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Abstract

In this paper, we introduce GoodDrag, a novel approach to improve the
stability and image quality of drag editing. Unlike existing methods that
struggle with accumulated perturbations, GoodDrag introduces an AlDD
framework that alternates between drag and denoising operations within
the diffusion process, effectively improving the fidelity of the result. We also
propose an information-preserving motion supervision operation that main-
tains the original features of the starting point for precise manipulation and
artifact reduction. In addition, we contribute to the benchmarking of drag
editing by introducing a new dataset, Drag100, and developing dedicated
quality assessment metrics, Dragging Accuracy Index and Gemini Score,
utilizing Large Multimodal Models. Extensive experiments demonstrate
that the proposed GoodDrag compares favorably against the state-of-the-
art approaches both qualitatively and quantitatively. The source code and
data are available at https://gooddrag.github.io.

1 Introduction

In this work, we present GoodDrag, a novel approach for drag editing with enhanced stability
and image quality. Drag editing (Pan et al., 2023) represents a new direction in generative
image manipulation. It allows users to effortlessly edit images by simply specifying the
starting and target points, as if physically dragging an object or a part of an object from its
initial location to the target location, with the edits blending harmoniously into the original
image context as exemplified in Figure 2.
Early methods (Pan et al., 2023; Ling et al., 2023) for drag editing employ Generative Adver-
sarial Networks (GANs) (Goodfellow et al., 2014) which are often trained for class-specific
images, and thereby struggle with generic, real-world images. Moreover, these methods
heavily rely on GAN inversion techniques (Roich et al., 2022; Weihao et al., 2021; Xu et al.,
2023), which may fail in complex, in-the-wild scenarios.
To address these issues, recent advancements have shifted towards using diffusion models for
drag editing (Shi et al., 2023; Mou et al., 2024a; Nie et al., 2023; Mou et al., 2024a;b). Thanks
to the remarkable capabilities of diffusion models in image generation, these methods have
significantly improved the quality of drag editing for generic images. However, the current
diffusion-based approaches often suffer from instability, resulting in outputs that have severe
distortions or fail to adhere to the designated control points.
This paper addresses these challenges by establishing two good practices for more effective
drag editing using diffusion models. Our first contribution is a new editing framework, called
Alternating Drag and Denoising (AlDD). As shown in Figure 1, existing methods typically
conduct all drag operations at once and then attempt to correct the accumulated pertur-
bations subsequently. However, this approach often leads to perturbations that are too
substantial to be corrected. In contrast, the AlDD framework alternates between the drag
and denoising operations within the diffusion process as shown in Figure 1. This method-
ology effectively addresses the issue by preventing the accumulation of large distortions,
ensuring a more refined and manageable editing process.
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Figure 1: There are two main operations in-
volved in drag editing: drag and denoising.
The drag operation (orange) modifies the im-
age to achieve the desired drag effect but leads
to deviations from the natural image mani-
fold, resulting in artifacts. The denoising op-
eration (green) estimates the score function
of the natural image distribution and corrects
the artifacts by guiding the results back to
the manifold. Existing diffusion-based drag
editing methods (dotted trajectory) apply all
drag operations at once, which often results in
excessive and accumulated perturbations that
are hard to correct. In contrast, the proposed
AlDD framework (solid trajectory) alternates
between drag and denoising within the diffu-
sion process, which prevents accumulated per-
turbations and ensures more accurate results.

As the second contribution, we investigate
into the common failures of point control,
where the starting point cannot be accu-
rately dragged to the desired target loca-
tion. We find this is mainly due to that the
dragged features in existing algorithms may
gradually deviate from the original features
of the starting point. To address this issue,
we propose an information-preserving mo-
tion supervision operation that maintains
the original features of the starting point,
ensuring more realistic and precise point
control.
Furthermore, we make early efforts to
benchmark drag editing by introducing a
new dataset Drag100 along with dedicated
evaluation metrics. Notably, we develop
Gemini Score, a novel quality assessment
metric utilizing Large Multimodal Mod-
els (Anil et al., 2023), which is more reliable
and effective than existing image quality as-
sessment metrics.
Combining these good practices, our fi-
nal algorithm, named GoodDrag, consis-
tently achieves high-quality drag editing re-
sults and outperforms state-of-the-art ap-
proaches both quantitatively and qualita-
tively.

2 Related Work

Diffusion-based image manipulation. Generative Adversarial Networks (GANs) have
long dominated image editing tasks such as inpainting, colorization, super-resolution, and
text-driven manipulation, demonstrating early success in synthesizing plausible visual con-
tent (Xu et al., 2017; Yu et al., 2018; Isola et al., 2017; Park et al., 2019; Chen et al., 2020;
Xu et al., 2021; Chen et al., 2021; Chan et al., 2022; Liu et al., 2023b; Du et al., 2023). How-
ever, they often suffer from instability and suboptimal image quality for real-world input,
hindering their application to complex, practical editing scenarios.
Recent breakthroughs in diffusion models have revolutionized the field, offering unparalleled
image fidelity and controllability (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al.,
2020a;b; Rombach et al., 2022; Su et al., 2022; Liu et al., 2023a; Li et al., 2024; Yan et al.,
2024; Dhariwal & Nichol, 2021). For instance, the Dreambooth series (Ruiz et al., 2023a;
Raj et al., 2023; Ruiz et al., 2023b) leverage subject-specific tuning to edit and create
new contents under the theme of the input. CustomSketching (Xiao & Fu, 2024) and
ControlNet (Zhang et al., 2023) introduce sketches, text, and user scribbles to guide the
generation of images. Instant3D (Li et al., 2024) further integrates geometric priors to push
the boundary to 3D-consistent generation. These advancements underscore the potential of
diffusion models in a wider range of image editing tasks, such as drag editing.
Drag Editing Drag editing, introduced by DragGAN (Pan et al., 2023), revolutionized
image manipulation through intuitive point-to-point selection. Nevertheless, GAN-based
drag editing approaches (Pan et al., 2023; Roich et al., 2022; Ling et al., 2023) remain
fundamentally constrained: they primarily edit synthetic images and struggle with real-
world scenes.
Recent diffusion-based methods (Shi et al., 2023; Nie et al., 2023; Mou et al., 2024a; Liu
et al., 2024; Hou et al., 2024; Shin et al., 2024; Mou et al., 2024b; Lu et al., 2024; Zhao
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Figure 2: Given an input image (Original) and user-specified control points (User Edit),
GoodDrag “drags” the semantic content from the handle points (red) to the target points
(blue). The target points remain fixed while the handle points move closer during optimiza-
tion. Users can also select an indication mask to define the editable region.

et al., 2024) enable drag editing on diverse real images. However, their consecutive editing
steps accumulate perturbations in the latent space (Figure 1), which often lead to severe
image quality degradation.
Our key contribution addresses this limitation through the Alternating-Drag-and-Denoising
(AlDD) framework. Unlike existing approaches, AlDD strategically interleaves drag opera-
tions with denoising steps across the entire generation process, enabling progressive refine-
ment of edits while preventing artifact accumulation. We further introduce an information-
preserving motion supervision mechanism that mitigates feature drift, stabilizing the editing
trajectory. These good practices ensure high-fidelity, artifact-free results even for complex
real-world images, advancing drag editing beyond the quality and generality constraints of
existing methods.

