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Abstract

Machine learning models trained with offline data often suffer from distribution shifts in
online environments and require fast adaptation to online data. The high volume of online
data further stimulates the study of active adaptation approaches that achieve competitive
adaptation performance by selectively annotating only 5%-10% of online data and using it to
continuously train a model. Despite the reduction in data annotation cost, many prior active
adaptations assume a multi-round data annotation procedure during continuous training,
which hinders timely adaptation. In this work, we study a single-round active adaptation
problem with a minimum data annotation turnaround time but require the selected subset
of data samples to help the entire continuous training procedure until convergence. In our
theoretical analysis, we find that the prediction variability of each data sample throughout the
training is crucial, in addition to the conventional data diversity. The prediction variability
measures how much the prediction could possibly change during the continuous training
procedure. To this end, we introduce a novel approach called feature-norm scaled gradient
embedding (FORGE), which incorporates prediction variability and improves the single-
round active adaptation performance when combined with standard data selection strategies
(e.g., k-center greedy). In addition, we provide efficient implementations to construct our
FORGE embedding analytically without explicitly backpropagating gradients. Empirical
results further demonstrate that our approach consistently outperforms the random selection
baseline by up to 1.26% for various vision and language tasks while other competitors often
underperform the random selection baseline.

1 Introduction

The data in production environments can shift away from what is used for training the model. For example,
a vision model inside a camera of a surveillance or autonomous driving system may see new images that
are different from its offline training images every day. A fraud detection model may process emails and
transactions from new users or adversaries that try to penetrate novel attacks to bypass the detection. A
language model in a chat application also receives new and time-based questions over time. Such ubiquitous
distribution shifts are among the major causes of performance degradation in machine learning models
(Huyen, 2022). The consequence of performance degradation caused by distribution shifts can be quite severe:
a failure of a vision model may cause traffic accidents, penetrating a novel fraud can cause financial loss
to a company, and a language model generating incorrect answers to new questions can raise concerns in
mission-critical applications such as medical diagnostic and healthcare.

One of the most effective ways to address distribution shift problems is continuously training a model using
online data (Huyen, 2022). Given a large amount of online data and the subsequent annotation cost, a few
recent works (Prabhu et al., 2021; Xie et al., 2023) explore active adaptation and show that carefully curating
a subset of online data is an effective means to achieve superior adaptation performance while significantly
reducing the data annotation cost. Despite lowering the annotation cost by a factor of ten or twenty, existing
active adaptation methods assume multi-round data annotation procedures. Under these multi-round settings,
we issue multiple queries that sequentially request labels for selected data samples from data annotators and
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Figure 1: Prior works apply active learning to reduce the data annotation cost of adapting machine learning
models to shifting distributions. However, many assume a multi-round setting (a), which incurs multiple
turnaround times and unnecessary delays. We study a single-round adaptation setting (b) and develop an
improved approach called feature-norm scaled gradient embedding (FORGE) (c).

continuously train a model between adjacent queries for a few iterations. However, these sequentially issued
queries may hinder timely adaptation, causing user dissatisfaction.

Language models interact with users and continuously improve their performance based on user feedback
(e.g., preference annotations). Repeatedly asking users to annotate their preferences without delivering a
customized experience can hurt their satisfaction. Besides, for a conventional supervised learning problem
(e.g., fraud detection), issuing K mini-batches of queries can incur ∼ K times more turnaround time than
selecting data samples once and issuing a single batch of queries because modern data annotation systems
(e.g., MTurk (Crowston, 2012)) are optimized for throughout (Haas et al., 2015; Difallah et al., 2015). The
throughput-oriented systems are good at handling a large batch instead of multiple mini-batches. To this
end, we propose a single-round active adaptation problem, where we select once and continuously train a
model for many iterations until convergence (Figure 1).

