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Abstract

The examination of blood samples at a microscopic level plays a fundamental
role in clinical diagnostics. For instance, an in-depth study of White Blood Cells
(WBCs), a crucial component of our blood, is essential for diagnosing blood-related
diseases such as leukemia and anemia. While multiple datasets containing WBC
images have been proposed, they mostly focus on cell categorization, often lacking
the necessary morphological details to explain such categorizations, despite the
importance of explainable artificial intelligence (XAI) in medical domains. This
paper seeks to address this limitation by introducing comprehensive annotations for
WBC images. Through collaboration with pathologists, a thorough literature review,
and manual inspection of microscopic images, we have identified 11 morphological
attributes associated with the cell and its components (nucleus, cytoplasm, and
granules). We then annotated ten thousand WBC images with these attributes,
resulting in 113k labels (11 attributes x 10.3k images). Annotating at this level
of detail and scale is unprecedented, offering unique value to AI in pathology.
Moreover, we conduct experiments to predict these attributes from cell images, and
also demonstrate specific applications that can benefit from our detailed annotations.
Overall, our dataset paves the way for interpreting WBC recognition models, further
advancing XAI in the fields of pathology and hematology.

1 Introduction

The microscopic examination of human blood samples is essential in clinical diagnostics, providing
valuable insights into a wide range of health conditions. For example, white blood cells (WBCs)
or leukocytes can serve as markers for various blood-related diseases in pathology and hematology.
Accurate recognition of basic WBC types (neutrophils, eosinophils, basophils, monocytes, and
lymphocytes) forms a fundamental component of pathological diagnostic methods [1], used to
identify various blood-related conditions such as leukemia and anemia [2]. Automating the cell
recognition process can significantly enhance diagnostic efficacy, and as such, multiple datasets have
been proposed for WBC categorization [3, 4, 5, 6, 7]. However, these existing datasets only annotate
the cell types without any morphological characteristics of each cell, a key explanatory factor in how
hematologists recognize WBCs. This lack of information may limit the development of explainable
artificial intelligence (XAI) for cell image analysis, which is particularly significant in the medical
domain where interpretability is crucial – clinicians cannot reliably diagnose serious illnesses without
clear explanations of a model’s conclusions.

In this paper, we introduce WBCAtt (Figure 1), a novel dataset for WBCs that is densely annotated
with morphological attributes (Figure 2). Each cell image, obtained from the PBC dataset [6], is
annotated with 11 attributes, which were determined through a comprehensive process involving
discussions with pathologists, literature review, and manual inspection of cell images. One example
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Figure 1: We construct a new dataset annotating 11 morphological attributes of microscopic images
of white blood cells. Our set of attributes, grounded on medical literature, and plays critical role
when hematologists recognize cells. Our dataset can facilitate the XAI in blood cell recognition.

of such an attribute is the presence of small cytoplasmic holes known as vacuoles, as depicted in
Figure 2-(t)(u). Vacuoles provide insights into the functional state of a cell and are typically observed
in monocytes and neutrophils due to their phagocytosis mechanism [8]. However, vacuoles found
in other cell types, like lymphocytes and eosinophils, may indicate certain disorders [9, 10]. Based
on these references, we define the presence of cytoplasmic vacuoles as one of the attributes. In the
end, we establish 11 attributes, each supported by at least one medical reference. These attributes
are discussed based on their association with different cellular components: overall cell (Sec. 3.1),
nucleus (Sec. 3.2), cytoplasm (Sec. 3.3), and granule (Sec. 3.4). We annotated a total of 10,298
WBC images with these attributes, resulting in 113k labels (11 attributes x 10.3k images). To the
best of our knowledge, this is the first public dataset to include such an extensive set of annotations,
addressing the current gap in XAI for WBC analysis. Moreover, we conduct experiments to explore
the capability of standard deep learning models in recognizing these attributes (Sec. 4). Furthermore,
we believe that our detailed attributes can improve the interpretability of machine learning models for
recognizing WBCs and related blood disorders. To illustrate this, we showcase specific applications
that can be developed using our newly-introduced dataset (Sec. 5).

In summary, our contributions are as follows. We construct the first public dataset for WBCs
annotated with comprehensive morphological attributes, addressing the current gap in developing
interpretable models for WBC analysis. We also conduct experiments to automatically predict
attributes from images, in addition to outlining specific applications. We hope that our dataset will
foster advancements in XAI in pathology and hematology.

2 Related Work

White Blood Cell Recognition. WBC recognition is crucial for the diagnosis of various diseases
in hematology, leading to numerous studies focusing on the development of automatic WBC clas-
sifiers [11, 12, 13, 14] and the release of publicly available datasets [3, 4, 5, 6, 7]. Prior to 2020,
public WBC datasets were limited in size, containing only hundreds of images [4, 3, 5], which proved
insufficient for leveraging state-of-the-art image classification models, such as Convolutional Neural
Networks (CNNs). Recently, the introduction of larger datasets [6, 7], containing around ten thousand
images, has enabled subsequent studies [11, 12, 13, 14] to develop novel deep learning models that
improve classification performance. However, despite the inherent requirement for explainability
in medical applications, no prior datasets annotate morphological attributes, which are essential
explanatory factors when hematologists recognize WBCs. As such, our work aims to address this
significant yet overlooked aspect.

Attribute Datasets. Many attribute datasets have played a pivotal role in various fields of computer
vision, inspiring a diverse range of applications and fostering methodological advances. These include
fashion (e.g., DeepFashion [15]) for e-commerce applications [16], human faces (e.g., CelebA [17])
for the security of facial recognition systems [18], animals (e.g., Caltech-UCSD Birds [19]) for zero-
shot learning [20], and image aesthetics (e.g., AADB [21]) to investigate the inherent subjectivity
of human artistic perceptions [22]. Attributes are often considered key interpretable elements in
computer vision systems. For example, interpretable autonomous driving systems can be developed
using explainable attributes [23, 24]. In medical domains, attributes of X-ray images [25, 26] and
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3



skin disease images [27] have been annotated to support the development of interpretable medical
AI, sharing a similar motivation with our work. However, no existing dataset provides attribute
annotations for the morphological characteristics of WBCs despite their importance in hematology.
Our work addresses this gap by presenting a densely-annotated dataset for WBC recognition.

3 WBCAtt: White Blood Cell Attribute Dataset

The attributes are categorized into four primary groups based on cell structure: overall cell, nucleus,
cytoplasm, and granules, as described in Sec. 3.1-3.4, respectively. The examples of these attributes
are summarized in Figure 2. We utilized all images of typical WBCs from the PBC dataset [6], which
encompassed 1,218 basophils, 3,117 eosinophils, 1,420 monocytes, 3,329 neutrophils, and 1,214
lymphocytes. We annotated 11 attributes for these 10,298 images, resulting in 113,278 image-attribute
pairs, with the distribution for each attribute shown in Figure 3.

Attribute Definition Process. Since there was no formally established set of attributes or ontology, we
initiated our work with discussions with pathologists working in a laboratory at a healthcare company
that develops digital cell imaging analyzers [28]. They provided five prominent attributes (see Coarse
Morphological Attributes in Appendix) often used in identifying the five major WBC types, but also
noted that the list was not exhaustive. Based on these initial keywords, we conducted a thorough
review of relevant textbooks and research papers focusing on the morphological characteristics of
WBCs. Subsequently, we refined the attribute set through further discussions with the pathologists
and by manually inspecting approximately a thousand WBC images. This process yielded a total
of 11 attributes, each supported by at least one medical literature reference. While the samples we
inspected were the five major WBC types from healthy individuals, we expect the resulting attributes
to sufficiently describe the morphological characteristics that may emerge in response to certain
diseases, such as COVID-19 [29]. Moreover, these attributes provide pathologists with valuable
insights into significant morphological abnormalities during microscopic examination, in accordance
with the guidelines outlined in [30].

Annotation with Quality Control. To ensure reliable annotations across over 10k images, we
devised a rigorous, iterative process involving pathologists, research scientists, and biomedical
students who had strong knowledge of cell structures. In the initial stage, the students annotated the
images, while being informed of the specific WBC category for each image. Following this, our
research scientists meticulously examined each image and its assigned attributes, meaning that every
image was inspected by at least two individuals. When ambiguities arose, we discussed with the
pathologists who defined the attributes with us, ensuring a consensus on labeling. Further details
on the quality control are available in the Appendix. We assessed the reliability of our annotation
process by replicating it on a subset of 1,000 images with different annotators. Out of the 11,000
attribute annotations, 10,569 were consistent with the original annotations, giving an agreement rate
of approximately 10569/11000 ≈ 96.1%. This high agreement rate demonstrates the robustness and
reliability of our annotation process.
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Figure 3: The distribution of values per attribute. The distribution represents the results of annotating
all typical WBCs from the PBC dataset, which is the image source we utilized. We did not actively
control or manipulate the distribution. See Sec. 3 for the definitions of the attributes, and Figure 2 for
example images. See Appendix for the extract numbers.
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3.1 Cell

Cell Size. Cell size refers to the overall dimensions of a WBC. Generally, the size of a WBC can
often be indicative of its function, maturation stage, and activation state. For differentiating between
various WBC types, lymphocytes usually have a small cell size compared to other WBC types, such
as monocytes and granulocytes [31]. Estimating cell size is typically done by comparing the WBC to
neighboring red blood cells (RBCs; usually 6-8 µm) within the same blood sample, as RBCs provide
a consistent reference for size comparison. A WBC is classified as big if its diameter is larger than
twice the diameter of the RBCs. Examples of big and small cells can be found in Fig. 2-(a)(b).