3 Method

In this work, we propose GoodDrag, a new framework, for high-quality drag editing with
diffusion models (Song et al., 2020a;b; Rombach et al., 2022). We develop and integrate
two effective practices within this framework: Alternating Drag and Denoising (Section 3.2)
and Information-Preserving Motion Supervision (Section 3.3), which are instrumental in
reducing visual artifacts and enhancing precision in drag editing.

3.1 Preliminary on Diffusion Models

Diffusion models represent a compelling subclass of generative models, having demonstrated
remarkable performance in synthesizing high-quality images, as evidenced by advanced ap-
plications like DALLE2 (Ramesh et al., 2022) and Stable Diffusion (Rombach et al., 2022).
These models consist of two distinct phases: the forward process and the reverse process.
In the forward process, a given data sample z0 is combined with increasing levels of Gaussian
noise over a series of Tmax steps. This process results in the generation of a series of
progressively noised samples {zt}Tmax

t=1 , with each zt representing the noised image at time
step t. Mathematically, the forward process can be formulated as:

zt =
√

αtz0 +
√

1 − αtε, (1)

where ε ∼ N (0, I) is a random Gaussian noise. αt ∈ (0, 1) acts as a diminishing factor of z0,
and the sequence {αt}Tmax

t=1 is designed to be monotonically decreasing for a stronger noise
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Figure 3: Overview of the proposed AlDD framework. (a) Existing methods first perform all
drag editing operations {gk}K

k=1 at a single time step T and subsequently apply all denoising
operations {ft}1

t=T to transform the edited image zK
T into the VAE image space. (b) To

mitigate the accumulated perturbations in (a), AlDD alternates between the drag operation
g and the diffusion denoising operation f , which leads to higher quality results. Specifically,
we apply one denoising operation after every B drag steps and ensure the total number of
drag steps K is divisible by B. Here T = Tmax · κ, where κ is the DDIM inversion strength.
We set B = 2 in this figure for a clear illustration and use B = 10 in real implementation.

as t increases. When t is close to Tmax, αt is close to 0, and zt approximates an isotropic
Gaussian distribution.
During the reverse process, we first sample zTmax from the standard Gaussian distribution
N (0, I) and then generate samples resembling the original data distribution of z0 by grad-
ually reducing the noise levels. The Denoising Diffusion Implicit Models (DDIM) (Song
et al., 2020a) stand out in this phase, achieving decent efficiency and consistency in generat-
ing high-quality images. The reverse process from zt to zt−1 under the deterministic DDIM
framework can be written as:

zt−1 = √
αt−1

zt −
√

1 − αtεθ(zt, t)
√

αt
+
√

1 − αt−1εθ(zt, t), (2)

where εθ represents a neural network with parameters θ, which is trained to predict the
noise ε in Eq. 1. For clarity, we denote Eq. 2 as zt−1 = ft(zt).
Following Stable Diffusion (Rombach et al., 2022), we use the Variational Autoencoder
(VAE) (Esser et al., 2021) to encode original images into lower-resolution images in fea-
ture space to reduce computation and memory costs. Throughout the paper, the variables
denoted by z refer to images in this VAE space instead of the pixel space.

3.2 Alternating Drag and Denoising

”A stitch in time saves nine.”

— Proverb

The input of drag editing is a source image z0, a set of l starting points {pi}, and their
corresponding target points {qi}, where i = 1, 2, · · · , l. Here, pi, qi ∈ R2 represent 2D
pixel coordinates within the image plane. An optional binary mask M can also be provided
to specify the image region that is allowed for edits. The objective of drag editing is to
seamlessly transfer content from each starting point pi to the designated target point qi,
while ensuring that the resulting image remains natural and cohesive, with the edits blending
harmoniously into the original image context.
The drag editing starts by transforming the source image z0 into a latent representation zT

through the DDIM inversion (see Appendix B), where the timestep T is empirically chosen,
typically close to Tmax. With the transformed zT , the input image can be edited through a
K-step iterative process as shown in Figure 3. Each iteration, denoted by gk, k = 1, · · · , K,
comprises two main phases: motion supervision and point tracking (Pan et al., 2023; Shi
et al., 2023; Ling et al., 2023).
Existing methods suffer from low image fidelity because they perform all drag operations
within a single diffusion time step as shown in Figure 3(a), leading to accumulated perturba-

4



Published as a conference paper at ICLR 2025

tions and distortions. To address this issue, we propose an Alternating Drag and Denoising
(AlDD) framework. The AlDD distributes editing operations across multiple diffusion time
steps by alternating between drag and denoising steps, allowing for more manageable and
incremental changes. As illustrated in Figure 3(b), after applying B drag operations g at
time step t, a denoising step f follows, converting the latent representation from t to t − 1
and alleviating artifacts from the drag step. This pattern continues at each subsequent time
step until all intended drag edits are completed.

AlDD motion supervision. We denote the output of the k-th iteration, which serves
as the input for the (k + 1)-th iteration, as zk

t and the corresponding handle points as pk
i ,

with the initial image z0
T = zT and the initial handle point p0

i = pi. The aim of motion
supervision is to progressively edit the current image zk

t to move the handle points pk
i

towards their targets qi. Specifically, denoting the movement direction for the i-th point as
dk

i = qi−pk
i

∥qi−pk
i

∥2
, the motion supervision is realized by aligning the feature of zk

t around point
pk

i +βdk
i to the feature around pk

i , where β is the step size of the movement. The feature of
zk

t can be written as F(zk
t ) = I

(
Uθ(zk

t ; t)
)
, where the feature extractor Uθ is the U-Net of

Stable Diffusion parameterized by θ, and I represents the interpolation function to adjust
the feature map to the size of the input image.
The feature alignment loss for motion supervision in AlDD is defined as:

L(zk
t ; {pk

i }) =
l∑

i=1

∥∥∥FΩ(pk
i

+βdk
i

,r1)(zk
t ) − sg

(
FΩ(pk

i
,r1)(zk

t )
)∥∥∥

1

+ λ
∥∥(zk

t−1 − sg
(
z0

t−1
))

⊙ (1 − M)
∥∥

1 .

(3)

where Ω(pk
i , r1) = {p ∈ Z2 : ∥p−pk

i ∥∞ ⩽ r1} describes a square region centered at pk
i with a

radius r1. sg(·) denotes the stop-gradient operation. The first term of Eq. 3 essentially drives
the appearance of the image around pk

i + βdk
i to get closer to the appearance around pk

i .
The second term ensures the non-editable region, as indicated by 1−M, remains unchanged
throughout the editing process. Since the image zk

t has undergone
⌊

k
B

⌋
denoising operations,

we apply the drag operation at the diffusion time step t = T −
⌊

k
B

⌋
. This is in sharp contrast

to existing methods, which apply all drag operations at a single time step T .
The motion supervision for the (k+1)-th iteration takes one gradient descent step according
to the feature alignment loss L(zk

t ; {pk
i }):

zk+1
t = zk

t − η · ∂L(zk
t ; {pk

i })
∂zk

t

, (4)

where η is the step size. For short, we write the (k+1)-th drag step Eq. 4 as zk+1
t = gk+1(zk

t ).

