⋆t (i) is the i-th coordinate of y⋆t . Since altering a single coordinate
of y⋆t has the same effect as modifying the projection of swt onto a single feature, and because
each feature influences at most a ρ1N1 fraction of the terms in the sum on the LHS, we obtain the
bounded-differences property

|f(y⋆t (1), . . . , y⋆t (i), . . . , y⋆t (n− 1))− f(y⋆t (1), . . . , y⋆t (i)′, . . . , y⋆t (n− 1))| ≤ ρ1.

Consequently, McDiarmid’s inequality would yield a fluctuation bound of order√√√√n−1∑
i=1

ρ21 ≈ ρ1
√
n,

which is clearly suboptimal. Unlike McDiarmid’s bounded-differences inequality, which requires
each individual input change to have a uniformly small impact on f , Efron-Stein only demands a
weaker bound on the variance incurred by altering one coordinate. We defer interested readers to
§H.2.1 for a detailed proof.
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Concentration for original activation. To fully characterize the behavior of the activation, we
also need to take into account the non-Gaussian component ∆y. This gives rise to the following
lemma.

Lemma F.3 (Activation with non-Gaussian component). Following the setup of Theorem F.2, sup-
pose sbt < −2. Then for all t ≤ T ≤ nc, αt−1 ∈ St and bt ∈ R, it holds with probability at least
1− n−c over the randomness of z−1:T that

1

N1

N1∑
l=1

1(e⊤l yt +
sbt > 0) ≤ C ·

(
Φ(−sbt) + ρ1st log(n) + ρ1|sbt|2∥∆yt∥22

)
.

Proof. See §H.2.2 for a detailed proof.

The fluctuation term in the upper bound now depends on both ρ1 and the ℓ2 norm of the non-
Gaussian ∆yt. This is because a larger ∥∆yt∥2 can shift the pre-activations further away from the
ideal Gaussian case, thereby in the worst case, increasing the activation frequency.

Concentration for α−1,t and βt. We next aim to characterize the evolution of the parameters
α−1,t and βt defined in (F.3). Note that in the formula of α−1,t

α−1,t−1 =
⟨z−1, ut⟩+ ∥v∥2 · θ⊤φ(Fyt + θ · v⊤ swt−1; bt) + η−1α−1,t−1

∥wt∥2
,

we can decompose the first term in the numerator as follows:

⟨z−1, ut⟩ = ⟨z−1, E
⊤φ(Eyt; bt)⟩+ ⟨z−1, F

⊤φ(Fyt + θ · v⊤ swt−1; bt)⟩

according to the defintion of ut in (E.5). Here, E and F are the submatrices of H defined in (E.3),
where E corresponds to the rows not containing the feature of interest v, and F corresponds to the
rows containing v. To this end, we just need to control

⟨zτ , E⊤φ(Eyt; bt)⟩, ⟨zτ , F⊤φ(Fyt + θ · v⊤ swt−1; bt)⟩, (F.5)

for general τ ∈ [−1 : T ] and then specialize to τ = −1. Note that the above two terms for general τ
will also be used in computing the norm of ∥wt∥2 later. Let us just consider a simplfied case where
zτ is independent of yt (which does not hold in general). To control the fluctuation of the above
terms, it is important to compute the second-order moments with respect to the randomness of zτ .
As a concrete example, for the first term, we have the second-order moment computed as

Ezτ∼N (0,In−1)

[
⟨zτ , E⊤φ(Eyt; bt)⟩2

]
= ∥E⊤φ(Eyt; bt)∥22.

The second-order moment of the second term can be computed similarly. Therefore, as a first step,
we will focus on the follwoing two terms:

∥E⊤φ(Eyt; bt)∥22, ∥F⊤φ(Fyt + θ · v⊤ swt−1; bt)∥22. (F.6)

In §F.3, we will first present concentration results for the second-order terms in (F.6) and then use
them to derive the concentration results for the two first-order terms in (F.5). In addition, we will
also derive the concentration result for the term θ⊤φ(Fyt + θ · v⊤ swt−1; bt) as in the numerator of
α−1,t−1.

F.3 SECOND ORDER CONCENTRATION

In this subsection, we present concentration results for the second-order terms with respect to the
Gaussian component y⋆t defined in (F.2):

∥E⊤φ(Ey⋆t ; bt)∥22 and ∥F⊤φ(Fy⋆t + θ · v⊤ swt−1; bt)∥22. (F.7)

We will bridge the gap between these two terms and the original terms in (F.5) by using the analysis
of the non-Gaussian component ∆yt in §F.5. For now, let us focus on the two terms in (F.7). We
now present our concentration result formally in the following lemma.
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Lemma F.4 (Second-order concentration for E-related term). Under Definition B.3, let sbt = bt +
κ0 < 0, and assume further that −sbt = Θ

(√
log n

)
and −sbt < ζ1, with ζ1 defined in (E.11) as

required by InitCond-2. Suppose ρ1 < 1 − 1/C1 for some universal constant C1 > 0. Then with
probability at least 1 − n−c over the randomness of standard Gaussian vectors z−1:T , it holds for
all t ≤ T with T ≤ nc that

1

N2
1

∥E⊤φ(Ey⋆t ; bt)∥22 · 1(E0) ≤ CL2 · ρ21st2(log n)2 · K2
t

+ CL2 · Φ(|sbt|) · pEl,l′

[
Φ
(
|sbt|

√
1− ⟨hl, hl′⟩
1 + ⟨hl, hl′⟩

)
⟨hl, hl′⟩

]
.

(F.8)

where pEl,l′ denotes the empirical average over l, l′ ∈ [N ], hl denotes the l-th row of H , L =
γ2 + |bt|γ1, and E0 is the event such that z−1 and z0 satisfy InitCond-2. Here we define Kt as

Kt :=

n |sbt|Φ( −sbt√
3
4 ℏ

2
4,⋆ +

1
4

)1/4

+

ρ2sn|sbt|Φ( −sbt√
2
3ℏ

2
3,⋆ +

1
3

)1/4

+

(
Φ
(
−

sbt + ℏ4,tζt√
1− ℏ24,t

)
+
(
ρ2s
)1/4) · (t log(n))1/4 + n1/4ρ2 s t log(n),

(F.9)

In the above definition, we let ℏq,⋆ and ℏq,t for any positive q > 1 and time t ≥ 1 be the smallest
real values in [0, 1] such that the following inequalities hold:

max
j∈[n]

1

|Dj |
∑
l∈Dj

Φ

(
−sbt√

q−1
q H2

l,j +
1
q

)
≤ Φ

(
−sbt√

q−1
q ℏ2q,⋆ + 1

q

)
, (F.10)

max
j∈[n]

1

|Dj |
∑
l∈Dj

Φ
(
−

sbt +Hl,jζt√
1−H2

l,j

)q
≤ Φ

(
−

sbt + ℏq,tζt√
1− ℏ2q,t

)q
. (F.11)

Here Dj = {l ∈ [N ] : hl,j ̸= 0} is the set of row indices in matrix H that has non-zero entries in
the j-th column, and ζt = ζ1 +1(t ≥ 2) ·C(βt−1 + |α−1,t−1|+ |α−1,0|)

√
t log(nt) with the value

ζ1 in InitCond-2 and βt−1 =
√∑t−1

τ=1 α
2
τ,t−1.

Proof. See §H.2.3 for a detailed proof.

Validity of the definition of ℏq,t and ℏq,⋆. The definitions of ℏq,⋆ and ℏq,1 are valid as the right-
hand sides (RHSs) of the above two inequalities are strictly increasing in terms of ℏq,⋆ and ℏq,1,
respectively, under the condition −sbt < ζ1.

• To see this for ℏq,⋆, we note that Φ(·) is a strictly decreasing function, while −sbt√
q−1
q H2

l,j+
1
q

is

also strictly decreasing in terms of Hl,j . Therefore, the composition of the two functions is
strictly increasing in terms of ℏq,⋆.

• To see this for ℏq,t, observe that ζt ≥ ζ1 > −c1 = −sbt, since the bias is fixed at bt = b in
the current algorithm. Moreover, the derivative of the right-hand side of the inequality in (F.11)
with respect to ℏq,t is

d

dx
Φ
(
−

sbt + xζ1√
1− x2

)q
= qΦ

(
−

sbt + xζ1√
1− x2

)q−1

· p
(
−

sbt + xζ1√
1− x2

)
· ζ1 − (−sbt)x

(1− x2)3/2
> 0. (F.12)

Therefore, the definitions of ℏq,⋆ and ℏq,t as the smallest real values satisfying the inequalities in
(F.10) and (F.11) are valid.
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Heuristic derivation for ∥E⊤φ(Ey⋆t ; bt)∥22. The first term involves the submatrix E. Before we
present the concentration result, let us derive heuristically what the concentration result should look
like. Let us denote by el the l-th row of matrix E. We can compute the expectation of the squared
norm as

1

N2
1

· E
[
∥E⊤φ(Ey⋆t ; bt)∥22

]
=

1

N2
1

N1∑
l,l′=1

E
[∣∣φ(e⊤l y⋆t ; bt) · φ(e⊤l′ y⋆t ; bt)∣∣] · ⟨el, el′⟩.

If we assume α:,t−1 are fixed, then y⋆t is just a standard Gaussian vector, and

(e⊤l y
⋆
t , e

⊤
l′ y

⋆
t ) ∼ N

([
0
0

]
,

[
1 ⟨el, el′⟩

⟨el, el′⟩ 1

])
.

This fact enables a direct upper bound on the expectation, as detailed in Theorem F.5.

Lemma F.5. Let sb = b + κ0 < 0. Suppose |φ(x; b)| ≤ (n ∨ d)−c0 + L(x + sb) · 1(x > −sb) for
some L > 0 and c0 > 0 under Definition B.3. For two independent x, z ∼ N (0, 1) and ι ∈ (0, 1),
it holds that

E[φ(x; b)φ(ιx+
√
1− ι2 · z; b)] ≤ CL(n ∨ d)−c0 + C(L2 + 1) · Φ(|sb|) · Φ

(
|sb|
√

1− ι
1 + ι

)
.

Proof. See §H.4.1 for a detailed proof.

By relaxing the rows el, el′ of E to the corresponding rows hl, hl′ of H , we derive the second term
in the concentration result (F.8). The first fluctuation term is obtained again via the Efron-Stein
inequality, which needs a careful analysis up to the 4-th moment. In particular, we also apply a
uniform bound over the sphere St for αt−1, which gives rise to the dependency on t in the definition
of Kt in (F.9).

We now turn to the second term in (F.7), which is ∥F⊤φ(Fy⋆t + θ · v⊤ swt−1; bt)∥22.

Lemma F.6 (Second-order concentration for F -related term). Under Definition B.3, suppose bt ≤
−κ0 and let L = γ2 + |bt|γ1. For all t ≤ T ≤ nc, it holds with probability at least 1 − n−c over
the randomness of standard Gaussian vectors z−1:T that

1

N2
2

∥F⊤φ(Fy⋆t + θ · v⊤ swt−1; bt)∥22 ≤ CL2ρ2 ·
(
θ2∥v∥22α2

−1,t−1 + ρ2n+ ρ2t logn
)
,

where θ2 = ∥θ∥22/N2.

Proof. See §H.2.4 for a detailed proof.

F.4 FIRST ORDER CONCENTRATION

In this subsection, we continue to present the concentration results on the first order terms specified
in (F.5). Let’s first consider the concentration for ⟨zτ , E⊤φ(Ey⋆t ; bt)⟩.

Heuristic derivation for ⟨zτ , E⊤φ(Ey⋆t ; bt)⟩. Let us recall that y⋆t =
∑t−1

τ=−1 ατ,t−1zτ , and we
can rewrite the term as

⟨zτ , E⊤φ(Ey⋆t ; bt)⟩ =
N1∑
l=1

e⊤l zτ · φ(e⊤l y⋆t ; bt)

for el being the l-th row of matrix E. Moreover, we have for any fixed αt−1 =
(α−1,t−1, . . . , αt−1,t−1)

⊤ ∈ St and by the fact that ∥el∥2 = 1 for all l ∈ [N1], we have

(e⊤l zτ , e
⊤
l y

⋆
t ) ∼ N

([
0
0

]
,

[
1 ατ,t−1

ατ,t−1 1

])
(F.13)
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where j ∈ [n − 1] is the entry index of the vectors. Hence, the term we are interested in should be
close to

N1∑
l=1

E
ζ,ξ

i.i.d.∼ N (0,1)

[(
ατ,t−1ζ +

√
1− α2

τ,t−1 · ξ
)
· φ(ζ; bt)

]
= N1 · ατ,t−1 · pφ1(bt),

where we define

pφ1(b) = Eu∼N (0,1)[φ(u; b)u].

Building on this intuition, the following lemma provides the concentration result in more detail.

Lemma F.7 (First-order concentration for E-related term). Under the condition of Theorem F.4, let
L = γ2+ |bt|γ1. For all t ≤ T ≤ nc, it holds with probability at least 1−n−c over the randomness
of standard Gaussian vectors z−1:T that∣∣∣ 1

N1
⟨zτ , E⊤φ(Ey⋆t ; bt)⟩ − ατ,t−1 · pφ1(bt)

∣∣∣
≤ CLατ,t−1t log(n) ·

(√
sρ1Φ(|sbt|)t log(n) + sρ1t log(n)

)
+

C

N1

√
1− α2

τ,t−1 ·
√
∥E⊤φ(Ey⋆t ; bt)∥22 · t log(n).

Proof. See §H.2.5 for a detailed proof.

In the above lemma, we bound the deviation of the first-order term ⟨zτ , E⊤φ(Ey⋆t ; bt)⟩ from its
expectation ατ,t−1 · pφ1(bt) by some ρ1 and Φ(|sbt|)-dependent fluctuation terms. The dependence on
Φ(|sbt) is consistent with the intuition that sparser activation which avoids unnecessary activations
on other features except the one of interest, often leads to less fluctuation. The following lemma
provides upper and lower bound for pφ1(bt).

Lemma F.8 (Upper and lower bounds for pφ1(bt)). Suppose Definition B.3 holds and let sbt = bt +
κ0 < 0, L = γ2 + |bt|γ1. If |sbt| = ω(1), and κ0|sbt| = O(1), then

C0

4
· Φ(|sbt|) ≤ pφ1(bt) ≤ 2 · C0LΦ(|sbt|).

Proof. See §H.4.2 for a detailed proof.

The message from Theorem F.8 is quite straightforward: the expectation term pφ1(bt) is on the same
order as the activation sparsity level Φ(|sbt|).

Heuristic derivation for ⟨zτ , F⊤φ(Fy⋆t + θ · v⊤ swt−1; bt)⟩. Similar to the previous case, we still
use the approximation in (F.13) except that this time each row fl of F has norm

√
1− θ2l , and have

(f⊤l zτ , f
⊤
l y

⋆
t ) ∼ N

([
0
0

]
, (1− θ2l ) ·

[
1 ατ,t−1

ατ,t−1 1

])
.

This leads to the following approximation:

⟨zτ , F⊤φ(Fy⋆t + θ · v⊤ swt−1; bt)⟩ ≈
N2∑
l=1

ατ,t−1

√
1− θ2l · Ex∼N (0,1)

[
xφ
(√

1− θ2l x+ θlv
⊤

swt−1; bt
)]
.

We now present the formal concentration result for ⟨zτ , F⊤φ(Fy⋆t +θ·v⊤ swt−1; bt)⟩ in the following
lemma.
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Lemma F.9 (First-order concentration for F -related term). Under Definition B.3, suppose sbt =
bt + κ0 ≤ 0 and let L = γ2 + |bt|γ1. For all τ < t ≤ T with T ≤ nc, it holds with probability at
least 1− n−c over the randomness of standard Gaussian vectors z−1:T that

1

N2

∣∣∣⟨zτ , F⊤φ(Fy⋆t + θ · v⊤ swt−1; bt)⟩ −
N2∑
l=1

ατ,t−1

√
1− θ2l · Ex∼N (0,1)

[
xφ
(√

1− θ2l x+ θlv
⊤

swt−1; bt
)]∣∣∣

≤ CLατ,t−1 · (
√
t log(n) + ∥v∥2α−1,t−1) ·

√
ρ2s · (t log(n))3/2

+
C

N2

√
1− α2

τ,t−1 ·
√
∥F⊤φ(Fy + θ · v⊤ swt−1; bt)∥22 · t log(n).

Proof. See §H.2.6 for a detailed proof.

Heuristic derivation for θ⊤φ(Fyt + θ · v⊤ swt−1; bt). The last term we need to control is
θ⊤φ(Fy⋆t + θ · v⊤ swt−1; bt). Using the Gaussian approximation f⊤l y

⋆
t ∼ N (0, 1 − θ2l ) as in the

previous case, we have

θ⊤φ(Fy⋆t + θ · v⊤ swt−1; bt) ≈
N2∑
l=1

θl · Ex∼N (0,1)

[
φ(
√
1− θ2l x+ θlv

⊤
swt−1; bt)

]
.

For our convenience, let us define

ψt :=

√
d

N

N2∑
l=1

Ex∼N (0,1)

[
θl · φ(

√
1− θ2l · x+ θl · v⊤ swt−1; bt)

]
, (F.14)

and it follows that θ⊤φ(Fy⋆t + θ · v⊤ swt−1; bt) ≈ N · ψt/
√
d. Lastly, we present the concentration

for θ⊤φ(Fy⋆t + θ · v⊤ swt−1; bt).

Lemma F.10 (First-order concentration for signal term). Under Definition B.3, suppose sbt = bt +
κ0 ≤ 0 and let L = γ2 + |bt|γ1. For all t ≤ T ≤ nc, it holds with probability at least 1− n−c over
the randomness of standard Gaussian vectors z−1:T that∣∣∣ 1

N2
θ⊤φ(Fy⋆t + θ · v⊤ swt−1; bt)−

ψtN√
dN2

∣∣∣ ≤ CL(√t log(n) + ∥v∥2α−1,t−1

)
·
√
ρ2sθ2 · t log(n).

Proof. See §H.2.7 for a detailed proof.

Lastly, we provide a useful bound for the term ψt defined in (F.14) in the following lemma, which
is related to the strength of the weight vector θ for the feature of interest. To quantify the strength,
we make the following definition

Qt :=
1

N2

N2∑
l=1

1
(
θl >

−bt√
dα−1,t−1

)
, θ2 :=

∥θ∥22
N2

. (F.15)

Lemma F.11 (Bounds for the signal term). Under Definition B.3, it holds for ψt defined in Theo-
rem F.10 that

C−1θ2Qt ·N2dα−1,t−1 ≤ Nψt ≤ CLθ2 ·N2dα−1,t−1.

Proof. See §H.4.3 for a detailed proof.
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F.5 NON-GAUSSIAN ERROR PROPOGATION

In the following, let us define the following error terms

∆Et = E⊤φ(Eyt; bt)− E⊤φ(Ey⋆t ; bt),

∆Ft = F⊤φ(Fyt + θ · v⊤ swt−1; bt)− F⊤φ(Fy⋆t + θ · v⊤ swt−1; bt),

∆φF,t = φ(Fyt + θ · v⊤ swt−1; bt)− φ(Fy⋆t + θ · v⊤ swt−1; bt).

The last piece of the puzzle is to control the error propagation in the dynamics due to the non-
Gaussian component ∆yt in the pre-activation. Let us recall the error terms

∆Et = E⊤φ(Eyt; bt)− E⊤φ(Ey⋆t ; bt)

∆Ft = F⊤φ(Fyt + θ · v⊤ swt−1; bt)− F⊤φ(Fy⋆t + θ · v⊤ swt−1; bt).

We are interested in how the error ∆yt propagates through the nonlinear function φ in the update.
Lemma F.12 (Error propogation for ∆Et). Under Definition B.3 on the activation function, let
sbt = bt + κ0, L = γ2 + |bt|γ1 and suppose sbt < −2. For all t ≤ T ≤ nc, it holds with probability
at least 1− n−c over the randomness of standard Gaussian vectors z−1:T that

∥∆Et∥1 ≤ CLN1 ·
((√

sρ1Φ(−sbt) + sρ1
√
t logn

)
· ∥∆yt∥2 +

√
sρ1|sbt| · ∥∆yt∥22

)
+ CN1

√
s(2 + |bt|) · (n ∨ d)−c0 ,

and the ℓ2 norm of ∆Et are bounded as ∥∆Et∥2 ≤ (γ2 + |bt|γ1) · ρ1N1∥∆yt∥2.

Proof. See §H.3.1 for a detailed proof.

In the above lemma, we incorporate the sparsity in the activation to obtain a more refined bound for
∥∆Et∥1. Next, we also present the error bound for ∆Ft.
Lemma F.13 (Error propogation for ∆Ft). Define ∆φF,t = φ(Fyt + θ · v⊤ swt−1; bt) − φ(Fy⋆t +
θ · v⊤ swt−1; bt). The following bounds hold:

1. ∥∆Ft∥1 ≤
√
sN2L · ∥∆yt∥2.

2. ∥∆Ft∥2 ≤ ρ2N2L · ∥∆yt∥2.

3. ∥∆φF,t∥2 ≤
√
ρ2N2L · ∥∆yt∥2.

Proof. See §H.3.2 for a detailed proof.

G SAE DYNAMICS ANALYSIS: PROOF OF THEOREM B.2

In the sequel, we will first state a more general version of Theorem B.2, accompanied by the full
details on the related definitions and assumptions that are mentioned in the main text. Then we will
present the proof of the theorem.

G.1 A GENERAL VERSION OF THE THEOREM

In the follwoing, we first state the definition of the concentration coefficient h⋆ and a general version
of the main theorem. Then, we present the rigorous definition of the ReLU-like activation function.

Details on concentration parameters h⋆. To measure the magnitude of coefficients associated
with each feature, we recall in the definition of the cut-off level for feature i in (B.3) as

hi := max
{
h ≤ 1 :

1

|Di|
∑

l∈Di

1{Hl,i ≥ h} ≥ polylog(n)−1
}
.

To measure the concentration level of the global coefficients across all features, we define the con-
centration coefficient h⋆ as follows. We first recall the definitions of ℏq,⋆ and ℏq,t from Theorem F.4
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(with t = 1 for any q > 1). In particular, ℏq,⋆ and ℏq,1 are defined as the smallest numbers satisfying
the following inequalities:

max
j∈[n]

1

|Dj |
∑
l∈Dj

Φ

(
−sbt√

q−1
q H2

l,j +
1
q

)
≤ Φ

(
−sbt√

q−1
q ℏ2q,⋆ + 1

q

)
,

max
j∈[n]

1

|Dj |
∑
l∈Dj

Φ
(
−

sbt +Hl,jζ1√
1−H2

l,j

)q
≤ Φ

(
−

sbt + ℏq,1ζ1√
1− ℏ2q,1

)q
.

Here, Dj = {l ∈ [N ] : Hl,j ̸= 0} is the set of row indices in matrix H that has non-zero entries in
the j-th column, and ζ1 = 2(1 + ε)

√
log n that is formally defined in (E.11). Here, Φ(·) is the tail

probability function of the standard Gaussian distribution, i.e., Φ(x) =
∫∞
x
e−u2/2/

√
2π · du. The

definitions of ℏq,⋆ and ℏq,1 are valid as the right-hand sides (RHSs) of the above two inequalities are
strictly increasing in terms of ℏq,⋆ and ℏq,1, respectively. We defer readers to the discussion under
Theorem F.4. We define the concentration coefficient for the weight matrix H , denoted by h⋆, as
the smallest number such that

max{ℏ24,⋆, ℏ23,⋆, ℏ24,1} ≤ h⋆,
n∑

j=1

1

|Dj |2
∑

l,l′∈Dj

Φ

(
|sb|

√
1−Hl,jHl′,j

1 +Hl,jHl′,j

)
≤ nΦ

(
|sb|

√
1− h2⋆
1 + h2⋆

)
,

(G.1)

In fact, the RHS of the last inequality in (G.1) is also strictly increasing in terms of h⋆, and hence the
definition is valid. In the extreme case where H does not have any diversity in its nonzero entries,
we have the following simple relationship between s⋆, si and s:

Proposition G.1 (Concentrated coefficient H). If Hlj ∈ {0, 1/
√
s} for all l ∈ [N ] and j ∈ [n],

then h⋆ = hi = 1/
√
s.

In this extreme case, every row of H has exactly s non-zero entries, and the non-zero entries are all
equal to 1/

√
s. In the following, let us define θ2i = ∥θi∥22/N2 and pQi(x) = |Di|−1

∑
l∈Di

1(Hl,i ≥
x) for x ∈ [0, 1]. The following proposition relates si and s⋆ to the sparsity s through inequalities
that must be satisfied.

Proposition G.2 (General coefficient). Recall the definitions of hi in (B.3) and h⋆ in (G.1). Suppose
the bias b < −

√
3, then for any feature i ∈ [n] satisfying the conditions in (B.5) and (B.6) and that

θ2i >
pQi(hi), we have the following inequalities:

h⋆ ≥ 1/
√
s, hi ≥

√
θ2i − pQi(hi).

Proof. See §I.1 for a detailed proof.

General version of Theorem B.2. In the following, we will let s⋆ = 1/h2⋆. To ensure consistency
in the notation, we will also define si = 1/h2i for hi defined in (B.3). We give a more general
version of Theorem B.2 in the following theorem, which will be formally proved in the remaining
part of this section.

Theorem G.3. For feature i ∈ [n], let us take some small constant ε ∈ (0, 1) and define Q(i) as

Q(i) = pQ(i)

(
−b/
√
log n

(1− ε)
√
2(lognM − 1)

)
.

Suppose

log η

log n
≳
b2/2− logN

log n
.

For any feature i ∈ [i], consider the following joint conditions for ρ2, d, Q(i) and bias b < 0 with
respect to constant parameter ς ∈ (0, 1):
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Individual Feature Occurrence:
∥H:,i∥0
ρ1N

≥ polylog(n)−1,

Limited Feature Co-ocurrence: logn(ρ
−1
2 ) ≳ max

{
−4 lognQ(i),

1

2
− lognQ

(i)
}
,

Bias Range: 1 ≳
b2

2 logn
≳ max

{1
2
+
h2⋆
2
− (1 + h2⋆) lognQ

(i),
1

4
+
h2⋆
4
− (3h2⋆ + 1) lognQ

(i),(√
2h⋆(1 + ε) +

√
−(1− h2⋆) lognQ1

)2
, 1− (1− ς) logn d− lognQ

(i)
}
.

Here x ≳ y means x ≥ y+O(log log(n)/ log(n)). Then with probability at least 1−n−4ε over the
randomness of the features V , for any feature i such that there exists some constant ςi satisfying the
above conditions, there exists at least one unique neuronmi and after at most Ti = max{(2ςi)−1, 1}
steps of training, we have ⟨wTi

mi
, vi⟩/∥vi∥2 ≥ 1− o(1).

Relationship between Theorem B.2 and Theorem G.3. The main difference between Theo-
rem B.2 and Theorem G.3 is that the latter allows Q(i) to have a larger range of values, while
the former requires Q(i) = pQ(i)(hi) to be strictly larger than polylog(n)−1. A direct consequence
of this restriction in Theorem B.2 is that the range ofM is smaller compared to that in Theorem G.3.
However, the conditions in Theorem G.3 have Q(i) and ρ2, b coupled together, which makes it diffi-
cult to gain a clear understanding, while in Theorem B.2, we decouple the conditions by enforcing
the range of Q(i). Specifically,

1. The condition Q(i) ≥ polylog(n)−1 is equivalent to

−b
(1− ε)

√
2(lognM − 1)

≤ hi

by recalling the definition of hi. This gives the range of M as in (B.4) if we require all the
features to be learned simultaneously. In fact, if the condition is satisfied for only a subset
of features, our theorem still holds on that subset of features.

2. The individual feature occurrence condition is the same in both theorems, and the limited
feature co-occurrence condition in Theorem G.3 will reduce to ρ2 ≪ n−1/2−o(1), which is
already implied by the data condition in Definition B.1.

3. The bias range condition in Theorem G.3 will reduce to the version in Theorem B.2 by
removing the terms that involve Q(i) as log log(n)/ log(n) gap is already enforced by the
≳ notation.

Moreover, we assume that s ≥ 3 as mandated in Theorem B.2. Since s⋆ ≤ s by Theorem G.2, if
s⋆ ≤ s ≤ 2 the following inequality

1 ≳
b2

2 logn
≳

1

s⋆

(√
2(1 + ε) +

√
−(s⋆ − 1) lognQ

(i)
)2

cannot hold, because the right-hand side would exceed 1.

Roadmap for the proof of Theorem G.3. The remaining part of this section is organized as
follows:

• Concentration simplification: In §G.2, we will combine the concentration results derived in
§F to derive explicitly the simplified concentration results for the atomic terms in (F.3) for the
evolution of α−1,t and βt.

• Conditions for strong alignment: In §G.3, we formulate a set of conditions Cond.(i)
to Cond.(iii), Cond.(I) and Cond.(II) that will yield a simple two-state recursion. Building
upon these conditions, we further identify Cond.(iv) to Cond.(vi) that will guarantee a strong
alignment α−1,T = 1− o(1) with only T = O(1) steps of training.

• Conditions simplification: In §G.4, we further simplified the series of conditions into a more
concise form as in (G.12), which yields the full list of conditions in Theorem G.3.
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Notation. Following the convention in §F, we let sbt = bt + κ0 where κ0 = O((log n)−1/2) is
defined in Definition B.3. Recall the definition ζ1 = 2(1 + ε)

√
log n and ζ0 = (1 − ε)

√
2 logn in

(E.11) for some small constant ε ∈ (0, 1). We let C be a universal constant that may vary from line
to line.

G.2 CONCENTRATION RESULTS COMBINED

We now combine the concentration results for the second-order terms in Theorem F.4 and Theo-
rem F.6 under the assumption that t log n≪ n. In particular, by taking the square root of the upper
bounds in these lemmas and noting that ∥v∥22 = O(d) holds with probability at least 1 − n−c (see
Theorem J.1), we can express the combined square-root upper bound as

ξt =
√
s t log nKt + ρ−1

1

√√√√Φ(|sbt|) · pEl,l′

[
Φ
(
|sbt|

√
1− ⟨hl, hl′⟩
1 + ⟨hl, hl′⟩

)
⟨hl, hl′⟩

]
+
√
ρ2d |α−1,t−1|+ ρ2

√
n .

We formally state the combination of the above two lemmas in the following corollary.
Corollary G.4 (Second-order concentration combined). Then under the conditions t log n ≪ n,
−sbt = Θ(

√
log n) < ζ1, ρ1 ≪ 1, it holds for all t ≤ T ≤ nc with probability at least 1− n−c over

the randomness of standard Gaussian vectors z−1:T and v that√
∥E⊤φ(Ey⋆t ; bt)∥22 + ∥F⊤φ(Fyt + θ · v⊤ swt−1; bt)∥22 ≤ CLNρ1ξt.

Here, the constant C hides some factors from using the inequality
√
a +
√
b ≤

√
2(a+ b). We

refrain from a detailed proof here. With the second order concentration results in Theorem G.4,
we can now derive the first-order concentration results for the terms ⟨zτ , ut⟩ based on Theorem F.7
and Theorem F.8. To further simplify the concentration bound, we impose the additional condition
Φ(|sbt|) ≫ Ls ρ1 (t log(n))

3, which in particular holds if Φ(|sbt|) ≫ n−1 polylog(n). This require-
ment is reasonable because it ensures that the neuron is not activated too rarely compared to the
average occurrence frequency (s/n) of the features.

Lemma G.5 (First-order concentration combined). If Φ(|sbt|) ≫ Lsρ1(t log(n))
3, −sbt =

Θ(
√
log n) < ζ1, κ0|sbt| = O(1), for all t ≤ T ≤ nc, it holds with probability at least 1− n−c over

the randomness of standard Gaussian vectors z−1:T that

⟨zτ , ut⟩ = Nατ,t−1 pφ1(bt) · (1± o(1))± CNLρ1
√
ρ2s(t logn)

3/2 · d |ατ,t−1α−1,t−1|

± CNρ1L
√
t logn · ξt ± CLN

√
log n ·

(√
sρ1dΦ(|sbt|) +

√
sρ1|sbt|d βt−1

)
· βt−1,

where ξt is defined in Theorem G.4.