Cell Shape. The cell shape of WBCs is a significant morphological feature that offers insights into
the cell type. WBCs can display a range of shapes, from round to irregular, depending on the cell
type and its interactions with the surrounding microenvironment, including red blood cells. Irregular
shapes are more prevalent in neutrophils or monocytes due to their unique functions or maturation
stages [32, 33] Additionally, WBCs can be irregular in shape due to their interactions with adjacent
red blood cells. In our definition, WBCs with circular or oval shapes are categorized as round, while
any other shapes are classified as irregular. Examples of round and irregular cells are shown in
Fig. 2-(c)(d).

3.2 Nucleus

Nucleus Shape. The shape of the nucleus can provide crucial information about the WBC types
[34]. Segmented nuclei are typical characteristic of neutrophils and eosinophils, with neutrophils
displaying a multilobed nucleus and eosinophils often exhibiting a bilobed nucleus [35]. Band-shaped
nuclei can be found in immature neutrophils, also known as band neutrophils [36], which are the
intermediate stage in the maturation process of segmented neutrophils. Unsegmented nuclei can be
observed in lymphocytes and monocytes, with lymphocytes typically having a round nucleus and
monocytes having an indented or kidney-shaped nucleus [31]. An “irregular” class is included to
accommodate the nucleus shape that does not fall under the defined classes, often for the nucleus of a
basophil or monocyte. In total, we have six nucleus shapes (Fig. 2-(i)-(n)): segmented-multilobed,
segmented-bilobed, unsegmented-band, unsegmented-round, unsegmented-indented, and irregular.

Chromatin Density. The density of nuclear chromatin, which refers to the compactness of chromatin
within the nucleus, is an important factor for distinguishing between different types of WBCs, such
as lymphocytes and monocytes. In general, lymphocytes exhibit denser, heterochromatic nuclear
chromatin, while the nucleus of monocytes appears as a “rough mesh”, which contains more loosely
packed, euchromatic chromatin [35, 37]. For the benefit of individuals who are not familiar with
clinical terminology in using our annotations, we describe the chormatin density as loosely packed
(euchromatic) and densely packed (heterochromatic), as illustrated in Fig. 2-(g)(h).

Nuclear cytoplasmic (NC) Ratio. The NC ratio refers to the proportion of the cell’s volume occupied
by the nucleus relative to the cytoplasm, and can provide valuable information regarding the cell type.
A WBC with a high NC ratio is typically a lymphocyte, while a lower NC ratio is characteristic of
other types. In this dataset, a WBC with an NC ratio greater than 0.7 [38] is considered to have a
high NC ratio. This characteristic is often associated with a thin rim of cytoplasm surrounding the
nucleus. Fig. 2-(e)(f) depicts examples of WBCs with low and high NC ratios.

3.3 Cytoplasm

Cytoplasm Color. The color of the cytoplasm can offer valuable information regarding the cell type,
as different WBCs often exhibit varying cytoplasm colors due to differences in granule content and
staining affinity. Furthermore, the cytoplasmic color can offer insights into granulocyte maturation, as
it tends to vary across different stages of WBC development [39]. In light of this, we have annotated
the cytoplasm colors ranging from light blue to purple blue [40], as shown in Fig. 2-(q)(r)(s).

Cytoplasm Texture. Cytoplasm texture also contributes to the classification of WBCs, as different
cell types may exhibit unique textures due to variations in intracellular content, such as granules and
other organelles. For example, tiny, dust-like purplish granules that sometimes appear in lymphocytes
and monocytes give the cytoplasm a frosted or ground glass appearance [41] while the cells lacking
these dust-like granules have a clear or transparent cytoplasm, as shown in Fig. 2-(o)(p).
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Cytoplasm Vacuole. Discrete cytoplasmic vacuoles are often found in monocytes and sometimes in
neutrophils due to their phagocytosis mechanism [8], where pathogens and cell debris are engulfed
and digested. The presence of these vacuoles can help identify cell types and provide insights into the
cell’s functional state. Vacuoles found in other cell types, such as lymphocytes [9] and eosinophils
[10], might be indicative of certain diseases and can aid in the diagnostic process. Examples of cells
with and without a cytoplasmic vacuole are shown in Fig. 2-(t)(u).

3.4 Granule

Granularity. In this dataset, granularity means the presence of prominent stainable cytoplasmic
granules [35] that distinguish between granulocytes (neutrophils, eosinophils, basophils) and agranu-
locytes (monocytes, lymphocytes). While granules are not entirely absent in agranulocytes, they are
generally found in smaller quantities and are less noticeable compared to their presence in granulo-
cytes [42]. Agranulocytes are categorized as having no granularity unless prominent granules are
observed. Fig. 2-(y)(z) shows a granulocyte (granularity: yes) and an agranulocyte (granularity: no).

Granule Color. Granule color is a distinguishing factor among granulocytes. The granules within
neutrophils, eosinophils, and basophils have different colors due to their distinct compositions, which
reflect their unique immune functions. Neutrophil granules are typically pink, eosinophil granules are
red, and basophil granules are purple [40, 42]. This attribute is particularly useful for distinguishing
eosinophils from other granulocytes, as eosinophilic granules are uniquely stained red by eosin. This
is due to the presence of cationic proteins within the eosinophilic granules, which bind to the eosin
dye and give the cell its characteristic red color [43]. Fig. 2-(v)(w)(x) shows examples of them.

Granule Type. Granule type describes the morphological characteristics of granules in granulocytes.
Neutrophils, eosinophils, and basophils each have their roles in the immune response, possessing
distinct granule types filled with different substances. Neutrophils contain small, fine granules that are
packed with antimicrobial proteins and enzymes, such as myeloperoxidase, lysozyme, and lactoferrin.
The granules of the eosinophils are usually round and membrane-bound that compose of major basic
protein. Basophils, on the other hand, possess conspicuous and coarse granules filled with histamine,
heparin, and other mediators of inflammation [35]. Fig. 2-(aa)(bb)(cc) shows examples of them.

4 Attribute Prediction Experiments

While various applications are possible with our attributes (Sec. 5), a preliminary question emerges:
How well do standard visual recognition models perform in predicting these attributes? This is a
crucial question because if the model cannot even recognize these attributes, we cannot reliably
develop interpretable models on top of it. To investigate this, we conduct experiments to predict the
11 attributes from WBC images.

Data Split. We randomly divided the dataset into 6,179 training images, 1,030 validation images,
and 3,099 test images. The random division ensures that the cell-type distributions are the same in
each set. The exact split is available in Appendix.

Model. Our baseline model predicts attribute values from image representations extracted by an
image encoder of convolutional neural networks. We employ an ImageNet-pretrained ResNet50
as our choice of image encoder. The attribute prediction model comprises multi-task heads of per-
attribute linear layers, with each layer corresponding to a specific attribute. We intentionally keep
the model simple and provide a foundation for future work, such as designing more complex model
architectures or integrating domain knowledge of WBCs (e.g., cell structure). The further details
about the model (including other backbones) and its training is in Appendix and the source code.

Evaluation Metrics. Due to the imbalance of attribute values, we use macro F-measure, which
calculates the harmonic mean of precision and recall, instead of plain accuracy for the evaluations.
We run the same code three times with different seeds and report 95% confidence intervals.

Results. We present the results in Table 1. The baseline model achieves an average macro F-
measure of 91.20 ± 0.06%. Some attributes, such as granularity, granule type, and granule color,
exhibit particularly high F-measures of over 98%. On the other hand, nucleus shape is the most
challenging attribute to predict, with the lowest F-measure of 76.13± 0.59%, which could be due
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Table 1: Macro F-measure (%) for Attribute Prediction.

Cell Size Cell Shape Nucleus Shape Nuclear Cytoplasmic Ratio
83.81± 0.33 90.66± 0.36 76.13± 0.59 96.35± 0.06

Chromatin Density Cytoplasm Vacuole Cytoplasm Texture Cytoplasm Color
86.39± 0.32 89.57± 0.47 94.49± 0.51 87.99± 0.47

Granule Type Granule Color Granularity (Average)
99.44± 0.07 98.76± 0.08 99.61± 0.02 91.20± 0.06

(a) Cytoplasm vacuole  GT: Yes  Pred: Yes (b) Cell shape  GT: Round  Pred: Irregular (c) Cell size  GT: Big  Pred: Small

Figure 4: Examples of correct and incorrect predictions with Grad-CAM. (a) Vacuoles are correctly
highlighted. (b) The model incorrectly identifies leaked cellular substances as a part of the cell. (c)
The model overlooks the WBC and focuses on the red blood cell instead.
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Granule type: Small
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Neutrophil
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A monocyte with 
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Cytoplasm color: Blue

Cytoplasm vacuole: Yes

Monocyte

Nucleus shape: Unsegmented-indented
Cytoplasm color: Purple blue
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Monocyte

Figure 5: Examples of correct and incorrect predictions when the predictor is applied for cell images
beyond our dataset: (i) Covid-19 Patients, (ii) Bone Marrow Cells, and (iii) Animal Cells. While not
all attributes can be predicted correctly, especially those sensitive to staining, our attribute predictor
can still recognize key attributes. See Broader Applicability in Sec. 4 for further details.

to the complexity of the nucleus shape. Figure 4 highlights some prediction results along with
Grad-CAM[44] to visualize the areas the model focuses on. More examples are reported in Appendix.