Point tracking. While the motion supervision effectively guides the movement of the
handle point towards pk

i + βdk
i , its final position at this exact spot is not guaranteed. This

necessitates the point tracking to locate the new location of the handle point pk+1
i , which

is formulated as:
pk+1

i = argmin
p∈Ω(pk

i
,r2)

∥∥∥Fp(zk+1
t ) − Fp0

i
(z0

t )
∥∥∥

1
. (5)

Eq. 5 identifies the updated handle point by searching the location in zk+1
t that most closely

resembles the original starting point p0
i in the original image z0

t based on feature similarity.
r2 denotes the radius of the search area Ω(pk

i , r2).
Finally, we conduct the remaining denoising steps to convert the latent representation to the
desired VAE image space z0. Notably, the AlDD only changes the order of the computations,
which improves editing quality without introducing additional computational overhead.
The key insight behind this framework is that addressing perturbations incrementally as they
arise, rather than allowing them to accumulate, facilitates more effective and manageable
image editing. In other words, it is better to fix the problem when it is small than to wait
until it becomes more significant.
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(a) Original (b) Single time step (c) Multiple time step

Figure 4: We generate 10 random noise sam-
ples from N (0, 0.12I) and compare two scenar-
ios: (b) We add all 10 noise samples to a single
time step zT at once followed by 10 denoising
steps, where the resulting image exhibits sig-
nificant degradation. (c) We distribute the 10
noise samples across 10 different time steps,
from zT to zT −9, with a denoising step follow-
ing each noise to prevent the accumulation ef-
fect; the resulting image better preserves the
original content with higher fidelity.

To validate this concept of AlDD, we con-
duct a toy experiment as shown in Figure 4.
We simulate the perturbations introduced
during image editing with random Gaussian
noise, and compare the results of adding
multiple noise samples within the same dif-
fusion time step versus across different time
steps. When noise is added all at once to zT ,
the resulting image suffers from low fidelity
as shown in Figure 4(b). This is due to the
accumulation of noise within a single time
step, leading to a substantial deviation from
the image manifold. In contrast, distribut-
ing the noise across multiple diffusion steps
results in well-corrected perturbations and
better preservation of original content, as
shown in Figure 4(c). This validates our hy-
pothesis that progressive adjustments lead
to more effective image editing.

3.3 Information-Preserving Motion Supervision

Another challenge in existing drag editing methods is the feature drifting of handle points,
which can lead to artifacts in the edited results and failures in accurately moving handle
points as shown in Figure 5(b). The feature drifting issue is illustrated in Figure 5(d)-(e),
where the initial handle points (red points) in Figure 5(d) are near the boundary of the
beach wave. As the number of drag steps increases, the handle points become less similar
to their original appearance, drifting away from the wave boundary towards the sea foam
or the sand, as shown in Figure 5(e).
We identify that the root cause of handle point drifting lies in the design of the motion
supervision loss, as methods in (Pan et al., 2023; Shi et al., 2023; Ling et al., 2023). Their
loss function encourages the next handle point, pk

i +βdk
i , to be similar to the current handle

point, pk
i . Consequently, even minor drifts in one iteration can accumulate over time during

motion supervision, leading to significant deviations and distorted outcomes.
To address this problem, we propose an information-preserving motion supervision ap-
proach, which maintains the consistency of the handle point with the original point through-
out the editing process. The updated feature alignment loss for motion supervision is for-

(a) User Edit (b) w/o IP (c) w/ IP

(d) 0th MS (e) 90th MS w/o IP (f) 90th MS w/ IP

Figure 5: Illustration of the feature drifting issue. In (d), the initial handle points are near
the beach wave boundary. As drag editing progresses, the features of the handle points
deviate from their original appearance. By the 90th motion supervision (MS) step shown
in (e), the handle points have drifted away from the wave boundary, leading to artifacts
and inaccurate movement in (b). To address this issue, we propose information-preserving
motion supervision (IP) to maintain the fidelity of handle points to their original appearance
(f), resulting in higher-quality results (c).
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RescalingRelocation Content RemovalRotation Content Creation

Figure 6: Distribution of categories and tasks in the Drag100, along with example images
and user edits.

mulated as:

L(zk
t ; {pk

i }) =
l∑

i=1

∥∥∥FΩ(pk
i

+βdk
i

,r1)(zk
t ) − sg

(
FΩ(p0

i
,r1)(z0

t )
)∥∥∥

1

+ λ
∥∥(zk

t−1 − sg
(
z0

t−1
))

⊙ (1 − M)
∥∥

1 ,

(6)

where p0
i is the original handle point in the unedited image z0

t . This formulation ensures
that the intended handle point pk

i + βdk
i in the edited image zk

t remains faithful to the
original handle point, thereby preserving the integrity of the editing process.
While the information-preserving motion supervision effectively addresses the handle point
drifting issue, it introduces new challenges. Specifically, Eq. 6 is more difficult to optimize
due to its inherently larger feature distance than the original motion supervision loss Eq. 3.
Therefore, a straightforward application of Eq. 6 often results in unsuccessful drag effects
of the handle point. Initially, we attempted to overcome this by increasing the step size η
in the motion supervision process (Eq. 4), which turned out to be unsuccessful. Instead,
we find that maintaining a small step size and increasing the number of motion supervision
steps before each point tracking offers a better solution:

zk
t,j+1 = zk

t,j − η ·
∂L(zk

t,j ; {pk
i })

∂zk
t,j

, j = 0, · · · , J − 1, (7)

where zk
t,0 = zk

t is the initial image, and zk+1
t = zk

t,J is the output after J gradient steps.

The proposed information-preserving motion supervision marks an effective practice for
drag editing, which ensures that the handle point remains close to its original appearance
without introducing excessive artifacts as shown in Figure 5(f). Consequently, this leads to
higher-quality results, as evidenced in Figure 5(c).
Finally, the whole pipeline of GoodDrag is summarized in Algorithm 1 in the Appendix.

4 Benchmark

To benchmark the progress in drag-based image editing, we introduce a new evaluation
dataset named Drag100, and two dedicated quality assessment metrics, DAI and GScore.

4.1 Drag100 Dataset

Since drag-based image editing is still a nascent research area, there is a lack of evaluation
datasets. While recent works have introduced two datasets (Shi et al., 2023; Nie et al.,
2023), they have certain limitations. First, Nie et al. (2023) provides masks M for only a
few samples, which can lead to uncontrolled experiments and difficulties in benchmarking
and fair comparison of different methods. Second, these datasets were not constructed with
explicit consideration for diversity in drag tasks, making evaluations less comprehensive.
To overcome these challenges, we introduce a new dataset called Drag100. This dataset
consists of 100 images, each with carefully labeled masks and control points, ensuring that
different methods can be evaluated in a controlled manner. Drag100 is designed to encom-
pass a diverse range of content, as shown in Figure 6. It comprises 85 real images and 15
AI-generated images using Stable Diffusion. The dataset spans various categories, including
58 animal images, 5 artistic paintings, 16 landscapes, 5 plant images, 6 human portraits,
and 10 images of common objects such as cars and furniture.
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Figure 7: Comparison with drag editing methods (Shi et al., 2023; Nie et al., 2023; Mou
et al., 2024a; Pan et al., 2023).