Proof. See §I.2.1 for a detailed proof.

In order to derive the recursion for α−1,t in (F.3), we need to control the numerator

α−1,t∥wt∥2 =
⟨v, wt⟩
∥v∥2

= ⟨z−1, ut⟩+ ∥v∥2 · θ⊤φ(Fyt + θ · v⊤ swt−1; bt) + η−1α−1,t−1.

Using Theorem G.5 and the concentration for the second term in Theorem F.10, we derive the
following lemma for ⟨v, wt⟩/∥v∥2.

Lemma G.6 (Concentration for numerator in α-recursion). Suppose ρ1d(st logn)−1 ≫ Φ(|sbt|)≫
Lsρ1(t log(n))

3, −sbt = Θ(
√
log n) < ζ1, κ0|sbt| = O(1),

√
ts logn|sbt|βt−1 ≪ 1, and√

dα−1,t−1 ≫ 1. Furthermore, assume that

N2

N
C0θ2Qt ≫ max

{
Lρ1
√
ρ2s(t logn)

3/2, Ld−1Φ(|sbt|), L
√
t lognρ1

ξt
dα−1,t−1

, Lρ1
βt−1

α−1,t−1

}
.
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If η−1 ≪ N2dC0θ2Qt Then it holds with probability at least 1 − n−c over the randomness of
standard Gaussian vectors z−1:T and v that

⟨v, wt⟩
∥v∥2

= (1± o(1))Nψt.

Proof. See §I.2.2 for a detailed proof.

Now that we have characterized the “numerator” for α-recursion. It remains to control the “denu-
merator” ∥wt∥2. In what follows, we will decompose the norm ∥wt∥2 into two parts: the projection
onto the subspace spanned by w−1:0 and the projection onto the orthogonal compliment of this sub-
space. For P⊥

w−1:0
wt being the projection onto the orthogonal complement of the subspace spanned

by w−1:0, we have the following bound.
Lemma G.7. Suppose ρ1d(st logn)−1 ≫ Φ(|sbt|) ≫ Lsρ1(t log(n))

3, −sbt = Θ(
√
log n) < ζ1,

κ0|sbt| = O(1),
√
ts logn|sbt|βt−1 ≪ 1,

√
dα−1,t−1 ≫ 1,

√
ρ2s(t logn)

3/2 ≪ 1, and η−1 ≪
NΦ(|sbt|). Then, for all t ≤ T ≤

√
d, it holds with probability at least 1−n−c over the randomness

of standard Gaussian vectors z−1:T and v that

∥P⊥
w−1:0

wt∥2 ≤ CNLρ1
√
d
(
ξt +

√
dβt−1

)
.

Proof. See §I.2.3 for a detailed proof.

For Pw−1:0
wt being the projection onto the subspace spanned by w−1:0, we have the following

bound.
Lemma G.8. Suppose ρ1d(st logn)−1 ≫ Φ(|sbt|) ≫ Lsρ1(t log(n))

3, −sbt = Θ(
√
log n) < ζ1,

κ0|sbt| = O(1),
√
ts logn|sbt|βt−1 ≪ 1, and

√
dα−1,t−1 ≫ 1. Furthermore, assume for some

constant C0 > 0 that
N2

N
C0θ2Qt ≫ max

{
Lρ1
√
ρ2s(t logn)

3/2, Ld−1Φ(|sbt|), L
√
t lognρ1

ξt
dα−1,t−1

, Lρ1
βt−1

α−1,t−1

}
.

If η−1 ≪ N2dC0θ2Qt∧NΦ(|sbt|), then it holds with probability at least 1−n−c over the randomness
of standard Gaussian vectors z−1:T and v that∥∥Pw−1:0wt

∥∥
2
= (1± o(1)) ·

√
(Nψt)2 +

(
Nα0,t−1 pφ1(bt)

)2
.

Proof. See §I.2.4 for a detailed proof.

Combining the results from Theorems G.7 and G.8, we obtain the upper bound for ∥wt∥2.
Lemma G.9. Suppose ρ1d(st logn)−1 ≫ Φ(|sbt|)≫ Lsρ1(t log(n))

3,−sbt = Θ(
√
log n), κ0|sbt| =

O(1),
√
ts logn|sbt|βt−1 ≪ 1,

√
dα−1,t−1 ≫ 1 and

√
ρ2s(t logn)

3/2 ≪ 1. Furthermore, assume
for some constant C0 > 0 that
N2

N
C0θ2Qt ≫ max

{
Lρ1
√
ρ2s(t logn)

3/2, Ld−1Φ(|sbt|), L
√
t lognρ1

ξt
dα−1,t−1

, Lρ1
βt−1

α−1,t−1

}
.

If η−1 ≪ N2dC0θ2Qt∧NΦ(|sbt|), then it holds for all t ≤ T ≤
√
d with probability at least 1−n−c

over the randomness of standard Gaussian vectors z−1:T and v that

∥wt∥2 ≤ (1± o(1)) ·
√
(Nψt)2 +

(
N pφ1(bt)

)2
+ CNLρ1

√
dξt.

Proof of Theorem G.9. By the triangle inequality, it holds that

∥wt∥2 ≤ ∥Pw−1:0wt∥2 + ∥P⊥
w−1:0

wt∥2

≤ (1 + o(1))

√
(Nψt)2 +

(
Nα0,t−1 pφ1(bt)

)2
+ CNLρ1

√
d
(
ξt +

√
dβt−1

)
.

By condition N2

N C0θ2Qt ≫ Lρ1
βt−1

α−1,t−1
and the lower bound Nψt ≥ Cθ2QtN2dα−1,t−1 shown in

Theorem F.11, we have Nψt ≫ CNLρ1dβt−1 satisfied and can be absorbed into the upper bound
of ∥Pw−1:0wt∥2. Hence, we conclude the proof.
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When we derive the above lemmas step by step, we collect all the conditions used in the final
Theorem G.9. In the following proof, we will be focusing on the conditions listed in the statement
of this lemma.

G.3 A TWO-STATE ALIGNMENT RECURSION

From now on, we adhere to the fact that the bias remains fixed throughout the dynamics. Thus, we
drop the time index in bt (writing it simply as b) and define sb = b + κ0. To further simplify the
conditions in the previous section, we have the following lemma.
Lemma G.10. Consider fixing the bias to be b < 0 and sb = b + κ0 < 0. Suppose InitCond-1 and
InitCond-2 hold. With the following conditions at initialization:

(i) −sb = Θ(
√
log n) < ζ1, κ0|sb| = O(1),

√
ρ2s(T log n)3/2 ≪ 1, η−1 ≪ N2dC0θ2Q1 ∧

NΦ(|sb|).

(ii) ρ1d(sT log n)−1 ≫ Φ(|sb|)≫ Lsρ1(T log(n))3.

(iii) N2

N C0θ2Q1 ≫ max
{
Lρ1
√
ρ2s(T log n)3/2, Ld−1Φ(|sb|), L

√
T log nρ1 · ξ1

dα−1,0

}
.

If for some time step t ≤ T ≤
√
d we have

(I) α−1,t−1 ≥ t2α−1,0,
√
Ts log n|sb|βt−1 ≪ 1,

(II) N2

N C0θ2Qt ≫ Lρ1
βt−1

α−1,t−1
.

Let us define

λ0 =
CLρ1

C0θ2 ·N2/N
, λt =

λ0
Qt
, rξt =

1√
d

( ξ1
α−1,0

+ C
√
st2(log n)3/2 · 1(t ≥ 2)

)
for some sufficiently large constant C > 0. Under the above conditions, we have the following
conclusions:

(1). All the conditions in Theorem G.9 hold for t ≤ T ;

(2). Then with probability at least 1−n−c over the randomness of standard Gaussian vectors z−1:T

and v, we have the following two-state alignment recursion:

Two-State Alignment Recursion

βt
α−1,t

≤ λt ·
(

rξt +
βt−1

α−1,t−1

)
,

1

α−1,t
≤ (1 + o(1)) + λt ·

(Φ(|sb|)
ρ1d

· 1

α−1,t−1
+ rξt

)
.

Proof. See §I.3.1 for a detailed proof.

From the above lemma, we can obtain the following observations:

• The ratio λtΦ(|sb|)/ρ1d controls the growth of the alignment α−1,t. In order for the align-
ment to grow faster, we need a smaller activation frequency Φ(|sb|), i.e., a larger bias |sb| in
the absolute value.

• The term λt controls the growth of the ratio βt/α−1,t. By definition, we know that λt ≥ 1.
• The maximum alignment achievable is 1− o(1).

Therefore, the best we can do is to set λt as close to 1 as possible while exploiting a small ratio
Φ(|sb|)/ρ1d to ensure that the alignment α−1,t goes to 1 before the ratio βt/α−1,t blows up. Since
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β0 = 0, we have β1/α−1,1 = λ1 · rξ1. This means we also need a small initial value rξ1 to avoid a
large ratio β1/α−1,1 at the beginning. In the sequel, we quantitatively analyze the evolution of the
above recursions. Before we proceed, by definition Qt = 1

N2

∑N2

l=1 1
(
θl >

−b√
dα−1,t−1

)
, we note

that Qt is nondecreasing in α−1,t−1. Therefore, we have the following fact:
Fact G.11. If α−1,t−1 ≥ α−1,1, then Qt ≥ Q2 and λt ≤ λ2.

Expanding the recursions. Let us define T0 + 1 as the minimum of t such that either of the
following conditions fails:

T0-Cond.(1). Cond.(I) or Cond.(II);
T0-Cond.(2). α−1,t−1 ≥ α−1,1;
T0-Cond.(3). t < log(n).

In other word, T0 is the stopping time up to which all the conditions above hold. We have λt ≤ λ2
by Theorem G.11 and the definition λt = λ0/Qt. To obtain a simple recursion for α−1,t, we take

C1 =
(
1 + o(1) +

λ2ξ1√
dα−1,0

+
Cλ2
√
sT 2

0 (log n)
3/2

√
d

)
· 1

1− λ2Φ(|sb|)/ρ1d
. (G.2)

Here, we take the o(1) term above to be the maximum of all the o(1) terms in the recursion for α−1,t

for any t ≤ T0. For 2 ≤ t ≤ T0, we have from substracting C1 from both sides of the recursion for
α−1,t that

1

α−1,t
− C1 ≤ (1 + o(1)) + λt ·

(Φ(|sb|)
ρ1d

· 1

α−1,t−1
+

1√
d

( ξ1
α−1,0

+ C
√
st2(log n)3/2 · 1(t ≥ 2)

))
−
(
1 + o(1) +

λ2ξ1√
dα−1,0

+
Cλ2
√
sT 2

0 (log n)
3/2

√
d

)
− C1λ2Φ(|sb|)

ρ1d︸ ︷︷ ︸
−C1

≤ λ2Φ(|sb|)
ρ1d

·
( 1

α−1,t−1
− C1

)
, ∀ 2 ≤ t ≤ T0. (G.3)

Using the fact that
1

α−1,1
− C1 ≤ 1 + o(1) +

(λ1Φ(|sb|)
ρ1d

+
λ1ξ1√
d

)
· 1

α−1,0
− C1

≤
(λ1Φ(|sb|)

ρ1d
+
λ1ξ1√
d

)
· 1

α−1,0
, (G.4)

we obtain that
1

α−1,t
≤
(λ2Φ(|sb|)

ρ1d

)t−1

·
(λ1Φ(|sb|)

ρ1d
+
λ1ξ1√
d

)
· 1

α−1,0
+ C1, ∀1 ≤ t ≤ T0. (G.5)

In the above formula, we can extend t to allow t = 1 as
1

α−1,1
≤ 1 + o(1) +

(λ1Φ(|sb|)
ρ1d

+
λ1ξ1√
d

)
· 1

α−1,0
≤ C1 +

(λ1Φ(|sb|)
ρ1d

+
λ1ξ1√
d

)
· 1

α−1,0
.

For the ratio βt/α−1,t, we use the fact that λt ≤ λ2 for 2 ≤ t ≤ T0 and also that

rξt ≤
1√
d

( ξ1
α−1,0

+ C
√
sT 2

0 (logn)
3/2
)
, 2 ≤ t ≤ T0

to expand the recursion for βt/α−1,t as follows:

βt
α−1,t

≤ 1√
d

( ξ1
α−1,0

+ C
√
sT 2

0 (logn)
3/2
)
·

t∑
τ=2

λt−τ+1
2 + λt−1

2 · β1
α−1,1

≤ T0√
d

( ξ1
α−1,0

+ C
√
sT 2

0 log(n)3/2
)
· λt−1

2 + λt−1
2 · λ1ξ1√

dα−1,0

=
λt−1
2√
d
·
(
(T0 + λ1) ·

ξ1
α−1,0

+ C
√
sT 3

0 log(n)3/2
)
, ∀ 1 ≤ t ≤ T0, (G.6)
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where in the second inequality, we use the fact that λ2 ≥ 1 and the recursion for the ratio that

β1
α−1,1

≤ λ1rξ1 =
λ1ξ1√
dα−1,0

. (G.7)

Also in the last equality of (G.6), we can relax the condition to allow t = 1 as the right-hand side
for t = 1 clearly upper bounds the right-hand side of (G.7). Using the results derived in (G.5) and
(G.6), we now have the following statement. Now, building upon the results derived in (G.5) and
(G.6), we have the following lemma, which summarizes the additional conditions needed to ensure
that the alignment α−1,t can be driven to 1− o(1).
Lemma G.12. Let ς ∈ (0, 1) be a constant. Take ϵ = C ′ log logn/(ς log d) for some sufficiently
large constant C ′ > 0. Suppose InitCond-1 and InitCond-2, Cond.(i) to Cond.(iii) hold. Under the
following conditions

(iv) λ0 = Θ(polylog(n)).

(v) λ−1
0 Q1 · d−ς = Φ(|sb|)/ρ1d.

(vi) ξ1/Q1 ≪ d−ϵ/(λ0
√
s logn).

there exists a time t⋆ ≤ ((2ς)−1 ∨ 1)∧T0 such that α−1,t = 1− o(1), where T0 is the stopping time
before and at which T0-Cond.(1) to T0-Cond.(3) hold.

Proof. See §I.3.2 for a detailed proof of the lemma.

Since t⋆ ≤ T0, Cond.(I) and Cond.(II) hold for all t ≤ t⋆ automatically. In summary, in Theo-
rem G.12, we have shown that under Cond.(i) to Cond.(vi), the alignment α−1,t can be driven to
1− o(1) in constant time steps.

G.4 SIMPLIFYING THE CONDITIONS OF THEOREM G.13

To finish the proof of Theorem B.2, it remains to simplify the conditions in Theorem G.12. As a
first step, we have the following lemma.

Lemma G.13. Under InitCond-1, InitCond-2, and Definition B.3, Cond.(i) to Cond.(vi) hold upon
the following conditions for some constant ς ∈ (0, 1) and ϵ = C ′ log logn/(ς log d) for some
sufficiently large constant C ′ > 0:

Q1

λ0
· d−ς =

Φ(|sb|)
ρ1d

≫ max
{
dϵ−ς
√
s logn · ξ1,

Ls log(n)3

d

}
,

λ0 = O(polylog(n)), η−1 ≪ NΦ(|sb|).
(G.8)

Proof. See §I.4.1 for a detailed proof.

Next, we will plug in the definition of ξ1 into the above condition to obtain the statement in Theo-
rem B.2. In what follows, let us define h⋆ as the smallest number such that

max{ℏ24,⋆, ℏ23,⋆, ℏ24,1} ≤ h2⋆,
n∑

j=1

1

|Dj |2
∑

l,l′∈Dj

Φ

(
|sb|

√
1−Hl,jHl′,j

1 +Hl,jHl′,j

)
≤ nΦ

(
|sb|

√
1− h2⋆
1 + h2⋆

)
,

(G.9)

where ℏ24,⋆, ℏ23,⋆ and ℏ24,1 are defined in Theorem F.4. The definition is valid as the right-hand sides
of both inequalities are increasing in h⋆. In addition, we notice that h⋆ ≤ 1 always holds, as h⋆ = 1
gives the trival upper bounds for all the inequalities in (G.9). In fact, the quantity h⋆ characterize
the concentration level for the empirical distribution of {Hl,j}l∈Dj .
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Lemma G.14. If (1− h2⋆)/(1 + h2⋆) = Θ(1) for h⋆ defined in (G.9), it holds that

pEl,l′

[
Φ
(
|sb|

√
1− ⟨hl, hl′⟩
1 + ⟨hl, hl′⟩

)
⟨hl, hl′⟩

]
≤ Cnρ21 · Φ(|sb|)

1−h2
⋆

1+h2
⋆ + ρ1ρ2s

2. (G.10)

Proof. See §I.4.2 for a detailed proof.

Next, we also upper bound K1 in terms of h⋆.
Lemma G.15. Under the conditions that ζ1h⋆/|sb| < 1− ν for some small constant ν ∈ (0, 1) and
Φ(|sb|) ≥ ρ1, it holds for some sufficiently large constant C > 0 that

C−1K1 ≤
(
n |sb|

)1/4
Φ(|sb|)

1
3h2

⋆+1 + (ρ2sn|sb|)1/4 · Φ(|sb|)
3

8h2
⋆+4

+
(
Φ(|sb|)

(1−h⋆ζ1/|sb|)2

1−h2
⋆ + (ρ2s)

1/4
)
· (log n)1/4 + n1/4ρ2s logn.

Proof. See §I.4.3 for a detailed proof.

In the following, let us take s = O(polylog(n)), L = O(polylog(n)) and

d = nx0 , ρ1 = n−x1 , ρ2 = n−x2 , Φ(|sb|) = n−1+x3 . (G.11)

Using the above configurations, we have by the Mill’s ratio that

|sb| =
√
2(1− x3) logn ± O(log log(n)).

In the following, we use the notation x ≲ y to denote that x ≤ y+O(log log(n)/ logn), and x ≃ y
to denote that x ≲ y and y ≲ x. Consequently, we have |sb|/

√
log n ≃

√
2(1− x3), and

ζ1

|sb|
≃ 2(1 + ε)

√
log n√

2(1− x3) logn
= (1 + ε) ·

√
2

1− x3
With Theorems G.14 and G.15, we can now upper bound ξ1 as

lognK1 ≲ max
{1
4
+

x3 − 1

3h2⋆ + 1
,
1− x2

4
+

3(x3 − 1)

8h2⋆ + 4
, − (
√
1− x3 −

√
2h⋆(1 + ε))2

1− h2⋆
,−x2

4
,
1

4
− x2

}
.

In addition, using Theorem G.14, the second term in the definition of ξ1 is upper bounded as

logn

(
ρ−1
1

√√√√Φ(|sb|)pEl,l′

[
Φ
(
|sb|

√
1− ⟨hl, hl′⟩
1 + ⟨hl, hl′⟩

)
⟨hl, hl′⟩

])
≲ max

{x3 + h2⋆
1 + h2⋆

− 1

2
,
x3 − x2 + x1 − 1

2

}
.

Therefore, ξ1 is upper bounded as

logn ξ1 ≲ max
{1
4
+

x3 − 1

3h2⋆ + 1
,
1− x2

4
+

3(x3 − 1)

8h2⋆ + 4
, − (
√
1− x3 −

√
2h⋆(1 + ε))2

1− h2⋆
,

− x2
4
,
1

4
− x2,

x3
2

+
(1− h2⋆)(x3 − 1)

2(1 + h2⋆)
,
x3 − x2 + x1 − 1

2
, −x2

2
,
1

2
− x2

}
.

Plugging this bound into the first inequality in (G.8), we have the following reformulation:

lognQ1 ≃ x3 − (1− ς)x0 ≳ logn ξ1, x3 ≳ 0.

where we note that ϵ = O(log log(n)/ log n) and can be ignored in the context of ≃ notation.
Therefore, we just need to solve the following inequality system:

lognQ1 ≳ max
{1
4
+

x3 − 1

3h2⋆ + 1
,
1− x2

4
+

3(x3 − 1)

8h2⋆ + 4
, − (
√
1− x3 −

√
2h⋆(1 + ε))2

1− h2⋆
,

− x2
4
,
1

4
− x2,

x3
2

+
(1− h2⋆)(x3 − 1)

2(1 + h2⋆)
,
x3 − x2 + x1 − 1

2
, −x2

2
,
1

2
− x2

}
0 ≲ x3 ≃ (1− ς)x0 + lognQ1, 0 ≲ x2 ≲ 1, x0 ≳ 0, 0 ≲ x1 ≲ 1,
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Solving this inequality system, we arrive at the following conditions that ensures (G.8):

1 ≳ x2 ≳ max
{
−4 lognQ1,

1

2
− lognQ1

}
, logn

( N2

ρ1N

)
≳ 0, η−1 ≪ NΦ(|sb|)

0 ≲ x3 ≲ min
{1
2
− h2⋆

2
+ (1 + h2⋆) lognQ1,

3

4
− h2⋆

4
+ (3h2⋆ + 1) lognQ1,

1−
(√

2h⋆(1 + ε) +
√
−(1− h2⋆) lognQ1

)2
, (1− ς)x0 + lognQ1

}
,

(G.12)

Now, the first condition involving x2 = logn(ρ
−1
2 ) can be transformed into the Limited Fea-

ture Co-occurrence condition in Theorem G.3. The second condition logn(N2/ρ1N) ≳ 0 can
be transformed into the Individual Feature Occurrence condition in Theorem G.3 by noting that
N2 = ∥H:,i∥0 for feature i of interest. The third condition η−1 ≪ NΦ(|sb|) can be transformed into

log η ≥ − logN − log Φ(|sb|) +O(log logn),

where the second term on the right-hand side can be further upper bounded as

− log Φ(|sb|) ≤
sb2

2
+O(log log n) ≤ b2

2
+O(log log n+ |sb|κ0 + κ20) ≃

b2

2
+O(log log n),

where we use the Mill’s ration in the first inequality and the fact that κ0 = O((logn)−1/2) and
|sb| <

√
2 logn in the second inequality. Therefore, a sufficient condition will be

log η

log n
≳
b2/2− logN

logn
.

The last condition involving

x3 = 1− |b|
2 ±O(log log(n))

2 logn
= 1−

|b|2 ±O
(
log log(n) + |b|κ0 + κ20

)
2 logn

≃ 1− b2

2 logn

can be transformed into the Limited Feature Co-occurrence condition in Theorem G.3. Lastly, we
remind the readers thatQ1 is also lower bounded as a function of x3, which is shown in the following
proposition.
Proposition G.16. Under InitCond-1 and the reparameterization in (G.11), we have

Q1 ≥ pQ

(
−b/
√
log n

(1− ε)
√
lognM − 1

)
, where pQ(x) :=

1

N2

N2∑
l=1

1(θl ≥ x)

is the tail function for the empirical distribution of θl.

Proof of Theorem G.16. By InitCond-1, we have
√
dα−1,0 ≥ (1 − ε)

√
2 log(M/n). Recall the

definition of Qt in (F.15), we have by the non-increasing property of pQ(·) that

Q1 = pQ
( |b|√

dα−1,0

)
≥ pQ

(
−b

(1− ε)
√

2 log(M/n)

)
.

This completes the proof of Theorem G.16.

Note that using the lower bound on Q1 only strengthens the conditions in (G.12). Hence, we can
directly plug in the lower bound of Q1 into all the conditions in (G.12), and this gives us the final
statement of Theorem G.3.

H PROOFS FOR CONCENTRATION RESULTS

In this section, we provide proof for the concentration results presented in the previous section.
We first provide proofs for Theorem F.1 that controls the norm of the non-Gaussian component
∆yt. Then we give the proof for the concentrations of the second-order and first-order terms in the
decomposition of the alignment recursion. Finally, we provide the proof for the error propagation in
the dynamics due to the non-Gaussian component ∆yt.
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H.1 PROOFS FOR NON-GAUSSIAN COMPONENTS

In this subsection, we provide the proofs that are related to the Gaussian & non-Gaussian compo-
nents. In particular, we provide the proof for Theorem F.1 that controls the norm of the non-Gaussian
component ∆yt.

H.1.1 PROOF OF THEOREM F.1

By definition of ∆yt in (F.2), we further define

∆y
(1)
t =

t−1∑
τ=1

ατ,t−1 ·
∥w⊥

τ ∥2
∥u⊥τ ∥2

· u⊥τ
∥u⊥τ ∥2

, ∆y
(2)
t = −

t−1∑
τ=1

ατ,t−1 · Pu1:τ
zτ ,

and thus ∆yt = ∆y
(1)
t + ∆y

(2)
t . The proof of Theorem F.1 is then based on the bounding the ℓ2

norm of ∆y(1)t and ∆y
(2)
t respectively. To proceed with controlling the norm ∥∆y(1)t ∥2, we first

control the ratio ∥w⊥
τ ∥2/∥u⊥τ ∥2 via the following lemma.

Lemma H.1 (Ratio ∥w⊥
τ ∥2/∥u⊥τ ∥2). Take some total step T ≤

√
d and suppose d ∈ (n1/c1 , nc1)

for some universal constant c1 ∈ (0, 1). For all t = 1, . . . , T , it holds with probability at least
1− n−c for some universal constant c, C > 0 that∣∣∣∥w⊥

t ∥2
∥u⊥t ∥2

−
√
d
∣∣∣ ≤ C(log n)1/2, ∣∣∣∥w⊥

t ∥22
∥u⊥t ∥22

− d
∣∣∣ ≤ C√d logn.

Proof. See §H.1.2 for a detailed proof.

With Theorem H.1, we can now control the ℓ2 norm of ∆y
(1)
t and ∆y

(2)
t respectively with the

following two lemmas.

Lemma H.2 (ℓ2 norm of ∆y(1)t ). Under the conditions in Theorem H.1, for all t = 1, . . . , T , it
holds with probability at least 1− n−c for some universal constant c, C > 0 that

(d− C
√
d logn) · ∥P⊥

w−1:0
swt−1∥22 ≤ ∥∆y

(1)
t ∥22 ≤ (d+ C

√
d logn) · ∥P⊥

w−1:0
swt−1∥22.

Proof. See §H.1.2 for a detailed proof.

Lemma H.3 (ℓ2 norm of ∆y(2)t ). Under the conditions in Theorem H.1, for all t = 1, . . . , T , it
holds with probability at least 1− n−c for some universal constants c, C > 0 that

∥∆y(2)t ∥22 ≤ C(t+ logn) · ∥P⊥
w−1:0

swt−1∥22.

Proof. See §H.1.2 for a detailed proof.

Combining Theorem H.2 and Theorem H.3, we complete the proof of Theorem F.1 by additionally
noting that

∥∆yt∥22 ≤ 2∥∆y(1)t ∥22 + 2∥∆y(2)t ∥22 ≤ 2(d+ C
√
d logn+ C(t+ logn)) · ∥P⊥

w−1:0
swt−1∥22.

As the first term d∥P⊥
w−1:0

swt−1∥22 = dβ2
t−1 is the leading term, we conclude the proof of Theo-

rem F.1.

H.1.2 ADDITIONAL PROOFS FOR THEOREM F.1

Proof of Theorem H.1. Recall from (E.6) that

wt =

t−1∑
τ=−1

⟨P⊥
u1:τ

zτ , ut⟩ ·
w⊥

τ

∥w⊥
τ ∥2

+

t−1∑
τ=1

⟨u⊥τ , ut⟩ ·
∥w⊥

τ ∥2
∥u⊥τ ∥2

· w⊥
τ

∥w⊥
τ ∥2

+ P⊥
w−1:t−1

rzt · ∥u⊥t ∥2

+ vθ⊤φ(Fyt + θ · v⊤ swt−1; bt) + η−1
swt−1.
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Applying projection P⊥
w−1:t−1

to both sides, we have

w⊥
t = P⊥

w−1:t−1
wt = P⊥

w−1:t−1
rzt · ∥u⊥t ∥2,

which implies that ∥w⊥
t ∥2/∥u⊥t ∥2 = ∥P⊥

w−1:t−1
rzt∥2. Note that rzt is independent of σ(w−1:t−1) and

follows standard Gaussian distribution. Therefore, ∥w⊥
t ∥22/∥u⊥t ∥22 ∼ χ2(d− t− 1) and we have by

the concentration in Theorem J.1 that with probability at least 1− n−c for all t ∈ [T ],∣∣∣∥w⊥
t ∥22

∥u⊥t ∥22
− d
∣∣∣ ≤ T + 2

√
d log(Tnc) + 2 log(Tnc) ≤ C

√
d log(n),

where the last inequality holds by conditions T ≤
√
d and d ∈ (n1/c1 , nc1). Therefore, we conclude

that with probability at least 1− n−c for all t ∈ [T ],∣∣∣∥w⊥
t ∥2

∥u⊥t ∥2
−
√
d
∣∣∣ ≤ C(log n)1/2.

This completes the proof of Theorem H.1.

Proof of Theorem H.2. By definition of ∆y(1)t , we have∣∣∥∆y(1)t ∥22 − d∥P⊥
w−1:0

swt−1∥22
∣∣ = ∣∣∣∣t−1∑

τ=1

α2
τ,t−1 ·

(∥w⊥
τ ∥22

∥u⊥τ ∥22
− d
)∣∣∣∣ ≤ sup

τ=1,...,t−1

∣∣∣∥w⊥
τ ∥22

∥u⊥τ ∥22
− d
∣∣∣ · t−1∑

τ=1

α2
τ,t−1

≤ C
√
d logn · ∥P⊥

w−1:0
swt−1∥22,

where the first equality holds by
∑t−1

τ=−1 α
2
τ,t−1 = 1 according to the definition of ατ,t, and the

second inequality holds by Theorem H.1 with probability at least 1− n−c.

Proof of Theorem H.3. By rewriting the definition of ∆y(2)t , we have

∆y
(2)
t =

t−1∑
τ=1

t−1∑
j=τ

αj,t−1
u⊥τ
∥u⊥τ ∥2

zj .

We note that when conditioned on {ατ,T−1}T−1
τ=−1 and u1:T−1, the random variables { u⊥

τ

∥u⊥
τ ∥2

zj}j,τ
for any 1 ≤ τ ≤ j ≤ t − 1 are i.i.d. standard Gaussian. Let us denote the filtration
F = σ({ατ,T−1}T−1

τ=−1, u1:T−1). Therefore, we have

∆y
(2)
t | F

d
=

t−1∑
τ=1

√√√√t−1∑
j=τ

α2
j,t−1 ·

u⊥τ
∥u⊥τ ∥2

· z′τ ,

where {z′τ}t−1
τ=1 are i.i.d. standard Gaussian independent of the filtration F . Hence,

∥∆y(2)t ∥22 | F
d
=

t−1∑
τ=1

t−1∑
j=τ

α2
j,t−1 · (z′τ )2.

Using the concentration of χ2 distribution in Theorem J.1 gives us

P

(∣∣∣∥∆y(2)t ∥22 −
t−1∑
τ=1

t−1∑
j=τ

α2
j,t−1

∣∣∣ ≥ C
√√√√t−1∑

τ=1

(t−1∑
j=τ

α2
j,t−1

)2
·
√

log(n) + C

t∑
τ=1

α2
τ,t−1 log(nT )

∣∣∣F) ≤ n−c

T
.

Each term inside the probability can be upper bounded by√√√√t−1∑
τ=1

(t−1∑
j=τ

α2
j,t−1

)2
≤
√
t · (1− α2

−1,t−1 − α2
0,t−1) =

√
t · ∥P⊥

w−1:0
swt−1∥22,

t∑
τ=1

α2
τ,t−1 = 1− α2

−1,t−1 − α2
0,t−1 = ∥P⊥

w−1:0
swt−1∥22,

t−1∑
τ=1

t−1∑
j=τ

α2
j,t−1 ≤ t∥P⊥

w−1:0
swt−1∥22.
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Therefore, we conclude that when conditioning on F , it holds with probability at least 1− n−c and
for all t = 1, . . . , T that

∥∆y(2)t ∥22 ≤ C(t+
√
t logn+ logn) · ∥P⊥

w−1:0
swt−1∥22 ≤ C(t+ logn) · ∥P⊥

w−1:0
swt−1∥22,

where C is a universal constant that changes from line to line. Here, we also use the condition that
T ≤ n. Now, since for any event in the filtration F , the failure probability is at most n−c, we can
safely remove the conditioning and conclude the proof of Theorem H.3.