The single-round adaptation problem requires us to study whether the selected subset is helpful throughout
the continuous training procedure with many iterations. To this end, we start with a pair-wise loss reduction
gap that measures how much learning one selected sample can help learn another unselected sample. We also
show that reducing this gap can improve adaptation performance. Then, we show that the loss reduction gap
depends on (1) gradient distance, which is important for the first few continuous training iterations, and (2)
prediction variability, which can dominate the latter iterations. This prediction variability is estimated using
the norm of a tangent feature of a linearized neural network, which is a plausible model for adaptation tasks
with a few fine-tuning epochs (Malladi et al., 2023). The tangent feature characterizes how the prediction
varies during continuous training, and the norm of the tangent feature can upper bound the variability.

Based on the theoretical analysis, we develop a feature-norm scaled gradient embedding (FORGE) – an
improved active adaptation approach that considers the prediction variability and achieves better single-round
active adaptation performance. One interesting observation from our analysis is that certain data samples
may have small gradient distances and show a small loss reduction gap in the first few iterations. However,
their loss reduction gap may increase significantly with high prediction variability. Following this observation,
we aim to discover data samples with small gradient distances but high variability. Specifically, our approach
first represents each data sample using their gradient embeddings, defined as the gradient of the loss w.r.t. the
parameters and can help represent the gradient distance. We then re-scale the gradient embedding according
to the sample-wise prediction variability, measured by the tangent feature norm, and construct feature-norm
scaled gradient embedding. With the re-scaling operation, high-variability samples are represented by “long”
embedding vectors. Therefore, they are more likely to be picked by diversity-based data acquisition methods
such as k-center greedy that primarily look for long vectors far away from the selected ones (Ash et al., 2020).
We outline suffucient conditions under which our feature-norm scaled embeddings outperform an approach
without feature-norm scaling.
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We derive an efficient analytical implementation for FORGE embedding that eliminates the need for expensive
gradient backpropagation. We also extend the derivation to various vision and language tasks, including image
classification, sentence classification, span-based question and answering, and reward modeling. Extensive
empirical evaluation further demonstrates the advantage of our approach for single-round active adaptation
tasks. Our main contribution is listed as follows:

• We comprehensively analyze a single-round adaptation problem, outlining two key conditions: gradient
distance and prediction variability.

• We develop an improved active adaptation approach by incorporating prediction variability.

• We provide efficient implementations and extensively evaluate them with various tasks.

2 Related Work

Active learning. Common active learning approaches are based on data diversity and data uncertainty.
Diversity-based active learning (Sener & Savarese, 2018; Ash et al., 2020; Shen et al., 2022) aims to select a
subset of diverse data samples that can best represent the full dataset in the input space, an embedding space,
or a gradient embedding space. Uncertainty-based active learning (Balcan et al., 2007; Gal & Ghahramani,
2016; Ban et al., 2022; 2024) prioritizes the selection of data samples where the model prediction is uncertain.
Such uncertainty often requires entropy estimation and careful calibration. A few recent works also show
that incorporating training dynamics can improve convergence speed (Wang et al., 2022; Mohamadi et al.,
2022). Most of these approaches interleave the data selection and the model training procedure and perform
selection every few training iterations. In contrast, our work studies single-round data selection with many
training iterations for timely adaptation. Chen et al. (2022); Wang et al. (2023) studied similar single-round
problems to ours but assumed learning from scratch instead of adaptation. Several recent works apply active
learning to foundations model training (Zhang et al., 2023; Bhatt et al., 2024; Shen et al., 2025), and we will
show a case with reward modeling as part of our experiments.

Domain adaptation. Li et al. (2021); Zhao et al. (2022) demonstrated the difficulty of unsupervised
adaptation. Hence, recent works have focused on incorporating external supervision (Su et al., 2020; Prabhu
et al., 2021; Li et al., 2021; Zhou et al., 2022; Xie et al., 2023; Tsai et al., 2024). However, most of the works
on active adaptation focus on improving the performance of conventional active learning techniques via, for
example, balancing diversity and uncertainty (Prabhu et al., 2021) or improving uncertainty calibration (Xie
et al., 2023), but few aim to minimize the annotation turnaround time.