We have particularly considered the diversity of drag tasks, including relocation, rotation,
rescaling, content removal, and content creation, as illustrated in Figure 6. These tasks have
distinct characteristics. Relocation involves moving an object or a part of an object, while
rotation adjusts the orientation of objects; both tasks mimic rigid motion in the physical
world without changing the object area or creating new contents. Rescaling corresponds to
enlarging or shrinking an object. Content removal involves deletion of specific image com-
ponents, e.g., closing mouth, whereas content creation involves generating new content not
present in the original image, e.g., opening mouth. These tasks require advanced hallucina-
tion capabilities, similar to occlusion removal (Liu et al., 2020) and image inpainting (Yu
et al., 2018). By encompassing these diverse tasks, the Drag100 dataset enables a more
comprehensive evaluation of drag editing algorithms.

4.2 Evaluation Metrics for Drag Editing

In this work, we introduce the following two quality assessment metrics, Dragging Accuracy
Index (DAI) and Gemini Score (GScore), for quantitative evaluation.

DAI. Existing methods use Mean Distance (MD) (Shi et al., 2023) to measure the drag
accuracy. While effective, it necessitates handle point identification with DIFT (Tang et al.,
2023), which significantly increases runtime and imposes high demands on GPU resources.
Specifically, MD requires 1.8s per image on Drag100 when using an A100 GPU. This high
computational overhead makes it less practical for evaluating drag editing algorithms.
To address this issue, we introduce DAI to quantify the effectiveness of an approach in
transferring the semantic contents to the target point. Specifically, we define DAI to assess
whether the source content at pi of the original image has been successfully dragged to the
target location qi in the edited image, which can be written as:

DAI = 1
l

l∑
i=1

∥∥ϕ(z0)Ω(pi,γ) − ϕ(ẑ0)Ω(qi,γ)
∥∥2

2
(1 + 2γ)2 , (8)

where ϕ is the VAE decoder converting z0 to the RGB image space, and Ω(pi, γ) denotes
a patch centered at pi with radius γ. Eq. 8 calculates the mean squared error between the
patch at pi of ϕ(z0) and the patch at qi of ϕ(ẑ0). By varying the radius γ, we can flexibly
control the extent of context incorporated in the assessment: a small γ ensures precise
measurement of the difference at the control points, while a large γ encompasses a broader
context; this serves as a lens to examine different aspects of the editing quality.
In contrast to MD, the proposed DAI metric is much more efficient, requiring only 0.01s per
image on the Drag100 dataset. Additionally, DAI runs entirely on the CPU, eliminating
the need for GPU resources. The efficiency of DAI makes it particularly valuable for drag
editing research, where a fast and accessible metric is essential for iterative development
and large-scale benchmarking.

GScore. Existing methods use Image Fidelity (IF) (Shi et al., 2023) to evaluate the per-
ceptual quality of the edited images. However, we find that the IF metric is fundamentally
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flawed as an evaluation measure for drag editing. IF is defined as 1-LPIPS between the drag-
edited image and the input image, meaning it penalizes any changes to the image, even when
such changes are necessary to achieve the desired editing. As a result, the metric rewards
outputs that are identical or nearly identical to the input image, which contradicts the very
purpose of drag editing. This inherent limitation is clearly demonstrated in Figure 10 of the
Appendix, where GoodDrag achieves the best visual quality yet receives the worst IF score,
underscoring the inability of IF to accurately evaluate the quality of meaningful drag edits.
While No-Reference Image Quality Assessment (NR-IQA) methods (Ke et al., 2021;
Golestaneh et al., 2022; Chen et al., 2023) offer a way to assess image quality without
reference images, they often rely on handcrafted features or are trained on limited image
samples, which do not always align well with human perception.
To address this challenge, we introduce GScore, a new metric leveraging Large Multimodal
Models (LMMs) trained on internet-scale vision-language data. GScore uses LMMs as
evaluators by providing the edited and original images as references and prompt them to
rate perceptual quality on a scale from 0 to 10, with higher scores indicating better quality.
As shown in Figure 10, compared to IF, the proposed GScore metric better correlates with
human perception, making it a more reliable and appropriate metric for evaluating drag
editing algorithms.
In our experiments, we explored the use of both GPT-4V (Achiam et al., 2023) and Gem-
ini (Anil et al., 2023) as evaluation agents. We find that the output from Gemini is more
reliable and closely aligned with human visual judgment. Therefore, we select Gemini as
the primary evaluation agent for assessing the quality of edited images in our work.

5 Experiments

5.1 Implementation Details

In our experiments, we use Stable Diffusion 1.5 (Rombach et al., 2022) as the base model and
finetune its U-Net with LoRA (rank=16) to enhance image fidelity. We employ the Adam
optimizer (Kingma & Ba, 2014) with a 0.02 learning rate. For the diffusion process, we set
Tmax = 50 denoising steps, an inversion strength of κ = 0.75 (resulting in T = Tmax ·κ = 38),
and no text prompt. Features for Eq. 6 are extracted from the last U-Net layer. In the
AlDD framework, we set the motion supervision and point tracking radii to r1 = 4 and
r2 = 12, respectively, with a drag size β = 4 and a mask loss weight λ = 0.2. We perform
a total of K = 70 drag operations, with B = 10 operations per denoising step, resulting
in K/B = 7 denoising steps during the alternating phase. Each drag operation includes
J = 3 motion supervision steps in Eq. 7. Similar to Shi et al. (2023), we incorporate the
Latent-MasaCtrl mechanism (Cao et al., 2023) starting from the 10th U-Net layer to enhance
editing performance. We evaluate the runtime and GPU memory usage of GoodDrag with
an A100 GPU. For an input image of size 512×512, the LoRA phase takes approximately
10 seconds, while the remaining editing steps require about one minute. The total GPU
memory consumption during this process is less than 13GB.

5.2 Comparison with SOTA

As Drag100 provides a more comprehensive and generalizable testbed compared to prior
benchmarks (Shi et al., 2023), we present our main evaluation on the Drag100 dataset, with
supplementary results on the data of (Shi et al., 2023) presented in the Appendix.
Qualitative evaluation. We first compare GoodDrag with DragGAN (Pan et al., 2023)
in Figure 7. The proposed method is able to effectively edit the input images, whereas
DragGAN suffers from notable artifacts and low fidelity. This superior performance is
primarily due to the enhanced generative capabilities of diffusion models compared to GANs,
which enables GoodDrag to generalize well across various inputs.
Next, we compare our method with diffusion-based approaches: DragDiffusion (Shi et al.,
2023), SDE-Drag (Nie et al., 2023), and DragonDiffusion (Mou et al., 2024a). As shown in
Figure 7, DragDiffusion struggles with accurately tracking handle points and often fails to
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Table 1: Quantitative evaluation of drag
accuracy in terms of DAI (↓) on Drag100.