H.2 PROOFS FOR CONCENTRATION LEMMAS

In this subsection, we first provide a formal lemma that characterizes the sparsity of the activations
when tuning the bias bt to be some negative value. Building upon this result, we then provide the
proofs for the concentration results concerning the recursion of the alignment.

H.2.1 CONCENTRATION FOR IDEAL ACTIVATIONS

The statement of the following lemma slightly generalize beyond the settings in (F.2) for technical
convenience. Specifically, we want to understand how the neuron’s activation frequency concen-
trates around Φ(−bt). As we have the coefficient matrix H decomposed into E and F , we want
to have a general result that can be applied to all of them. Therefore, we consider a general sparse
weight matrix G in the following lemma.

Lemma H.4 (Concentration for Activations). LetG ∈ RL×n
+ be a nonnegative weight matrix whose

rows (gl)l∈[L] satisfy ∥gl∥2 = 1, and assume that G is sparse in both rows and columns:

• For every coordinate i ∈ [n], the ith column satisfies ∥G:,i∥0 ≤ ρL for some ρ ∈ [n−1, 1].

• For every row l ∈ [L], we have ∥gl∥0 ≤ s.

For any integer t ≤ nc (with some fixed constant c > 0), define

yt =

t−1∑
τ=−1

ατ,t−1 zτ ,

where the vectors zτ ∈ Rn (for τ = −1, 0, . . . , t − 1) are independent standard Gaussian random
vectors, and the coefficients αt−1 = (ατ,t−1)

t−1
τ=−1 ∈ St belong to the unit sphere in Rt+1. Next, let

bt ∈ R be an arbitrary bias and let ϑt ∈ Rt+1 and ς = (ςl)l∈[L] ∈ RL
+ be fixed vectors. For each

neuron l ∈ [L], define its shifted bias by

bt,l = bt − ςl α⊤
t−1ϑt.

Then, for any failure probability δ ∈
(
exp(−n/4), 1

)
, there exists a universal constant C > 0 such

that with probability at least 1 − δ (over the randomness of the Gaussian vectors {zτ}t−1
τ=−1) the

following holds simultaneously for all choices of αt−1 ∈ St and bt ∈ R:

1

L

L∑
l=1

1
{
g⊤l yt > bt,l

}
≤ C

(
1

L

L∑
l=1

Φ(bt,l) + ρ s t log
(
n(1 + ∥ς∥∞∥ϑt∥∞)

)
+ ρ s log(δ−1)

)
,

where Φ(·) denotes the standard Gaussian tail probability. In particular, if t, αt−1 and bt are also
fixed, then with probability at least 1− δ it holds that

1

L

L∑
l=1

1
{
g⊤l yt > bt,l

}
≤ C

(
1

L

L∑
l=1

Φ(bt,l) + ρ s log(δ−1)

)
.

Reduction to Theorem F.2. We remark that when take G to be the weight matrix E, L to be N1,
n to be n− 1, ρ to be ρ1, bt to be sbt, and letting ϑt = 0, we directly obtain Theorem F.2 as a special
case. In the remaining of this subsection, we will present the proof of this lemma.

Proof of Theorem H.4. In the following proof, we will use C to denote universal constants that
change from line to line.
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Step I: Concentration for fixed αt−1, bt and ϑt. When fixing αt−1, bt and ϑt, note that

bt,l = bt − ςlα⊤
t−1ϑt

is also fixed and the only randomness comes from the Gaussian vectors z−1, z0, . . . , zt−1. In partic-
ular, yt ∼ N (0, In) since ∥αt−1∥2 = 1 by assumption. In the sequel, the discussion will be focused
on one time step t and we omit the subscript t for simplicity. The following is a table of the notations
we will use in the proof:

Notation (Simplified) Definition

y ← yt yt =
∑t−1

τ=−1 ατ,t−1zτ

bl ← bt,l bt,l = bt − ςlα⊤
t−1ϑt

α← αt−1 αt−1 = (ατ,t−1)
t−1
τ=−1 ∈ St

y(i) y(i) is the vector y with the i-th coordinate yi
replaced by an independent copy y′i ∼ N (0, 1)

Z Z = L−1
∑L

l=1 1
(
g⊤l y > bt,l

)
Z(i) Z(i) = L−1

∑L
l=1 1

(
g⊤l y

(i) > bt,l
)

Table 3: Summary of notations used in the proof of Theorem H.4.

Define Z = L−1
∑L

l=1 1
(
g⊤l y > bl

)
. To study the concentration of Z, we need to analyze the

fluctuations when we change one coordinate of y. This leads us to the definition of y(i) in Table 3
with the corresponding Z(i) = L−1

∑L
l=1 1

(
g⊤l y

(i) > bt,l
)
. Let us also define the Exceedance-

Perturbed Variance (EPV) as follows:

V+ = E
[ n∑
i=1

(
Z(i) − Z

)2
1(Z > Z(i))

∣∣∣ y].
In the definition of EPV, we only count the contribution from the i-th coordinate of y when Z
exceeds its perturbed counterpart Z(i). Next, we show that V+ is actually controlled by Z itself up
to a small factor. In particular, for the term inside the expectation in the definition of V+, we have

n∑
i=1

(
Z(i) − Z

)2
1(Z > Z(i)) =

n∑
i=1

(
Z(i) − Z

)2
1(yi > y′i)

≤ 1

L2

n∑
i=1

( L∑
l=1

1(gl,i ̸= 0) · 1
(
g⊤l y > bt,l

))2

≤ ρ

L
·

n∑
i=1

L∑
l=1

1(gl,i ̸= 0) · 1
(
g⊤l y > bt,l

)
= ρsZ.

where

• in the first identity, we use the fact that Z is monotone in the i-th coordinate yi due to the
nonnegativity of the weight matrix G.

• In the first inequality, we use the fact that 0 ≤ 1(g⊤l y > bt,l) − 1(g⊤l y
(i) > bt,l) ≤

1(g⊤l y > bt,l) thanks to the condition yi > y′i which is guaranteed by the condition Z >

Z(i).

• In the last line, we use the Cauchy-Schwarz inequality with the fact that
∑L

l=1 1(gl,i ̸=
0)1(g⊤l y > bt,l) ≤

∑L
l=1 1(gl,i ̸= 0)≤ ρL. Then, by also noting that each gl is also

s-sparse, we obtain the last equality.
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Meanwhile, the mean of Z is simply E[Z] = L−1
∑L

l=1 Φ(bt,l), where we use the fact that ∥gl∥2 =
1 by assumption and g⊤y ∼ N (0, 1). Invoking Theorem J.5, we conclude that for fixed α and bt,
we have with probability at least 1− δ,

Z ≤ E[Z] + C
√
ρsE[Z] log δ−1 + Cρs log δ−1 ≤ C ·

(
1

L

L∑
l=1

Φ(bt,l) + ρs log(δ−1)

)
(H.1)

for some universal constant C > 0. Here, we directly apply the inequality
√
ab ≤ a+ b for a, b > 0

in the last inequality. In the following, we will apply a union bound on αt−1, bt to extend the above
bound to arbitrary choices of αt−1 and bt.

Step II: Union bound over αt−1 and bt. In the following argument, we will also drop the sub-
script t. Since Z is a function of α and b, we use the following notation:

Z(α, b) =
1

L

L∑
l=1

1

( t−1∑
τ=−1

ατg
⊤
l zτ > b− ςlα⊤ϑ

)
.

It is sufficient to construct a covering net for the pair (α, b). Since the Gaussian vectors zτ are
unbounded, we first introduce a truncation step in our covering argument. By applying the Chernoff
bound for Gaussian tails and then taking a union bound over all indices τ = −1, 0, . . . , t − 1, we
deduce that with probability at least

1− (t+ 1)n · exp(−n/2) ≥ 1− exp(−n/4)/2,

we have
max

τ=−1,0,...,t−1
∥zτ∥∞ ≤

√
n .

In what follows we condition on this high-probability event.

For α ∈ St, we take a uniform covering net on the sphere, denoted byNα, such that for any α, there
exists α′ ∈ Nα satisfying ∥α− α′∥∞ ≤ ϵ. The covering number is upper bounded by |Nα| ≤ ϵ−t.
See for example Example 5.8 in Wainwright (2019). To proceed, let us define

µ = (t+ 1) · (
√
stn+ ∥ς∥∞∥ϑ∥∞).

The intuition for this definition is that µ represents the Lipschitz constant of
∑t−1

τ=−1 ατg
⊤
l zτ +

ςlα
⊤ϑ with respect to any perturbation on α in the ℓ∞-norm. For b, leveraging the Gaussian tail

property, we define the following covering net with size at most 4µϵ−1 + 4:

Nb =
{
k · µ · ϵ

∣∣ k ∈ Z, k ∈
[
−⌈2ϵ−1⌉, ⌊2ϵ−1⌋

]}
∪ {−∞}.

There are three special points in Nb: −∞, the minimal finite point bmin = −⌈2ϵ−1⌉ · µ · ϵ, and the
maximal point bmax = ⌊2ϵ−1⌋ · µ · ϵ. For any α ∈ St and b ∈ R, we pick pα = argminα′∈Nα

∥α −
α′∥∞ and pb = argmax{b′ ∈ Nb : b′ < b − µ · ϵ}. Therefore, we have by the monotonicity of the
indicator function that

Z(α, b) ≤ 1

L

L∑
l=1

1

( t−1∑
τ=−1

pατ g
⊤
l zt > b− ςlpα⊤ϑ− µ · ϵ

)
≤ Z(pα,pb). (H.2)

On the other hand, for pbl = pb− ςlpα⊤ϑ, using the definition of pα and pb, it holds that

Φ(pbl) ≤ Φ(bl − 3µ · ϵ) · 1(−bmin ≤ pbl < bmax) + 1(pbl = −∞)

+ Φ(2µ− ςlα⊤ϑ) · 1(pbl = bmax).

The above inequality holds by considering three cases:

• When pbl ∈ [−bmin, bmax), we have bl close to pbl up to an approximation error of 3µ · ϵ,
where one µ · ϵ comes from the approximation between α and pα and the other 2µ · ϵ comes
from the approximation between bl and pbl.
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• When pbl = −∞, we simply upper bound the tail probability by 1.

• When pbl = bmax, we have Φ(pbl) = Φ(bmax − ςlα⊤ϑ) ≥ Φ(2µ− ςlα⊤ϑ).

Next, we characterize in each case the approximation error between Φ(bl) and the bound given
above, which are Φ(bl − 3µ · ϵ), 1, and Φ(2µ− ςlα⊤ϑ) respectively. In particular,

• For the first case pbt ∈ [−bmin, bmax), we have the approximation error Φ(bl−3µ·ϵ)−Φ(bl)
directly bounded by 3µϵ by Lipschitz continuity of the Gaussian tail function.

• For the second case pbt = −∞, it must hold that bt < bmin + µϵ, and the approximation
error is thus upper bounded by 1− Φ(bt,l) = 1− Φ(bt − ςlα⊤ϑ) ≤ exp(−(|bmin| − (1 +
ϵ)µ)2/2) ≤ exp(−µ2/4).

• For the third case pbt = bmax, it must hold that bt > bmax > 2µ. Hence, the approximation
error is upper bounded by Φ(2µ − ςlα⊤ϑ) − Φ(bt,l) ≤ Φ(2µ − ςlα⊤ϑ) ≤ exp(−(2µ −
µ)2/2) ≤ exp(−µ2/4).

Combining these three cases, we conclude that

Φ(pbl) ≤ Φ(bl) + exp(−µ2/4) + 3µ · ϵ. (H.3)

If we choose the covering net parameter ϵ = ρµ−1, then the upper bound can be simplified as
Φ(pbl) ≤ Φ(bl) + exp(−n/4) + 3ρ. Since ρ is at least 1/n, we can further conclude that Φ(pbl) ≤
Φ(bl) + 4ρ given that exp(−n/4) ≪ 1/n ≤ ρ. Lastly, note that the log cardinality of the joint
covering net is upper bounded by

log(|Nα|) + log(|Nb|) ≤ t log(ϵ−1) + log(4µϵ−1) ≤ Ct log(n(1 + ∥ς∥∞∥ϑ∥∞)) (H.4)

given that ϵ = ρµ−1 > (nµ)−1. Here, for the last inequality, we use the fact that log(µ) =
log((t + 1)(

√
stn + ∥ς∥∞∥ϑ∥∞)) ≤ C log(n(1 + ∥ς∥∞∥ϑ∥∞)) since t ≤ nc for some constant

c > 0 and s ≤ n. We can also apply a similar argument for every t < nc. This only increases the
size of the covering net by a factor nc. Combining (H.1), (H.2) and (H.3) with the log cardinality
(H.4), we conclude that with probability at least 1− δ for all α, bt and δ > exp(−n/4) that

Z(αt−1, bt) ≤ Z(pαt−1,pbt) ≤ C ·
(
1

L

L∑
l=1

Φ(pbl,t) + ρst log(n(1 + ∥ς∥∞∥ϑ∥∞)) + ρs log(δ−1)

)

≤ C ·
(
1

L

L∑
l=1

Φ(bl,t) + ρst log(n(1 + ∥ς∥∞∥ϑ∥∞)) + ρs log(δ−1)

)
,

where in the second inequality, we apply a union bound on the joint covering net for α and b and
also for all t ≤ nc. In the last inequality, we just need a change in the constant factor C to absorb
the approximation error 4ρ for the approximation error Φ(bt,l) − Φ(pbt,l). Here, the lower bound
δ > exp(−n/4) is to ensure that the good event maxτ=−1,0,...,t−1∥zτ∥∞ ≤

√
tn holds true. This

concludes the proof of Theorem H.4.

H.2.2 ACTIVATIONS WITH NON-GAUSSIAN COMPONENT: PROOF OF THEOREM F.3

In the following proof, we will use C to denote universal constants that change from line to line.
Let us denote by sbt = bt + κ0 as the shifted bias. Let us pick ϱt > 0 to be specified later. For any
l ∈ [N1], the neuron is activated only if either of the following two conditions hold:

1. e⊤l y
⋆
t +sbt > −ϱt;

2. e⊤l y
⋆
t +sbt ≤ −ϱt and e⊤l ∆yt > ϱt.
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For the first case, by Theorem F.2, we have with probability at least 1− δ that

1

N1

N1∑
l=1

1(e⊤l y
⋆
t +sbt > −ϱt) ≤ C ·

(
Φ(−sbt − ϱt) + ρ1st log(n) + ρ1s log(δ

−1)
)
. (H.5)

For the second case, we only need to control N−1
1

∑N1

l=1 1(e
⊤
l ∆yt > ϱt). We have the following

upper bound

1

N1

N1∑
l=1

1(e⊤l ∆yt > ϱt) ≤
1

N1

N1∑
l=1

1
(
∥el∥22 ·

n−1∑
i=1

∆y2t,i 1(El,i ̸= 0) > ϱ2t

)
=

1

N1

N1∑
l=1

1
(n−1∑

i=1

∆y2t,i 1(El,i ̸= 0) > ϱ2t

)
≤ 1

N1ϱ2t

N1∑
l=1

n−1∑
i=1

∆y2t,i 1(El,i ̸= 0) ≤ ρ1
ϱ2t
· ∥∆yt∥22, (H.6)

where the first inequality holds by the Cauchy-Schwarz inequality and the following equality holds
by the fact that ∥el∥2 = 1. The second inequality follows from the fact that 1(x > a) ≤ x/a for
any a > 0 and x > 0. The last inequality holds by noting that ∥E:,i∥0 ≤ ρ1N1. Combining (H.5)
and (H.6), we conclude that with probability at least 1− n−c,

1

N1

N1∑
l=1

1(e⊤l yt >
sbt) ≤ C ·

(
Φ(−sbt − ϱt) + ρ1st log(n)

)
+
ρ1
ϱ2t
· ∥∆yt∥22. (H.7)

Let us pick ϱt = |sbt|−1. Note that by assumption sbt < −2, we have −sbt − ϱt > 3/2 and by
the Mills ratio inequality (x−1 − x−3) < Φ(x)/p(x) < x−1 − x−3 + 3x−5 for x > 0, where
p(x) = exp(−x2/2)/

√
2π is the density for standard Gaussian distribution, we have

Φ(−sbt − ϱt) ≤
1 + 3(|sbt| − ϱt)−4

√
2π · (|sbt| − ϱt)

· exp
(
− (|sbt| − ϱt)2

2

)
(H.8)

≤ 1− |sbt|−2

√
2π|sbt|

· exp
(
−|

sbt|2

2

)
· (1 + 3(|sbt| − |sbt|−1)−4)|sbt|
(|sbt| − |sbt|−1)(1− |sbt|−2)

· exp
(2− |sbt|−2

2

)
≤ CΦ(−sbt),

where in the last inequality, we note that the highlighted ratios are bounded by a universal constant.
Combining (H.7) and (H.8), we conclude the proof of Theorem F.3.

H.2.3 CONCENTRATION FOR ∥E⊤φ(Ey⋆t ; bt)∥22: PROOF OF THEOREM F.4

When treating {ατ,t−1}t−1
τ=−1 and bt to be deterministic, it follows that y⋆t ∼ N (0, 1). When condi-

tioned on the good event E , we always have ∥y⋆t ∥∞ ≤ (1 + c)
√
2(t+ 1) log(nt). In the following,

we use y to replace y⋆t for notation simplicity. We use yj to denote the j-th coordinate of y. Let
sbt = bt + κ0.

Good event on bounded Gaussian vectors. Let E0 denote the event that InitCond-2 is satisfied
by the vectors z−1:0. Throughout the proof, C will denote a universal constant whose value may
change from line to line. Fix a time step t ≥ 1 (we omit the subscript t for notational simplicity).
Define the “good event”

E1 =
{

max
τ=−1,0,...,t−1

∥zτ∥∞ ≤ (1 + c)
√
2 log(nt)

}
.

Then, by Theorem J.2 (applied to the i.i.d. standard Gaussian vectors z−1:t−1), we have

P(E1) ≥ 1− (nt)−c ≥ 1− n−c .
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Good event on the activation sparsity. Let us define Sj = {l ∈ [N1] : El,j ̸= 0}. It holds that
|Sj | ≤ N1ρ1. In addition, we define event E2 as

E2 =

 ∀j ∈ [n− 1]
∀αt−1 ∈ St
∀bt ∈ R

,
∑
l∈Sj

1(e⊤l y +
sbt > 0) ≤ C ·

(∑
l∈Sj

Φ
(
−

sbt + El,jyj√
1− E2

l,j

)
+ |Sj |ρ2st log(n)

) .

To show that E2 holds with high probability, let us define rE as the submatrix of E by keeping the
rows indexed by Sj while removing the j-th column. We also normalize each row of rE to have
ℓ2-norm equal to one. We then have

1. ∥ rEl,:∥2 = 1, ∥ rEl,:∥0 ≤ s and ∥ rE:,k∥0 ≤
∑N

l=1 1(Hl,j ̸= 0)1(Hl,k ̸= 0) ≤ |Sj |ρ2, where
the last inequality holds by definition of ρ2.

2. It holds that

|Sj |−1
∑
l∈Sj

1(e⊤l y +
sbt > 0) = |Sj |−1

∑
l∈Sj

1
(

re⊤l y−j +
sbt + El,jyj√

1− E2
l,j

> 0
)
,

where rel is the l-th row of rE and y−j is the vector y with the j-th coordinate removed.

In the following, we use zτ,j to denote the j-th coordinate of zτ , and yj =
∑t−1

τ=−1 ατ,t−1zτ,j .
We denote by zτ,−j the vector zτ with the j-th coordinate removed. Therefore, we can invoke
Theorem H.4 with the configurations

G← rE, ρ← ρ2, ϑ← (z−1,j , z0,j , . . . , zt−1,j),

ςl ← El,j/
√

1− E2
l,j , bt ← −sbt/

√
1− E2

l,j and zτ ← zτ,−j

to obtain that with probability at least 1 − δ/n over the randomness of standard Gaussian vectors
z−1:t−1,−j , and for fixed t, αt−1, bt and ϑ = (z−1,j , z0,j , . . . , zt−1,j),∑

l∈Sj

1(e⊤l y +
sbt > 0) ≤ C ·

(∑
l∈Sj

Φ
(
−

sbt + El,jyj√
1− E2

l,j

)
+ |Sj |ρ2s log(nδ−1)

)

≤ C ·
(∑

l∈Dj

Φ
(
−

sbt +Hl,jyj√
1−H2

l,j

)
+ |Sj |ρ2s log(nδ−1)

)
, (H.9)

where C is a universal constant independent of t, αt−1, bt and ϑ. Here, in the last inequality, we
define Dj = {l ∈ [N ] : Hl,j ̸= 0} as the set of rows in matrix H that have nonzero j-th coordinate.
Since E is just a submatrix of H , adding more rows to the summation does not decrease the target
value in the second inequality. Note that z−1:t−1,−j are independent of z−1:t−1,j . We thus conclude
that the above bound holds with probability at least 1−δ/n over the randomness of z−1:t−1. Further
applying the union bound for all j ∈ [n− 1], we conclude that (H.9) holds with probability at least
1− δ for all j ∈ [n− 1].

Note that the randomness discussed above is only over z−1:t−1. We invoke a covering argument over
αt−1 ∈ St and bt ∈ R similar to the proof of Theorem H.4. Since the argument is largely the same,
we will not repeat it here. The size of the covering net is nO(t+1), and we can pick δ = n−c−O(t+1)

in (H.9), which gives us the upper bound in the definition of E2 with probability at least 1− n−c.

Refined upper bound on y. We work with a fixed time step t and aim to bound every coordinate
yj for j ∈ [n− 1]. Here, we recall definitions

yj =

t−1∑
τ=−1

ατ,t−1 zτ,j , βt−1 =

√√√√t−1∑
τ=1

α2
τ,t−1

where βt−1 represents the ℓ2-norm of the component of swt−1 in the subspace orthogonal to w−1:0.
(Recall that the coefficients {ατ,t−1}t−1

τ=1 arise when projecting swt−1 onto the orthonormal basis{
sw−1,

w⊥
0

∥w⊥
0 ∥

,
w⊥

1

∥w⊥
1 ∥

, . . . ,
w⊥

t−1

∥w⊥
t−1∥

}
.
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To leverage InitCond-2, we make a change of basis for the first two directions, namely, we replace{
sw−1,

w⊥
0

∥w⊥
0 ∥

}
with

{
sw0, rw

}
, where rw = α0,0 sw−1 − α−1,0

w⊥
0

∥w⊥
0 ∥

.

Note that rw is orthogonal to sw0. The projection of swt−1 onto the direction rw satisfies∣∣⟨ swt−1, rw⟩
∣∣ = ∣∣α0,0 α−1,t−1 − α−1,0 α0,t−1

∣∣ ≤ |α−1,t−1|+ |α−1,0|.

Since sw0, rw, and {w⊥
τ /∥w⊥

τ ∥}t−1
τ=1 form an orthonormal basis, the component of swt−1 orthogonal

to sw0 is bounded by βt−1 + |α−1,t−1|+ |α−1,0|. Moreover, we can also decompose yt into the new
basis as follows:

yt = ⟨ sw0, swt−1⟩
(
α−1,0 z−1 + α0,0 z0

)
+ ⟨ rw, swt−1⟩

(
α0,0 z−1 − α−1,0 z0

)
+

t−1∑
τ=1

ατ,t−1 zτ

= ⟨ sw0, swt−1⟩ y1 + ⟨ rw, swt−1⟩
(
α0,0 z−1 − α−1,0 z0

)
+

t−1∑
τ=1

ατ,t−1 zτ

Under InitCond-2 the first term, ⟨ sw0, swt−1⟩ y1, is bounded by ζ1. Moreover, since both

α0,0 z−1 − α−1,0 z0 and {zτ}t−1
τ=1

have their entries bounded by 2(1 + c)
√
log(nt) on the good event E1, the contribution from the

subspace orthogonal to sw0 is bounded by

C
(
βt−1 + |α−1,t−1|+ |α−1,0|

)√
t log(nt).

Thus, by the triangle inequality, for every coordinate j we have under event E0 and E1 that

yj ≤ ζ1 + C
(
βt−1 + |α−1,t−1|+ |α−1,0|

)√
t log(nt) =: ζt. (H.10)

Good event on the Bernstein concentration. In the following, we will use another good event to
control the upper bound in the definition of E2. Consider the function Φ(−(sbt + xyj)/

√
1− x2)q

for q ≥ 1. We demonstrate that this function is Lipschitz continuous and monotonically increasing
on the interval x ∈ [0, 1] if yj > −sbt by taking the derivative with respect to x:

d

dx
Φ
(
−

sbt + xyj√
1− x2

)q
= qΦ

(
−

sbt + xyj√
1− x2

)q−1

· p
(
−

sbt + xyj√
1− x2

)
· yj − (−sbt)x

(1− x2)3/2
> 0.

Using the upper bound for y specified in (H.10), we can define the critical value ℏq,t as the smallest
real number such that the following inequality holds:

1

|Dj |
∑
l∈Dj

Φ
(
−

sbt +Hl,jyj√
1−H2

l,j

)q
1(E0 ∩ E1) ≤ max

j∈[n]

1

|Dj |
∑
l∈Dj

Φ
(
−

sbt +Hl,jζt√
1−H2

l,j

)q
≤ Φ

(
−

sbt + ℏq,tζt√
1− ℏ2q,t

)q
.

(H.11)

As we will only be using q ∈ {3, 4} in the following proof, we define the event E3 as the event such
that for all q ∈ {3, 4}, αt−1 ∈ St, bt ∈ R and j ∈ [n− 1],

E3 :

n−1∑
j=1

1

|Dj |
∑
l∈Dj

Φ
(
−

sbt +Hl,jyj√
1−H2

l,j

)q
1(E0)1(E1)

≤ C ·

n−1∑
j=1

1

|Dj |
∑
l∈Dj

E
[
Φ
(
−

sbt +Hl,jyj√
1−H2

l,j

)q]
+Φ

(
−

sbt + ℏq,tζt√
1− ℏ2q,t

)q
t log(n)

 ,

where C is a universal constant independent of t, αt−1, bt and ζt. To show the event E3 holds
with high probability, we can apply the Bernstein concentration inequality in Theorem J.3 for the
bounded random variables

1

|Dj |
∑
l∈Dj

Φ
(
−

sbt +Hl,jyj√
1−H2

l,j

)q
.
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That is, for fixed αt−1, bt and with probability at least 1 − δ over the randomness of z−1:t−1, we
have

n−1∑
j=1

1

|Dj |
∑
l∈Dj

Φ
(
−

sbt +Hl,jyj√
1−H2

l,j

)q
1(E0)1(E1)

≤

√√√√√2 log δ−1 ·
n−1∑
j=1

E
[(

1

|Dj |
∑
l∈Dj

Φ
(
−

sbt +Hl,jyj√
1−H2

l,j

)q)2

1(E0 ∩ E1)
]

+

n−1∑
j=1

1

|Dj |
∑
l∈Dj

E
[
Φ
(
−

sbt +Hl,jyj√
1−H2

l,j

)q]
+

1

3
Φ
(
−

sbt + ℏq,tζt√
1− ℏ2q,t

)q
log(δ−1).

Moreover, we have for the second moment term that

E
[(

1

|Dj |
∑
l∈Dj

Φ
(
−

sbt +Hl,jyj√
1−H2

l,j

)q)2

1(E0 ∩ E1)
]

≤
n−1∑
j=1

1

|Dj |2
·
∑
l∈Dj

E
[
Φ
(
−

sbt +Hl,jyj√
1−H2

l,j

)q
· 1(E0 ∩ E1)

]
·
∑
l′∈Dj

Φ
(
−

sbt +Hl′,jζt√
1−H2

l′,j′

)q

≤
n−1∑
j=1

 1

|Dj |
∑
l∈Dj

E
[
Φ
(
−

sbt +Hl,jyj√
1−H2

l,j

)q] · Φ(−sbt + ℏq,tζt√
1− ℏ2q,t

)q
,

where in the first inequality, we invoke the upper bound in (H.11). Using the fact that
√
a · b ≤ a+b

for a, b ≥ 0, we derive that

n−1∑
j=1

1

|Dj |
∑
l∈Dj

Φ
(
−

sbt +Hl,jyj√
1−H2

l,j

)q
1(E0)1(E1)

≤ C ·

n−1∑
j=1

1

|Dj |
∑
l∈Dj

E
[
Φ
(
−

sbt +Hl,jyj√
1−H2

l,j

)q]
+

1

3
Φ
(
−

sbt + ℏq,tζt√
1− ℏ2q,t

)q
log(δ−1)

 .

(H.12)

Now, we apply the covering argument over αt−1 ∈ St and bt ∈ R similar to the proof of Theo-
rem H.4. The size of the covering net is nO(t+1), and we can pick δ = n−c−O(t+1) in (H.12), which
gives us the upper bound in the definition of E3 with P(E3) ≥ 1− n−c.

The Perturbed Variance. Given the good events E0, E1, E2, and E3, we define

Z =
1

N2
1

N1∑
l,l′=1

Zl,l′ , where Zl,l′ = φ(e⊤l y; bt) · φ(e⊤l′ y; bt) · ⟨el, el′⟩ · 1(E0 ∩ E1 ∩ E2 ∩ E3).

(H.13)

For concentration of Z, we consider the following Perturbed Variance (PV) defined as

V :=E
[n−1∑
i=1

(Z − Z(i))2
∣∣∣ y],

where the perturbed term Z(i) is defined as follows:

Z(i) =
1

N2
1

N1∑
l,l′=1

Z
(i)
l,l′ , where Z

(i)
l,l′ = φ(e⊤l y

(i); bt) · φ(e⊤l′ y(i); bt) · ⟨el, el′⟩ · 1(∩3ι=0E(i)ι ).
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Here, y(i) =
∑t−1

τ=−1 ατ,t−1z
(i)
τ and z

(i)
τ is given by replacing the i-th coordinate of zτ by an

independent N (0, 1) random variable. In addition, the good events {E(i)ι }3ι=0 are defined similarly
to Eι, but using z(i)−1:t−1 instead of z−1:t−1. We begin by noting the elementary inequality (a−b)2 ≤
2a2 + 2b2. Thus, we obtain

V ≤ 2

N4
1

E

[
n−1∑
i=1

(
N1∑

l,l′=1

Zl,l′ 1
{
El,i ̸= 0 ∨ El′,i ̸= 0

})2 ∣∣∣∣∣ y
]

︸ ︷︷ ︸
(I)

+
2

N4
1

E

[
n−1∑
i=1

(
N1∑

l,l′=1

Z
(i)
l,l′ 1

{
El,i ̸= 0 ∨ El′,i ̸= 0

})2 ∣∣∣∣∣ y
]

︸ ︷︷ ︸
(II)

,

where the upper bound is obtained by the following reasoning. For each perturbed quantity Z(i), we
have

Z − Z(i) =
1

N2
1

N1∑
l,l′=1

(
Zl,l′ − Z(i)

l,l′

)
· 1
{
El,i ̸= 0 ∨ El′,i ̸= 0

}
.

Note that the difference Zl,l′ − Z(i)
l,l′ is nonzero only when at least one of the vectors el or el′ has a

nonzero ith coordinate. The two terms (I) and (II) correspond to the contributions from the original
and the perturbed parts, respectively. In what follows we focus on an upper bound for the term (I);
the term (II) can be estimated by a completely analogous argument.