Broader Applicability. Although we established attributes based on typical WBCs from healthy
human individuals, we anticipate that our attribute definitions can be applied in diverse contexts.
For example, Zini and d’Onofrio [29] discuss the morphological features of WBCs in COVID-19
patients, which align with the attributes we have established. To explore how well our classifier can
recognize them, we briefly inspected a small number of images involving cells from COVID-19
patients [29], bone marrow samples [45], and swine (a non-human species) [46]. While the attributes
are still applicable, we observe that the cytoplasm color, which is sensitive to staining conditions,
sometimes cannot be predicted correctly. As we can see in Figure 5 in comparison to Figure 2, colors
look different. Nonetheless, we find that attributes less sensitive of colors (e.g., cytoplasm vacuole)
can be predicted correctly for the majority of the cases. We discuss this further in Appendix.

5 Applications

One immediate practical application is to automatically recognize morphological features from cell
images, which is investigated in Sec. 4. The attribute recognition model can be incorporated into
software that automatically analyzes cell morphology [28], which provides valuable assistance in
clinical diagnostics, as certain morphological features of WBCs may indicate specific diseases or
conditions [47, 48]. It can also assist hematologists in searching for cells with specific morphological
characteristics within massive datasets that would be impractical to examine manually. Beyond the
cell analyzer, we demonstrate three applications that can contribute to XAI.
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Human Intervention

(a) Attributes-based classifier with interpretable intervention  (b) Counterfactual Example
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Figure 6: (a) As discussed in Sec. 5.1, our dataset enables training a cell type classifier solely based
on attributes. We can ask questions like, “What would be the predicted cell type if this cell had purple
granules instead of pink?” (b) We can retrieve corresponding images as counterfactual examples.
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Figure 7: Our dataset enables training GANs for attribute-based image editing, which can be used for
synthesizing counterfactual examples. For instance, controlling cell size and NC ratio can illustrate
the decision boundaries between monocytes and lymphocytes.

5.1 Human Intervention with Highly Interpretable Models

One of our motivations in developing this dataset is to foster XAI for WBC recognition. An
effective approach to enhance explainability is designing models that make predictions based exclu-
sively on attributes that are easily interpretable by humans. Koh et al. [49] explored such a model
that initially uses a CNN to predict a set of human-interpretable attributes and subsequently uses
these attributes to predict the target output. Formally, the models are trained on data points of
{image x, attribute a, target y}, using x to predict attributes â and then relying exclusively on â to
estimate the target ŷ. We implemented a basic version of this model using the attribute predictor
developed in Sec. 4. In particular, we trained a L1-regularized linear softmax classifier f(·) to predict
WBC types from the probabilities of attributes inferred from an image. Importantly, we limit the f(·)
to depend solely on these attribute probabilities to determine the cell category. The model can predict
the WBC categories with a F-measure of 99.40± 0.04%, whereas a CNN predicting directly from
images can achieve 99.54± 0.05%. Despite the slightly reduced accuracy, the attribute-based model
facilitates more engaging human-model interactions, akin to Koh et al. [49], by enabling human
interventions with the edited attributes â′ and observing how this impacts the prediction f(â′) versus
f(â). As shown in Fig. 6-(a), we can analyze hypothetical scenarios, such as what would happen if a
cell contained granules of a different color. Such analysis would be infeasible without our dataset.

5.2 Counterfactual Example Retrieval and Synthesis

Another way of explaining a classifier is to show counterfactual examples, where a slight modification
to the input image can result in a different classification outcome by the classifier. Our attribute
predictor described in Sec. 4 can be utilized for retrieving counterfactual examples that correspond to
attribute changes. Fig. 6-(b) displays a retrieved example where the pink granules of the cell in Fig. 6-
(a) are changed to purple ones, illustrating the decision boundary between neutrophils and basophils.
Furthermore, we can even generate counterfactual examples for a given WBC image by utilizing
data-driven image editing techniques [50]. As a proof-of-concept, we trained an unconditional
StyleGAN [51] and implemented GAN-based editing techniques [52, 53] to modify cell size and the
nuclear cytoplasmic (NC) ratio, as shown in Figure 7. These attributes are crucial in distinguishing
between monocytes and lymphocytes [31, 38]. Larger cells with a lower NC ratio (depicted on the
left in Fig. 7) are likely monocytes, whereas smaller cells with a higher NC ratio (shown on the
right in Fig. 7) are lymphocytes. These counterfactual examples helps us understand the decision
boundaries.
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Figure 8: (Best viewed with zoom). We analyze the binary classifier for Acute Promyelocytic
Leukemia (APL) using images of promyelocytes, a type of immature cell absent from our dataset.
Employing the attribute predictor trained on our dataset, we estimate the probability distribution
of morphological attributes in test images of (a): APL and (b): Non-APL. Notably, we observe a
significant difference in P (Blue Cytoplasm) between correct predictions and incorrect predictions
within (a) and (b). Specifically, plot (a) demonstrates that the classifier is likely to overlook APL if
the cell exhibits blue cytoplasm, whereas plot (b) indicates the classifier tends to mistakenly diagnose
APL when the cell lacks blue cytoplasm. Essentially, the classifier correlates blue cytoplasm with
Non-APL. This correlation is not medically supported [60, 61] and is a coincidental correlation
present in the training set (as demonstrated in plot (c)) of a specific dataset [59]. For further details,
refer to Sec. 5.3.

5.3 Interpreting Model Bias for Blood Disorders Involving WBCs

Although our dataset annotates morphological attributes of typical cells from healthy individuals, we
believe it still offers significant potential for explaining the behaviors of machine learning models
for atypical cells from blood disorders. Attribute predictors trained on our dataset can unveil biases
that a model might have inadvertently learned, thereby improving model interpretability. Models
often misclassify images that are linked to particular attributes. This issue has been reported in
various machine learning systems, including face recognition models that underperform on certain
genders [54], races [55], or skin colors [56]. Similar examples have been discovered in the medical
field, where skin disease detection models erroneously associate malignant cases with artificial
skin markers used in clinical practices [57], or X-ray models misinterpreting the appearance of a
treatment device as pathological signs [58]. By employing our attribute predictors to identify biases,
we can improve model interpretability, enabling a deeper understanding of decisions and ultimately
contributing to XAI that assists clinicians in adapting ML models for diagnosis.

To illustrate this point, we explore the Acute Promyelocytic Leukemia (APL) detection dataset [59]
derived from peripheral blood smears. This dataset presents a binary classification task of recognizing
APL from images of immature myeloid cells – an atypical category not covered in our dataset.
Initially, we trained a baseline classifier using ResNet50, achieving an AUC of 76.97 ± 2.35%,
comparable to the reported 73.9% achieved using a 7-layer CNN. Subsequently, we applied our
attribute predictors on the test images to examine the correlation between the classifier’s performance
and the attribute distributions in promyelocytes, the type of myeloid cells essential for diagnosing
APL, as indicated by the P in APL, representing promyelocytic, the adjective form of promyelocyte.

We explored the attribute distribution and the classifier’s performance in actual APL cases and actual
non-APL cases. On closer inspection of all attributes, we found that promyelocytes characterized by
blue cytoplasm were frequently misclassified as false negatives, as illustrated in Fig. 8-(a). Examining
the training set more thoroughly to locate the source of this bias, we found a clear correlation
between blue cytoplasm and non-APL cases (Fig. 8-(c)). To validate this bias, we consulted relevant
literature [60, 61] and inspected actual images within this dataset. We concluded that this was a
spurious correlation present in the training set, specific to this dataset [59]. This example clearly
illustrates how our dataset can help in identifying model biases, thus promoting model interpretability
for XAI in medical diagnostics.
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6 Conclusion

We have presented a densely-annotated dataset for WBC recognition, containing 11 morphological
attributes for 10,298 cell images. This dataset addresses the current gap in the development of
explainable and interpretable machine learning models for WBC analysis, a crucial task in hematology
and pathology. We trained an automatic attribute recognition model and showcased several specific
applications that can be developed using our attribute annotations. We hope that our dataset will
foster advancements in XAI in the fields of pathology and hematology.