Method γ = 1 γ = 5 γ = 10 γ = 20
DragDiffusion 0.148 0.144 0.130 0.115
DragDiffusion* 0.119 0.110 0.098 0.092
SDE-Drag 0.157 0.144 0.129 0.114
DragonDiffusion 0.213 0.199 0.183 0.166
w/o IP 0.110 0.098 0.093 0.088
w/o AlDD 0.090 0.079 0.072 0.070
GoodDrag 0.070 0.067 0.064 0.062

Table 2: Quantitative evaluation of im-
age quality in terms of GScore (0 to 10,
higher=better) on Drag100. We repeated
the experiment 10 times.

Method GScore ↑
DragDiffusion 6.75 ± 0.10
SDEDrag 5.81 ± 0.19
DragonDiffusion 3.05 ± 0.17
GoodDrag 8.04 ± 0.05

move semantic content to target locations. While SDE-Drag and DragonDiffusion achieve
better point movement, they introduce severe artifacts, resulting in low-fidelity and unre-
alistic details. In contrast, GoodDrag precisely drags content to specified control points,
delivering higher-quality results.

Quantitative evaluation. The evaluation in terms of DAI is presented in Table 1, with
the patch radius γ varying from 1 to 20. A larger γ encompass more contextual pixels,
offering a broader view of drag accuracy.
As shown in Table 1, GoodDrag consistently outperforms all baseline methods across all γ
values, indicating superior accuracy in dragging semantic content to target points. Notably,
DragDiffusion uses 80 drag operations, while GoodDrag uses 70. With J = 3 motion super-
vision steps per operation (Eq. 7), GoodDrag totals 210 steps, unlike DragDiffusion requires
a single step per drag operation. To isolate the impact of more motion supervision steps,
we created DragDiffusion*, using 210 drag operations to match GoodDrag. Although this
improved the result of DragDiffusion, it still performed worse than GoodDrag, confirming
the effectiveness of our approach.
The GScore in Table 2 evaluates the naturalness and fidelity of edited images. Our method
achieves an average GScore of 8.04 on the Drag100 dataset, clearly outperforming DragDif-
fusion, SDE-Drag, and DragonDiffusion.

(a) Drag accuracy (b) Image quality

Figure 8: User study on the drag accuracy (a) and perceptual quality (b) of the edited
results. Lower ranks indicate better performance.

User study. For a more comprehensive evaluation of the drag editing algorithms, we
conduct a user study with 12 images randomly selected from the Drag100 benchmark.
Each image is processed by three different methods: DragDiffusion (Shi et al., 2023), SDE-
Drag (Nie et al., 2023), and the proposed GoodDrag. Subjects are asked to rank the
edited results by each method with the input image as a reference (1 for the best and
3 for the worst). As shown in Figure 8, the study is divided into two parts, with the ranking
criteria being the accuracy of the drag editing and the perceptual quality of the results,
respectively. We receive responses from 27 participants, and the mean scores and standard
deviations are presented in Figure 8. The proposed method is clearly preferred over other
methods, suggesting its better capability in achieving precise drag editing (Figure 8(a))
while maintaining high perceptual quality (Figure 8(b)).
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A Algorithm

The whole pipeline of GoodDrag is shown in Algorithm 1.

Algorithm 1 Pipeline of GoodDrag
Require: Input image z0, binary mask for editable region M, handle points {pi}l

i=1, target points
{qi}l

i=1, U-Net Uθ, latent time step T , number of drag iterations K, number of motion supervision
steps per point tracking J
Ensure: Output image ẑ0

1: Finetune Uθ on z0 with LoRA
2: zT ← apply DDIM inversion to z0
3: z0

T ← zT , p0
i ← pi

4: for k in 0 : K − 1 do
5: t = T −

⌊
k
B

⌋
6: zk

t,0 ← zk
t

7: for j in 0 : J − 1 do
8: F(zk

t,j)← I
(
Uθ(zk

t,j ; t)
)

9: Update zk
t,j+1 using motion supervision as Eq. 7

10: zk+1
t ← zk

t,J

11: Update {pk+1
i }l

i=1 using points tracking as Eq. 5
12: if (k + 1) mod B = 0 then
13: zk+1

t−1 ← one step denoising from zk+1
t with Eq. 2

14: for t in T − K
B

: 1 do
15: zK

t−1 ← one step denoising from zK
t with Eq. 2

16: ẑ0 ← zK
0

B DDIM Inversion

The deterministic nature of DDIM allows the transformation of a natural image z0 to its
latent variable zt (the inverse operation of Eq. 2). As suggested in (Song et al., 2020a), the
inversion from zt−1 to zt is formulated as:

zt =
√

αt

(√
1
αt

− 1 −

√
1

αt−1
− 1
)

· εθ(zt−1, t − 1) +
√

αt

αt−1
zt−1, (9)

which can be directly derived from Eq. 2, where εθ(zt−1, t − 1) is used to approximate
εθ(zt, t). The DDIM inversion is invaluable for image editing applications, where one can
first invert z0 to latent space zt, then apply targeted modifications to latent image zt, and
finally transform the edited latent image back to the image space by denoising with Eq. 2.
This circumvents the difficulties of directly modifying z0, enabling more flexible and practical
image editing applications.

C Results on DragBench

We present the quantitative evaluation on DragBench (Shi et al., 2023) in Table 3 and
Table 4. Our method consistently achieves the lowest DAI scores across all γ values in
Table 3, indicating its superior accuracy in dragging content to target points. Additionally,
as shown in Table 4, the edited images from our method demonstrate significantly better
GScore, indicating higher fidelity and naturalness compared to other approaches, which
further highlights the effectiveness of GoodDrag.
We also provide qualitative evaluations in Figure 9, where our method achieves accurate
drag editing while maintaining high fidelity. In contrast, DragonDiffusion struggles to move
content precisely to target positions, and both SDE-Drag and DragonDiffusion generate
results with noticeable artifacts and unrealistic content.
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Figure 9: Qualitative comparison on images from other datasets (Shi et al., 2023; Nie
et al., 2023). Masks were manually labeled and consistently applied across all methods for
fairness. The left column displays results from DragBench dataset, while the right column
shows results from SDE-Drag dataset.

Table 3: Quantitative evaluation in terms of DAI (↓) on DragBench (Shi et al., 2023).