Controlling Term (I). Due to the L-Lipschitz continuity of φ with L = γ2 + |bt|γ1, on the good
event E1, the absolute value of φ(e⊤l y; bt) is bounded by |φ(e⊤l y; bt)| ≤ |φ(0; bt)| + L · |e⊤l y|,
which can be further bounded as

|φ(e⊤l y; bt)| ≤ (d ∨ n)−c0 + L
√
s · ∥y∥∞ ≤ C L

√
t s log(n) := Bt,

where we used that t ≤ nc, ∥el∥1 ≤
√
s, and that (d ∨ n)−c0 ≤ 1 ≤ L

√
t s log(n). Note that

the same bound holds for φ(e⊤l y
(i); bt) on the corresponding good event E(i)1 . For Zl,l′ defined in

(H.13), we first upper bound φ(e⊤l y; bt) · φ(e⊤l′ y; bt) by

φ(e⊤l y; bt) · φ(e⊤l′ y; bt) ≤ B2
t 1(e

⊤
l y +

sbt > 0)1(e⊤l′ y +
sbt > 0) + 2Bt(d ∨ n)−c0 + (d ∨ n)−2c0 ,

where we recall that if e⊤l y + sbt > 0, the neuron is deemed activated and its output is bounded
above by Bt. Otherwise, by Definition B.3, the activation is bounded by (d ∨ n)−c0 . Note that
the term (d ∨ n)−c0B−1

t can be made arbitrarily small as c0 is some large constant no less than 4.
Therefore, we just keep the first term above. Secondly, the inner product ⟨el, el′⟩ is upper bounded
by
∑n−1

j=1 1(El,j ̸= 0) · 1(El′,j ̸= 0) as ∥E∥∞ ≤ 1. Lastly, the indicator 1(El,i ̸= 0 ∨ El′,i ̸= 0)

can be upper bounded by 1(El,i ̸= 0) + 1(El′,i ̸= 0). For (I), we then have

(I) ≤ CB4
t

N4
1

· E

[
n−1∑
i=1

(
n−1∑
j=1

N1∑
l,l′=1

1
(
e⊤l y +

sbt > 0
)
1
(
e⊤l′ y +

sbt > 0
)

·
(
1
{
El,i ̸= 0

}
+ 1

{
El′,i ̸= 0

})
1
{
El,j ̸= 0

}
1
{
El′,j ̸= 0

})2

· 1
(
∩3ι=0Eι

) ∣∣∣∣∣ y
]
.
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Due to symmetry in the indices l and l′, we can multiply the constant factor C by 2 and obtain

(I) ≤ CB4
t

N4
1

· E
[n−1∑
i=1

(n−1∑
j=1

N1∑
l=1

1(e⊤l y +
sbt > 0) · 1(El,i ̸= 0) · 1(El,j ̸= 0)

·
N1∑
l′=1

1(El′,j ̸= 0) · 1(e⊤l′ y +sbt > 0)
)2
· 1(∩3ι=0Eι)

∣∣∣ y]

≤ CB4
t

N4
1

· E
[n−1∑
i=1

n−1∑
j=1

( N1∑
l=1

1(e⊤l y +
sbt > 0) · 1(El,i ̸= 0) · 1(El,j ̸= 0)

)2

·
( N1∑

l′=1

1(El′,j ̸= 0) · 1(e⊤l′ y +sbt > 0)

)2

· 1(∩3ι=0Eι)
∣∣∣ y],

where the last inequality holds by the Cauchy-Schwarz inequality. Note that for i ̸= j:

N1∑
l=1

1(El,i ̸= 0) · 1(El,j ̸= 0) ≤
N∑
l=1

1(Hl,i ̸= 0) · 1(Hl,j ̸= 0) ≤ ρ1ρ2N.

Using ρ1ρ2N to substitue one
∑N1

l=1 1(e
⊤
l y + sbt > 0) · 1(El,i ̸= 0) · 1(El,j ̸= 0) for i ̸= j, we

obtain

(I) ≤ B4
tNρ1ρ2
N4

1

· E
[n−1∑
j=1

∑
i̸=j

N1∑
l=1

1(e⊤l y +
sbt > 0) · 1(El,i ̸= 0) · 1(El,j ̸= 0)

·
( N1∑
l′=1

1(El′,j ̸= 0) · 1(e⊤l′ y +sbt > 0)
)2
· 1(∩3ι=0Eι)

∣∣∣ y]

+
B4

t

N4
1

· E
[n−1∑
j=1

( N1∑
l=1

1(e⊤l y +
sbt > 0) · 1(El,j ̸= 0)

)2
·
( N1∑
l′=1

1(El′,j ̸= 0) · 1(e⊤l′ y +sbt > 0)
)2
· 1(∩3ι=0Eι)

∣∣∣ y].
Rearranging the order of summation and using the fact that

∑
i̸=j 1(El,i ̸= 0) ≤ s for any fixed j,

we can further simplify the terms as

(I) ≤ 2B4
t ρ1ρ2s

N3
1

· E
[n−1∑
j=1

( N1∑
l=1

1(e⊤l y +
sbt > 0) · 1(El,j ̸= 0)

)3
· 1(∩3ι=0Eι)

∣∣∣ y]

+
2B4

t

N4
1

· E
[n−1∑
j=1

( N1∑
l=1

1(e⊤l y +
sbt > 0) · 1(El,j ̸= 0)

)4
· 1(∩3ι=0Eι)

∣∣∣ y]. (H.14)

Observe that the above two terms share a common structure. We define the common structure as

(III) :=
1

Nq
1

· E
[n−1∑
j=1

( N1∑
l=1

1(e⊤l y +
sbt > 0) · 1(El,j ̸= 0)

)q
· 1(∩3ι=0Eι)

∣∣∣ y],
where q ∈ {3, 4}. Recall the definition Sj = {l ∈ [N1] : El,j ̸= 0}. It holds that |Sj | ≤ N1ρ1. We
aim to control

N1∑
l=1

1(e⊤l y +
sbt > 0) · 1(El,j ̸= 0) = |Sj |−1

∑
l∈Sj

1(e⊤l y +
sbt > 0)
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in the following. By the definition of the good event E2, we have

(III) ≤ C

Nq
1

·
n−1∑
j=1

((∑
l∈Dj

Φ
(
−

sbt +Hl,jyj√
1−H2

l,j

)
+ |Sj |ρ2st log(n)

)q

1(∩3ι=0Eι)

)

≤ 2q−1C

Nq
1

·
n−1∑
j=1

|Dj |q ·

(
1

|Dj |
∑
l∈Dj

Φ
(
−

sbt +Hl,jyj√
1−H2

l,j

)q
1(∩3ι=0Eι) +

(
ρ2st log(n)

)q)

≤ Cρq1 ·

(
n−1∑
j=1

1

|Dj |
∑
l∈Dj

Φ
(
−

sbt +Hl,jyj√
1−H2

l,j

)q
1(∩3ι=0Eι) + n

(
ρ2st log(n)

)q)
. (H.15)

where we use the Hölder’s inequality for the second line, and in the last line, we absorb the constant
factor 2q−1 into the universal constant C and use the fact that |Sj | ≤ |Dj | ≤ Nρ1 ≤ N1ρ1/(1 −
ρ1)≤ C1N1ρ1 for all j ∈ [n− 1], where we also absorb the factor Cq

1 into the universal constant C.
By the definition of the good event E3, it holds that

n−1∑
j=1

1

|Dj |
∑
l∈Dj

Φ
(
−

sbt +Hl,jyj√
1−H2

l,j

)q
1(∩3ι=0Eι)

≤ C ·

(
n−1∑
j=1

1

|Dj |
∑
l∈Dj

E
[
Φ
(
−

sbt +Hl,jyj√
1−H2

l,j

)q]
+Φ

(
−

sbt + ℏq,tζt√
1− ℏ2q,t

)q
t log(n)

)
. (H.16)

To evaluate the expectation term, we use the Mills ratio Φ(x) ≤ Cp(x) for some universal constant
C > 0, x > 0 and p(x) = exp(−x2/2)/

√
2π to obtain

E
[
Φ
(
−

sbt +Hl,jyj√
1−H2

l,j

)q]
≤ C · E

[
exp
(
−q(

sbt +Hl,jyj)
2

2(1−H2
l,j)

)
1(sbt +Hl,jyj ≤ 0)

]
+ P(sbt +Hl,jyj > 0)

≤ C · E
[
exp
(
−q(

sbt +Hl,jyj)
2

2(1−H2
l,j)

)]
+Φ

(
−

sbt
Hl,j

)
= C

√
1−H2

l,j

1 + (q − 1)H2
l,j

· exp
(
−

sb2t
2( q−1

q H2
l,j +

1
q )

)
+Φ

(
−

sbt
Hl,j

)
,

(H.17)
where the third equality holds by direct algebraic calculation for Gaussian integral. By the Mills
ratio Φ(x)/p(x) ≥ x−1 − x−3 = Cx−1 for x≫ 1, and also the fact that Hl,j ∈ [0, 1], we conclude
that the right-hand side of (H.17) is bounded by

E
[
Φ
(
−

sbt +Hl,jyj√
1−H2

l,j

)q]
≤ C|sbt|Φ

(
−sbt√

q−1
q H2

l,j +
1
q

)
. (H.18)

Similar to the previous argument, we also have Φ
(
− sbt√

q−1
q x2+ 1

q

)
as a non-decreasing function of x

for x ∈ [0, 1] by checking the derivative. We define ℏq,⋆ as the smallest real number such that the
following inequality holds:

n∑
j=1

1

|Dj |
∑
l∈Dj

Φ

(
−sbt√

q−1
q H2

l,j +
1
q

)
≤ n · Φ

(
−sbt√

q−1
q ℏ2q,⋆ + 1

q

)
. (H.19)

Plugging (H.18) and (H.19) into (H.16), we have that
n−1∑
j=1

1

|Dj |
∑
l∈Dj

Φ
(
−

sbt +Hl,jyj√
1−H2

l,j

)q
1(∩3ι=0Eι)

≤ C ·

(
n|sbt|Φ

(
−sbt√

q−1
q ℏ2q,⋆ + 1

q

)
+Φ

(
−

sbt + ℏq,tζt√
1− ℏ2q,t

)q
t log(n)

)
. (H.20)
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Combining (H.15) and (H.20), we obtain

(III) ≤ Cρq1 ·

(
n |sbt|Φ

(
−sbt√

q−1
q ℏ2q,⋆ + 1

q

)
+Φ

(
−

sbt + ℏq,tζt√
1− ℏ2q,t

)q
t log(n) + n

(
ρ2 s t log(n)

)q)
.

Note that we always have ℏq,⋆ ≤ 1 and ℏq,t ≤ 1 for t ≥ 1. As both Φ
(

−sbt√
q−1
q x2+ 1

q

)
and

Φ
(
− sbt+xζt√

1−x2

)q
(when ζt > −sbt) are non-decreasing functions with respect to x, for the first term in

the right-hand side of (H.14), we take q = 3 and ℏq,t = 1 to have the following upper bound:

2B4
t ρ1ρ2s

N3
1

· E
[n−1∑
j=1

( N1∑
l=1

1(e⊤l y +
sbt > 0) · 1(El,j ̸= 0)

)3
· 1(∩3ι=0Eι)

∣∣∣ y]

≤ CB4
t ρ

4
1ρ2s ·

(
n|sbt|Φ

(
−sbt√

2
3ℏ

2
3,⋆ +

1
3

)
+ t log(n) + n(ρ2st log(n))

3

)
. (H.21)

For the second term on the right-hand side of (H.14), we take q = 4 and obtain

2B4
t

N4
1

· E
[n−1∑
j=1

( N1∑
l=1

1(e⊤l y +
sbt > 0) · 1(El,j ̸= 0)

)4
· 1(∩3ι=0Eι)

∣∣∣ y]

≤ CB4
t ρ

4
1 ·

(
n |sbt|Φ

(
−sbt√

3
4 ℏ

2
4,⋆ +

1
4

)
+Φ

(
−

sbt + ℏ4,tζt√
1− ℏ24,t

)4
t log(n) + n

(
ρ2 s t log(n)

)4)
.

(H.22)

We conclude by combining (H.21) and (H.22) that

(I) ≤CB4
t ρ

4
1 ·

(
n |sbt|Φ

(
−sbt√

3
4 ℏ

2
4,⋆ +

1
4

)
+ ρ2sn|sbt|Φ

(
−sbt√

2
3ℏ

2
3,⋆ +

1
3

)

+

(
Φ
(
−

sbt + ℏ4,tζt√
1− ℏ24,t

)4
+ ρ2s

)
t log(n) + n

(
ρ2 s t log(n)

)4)
=: V0.

Similarly, (II) can be bounded by V0. We are now ready to invoke Theorem J.9. Since V ≤ 2V0
with probability 1, the final bound for |Z − E[Z]| is then given by

|Z − E[Z]| ≤ C
√
V0 log(δ−1),

where the inequality holds with probability at least 1− δ over the randomness of standard Gaussian
vectors z−1:T . Plugging in the formula for V0, we obtain the following upper bound

|Z − E[Z]| ≤ CB2
t ρ

2
1 ·

(
n |sbt|Φ

(
−sbt√

3
4 ℏ

2
4,⋆ +

1
4

)
+ ρ2sn|sbt|Φ

(
−sbt√

2
3ℏ

2
3,⋆ +

1
3

)

+

(
Φ
(
−

sbt + ℏ4,tζt√
1− ℏ24,t

)4
+ ρ2s

)
t log(n) + n

(
ρ2 s t log(n)

)4)1/2

· log δ−1

with probability 1−δ. For notational convenience, we defineKt as the 1/4 power of each term inside
the bracket in the above equation (see (F.9) for the definition). The fluctuation of Z is controlled by

|Z − E[Z]| ≤ CL2ρ21ts logn · K2
t · log δ−1,

where we plug in the definition Bt = L
√
ts logn and L = γ2 + |bt|γ1 is the Lipschitz constant for

the activation function φ.
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Expectation E[Z]. For E[∥E⊤φ(Ey⋆t ; bt)∥22], we have

1

N2
1

· E
[
∥E⊤φ(Ey⋆t ; bt)∥22

]
≤ 1

N2
1

N∑
l,l′=1

E
[∣∣φ(rh⊤l y; bt) · φ(rh⊤l′ y; bt)∣∣] · ⟨rhl,rhl′⟩

≤ C2
1 · pEl,l′

[
E
[∣∣φ(rh⊤l y; bt) · φ(rh⊤l′ y; bt)∣∣] · ⟨rhl,rhl′⟩],

where in the first inequality, we obtain the upper bound by also adding the rows of F that are not
contained in the submatrix E to the sum. Here, we use the notation

rhl = (Hl,1, . . . ,Hl,i−1, Hl,i+1, . . . ,Hl,n−1)
⊤

to denote the l-th row of H with the i-th entry removed. This structure comes from the definition
(E.3) where we decompose the matrix H into submatrices E, F and the column vector θ as the
non-zero entries in H:,i if the feature of interest is the i-th feature. In the second inequality, we use
the fact that N/N1 ≤ C1, and define pEl,l′ as the empirical expectation over l, l′ ∈ [N ]2. Invoking
Theorem F.5 with L = γ2 + |bt|γ1, sb = sbt = bt + κ0, we conclude that

pEl,l′

[
E
[∣∣φ(rh⊤l y; bt) · φ(rh⊤l′ y; bt)∣∣] · ⟨rhl,rhl′⟩]

≤ CL · (n ∨ d)−c0 + CL2 · Φ(|sbt|) · pEl,l′

[
Φ
(
|sbt|

√
1− ⟨rhl,rhl′⟩
1 + ⟨rhl,rhl′⟩

)
⟨rhl,rhl′⟩

]

≤ CL · (n ∨ d)−c0 + CL2 · Φ(|sbt|) · pEl,l′

[
Φ
(
|sbt|

√
1− ⟨hl, hl′⟩
1 + ⟨hl, hl′⟩

)
⟨hl, hl′⟩

]
,

where in the first inequality, we directly apply Theorem F.5 to the expectation term, and in the second
inequality, we use the fact that ⟨rhl,rhl′⟩ ≤ ⟨hl, hl′⟩ for l, l′ ∈ [N1] and the fact that the term inside
the expectation is non-decreasing when increasing the value of ⟨rhl,rhl′⟩. Just as before, since c0 > 4
is large enough, the first term is negligible, and we can absorb it into the constant C and focus on
the second term:

1

N2
1

· E
[
∥E⊤φ(Ey⋆t ; bt)∥22

]
≤ CL2 · Φ(|sbt|) · pEl,l′

[
Φ
(
|sbt|

√
1− ⟨hl, hl′⟩
1 + ⟨hl, hl′⟩

)
⟨hl, hl′⟩

]
.

Since ∥E⊤φ(Ey⋆t ; bt)∥22 is non-negative, the same upper bound applies to E[Z], where Z includes
the indicator condition 1(∩3ι=0Eι).
Finally, we plug in δ = n−c to conclude that with probability at least 1− n−c it holds that

1

N2
1

∥E⊤φ(Ey⋆t ; bt)∥22 · 1(E0) · 1(∩3ι=0Eι) ≤ CL2 · ρ21st2(log n)2 · K2
t

+ CL2 · Φ(|sbt|) · pEl,l′

[
Φ
(
|sbt|

√
1− ⟨hl, hl′⟩
1 + ⟨hl, hl′⟩

)
⟨hl, hl′⟩

]
.

Note that the joint event 1(∩3ι=1Eι) holds with probability at least 1 − n−c as we discussed earlier.
Therefore, we can safely drop the indicator 1(∩3ι=1Eι) in the above inequality. This completes the
proof of Theorem F.4.

H.2.4 CONCENTRATION FOR ∥F⊤φ(Fyt + θ · v⊤ swt−1; bt)∥22: PROOF OF THEOREM F.6

In the following proof, we will use C to denote universal constants that change from line to line. Let
us fix {ατ,t−1}t−1

τ=−1 and bt. Then y⋆t ∼ N (0, In−1). For simplicity, we will denote y⋆t by y in the
following. Let us define the good event

E =
{

max
τ=−1,0,...,t−1

∥zτ∥∞ ≤ (1 +
√
c)
√
2 log(nt)

}
.
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It then follows from Theorem J.2 that P(E) ≤ (nt)−c ≤ n−c, and also ∥y∥∞ ≤ (1 +√
c)
√

2t log(nt) on E . In particular,

|φ(f⊤l y + θlv
⊤

swt−1; bt)|1(E) ≤ (γ2 + |bt|γ1)((1 +
√
c)
√
2t log(nt) + θl∥v∥2α−1,t−1) + (n ∨ d)−c0 :=Bt,

where the inequality holds by the Lipschitz continuity of φ in Definition B.3 and also the fact that
bt + κ0 ≤ 0 for the bias. Define

Z =
1

N2
2

N2∑
l,l′=1

⟨fl, fl′⟩ · φ
(
f⊤l y + θlv

⊤
swt−1; bt

)
· φ
(
f⊤l′ y + θl′v

⊤
swt−1; bt

)
1(E).

Using the Cauchy-Schwarz inequality, we have

Z ≤ 1

N2
2

N2∑
l,l′=1

(
φ
(
f⊤l y + θlv

⊤
swt−1; bt

)2
+ φ

(
f⊤l′ y + θl′v

⊤
swt−1; bt

)2) · 1(⟨fl, fl′⟩ ̸= 0) · 1(E)

≤ 2ρ2
N2

N2∑
l=1

φ
(
f⊤l y + θlv

⊤
swt−1; bt

)2
1(E), (H.23)

where the first inequality follows from ab ≤ a2 + b2, and the second inequality follows from the
fact that ⟨fl, fl′⟩2 is nonzero for at most N2ρ2 terms when going over l′ by definition (F.1). Next,
we concentrate the right-hand side of (H.23). Note that by the Lipschitz continuity of φ, we have

|φ(f⊤l y + θlv
⊤

swt−1; bt)| ≤ (γ2 + |bt|γ1)(|f⊤l y|+ θl∥v∥2α−1,t−1) + (n ∨ d)−c0 .

By the Cauchy-Schwarz inequality, we further obtain

φ(f⊤l y + θlv
⊤

swt−1; bt)
2 ≤ C(γ2 + |bt|γ1)2

(
(f⊤l y)

2 + (θl∥v∥2α−1,t−1)
2
)
+ C(n ∨ d)−2c0 .

(H.24)

To this end, we apply the Cauchy-Schwarz inequality again to obtain that

1

N2

N2∑
l=1

(f⊤l y)
2 ≤ 1

N2

N2∑
l=1

(n−1∑
j=1

y(j)2 1(fl(j) ̸= 0)
)
· ∥fl∥22 ≤ ρ2 · ∥y∥22.

Under the good event E , we have ∥y∥2 ≤ (1 +
√
c)
√

2t log(nt). In fact, ∥y∥22 ∼ χ2
n−1, and we can

apply the concentration inequality for the chi-squared distribution in Theorem J.1 to obtain that with
probability at least 1− δ, it holds over the randomness of y that

1

N2

N2∑
l=1

(f⊤l y)
2 1(E) ≤ 1

N2

N2∑
l=1

(f⊤l y)
2 ≤ Cρ2 ·

(
n+ log δ−1

)
.

Applying a union bound over {ατ,t−1}t−1
τ=−1 and bt similar to Theorem H.4, and sinceZ is uniformly

bounded, we conclude that with probability at least 1− n−c, it holds for all t ≤ nc that

1

N2

N2∑
l=1

(f⊤l y)
2 1(E) ≤ Cρ2 ·

(
n+ t log(n)

)
. (H.25)

Combining (H.23), (H.24), and (H.25), we conclude that with probability at least 1 − n−c, it holds
for all t ≤ nc that

Z ≤ C(γ2 + |bt|γ1)2ρ2 ·
(
N−1

2 ∥θ∥22∥v∥22α2
−1,t−1 + ρ2n+ ρ2t logn

)
.

As the good event E holds with sufficiently high probability if we choose c large enough in the
definition of E , A similar bound holds for the original quantity ∥F⊤φ(Fyt+θ ·v⊤ swt−1; bt)∥22. This
completes the proof of Theorem F.6.
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H.2.5 CONCENTRATION FOR ⟨zτ , E⊤φ(Ey⋆t ; bt)⟩: PROOF OF THEOREM F.7

In the following proof, we will use C to denote universal constants that change from line to line.
When treating {ατ,t−1}t−1

τ=−1 and bt to be deterministic, we have zτ
d
= ατ,t−1y

⋆
t +
√
1− α2

τ,t−1 · z,

where z ∼ N (0, In−1) and is independent of y⋆t . In the following, we use y to replace y⋆t , and α to
replace ατ,t−1 for notational simplicity. Therefore, the concentration we consider can be reduced to
the concentration of

α · 1

N1
⟨y,E⊤φ(Ey; bt)⟩+

√
1− α2 · 1

N1
⟨z, E⊤φ(Ey; bt)⟩,

Firstly, note that when conditioned on y, ⟨z, E⊤φ(Ey; bt)⟩ is a gaussian random variable with mean
zero and variance ∥E⊤φ(Ey; bt)∥22, it holds with probability at least 1 − δ over the randomness of
y that

1

N1
|⟨z, E⊤φ(Ey; bt)⟩| ≤

1

N1

√
2∥E⊤φ(Ey; bt)∥22 log δ−1,

where the second order term has already been handled in Theorem F.4. Similar to the proof of Theo-
rem H.4, we can use a covering argument over {ατ,t−1}t−1

τ=−1 ∈ St+1, bt ∈ R, τ = −1, 0, . . . , t− 1
and t ≤ nc to obtain that with probability at least 1− n−c, it holds for all (τ, t) that

1

N1
|⟨z, E⊤φ(Ey; bt)⟩| ≤

C

N1

√
∥E⊤φ(Ey; bt)∥22 · t log(n).

Now it remains to control the first term. Define good event

E =
{
∥y∥∞ ≤ (1 +

√
c)
√
2t log(nt)

}
.

In fact, the above good event can be directly implied by the following good event:

E =
{

max
τ=−1,0,...,t−1

∥zτ∥∞ ≤ (1 +
√
c)
√
2 log(nt)

}
.

For notational simplicity, we will just focus on the latter definition of the good event. It follows from
Theorem J.2 that P(E) ≥ 1− (tn)−c ≥ 1− n−c. Let us define

Z =
1

N1
⟨y,E⊤φ(Ey; bt)⟩ · 1(E), and V :=E

[n−1∑
i=1

(Z − Z(i))2
∣∣∣ y],

where Z(i) = ⟨y(i), E⊤φ(Ey(i); bt)⟩ · 1(E(i)) and y(i) is given by replacing the i-th coordinate yi
with an independent copy y′i ∼ N (0, 1). Note that this is equivalent to replacing the i-th coordinate
of each zτ with an independent copy z(i)τ . Thus, the good event E can be also changed to E(i)
accordingly. Next, we show how to control the variance V . Let us define

Zl = e⊤l y · φ(e⊤l y; bt) · 1(E) and Z
(i)
l = e⊤l y

(i) · φ(e⊤l y(i); bt) · 1(E(i))

for any l ∈ [N1]. On the joint event E ∪ E(1) ∪ . . . ∪ E(n−1), we have by the Lipschitzness of φ in
Definition B.3 that

|Zl| ≤ C(γ2 + |bt|γ1)t log(nt)=:Bt, ∀l ∈ [N1]. (H.26)

This bounds also holds for all Z(i)
l for i ∈ [n− 1]. By a reformulation, we obtain for the joint event

E ∪ E1 ∪ . . . ∪ En−1 that

(Z − Z(i))2 =
1

N2
1

·
( N1∑

l=1

(Zl − Z(i)
l )

)2

=
1

N2
1

·
( N1∑

l=1

(Zl − Z(i)
l ) · 1(El,i ̸= 0)

)2

≤ ρ1
N1
·

N1∑
l=1

(Zl − Z(i)
l )2 · 1(El,i ̸= 0) ≤ 2ρ1

N1
·

N1∑
l=1

(
Z2
l + (Z

(i)
l )2

)
· 1(El,i ̸= 0)

≤ 2ρ1
N1

B2
t ·

N1∑
l=1

(
1(e⊤l y +

sbt > 0) + 1(e⊤l y
(i) +sbt > 0) + 2B−1

t (n ∨ d)−c0
)
· 1(El,i ̸= 0),
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where the first inequality holds by the Cauchy-Schwarz inequality, the second one holds by (a −
b)2 ≤ 2(a2 + b2), and the last line holds by Definition B.3 and the upper bound in (H.26). Since c0
is some sufficiently large constant, we can safely ignore the term involving (n∨ d)−c0 in the sequel
(when invoking a constant factor C). Taking a summation over i = 1, . . . , n − 1 on both sides and
taking the conditional expectation, we obtain that

V ≤ Cρ1
N1

B2
t ·

n−1∑
i=1

N1∑
l=1

(
1(e⊤l y +

sbt > 0) + E
[
1(e⊤l y

(i) +sbt > 0) | y
])
· 1(El,i ̸= 0).

Let us define

g(y) =
2ρ1B

2
t

N1
·
n−1∑
i=1

N1∑
l=1

1(e⊤l y +
sbt > 0) · 1(El,i ̸= 0).

Therefore, the moment generating function of V is controlled by

E[exp(λV )] ≤ E
[
exp(λg(y)) · exp

(
λE[g(y(i)) | y]

)]
≤ E

[
exp(λg(y)) · exp

(
λg(y(i))

)]
for λ > 0. Here, the last inequality follows from the Jensen’s inequality. To this end, we notice
that g is a non-decreasing functions of y. Then by Theorem J.10, we have that E[exp(λg(y)) ·
exp(λg(y(i)))] ≤ E[exp(2λg(y))]. Therefore, we just need to focus on the moment generating
function of g(y). Note that since el is s-sparse, with probability at least 1− δ over the randomness
of y, we have

g(y) ≤ 2sρ1B
2
t

N1
·

N1∑
l=1

1(e⊤l y +
sbt > 0) ≤ Csρ1B2

t ·
(
Φ(|sbt|) + ρ1s log δ

−1
)
.

where in the last inequality, we invoke Theorem H.4. This can be transformed into the following tail
bound

E
[
exp(λV )

]
≤ E

[
exp(2λg(y))

]
, where P

(
g(y) > Csρ1B

2
tΦ(|sbt|) + v

)
≤ exp

(
− v

Cρ21s
2B2

t

)
,

and any v > 0. In particular, for V+ and V− defined in (J.2), we always have 0 ≤ V+ ≤ V and
0 ≤ V− ≤ V . With the sub-exponential tail bound, we now invoke Condition 1 of Theorem J.8 to
conclude that with probability at least 1− δ over the randomness of y,

|Z − E[Z]| ≤ CBt

(√
sρ1Φ(|sbt|) log δ−1 + ρ1s log δ

−1
)
. (H.27)

Since Z is Lipschitz over {ατ,t−1}t−1
τ=−1 and {zτ}t−1

τ=−1, we follow a similar covering argument over
the balls {St−1}Tt=1 with T ≤ nc. Note that the failure probability of the joint event E ∪ E(1) ∪
. . . ∪ E(n−1) is at most n1−c. In addition, we can set δ = n−c(n−cεn

c

) in (H.27), where ϵ is
the approximation error in the covering argument in the infinity norm. By a union bound of the
covering net of size ncε−nc

, we will obtain a failure probability at most n−c as well. By decreasing
the constant c slightly (up to 2), we can combine the two failure probabilities to obtain that for all
t ≤ nc, it holds with probability at least 1− n−c that

|Z − E[Z]| ≤ CBt

(√
sρ1Φ(|sbt|) · t log(n) + sρ1 · t log(n)

)
.

Next, let us evaluate the expectation E[Z]. By definition,∣∣∣E[Z]− 1

N1
E
[
⟨y,E⊤φ(Ey; bt)⟩

]∣∣∣ = 1

N1
E
[
⟨y,E⊤φ(Ey; bt)⟩ · 1(E)

]
≤ 1

N1

√
E
[
⟨y,E⊤φ(Ey; bt)⟩2

]
· P(E).

Since P(E) ≤ n−c, while E
[
⟨y,E⊤φ(Ey; bt)⟩2

]
is at mostC(sb2t+(γ1+|sbt|γ2)2) for some universal

constant C by the Lipschitzness of φ given by Definition B.3. We can pick c in the definition of E
to be sufficiently large, Thereby, the approximation error in the expectation is negligible. We thus
just need to evaluate

1

N1
E
[
⟨y,E⊤φ(Ey; bt)⟩

]
=

1

N1

N1∑
l=1

E
[
e⊤l y · φ(e⊤l y; bt)

]
= Ex∼N (0,1)[xφ(x; bt)] =:

pφ1(bt).
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Hence, we conclude that for all τ ≤ t− 1 and t ≤ nc, it holds with probability at least 1− n−c that∣∣∣ 1

N1
⟨zτ , E⊤φ(Eyt; bt)⟩ − ατ,t−1 · pφ1(bt)

∣∣∣ ≤ ατ,t−1 · CBt

(√
sρ1Φ(|sbt|) · t log(n) + sρ1 · t log(n)

)
+
√
1− α2

τ,t−1 ·
C

N1

√
2∥E⊤φ(Ey; bt)∥22 · t log(n).

Plugging in the definition of Bt = C(γ2 + |bt|γ1)t log(nt), we complete the proof of Theorem F.7.

H.2.6 CONCENTRATION FOR ⟨zτ , F⊤φ(Fyt + θ · v⊤ swt−1; bt)⟩: PROOF OF THEOREM F.9

In this proof, we will show the concentration for the term N−1
2 ⟨zτ , F⊤φ(Fyt + θ · v⊤ swt−1; bt)⟩.

Similar to the proof of Theorem F.7, when fixing {ατ,t−1}t−1
τ=−1 and {bt,l}l=1, we have y⋆t ∼

N (0, In−1). For simplicity, we will denote y⋆t by y in the following. Note that zτ
d
= ατ,t−1y +√

1− α2
τ,t−1 · z where z ∼ N (0, In−1) is independent of y. In the sequel, we also simplify ατ,t−1

to α. Therefore, the concentration we consider can be reduced to

α · 1

N2
⟨y, F⊤φ(Fy + θ · v⊤ swt−1; bt)⟩+

√
1− α2 · 1

N2
⟨z, F⊤φ(Fy + θ · v⊤ swt−1; bt)⟩.

The concentration for the second part follows directly from the Gaussian tail bound. That said, with
probability at least 1− δ, it holds that

1

N2

∣∣⟨z, F⊤φ(Fy + θ · v⊤ swt−1; bt)⟩
∣∣ ≤ 1

N2
·
√

2∥F⊤φ(Fy + θ · v⊤ swt−1; bt)∥22 · log δ−1,

where the right-hand side can be controlled by Theorem F.6. Then by a covering argument over
{ατ,t−1}t−1

τ=−1 and bt similar to Theorem H.4 (with proper truncation of the random variables that
yields a sufficiently small error probability), we conclude that with probability at least 1 − n−c, it
holds for all t = 1, . . . , T and τ = −1, 0, . . . , t− 1 that

1

N2

∣∣⟨z, F⊤φ(Fy + θ · v⊤ swt−1; bt)⟩
∣∣ ≤ C

N2
·
√
∥F⊤φ(Fy + θ · v⊤ swt−1; bt)∥22 · t log(n).