3 Preliminaries

We list the notation and introduce an active adaptation algorithm framework before proceeding with the
technical discussion. Appendix A provides a table of notations to ease the reading further.

3.1 Notation

A pair of input x ∈ X and its label y ∈ Y is a data sample. fθ : X → Y is a model (e.g., neural network) that
is parameterized by θ. ℓ : Y × Y → R is a loss function. z is the last hidden state of a neural network (i.e.,
input to the last linear layer). We use ℓ(x, y; fθ) to simplify the notation of ℓ(fθ(x), y), which denotes the loss
of a function fθ at a given data sample (x, y). r0→T (x, y; fθ) = ℓ(x, y; fθ0)− ℓ(x, y; fθT

) is the amount of loss
reduction on a data sample (x, y) after the model parameter evolves from θ0 to θT after T training iterations.
∇θfθ(x) is the gradient of the model output fθ(x) w.r.t. the model parameter θ, which is also called a tangent
feature (Jacot et al., 2018; Lee et al., 2019) in the following sections. ∇θℓ(x, y; fθ) is the gradient of the loss
value w.r.t. the model parameter θ. ∥ · ∥ denotes the L2 norm. s denotes a selected subset of indexes from
the full set. | · | denotes the size of a set. [n] denotes a set of n natural numbers. S is a set of selected data
samples {xi, yi | i ∈ s}, S ′ is a set of unselected data samples {xi, yi | i ∈ [n] \ s} and Ŝ is a set of unselected
data samples and its closet selected neighbor {xi, yi, xj , yj | i ∈ [n] \ s, j = arg mins ∥ϕ(xi)− ϕ(xj)∥}. ϕ is
an embedding function. Cat(·, ·) is a vector concatenation operator.
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3.2 Algorithm Framework

Our approach operates under a conventional two-step active learning procedure (Sener & Savarese, 2018; Ash
et al., 2020): (1) construct data representations using an embedding function ϕ and (2) perform diversity-based
data selection. We use the k-center greedy algorithm (lines 3-6) as an example in the algorithm framework
(Algorithm 1). Then, we continuously train a model using the selected data samples. The k-center greedy
algorithm can effectively minimize the maximum distance between an unselected data sample x′ and its
closest selected neighbor x, which can be formulated as an objective function maxi∈[N ]\s minj∈s ∥xi − xj∥
(Sener & Savarese, 2018). Intuitively, this k-center greedy algorithm selects data samples that are far from
others. Our framework differs from prior ones (Ash et al., 2020) regarding the continuous training step (line
7), which was often placed inside the data selection loop (lines 3-6).

Algorithm 1 Algorithm framework
Input: A set of data samples {x1, ..., xN}, an embedding function ϕ, and a model fθ0 .
Steps:
1: Construct data representations {ϕ(x1), ..., ϕ(xN )} using an embedding function ϕ;
2: Initialize a set of selected indices s = {s1} with a random s1 ∼ unif(0, N);
3: for k ← 2 to K do
4: sk = arg max[N ]\s minj∈s ∥ϕ(xi)− ϕ(xj)∥;
5: s ← s ∪ {sk};
6: end for
7: Continuously training a model fθ0 by minimizing 1

∥s∥
∑k

i=1 ℓ(xsi
, ysi

; fθ) for T iterations;
8: Return fθT

.

4 Analysis

This section introduces our main insights into the single-round active adaptation problem. Our goal is to
select a subset of data samples; once a model is trained upon them for many iterations, the model performance
is comparable to that of a model trained over the full dataset. This goal requires us to study whether learning
with selected data samples can also help learn the unselected ones, quantified by a loss reduction gap. We
show that such a loss reduction gap is vital in learning the full dataset via a subset. However, estimating the
loss reduction gap after many training iterations is non-trivial because the model’s training dynamics remain
unknown at the selection step. To this end, we introduce a novel method to estimate an upper bound of the
loss reduction gap incorporating (1) a gradient distance term and (2) a prediction variability term under
unknown training dynamics.