Method γ = 1 γ = 5 γ = 10 γ = 20
DragDiffusion 0.1829 0.1711 0.1618 0.1538
SDE-Drag 0.1796 0.1652 0.1577 0.1499
DragonDiffusion 0.3108 0.2940 0.2821 0.2692
GoodDrag 0.1339 0.1254 0.1210 0.1153

D Quantitative Evaluation with MD and IF

For a more comprehensive study, we also adopt the same evaluation metrics as DragDiffu-
sion (Shi et al., 2023), i.e., Mean Distance (MD) and Image Fidelity (IF). The MD metric is
defined as the Euclidean distance between the positions of the handle points and the target
locations, where the handle points are identified with DIFT (Tang et al., 2023). The IF
metric is calculated as 1-LPIPS between the original and edited images.
We conduct comparisons on both the DragBench and Drag100 datasets, as shown in Table 5
and Table 6. The results show that our method achieves significantly better MD values than
the baseline methods, demonstrating its effectiveness in accurately dragging content to the
desired target locations.
Limitation of IF. While the IF score of our method is slightly lower than other approaches,
we argue that the IF metric is fundamentally flawed as an evaluation measure for drag
editing. IF is defined as 1-LPIPS between the drag-edited image and the input image,
meaning it penalizes any changes to the image, even when such changes are necessary to
achieve the desired editing. As a result, the metric rewards outputs that are identical or
nearly identical to the input image, which contradicts the very purpose of drag editing.
This inherent limitation is clearly demonstrated in Figure 10, where GoodDrag achieves the
best visual quality yet receives the worst IF score (0.86), underscoring the inability of IF to
accurately evaluate the quality of meaningful drag edits.
In contrast, the proposed GScore metric better correlates with human perception as shown
in Figure 10, making it a more reliable and appropriate metric for evaluating drag editing
algorithms.
Runtime of MD. While MD is effective in measuring drag accuracy, it relies on DIFT Tang
et al. (2023) for handle point identification, which significantly increases computational cost
and runtime while imposing high demands on GPU resources. Specifically, MD requires
an average of 1.8s per image on the Drag100 dataset when using an A100 GPU. This high
computational overhead makes it less practical for many users.
In contrast, the proposed DAI metric is much more efficient, requiring only 0.01s per image
on average for the Drag100 dataset. Additionally, DAI runs entirely on the CPU, eliminating
the need for GPU resources. The efficiency of DAI makes it particularly valuable for drag
editing research, where a fast and accessible metric is essential for iterative development
and large-scale benchmarking.
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Table 4: Quantitative evaluation in terms of GScore (0 to 10, ↑) on DragBench (Shi et al.,
2023).

Method GScore ↑
DragDiffusion 6.53 ± 0.07
SDEDrag 5.85 ± 0.09
DragonDiffusion 3.36 ± 0.18
Ours 7.91 ± 0.04

Table 5: MD (↓) results on both DragBench and Drag100 datasets.

Method Ours DragDiffusion SDE-Drag DragonDiffusion
DragBench 23.40 33.50 47.84 27.04
Drag100 23.44 37.2 74.33 28.4

E Additional Comparisons with More Baselines

We conduct additional comparisons with more baseline approaches, including Drag-
Noise (Liu et al., 2024), EasyDrag (Hou et al., 2024), and InstantDrag (Shin et al., 2024).
The qualitative results are shown in Figure 11, clearly demonstrating that our proposed
GoodDrag achieves superior performance. Specifically, it delivers more accurate drag edit-
ing, produces images with significantly higher quality, and minimizes artifacts compared to
the baseline methods.
We also present quantitative comparisons in Table 7 where we use DAI to evaluate the
proposed GoodDrag against the baseline approaches on Drag100 dataset. Our method
consistently outperforms others across all γ values, which highlights the robustness and
effectiveness of our approach in achieving precise drag edits.

F Additional DragGAN Results

We present a closer visual comparison against DragGAN in Figure 12. Table 8 presents quan-
titative comparisons between our method and DragGAN using MD, IF, DAI, and GScore.
The proposed GoodDrag achieves consistent improvement over DragGAN both qualitatively
and quantitatively.

G Evaluation without Mask

In our main evaluation, we follow the convention of DragDiffusion and utilize masks by
default during the evaluation process.
To provide a more comprehensive analysis, we also compare the performance of different
methods without using masks. As shown in Table 9 (with masks) and Table 10 (without
masks), the results without masks are generally worse than those with masks, as expected.
Nevertheless, even in the absence of masks, our method consistently outperforms the baseline
approaches, demonstrating its robustness and practical effectiveness in real-world scenarios
where mask information may not always be provided by user.

Table 6: IF (↑) results on both DragBench and Drag100 datasets.

Method Ours DragDiffusion SDE-Drag DragonDiffusion
DragBench 0.87 0.88 0.91 0.90
Drag100 0.86 0.87 0.89 0.88
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Original GoodDrag DragDiffusion DragonDiffusionSDE-Drag

IF
GScore

0.86 0.92 0.94 0.91

8 7 4 1

Figure 10: GoodDrag achieves successful drag editing with the best visual quality, but
receives the worst IF score (0.86), underscoring the limitation of IF in accurately evaluating
meaningful drag edits. In contrast, the proposed GScore metric better correlates with
human perception, making it a more reliable and appropriate metric for evaluating drag
editing algorithms. Blue numbers indicate the worst scores for each metric, and red ones
indicate the best.

Table 7: Quantitative comparison against DragNoise, EasyDrag, and InstantDrag. The
evaluation is conducted by measuring the average DAI (↓) on Drag100 dataset.

Method γ = 1 γ = 5 γ = 10 γ = 20
DragNoise 0.209 0.191 0.169 0.146
EasyDrag 0.201 0.191 0.169 0.142
InstantDrag 0.173 0.152 0.128 0.108
Ours 0.070 0.067 0.064 0.062

H Effectiveness of AlDD

As introduced in Section 3.2, existing drag editing algorithms often suffer from low fidelity
due to the accumulation of perturbations during the drag operations. As shown in Fig-
ure 13, the edited result without AlDD exhibits noticeable inconsistencies in the owl’s body
compared to the original image. In contrast, incorporating AlDD significantly improves the
fidelity of the edited result, ensuring that the owl’s body remains faithful to the input image.
One might suggest that this fidelity issue could be mitigated by reducing the number of
drag operations. However, as illustrated in the second row of Figure 13, while this approach
does improve fidelity, it compromises the effectiveness of the drag editing, failing to relocate
the content to the desired target locations. This underscores the importance of AlDD in
achieving a better balance between fidelity and effective drag editing.

I Effectiveness of information-preserving motion supervision

In this section, we evaluate the effectiveness of the information-preserving motion supervi-
sion. As shown in Figure 14(b), the model without information-preserving motion supervi-
sion suffers from noticeable artifacts as well as dragging failures. In contrast, incorporating
the information-preserving strategy effectively mitigates this issue, leading to improved re-
sults in Figure 14(d).
The feature distance between the handle point and the original point is shown in Fig-
ure 15(b), where the proposed information-preserving motion supervision results in a sub-
stantially smaller feature distance (blue curve) compared to the model without this method
(orange curve), underscoring its effectiveness in addressing feature drifting issues.
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User Edit Ours DragNoise EasyDrag InstantDrag User Edit Ours DragNoise EasyDrag InstantDrag

Figure 11: Qualitative comparison with DragNoise (Liu et al., 2024), EasyDrag (Hou et al.,
2024), and InstantDrag (Shin et al., 2024).

User Edit Ours User Edit OursDragGAN DragGAN

Figure 12: Closer visual comparison with DragGAN.