To control the first term, define good event

E =
{

max
τ=−1,0,...,t−1

∥zτ∥∞ ≤ (1 +
√
c)
√
2 log(nt)

}
.

On this good event, ∥y∥∞ ≤ (1 +
√
c)
√

2t log(nt) and this good event holds with probability at
least 1− (tn)−c ≥ 1− n−c. We define

Z =
1

N2
⟨y, F⊤φ(Fy + θ · v⊤ swt−1; bt)⟩1(E), and V = E

[n−1∑
i=1

(Z − Z(i))2
∣∣∣ y],

where Z(i) = N−1
2 ⟨y(i), F⊤φ(Fy(i) + θ · v⊤ swt−1; bt)⟩1(E(i)). Here, we define y(i) =∑t−1

j=−1 αj,t−1z
(i)
j with z(i)τ given by replacing the i-th coordinate of zj with an independent copy,

and E(i) is the event defined with respect to z(i)τ . Let us define

Zl = f⊤l y · φ(f⊤l y + θlv
⊤

swt−1; bt)1(E), Z
(i)
l = f⊤l y

(i) · φ(f⊤l y(i) + θlv
⊤

swt−1; bt)1(E(i)),

where fl is the l-th row of F . On the joint event E ∪ E(1) ∪ · · · ∪ E(n−1), we have by the Lipschitz
continuity of φ in Definition B.3 that

|Zl| ≤ C
(
(γ2 + |bt|γ1) · (

√
t log(n) + ∥v∥2α−1,t−1) + (n ∨ d)−c0

)
·
√
t log(n) :=Bt,

where we also use the fact that bt + κ0 ≤ 0 for the bias. Note that the (n ∨ d)−c0 term is negligible
when c0 is sufficiently large. For notation simplicity, we define rbt,l = bt + κ0 + θlv

⊤
swt−1. This
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bound also holds for Z(i)
l . On the joint event E ∪ E(1) ∪ · · · ∪ E(n−1), we have

(Z − Z(i))2 ≤ 1

N2
2

N2∑
l=1

(Zl − Z(i)
l )2 ≤ 1

N2
2

·
( N2∑

l=1

(Zl − Z(i)
l )2 1(Fl,i ̸= 0)

)2

≤ ρ2
N2

N2∑
l=1

(Zl − Z(i)
l )2 1(Fl,i ̸= 0) ≤ 2ρ2

N2

N2∑
l=1

(
Z2
l + (Z

(i)
l )2

)
1(Fl,i ̸= 0)

≤ 2ρ2B
2
t

N2

N2∑
l=1

(
1(f⊤l y +

rbt,l > 0) + 1(f⊤l y
(i) +rbt,l > 0) + 2B−1

t (n ∨ d)−c0
)
1(Fl,i ̸= 0),

where the first inequality holds by the Cauchy-Schwarz inequality, the second one holds by (a −
b)2 ≤ 2(a2 + b2), and the last line holds by Definition B.3 and the upper bound for Zl and Z(i)

l .
We can also ignore the 2B−1

t (n ∨ d)−c0 term by multiplying some universal constant. Taking a
summation over i = 1, . . . , n− 1 on both sides with the conditional expectation, we obtain

V ≤ Cρ2B
2
t

N2

n−1∑
i=1

N2∑
l=1

(
1(f⊤l y +

rbt,l > 0) + E
[
1(f⊤l y

(i) +rbt,l > 0)
])
· 1(Fl,i ̸= 0).

Let us take

g(y) :=
Cρ2B

2
t

N2

n−1∑
i=1

N2∑
l=1

1(f⊤l y +
rbt,l > 0)1(Fl,i ̸= 0)

=
Cρ2sB

2
t

N2

N2∑
l=1

1(f⊤l y +
rbt,l > 0) ≤ Cρ2sB2

t .

Then we have by the monotonicity of g and Theorem J.10 that E[exp(λV )] ≤ E[exp(2λg(y))] for
all λ > 0. Invoking Theorem J.9 for this bounded variance, we obtain that with probability at least
1− δ over the randomness of y, it holds that

|Z − E[Z]| ≤ CBt
√
ρ2s · log δ−1.

By a covering argument over {ατ,t−1}t−1
τ=−1 and bt similar to Theorem H.4, we conclude that |Z −

E[Z]| ≤ CBt
√
ρ2s · t log(n) with probability at least 1 − n−c for all t = 1, . . . , T and τ =

−1, 0, . . . , t− 1. In addition, the approximation error∣∣∣E[Z]− 1

N2
E[⟨y, F⊤φ(Fy + θ · v⊤ swt−1; bt)⟩]

∣∣∣ ∝√P(E)

by the Cauchy-Schwarz inequality and the fact that f⊤l yφ(f
⊤
l y+θlv

⊤
swt−1; bt) has bounded second

moment. Therefore, by taking a sufficiently large c in the definition of the good event E , we can
make this approximation error negligible. Moreover, we also have

E[f⊤l yφ(f⊤l y + θlv
⊤

swt−1; bt)] =
√

1− θ2l · Ex∼N (0,1)

[
xφ
(√

1− θ2l x+ θlv
⊤

swt−1; bt
)]
.

Combining everything, we conclude that with probability at least 1 − n−c, it holds for all t =
1, . . . , T and τ = −1, 0, . . . , t− 1 that

1

N2

∣∣∣⟨zτ , F⊤φ(Fy⋆t + θ · v⊤ swt−1; bt)⟩ −
N2∑
l=1

ατ,t−1

√
1− θ2l · Ex∼N (0,1)

[
xφ
(√

1− θ2l x+ θlv
⊤

swt−1; bt
)]∣∣∣

≤ C

N2

√
1− α2

τ,t−1 ·
√
∥F⊤φ(Fy + θ · v⊤ swt−1; bt)∥22 · t log(n)

+ Cατ,t−1 · (γ2 + |bt|γ1) · (
√
t log(n) + ∥v∥2α−1,t−1) ·

√
ρ2s · (t log(n))3/2

This completes the proof of Theorem F.9.

75



4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103

Under review as a conference paper at ICLR 2026

H.2.7 CONCENTRATION FOR θ⊤φ(Fy⋆t + θv⊤ swt−1; bt): PROOF OF THEOREM F.10

In the following, we will use C to denote universal constants that change from line to line. Let fl
denote the l-th row of F . Let us first fix {ατ,t−1}t−1

τ=−1 and bt. Then y⋆t ∼ N (0, In−1). In the
sequel, we will simplify y ← y⋆t . Let us define the good event

E =
{

max
τ=−1,0,...,t−1

∥zτ∥∞ ≤ (1 +
√
c)
√
2 log(nt)

}
.

It then follows from Theorem J.2 that P(E) ≤ (nt)−c ≤ n−c, and also ∥y∥∞ ≤ (1 +√
c)
√

2t log(nt) on E . In particular,

|φ(f⊤l y + θlv
⊤

swt−1; bt)|1(E) ≤ (γ2 + |bt|γ1)((1 +
√
c)
√
2t log(nt) + ∥v∥2α−1,t−1) + (n ∨ d)−c0 :=Bt.

where the last inequality holds by noting that φ(·; bt) is γ2+ |bt|γ1-Lipschitz by Definition B.3, and
also the fact that sbt = bt + κ0 ≤ 0. The target function to study is

Z =
1

N2

N2∑
l=1

θlφ(f
⊤
l y;

rbt,l)1(E), where rbt,l = bt,l + θl∥v∥2α−1,t−1.

Let y(i) be the vector obtained by replacing the i-th element of yt with an independent standard
Gaussian random variable y′t(i). The good event E(i) is defined similarly. Define Z(i) as the
correspondence of Z with y(i) and E(i). Let us define variance V = E[

∑n−1
i=1 (Z − Z(i))2].

Notice that this V upper bounds both V+ = E[
∑n−1

i=1 (Z − Z(i))2 1(Z > Z(i))] and V− =

E[
∑n−1

i=1 (Z − Z(i))2 1(Z < Z(i))]. Note that when changing one coordinate in y, the total number
of terms affected in Z is at most N2ρ2 by definition (F.1). It then holds by the Cauchy-Schwarz
inequality that

V ≤ Cρ2
N2

n−1∑
i=1

N2∑
l=1

θ2l · E
[(
φ(f⊤l y;

rbt,l)1(E)− φ(f⊤l y(i);rbt,l)1(E)
)2 | y]

≤ CB2
t ρ2

N2

n−1∑
i=1

N2∑
l=1

θ2l 1(fl(i) ̸= 0),

where in the second inequality, the indicator is included since the term will be zero if fl(i) = 0.
Additionally, we invoke the bound Bt to upper bound the φ(·) term. Let us define

g(y) :=
CB2

t ρ2
N2

n−1∑
i=1

N2∑
l=1

θ2l · 1(fl(i) ̸= 0) ≤ CB2
t ρ2s

N2
∥θ∥22.

By Theorem J.10, we know that the MGF of V can be upper bounded by E[exp(λV )] ≤
E
[
exp(2λg(y))

]
. Thanks to the bounded variance, invoking Theorem J.9, we conclude that with

probability at least 1− δ over the randomness of y, it holds that∣∣Z − E[Z]
∣∣ ≤ CBt∥θ∥2

√
ρ2s

N2
log(δ−1).

Next, we invoke a union covering argument over the ball St+1 for ατ,t−1 and also for bt. Since Z
is Lipschitz and bounded, the approximation error can be made sufficiently small. Therefore, we
conclude that with probability at least 1− n−c, it holds for all t ≤ nc that∣∣Z − E[Z]

∣∣ ≤ CBt∥θ∥2
√
ρ2s

N2
· t log(n).

Similar to previous proof, the error in E[Z] and N−1
2 E[θ⊤φ(Fyt + θ · v⊤ swt−1; bt)] can be made

sufficiently small if we choose a large c in the definition of the good event E . Consequently we just
need to plug in the expectatin

1

N2
E[θ⊤φ(Fyt + θ · v⊤ swt−1; bt)] =

1

N2

N2∑
l=1

Ex∼N (0,1)

[
θl · φ(

√
1− θ2l · x+ θl · v⊤ swt−1; bt)

]
.

This completes the proof of Theorem F.10.
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H.3 PROPOGATION OF THE NON-GAUSSIAN ERROR

In this subsection, we analyze how to Non-Gaussian error ∆yt propagates through the nonlinear
activation.

H.3.1 ERROR ANALYSIS FOR ∆Et: PROOF OF THEOREM F.12

In the following proof, we will use C to denote universal constants that change from line to line.

Bounding ∥∆Et∥1. By definition of ∆Et, we have

∥∆Et∥1 = ∥E⊤φ(E(y⋆t +∆yt); bt)− E⊤φ(Ey⋆t ; bt)∥1 ≤
√
s · ∥φ(E(y⋆t +∆yt); bt)− φ(Ey⋆t ; bt)∥1

≤
√
s(γ2 + |bt|γ1) ·

N1∑
l=1

|e⊤l ∆yt| · 1(e⊤l yt +sbt > 0 ∨ e⊤l y
⋆
t +sbt > 0)

+
√
s ·

N1∑
l=1

2(2 + |bt|) · (n ∨ d)−c0 · 1(e⊤l yt +sbt ≤ 0 ∧ e⊤l y
⋆
t +sbt ≤ 0).

where sbt = bt + κ0 is the shifted bias. The first inequality follows from the fact that ∥el∥1 ≤
√
s

as each row el is s-sparse. The second inequality holds by splitting the summation into two parts.
For the first part {l : e⊤l yt + sbt > 0 ∨ e⊤l y

⋆
t + sbt > 0} where the neuron is activated, we have the

term bounded by the Lipschitz continuity of φ times the pre-activation difference |e⊤l ∆yt|. Here,
we recall from Definition B.3 that φ is (γ2 + |bt|γ1)-Lipschitz continuous. For the second part
{l : e⊤l yt+sbt ≤ 0 ∧ e⊤l y⋆t +sbt ≤ 0} where the neuron is inactive, we simply apply the upper bound
on φ in Definition B.3 as (2+ |bt|) · (n∨ d)−c0 . Note that c0 can be chosen to be a sufficiently large
constant. Thus, we just need to focus on the first part. Using the Cauchy-Schwarz inequality twice,
we have

N1∑
l=1

|e⊤l ∆yt| · 1(e⊤l yt +sbt > 0) ≤
N1∑
l=1

∥el∥2 · ∥∆yt ◦ 1(el ̸= 0)∥2 · 1(e⊤l yt +sbt > 0)

≤

√√√√ N1∑
l=1

1(e⊤l yt +
sbt > 0) ·

N1∑
l=1

∥∆yt ◦ 1(el ̸= 0)∥22, (H.28)

where x ◦ y is the Hadamard product between two vectors x and y. Note that the second term on the
right hand side can be further bounded by

N1∑
l=1

∥∆yt ◦ 1(el ̸= 0)∥22 =

N1∑
l=1

n−1∑
i=1

∆y2t,i · 1(El,i ̸= 0) ≤ ρ1N1 · ∥∆yt∥22. (H.29)

Plugging (H.29) back into (H.28), and invoking Theorem F.3, we conclude that with probability at
least 1− n−c for all t ≤ nc,

N1∑
l=1

|e⊤l ∆yt| · 1(e⊤l yt +sbt > 0) ≤ CN1 ·
√(

Φ(−sbt) + ρ1st log(n) + ρ1|sbt|2∥∆yt∥22
)
ρ1∥∆yt∥22

≤ CN1 ·
((√

ρ1Φ(−sbt) + ρ1
√
st logn

)
· ∥∆yt∥2 + ρ1|sbt| · ∥∆yt∥22

)
.

Note that the ideal activation
∑N1

l=1 1(e
⊤
l y

⋆
t + sbt > 0) has an upper bound in Theorem F.2 even

tighter than the one we use above. Therefore, we just need to double the above error term. Thereby,
we conclude that

∥∆Et∥1 ≤ CN1(γ2 + |bt|γ1) ·
((√

sρ1Φ(−sbt) + sρ1
√
t logn

)
· ∥∆yt∥2 +

√
sρ1|sbt| · ∥∆yt∥22

)
+ CN1

√
s(2 + |bt|) · (n ∨ d)−c0 .
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Bounding ∥∆Et∥22. The proof is similar to bounding ∥∆Et∥1. Again, we notice that for any test
vector x ∈ RN1 ,

∥E⊤x∥22 =

n−1∑
i=1

( N1∑
l=1

El,ixl

)2
≤

n−1∑
i=1

( N1∑
l=1

1(El,i ̸= 0)
)
·
( N1∑
l=1

E2
l,ix

2
l

)
≤ ρ1N1∥x∥22.

Here, the first inequality holds by the Cauchy-Schwarz inequality while the second inequality holds
by the sparsity assumption on the columns of E and also the fact that

∑n−1
i=1 E

2
l,i = ∥el∥22 = 1.

Thereby, it holds for ∥∆Et∥22 that

∥∆Et∥22 ≤ ρ1N1∥φ(E(y⋆t +∆yt); bt)− φ(Ey⋆t ; bt)∥22 ≤ ρ1N1(γ2 + |bt|γ1)2 ·
N1∑
l=1

|e⊤l ∆yt|2

≤ ρ1N1(γ2 + |bt|γ1)2 ·
N1∑
l=1

∥el∥22 · ∥∆yt ◦ 1(el ̸= 0)∥22 ≤ (γ2 + |bt|γ1)2 · (ρ1N1)
2∥∆yt∥22,

where the second inequality holds by the Lipschitz continuity of φ and the third inequality follows
from the Cauchy-Schwarz inequality. The last inequality holds by invoking (H.29). Hence, we
complete the proof of Theorem F.12.

H.3.2 ERROR ANALYSIS FOR ∆Ft: PROOF OF THEOREM F.13

In the following proof, we will use C to denote universal constants that change from line to line. Let
fl be the l-th row of matrix F . Note that

∥∆Ft∥1 ≤
√
s · ∥φ(F (y⋆t +∆yt) + θ · v⊤ swt−1; bt)− φ(Fy⋆t + θ · v⊤ swt−1; bt)∥1

≤
√
s(γ2 + |bt|γ1) ·

N2∑
l=1

|f⊤l ∆yt| ≤
√
s(γ2 + |bt|γ1) · ∥∆yt∥2 ·

N2∑
l=1

∥fl∥2

≤
√
sN2(γ2 + |bt|γ1) · ∥∆yt∥2,

where the first inequality follows from the fact that ∥fl∥1 ≤
√
s by the Hölder’s inequality for s-

sparse fl with ∥fl∥2 ≤ 1, the second inequality follows from the Lipschitzness of φ and the third
inequality follows from the Cauchy-Schwarz inequality. In the last inequality, we use the fact that
∥fl∥2 ≤ 1. Next, we turn to the bound for ∥∆Ft∥2. For any test vector x ∈ RN2 , we have

∥F⊤x∥22 =

n−1∑
i=1

( N2∑
l=1

Flixl

)2
≤

n−1∑
i=1

∥F:,i∥22 · ∥x∥22 ≤ ρ2N2∥x∥22, (H.30)

where we recall that ρ2 = maxi∈[n−1]∥F:,i∥0/N2. Since ∆Ft = F⊤∆φF,t, we have ∥∆Ft∥22 ≤
ρ2N2∥∆φF,t∥22. Next, we use the same Lipschitzness of φ to upper bound ∥∆φF,t∥22 as

∥∆φF,t∥22 ≤ (γ2 + |bt|γ1)2 ·
N2∑
l=1

|f⊤l ∆yt|2 ≤ (γ2 + |bt|γ1)2 ·
N2∑
l=1

∥fl∥22 ·
n−1∑
i=1

∆y2t,i 1(Fl,i ̸= 0)

≤ (γ2 + |bt|γ1)2 ·
n−1∑
i=1

N2∑
l=1

∆y2t,i 1(Fl,i ̸= 0) ≤ N2ρ2(γ2 + |bt|γ1)2 · ∥∆yt∥22, (H.31)

where we use the Cauchy-Schwarz inequality in the second inequality, the fact that ∥fl∥2 ≤ 1 in
the third inequality, and the definition of ρ2 in the last inequality. Combining (H.30) and (H.31), we
conclude that ∥∆Ft∥2 ≤ ρ2N2(γ2 + |bt|γ1) · ∥∆yt∥2. This completes the proof of Theorem F.13.
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H.4 PROOFS FOR TECHNICAL LEMMAS

H.4.1 PROOF OF THEOREM F.5

We invoke the upper bound |φ(x; b)| ≤ (n ∨ d)−c0 + L(x+sb) · 1(x > −sb) to obtain that

E[φ(x; b)φ(ιx+
√

1− ι2 · z; b)]
≤ (n ∨ d)−2c0 + 2(n ∨ d)−c0 · L · E[(x+sb) · 1(x > −sb)]

+ L2 · E[(x+sb) · 1(x > −sb) · (ιx+
√
1− ι2z +sb) · 1(ιx+

√
1− ι2z > −sb)]︸ ︷︷ ︸

(I)

.

Note that E[x1(x > −sb)] = p(|sb|) for any sb by explicit calculation, where p(x) =

exp(−x2/2)/
√
2π is the standard Gaussian density function. Therefore, we have

E[(x+sb) · 1(x > −sb)] = E[x1(x > −sb)] +sb · P(x > −sb) = p(|sb|)− |sb|Φ(|sb|) = F (|sb|),

where we define F (x) = p(x)−xΦ(x). We note that the function F (x) is monotonically decreasing
for all x ∈ R. To see this, we take the derivative of F (x) and using the fact that p′(x) = −xp(x)
and Φ′(x) = −p(x), which gives us

F ′(x) = −Φ(x)− xΦ′(x)− xp(x) = −Φ(x) + xp(x)− xp(x) = −Φ(x) < 0. (H.32)

In particular, function F (x) is always positive for any x ∈ R as limx→∞ F (x) = 0 by the Mills
ratio limx→∞ xΦ(x)/p(x) = 1. Therefore, F (|sb|) ≤ F (0) = 1/2 and the first two terms involving
(n ∨ d)−c0 are negligible. For the last term, by marginalizing z, we have

E[(x+sb) · 1(x > −sb) · (ιx+
√
1− ι2z +sb) · 1(ιx+

√
1− ι2z > −sb)]

= E
[
(x+sb) · 1(x > −sb) ·

√
1− ι2 ·

(
ιx+sb√
1− ι2

· Φ
(
−

sb+ ιx√
1− ι2

)
+ p
(
−

sb+ ιx√
1− ι2

))]
= E

[
(x+sb) · 1(x > −sb) ·

√
1− ι2 · F

(
−

sb+ ιx√
1− ι2

)]
.

Since F (x) is monotonically decreasing, we can upper bound the expectation by just plugging in
x = −sb to obtain that

(I) ≤ E
[
(x+sb) · 1(x > −sb)

]
·
√
1− ι2 · F

(
−sb

√
1− ι
1 + ι

)
=
√
1− ι2 · F (|sb|) · F

(
|sb|
√

1− ι
1 + ι

)
.

Next, we prove that F (x) ≤ 2Φ(x) for all x > 0. For any x > 0, we have F ′(x) = −Φ(x) by
(H.32), and Φ′(x) = −p(x). Therefore,

F ′(x)

Φ′(x)
=

Φ(x)

p(x)
≤ Φ(0)

p(0)
=

√
π

2
≤ 2,

where we use the fact that Φ(x)/p(x) is monotonically decreasing. Noting that limx→∞ F (x) = 0
and limx→∞ Φ(x) = 0, we thus conclude that F (x) ≤ 2Φ(x) for all x > 0. Consequently,

(I) ≤ 2
√
1− ι2 · F (|sb|) · F

(
|sb|
√

1− ι
1 + ι

)
≤ 4
√
1− ι2 · Φ(|sb|) · Φ

(
|sb|
√

1− ι
1 + ι

)
.

Therefore, we conclude the proof of this proposition.

H.4.2 PROOF OF THEOREM F.8

Proof of Theorem F.8. Note that

pφ1(bt) = Ex∼N (0,1)[φ(x; bt)x]

≤ L · E[1(x+sbt > 0)(x+sbt)x] + E[|x|1(x+sbt ≤ 0)] · (d ∨ n)−c0

≤ L ·
( |sbt|√

2π
exp(−sb2t/2) + Φ(|sbt|) +

sbt√
2π

exp(−sb2t/2)
)
+ C(d ∨ n)−c0 .
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Here, the last inequality holds by the following integral calculation:∫ ∞

sb

xp(x)dx = p(sb),

∫ ∞

sb

x2p(x)dx = sbp(sb) + Φ(sb)

for the standard normal distribution p(x) = exp(−x2/2)/
√
2π. For sbt < 0, the first and the last term

cancel in the bracket, and we conclude that pφ1(bt) ≤ 2C0LΦ(|sbt|) as (d∨ n)−c0 can be sufficienlty
small. On the other hand, using the condition φ(x; bt) ≥ xϕ′(x + b) ≥ C0x(x + bt) for x ≥ −bt
by Definition B.3, we have

pφ1(bt) ≥ C0E[1(x+ bt > 0)(x+ bt)x] + E[φ(x; bt)x1(−sbt ≤ x ≤ −bt)]− (n ∨ d)−c0E[|x|].

Here, we recall definition φ(x; b) = ϕ(x + b) + x · ϕ′(x + b). Therefore, φ(x; b) ≥ ϕ(x + b) for
x > 0. By Definition B.3, we know that ϕ′(x + b) ≥ 0 for all x. Since −sbt > 0, we have for
x ∈ [−sbt,−bt] that

φ(x; bt) ≥ ϕ(x+ bt) ≥ −(n ∨ d)−c0 ,

where the last inequality holds by the monotonicity of ϕ. Therefore, we conclude that

pφ1(bt) ≥ C0E[1(x+ bt > 0)(x+ bt)x]− C · (n ∨ d)−c0 ≥ C0

2
Φ(|bt|).

Since we can make κ0 = |bt| − |sbt| log-polynomially small, e.g., κ0 = (log(n ∨ d))−C , for |sbt| =
Θ(log(n ∨ d)C), we have 2Φ(|sbt|) ≥ Φ(|bt|) ≥ Φ(|sbt|)

2 . This completes the proof.

H.4.3 PROOF OF THEOREM F.11

Proof of Theorem F.11. Lower bounding the signal term. Let us lower bound the signal term.
Note that by the monotonicity assumption in Definition B.3,

φ(x; bt) | x>−bt
= ϕ(x+ bt) + xϕ′(x+ bt) | x>−bt

≥ C0x.

For x ∈ (−sbt, bt), we have φ(x; bt) ≥ φ(−sbt; bt) ≥ −(d ∨ n)−c0 . Together, we conclude that

N2∑
l=1

Ex∼N (0,1)

[
θl · φ

(√
1− θ2l x+ θl

√
dα−1,t−1; bt

)]
≥

N2∑
l=1

Ex∼N (0,1)

[
θl 1
(
x+

θl
√
dα−1,t−1 + bt√

1− θ2l
> 0
)
· C0

(√
1− θ2l x+ θl

√
dα−1,t−1

)]
−N2(d ∨ n)−c0

≥
N2∑
l=1

Φ
(−bt − θl√dα−1,t−1√

1− θ2l

)
· C0θ

2
l

√
dα−1,t−1 −N2(d ∨ n)−c0

≥ 1− o(1)
2

N2∑
l=1

1
(
θl >

−bt√
dα−1,t−1

)
· C0θ

2
l

√
dα−1,t−1,

where in the second inequality, it follows from the direct calculation of the integral of the Gaussian
that Ex∼N (0,1)[1(x > a)x] = p(a) > 0 with p(a) being the density of N (0, 1) at a. The −(d ∨
n)−c0 on the right-hand side is negligible. Note that the indicator is selecting the larger half of θl,
and we can thereby obtain the following lower bound

C−1N2 · C0

√
dα−1,t−1 · θ2Qt, where Qt =

1

N2

N2∑
l=1

1
(
θl >

−bt√
dα−1,t−1

)
, θ2 =

∥θ∥22
N2

.
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Upper bounding the signal term. To arrive at an upper bound, we use the fact that φ(x; bt) ≤
(d ∨ n)−c0 1(x < −sbt) + Lx1(x ≥ −sbt) to obtain that

N2∑
l=1

Ex∼N (0,1)

[
θl · φ

(√
1− θ2l x+ θl

√
dα−1,t−1; bt

)]
≤ L

N2∑
l=1

Ex∼N (0,1)

[
θl 1
(
x+

θl
√
dα−1,t−1 + bt√

1− θ2l
> 0
)
·
(√

1− θ2l x+ θl
√
dα−1,t−1

)]
+N2(d ∨ n)−c0

≤ CL
N2∑
l=1

(
θl

√
1− θ2l + θ2l

√
dα−1,t−1

)
≤ CLN2θ2

√
dα−1,t−1,

where the last second inequality holds by noting that E[1(x > a)x] = p(|a|) ≤ 1, and the last one
holds by noting that

√
dα−1,t−1 ≫ 1.

I PROOFS FOR SAE DYNAMICS ANALYSIS

In this section, we provide supplementary proofs for the results used in the proof of the main theorem
in §G.

I.1 PROOF OF THEOREM G.2

Let us first prove that there must exists some i ∈ [n] such that θ2i ≥ 1/s. Since the total sum∑
j∈[n]

∑
l∈Dj

H2
l,j =

∑N
l=1∥hl∥22 = N , and there are at most Ns non-zero entries in the weight

matrix H , we have the average

H2 :=

∑N
l=1

∑n
j=1H

2
l,j∑N

l=1

∑n
j=1 1(Hl,j > 0)

≥ N

Ns
=

1

s
.

On the other hand, we also have

H2 =

∑n
j=1 |Dj | · θ2j∑n

j=1 |Dj |
≤ max

j∈[n]
θ2j .

It thus follows that there exists some i ∈ [n] such that θ2i ≥ 1/s.

Proof of the first inequality. By definition of h⋆, we have h2⋆ ≥ ℏ2q,⋆ for q = 4. To prove the
upper bound on h⋆, we just need to show that ℏ2q,⋆ ≥ θ2j for any j ∈ [n]. Let us consider the kernel
function in the definition of ℏq,⋆:

f(x) = Φ
( −sb√

q−1
q x+ 1

q

)
.

In particular, we aim to show that f(·) is convex for x ∈ [0, 1]. The second derivative of f(x) is
given by

f ′′(x) = p
( −sb√

q−1
q x+ 1

q

)
·

sb
(
q−1
q

)2
4
(
q−1
q x+ 1

q

)7/2 · [ 3(q − 1

q
x+

1

q

)
−sb2

]
.

Using the property that sb < −
√
3, we conclude that f ′′(x) ≥ 0 for x ∈ [0, 1], and f is convex. Now,

by definition of ℏq,⋆, we have

f(ℏ2q,⋆) ≥ max
j∈[n]

1

|Dj |
∑
l∈Dj

f(H2
l,j) ≥ max

j∈[n]
f
( 1

|Dj |
∑
l∈Dj

H2
l,j

)
= max

j∈[n]
f(θ2j ), (I.1)
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where the second inequality follows from the convexity of f(x) and Jensen’s inequality. Moreover,
the first derivative of f(x) is given by

f ′(x) = −p
( −sb√

q−1
q x+ 1

q

) sb
(
q−1
q

)
2
(
q−1
q x+ 1

q

)3/2 > 0.

Therefore, we have by (I.1) that ℏ2q,⋆ ≥ θ2j for any j ∈ [n] and q = 4. Consequently, h2⋆ ≥ ℏ24,⋆ ≥
maxj∈[n] θ

2
j ≥ 1/s. This proves the first inequality.

Proof of the second inequality. Since we have by definition of θ2i that

θ2i =
∥θi∥22
|Di|

≤ (1− pQi(hi)) · h2i + pQ(hi) · 1 ≤ pQi(hi) + h2i ,

it follows from the condition θ2i > pQi(hi) that

hi ≥
√
θ2i − pQ(s

−1/2
i ).

This completes the proof of the third inequality. Hence, we have completed the proof of Theo-
rem G.2.

I.2 PROOFS FOR CONCENTRATION RESULTS COMBINED

In the following, we present the proofs of the lemmas and propositions used in §G.2.

I.2.1 PROOF OF THEOREM G.5

From Φ(|sbt|) ≫ Lsρ1(t logn)
3, we deduce that t log n ≪ n, since Lsρ1n3 ≫ 1 ≥ Φ(|sbt|)

(recalling that ρ1 ≥ n−1). Hence, we can directly apply Theorem G.4 in what follows. Using the
bound in Theorem F.7 together with Theorem F.8, if we further assume Φ(|sbt|) ≫ Lsρ1(t logn)

3,
then the desired concentration result is obtained as follows:

⟨zτ , E⊤φ(Ey⋆t ; bt)⟩ = (1± o(1)) ·Nατ,t−1 pφ1(bt)± C
√

1− α2
τ,t−1 ·

√
∥E⊤φ(Ey⋆t ; bt)∥22 · t log(n).