By obtaining a loss reduction gap upper bound, we observe that minimizing the upper bound has a sample-
wise difficulty, depending not only on the gradient distance between samples but also on a sample-wise
prediction variability. Moreover, the impact of the prediction variability can grow quadratically as the model
parameter deviates from its initialization during training. The quadratic growth of the prediction variability
can dominate the term associated with the gradient distance, which only grows linearly. Such a result goes
beyond the prior result (Sener & Savarese, 2018) on the distance term and will further guide our algorithm
design in Section 5.

Technically, we employ the linearization of a non-linear neural network with a mean squared error loss function
under a neural tangent kernel (NTK) regime (Jacot et al., 2018; Lee et al., 2019; Malladi et al., 2023); a
standard tool in deep learning theoretical analysis (Ren & Sutherland, 2025). Notably, this approach does
not require assuming linear models. The mean squared error loss function is the standard choice in the NTK
regime (Jacot et al., 2018; Lee et al., 2019; Malladi et al., 2023), which produces clear theoretical results and
behaves closely to the cross-entropy loss function (Hui & Belkin, 2021). This NTK regime is increasingly
employed in modern active learning research (Awasthi et al., 2021; Mohamadi et al., 2022; Wang et al., 2022).
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4.1 Objective Function

In an active adaptation problem, we hope that learning one selected data sample x can also help learn another
unselected data sample x′. To this end, we introduce an objective function called loss reduction gap between
a pair of selected and unselected data samples.

Definition 1. (Loss reduction gap) Let r0→T (x, y; fθ) = ℓ(x, y; fθ0)− ℓ(x, y; fθT
) be the loss reduction on a

data sample (x, y) after the model parameter evolves from θ0 to θT after T training iterations , we define a
loss reduction gap between x and x′:

r0→T (x, y; fθ)− r0→T (x′, y′; fθ). (1)

The loss reduction gap includes the loss reduction r0→T (x, y; fθ) on a selected data sample x and the loss
reduction r0→T (x′, y′; fθ) on an unselected data sample x′. In our active adaptation problem, for a given
amount of loss reduction on a selected x, we hope that the model fθT

parameterized by θT also learns x′ and
reduces ℓ(x′, y′; fθT

). Note that the loss reduction is an objective, and we do not assume that the reduction
is positive. The following proposition further illustrates the role of the loss reduction gap in minimizing the
expected loss reduction ED[r0→T (x, y; f)] with a given data distribution D.

Proposition 2. (Decomposition of expected loss reduction) Let x be the closest selected neighbor of an
unselected x′ and wj = cj + 1 where cj is the frequency of each x appears as the closest neighbor, the expected
loss reduction ED[r0→T (x, y; fθ)] with a given data distribution D can be decomposed and upper bounded by
(1) a training loss reduction, (2) a maximum loss reduction gap, and (3) a generalization gap:

ED[r0→T (x, y; fθ)]

≥ 1
n

∑
j∈s

wjr0→T (xj , yj ; fθ)︸ ︷︷ ︸
Weighted training loss reduction

+ED[r0→T (x, y; fθ)]− 1
n

n∑
i=1

r0→T (xi, yi; f)︸ ︷︷ ︸
Generalization gap

− 1
n
· max

x′,y′,x,y∈Ŝ
|r0→T (x, y; fθ)− r0→T (x′, y′; fθ)|.︸ ︷︷ ︸
Maximum loss reduction gap

(2)

The expected loss reduction ED[r0→T (x, y; fθ)] on the left-hand-side of Equation 2 is what we want to
maximize but lacks direct estimation of it. Thanks to the lower bound in Proposition 2, we obtain additional
insights suggesting that the expected loss reduction is lower bounded by (1) how much does the loss on the
selected samples reduce, (2) the standard generalization gap between the data distribution and the data
samples and (3) the loss reduction gap between the selected and unselected data samples in an active learning
procedure. In what follows, we will present a new upper bound of the loss reduction gap. The upper bound
is helpful because reducing the upper bound of the loss reduction gap can help increase the lower bound of
the expected loss reduction ED[r0→T (x, y; fθ)].