Limitation. We annotated images from a single source [6], which is limited to typical cells and does
not include abnormal cells from blood disorders, which may be of greater clinical interest. Annotating
these cells is a future direction. The cytoplasm color in our attribute definitions assume the use of the
May Grünwald-Giemsa staining method, and they may appear differently with other staining methods
(e.g., the color purple in granules may not look purplish). However, domain adaptation could mitigate
these distributional shifts. Creating a similar dataset with other staining methods is future work.
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7 Appendix

7.1 Broader Impacts

Our study was exempt from institutional IRB approval as we added labels to publicly available data.
We do not foresee immediate ethical concerns in our dataset as we annotate well-anonymized public
data and rely on medical literature for attribute definitions. However, we acknowledge that every
dataset is inevitably influenced by the potentially biased values of its creators. While the bias may
be less significant in white blood cells compared to domains such as aesthetics [22], face [54], or
skin [56], we remain committed to addressing any ethical concerns that may arise in the future.

7.2 Dataset Files

Our dataset consists of three csv files, which are hosted at https://github.com/apple2373/
wbcatt/tree/main/submission. Moreover, the files are small enough to be permanently
hosted on the NeurIPS website as supplementary material. This ensures long-term accessibil-
ity and backup. The three files of pbc_attr_v1_train.csv, pbc_attr_v1_val.csv, and
pbc_attr_v1_test.csv contain attribute annotations for the train/val/test splits.

• cell_size, cell_shape, nucleus_shape, nuclear_cytoplasmic_ratio,
chromatin_density, cytoplasm_vacuole, cytoplasm_texture, cytoplasm_colour,
granule_type, granule_colour, and granularity: Attribute columns. We annotated them,
which is the main contribution of this paper.

• label: One of the five WBC types (neutrophils, eosinophils, basophils, monocytes, and lympho-
cytes) provided by the PBC dataset.

• img_name: This is the image file name. It can serve as a unique identifier.

• path: Image path organized by the PBC dataset.

For images, please download from the PBC dataset: https://data.mendeley.com/datasets/
snkd93bnjr/1

7.3 License

Our dataset is under the MIT license.

7.4 Details of Attribute Prediction in Section 4

7.4.1 Model Details

Let M denote the attribute prediction model, I for the input image, and A for the predicted attributes.
The model M consists of an image encoder E and an attribute predictor P .

The image encoder E (for example, ResNet) processes the input image I and generates the feature
vector F :

F = E(I)

The attribute predictor P is comprised of several attribute predictors Pi
n
i=1, each being a fully-

connected layer tasked with predicting the i-th attribute. Each attribute predictor Pi accepts the image
features F as input and outputs the predicted distribution Ai for each attribute:

Ai = Pi(F )

The predicted attributes A collate all the predicted attribute distributions Ai
n
i=1, serving as the

predicted attributes for the input image I:

A = [A1, A2, . . . , An]

The overall prediction of the attribute prediction model M for the input image I can be expressed as:

A = M(I) = P (E(I)) ,
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Figure 9: The architecture of the attribute prediction model. The model accepts an input image,
which is processed by an image encoder E to yield a feature vector. This vector is then processed by
multi-task attribute predictors {Pi}ni=1 to produce predicted attribute distributions {Ai}ni=1.

where P = [P1, P2, . . . , Pn] represents the composition of the attribute predictors.

The architecture of this model is illustrated in Figure 9. Training this network inherently involves
multi-task learning, where each task is to predict a specific attribute. The model takes an input image,
which is processed by a shared image encoder to yield a feature vector. This feature vector is then
utilized by several attribute predictors Pi

n
i=1, each responsible for generating predicted attribute

distributions Ai
n
i=1.

7.4.2 Implementation Details

We use the Adam optimizer with a learning rate of 0.0001, a weight decay of 0.01, and a batch size of
128. We train the model for 30 epochs, selecting the best-performing model based on the validation
set, and evaluate its performance using the test set. The PyTorch code for this model is available
in attribute_predictor.py, which contains the implementation of the AttributePredictor
class. The code to execute the experiment is traineval.py.

7.4.3 More Baselines

The main paper presents results utilizing the backbone of ResNet50 [62], which is one of the most
frequently used image classifiers and has been reported as having received the highest number
of citations in the field of artificial intelligence [63]. As mentioned in the main paper, we have
intentionally kept the model simple. We believe that reporting results with this widely used backbone
is beneficial as it provides a solid foundation for future work. However, in Table 6, we also have
results from other backbones such as VGG16 [64], ViT-Base/16 [65], and ConvNeXt-Tiny [66].

7.5 Annotation Process and Quality Control

We used Label Studio [67] (see Figure 10) as the annotation tool. To ensure the accuracy and
reliability of the annotations in our dataset, we implemented a comprehensive quality control process.
This involved multiple steps and the participation of domain experts. The following sections outline
the key aspects of our annotation quality control.

(i) Recruiting Qualified Annotators. We called for students majoring in biomedical sciences who
claimed to have a basic knowledge of WBCs. We requested each of them to provide a short description
of the five types of WBCs to ensure that they possessed the required foundational knowledge. We
invited those who provided satisfactory answers to an information session, where we clearly explained
the morphological attributes using materials similar to those presented in the main paper (Sec. 3.1 -
Sec. 3.4) and Figure 2. We then recruited them to perform a pilot annotation of 100 images (see next).

(ii) Pilot Annotation. After the aforementioned screening process, we instructed each candidate to
independently annotate a randomly selected subset of the same 100 images. We intentionally used
the same images to evaluate their understanding and enable comparisons among the candidates. We
acknowledge that the candidates annotated the images while being aware of the cell type. This was
a necessary compromise we made by involving medical students instead of hiring pathologists due
to cost limitations. The cell types in the PBC dataset had already been verified by pathologists, and
this knowledge aided the students in producing higher-quality annotations. For instance, they could
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Figure 10: The screenshot of Label Studio, the labeling tool used to annotate the WBCAtt dataset.
Annotators can determine the cell type from the name associated with the cell, which is provided
before image selection. The image to be annotated is presented in a clear and organized manner,
enabling annotators to easily navigate and zoom in on the image. Attribute selections are organized
using radio buttons, ensuring that only one choice can be selected at a time. All attributes must be
selected before submitting and proceeding to the next image.

utilize the cell type as prior knowledge, such as understanding that lymphocytes from healthy patients
should not possess a multi-lobed nucleus.

(iii) Annotation Phase 1 and Feedback. Based on their performance on the pilot annotation, we
selected the students and assigned them 200 images for what we refer to as Phase 1. In this phase,
each student annotated a unique set of images, with allocation decisions taking into account their
individual strengths. For instance, if a student demonstrated superior proficiency in annotating
neutrophils compared to other cell types, we allocated a higher number of neutrophil images to
that student. Subsequently, we conducted a thorough review of the annotations, providing specific
feedback and updating our attribute descriptions to improve clarity.

(iv) Annotation Phase 2 with Regular Discussions. After completing Phase 1, we allocated the
remaining images to the annotators and encouraged them to report any uncertain cases for further
discussion. In cases of ambiguity, we discussed with the pathologists who defined the attributes
with us, ultimately reaching a consensus. These discussions and consensus-building efforts were
instrumental in ensuring the consistency and high-quality of the annotations.

(v) Review and Validation. Upon completion of Phase 2, our research scientists, who were not
directly involved in the annotation process, meticulously reviewed and validated all annotations for
correctness and adherence to the attribute definition. This means that each image in our dataset is
reviewed at least by two individuals. We corrected errors or inconsistencies through this refinement
process, thereby enhancing the quality and accuracy of the annotations.

(vi) Reliability Analysis. To assess the reliability of our annotations, we randomly selected a subset
of 1,000 images, and replicated our annotation process with different annotators. Out of the 11,000 (=
11 × 1,000) attribute annotations, 10,569 were consistent with the original annotations, resulting in
an agreement rate of approximately 96.1%. Details of the per-cell agreement rate and the per-attribute
agreement rate are also tabulated in Figure 11. This high agreement demonstrates the reliability and
robustness of the annotations.

7.6 Case Studies of Attribute Prediction

As mentioned in the main paper, we examine specific prediction results, both correct and incorrect
ones, produced by our attribute prediction model. We use Grad-CAM to highlight the areas the model
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Figure 11: The inter-annotator agreement on a random sample of 1000 images from the WBCAtt
dataset. Approximately 96.1% of the annotations showed consistency between the original annotations
and the re-annotations by different annotators. The last column represents the per-cell agreement rate,
while the last row corresponds to the per-attribute agreement rate.

focuses on. In this appendix, we present additional cases that were not included in the main paper
due to space limitations.

7.6.1 Successful Cases on Our Dataset

When the model correctly predicted attributes, we expect that the Grad-CAM heatmap will emphasize
the cell structure in line with the attribute definition. For instance, if the model is predicting the
nucleus shape, it should highlight the nucleus prominently. Figure 12 shows two examples of
successful attribute predictions with Grad-CAM heatmaps. In these instances, the model effectively
localizes the attributes. The Grad-CAM heatmaps focus on the cell edges when predicting cell shape
and cell size, as shown in Figure 12-(b), (c), (i), and (j). At times, the localization is extremely
precise. Particularly, for the nucleus-shape prediction in Figure 12-(d), the Grad-CAM heatmap
accurately marks the thin filament of the nucleus, which serves as a key determinant for segmented
nucleus identification. Moreover, the Grad-CAM can localize the cytoplasm-vacuole, as shown
in Figure 12-(m), and highlight the cytoplasmic area during the prediction of cytoplasm color, as
depicted in Figure 12-(n).