(I.2)

Here, we use the fact that |N1/N − 1| ≤ ρ1 ≪ 1, where ρ1 ≪ 1 can also be deduced from
the condition Φ(|sbt|) ≫ Lsρ1(t log(n))

3. For the concentration result for ⟨zτ , F⊤φ(Fyt + θ ·
v⊤ swt−1; bt)⟩ in Theorem F.9, we use the Stein’s lemma to derive that

N2

N

N2∑
l=1

|ατ,t−1|
√
1− θ2l · Ex∼N (0,1)

[
xφ
(√

1− θ2l x+ θlv
⊤

swt−1; bt
)]

≤ N2|ατ,t−1|
N

N2∑
l=1

(1− θ2l ) · Ex∼N (0,1)

[
φ′(
√
1− θ2l x+ θlv

⊤
swt−1; bt)

]
≤ ρ1|ατ,t−1|L = o(Φ(|sbt|) · |ατ,t−1|) (I.3)

where in the second inequality we use the Lipschitzness of φ and in the last inequality we use
Lsρ1(t logn)

3 ≪ Φ(|sbt|). Moreover, we have

L|ατ,t−1| ·
N2

N
· (
√
t log(n) + ∥v∥2|α−1,t−1|) ·

√
ρ2s · (t log(n))3/2

≤ L|ατ,t−1| · ρ1
√
ρ2s(t logn)

2 + ρ1
√
ρ2s(t logn)

3/2 · d|α−1,t−1ατ,t−1|
≤ o(Φ(|sbt|) · |ατ,t−1|) + ρ1

√
ρ2s(t logn)

3/2 · dα−1,t−1ατ,t−1. (I.4)

where in the first inequality, we use N2/N ≤ ρ1 by definition and in the second inequality, we use
the fact ρ1

√
ρ2s(t logn)

2 ≤ ρ1(t logn)
2 ≪ Φ(|sbt|) under the condition Lsρ1(t logn)3 ≪ Φ(|sbt|).
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Moreover, by Theorem F.8, we know that pφ1(bt) = Ω(Φ(|sbt|)). Consequently, by combining (I.3)
and (I.4) with the upper bound in Theorem F.9, we have∣∣⟨zτ , F⊤φ(Fyt + θ · v⊤ swt−1; bt)⟩

∣∣
≤ o (N |ατ,t−1|pφ1(bt)) + C

√
1− α2

τ,t−1 ·
√
∥F⊤φ(Fy + θ · v⊤ swt−1; bt)∥22 · t log(n)

+ CNLρ1
√
ρ2s(t logn)

3/2 · d|ατ,t−1α−1,t−1|. (I.5)

Let us consider the good event with respect to some universal constant C > 0:

E :
{
∥zτ∥∞ ≤ C

√
log(tn), ∀τ ≤ T

}
.

As we increase the constant C, the failure probability of the event E can be made polynomially
small, e.g., 1 − n−c for some other constant c > 0 (See Theorem J.2). Conditioned on the success
of this event, we have for the non-Gaussian components that

|⟨zτ ,∆Et⟩+ ⟨zτ ,∆Ft⟩| ≤ C
√
log(tn) ·

(
∥∆Et∥1 + ∥∆Ft∥1

)
≤ CLN

√
log(n) ·

(√
sρ1(

√
Φ(|sbt|) +

√
sρ1t logn) ·

√
dβt−1 +

√
sρ1|sbt|dβ2

t−1

)
+ CLN

√
log(n) · ρ1

√
sdβt−1

≤ CLN
√
log n ·

(√
sρ1dΦ(|sbt|)βt−1 +

√
sρ1|sbt|dβ2

t−1

)
, (I.6)

where in the second inequality, we invoke Theorem F.12 and Theorem F.13 to bound the ℓ1 norm of
the error terms, and also the fact that t is at most polynomial in n. In the last inequality, we use the
fact that ∥∆yt∥2 ≤

√
dβt−1 by Theorem F.1. Now, we combine the derived concentration results in

(I.2), (I.5) and (I.6) with 1−α2
τ,t−1 ≤ 1 and the upper bound for ∥E⊤φ(Ey⋆t ; bt)∥22+∥F⊤φ(Fyt+

θ · v⊤ swt−1; bt)∥22 in Theorem G.4 to obtain that

⟨zτ , ut⟩ = ⟨zτ , E⊤φ(Ey⋆t ; bt)⟩+ ⟨zτ , F⊤φ(Fyt + θ · v⊤ swt−1; bt)⟩+ ⟨zτ ,∆Et⟩+ ⟨zτ ,∆Ft⟩
= Nατ,t−1 pφ1(bt) · (1± o(1))± CNLρ1

√
ρ2s(t logn)

3/2 · d|ατ,t−1α−1,t−1|

± CNρ1L
√
t logn · ξt ± CLN

√
log n ·

(√
sρ1dΦ(|sbt|)βt−1 +

√
sρ1|sbt|dβ2

t−1

)
.

Hence, we complete the proof of the Theorem G.5.

I.2.2 PROOF OF THEOREM G.6

Recall by definition of wt, ⟨v, wt⟩/∥v∥2 can be decomposed into

⟨v, wt⟩
∥v∥2

= ⟨z−1, ut⟩+ ∥v∥2 · θ⊤φ(Fyt + θ · v⊤ swt−1; bt) + η−1α−1,t−1. (I.7)

Taking τ = −1 in Theorem G.5, we have

⟨z−1, ut⟩ = Nα−1,t−1 pφ1(bt) · (1± o(1))± CNLρ1
√
ρ2s(t logn)

3/2 · d|α−1,t−1|2

± CNρ1L
√
t logn · ξt ± CLN

√
log n ·

(√
sρ1dΦ(|sbt|)βt−1 +

√
sρ1|sbt|dβ2

t−1

)
.

(I.8)

Moreover, by a direct decomposition of the second term, we have

∥v∥2θ⊤φ(Fyt + θ · v⊤ swt−1; bt) = ∥v∥2θ⊤φ(Fy⋆t + θ · v⊤ swt−1; bt) + ∥v∥2θ⊤∆φF,t

= ∥v∥2θ⊤φ(Fy⋆t + θ · v⊤ swt−1; bt)± ∥v∥2∥θ∥2 · ∥∆φF,t∥2.

Notice that ∥v∥2 =
√
d · (1±C

√
log(n)/d) with probability at least 1−n−c by concentration of χ2

random variables (see Theorem J.1). By Theorem F.13, we have ∥∆φF,t∥2 ≤
√
ρ2N2L · ∥∆yt∥2 ≤√

ρ2N2dLβt−1. Therefore,

∥v∥2∥θ∥2 · ∥∆φF,t∥2 ≤ C
√
d ·
√
N2θ2 · L

√
ρ2N2dLβt−1 ≤ CLNρ1d

√
ρ2βt−1.
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Now, combining the concentration results for θ⊤φ(F⊤y⋆t + θ · v⊤ swt−1; bt) in Theorem F.10, we
obtain that

∥v∥2 θ⊤φ(Fyt + θ · v⊤ swt−1; bt)

= (1± o(1))Nψt ± C NLρ1
√
ρ2 s (t log n)

3/2 dα−1,t−1 ± C NLρ1d
√
ρ2βt−1. (I.9)

Furthermore, we have by Theorem F.11 that Nψt ≳ C0θ2Qt ·N2dα−1,t−1. Under the conditions

N2

N
C0θ2Qt ≫ max

{
Lρ1
√
ρ2s(t logn)

3/2, Ld−1Φ(|sbt|), L
√
t lognρ1

ξt
dα−1,t−1

}
,

we conclude by also noting that
√
dα−1,t−1 ≫ 1 that

Nψt ≫ max
{
CNLρ1

√
ρ2s(t logn)

3/2 · dα−1,t−1, Nα−1,t−1 pφ1(bt), CNρ1L
√
t logn · ξt

}
.

Now we plug (I.9) and (I.8) into (I.7) to obtain

⟨v, wt⟩
∥v∥2

= (1± o(1))Nψt + η−1α−1,t−1

± CLN
√
dρ1s logn ·

(√
Φ(|sbt|) +

√
ρ1dρ2s−1 +

√
ρ1d|sbt|βt−1

)
· βt−1. (I.10)

Finally, under the conditions
√
ts logn|sbt|βt−1 ≪ 1, st log n · Φ(|sbt|)≪ ρ1d, we have√

dρ1s logn ·
(√

Φ(|sbt|) +
√
ρ1dρ2s−1 +

√
ρ1d|sbt|βt−1

)
≤ Cρ1d.

Here, we use the fact that ρ2 log n≪ 1, which can be deduced from the following inequality under
the condition N2

N C0θ2Qt ≫ Lρ1
√
ρ2s(t logn)

3/2:

ρ1 ≳
N2

N
C0θ2Qt ≫ Lρ1

√
ρ2s(t logn)

3/2 ≥ ρ1
√
ρ2 log n.

Moreover, under the condition

N2

N
C0θ2Qt ≫ CLρ1 ·

βt−1

α−1,t−1
,

we conclude that the second line of (I.10) can be upper bounded by o(Nψt). Hence, the proof of
Theorem G.6 is completed.

I.2.3 PROOF OF THEOREM G.7

Recall from the definition of wt that

∥P⊥
w−1:0

(wt − η−1
swt−1)∥22 =

t−1∑
τ=1

(
⟨zτ , ut⟩ − ⟨Pu1:τ

zτ , ut⟩+
⟨u⊥τ , ut⟩
∥u⊥τ ∥2

· ∥w
⊥
τ ∥2

∥u⊥τ ∥2

)2
+ ∥P⊥

w−1:t−1
rzt∥22 · ∥u⊥t ∥22. (I.11)

Lemma I.1. Assume that T ≤
√
d and d ∈ (n1/c1 , nc1) for some universal constant c1 ∈ (0, 1).

Then there exist universal constants c, C > 0 such that with probability at least 1 − n−c over the
randomness of i.i.d. standard Gaussian vectors z−1:T , for all t ∈ [T ],

t−1∑
τ=1

⟨Pu1:τ
zτ , ut⟩2 +

t−1∑
τ=1

( ⟨u⊥τ , ut⟩
∥u⊥τ ∥2

· ∥w
⊥
τ ∥2

∥u⊥τ ∥2

)2
+ ∥P⊥

w−1:t−1
rzt∥22 · ∥u⊥t ∥22 ≤ Cd · ∥ut∥22.

Proof. See §I.5.1 for a detailed proof.

Lemma I.2 (Upper Bound for ∥ut∥22). If t logn ≪ n, −sbt = Θ(
√
logn), ρ1 ≪ 1, it holds with

probability at least 1− n−c for all t ≤ T <
√
d that

∥u∥2 ≤ CNLρ1(ξt +
√
dβt−1).
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Proof. See §I.5.2 for a detailed proof.

Combining Theorems I.1 and I.2, it holds with probability at least 1− n−c for all t ≤
√
d,√√√√t−1∑

τ=1

⟨Pu1:τ
zτ , ut⟩2 +

t−1∑
τ=1

( ⟨u⊥τ , ut⟩
∥u⊥τ ∥2

· ∥w
⊥
τ ∥2

∥u⊥τ ∥2

)2
+ ∥P⊥

w−1:t−1
rzt∥22 · ∥u⊥t ∥22

≤ C
√
d · ∥ut∥2 ≤ CNLρ1

√
d
(
ξt +

√
dβt−1

)
. (I.12)

It remains to upper bound
∑t−1

τ=1⟨zτ , ut⟩2. Recall that βt−1 =
√
1− α2

−1,t−1 − α2
0,t−1 =√∑t−1

τ=1 α
2
τ,t−1. Using Theorem G.5, we conclude that√√√√t−1∑

τ=1

⟨zτ , ut⟩2 ≤ CNβt−1 pφ1(bt) · (1± o(1)) + CNLρ1
√
ρ2s(t logn)

3/2 · d |α−1,t−1|βt−1

+ CNρ1Lt
√
log n · ξt + CLN

√
t logn ·

(√
sρ1dΦ(|sbt|) +

√
sρ1|sbt|d βt−1

)
· βt−1

≤ CNρ1Lt
√
log n · ξt + CLNρ1dβt−1, (I.13)

where in the first inequality, the βt−1 terms in the first line is obtained by the Pythagorean sum with
respect to ατ,t−1 for τ = 1, . . . , t−1. In the second line, an additional

√
t− 1 factor is added to the

upper bound for |⟨zτ , ut⟩| since
√∑t−1

τ=1 x
2
τ ≤
√
t · maxτ=1,...,t−1 |xτ |. In the last inequality, we

use the conditions
√
ρ2s(t logn)

3/2 ≪ 1, Φ(|sbt|) ≪ ρ1d(st logn)
−1, and

√
st logn|sbt|βt−1 ≪ 1

to upper bound all the terms containing βt−1 by CLNρ1dβt−1. Plugging (I.12) and (I.13) into
(I.11), we obtain

∥P⊥
w−1:0

wt∥2 ≤ C
√
d · ∥ut∥2 + C

√√√√t−1∑
τ=1

⟨zτ , ut⟩2 + η−1βt−1 ≤ CNLρ1
√
d
(
ξt +

√
dβt−1

)
+ η−1βt−1.

Here, we use the fact that t
√
log n ≤

√
d, which is implied by the condition ρ1d(st logn)−1 ≫

Φ(|sbt|)≫ Lsρ1(t log(n))
3. Lastly, by condition η−1 ≪ NΦ(|sbt|) and the fact that Lρ1d≫ Φ(|sbt|)

by assumption, we can absorb the η−1βt−1 term into the CNLρ1dβt−1 term. Hence, we complete
the proof of Theorem G.7.

I.2.4 PROOF OF THEOREM G.8

Recall by definition of wt that

∥Pw−1:0
wt∥2 =

√
⟨v, wt⟩2
∥v∥22

+
(
⟨z0, ut⟩+ η−1α0,t−1

)2
.

By Theorem G.6, we already have ⟨v, wt⟩/∥v∥2 = (1 ± o(1))Nψt. It remains to characterize
⟨z0, ut⟩. We have by Theorem G.5 that

⟨z0, ut⟩ = Nα0,t−1 pφ1(bt) · (1± o(1))± CNLρ1
√
ρ2s(t logn)

3/2 · d |α0,t−1α−1,t−1|

± CNρ1L
√
t logn · ξt ± CLN ·

(√
s log(n)ρ1dΦ(|sbt|) +

√
s log(n)ρ1|sbt|dβt−1

)
· βt−1

= Nα0,t−1 pφ1(bt) · (1± o(1))± CNLρ1
√
ρ2s(t logn)

3/2 · d |α0,t−1α−1,t−1|

± CNρ1L
√
t logn · ξt ± CLNρ1dβt−1

Here, in the last term we use the condition
√
ts logn|sbt|βt−1 ≪ 1 to upper bound√

s logn|sbt|βt−1 ≪ 1, and ρ1d(st logn)−1 ≫ Φ(|sbt|) to upper bound
√
s log(n)ρ1dΦ(|sbt|) ≤
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Cρ1d. Note that the fluctuation terms are similar to the one for ⟨z−1, ut⟩ in the proof of Theo-
rem G.6. Specifically, under the same conditions

N2

N
C0θ2Qt ≫ max

{
Lρ1
√
ρ2s(t logn)

3/2, L
√
t lognρ1

ξt
dα−1,t−1

, Lρ1
βt−1

α−1,t−1

}
we have

Nψt ≫ CNL ·max
{
ρ1
√
ρ2s(t logn)

3/2 · d|α0,t−1α−1,t−1|, ρ1
√
t logn · ξt, ρ1dβt−1

}
.

Thus, we conclude that ⟨z0, ut⟩ = Nα0,t−1 pφ1(bt) · (1± o(1))± o(Nψt). Thus,

∥Pw−1:0wt∥2 =

√
⟨v, wt⟩2
∥v∥22

+ (⟨z0, ut⟩+ η−1α0,t−1)2

=

√(
Nψt · (1± o(1))

)2
+
(
Nα0,t−1 pφ1(bt) · (1± o(1))± o(Nψt) + η−1α0,t−1

)2
= (1± o(1)) ·

√
(Nψt)2 + (Nα0,t−1 pφ1(bt))2.

Here, the last inequality holds by also noting that η−1 ≪ NΦ(|sbt|) ≤ CN pφ1(bt). This completes
the proof.

I.3 PROOFS FOR RECURSION ANALYSIS

I.3.1 PROOF OF THEOREM G.10

What we need to prove here is that all the conditions in Theorem G.9 hold for the current time step
t if the conditions in Theorem G.10 hold. This is because the conditions in Theorem G.9 are the
union of the conditions in Theorems G.4 to G.8. In the following, we check all the listed conditions
one by one.

Step I: Checking all conditions in Theorem G.9. For the first step, we divide the conditions in
Theorem G.9 into three groups.

Group 1: Implication of Cond.(i) and Cond.(I). We first notice that since t ≤ T , conditions

−sbt = Θ(
√
log n) < ζ1, κ0|sbt| = O(1),

√
ρ2s(t logn)

3/2 ≪ 1, η−1 ≪ NΦ(|sbt|) ∧N2dC0θ2Qt

are guaranteed by Cond.(i). Here, we need to be more careful about condition η−1 ≪ N2dC0θ2Qt,
as Qt is a function of t, and what we directly have in Cond.(i) is for Q1 only. By definition Qt =
1
N2

∑N2

l=1 1
(
θl >

−b√
dα−1,t−1

)
, we note that Qt is nondecreasing in α−1,t−1. Therefore, we have the

following fact:
Fact I.3. If α−1,t−1 ≥ α−1,0, then Qt ≥ Q1.

In fact, the condition α−1,t−1 ≥ α−1,0 is automatically guaranteed by Cond.(I). Therefore, the
condition η−1 ≪ N2dC0θ2Qt will hold for all successive t as long as it holds for t = 1 and
α−1,t−1 ≥ α−1,0. Meanwhile, we also have by the same reasoning that

√
dα−1,t−1 ≥

√
dα−1,0 ≫ 1

where the last inequality is guaranteed by InitCond-1. The condition
√
ts logn|sbt|βt−1 ≪ 1 is

guaranteed by Cond.(I) as well.

Group 2: Implication of Cond.(ii) to Cond.(iii). The direct implication of Cond.(ii) is that

ρ1d(st logn)
−1 ≫ Φ(|sbt|)≫ Lsρ1(t log(n))

3.

Similarly, the direct implication of Cond.(II) and Cond.(iii) is that

N2

N
C0θ2Qt ≫ max

{
Lρ1
√
ρ2s(t logn)

3/2, Ld−1Φ(|sbt|), Lρ1
βt−1

α−1,t−1

}
.
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Here, we use the fact that t ≤ T and the monotonicity of Qt in Theorem I.3. It remains to check
whether N2

N C0θ2Qt ≫ L
√
t lognρ1

ξt
dα−1,t−1

holds.

Group 3: Implication of Cond.(ii),Cond.(iii), Cond.(I) and Cond.(II). To verify this inequality
N2

N C0θ2Qt ≫ L
√
t lognρ1

ξt
dα−1,t−1

, we just need to show that ξt/α−1,t−1 ≤ Cξ1/α−1,0 for some
universal constant C > 0, as the corresponding inequality for the latter is already guaranteed by
Cond.(iii). Recall the definition of ξt in Theorem G.4, the ratio ξt/α−1,t−1 is given by

ξt
α−1,t

=

√
s t log(n)Kt + ρ−1

1

√
Φ(|sbt|) · pEl,l′

[
Φ
(
|sbt|
√

1−⟨hl,hl′ ⟩
1+⟨hl,hl′ ⟩

)
⟨hl, hl′⟩

]
+ ρ2
√
n

α−1,t−1
+
√
ρ2d.

(I.14)
We obtain the above formula by the nonnegativity of α−1,t−1 guaranteed by Cond.(I).
Proposition I.4. If −sbt ≤

√
2 logn for some universal constant κ > 0, then for t ≥ 2,

Kt ≤ t ·
(
K1 + C

√
log n · (βt−1 + |α−1,t−1|+ |α−1,0|)

)
.

Proof. See §I.5.3 for a detailed proof.

Combining (I.14), Theorem I.4 and the fact that α−1,t−1 ≥ t2α−1,0 ≥ α−1,0 by Cond.(I), we have
ξt

α−1,t−1
≤
√
st2 log(n)K1

α−1,t−1
+ C
√
st2 log(n)3/2

( βt−1

α−1,t−1
+ 2
)

+

ρ−1
1

√
Φ(|sbt|) · pEl,l′

[
Φ
(
|sbt|
√

1−⟨hl,hl′ ⟩
1+⟨hl,hl′ ⟩

)
⟨hl, hl′⟩

]
+ ρ2
√
n

α−1,t−1
+
√
ρ2d

≤ ξ1
α−1,0

+ C
√
st2 log(n)3/2

( βt−1

α−1,t−1
+ 2
)
, (I.15)

where in the second inequality, we directly plug in the definition of ξ1 with t = 1 in (I.14) and use
the fact that α−1,t−1 ≥ t2α−1,0 to upper bound the first term in the right-hand side. Furthermore,
for each term in Cond.(II), we have the following relationship:

N2

N
≤ ρ1, C0θ2Qt = O(1), L = Ω(1),

where the first inequality holds by direct definition of ρ1 in (F.1), the second equality holds by noting
that θ2 ≤ 1, Qt ≤ 1 and C0 is a universal constant, and the last inequality holds by ??. Together,
we have the following implication:

N2

N
C0θ2Qt ≫ Lρ1

βt−1

α−1,t−1
⇒ βt−1

α−1,t−1
≪ 1

Therefore, we can further simplify the upper bound in (I.15) to
ξt

α−1,t−1
≤ ξ1
α−1,0

+ C
√
st2 log(n)3/2 · 1(t ≥ 2). (I.16)

Using (I.16), in order for condition N2

N C0θ2Qt ≫ L
√
t lognρ1

ξt
dα−1,t−1

to hold, we just need to
ensure

N2

N
C0θ2Qt ≫ L

√
t lognρ1

ξ1
dα−1,0

,
N2

N
C0θ2Qt ≫ CLd−1ρ1

√
st5(logn)2.

The first one is clearly given by Cond.(iii), and the second one is satisfied because we have by using
Cond.(ii) and Cond.(iii) that

N2

N
C0θ2Qt ≫ Ld−1Φ(|sb|)≫ L2d−1ρ1s(T log(n))3 ≳ CLd−1ρ1

√
st5(log n)2.

Here, the first inequality holds by the second condition in Cond.(iii), the second inequality holds
by Cond.(ii), and the last inequality holds by noting that we are considering any t ≤ T . The last
inequality shows that the last condition N2

N C0θ2Qt ≫ L
√
t lognρ1

ξt
dα−1,t−1

also holds automati-
cally under the conditions in Theorem G.10. To this end, we have shown that all the conditions in
Theorem G.9 hold for t if the conditions in Theorem G.10 are satisfied.
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Step II: Deriving the recursion. As we have shown in the previous step, all the conditions in
Theorem G.9 hold for t if the conditions in Theorem G.10 hold. Therefore, we can safely apply all
the concentration results derived in §G.2. We next show how to use the previous derived concen-
tration result on ⟨v, wt⟩/∥v∥2, ∥Pw−1:0

wt∥2, and ∥P⊥
w−1:0

wt∥2 to control the recursion of βt/α−1,t

and 1/α−1,t. Since βt is the projection of wt onto the Pw−1:0 direction, and α−1,t is the projection
of wt onto the v direction, we have

βt
α−1,t

=
∥v∥2 · ∥P⊥

w−1:0
wt∥2

⟨v, wt⟩
≤

CLρ1
√
d
(
ξt +

√
dβt−1

)
C0θ2Qt ·N2/N · dα−1,t−1

≤ CLρ1

C0θ2Qt ·N2/N
·
(

1√
d

( ξ1
α−1,0

+ C
√
st2 log(n)3/2 · 1(t ≥ 2)

)
+

βt−1

α−1,t−1

)
.

where in the first inequality, we use the upper bound for ∥P⊥
w−1:0

wt∥2 in Theorem G.7 and the lower
bound for ⟨v, wt⟩/∥v∥2 in Theorem G.6 as ⟨v, wt⟩/∥v∥2 ≥ (1− o(1))Nψt ≳ NC0θ2Qt ·N2/N ·
dα−1,t−1 by the lower bound of ψt in Theorem F.11. The second inequality holds by plugging in
the upper bound for ξt/α−1,t−1 in (I.16). Similarly, we have by definition of α−1,t that

1

α−1,t
=
∥v∥2 · ∥wt∥2
⟨v, wt⟩

≤ (1 + o(1)) ·
√
ψ2
t + pφ1(b)2 + CLρ1

√
dξt

(1− o(1)) · ψt

≤
(1 + o(1)) ·

√
(C0θ2Qt ·N2/N · dα−1,t−1)2 +

(
CLΦ(|sb|)

)2
+ CLρ1

√
dξt

C0θ2Qt ·N2/N · dα−1,t−1

≤ CLρ1

C0θ2Qt ·N2/N
·
(
Φ(|sb|)
ρ1d

· 1

α−1,t−1
+

1√
d

( ξ1
α−1,0

+ C
√
st2 log(n)3/2 · 1(t ≥ 2)

))
+ (1 + o(1)).

where in the second inequality, we plug in the lower bound for ψt and the upper bound for pφ1(bt) in
Theorem F.8. The last inequality holds by the triangle inequality and the upper bound for ξt/α−1,t−1

in (I.16). This completes the proof of Theorem G.10.

I.3.2 PROOF OF THEOREM G.12

In the following proof, let us take T1 = max{(2ς)−1, 1}. As our goal is to establish that (G.5) and
(G.6) holds for all t ≤ T1, we just need to show that Cond.(I) and Cond.(II) hold for all t ≤ T1, as
they are the only conditions that might be violated over time, and the other conditions only depend
on the initial conditions.

Initial step. For t = 1, we have α−1,t−1 = α−1,0 and βt−1 = β0 = 0. Hence, Cond.(I)
and Cond.(II) hold trivially. Before we start the proof, we first derive some useful inequalities.

Useful inequalities. For λ1, we have by Cond.(v) and Cond.(vi) that

λ1 =
CLρ1

C0θ2Q1 ·N2/N
=
ρ1d

1−ς

Φ(|sb|)
, λ1ξ1 =

λ0ξ1
Q1
≪ d−ϵ

√
s logn

≪ 1. (I.17)

Using the above two inequalities, we have by (G.4) that

1

α−1,1
≤ 1 + o(1) +

(λ1Φ(|sb|)
ρ1d

+
λ1ξ1√
d

)
· 1

α−1,0
≤ 1 + o(1) + (d1/2−ς + 1) ≤ 3 + d1/2−ς .

In fact, we have the ratio α−1,0/α−1,1 as
α−1,0

α−1,1
≤ (3 + d1/2−ς) · α−1,0 ≤ (3d−1/2 + d−ς) · C

√
logM ≪ 1. (I.18)

Here, we use the fact that α−1,0 = O(
√
logM) with sufficiently high probability 1 − n−c, and

M = poly(n). The above inequality demonstrates that α−1,1 is guaranteed to grow in the first step.
Thus, by definition of Qt in (F.15), we conclude that

Q2 =
1

N2

N2∑
l=1

1
(
θl ≥

−b√
dα−1,1

)
≥ 1

N2

N2∑
l=1

1
(
θl ≥ |b|(3d−1/2 + d−ς)

)
=:Qν

2 ,
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where we take ν = |b|(3d−1/2 + d−ς) = O(
√
log n · d−ς∧1/2) and denote the right-hand side of the

above inequality as Qν
2 . Since θl ∈ [0, 1], we have

θ2 =
1

N2

N2∑
l=1

θ2l ≤ Qν
2 · 12 + (1−Qν

2) · ν2 = Qν
2(1− ν2) + ν2 ⇒ Qν

2 ≥
θ2 − ν2

1− ν2
≥ θ2

2
,

where the last inequality holds from ?? that θ2 = Ω(polylog(n)−1) ≫ ν2. In the sequel, we will
use Q2 ≥ θ2/2 as the lower bound for Q2. By definition of T1, we have T1 = (2ς)−1 ∨ 1 = Θ(1).
In addition, for λ2, we have

λ2 =
λ0
Q2
≤ 2λ0

θ2
= O(polylog(n)), (I.19)

where in the inequality we use the lower bound for Q2 and in the last equality we use θ2 =
Ω(polylog(n)−1) in ?? and λ0 = O(polylog(n)) in Cond.(iv).

We now have for the coefficient λ2Φ(|sb|)/(ρ1d) that
λ2Φ(|sb|)
ρ1d

=
λ0Φ(|sb|)
Q2ρ1d

=
Q1d

−ς

Q2
≤ d−ς ,

where the second identity holds from Cond.(v) and the last inequality holds by noting that α−1,1 ≥
α−1,0 by the first step’s calculation in (I.18) and using the monotonicity ofQt in Theorem I.3. Next,
we upper bound the quantity C1 in (G.2):

C1 =
(
1 + o(1) +

λ2ξ1√
dα−1,0

+
Cλ2
√
sT 2

0 (logn)
3/2

√
d

)
· 1

1− λ2Φ(|sb|)/ρ1d

≤
(
1 + o(1) +

λ1ξ1√
dα−1,0

+
C
√
s polylog(n)√

d

)
· 1

1− d−ϵ

≤
(
1 + o(1) +

d−ϵ

√
s logn

)
· (1 + o(1)) = 1 + o(1),

where in the first inequality, we use the fact that λ2 ≤ λ1 by the fact Q2 ≥ Q1, and we invoke
the upper bound T0 ≤ logn and λ2 = O(polylog(n)) in (I.19). In the last inequality, we use the
previous bound for λ1ξ1 in (I.17) together with the fact that

√
dα−1,0 ≥ 1 by InitCond-1.

Induction step. Suppose the induction hypothesis holds for 1, 2, . . . , t. We will show that Cond.(I)
and Cond.(II) hold for t + 1 ≤ T1 as well. To this end, it is evident that α−1,t is always growing
before reaching C1, which is evident from (G.3) by noting that λ2Φ(|sb|)/ρ1d ≤ d−ς < 1.

We first look at the recursion of α−1,t. By (G.5), the ratio α−1,0/α−1,t is bounded by
α−1,0

α−1,t
≤
(λ2Φ(|sb|)

ρ1d

)t−1

·
(λ1Φ(|sb|)

ρ1d
+
λ1ξ1√
d

)
+ C1α−1,0

≤ d−ς(t−1) ·
(
d−ς +

d−ϵ

√
sd logn

)
+ (1 + o(1)) · C

√
logM√
d

≤ Cd−ς(t−1)−(ς∧1/2) + d−1/2+ϵ.

The first term on the right-hand side is decaying exponentially fast with respect to t. The second
term is much smaller than 1/T 2

0 given that T0 ≤ logn by definition. Therefore, both terms are much
smaller than 1/T 2

0 . This implies the first condition in Cond.(I) holds for t+ 1.

Next, we look at the conditions involving βt. By previous analysis on T1 and the upper bound in
(I.19), we obtain

λT1−1
2 ≤ (polylog(n))(2ς)

−1∨1 = O(polylog(n)).

By recursion of βt/α−1,t in (G.6), we have
βt

α−1,t
≤ λt−1

2√
d
·
(
(T0 + λ1) ·

ξ1
α−1,0

+ C
√
sT 3

0 log(n)3/2
)

≤ polylog(n)√
d

·
( λ1ξ1
α−1,0

+ C
√
s polylog(n)

)
≤ polylog(n) ·

( d−ϵ

√
s logn

+
C
√
s polylog(n)√

d

)
≤ d−ϵ polylog(n)√

s
.
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Here, the second inequality holds by the upper bound for λT1−1
2 and also the fact that T0 + λ1 ≤

2λ1 logn since λ1 ≥ 1 and T0 ≤ logn. In the second inequality, we use the upper bound for λ1ξ1
in (I.17) and the fact that

√
dα−1,0 ≥ 1 by InitCond-1. The last inequality holds because ϵ < 1/2

by definition. Using the above inequality with the fact that α−1,t ≤ 1, we obtain

βt ≤
d−ϵ polylog(n)√

s
≪ 1√

T0s logn|sb|
,

where the last inequality holds by noting that both T0 and |sb| are at most O(polylog(n)). This
implies that the second condition in Cond.(I) holds for t+ 1.

Eventually, for Cond.(II), we have

C0θ2Qt ·N2/N

CLρ1
=
Qt

λ0
≥ Q2

λ0
≥ θ2

2λ0
= Ω(polylog(n)−1).

Therefore, the left-hand side of the above inequality is also much larger than βt/α−1,t. To this end,
we have finished the induction step and proved that Cond.(I) and Cond.(II) hold for all t ≤ T1.