4.2 Main Result

Estimating the loss reduction gap is non-trivial because the model parameter θT at iteration T is unknown
at the data selection step. Therefore, we derive an upper bound of the loss reduction gap applicable to
unknown θT . Our result suggests that for an arbitrary θT , the upper bound depends on the gradient similarity
between a pair of data samples and their prediction variability. The gradient similarity term complements
prior practice (Ash et al., 2020), and the prediction variability term will guide an improved algorithm design.
Before proceeding to the upper bound, we first introduce the NTK regime that is used in our analysis.
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Figure 2: The gradient similarity ∇θℓ(x, y; fθ0)−∇θℓ(x′, y′; fθ0) can indicate a loss reduction gap in a few
training iterations setting (case 1). With an increasing amount of training iterations (case 2), we must also
consider the prediction variability (i.e., γ = max(∥∇θfθ0(x)∥, ∥∇θfθ0(x′)∥)).

Assumption 3. (NTK regime) (Jacot et al., 2018; Lee et al., 2019) Let fθT
: X → Y be a non-linear model

at training step T , we assume that its output fθT
(x) are governed by a linear model f lin : X → Y obtained

from the first-order Taylor expansion of the non-linear model fθT
around its initial parameter θ0:

fθT
(x) ≈ f lin

θT
(x) = fθ0(x) + ∇θfθ0(x)⊤︸ ︷︷ ︸

Tangent feature

∆θT , (3)

where ∆θT = θT − θ0 denotes the parameter deviation throughout t training iterations.

The NTK regime is first studied using infinite-wide neural networks (Jacot et al., 2018; Lee et al., 2019) and
is later applied to model fine-tuning (Malladi et al., 2023). In active adaptation, we only continuously train a
model for a few epochs, matching the model fine-tuning setting (Malladi et al., 2023). Under Assumption 3,
it is easy to see that the prediction variability at a given data sample x throughout the training procedure is
upper bounded by its tangent feature norm ∥∇θfθ0(x)∥ and the magnitude of parameter derivation:

∥f lin
θT

(x)− fθ0(x)∥︸ ︷︷ ︸
Prediction variability

≤ ∥∇θfθ0(x)∥︸ ︷︷ ︸
Feature norm

∥∆θT ∥

︸ ︷︷ ︸
Variability upper bound

. (4)

Although the model is linearized, the loss function remains non-linear. We further introduce an upper bound
of the loss reduction gap that is composed of (1) a term that is associated with a gradient distance and (2) a
variability upper bound based on a maximum feature norm.

Theorem 4. (Loss reduction gap upper bound) Let ℓ(x, y : fθ) = ∥fθ(x)− y∥2 be a mean square error (MSE)
loss function, with definitions in Section 3 and Assumption 3, we have:

r0→T (x, y; f lin
θ )− r0→T (x′, y′; f lin

θ ) ≤ ∥∇θℓ(x, y; fθ0)−∇θℓ(x′, y′; fθ0)∥︸ ︷︷ ︸
Gradient distance

∥∆θT ∥

+ 2 max(∥∇θfθ0(x)∥, ∥∇θfθ0(x′)∥)2︸ ︷︷ ︸
Max feature norm

∥∆θT ∥2

︸ ︷︷ ︸
Variability upper bound

. (5)

The upper bound in Equation 5 is easy to interpret: (1) the first term with gradient distance captures
a first-order similarity between loss reductions of x and x′ and (2) the variability upper bound indicates
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Figure 3: When data samples have low-variability (a), selecting one data sample can be sufficient to represent
a cluster of data samples. However, in a high-variability setting (b), data samples can hardly represent each
other, even if they are close (e.g., the left cluster with red dots).

the difficulty of maintaining a higher-order loss reduction similarity during many training iterations. An
interesting observation is that the high-order variability term relies on the square of a first-order tangent
feature instead of high-order gradients. Figure 2 illustrates the main result.