7.6.2 Failure Cases on Our Dataset

Subsequently, we investigate the cases where the model incorrectly predicted the attributes. We
expect the Grad-CAM heatmaps to indicate the reasons behind the model’s failures. After manually
examining multiple instances of failed predictions, we have identified the following potential factors
contributing to incorrect predictions:

(i) Presence of Two Cells in an Image. The existence of multiple distinct cell types within an
image can present a challenge for the attribute predictor. Given that attributes are highly specific to
different cell types, this situation can cause confusion during attribute prediction. For example, in
Figure 13-(i)(a), both a neutrophil and a lymphocyte are present in the same image. The lymphocyte
is considered the ground truth for the cell type in this image, as annotated by the creator of the PBC
dataset (not by us), primarily because the lymphocyte occupies a more central position. Consequently,
our attribute annotations are based on the lymphocyte rather than the neutrophil. During attribute
prediction, even though the Grad-CAM heatmaps focus on the lymphocyte when predicting cell-shape
(Figure 13-(i)(b)) and cell-size (Figure 13-(i)(c)), the attribute predictor looks at the neutrophil when
predicting other attributes such as granularity (Figure 13-(i)(e)), granule color (Figure 13-(i)(f)), and
granule type (Figure 13-(i)(g)). These attributes related to granules are typically not triggered for
lymphocytes in most cases, resulting in incorrect predictions.
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Figure 12: Grad-CAM heatmaps of accurate attribute predictions for a neutrophil ((a)-(g)) and
a monocyte ((h)-(n)). Among the 11 attributes, we have selected six attributes that effectively
differentiate between the respective cell types (neutrophil and monocyte).

(ii) Broken Cell vs (iii) Leaked Cellular Substances. Sometimes the structure of cell is broken.
Figure 13-(ii) shows an broken cell where the cell membrane is unrecognizable, thus making the
cell-shape irregular, which is correctly predicted. On the other hand, Figure 13-(iii) illustrates an oval-
shaped basophil surrounded by some cellular substances. Despite the presence of these substances,
since its cell membrane remains clearly distinguishable, we annotated as having a round cell shape.
However, the Grad-CAM heatmap reveals that the substances outside the cell are interpreted as the
cell boundary, leading to an incorrect prediction of an irregular cell shape for this basophil.

(iv) Overlooking WBC. We have observed instances where the WBC is overlooked, and the Grad-
CAM heatmap highlights the red blood cell (RBC) instead, as depicted in Figure 13-(iv). Con-
sequently, this leads to incorrect predictions, particularly when estimating cell size since RBCs
generally have smaller sizes compared to WBCs.

7.7 Towards Broader Applicability

We established the attributes by analyzing five major types of WBCs derived from peripheral blood
samples of healthy human individuals. Nevertheless, our attribute definitions are applicable in broader
contexts. Moreover, we anticipate that the attribute predictor trained on our dataset will demonstrate
generalizability to other domains in the majority of cases. However, formally exploring this aspect
requires constructing datasets and conducting rigorous evaluations, which constitute future work. As
a preliminary step, we conducted small-scale case studies to evaluate the applicability of the attribute
predictor to cell images beyond our dataset. Specifically, we manually examined a small number of
cell images of (i) peripheral blood samples from COVID-19 patients [29], (ii) bone marrow instead
of peripheral blood [45], as well as (iii) peripheral blood samples from a non-human species, namely
juvenile Visayan warty pigs [46].

(i) Cells from COVID-19 Patients. As shown in Figure 14-(i), the majority of predictions made by
our model, which was trained on healthy peripheral blood cells, are consistent with the descriptions
provided in [29] (listed at the bottom of respective image, in italic). However, there was one exception,
as the prediction related to cytoplasm color in Figure 14-(i)(a) was inaccurately determined. This
discrepancy could be attributed to the difference in staining compared to that of our training data.

(ii) Cells from Bone Marrow. As illustrated in Figure 14-(ii), our attribute predictor successfully
identified the attributes that related to the cytoplasm and granules, showcasing its effectiveness in
investigating blood cells in bone marrow samples. However, incorrect predictions were observed
for cell and nucleus-related attributes, such as cell size and nucleus shape. The poor prediction
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Figure 13: Potential factors contributing to incorrect attribute predictions. Please refer to Appendix
7.6 for more detailed descriptions. Correct predictions are highlighted in green, while incorrect
predictions are highlighted in red.

performance in cell size may be due to the nature of the bone marrow dataset, which crops the WBCs
at a higher magnification level. (To observe the difference in magnification levels, compare the red
blood cells in Figure 14-(ii) to Figure 14-(i) and Figure 14-(iii).) Since we define the size of a cell
based on its relative size compared to the red blood cells, all WBCs in Figure 14-(ii) are small cells,
even though they occupy a larger number of pixels in the image. This could also mean that our model
did not actually learn the size in the way we defined it; it may be simply checking the absolute size in
the image rather than checking the size relative to the red blood cells. Exploring this further is future
work.

(iii) Cells from Pigs. To investigate the applicability beyond human blood samples, we explored
animal blood smears, as shown in Figure 14-(iii). We observe that their staining and smear preparation
methods, which are different from the PBC dataset, have a substantial impact on the prediction
performance, particularly for color-related attributes. In Figure 14-(iii)(b), for instance, the model
fails to predict the presence of eosinophil granules due to significant differences compared to
eosinophils in other datasets. (Please refer to Figure 14-(ii)(c) and Figure 13-(iv)(a) for the granule
color of eosinophils in the bone marrow dataset and the PBC dataset, respectively.) Moreover, the
nucleus and granules of Figure 14-(iii)(a) is hardly recognizable, even to human observers. This
difficulty in recognition leads to incorrect predictions for nucleus shape.

7.8 Details of Attribute-based WBC Classifier in Section 5.1

We simply use the predicted probability (ranging from 0 to 1) of each attribute value to predict
the cell types. This (lazy) formulation can cause the multicollinearity problem, so we employ the
L1 regularizer. The train/val/test split is the same as our dataset split. The specific linear classi-
fier we use is sklearn.linear_model.SGDClassifier(max_iter=1000, loss="log_loss",
penalty="l1") in scikit-learn1.

1https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.
SGDClassifier.html
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Figure 14: The prediction results of our attribute predictor were evaluated for characterizing cells
obtained from: (i) peripheral blood smears of patients with COVID-19, (ii) bone marrow smears,
and (iii) peripheral blood smears of animal (juvenile Visayan warty pigs). The descriptions of (i)(a)
and (i)(b) were summarized from [29]. Correct predictions are highlighted in green, while incorrect
predictions are highlighted in red.
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7.9 Details of StyleGAN-based Image Editing in Section 5.2

We trained StyleGAN-v22 [51] and subsequently pixel2style2pixel (pSp)3 [68] encoder. These
models enable us to embed cell images into the latent space of the trained StyleGAN, allowing
for GAN inversion. Theoretically, this approach allows us to embed any cell image into the GAN
latent space. By manipulating the latent space, we were able to edit the generated images, which is
shown in the main paper. Specifically, we explored two techniques: GANSpace4 [52], which applies
Principal Components Analysis (PCA) to the latent space, and StyleSpace5 [53], which can identify
the subspace of the GAN latent space corresponding to certain attributes based on example images.
Using these methods, we discovered that a specific principal component can control the cell size and
NC ratio, as depicted in Figure 7 in the main paper. Additionally, although not presented in the main
paper, we found subspaces to edit nucleus shape (Figure 15-(a)) and cytoplasm texture (Figure 15-(b)).
We acknowledge that we did not rigorously evaluate controllability and image quality of these two
techniques, as our primary aim was to showcase the usability of our attribute dataset. The code used
for these experiments was obtained from the authors of the referenced papers (see the corresponding
footnotes).

(a) Nucleus shape
BilobedBand

LY_109093BNE_101234.jpg
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Figure 15: Applying StyleSpace [53] on our attribute annotation, we discovered the way to control
the necleus shape and cytoplasm-texture.

7.10 Details of APL Detection in Section 5.3

We used the images provided by the dataset [59] and followed their proposed data split except that we
removed the duplicated and corrupted images that we identified. We publicly reported the duplicates6

and the corruptions7, but we have not received any comments thus far. Once ResNet50 was trained to
classify APL or non-APL, we applied our attribute predictors to the promyelocyte images in the test
set. Subsequently, we visualized the probability distribution of each attribute for the four groups (true
positive, false negative, true negative, and false positive). Upon manual investigation of all attributes,
we discovered a significant bias in the blue cytoplasm, as illustrated in Figure 8-(a)(b) in the main
paper. It is worth noting that the inherent morphological differences between APL and non-APL
promyelocytes may lead to distinct attribute distributions. In other words, if an attribute is a crucial
feature for diagnosing APL, the bias is not necessarily undesirable. However, in this specific case,
we found that the correlation only existed in the training set, and we could not find any literature
supporting this bias. Consequently, we concluded that the correlation was spurious.