Furthermore, the information-preserving motion supervision also facilitates more accurate
point tracking in Eq. 5. In Figure 15(a), we show the feature distance map between the
original point p0

i and the neighborhood of the current handle point Ω(pk
i , r2). The heatmap

with the information-preserving strategy is more concentrated with higher variance, thereby
enabling more precise localization of the handle point. In contrast, the heatmap without
this strategy is more diffused with lower variance.
Notably, adopting this information-preserving strategy presents challenges in the optimiza-
tion of motion supervision due to the inherently larger feature distance in Eq. 6 compared
to Eq. 3. This increased complexity can impede the movement of the handle point, as
shown in Figure 14(c), where the cat’s face remains stationary. To overcome this issue,
we employ multiple motion supervision steps within a single drag operation. As depicted
in Figure 14(d), this approach effectively resolves the above issue, enabling the cat’s face
dragged to the desired orientation.
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Table 8: Quantitative comparison against DragGAN. As DragGAN requires fine-tuning the
GAN generator for each input, resulting much slower speed, we only conduct the evaluation
on a subset of Drag100 (the six images in Figure 12).

Metrics Ours SDE-Drag DragDiffusion DragGAN
MD (↓) 15.83 67.92 57.28 73.00
IF (↑) 0.85 0.81 0.89 0.79
DAI (γ = 1) (↓) 0.078 0.156 0.189 0.196
DAI (γ = 5) (↓) 0.103 0.150 0.194 0.201
DAI (γ = 10) (↓) 0.097 0.146 0.196 0.202
DAI (γ = 20) (↓) 0.070 0.129 0.178 0.187
GScore (↑) 8.10±0.12 7.03±0.23 5.65±0.35 2.12±0.42

Table 9: MD (↓) and DAI (↓) on DragBench with mask.

DragBench Ours DragDiffusion SDE-Drag DragonDiffusion
MD 23.40 33.50 47.84 27.04

DAI (γ = 1) 0.1339 0.1829 0.1796 0.3108
DAI (γ = 5) 0.1254 0.1711 0.1652 0.2940
DAI (γ = 10) 0.1210 0.1618 0.1577 0.2821
DAI (γ = 20) 0.1153 0.1538 0.1499 0.2692

J Effectiveness of GScore against NR-IQA

We compare various image quality assessment metrics, including TReS (Golestaneh et al.,
2022), MUSIQ (Ke et al., 2021), TOPIQ (Chen et al., 2023), and our proposed GScore,
in terms of their alignment with human visual perception. We utilize the image quality
rankings from the user study in Section 5.2 and measure the correlation between these
human rankings and the rankings produced by each metric.
Specifically, for the set of Ns = 12 images used in the user study, each image is processed
by Nm = 3 different methods. For the i-th image, the human-assigned rankings for its Nm

results are denoted as {Uij}Nm
j=1, where Uij represents the rank assigned to the result of the

j-th method. The rankings produced by an assessment metric for the same edited results
are denoted as {Rij}Nm

j=1.

The correlation between a metric and the human judgment is defined as:

ρ = 1
Ns

Ns∑
i=1

ρi, (10)

where ρi is the Spearman’s rank correlation coefficient (Gauthier, 2001) for the i-th image,
calculated as:

ρi = 1 −
6
∑Nm

j=1(Uij − Rij)2

Nm(N2
m − 1) . (11)

The average correlations are presented in Table 11. While TReS, MUSIQ, and TOPIQ
exhibit low (or even negative) correlations, GScore demonstrates a much higher correla-
tion with the human visual system, indicating the effectiveness of GScore for assessing the
perceptual quality of drag editing results.

K GScore Example

We provide a GScore example in Figure 16.
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Table 10: MD (↓) and DAI (↓) on DragBench without mask.

DragBench Ours DragDiffusion SDE-Drag DragonDiffusion
MD 23.00 36.83 48.44 25.12

DAI (γ = 1) 0.1558 0.1972 0.1811 0.3085
DAI (γ = 5) 0.1448 0.1914 0.1704 0.2929
DAI (γ = 10) 0.1321 0.1781 0.1576 0.2820
DAI (γ = 20) 0.1202 0.1654 0.1508 0.2699

User Edit w/o ALDD w/ ALDD w/o 10 Drags w/o 30 Drags w/o 50 Drags

Figure 13: Effectiveness of AlDD. In the first row, the result without AlDD shows noticeable
inconsistencies in the owl’s body compared to the input, while incorporating AlDD effectively
addresses this issue. We use 70 drag operations by default. As shown in the second row,
reducing the number of drag operations without AlDD improves fidelity but sacrifices the
capability in relocating the semantic contents.

L Robustness Across Different Base Models

The proposed GoodDrag framework is compatible with different diffusion base models.
While we use Stable Diffusion 1.5 as the default model in this work, we also tested GoodDrag
with Stable Diffusion 2.1 and observed minimal difference in performance, which demon-
strates the robustness of GoodDrag across different base models. Several examples are
provided in Figure 17.

M Runtime Analysis

Since the proposed Information-Preserving Motion Supervision (IP) involves J motion su-
pervision steps as introduced in Eq. 7, the runtime of GoodDrag is slightly longer than
DragDiffusion (71.3s vs. 57.4s) as shown in Table 12.
For a better comparison, we modified DragDiffusion by increasing the number of drag op-
erations to match the number of motion supervision steps used in GoodDrag. While this
updated version (referred to as DragDiffusion*) requires a longer runtime, it still under-
performs compared to GoodDrag as shown in Table 12, highlighting the advantages of our
approach.
Additionally, we tested a simplified version of our model without the IP component, relying
solely on the proposed AlDD strategy. This variant (w/o IP) is significantly faster than
DragDiffusion (32.1s vs. 57.4s) while still achieving better performance than DragDiffusion.
These results further demonstrate the efficiency and efficacy of the proposed algorithm.

N Relationship with DragonDiffusion and DiffEditor

DragonDiffusion (Mou et al., 2024a) and DiffEditor (Mou et al., 2024b) are two related
works that also involve image editing within the denoising diffusion process. Nevertheless,
they are fundamentally different from GoodDrag and the proposed AlDD in both theoretical
foundations and practical implementation.
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(a) User Edit (b) w/o IP (c) w/ IP (Once) (d) w/ IP

Figure 14: The results of different processing conditions on the subject: (a) User Edit, (b)
without the proposed information-preserving motion supervision (IP), (c) with IP applied
once, and (d) with IP applied optimally. Without IP, noticeable artifacts and dragging
failures occur, as shown in (b). Direct application of IP once is less effective, leading to
inferior results as in (c). Employing multiple IP steps within a single drag operation, as
optimized in (d), significantly improves the outcome by addressing these issues.

1st Drag 30th Drag 50th Drag 70th Drag
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(a) Feature distance map in point tracking (b) Feature distance between the handle point and the initial point

std=351 std=253 std=295 std=263

std=350 std=192 std=208 std=144

Figure 15: (a) shows the feature distance map from Eq. 5 at different drag steps. More
specifically, these heatmaps represent the feature distances between the original point p0

i and
the neighborhood of the current handle point Ω(pk

i , r2). The standard deviation (std) of the
distances in each heatmap is provided below, where a small std indicates a diffused heatmap
with indistinctive feature distances, and a large std indicates a more concentrated heatmap,
resulting in generally more accurate localization of the smallest distance in Eq. 5. (b) shows
the feature distance between the handle point and the original point with the increase of
drag steps. The distance with the proposed information-preserving motion supervision (IP)
is much smaller than that without IP, demonstrating its effectiveness in dealing with the
feature drifting issue.