Final step. According to the recursion in (G.5), let us consider the real value t⋆ that satisfies(λ2Φ(|sb|)
ρ1d

)t⋆−1

·
(λ1Φ(|sb|)

ρ1d
+
λ1ξ1√
d

)
· 1

α−1,0
= log(d)−c0 (I.20)

for some small constant c0 > 0 to be determined later. We first note that we can obtain the ς ∧ 1/2
factor by the inequality for λ1 in (I.17) that

λ2Φ(|sb|)
ρ1d

≤ λ1Φ(|sb|)
ρ1d

≤ λ1Φ(|sb|)
ρ1d

+
λ1ξ1√
d
, and

λ1Φ(|sb|)
ρ1d

+
λ1ξ1√
d
≤ d−ς +

d−1/2−ϵ

√
s logn

(I.21)

Using the above inequality (I.21), and taking a logarithm of both sides with base d for (G.5), we
have for t⋆ that

t⋆ · logd
(
d−ς +

d−1/2−ϵ

√
s logn

)
+ logd

( 1

α−1,0

)
≥ −c0 log log d

log d
,

which implies that

t⋆ ≤ logd

(
1

d−ς + d−1/2−ϵ√
s logn

)−1

·
(
logd

( 1

α−1,0

)
+
c0 log log d

log d

)
≤ 1/2

ς ∧ 1/2
= (2ς)−1 ∨ 1 = T1.

(I.22)

In the second inequality, we use the fact that by InitCond-1,

logd

( 1

α−1,0

)
= logd(∥v∥2)− logd

(
(1− ε)

√
2 log(M/n)

)
≤ 1

2
− log log(M/n)

2 log d
.

Therefore, we can take c0 to be small enough but still on a constant level such that

1

2
− log log(M/n)

2 log d
≤ 1

2
− c0 log log d

2 log d
.

This justifies the second inequality in (I.22). Thus, there must exists some time t ≤ T1 such that
(I.20) holds. For this time t, we already have

1

α−1,t
≤
(λ2Φ(|sb|)

ρ1d

)t−1

·
(λ1Φ(|sb|)

ρ1d
+
λ1ξ1√
d

)
· 1

α−1,0
+ C1 ≤ d−ς + C1 ≤ 1 + o(1).

This implies that α−1,t = 1− o(1).
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Checking α−1,t−1 ≥ α−1,1. An additional step is needed to show that α−1,t−1 ≥ α−1,1 for all
t ≥ 2 and before t⋆ is reached. This is required because we want to ensure that before time t⋆, we
always have α−1,t−1 ≥ α−1,1, and the stopping time T0 will not prohibit us from reaching t⋆. In
fact, we have by (G.3) that

1

α−1,t
≤
(λ2Φ(|sb|)

ρ1d

)t−2

·
( 1

α−1,1
− C1

)
+ C1.

Therefore, the ratio α−1,t−1/α−1,1 is bounded by

α−1,1

α−1,t−1
≤
(λ2Φ(|sb|)

ρ1d

)t−2

·
(
1− C1α−1,1

)
+ C1α−1,1.

We consider two cases. If C1α−1,1 ≥ 1, we can just stop the gradient at t = 1 and obtain α−1,1 =
1−o(1) sinceC1 = 1+o(1). In this case, we reach strong alignment in just one step. In another case
where C1α−1,1 < 1, since λ2Φ(|sb|)/(ρ1d) ≤ d−ς , we have the above ratio strictly upper bounded
by 1. Hence, the condition α−1,t−1 ≥ α−1,1 holds for all t ≥ 2 and before t⋆ is reached.

In both cases, we have shown that α−1,t−1 ≥ α−1,1 hold for 2 ≤ t ≤ t⋆. As we have shown that
Cond.(I) and Cond.(II) hold for all t ≤ T1 from the induction step, t⋆ ≤ T1 from the final step,
and T1 ≤ log(n) by definition, we conclude that T0-Cond.(1) to T0-Cond.(3) in the definition of the
stopping time T0 hold for all t ≤ t⋆. In other words, we have shown that T0 ≥ t⋆.

Thus, we complete the proof of Theorem G.12.

I.4 PROOFS FOR CONDITION SIMPLIFICATION

I.4.1 PROOF OF THEOREM G.13

Let us take t⋆ as the maximum number of iterations considered. In the following, we first provide
a sufficient condition for Cond.(iii), Cond.(v) and Cond.(vi) to hold. Then, we give a reformulation
of Cond.(i), Cond.(ii) and Cond.(iv).

A sufficient condition for Cond.(iii) to hold is given by

Q1

λ0
≫ max

{√
ρ2s(logn)

3/2,
Φ(|sb|)
ρ1d

,
√
log n · ξ1

}
(I.23)

under the condition dα−1,0 ≥ 1. On the other hand, we note that Cond.(v) and Cond.(vi) can be
reformulated as

Q1

λ0
· d−ς =

Φ(|sb|)
ρ1d

≫ dϵ−ς
√
s logn · ξ1. (I.24)

Since dϵ
√
s logn · ξ1 ≫

√
log n · ξ1, we can safely delete the last term in (I.23). Also by noting that

d−ς ≪ 1, we can safely delete the second term in (I.23). Furthermore, by definition of ξ1, which we
recall as follows:

ξ1 =
√
s log nK1 + ρ−1

1

√√√√Φ(|sb|) · pEl,l′

[
Φ
(
|sb|

√
1− ⟨hl, hl′⟩
1 + ⟨hl, hl′⟩

)
⟨hl, hl′⟩

]
+
√
ρ2d |α−1,0|+ ρ2

√
n ,

we conclude that ξ1 ≥
√
ρ2dα−1,0 ≥

√
ρ2. Therefore,

dϵ
√
s logn · ξ1 ≥ dϵ

√
ρ2s logn ≥

√
ρ2s(logn)

3/2,

where in the last inequality, we use the definition ϵ = C ′ log logn/(ς log d) ≥ log log n/ log d.
Therefore, the first term in (I.23) can also be deleted. In summary, Cond.(iii) is automatically implied
by (I.24).

A reformulation of Cond.(ii) gives

1

s logn
≫ Φ(|sb|)

ρ1d
≫ Ls log(n)3

d
. (I.25)
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In the following, we will simplify the above condition. Note that

Φ(|sb|)/(ρ1d) = Q1/λ0d
−ς ≤ d−ς ≪ (s log n)−1

holds by using λ0 = Θ(polylog(n)) according to Cond.(iv) and λ1
0Q1 ·d−ς = Φ(|sb|)/(ρ1d) accord-

ing to Cond.(v). Therefore, we can safely remove the first inequality in (I.25).

In the following, we aim to remove the condition
√
ρ2s(t

⋆ log n)3/2 ≪ 1 in Cond.(i). As
Q1/λ0 ≫ dϵ

√
s logn · ξ1 by Cond.(vi), we conclude that ξ1 ≪ Q1/λ0 < 1. By definition of

ξ1, this condition directly implies that ρ2 ≪ n−1/2. Therefore, we can safely delete the condition√
ρ2s(t

⋆ log n)3/2 ≪ 1 in Cond.(i).

To this end, we can summarize Cond.(ii), Cond.(iii), Cond.(v) and Cond.(vi) into one condition as
follows:

Q1

λ0
· d−ς =

Φ(|sb|)
ρ1d

≫ max
{
dϵ−ς
√
s logn · ξ1,

Ls log(n)3

d

}
,

and Cond.(i) and Cond.(iv) can be summarized into

λ0 = O(polylog(n)), κ0 = O((logn)−1/2), η−1 ≪ N ·
(ρ1d
λ0
∧ Φ(|sb|)

)
.

Note that in the last condition, we have ρ1d/λ0 ≫ Φ(|sb|) according to the first equality in (I.4.1).
Hence, we only need to keep η−1 ≪ NΦ(|sb|). This completes the proof of Theorem G.13.

I.4.2 PROOF OF THEOREM G.14

To prove this lemma, we need to upper bound the expectation term on the left-hand side of (G.10).
Recall that pEl,l′ is given by uniformly samples l, l′ from [N ], and that ⟨hl, hl′⟩ ≤ 1 always holds.
We can upper bound the expectation term as follows:

pEl,l′

[
Φ
(
|sbt|

√
1− ⟨hl, hl′⟩
1 + ⟨hl, hl′⟩

)
⟨hl, hl′⟩

]
≤ 1

N2

n∑
j=1

∑
l,l′∈Dj

Φ
(
|sb|

√
1− ⟨hl, hl′⟩
1 + ⟨hl, hl′⟩

)

=
1

N2

n∑
j=1

∑
l,l′∈Dj

Φ
(
|sb|

√
1− ⟨hl, hl′⟩
1 + ⟨hl, hl′⟩

)
· 1(∥hl ◦ hl′∥∞ = 1)

+
1

N2

n∑
j=1

∑
l,l′∈Dj

Φ
(
|sb|

√
1− ⟨hl, hl′⟩
1 + ⟨hl, hl′⟩

)
· 1(∥hl ◦ hl′∥∞ ≥ 2)

≤ 1

N2

n∑
j=1

∑
l,l′∈Dj

Φ
(
|sb|

√
1−Hl,jHl′,j

1 +Hl,jHl′,j

)
+

1

N2

n∑
j=1

∑
l,l′∈Dj

1(∥hl ◦ hl′∥∞ ≥ 2),

where in the identity, we split the summation according to whether how many non-zero entries are
shared between two rows hl and hl′ in the H matrix. In the last inequality, we drop the indicator for
the case ∥hl ◦ hl′∥∞ = 1 and use the fact that Φ(·) ≤ 1 for the case ∥hl ◦ hl′∥∞ ≥ 2. For the first
term, we use the fact that |Dj |/N ≤ ρ1 for all j ∈ [n] to obtain

1

N2

n∑
j=1

∑
l,l′∈Dj

Φ
(
|sb|

√
1−Hl,jHl′,j

1 +Hl,jHl′,j

)
≤ ρ21 ·

n∑
j=1

1

|Dj |2
∑

l,l′∈Dj

Φ
(
|sb|

√
1−Hl,jHl′,j

1 +Hl,jHl′,j

)

≤ nρ21 · Φ
(
|sbt|

√
1− h2⋆
1 + h2⋆

)
,
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where the last inequality holds by the definition of h⋆ in (G.9). In addition, the second term is upper
bounded by

1

N2

n∑
j=1

∑
l,l′∈Dj

1(∥hl ◦ hl′∥∞ ≥ 2) ≤ 1

N2

N∑
l=1

∑
j∈[n]:
Hl,j ̸=0

∑
i̸=j:

Hl,i ̸=0

N∑
l′=1

1(Hl′,i ̸= 0) · 1(Hl′,j ̸= 0)

≤ max
l∈[N ]

1

N

∑
i,j∈[n]:i̸=j

Hl,i ̸=0,Hl,j ̸=0

N∑
l′=1

1(Hl′,i ̸= 0) · 1(Hl′,j ̸= 0)

≤ max
l∈[N ]

1

N

∑
i,j∈[n]:i̸=j

Hl,i ̸=0,Hl,j ̸=0

N · ρ1 · ρ2 ≤ s2ρ1ρ2.

In the first inequality, we notice that if ∥hl ◦ hl′∥∞ ≥ 2, then there must exist two different feature
indices i ̸= j such that both hl, hl′ are non-zero at these two indices. This is indeed reflected in
the constraints Hl,j ̸= 0, Hl,i ̸= 0 and the two indicators 1(Hl′,i ̸= 0) · 1(Hl′,j ̸= 0). Therefore,
summing over all posible (i, j) pairs gives an upper bound for the second term. In the second
inequality, we change the average over l to be the maximum over l, and in the third inequality, we
use the definition of ρ2 and ρ1 in (F.1) to upper bound sum of the double indicator term. The last
inequality holds by noting that each row hl is s-sparse. Combining the above two bounds, we obtain
that

pEl,l′

[
Φ
(
|sbt|

√
1− ⟨hl, hl′⟩
1 + ⟨hl, hl′⟩

)
⟨hl, hl′⟩

]
≤ nρ21 · Φ

(
|sbt|

√
1− h2⋆
1 + h2⋆

)
+ ρ1ρ2s

2

≤ Cnρ21 · Φ(|sbt|)
1−h2

⋆
1+h2

⋆ + ρ1ρ2s
2,

where in the last inequality, we use the Mills ratio

Φ
(
|sbt|

√
1− h2⋆
1 + h2⋆

)
≤
(
|sbt|

√
1− h2⋆
1 + h2⋆

)−1

· 1√
2π

exp
(
−1− h2⋆
1 + h2⋆

·
sb2t
2

)
≤ C|sbt|−1 · 1√

2π
exp
(
−

sb2t
2

) 1−h2
⋆

1+h2
⋆ ≤ CΦ(|sbt|)

1−h2
⋆

1+h2
⋆ ,

and the above inequalities hold as long as (1 − h2⋆)/(1 + h2⋆) is on a constant level. Therefore, we
have proved Theorem G.14.

I.4.3 PROOF OF THEOREM G.15

Recall the definition Kt in (F.9) as

K1 :=

n |sb|Φ( −sb√
3
4 ℏ

2
4,⋆ +

1
4

)1/4

+

ρ2sn|sb|Φ( −sb√
2
3ℏ

2
3,⋆ +

1
3

)1/4

+

(
Φ
(
−

sb+ ℏ4,1ζ1√
1− ℏ24,1

)
+
(
ρ2s
)1/4) · (log(n))1/4 + n1/4ρ2 s log(n).

To upper bound the above terms, let us consider the following inequality for any τ ∈ (0, 1) and
|sb| ≥ 1:

Φ(τ |sb|) ≤ 1√
2π
· exp

(
−τ

2|sb|2

2

)
· 1

τ |sb|
≤ 1√

2π
· exp

(
−τ

2|sb|2

2

)
· |sb|
|sb|2 + 1

· 2τ−1

≤ 1

(
√
2π)τ2

· exp
(
−τ

2|sb|2

2

)
·
( |sb|
|sb|2 + 1

)τ2

· 2τ−1 ≤ 2

τ
· Φ(|sb|)τ

2

, (I.26)
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where in the first and the last inequalities, we use the Mills’ ratio bound that x/(x2 + 1) ≤
Φ(x)/p(x) ≤ x−1 for all x > 0. Now, we can apply (I.26) to upper bound the first term in Kt

asn |sb|Φ( −sb√
3
4 ℏ

2
4,⋆ +

1
4

)1/4

≤ C
(
n |sb|

)1/4
Φ(|sb|)

1

3ℏ2
4,⋆+1 ≤ C

(
n |sb|

)1/4
Φ(|sb|)

1
3h2

⋆+1 , (I.27)

where the last inequality holds because h⋆ ≤ ℏ4,⋆ by definition. Similarly, we can upper bound the
second term asρ2sn|sb|Φ( −sb√

2
3ℏ

2
3,⋆ +

1
3

)1/4

≤ C(ρ2sn|sb|)1/4 · Φ(|sb|)
3

8ℏ2
3,⋆+4 ≤ C(ρ2sn|sb|)1/4 · Φ(|sb|)

3
8h2

⋆+4 .

(I.28)

Here, the third term also follows from the above inequality as

Φ
(
−

sb+ ℏ4,1ζ1√
1− ℏ24,1

)
≤ Φ

(
−

sb+ h⋆ζ1√
1− h2⋆

)
≤ C · Φ(|sb|)

(1−h⋆ζ1/|sb|)2

1−h2
⋆ , (I.29)

where in the first inequality, we use the derivative in (F.12) and the fact that ζ1/|sb| = Θ(1) > 1,
which is given by the definition ζ1 = (1 + ε)2

√
log n in (E.11), to conclude that increasing ℏ4,1 to

h⋆ will only increase the value of the whole term. In the second inequality, we apply (I.26) with

τ =
1− h⋆ζ1/|sb|√

1− h2⋆
∈ (0, 1).

Here, we claim τ ∈ (0, 1) because by condition ζ1h⋆ < 1 − ν for some constant ν > 0, we have
1− h⋆ζ1/|sb| > 0, and by noting that ζ1/|sb| > 1, we have

τ <
1− h⋆√
1− h⋆

=
√

1− h⋆ ≤ 1.

In addition, since |sb| ≤
√
2 logn by condition Φ(|sb|) ≥ ρ1 ≥ n−1, we also have ζ1/|sb| > 1.

Consequently, we obtain that

h−1
⋆ − ζ1/|sb|√
h−2
⋆ − 1

≤ h−1
⋆ − 1√
h−2
⋆ − 1

≤ 1

as h⋆ < 1. Therefore, we can apply (I.26) with τ = (h−1
⋆ − ζ1/|sb|)/

√
h−2
⋆ − 1 ∈ (0, 1) in the last

inequality in (I.29). Now, we can combine (I.27), (I.28) and (I.29) to obtain the desired result in
Theorem G.15.

I.5 PROOFS FOR TECHNICAL LEMMAS

I.5.1 PROOF OF THEOREM I.1

By Cauchy-Schwartz, it holds that

t−1∑
τ=1

⟨Pu1:τ zτ , ut⟩2 ≤
t−1∑
τ=1

∥Pu1:τ zτ∥22 · ∥ut∥22.

One thing to be noted is that zτ is independent of the filtration σ(u1:τ ). Consiquently, when con-
ditioned on u1:τ , ∥Pu1:τ

zτ∥22 ∼ χ2
τ . By the concentration of χ2 distribution in Theorem J.1 with a

union bound over all τ ∈ [T ], we obtain that with probability at least 1 − n−c for some universal
constant c, C > 0 that

∥Pu1:τ
zτ∥22 ≤ τ + C

√
τ log(nT ) + C log(nT ) ≤ C(t+ log n), ∀τ ∈ [t− 1], t ∈ [T ].
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Therefore, we have that with probability at least 1− n−c:

t−1∑
τ=1

⟨Pu1:τ
zτ , ut⟩2 ≤ C(t2 + t logn) · ∥ut∥22, ∀t ∈ [T ]. (I.30)

For the second term, it follows from Theorem H.1 that with probability at least 1− n−c:

t−1∑
τ=1

( ⟨u⊥τ , ut⟩
∥u⊥τ ∥2

· ∥w
⊥
τ ∥2

∥u⊥τ ∥2

)2
≤ Cd ·

t−1∑
τ=1

⟨u⊥τ , ut⟩2

∥u⊥τ ∥22
= Cd · ∥Pu1:t−1

ut∥22, ∀t ∈ [T ]. (I.31)

For the last term ∥P⊥
w−1:t−1

rzt∥22 · ∥u⊥t ∥22, we also note that rzt is independent of the filtration
σ(w−1:t−1). Therefore, ∥P⊥

w−1:t−1
rzt∥22 ∼ χ2

d−t+1. We have by Theorem J.1 with a union bound
over all t ∈ [T ], and with probability at least 1− n−c that

∥P⊥
w−1:t−1

rzt∥22 ≤ d− t+ 1 + C
√
(d− t+ 1) log(nT ) + C log(nT ) ≤ Cd, ∀t ∈ [T ]. (I.32)

Combining (I.31) and (I.32), we have with probability at least 1− n−c and for all t ∈ [T ]:

t−1∑
τ=1

( ⟨u⊥τ , ut⟩
∥u⊥τ ∥2

· ∥w
⊥
τ ∥2

∥u⊥τ ∥2

)2
+ ∥P⊥

w−1:t−1
rzt∥22 · ∥u⊥t ∥22 ≤ Cd ·

(
∥Pu1:t−1

ut∥22 + ∥u⊥t ∥22
)
= Cd · ∥ut∥22.

(I.33)

Now we combine (I.30) and (I.33) to obtain the desired result in Theorem I.1.

I.5.2 PROOF OF THEOREM I.2

Recall that

ut = E⊤φ(Ey⋆t ; bt) + F⊤φ(Fy⋆t + θ · v⊤ swt−1; bt) + ∆Et +∆Ft.

By the triangular inequality, we have

∥ut∥2 ≤ 2
√
∥E⊤φ(Ey⋆t ; bt)∥22 + ∥F⊤φ(Fy⋆t + θ · v⊤ swt−1; bt)∥22 + 2

√
∥∆Et∥22 + ∥∆Ft∥22

By Theorem G.4, we have√
∥E⊤φ(Ey⋆t ; bt)∥22 + ∥F⊤φ(Fyt + θ · v⊤ swt−1; bt)∥22 ≤ CLNρ1ξt.

By Theorems F.12 and F.13, and the fact that N1 ≤ N and N2 ≤ Nρ1, we derive that√
∥∆Et∥22 + ∥∆Ft∥22 ≤ CLρ1N

√
dβt−1 + CLρ1ρ2

√
dβt−1 ≤ CLNρ1

√
dβt−1.

This completes the proof of Theorem I.2.

I.5.3 PROOF OF THEOREM I.4

We recall from the definition of Kt that

Kt =

n |sb|Φ( −sb√
3
4 ℏ

2
4,⋆ +

1
4

)1/4

+

ρ2sn|sb|Φ( −sb√
2
3ℏ

2
3,⋆ +

1
3

)1/4

+

Φ
(
−

sb+ ℏ4,tζt√
1− ℏ24,t

)
+
(
ρ2s
)1/4 · (t log(n))1/4 + n1/4ρ2 s t log(n),

The terms that implicitly change with t is ζt and ℏ4,t. Recall that

ζt = ζ1 + 1(t ≥ 2) · C(βt−1 + |α−1,t−1|+ |α−1,0|)
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with ζ1 =
√
2(1 + ε)

√
2 logn. Moreover, by definition of ℏ4,t, we can rewrite the term as

Φ
(
−

sb+ ℏ4,tζt√
1− ℏ24,t

)
= max

j∈[n]

 1

|Dj |
∑
l∈Dj

Φ
(
−

sb+Hl,jζt√
1−H2

l,j

)41/4

. (I.34)

To understand how the change in ζt affects the term, we take the derivatives for positive power q:

d

dζ
Φ
(
−

sb+ xζ√
1− x2

)q ∣∣∣∣
ζ=ζt

= qΦ
(
−

sb+ xζ√
1− x2

)q−1

· p
(
−

sb+ xζ√
1− x2

)
· ζx√

1− x2
> 0.

Here, we have the second derivative larger than 0 since ζt ≥ ζ1 =
√
2(1 + ε)

√
2 logn > |sb| by

assumption. Now, our goal is to upper bound the derivative with respect to ζ. We discuss in two
cases:

• For x ∈
[
(1 + |sb|/ζ)/2, 1

]
, we have sb + xζ ∈ [(sb + ζ)/2,sb + ζ], x ≥ (1 + 1/

√
2)/2 and

thus
d

dζ
Φ
(
−

sb+ xζ√
1− x2

)q
≤ q · p

(
−

sb+ xζ√
1− x2

)
·

sb+ xζ√
1− x2

· ζx
sb+ ζx

≤ q · sup
z≥
√

1−(1+1/
√
2)2/4

p(z) · z · ζ
sb+ ζ

≤ q · sup
z≥0

p(z) · z = O(1).

• For x ∈ [0, (1 + |sb|/ζ)/2], we have
√
1− x2 ≥

√
1− (1 + |sb|/ζ)2/4 ≥√

1− (1 + 1/
√
2)2/4 = Ω(1). Thus

d

dζ
Φ
(
−

sb+ xζ√
1− x2

)q
≤ q · ζ√

1− (1 + 1/
√
2)2/4

= O(
√
log n).

Therefore, we conclude that for q = 1, it holds for any Hl,j ∈ [0, 1] that

Φ
(
−

sb+Hl,jζt√
1−H2

l,j

)
− Φ

(
−

sb+Hl,jζ1√
1−H2

l,j

)
≤ C

√
log n · (βt−1 + |α−1,t−1|+ |α−1,0|). (I.35)

Since ∥x∥4 − ∥y∥4 ≤ ∥x− y∥4 ≤ m1/4∥x− y∥∞ for any x, y ∈ Rm by the triangle inequality, we
conclude that the same upper bound in (I.35) holds for each j in (I.34) as well. Therefore, the same
upper bound also holds after taking the maximum over j ∈ [n] in (I.34). Therefore, we obtain that

Kt ≤ t ·
(
K1 + C

√
log n · (βt−1 + |α−1,t−1|+ |α−1,0|)

)
.

This completes the proof of Theorem I.4.

J AUXILIARY LEMMAS

J.1 CONCENTRATION INEQUALITIES

Lemma J.1 (Chi-square concentration, Lemma 1 in Laurent & Massart (2000)). Let X1, . . . , Xn

be independent random variables such that Xi ∼ N (0, 1) for all i. Let a ∈ Rn
+ be a vector with

nonnegative entries. Then the following holds for any δ ∈ (0, 1):

P

(∣∣∣∣ n∑
i=1

aiX
2
i − ∥a∥1

∣∣∣∣ ≥ 2
√
∥a∥22 log δ−1 + 2∥a∥∞ log δ−1

)
≤ δ.

Lemma J.2 (Tail probability for the maximum Gaussian random variables). Let X1, . . . , Xn be
σ2-subgaussian random variables with mean 0. Then for any t > 0,

P
(

max
i=1,...,n

Xi ≥
√
2σ2 logn+ t

)
≤ exp

(
− t2

2σ2

)
.

In particular, ifX1, . . . , Xn are independent standard normal random variables, then for any c > 1,

P
(

max
i=1,...,n

Xi ≥ c
√
2 logn

)
≤ n1−c2 .
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Lemma J.3 (Bernstein’s inequality). Let X1, . . . , Xn be independent random variables with |Xi −
E[Xi]| ≤ C for all i ∈ [n]. Then for any δ ∈ (0, 1),

P
(∣∣∣∣ 1n

n∑
i=1

Xi − EXi

∣∣∣∣ ≤
√

2 · n−1
∑n

i=1 Var[Xi] · log δ−1

n
+
C log δ−1

3n

)
≥ 1− δ.

Lemma J.4. Let X1, . . . , Xn be independent standard normal random variables and define Mn =
max1≤i≤nXi. Then for any fixed ϵ ∈ (0, 1) and all sufficiently large n with 2(1− ϵ)2 log n ≥ 1 that

P
(
Mn ≤ (1− ϵ)

√
2 logn

)
≤ exp

(
− n2ϵ−ϵ2

3
√
π logn

)
.

Proof. Since X1, . . . , Xn
i.i.d.∼ N(0, 1), it holds for any x ∈ R

P(Mn ≤ x) = (1− Φ(x))n,

where Φ(x) is the standard normal tail distribution function. In order to upper bound (1 − Φ(x))n

when x = (1 − ϵ)
√
2 logn, we use a well-known lower bound for the Gaussian tail. Specifically,

for all x > 0 (see, e.g., Ledoux & Talagrand (2013) or Boucheron et al. (2013)),

Φ(x) ≥ ∆(x) :=
x

1 + x2
1√
2π

e−x2/2.

Hence, further applying the fact that 1−∆(x) ≤ exp(−∆(x)), we get

P(Mn ≤ x) ≤
(
1−∆(x)

)n ≤ exp
(
−n∆(x)

)
.

Now, for x = (1− ϵ)
√
2 logn, we have

x

1 + x2
=

(1− ϵ)
√
2 logn

1 + 2(1− ϵ)2 log n
≥

√
2

3(1− ϵ)
√
log n

,

where the inequality holds for sufficiently large n such that 2(1− ϵ)2 log n ≥ 1. Thus,

∆(x) ≥ 1

3(1− ϵ)
√
π logn

n−(1−ϵ)2 .

Substituting this lower bound into our earlier inequality gives

P
(
Mn ≤ (1− ϵ)

√
2 logn

)
≤ exp

(
− 1

3(1− ϵ)
√
π logn

n1−(1−ϵ)2

)

= exp

(
− n2ϵ−ϵ2

3
√
π logn

)
.

This completes the proof.

J.2 EFRON-STEIN INEQUALITIES

Let Z be a function of independent random variables X1, . . . , Xn with domain X :
Z = f(X1, . . . , Xn), (J.1)

where f : Xn → R is a measurable function. LetX ′
1, . . . , X

′
n be independent copies ofX1, . . . , Xn.

Define the modified versions of Z where one coordinate is replaced by its independent copy:

Z(i) = f(X1, . . . , Xi−1, X
′
i, Xi+1, . . . , Xn).

Define the deviation terms:

V+ = E

[
n∑

i=1

(Z − Z(i))2 1{Z > Z(i)}

∣∣∣∣∣ X1, . . . , Xn

]
,

V− = E

[
n∑

i=1

(Z − Z(i))2 1{Z < Z(i)}

∣∣∣∣∣ X1, . . . , Xn

]
. (J.2)

The following lemma is borrowed from Theorem 5 in Boucheron et al. (2003) for the case where
V+ is dominated by some linear transformation of Z.

97



5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291

Under review as a conference paper at ICLR 2026

Lemma J.5 (Efron-Stein for dominated variance). For Z and V+ defined in (J.1) and (J.2), respec-
tively, suppose that there exist positive constants a and b such that V+ ≤ aZ + b. Then there is a
universal constant C > 0 such that for any δ ∈ (0, 1), with probability at least 1− δ,

Z ≤ E[Z] + C ·
√
(a · E[Z] + b) log(1/δ) + C · a log(1/δ).

The following lemma is borrowed from Theorem 2 in Boucheron et al. (2003).
Lemma J.6 (Efron-Stein for the moment generating function). For all θ > 0 and λ ∈ (0, 1/θ),

logE [exp (λ(Z − E[Z]))] ≤ λθ

1− λθ
logE

[
exp

(
λV+
θ

)]
.

On the other hand, for all θ > 0 and λ ∈ (0, 1/θ),

logE [exp (−λ(Z − E[Z]))] ≤ λθ

1− λθ
logE

[
exp

(
λV−
θ

)]
.

The following lemma is borrowed from Lemma 11 in Boucheron et al. (2003) for transforming the
upper bound on moment generating function (MGF) bound into an exponential tail bound.
Lemma J.7. Suppose for any λ ∈ (0, 1/a), there exists a constant V > 0 such that:

logE[exp(λ(Z − E[Z]))] ≤ λ2V

1− λa
.

Then there exists some universal constant C such that for any δ ∈ (0, 1), with probability at least
1− δ:

Z − E[Z] ≤ C ·
√
V log(1/δ) + C · a log(1/δ).

With the above lemmas, we can derive the following Efron-Stein inequality for sub-exponential
variance.
Lemma J.8 (Efron-Stein inequality for sub-exponential variance). Suppose either of the following
two conditions is satisfied:

1. The variance V+ for Z satisfies that E[exp(λV+)] ≤ E[exp(λV ′
+)] for any λ > 0, where

V ′
+ is a-subexponential with a ∈ (0, 1):

Q(v) :=P(V ′
+ > V + v) ≤ exp(−v/a).

when V+ exceeds some threshold V > 0.

2. The moment generating function of V+ satisfies

logE[exp(λV+)] ≤ λV +
λa

1− aλ
for some V > 0, 0 < a < 1 and any 0 < λ < a−1/2.

Then, with probability at least 1− δ, it holds that

Z − E[Z] ≤ C ·
√
V log(δ−1) + C ·

√
a log(δ−1).

Similarly, if V− satisfies either of the two conditions, then with probability at least 1 − δ, it holds
that

E[Z]− Z ≤ C ·
√
V log(δ−1) + C ·

√
a log(δ−1).

Proof. We just prove the first condition and the second condition can be implied by the proof. We
explicit calculate the MGF for V+. The case for V− can be handled similarly. Take parameter
λ ∈ (0, a−1/2), we have for the moment generating function of V+ that

E[exp(λV+)] = exp(λV ) ·
(

lim
v→0−

Q(v) + λ ·
∫ ∞

0+

exp
(
λ · v

)
·Q(v)dv

)
≤ exp(λV ) ·

(
1 + λ ·

∫ ∞

0+

exp
(
−(a−1 − λ) · v

)
dv

)
= exp(λV ) ·

(
1 +

λ

a−1 − λ

)
= exp(λV ) ·

(
1 +

λ · a
1− aλ

)
.
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where we use 0+ and 0− to denote the limit from the right and left side of 0, respectively. Here,
in the first line, we use integration by parts to obtain an integration term with respect to the tail
probability Q(v). In the final line, we have the denominator 1− aλ > 0 since λ < a−1/2 < a−1 for
a ∈ (0, 1). Taking the logarithm on both side, we obtain that

logE[exp(λV+)] ≤ λV + log(1 + λa/(1− aλ)) ≤ λV +
λa

1− aλ
.

Now, we apply Theorem J.6 with λ replaced by λ/θ for some θ ∈ (aλ, λ−1) to obtain that

logE[exp(λ(Z − E[Z]))] ≤ λθ

1− λθ
logE

[
exp
(λV+

θ

)]
≤ λ2

1− λθ
·
(
V +

a

1− aλ/θ

)
≤ · λ2(V + a)

(1− λθ)(1− aλ/θ)
.