7.11 Attribute-based Acute Lymphocytic Leukemia Prediction

Our dataset provides annotations solely for images of healthy patients. However, we anticipate that
the attributes we’ve identified can be exploited for downstream tasks with direct clinical implications,
such as certain disorders. In this context, we investigate the potential use of these attributes for the
detection of Acute Lymphocytic Leukemia (ALL), which is a significant challenge in the field of
pathology. We employ the ALL-IDB [4] dataset, specifically the ALL-IDB2 subset, which includes
cropped cell images. We follow the train/val/test split and baselines reported by Genovese et al. [69],
who are from the same research group that developed the ALL-IDB dataset.

2https://github.com/NVlabs/stylegan3
3https://github.com/eladrich/pixel2style2pixel
4https://github.com/harskish/ganspace
5https://github.com/betterze/StyleSpace
6https://github.com/sidhomj/DeepAPL/issues/32
7https://github.com/sidhomj/DeepAPL/issues/31
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Table 2: Results for Predicting Acute Lymphocytic Leukemia (ALL) on the ALL-IDB [4].

Method Accuracy (%)

VGG16 87.54± 3.15 [69]
ResNet18 88.69± 2.67 [69]
ResNet18 Pre-trained on Additional Histopathological Images 97.92± 1.62 [69]
ViT-Base 91.28 ± 2.17

Logistic Regression on Predicted Attributes 81.03± 1.48
Gradient Boosting on Predicted Attributes 83.85± 1.88
Logistic Regression on Attributes Predicted with Domain Adaptation 86.92± 2.13
Gradient Boosting on Attributes Predicted with Domain Adaptation 90.77 ± 1.23

Due to the lack of attribute annotations for the ALL-IDB dataset, we employ our model, trained on
our dataset, to predict attributes. We utilize the ViT-Base backbone for this task, as our preliminary
examination of a small number of cases indicates that the predicted attributes are more accurate than
those from other backbones. This observation aligns with previous research [70], which suggests that
ViTs typically yield higher cross-dataset accuracy than CNNs. We also implement a straightforward
domain adaptation technique to concurrently minimize the classification loss and the Maximum
Mean Discrepancy (MMD) [71] loss between the labeled domain (our dataset) and the unlabeled test
domain (the ALL-IDB dataset).

After obtaining the predicted attributes on ALL-IDB images, we trained two types of binary classifiers
for ALL detection: L1-regularized multiclass logistic regression8 and a gradient boosting classifier9.
This is done using the predicted attributes with and without domain adaptation. We ran the code three
times with three different seeds and reported the mean and 95% confidence intervals. We compared
these results with the image-based classifiers using ViT-Base, as well as ResNet18 and VGG16 (the
two baselines reported in [69]).

Table 2 summarizes the results. The accuracies of attribute-based prediction methods are comparable
to those of image-based prediction methods, suggesting the feasibility of using our attributes as
interpretable features for clinical downstream tasks.

7.12 Peer Loss for Potential Annotation Noise

In response to a suggestion from a reviewer, we have explored the peer loss [72], which is robust
against label noise and does not require to specify the noise rate. We conducted the following
experiments using the ResNet50 backbone and executed the code three times to obtain the mean and
the 95% confidence intervals.

Table 3: Impact of Peer Loss on Average Macro F1 Score

Dataset Utilize Peer Loss? Average Macro F1 Score (%)

Training Set with 10% Label Noise No 85.31± 0.24
Training Set with 10% Label Noise Yes 88.86± 0.02

Training Set without Added Label Noise No 91.20± 0.06
Training Set without Added Label Noise Yes 91.17± 0.03

To assess the efficacy of the peer loss on our dataset, we intentionally introduced noise by perturbing
10% of the annotations within the training data. Specifically, from the pool of 67,969 categorical
values (6,179 images × 11 attributes), we randomly selected 6,797 values (10%) and replaced each
with an alternative value chosen uniformly from the remaining possibilities. Using this perturbed data,
we trained our model both with and without incorporating the peer loss. The outcomes, presented

8https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.
SGDClassifier.html

9https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.
GradientBoostingClassifier.html
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in the upper section of Table 3, reveal that training on the noisy data alone yields an average macro
F1 score of 85.31 ± 0.24. However, integrating the peer loss increases this score to 88.86 ± 0.02,
demonstrating the efficacy of the peer loss.

After confirming the effectiveness of peer loss, we applied it to our training data without any artificially
introduced noise. As shown in the lower part of Table 3, utilizing peer loss yields an average macro
F1 score of 91.17 ± 0.03, while training without it results in a score of 91.20 ± 0.06. The nearly
identical scores indicate that the impact of peer loss is not significant, suggesting that the presence of
annotation noise within our dataset is limited.

7.13 Other Tables and Figures

• Table 4: Frequencies of attribute values, illustrating content similar to Figure 3 in the main
paper.

• Table 5: Initial attributes used as a starting point to differentiate the five types of WBCs.
• Table 7: Precision, recall, and F-measure values for each attribute value.
• Figure 16: GradCAM heatmaps for different seeds and backbones that are not reported in

the main paper.
• Figure 17: Visualization of how staining conditions and imaging equipment influence the

attributes.

Table 4: Attribute Dist. The distribution represents the results of annotating all typical WBCs from
the PBC dataset, which is the image source we utilized. We did not actively control or manipulate the
distribution.

Attribute Value (Count)

Cell-Size Big (4,997), Small (4,271)
Cell-Shape Round (7,173), Irregular (2,095)
Nucleus-Shape Segmented-Bilobed (2,806), Unsegmented-Band (2,356),

Unsegmented-Indented (1,205), Segmented-Multilobed (1,143),
Unsegmented-Round (967), Irregular (791)

Nuclear-Cytoplasmic-Ratio Low (8,148), High (1,120)
Chromatin-Density Densely (8,443), Loosely (825)
Cytoplasm-Vacuole No (8,559), Yes (709)
Cytoplasm-Texture Clear (7,429), Frosted (1,839)
Cytoplasm-Color Light Blue (7,011), Blue (1,273), Purple Blue (984)
Granule-Type Small (3,003), Round (2,801), Nil (2,374), Coarse (1,090)
Granule-Color Pink (2,925), Red (2,803), Nil (2,373), Purple (1,167)
Granularity Yes (6,896), No (2,372)

Table 5: Coarse Morphological Attributes

Cell Type Nucleus Structure NC Ratio Granularity Granularity Color Cell Size

Basophils Segmented Low Yes Blue / Black (dense)
Eosinophils Segmented Low Yes Red

Lymphocytes Unsegmented High No Small
Monocytes Unsegmented Low No
Neutrophils Segmented Low Yes Blue
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Table 6: Macro Precision (Pre.), Macro Recall (Rec.), and Macro F-measure (F-m.) of VGG16,
ResNet50, ViT-Base, and ConvNeXt-Tiny (CNXT-T) for the task of attribute prediction.

Cell Size Cell
Shape

Nucleus
Shape

Nuclear
Cyto-

plasmic
Ratio

Chromatin
Density

Cytoplasm
Vacuole

Cytoplasm
Texture

Cytoplasm
Color

Granule
Type

Granule
Color

Granularity (Average)

VGG16
Pre.

83.45
±0.61

89.08
±1.80

74.88
±0.81

96.78
±1.01

83.97
±1.26

91.24
±0.83

92.29
±0.47

84.19
±0.32

99.28
±0.10

98.72
±0.31

99.57
±0.09

90.31
±0.51

VGG16
Rec.

83.44
±0.43

90.13
±0.67

74.18
±0.50

95.12
±0.94

86.71
±2.56

85.96
±1.39

95.21
±1.38

83.93
±0.96

99.42
±0.12

98.54
±0.11

99.60
±0.05

90.20
±0.70

VGG16
F-m.

83.44
±0.52

89.52
±0.78

74.10
±0.39

95.91
±0.35

85.18
±0.74

88.36
±0.63

93.61
±0.35

83.95
±0.27

99.35
±0.10

98.62
±0.18

99.58
±0.07

90.15
±0.31

ResNet50
Pre.

84.21
±0.61

90.73
±0.90

77.08
±0.47

97.47
±0.18

84.55
±0.48

92.71
±1.76

93.22
±0.87

88.24
±0.30

99.36
±0.10

98.89
±0.08

99.60
±0.01

91.46
±0.30

ResNet50
Rec.

83.69
±0.44

90.64
±0.80

75.70
±0.99

95.30
±0.05

88.52
±0.59

87.08
±2.09

95.95
±0.42

88.06
±0.45

99.52
±0.10

98.63
±0.10

99.62
±0.03

91.16
±0.26

ResNet50
F-m.