From a theoretical perspective, DragonDiffusion and DiffEditor rely on a mechanism anal-
ogous to classifier guidance (Dhariwal & Nichol, 2021). In these methods, the diffusion
process remains probabilistically grounded, and each step is guided by combining the un-
conditional gradient and the conditional likelihood term. Mathematically, this is expressed
as:

∇xt
log q(xt | y) = ∇xt

log q(xt) + ∇xt
log q(y | xt), (12)

where the guidance operates within the probabilistic framework of diffusion (see Eq. 8 of
DragonDiffusion (Mou et al., 2024a) and Eq. 3 of DiffEditor (Mou et al., 2024b)). From a
practical perspective, this results in the editing and denoising processes being intertwined
and inseparable.
In contrast, GoodDrag follows a fundamentally different paradigm, similar to DragDiffu-
sion (Shi et al., 2023), where the drag editing operations and the denoising diffusion process
are decoupled. AlDD distributes drag operations strategically across multiple diffusion steps
but is not constrained by the probabilistic formulation of classifier guidance, which repre-
sents a significant departure from existing methods. This separation allows AlDD to intro-
duce flexibility in drag editing, which is not feasible with methods like DragonDiffusion and
DiffEditor, and effectively improves the results. As shown in Section 5.2 and Appendix C
and D, GoodDrag achieves significantly better performance than DragonDiffusion across
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Table 11: Correlations between various image quality assessment metrics and human visual
perception.

TReS MUSIQ TOPIQ GScore
ρ ↑ 0.250 -0.125 0.083 0.54

Prompt:  Conduct a detailed evaluation of three modified images, labeled 'A', 'B', 'C'
and 'D', in comparison to an original image (Image 1). Image 1 serves as the baseline
and will not be evaluated. Focus on assessing the quality of 'A' (Image 2), 'B' (Image
3), 'C' (Image 4), and 'D' (Image 5), particularly in terms of their naturalness and the
presence or absence of artifacts. Examine how well each algorithm preserves the
integrity of the original image while introducing modifications. Look for any signs of
distortions, unnatural colors, pixelation, or other visual inconsistencies. Rate each
image on a scale from 1 to 10, where 10 represents excellent quality with seamless
modifications, and 1 indicates poor quality with significant and noticeable artifacts.
Provide a comprehensive analysis for each rating, highlighting specific aspects of the
image that influenced your evaluation. Answers must be in English.

 Image 2 (A): 8/10

Image 2 (A) is a successful modification of the original image. The fox's fur appears natural
and well-textured, and the overall color balance is pleasing. The modification is subtle yet
noticeable, adding a touch of whimsy to the original image without detracting from its realism.
The only minor issue is a slight distortion of the fox's left ear, which appears slightly
elongated.

Image 3 (B): 7/10

Image 3 (B) is another well-done modification. The fox's fur is perhaps even more realistic
than in the original image, and the colors are vibrant and lifelike. The modification is more
pronounced than in Image 2 (A), but it still maintains a sense of naturalness. The only
noticeable artifact is a slight pixelation around the edges of the fox's ears.

Image 4 (C): 4/10

Image 4 (C) is a more drastic modification of the original image, and it is less successful than
the previous two. The fox's fur appears unnatural and almost plastic-like, and the colors are
too saturated. The modification is also quite noticeable, and it detracts from the realism of
the original image. There are also some noticeable distortions around the fox's eyes and
mouth.

Image 5 (D): 1/10

Image 5 (D) is a complete failure. The fox's face is completely distorted, and the colors are
garish and unnatural. The modification is so extreme that it is difficult to even recognize the
original image. There are also numerous artifacts, including pixelation, blurring, and unnatural-
looking shadows.

In conclusion, Image 2 (A) is the most successful modification, followed by Image 3 (B).
Image 4 (C) is a less successful modification, and Image 5 (D) is a complete failure. The main
factors that contributed to the success of Image 2 (A) and Image 3 (B) were the naturalness
of the fur and the pleasing color balance. The main factors that contributed to the failure of
Image 4 (C) and Image 5 (D) were the unnatural appearance of the fur, the distorted shapes,
and the garish colors.

Image 1

Figure 16: An example from GScore: Images A, B, C, and D in Figure 7, shown in the last
row of the left column, represent GoodDrag, DragDiffusion, SDE-Drag, and DragonDiffu-
sion, respectively. For each prompt, we input the original image along with the comparison
images.

multiple benchmarks, both quantitatively and qualitatively. These results underline the
practical advantages of AlDD and the distinctiveness of GoodDrag’s approach.

O Limitations

Similar to existing diffusion-based methods, such as DragDiffusion, the proposed GoodDrag
relies on DDIM inversion for effective drag editing. However, DDIM inversion may face
challenges in complex scenarios, as illustrated in Figure 18, where the reconstruction of the
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GoodDrag-SD1.5User Edit GoodDrag-SD2.1 GoodDrag-SD1.5User Edit GoodDrag-SD2.1

Figure 17: The proposed GoodDrag demonstrates consistent performance with different
diffusion base models.

Table 12: Comparing the runtime of GoodDrag and DragDiffusion.

GoodDrag DragDiffusion* w/o IP DragDiffusion
Number of Motion Supervision steps 210 210 70 80
Runtime (s) 71.3 80.1 32.1 57.4
DAI (γ = 1) 0.070 0.119 0.110 0.148
DAI (γ = 5) 0.067 0.110 0.098 0.144
DAI (γ = 10) 0.064 0.098 0.093 0.130
DAI (γ = 20) 0.062 0.092 0.088 0.115

inversed image (Figure 18(b)) appears blurred and many fine details are lost. Consequently,
the edited result of GoodDrag also suffers from these artifacts as shown in Figure 18(d). In
future work, we aim to explore more robust and effective diffusion inversion techniques for
better drag editing performance.

(a) Input Image (b) Reconstruction from 
DDIM Inversion

(c) User Edit (d) GoodDrag

Figure 18: Limitation. The proposed GoodDrag relies on DDIM inversion, which may
struggle with complex images, where many fine details of the original input cannot be
clearly restored from the inversed image (b).

P Ethics Statement

GoodDrag enhances image editing capabilities, benefiting creative industries and digital
content creation by providing more precise and reliable tools. However, its advanced ma-
nipulation features could be misused to create misleading or deceptive content, such as
deepfakes. While we release the source code and dataset to support research and devel-
opment, we encourage users to adhere to ethical standards and applicable regulations to
prevent misuse.
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Q Concluding Remarks

In this work, we introduce GoodDrag, a method that enhances the stability and quality
of drag editing. Leveraging our AlDD framework, we effectively mitigate distortions and
enhance image fidelity by distributing drag operations across multiple diffusion denoising
steps. In addition, we introduce information-preserving motion supervision to tackle the
feature drifting issue, thereby reducing artifacts and enabling more precise control over
handle points. Furthermore, we present the Drag100 dataset and two dedicated evaluation
metrics, DAI and GScore, to facilitate a more comprehensive benchmarking of the progress
in drag editing. The simplicity and efficacy of GoodDrag establish a strong baseline for
the development of more sophisticated drag editing algorithms. Future directions include
exploring the integration of GoodDrag with other image editing tasks and extending its
capabilities to video editing scenarios.
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