Note that such a θ exists since λ < a−1/2. In particular, we have by the constraint on λ that
aλ <

√
a < λ−1. Let us just pick θ =

√
a and further restrict ourselves to λ < a−1/2/2 to obtain

that

logE[exp(λ(Z − E[Z]))] ≤ λ2(V + a)

(1− λ
√
a)2
≤ λ2(V + a)

(1− 2λ
√
a)
.

Now, we invoke Theorem J.7 and conclude that there exists universal constant C > 0 such that

Z − E[Z] ≤ C ·
√
(V + a) · log(δ−1) + C ·

√
a · log(δ−1) ≤ 2C ·

(√
V log(δ−1) +

√
a · log(δ−1)

)
.

A similar bound holds for the lower tail with the condition on V−. Hence, we complete the proof.

Lemma J.9 (Efron-Stein inequality for bounded variance). Suppose that max{V+, V−} ≤ V0 with
probability at least 1 − exp(−a) for some a > nc1 and V0 > n−c2 for some universal constant
c1, c2 > 0. Also assume that max{V+, V−} is uniformly bounded by V1 with V1 ≤ nc3 for some
universal constant c3 > 0. Then, with probability at least 1− δ, it holds that

|Z − E[Z]| ≤ C ·
(√

V0 log(δ−1) +
√
a−1V1 log(δ

−1)
)
.

Proof. By Theorem J.6, we have for the moment generating function (MGF) of V+ that

logE[exp(λ(Z − E[Z]))] ≤ λθ

1− λθ
· logE

[
exp
(λV+

θ

)]
≤ λθ

1− λθ
· log

(
exp
(λV0
θ

)
+ exp

(λV1
θ

)
· P(V+ ≥ V0)

)
≤ λ

1− λθ
·
(
λV0 + θ exp

(λ(V1 − V0)
θ

− a
))

.

In the following, we take θ = 2λ(V1 − V0)/a, and the above upper bound can be simplified as

logE[exp(λ(Z − E[Z]))] ≤ λ2

1− 2λ2(V1 − V0)/a
·
(
V0 +

exp(−a/2)
2λ2(V1 − V0)/a

)
≤ λ2

1− λ
√

2(V1 − V0)/a
·
(
V0 +

exp(−a/2)
2λ2(V1 − V0)/a

)
.

Similarly for V−, we also have

logE[exp(−λ(Z − E[Z]))] ≤ λ2

1− λ
√

2(V1 − V0)/a
·
(
V0 +

exp(−a/2)
2λ2(V1 − V0)/a

)
.

Therefore, in the following, we only need to consider the upper tail and the lower tail can be directly
implied. As long as 1/(2λ2(V1−V0)/a) is polynomially in n, we will have exp(−a/2)/(2λ2(V1−
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V0)/a) ≤ V0. Take t to be the deviation of Z from its mean, i.e., t = |Z − E[Z]|, we have By
Lemma 11 of Boucheron et al. (2003), we conclude by using the Chernoff bound that

logP(Z − E[Z] ≥ t) ≤ inf
λ∈(0,
√

a/2(V1−V0))

{
λ2 · 2V0

1− λ
√
2(V1 − V0)/a

− tλ
}

≤ − t2

2(4V0 + t
√

2a−1(V1 − V0)/3)
,

where the last inequality holds as long as t satisfies

1−
(
1 +

t
√
2a−1(V1 − V0)

2V0

)−1/2

≥ exp(−a/4)
V0

. (J.3)

The lower bound holds similarly. A sufficient condition for (J.3) to hold is

t ≥ 8 exp(−a/4)√
2a−1(V1 − V0)

.

This condition will be automatically satisfied if we pick t = C · (
√
V0 log(δ−1) +

√
a−1(V1 − V0)

log(δ−1). Therefore, we conclude that with probability at least 1− δ, it holds that

|Z − E[Z]| ≤ C ·
(√

V0 log(δ−1) +
√
a−1V1 log(δ

−1)
)
.

This completes the proof.

Lemma J.10. Let w = (w1, w2, . . . , wd) be a random vector, and let w(i) denote the vector where
the i-th coordinate wi is replaced by an independent copy w′

i, while all other coordinates remain
unchanged. Suppose that f : Rd → R and g : Rd → R are both nondecreasing/nonincreasing
functions with respect to the coordinate wi. Then, we have the inequality:

E
[
f(w)g(w)

]
≥ E

[
f(w)g(w(i))

]
.

Proof of Theorem J.10. By the monotonicity of f and g, we have:

(f(w)− f(w(i))) · (g(w)− g(w(i))) ≥ 0.

Expanding the product and taking expectations, we obtain:

E
[
f(w)g(w)

]
− E

[
f(w)g(w(i))

]
− E

[
f(w(i))g(w)

]
+ E

[
f(w(i))g(w(i))

]
≥ 0.

By the symmetry of expectations, the first and last terms are equal, and the second and third terms
are also equal, so we obtain the desired inequality:

E
[
f(w)g(w)

]
≥ E

[
f(w)g(w(i))

]
.

This completes the proof.

K THE USE OF LARGE LANGUAGE MODEL

We acknowledge the use of a large language model (LLM) primarily to improve the grammar and
clarity of this manuscript. The LLM was also used to assist with debugging and generating boiler-
plate code snippets, which were reviewed and validated by the authors.

L REVISION

L.1 DISCUSSIONS FOR GAUSSIAN FEATURE ASSUMPTION

In our current theory, we assume that the features are Gaussian distributed. This is primarily used to
obtain clean, closed-form concentration bounds on:

1. (§B.4.1) Inner products between different feature directions, so we can control interference
between features when multiple are active, and
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2. (§B.4.2) Pre-activations y = w⊤x and their sparsity under the data model X = HV .

In specific, we employ the Gaussian conditioning technique, which allows us to decompose a high
dimensional Gaussian random vector into components that are explicitly dependent on the condi-
tioning event and components that are independent Gaussian noise. Theoretically extending these
probabilistic techniques to non-Gaussian settings is a non-trivial task and out of the scope of this
paper.

One generalization of the Gaussian conditioning technique involves using features uniformly sam-
pled from the unit sphere in our synthetic experiment (§3). This setup better reflects real-world
scenarios where features in LLMs are often normalized through layer-normalization. Despite the
different feature distribution, we still observe the resonance phenomenon predicted by our theory.
This is evident when inspecting the Feature Recovery Rate (FRR) in Figure 2, plotted for varying
activation frequencies p and dimensions d. This observation suggests that our theory is robust to the
specific distribution of features.

In addition, the empirical results on real LLM activations further confirm that the proposed GBA
method works well when V ’s rows are just the features learned by the LLM, which are non-Gaussian.

L.2 REVISION FOR EVALUATION METRICS

We provide brief definitions of key evaluation metrics used in this paper, and they will be incorpo-
rated in the main text in the revision.

Feature Recovery Rate (FRR). For synthetic experiments, FRR is the fraction of ground-truth
features (vi) such that at least one neuron’s weight (wm) has cosine similarity with (vi) above a
threshold (τalign). Formally:

FRR =
1

n

n∑
i=1

1

[
∃m ∈ [M ] :

|⟨wm, vi⟩|
∥wm∥2∥vi∥2

≥ τalign

]

Max Cosine Similarity (MCS). For real-data experiments, MCS measures the maximum cosine
similarity between a neuron in one run and all neurons in another run, used to assess cross-seed
consistency.

Neuron Z-score. For a neuron m with activations {ϕm,i} on a batch, the Z-score is Zmax
m =

(ϕm,max − µm)/sm where ϕm,max is the maximum activation, µm is the mean activation, and sm
is the standard deviation for activation. High Z-scores indicate neurons that selectively activate for
specific patterns.

Highest/Lowest Target Frequency (HTF/LTF). In GBA, neurons are partitioned into K groups
with target activation frequencies {pk}Kk=1 arranged as a geometric sequence. HTF is p1 (the largest
frequency, e.g., 0.5) and LTF is pK (the smallest frequency, e.g., 10−3–10−4).

Top-α selection rule. For a given fraction α ∈ (0, 1], this rule sorts neurons by a scalar metric
(max activation or Z-score) and selects the top α fraction for evaluation. This focuses analysis on
the most active or significant neurons, as only a small fraction typically capture meaningful features.

L.3 ENHANCED CAPTION FOR FIGURE 2: EVIDENCE OF PHASE TRANSITION

In the revision, we will add the following enhanced explanation to the caption of Figure 2:

Figure 2: Feature Recovery Rate (FRR) for varying activation frequencies p and dimensions d. In
the left panel (light superposition, d >

√
n), the high-FRR region forms a wide band in p above

f . In the right panel (heavy superposition, d <
√
n), the high-FRR region collapses into a narrow

diagonal band, where p must track f tightly. The contrast between wide and narrow resonance
bands provides empirical evidence for the theoretical phase transition at d ≈

√
n, showing that the

same feature frequency f yields different learning tolerances depending on superposition level.
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L.4 DISCUSSIONS FOR GEOMETRIC SPACING OF TARGET ACTIVATION FREQUENCIES

In our Group Bias Adaptation (GBA) method, we assign neurons into K groups with Target Activa-
tion Frequencies (TAFs) {pk}Kk=1 that are geometrically spaced between a Highest Target Frequency
(HTF) and a Lowest Target Frequency (LTF). This design choice is motivated by several theoretical
and practical considerations:

1. Theoretic guided group allocation. The theoretical resonance condition depends on p
being within at least a multiplicative band around f (can be even wider though if we have
less superposition). A geometric grid guarantees that for any feature frequency f within
[pK , p1], there exists some group with TAF pk within a constant factor of f , regardless of
the exact exponent of the empirical feature distribution.

2. Better coverage in log-frequency space. Geometric spacing minimizes the number of
groups K needed to cover a wide frequency range [pK , p1] to just logarithmic in the ratio
p1/pK . Empirically, we show in Figure 6 that having K > 10 groups is sufficient for
covering much of the frequency spectrum. However, other spacing (such as Zipfian) would
potentially require many more groups to achieve similar coverage, as the frequency decay
is slower than geometric. This would dilute the number of neurons per group, and we might
risk missing features in that frequency range.

L.5 CLARIFICATION ON NEURON RESONANCE

Intuitively, once a neuron has already learned a single feature, then its activation frequency will
match the feature’s occurrence frequency. Our work, however, is about the reverse direction under a
concrete training procedure:

If a group of neurons are trained to activate at frequency p, under suitable conditions these neurons
can provably recover features with frequency lying in a corresponding “resonance band”.

This is a non-trivial statement because at random initialization, the neurons do not align with any
features, and the training dynamics must guide them to do so if they are tuned at the right frequency.
This result justifies that a more active way of training Sparse Autoencoders (SAEs) is plausible, and
provides a theoretical foundation for our GBA algorithm.

L.6 CLARIFICATION THAT GBA IS NOT A HIERARCHICAL SAE

One might wonder whether GBA with multiple frequency groups is essentially the same as Ma-
tryoshka SAEs (Bussmann et al.) or Hierarchical TopK SAEs (Balagansky et al., 2025) that are
designed to recover hierarchical features. However, we would like to clarify that GBA is fundamen-
tally different from these models, esentially because GBA uses a single loss for all groups, while
hierarchical SAEs or Matryoshka SAEs use multiple losses, each applied to a subset of the neurons.

As a consequence, one limitation of GBA is that it is not guaranteed to separate hierarchical features.
This does not violate our theoretical analysis, since we assume that the feature coefficient matrix H
has uniformly random supports, which rules out hierarchical feature structures.

To make this distinction more concrete, consider the following minimal example. Let a, b ∈ Rd be
unit vectors with b ̸= ±a, and suppose the dataset consists only of the two inputs

x ∈ { a+ b, a− b },

i.e., the high-level feature a always co-occurs with either b or −b. Under a single global reconstruc-
tion loss (the structure used by GBA), there is no penalty for representing the data by the two basis
vectors a+b and a−b themselves. In other words, the model can minimize loss by learning neurons
aligned with a+ b and a− b, without ever isolating a or b individually. By contrast, hierarchical or
multi-loss SAEs (e.g., Matryoshka) impose intermediate reconstruction objectives or capacity con-
straints at different levels. A high-level group that must explain the input with very few neurons (or
with its own reconstruction loss) is incentivized to capture the common component a rather than
the signed combinations a± b. Thus the multi-loss design can force a decomposition that separates
high- and low-level factors.
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Furthermore, this distinction explains why GBA is primarily compared against other single-loss
SAEs (TopK, JumpReLU, L1) in our experiments, rather than Matryoshka. Notably, despite not
being designed for hierarchical feature recovery, GBA still demonstrates competitive performance
on SAEBench compared to more advanced models like Matryoshka, as shown in Table 2. We
believe that extending GBA to handle hierarchical feature decomposition is an interesting direction
for future work, and it remains an insteresting research question on how to apply frequency-aware
training in that context.

L.7 ADDITIONAL RESULTS ON NEURON ANALYSIS

We further provide additional studies on the neurons learned by the GBA and TopK methods in
terms of the three metrics used in the main experiment: maximum activation, Z-score, and maximum
cosine similarity across different runs with different random seeds. All the other setup is the same as
in Figure 4. These metrics are computed based on the validation part of Github dataset, with the
hook position at the MLP output of layer 26. For the Z-score, we compute the largest value among
the tokens in the validation set, and for the maximum cosine similarity, we compute the smaller
value among the two additional runs. See §C.2 for rigorous definitions of these metrics. In addition,
for each neuron m, we also compute the activation fraction (or activation rate), which is defined as
the fraction of tokens where pre-activations of neuron m are non-negative.

Thus, for each neuron m, we have four metrics: maximum activation, Z-score, maximum cosine
similarity, and activation fraction. We generate scatter plots by plotting the Z-score against the other
three metrics. The results for GBA and TopK are presented in Figure 15 and Figure 16, respectively.

Z-score v.s. maximum activation. In Figure 15 (left), we present the scatter plot of the Z-score
versus the maximum activation of neurons, which is shown in the logarithmic scale with base 10. We
observe an almost linear relationship between the two metrics, indicating that neurons with higher
Z-scores also exhibit higher maximum activations. Notably, at the upper end of the distribution, a
subset of neurons attains even higher Z-scores. This behavior suggests that these neurons capture
a “cleaner” feature and fire exclusively when the feature is present. By the definition of the Z-
score, for neurons with the same maximum activation, a higher Z-score implies a lower variance.
In other words, these neurons’ activations tend to be bimodal—predominantly near a baseline when
the feature is absent and significantly higher when the feature is present. This is consistent with the
dashboard results for individual neurons as we shown in Figure 17.
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Figure 15: Scatter plots for all SAE neurons illustrating neuron properties for the GBA method:
Z-score versus Maximum Activation, Fraction of Non-negative Pre-Activations (i.e., activation fre-
quency), and Maximum Cosine Similarity across different runs with different random seed. The 66k-
neuron SAE is trained on the GitHub dataset with a hook at the MLP output of layer 26.

Z-score v.s. activation fraction. In Figure 15 (middle), we present a scatter plot of the Z-score
versus the activation fraction, which is shown in the logarithmic scale with base 10. Neurons with
higher Z-scores generally exhibit an activation fraction near 10−3 to 10−1. This suggests that they
predominantly capture infrequent yet salient features. Comparing to the TopK method, we observe
that the GBA method is more effective in capturing infrequent features, which is primarily due
to the fact that we purposefully assign groups with both high and low target activation frequency.
Additionally, the neuron grouping mechanism effectively adapts to diverse feature occurrence fre-
quencies, underscoring the adaptivity of our approach. Additionally, we observe several neurons
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with activation frequencies exceeding the HTF of 0.1 (by our default configurations). This behavior
is facilitated by the bias-clamping mechanism, which prevents biases from becoming excessively
negative, as discussed in §4.

On the contrary, we observe in Figure 16 (middle) that TopK is good at capturing frequent features,
but for infrequent features, it has very low Z-scores compared to the GBA method. This fact again
underscores the effectiveness of our approach in capturing infrequent features.

Z-score v.s. MCS. In Figure 15 (right), we present a scatter plot of the Z-score versus maximum
cosine similarity across different runs with distinct random seeds. Recall that a higher maximum
cosine similarity indicates more consistent feature recovery, and we observe that neurons with higher
Z-scores tend to exhibit higher levels of consistency. This result supports the effectiveness of GBA
in reliably extracting salient features.
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Figure 16: Scatter plots SAE neurons illustrating neuron properties trained using TopK with K =
300. The other configurations are the same as Figure 15

Figure 17: Feature dashboard for neuron 4688 in the GBA-SAE model trained on Pile Github at layer
26’s MLP output position. This neuron exhibits a clear bimodal activation pattern, and is activated
before outputting the “class” token.

L.8 WHY FREQUENCY-AWARE TRAINING? A TOY EXAMPLE

To illustrate the benefits of frequency-aware training, we present a simple toy example, where we
will show that standard TopK/L1 SAEs can fail to recover the ground-truth features.

Data Generation. We randomly sample n = 128 features {vi}ni=1 ∈ Sd−1 with d = 42 dimen-
sions. We consider the dataset to be heavily imbalanced in the sense that different data could contain
dramatically different number of active features. Speicifically, we consider two types of data points:

1. Type A: with probability 0.5, we sample s = 3 features uniformly at random from {vi}ni=1,
take their sum and ℓ2-normalize as the data point x.
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Figure 18: Feature dashboard for neuron 10984 in the GBA-SAE model trained on Pile Github at
layer 26’s MLP output position. This neuron activates uniquely when the model is going to generate
names of operating system such as “Ubuntu”, “Windows”, and “macOS”. This is a good example of a
neuron that captures a concept rather than a specific token.

2. Type B: with probability 0.5, we sample s = 20 features uniformly at random from
{vi}ni=1, take their sum and ℓ2-normalize as the data point x.

Thus, Type A data points are sparse combinations of a few features, while Type B data points
are denser combinations of many features. This specific data generation resemble the real-world
scenario where different data points could contain different number of active features. Note that the
only challenge here is the imbalance in the number of active features, while the feature frequencies
are all uniform at f = (3 + 20)/2n ≈ 0.09.

Why it could be a challenge for standard SAEs. Standard SAEs like TopK regularized SAEs
typically assume a fixed sparsity level across all data points. For example, a TopK SAE withK = 10
assumes that each data point can be represented by activating only 10 neurons. While this K value
could be suitable for learing Type A data points (which only need 3 active features), it is too small
for Type B data points (which need 20 active features). Hence, the model could struggle to learn
real features from Type B data points.

Training Setup. We consider training TopK SAEs as our baseline method and make comparison
with our proposed GBA method. For all SAEs, we set the number of neurons to be M = 8192. We
consider the following configurations:

1. TopK SAE: We train TopK SAEs with M = 8192 neurons and sweep K ∈ {20, 30, 50}.
These values correspond to different sparsity assumptions: K = 20 matches exactly the
sparsity of the dense (Type B) samples, while K = 30 and K = 50 represent over-
estimates. This setup evaluates the model’s robustness to fixed-sparsity constraints when
the true data sparsity varies significantly.

2. GBA SAE: We train two varients of GBA SAEs: (i) Full coverage: We set HTF=0.5,
LTF=0.001 just like in our main experiments with 10 groups. This setup ensures that the
target frequencies perfectly cover the feature frequency f ≈ 0.09, allowing us to assess
GBA’s effectiveness when the frequency range is well-specified. (ii) Misspecified cov-
erage: We set HTF=0.01, LTF=0.001 with 10 groups, which does not cover the feature
frequency f ≈ 0.09. This setup tests GBA’s robustness to imperfect frequency range spec-
ifications.

Results. We present the results in Table 4. We observe that:

• TopK SAE’s performance is highly sensitive to K: When K = 20, the model perfectly
matches the sparsity of Type B samples, achieving a perfect FRR of 100% at MCS ≥
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0.8 and 98.4% at MCS ≥ 0.9. However, as K increases to 30 and 50, the FRR drops
significantly, especially at the higher MCS threshold of 0.9. This indicates that to recover
features accurately, the sparsity level must be carefully tuned to the data distribution, which
may not be feasible in practice.

• GBA SAE with full coverage excels: The GBA model with full frequency coverage
achieves perfect FRR of 100% at both MCS thresholds, demonstrating its ability to adap-
tively learn features across varying sparsity levels in the data. The 100% FRR is not sur-
prising here as predicted by our theoretical analysis. On the other hand, if we misspecify
the frequency coverage, the FRR drops significantly. These results again validate that it is
indeed the frequency-aware training that enables effective feature recovery.

Method FRR (MCS ≥ 0.8) FRR (MCS ≥ 0.9)
TopK=20 100.0% 98.4%
TopK=30 98.4% 24.2%
TopK=50 94.5% 23.4%
GBA Full coverage 100.0% 100.0%
GBA Misspecified coverage 38.3% 3.9%

Table 4: Feature Recovery Rate (FRR) across different methods and Maximum Cosine Similarity
(MCS) thresholds. Here, a feature is considered recovered if at least one neuron’s weight has a
cosine similarity with the feature above the specified MCS threshold (0.8 or 0.9).

L.9 ADDITIONAL SAEBENCH EVALUATION

We provide additional comparison of GBA with other SAE variants on SAEBench (Karvonen et al.,
2025) in Table 2.

For GBA, we always fix HTF = 0.5 and number of groups K = 20. To create GBA run with
different L0 sparsity, we vary the LTF from 10−3 to 10−4, and also also vary the number of neurons
assigned to each group and γ+, the coefficient that controls how much we increase the bias for dead
neurons in each group (See line 18 of Algorithm 1). Specifically, we allocate more neurons to groups
with lower target frequencies while also decrease γ+ if we want to achieve a higher overall sparsity
level L0. For this experiment, we train a groups of GBA models with final L0 values ranging from
132.9 to 694.9.

Why we do not target the very high sparsity (extremely low L0) regime? In our sparsest run
(L0 = 132.9), we set LTF = 10−4, γ+ = 10−4 and allocated a linearly increasing number of
neurons to groups with lower target frequencies. Empirically, we find that

1. Further decreasing the LTF, γ+ or assigning more neurons to low-frequency groups dramati-
cally exacerbates the percentage of dead neurons, with the fraction of dead neurons exceeding
50%. This behavior is expected, as extremely low target frequencies (e.g.,< 10−4) are difficult
to maintain stable given limited batch sizes, making neurons prone to becoming permanently
inactive. This constraint is fundamentally different from TopK methods, where sparsity can be
globally hardcoded by the parameter K.

2. Further tuning these hyperparameters does not effectively reduce the L0 value. One evidence
is from our ablation studies in Figure 6, where the lowest achievable sparsity is about 0.2%,
which corresponds to L0 ≈ 132 for our setup with 66k neurons.

3. The 100 ∼ 700 region of L0 already covers a wide range of sparsity levels that are of practical
interest, whereas similar range of L0 has also been used in prior SAE works (Gao et al., 2024).

Consequently, to evaluate the performance of GBA in a reasonable configuration setting, we do not
make further attempt to push GBA into the extremely low L0 regime in this experiment.

We provide the comparison results of GBA with other SAE varients in Figure 19. Here, we only
train the GBA models with different L0 values, and the results of the other SAE models are taken
from Karvonen et al. (2025), where the SAE baselines are all trained with the same data and LLM
architecture as ours.
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Figure 19: SAEBench Evaluation Results. We compare GBA with other SAE variants across mul-
tiple metrics. Here, we constrain the comparison to SAE models with L0 values between 100 and
500 to ensure a fair evaluation. For SCR (Marks et al., 2024) and TPP metrics, we take the aver-
age of the scores over Top-20 and Top-50 neurons as scores evaluated for these numbers tend to be
more stable (Karvonen et al., 2025) while avoiding biases from too limited neuron counts. All the
metrics except Absorption Score are better when higher, while Absorption Score is better when lower.
GBA demonstrates competitive performance across Explained Variance, Absorption Score, TPP Score,
Alive Fraction (for high L0), and RAVEL Isolation metrics.

GBA method demonstrates a distinct performance profile compared to standard Sparse Autoencoder
(SAE) baselines. Key observations include:

1. Explained Variance: GBA consistently achieves the highest explained variance across all scru-
tinized L0 levels (ranging from 100 to 400), significantly outperforming Standard and PAnneal
baselines while maintaining a slight edge over BatchTopK and Matryoshka models.

2. Absorption Score: GBA achieves the lowest Absorption Score (approaching 10−2 on the log
scale), which is significantly better than Standard, TopK, and GatedSAE (hovering around
10−1). This indicates that GBA features are consistently activated when their corresponding
input features are present, demonstrating effective feature capture. We add more discussions
on this point later.

3. SCR Score: GBA significantly underperforms on the Spurious Correlation Removal (SCR)
metric when we push the L0 value to 132.9. One possible reason for such a sharp drop is
that many neurons in the model are allocated to extremely low-frequency groups (with target
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frequencies below 10−3), and the model can fail to capture spurious features that are used for
the SCR task.

4. Sparse Probing: In the sparse probing classification task, GBA remains competitive with an
accuracy of approximately 0.953 ∼ 0.957. However, it is marginally outperformed by other
varients, which achieve slightly higher linear separability at similar sparsity levels.

5. TPP Score: GBA shows competitive performance on the TPP metric compared to other SAE
varients, and is on par with BatchTopK and outperform JumpReLU and GatedSAE, demon-
strating its ability to capture features with high causal disentanglement quality.

6. Alive Fraction: The method exhibits exceptional stability with a near-perfect alive fraction
(≈ 1.0) for L0 values above 300. However, for lower L0 values (e.g., 132.9), the alive fraction
decreases to around 0.75. The reason for this drop lies in how we configure GBA for achieving
low L0 values, which involves setting very low target frequencies for some groups, assigning
more neurons to low-frequency groups, and using a small γ+ value. All these factors contribute
to an increased likelihood of neurons becoming permanently inactive.

7. RAVEL Metrics: GBA performs competitively on the RAVEL suite, particularly in RAVEL
Isolation and RAVEL Disentanglement. The performance trend improves as L0 increases, sug-
gesting the features recovered are causally distinct and well-separated.

The tables for similar L0 SAE comparison are also available in Table 6 and Table 5 for L0 around
300 and 100, respectively.

Further Discussion on Absorption Score. GBA demonstrates particularly strong performance on
the Absorption Score, achieving values significantly lower than other methods. To ensure this low
score reflects genuine feature disentanglement rather than trivial artifacts, we additionally evaluate
the Mean F1 score for the first-letter prediction task, following Chanin et al. (2024). Formally, the
F1 score is defined as the harmonic mean of precision and recall:

F1 =
2 · Precision · Recall
Precision + Recall

,

where Precision = TP
TP+FP and Recall = TP

TP+FN , with TP, FP, and FN denoting true positives,
false positives, and false negatives, respectively. This metric evaluates the utility of the top-k neu-
rons—selected via cosine similarity with a task-specific probe—in predicting the first letter of a
token. A high Mean F1 score confirms that the unabsorbed features are semantically meaningful.

As shown in Figure 20, GBA consistently achieves Mean F1 scores in the range of 0.6–0.7 across
different sparsity levels. Such an Mean F1 Score matches and is even slightly better than those
reported in (Chanin et al., 2024). This suggests that GBA successfully recovers accurate, task-
relevant features, thereby validating that its low Absorption Score reflects genuine disentanglement
rather than artifacts. Furthermore, the Mean F1 score increases only mildly with k, implying that the
top neuron alone captures most of the predictive power for this task—a strong indicator of minimal
feature absorption.
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Figure 20: Mean F1 Score Comparison. We compare the Mean F1 score of the top-k neurons for the
first letter prediction task in our trained GBA SAEs with different L0 values. Notably, across different
sparsity levels, we find that GBA consistently achieves Mean F1 scores around 0.6 ∼ 0.7, while
standard SAEs usually have Mean F1 scores below 0.5 for these L0 levels as reported in (Chanin et al.,
2024). This indicates that GBA indeed learns SAE latents that are accurate in capturing meaningful
features and the low Absorption Score is not due to trivial artifacts.

Metric GatedSAE TopK BatchTopK Matryoshka JumpReLU GBA
(ours) Standard

L0 175.2 173.4 168.6 166.7 162.5 132.9 125.3

Explained Variance ↑ 0.812 0.816 0.816 0.793 0.812 0.859 0.730
Absorption Score ↓ 0.2657 0.0838 0.0424 0.0083 0.0821 0.0022 0.3529
SCR Metric ↑ 0.323 0.321 0.349 0.391 0.303 0.107 0.209
Sparse Probing ↑ 0.957 0.956 0.956 0.957 0.958 0.954 0.954
TPP Metric ↑ 0.072 0.100 0.094 0.209 0.105 0.144 0.018
Alive Fraction ↑ 0.890 0.910 0.856 0.897 0.719 0.723 0.719
RAVEL Disent. ↑ 0.730 0.709 0.714 0.739 0.728 0.710 0.665
RAVEL Cause ↑ 0.710 0.677 0.676 0.735 0.710 0.658 0.603
RAVEL Isolation ↑ 0.751 0.742 0.752 0.743 0.747 0.762 0.727

Table 5: Performance comparison of SAE models with L0 between 100 ∼ 200 on SAEBench. Arrows
indicate whether higher (↑) or lower (↓) values are better. Bold indicates best performance, and underline
indicates second best. GBA achieves the best performance in 3 out of 9 metrics, and for TPP metric GBA is
also the second best.

Metric Standard GatedSAE BatchTopK Matryoshka TopK GBA
(ours) JumpReLU

L0 468.9 408.7 339.4 338.1 334.4 309.0 305.3

Explained Variance ↑ 0.816 0.871 0.859 0.840 0.859 0.902 0.855
Absorption Score ↓ 0.1355 0.0696 0.0347 0.0158 0.0269 0.0041 0.0424
SCR Metric ↑ 0.228 0.294 0.268 0.331 0.332 0.296 0.309
Sparse Probing ↑ 0.958 0.959 0.957 0.957 0.958 0.956 0.958
TPP Metric ↑ 0.026 0.086 0.267 0.312 0.213 0.184 0.099
Alive Fraction ↑ 0.743 0.918 0.770 0.828 0.872 0.970 0.711
RAVEL Disent. ↑ 0.709 0.764 0.729 0.742 0.725 0.737 0.737
RAVEL Cause ↑ 0.670 0.749 0.697 0.710 0.700 0.694 0.731
RAVEL Isolation ↑ 0.748 0.778 0.761 0.773 0.749 0.779 0.742

Table 6: Performance comparison of SAE models with L0 between 300 ∼ 400 on SAEBench. Arrows
indicate whether higher (↑) or lower (↓) values are better. Bold indicates best performance, and underline
indicates second best. GBA (ours) achieves the best performance in 4 out of 9 metrics, particularly excelling
in Explained Variance and Absorption Score.
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Under review as a conference paper at ICLR 2026

Metric Standard BatchTopK GBA
(ours) Matryoshka GatedSAE TopK JumpReLU

L0 835.1 695.6 694.9 675.7 662.3 655.7 605.2

Explained Variance ↑ 0.852 0.902 0.926 0.891 0.898 0.906 0.906
Absorption Score ↓ 0.0873 0.0724 0.0044 0.0157 0.0351 0.0274 0.0052
SCR Metric ↑ 0.239 0.242 0.235 0.306 0.254 0.230 0.329
Sparse Probing ↑ 0.958 0.956 0.960 0.957 0.958 0.959 0.959
TPP Metric ↑ 0.025 0.340 0.209 0.365 0.086 0.328 0.159
Alive Fraction ↑ 0.750 0.601 0.997 0.531 0.913 0.718 0.584
RAVEL Disent. ↑ 0.731 0.751 0.748 0.746 0.767 0.749 0.755
RAVEL Cause ↑ 0.680 0.725 0.724 0.706 0.768 0.723 0.734
RAVEL Isolation ↑ 0.781 0.777 0.772 0.785 0.766 0.775 0.775

Table 7: Performance comparison of SAE models with L0 between 600 ∼ 850 on SAEBench. Arrows
indicate whether higher (↑) or lower (↓) values are better. Bold indicates best performance, and underline
indicates second best.
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