83.81
±0.33

90.66
±0.36

76.13
±0.59

96.35
±0.06

86.39
±0.32

89.57
±0.47

94.49
±0.51

87.99
±0.47

99.44
±0.07

98.76
±0.08

99.61
±0.02

91.20
±0.06

ViT-B
Pre.

83.58
±0.14

89.53
±0.64

77.21
±0.27

96.87
±0.75

84.73
±2.74

90.62
±0.97

92.86
±0.16

87.62
±0.18

99.32
±0.13

99.16
±0.06

99.64
±0.02

91.01
±0.30

ViT-B
Rec.

83.01
±0.52

90.08
±0.52

75.88
±2.03

95.91
±0.76

84.61
±2.93

90.68
±0.70

95.18
±0.96

88.04
±0.60

99.45
±0.10

98.70
±0.19

99.66
±0.05

91.02
±0.32

ViT-B
F-m.

83.19
±0.43

89.80
±0.51

75.94
±1.24

96.37
±0.29

84.51
±1.78

90.63
±0.19

93.94
±0.38

87.70
±0.45

99.39
±0.11

98.92
±0.11

99.65
±0.02

90.91
±0.21

CNXT-T
Pre.

83.50
±0.43

91.00
±0.61

78.51
±1.27

96.80
±0.42

85.56
±0.68

92.84
±0.61
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Figure 16: Grad-CAM heatmaps from different seeds (ResNet50 with seed 100) and various back-
bones (including VGG16, ConvNeXt-Tiny, and Vit-Base), while images are the same as Figure 4
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PBC: May Grünwald-Giemsa stain images from 
APL: Wright stain images from
Raabin: Giemsa stain images from Olympus CX18 and Zeiss microscopes
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Figure 17: WBC appearances under different staining and microscopy conditions. WBCs sourced
from the PBC Dataset [6] (used in this work) have undergone May Grünwald-Giemsa staining and
were acquired through the automated digital cell morphology analyzer, CellaVision DM96. WBCs
from the APL Dataset [59] are stained using Wright’s method and observed through the CellaVision
DM100 cell analyzer. On the other hand, the Raabin-WBC [7] images, stained with Giemsa, are
captured using smartphones mounted on both Olympus CX18 and Zeiss microscopes.
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Table 7: Precision, Recall, and F-measure of VGG16, ResNet50, ViT-Base, and ConvNeXt-Tiny (CNXT-
T) for Each Attribute Value

Backbone Attribute Name Attribute Value Precision Recall F-measure

VGG16 Cell Size Big 85.17 ± 0.32 84.98 ± 1.65 85.06 ± 0.67

VGG16 Cell Size Small 81.73 ± 1.52 81.91 ± 0.80 81.81 ± 0.37

VGG16 Cell Shape Irregular 82.37 ± 4.34 85.71 ± 2.99 83.89 ± 1.01

VGG16 Cell Shape Round 95.79 ± 0.77 94.54 ± 1.82 95.15 ± 0.57

VGG16 Nucleus Shape Irregular 56.35 ± 2.93 67.55 ± 7.88 61.13 ± 2.08

VGG16 Nucleus Shape Segmented-Bilobed 74.98 ± 0.65 74.42 ± 0.73 74.70 ± 0.17

VGG16 Nucleus Shape Segmented-Multilobed 72.13 ± 4.22 55.82 ± 4.45 62.72 ± 1.69

VGG16 Nucleus Shape Unsegmented-Band 80.65 ± 0.78 88.86 ± 0.42 84.55 ± 0.29

VGG16 Nucleus Shape Unsegmented-Indented 81.87 ± 0.61 76.22 ± 3.09 78.91 ± 1.55

VGG16 Nucleus Shape Unsegmented-Round 83.31 ± 3.21 82.19 ± 5.07 82.60 ± 1.51

VGG16 NC Ratio High 94.80 ± 2.25 90.93 ± 2.15 92.79 ± 0.61

VGG16 NC Ratio Low 98.76 ± 0.29 99.30 ± 0.32 99.03 ± 0.09

VGG16 Chromatin Density Densely 97.61 ± 0.57 96.66 ± 0.68 97.13 ± 0.12

VGG16 Chromatin Density Loosely 70.34 ± 2.98 76.77 ± 5.76 73.23 ± 1.45

VGG16 Cytoplasm Vacuole No 97.72 ± 0.24 98.87 ± 0.20 98.29 ± 0.07

VGG16 Cytoplasm Vacuole Yes 84.77 ± 1.83 73.06 ± 2.95 78.43 ± 1.20

VGG16 Cytoplasm Texture Clear 98.52 ± 0.91 95.99 ± 0.75 97.23 ± 0.07

VGG16 Cytoplasm Texture Frosted 86.05 ± 1.84 94.43 ± 3.51 89.98 ± 0.63

VGG16 Cytoplasm Color Blue 80.39 ± 2.33 77.48 ± 3.15 78.83 ± 0.60

VGG16 Cytoplasm Color Light Blue 98.90 ± 0.61 99.11 ± 0.26 99.00 ± 0.20

VGG16 Cytoplasm Color Purple Blue 73.27 ± 2.98 75.20 ± 6.06 74.01 ± 1.30

VGG16 Granule Type Coarse 98.76 ± 0.15 99.52 ± 0.31 99.14 ± 0.13

VGG16 Granule Type Nil 99.22 ± 0.07 99.51 ± 0.11 99.36 ± 0.09

VGG16 Granule Type Round 99.75 ± 0.06 99.46 ± 0.30 99.60 ± 0.13

VGG16 Granule Type Small 99.41 ± 0.33 99.18 ± 0.11 99.29 ± 0.16

VGG16 Granule Color Nil 99.18 ± 0.07 99.63 ± 0.00 99.40 ± 0.03

VGG16 Granule Color Pink 98.46 ± 0.40 98.92 ± 0.60 98.69 ± 0.14

VGG16 Granule Color Purple 97.40 ± 1.49 96.17 ± 0.62 96.77 ± 0.74

VGG16 Granule Color Red 99.82 ± 0.11 99.42 ± 0.21 99.62 ± 0.05

VGG16 Granularity No 99.34 ± 0.17 99.42 ± 0.07 99.38 ± 0.10

VGG16 Granularity Yes 99.80 ± 0.02 99.77 ± 0.06 99.78 ± 0.04

ResNet50 Cell Size Big 84.23 ± 2.02 87.54 ± 3.27 85.79 ± 0.56

ResNet50 Cell Size Small 84.18 ± 3.06 79.83 ± 3.89 81.84 ± 0.78

ResNet50 Cell Shape Irregular 85.70 ± 2.35 85.48 ± 2.40 85.54 ± 0.55

ResNet50 Cell Shape Round 95.77 ± 0.63 95.80 ± 0.91 95.78 ± 0.22

ResNet50 Nucleus Shape Irregular 62.24 ± 0.70 62.37 ± 5.10 62.21 ± 2.51

ResNet50 Nucleus Shape Segmented-Bilobed 74.07 ± 4.38 80.30 ± 4.59 76.86 ± 0.65

ResNet50 Nucleus Shape Segmented-Multilobed 71.43 ± 3.96 59.97 ± 6.11 64.95 ± 3.25

ResNet50 Nucleus Shape Unsegmented-Band 85.42 ± 2.87 85.05 ± 4.68 85.10 ± 1.13

ResNet50 Nucleus Shape Unsegmented-Indented 85.00 ± 3.44 80.50 ± 3.33 82.58 ± 0.21

ResNet50 Nucleus Shape Unsegmented-Round 84.35 ± 2.91 86.01 ± 3.79 85.07 ± 0.39

ResNet50 NC Ratio High 96.16 ± 0.38 91.11 ± 0.14 93.56 ± 0.11

ResNet50 NC Ratio Low 98.79 ± 0.02 99.50 ± 0.05 99.14 ± 0.02

ResNet50 Chromatin Density Densely 97.97 ± 0.13 96.67 ± 0.20 97.31 ± 0.07

ResNet50 Chromatin Density Loosely 71.14 ± 1.02 80.37 ± 1.30 75.46 ± 0.58

ResNet50 Cytoplasm Vacuole No 97.89 ± 0.37 99.05 ± 0.39 98.47 ± 0.01

ResNet50 Cytoplasm Vacuole Yes 87.53 ± 3.90 75.10 ± 4.57 80.67 ± 0.94

ResNet50 Cytoplasm Texture Clear 98.78 ± 0.30 96.49 ± 0.64 97.62 ± 0.25

ResNet50 Cytoplasm Texture Frosted 87.66 ± 1.92 95.42 ± 1.16 91.36 ± 0.77

ResNet50 Cytoplasm Color Blue 83.30 ± 3.68 87.53 ± 4.93 85.19 ± 0.49

ResNet50 Cytoplasm Color Light Blue 99.37 ± 0.32 99.09 ± 0.25 99.23 ± 0.09

ResNet50 Cytoplasm Color Purple Blue 82.07 ± 3.01 77.55 ± 6.01 79.54 ± 1.76

ResNet50 Granule Type Coarse 98.67 ± 0.54 99.52 ± 0.31 99.09 ± 0.20

ResNet50 Granule Type Nil 99.22 ± 0.28 99.63 ± 0.11 99.43 ± 0.18

ResNet50 Granule Type Round 99.82 ± 0.11 99.89 ± 0.10 99.86 ± 0.03

ResNet50 Granule Type Small 99.74 ± 0.11 99.05 ± 0.19 99.39 ± 0.10

ResNet50 Granule Color Nil 99.34 ± 0.07 99.71 ± 0.13 99.53 ± 0.09

ResNet50 Granule Color Pink 98.66 ± 0.28 98.89 ± 0.25 98.77 ± 0.07

ResNet50 Granule Color Purple 97.82 ± 0.25 95.99 ± 0.43 96.90 ± 0.25

ResNet50 Granule Color Red 99.75 ± 0.25 99.93 ± 0.12 99.84 ± 0.09

ResNet50 Granularity No 99.38 ± 0.00 99.46 ± 0.07 99.42 ± 0.03

Continued on next page
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Table 7: Precision, Recall, and F-measure of VGG16, ResNet50, ViT-Base, and ConvNeXt-Tiny (CNXT-
T) for Each Attribute Value

Backbone Attribute Name Attribute Value Precision Recall F-measure

ResNet50 Granularity Yes 99.81 ± 0.02 99.78 ± 0.00 99.80 ± 0.01

ViT-Base Cell Size Big 83.20 ± 1.36 87.72 ± 1.49 85.38 ± 0.13

ViT-Base Cell Size Small 83.96 ± 1.22 78.30 ± 2.50 81.00 ± 0.80

ViT-Base Cell Shape Irregular 83.44 ± 1.25 85.10 ± 1.06 84.25 ± 0.78

ViT-Base Cell Shape Round 95.63 ± 0.29 95.07 ± 0.45 95.35 ± 0.25

ViT-Base Nucleus Shape Irregular 68.62 ± 5.78 64.77 ± 18.26 64.79 ± 8.39

ViT-Base Nucleus Shape Segmented-Bilobed 73.59 ± 5.70 76.88 ± 6.31 74.83 ± 1.14

ViT-Base Nucleus Shape Segmented-Multilobed 69.59 ± 2.87 59.41 ± 5.31 63.89 ± 1.95

ViT-Base Nucleus Shape Unsegmented-Band 82.96 ± 5.54 84.48 ± 7.77 83.31 ± 1.72

ViT-Base Nucleus Shape Unsegmented-Indented 85.63 ± 1.94 80.96 ± 2.99 83.17 ± 0.65

ViT-Base Nucleus Shape Unsegmented-Round 82.85 ± 2.36 88.74 ± 2.35 85.66 ± 1.14

ViT-Base NC Ratio High 94.77 ± 1.69 92.53 ± 1.72 93.61 ± 0.52

ViT-Base NC Ratio Low 98.98 ± 0.23 99.29 ± 0.25 99.13 ± 0.07

ViT-Base Chromatin Density Densely 97.16 ± 0.63 97.10 ± 1.04 97.12 ± 0.39

ViT-Base Chromatin Density Loosely 72.29 ± 5.74 72.13 ± 6.53 71.90 ± 3.25

ViT-Base Cytoplasm Vacuole No 98.53 ± 0.14 98.51 ± 0.25 98.52 ± 0.06

ViT-Base Cytoplasm Vacuole Yes 82.70 ± 2.07 82.86 ± 1.64 82.75 ± 0.33

ViT-Base Cytoplasm Texture Clear 98.39 ± 0.58 96.45 ± 0.35 97.41 ± 0.12

ViT-Base Cytoplasm Texture Frosted 87.33 ± 0.84 93.91 ± 2.26 90.48 ± 0.64

ViT-Base Cytoplasm Color Blue 86.32 ± 1.59 80.50 ± 4.13 83.23 ± 1.46

ViT-Base Cytoplasm Color Light Blue 99.32 ± 0.40 99.21 ± 0.13 99.27 ± 0.14

ViT-Base Cytoplasm Color Purple Blue 77.22 ± 1.70 84.41 ± 2.59 80.61 ± 0.34

ViT-Base Granule Type Coarse 98.57 ± 0.52 99.33 ± 0.31 98.95 ± 0.30

ViT-Base Granule Type Nil 99.22 ± 0.28 99.38 ± 0.11 99.30 ± 0.09

ViT-Base Granule Type Round 99.89 ± 0.00 99.82 ± 0.15 99.86 ± 0.08

ViT-Base Granule Type Small 99.61 ± 0.09 99.28 ± 0.05 99.44 ± 0.07

ViT-Base Granule Color Nil 99.46 ± 0.07 99.55 ± 0.07 99.51 ± 0.00

ViT-Base Granule Color Pink 98.40 ± 0.40 99.49 ± 0.19 98.94 ± 0.14

ViT-Base Granule Color Purple 98.81 ± 0.37 95.81 ± 0.79 97.28 ± 0.26

ViT-Base Granule Color Red 99.96 ± 0.06 99.93 ± 0.06 99.95 ± 0.05

ViT-Base Granularity No 99.46 ± 0.06 99.51 ± 0.11 99.49 ± 0.03

ViT-Base Granularity Yes 99.83 ± 0.04 99.81 ± 0.02 99.82 ± 0.01

CNXT-T Cell Size Big 84.92 ± 0.64 85.43 ± 1.29 85.17 ± 0.45

CNXT-T Cell Size Small 82.09 ± 1.14 81.46 ± 1.16 81.76 ± 0.37

CNXT-T Cell Shape Irregular 85.71 ± 1.11 87.33 ± 0.46 86.51 ± 0.75

CNXT-T Cell Shape Round 96.28 ± 0.14 95.75 ± 0.37 96.01 ± 0.25

CNXT-T Nucleus Shape Irregular 63.15 ± 2.42 63.38 ± 7.48 63.15 ± 4.57

CNXT-T Nucleus Shape Segmented-Bilobed 75.91 ± 2.21 81.92 ± 1.84 78.78 ± 1.56

CNXT-T Nucleus Shape Segmented-Multilobed 72.04 ± 1.52 64.51 ± 4.39 68.01 ± 2.76

CNXT-T Nucleus Shape Unsegmented-Band 87.13 ± 2.24 85.48 ± 1.02 86.27 ± 0.64

CNXT-T Nucleus Shape Unsegmented-Indented 87.44 ± 1.94 81.57 ± 1.36 84.38 ± 0.47

CNXT-T Nucleus Shape Unsegmented-Round 85.38 ± 1.29 89.18 ± 0.80 87.23 ± 0.50

CNXT-T NC Ratio High 94.70 ± 0.79 92.00 ± 0.49 93.33 ± 0.61

CNXT-T NC Ratio Low 98.90 ± 0.07 99.29 ± 0.11 99.10 ± 0.08

CNXT-T Chromatin Density Densely 97.39 ± 0.19 97.29 ± 0.28 97.34 ± 0.07

CNXT-T Chromatin Density Loosely 73.73 ± 1.50 74.45 ± 1.94 74.06 ± 0.58

CNXT-T Cytoplasm Vacuole No 98.05 ± 0.04 99.07 ± 0.10 98.55 ± 0.06

CNXT-T Cytoplasm Vacuole Yes 87.62 ± 1.19 77.01 ± 0.44 81.97 ± 0.73

CNXT-T Cytoplasm Texture Clear 98.10 ± 0.50 97.23 ± 0.49 97.66 ± 0.10

CNXT-T Cytoplasm Texture Frosted 89.76 ± 1.49 92.76 ± 1.97 91.21 ± 0.44

CNXT-T Cytoplasm Color Blue 85.26 ± 0.63 83.90 ± 1.58 84.57 ± 0.69

CNXT-T Cytoplasm Color Light Blue 99.28 ± 0.36 99.18 ± 0.07 99.23 ± 0.15

CNXT-T Cytoplasm Color Purple Blue 79.60 ± 0.80 81.76 ± 2.32 80.65 ± 0.81

CNXT-T Granule Type Coarse 98.76 ± 0.40 99.71 ± 0.00 99.24 ± 0.20

CNXT-T Granule Type Nil 99.59 ± 0.07 99.55 ± 0.07 99.57 ± 0.06

CNXT-T Granule Type Round 99.89 ± 0.00 99.96 ± 0.06 99.93 ± 0.03

CNXT-T Granule Type Small 99.70 ± 0.09 99.34 ± 0.14 99.52 ± 0.07

CNXT-T Granule Color Nil 99.63 ± 0.00 99.59 ± 0.13 99.61 ± 0.07

CNXT-T Granule Color Pink 98.43 ± 0.05 99.60 ± 0.19 99.01 ± 0.10

CNXT-T Granule Color Purple 98.81 ± 0.63 95.81 ± 0.14 97.29 ± 0.37

CNXT-T Granule Color Red 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00

CNXT-T Granularity No 99.55 ± 0.13 99.59 ± 0.07 99.57 ± 0.06

CNXT-T Granularity Yes 99.85 ± 0.02 99.84 ± 0.05 99.85 ± 0.02
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