Implications. The gradient distance term in our main result complements previous works on active learning
with gradient embedding (Ash et al., 2020). In addition, the variability upper bound term further implies
that minimizing the gradient distance can be insufficient when adaptation training contains many iterations.
Without explicitly considering the variability term, an active learning algorithm may neglect the data samples
that are very difficult to learn by learning its close neighbors. According to Proposition 2, a large loss
reduction gap may result in diminished expected loss reduction. To this end, we will present an improved
approach that considers the prediction variability and improves the single-round active adaptation with many
training iterations in the adaptation procedure.

5 Approach

The goal of our algorithm design is to avoid neglecting the high-variability data samples so that we can directly
maximize the training loss reduction over them while keeping a small loss reduction gap small (Proposition 2
in Section 4). In a bird’s eye view, our approach operates under the conventional two-step active adaptation
framework (Section 3.2), where the first step is to represent each data sample by its embedding and then
conduct data acquisition (e.g., k-center greedy) in an embedding space. This framework is similar to prior
work in terms of using gradient embedding in the first step but also differs in the sense that it adds a variation
to the gradient embedding to encourage the direct selection and learning of high-variability samples, which
may lead to a large loss reduction gap, following our theoretical analysis in Section 4. Figure 3 provides
an intuitive example where we select all the high-variability samples from one cluster and selectively pick a
few representative low-variability samples from other clusters. We also derive efficient implementations for
various tasks, including image and text classification, question-answering, and reward modeling.

5.1 Feature-norm Scaled Gradient Embedding (FORGE)

In the previous section, the theoretical analysis shows that achieving a good active adaptation performance
requires minimizing a loss reduction gap (Theorem 2), which further depends on a gradient distance
between a pair of samples and their variability upper bound (Theorem 4). As is detailed in the preliminary
(Section 3), we perform diversity-based data selection in a gradient space, i.e., ϕ(x, y, fθ0 , ℓ) = ∇θℓ(x, y; fθ0),
which encourage a k-center greedy algorithm (Section 3.2) effectively minimizes the gradient distance
term, ∥∇θℓ(x, y; fθ0) − ∇θℓ(x′, y′; fθ0)∥. However, diversity sampling over gradient space is insufficient
for minimizing the variability upper bound term, max(∥∇θfθ0(x)∥, ∥∇θfθ0(x′)∥)2∥∆θ∥2. Neglecting the
variability upper bound can lead to sub-optimal selection results because we will miss certain samples with a
small gradient distance from their selected neighbors but deviate from their neighbors after many training
iterations due to high prediction variability (Figure 3). To achieve a low prediction variability and a small
gradient distance simultaneously, we develop a new embedding approach called feature-norm scaled gradient
embedding (FORGE):
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Re-scaling eases the selection of 
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Figure 4: The re-scaling operation in FORGE scales gradient embedding according to their prediction
variability and intentionally “pops out” high-variability samples in a gradient embedding space. This re-
scaling helps diversity-based data acquisition methods (e.g., k-center greedy) pick high-variability samples.

Definition 5. (FORGE) A feature-norm scaled gradient embedding function ϕ is defined as:

ϕ(x, y, fθ0 , ℓ) = ∥∇θfθ0(x)∥
∥∇θℓ(x, y; fθ0)∥︸ ︷︷ ︸

Feature norm re-scaling

· ∇θℓ(x, y; fθ0)︸ ︷︷ ︸
Gradient embedding

(6)

Our FORGE embedding is a re-scaled version of the gradient embedding ∇θℓ(x, y; fθ0), where the feature norm
∥∇θfθ0(x)∥ is the re-scaling factor and decides the magnitude of the FORGE embedding. Since the feature
norm also decides the variability upper bound under unknown training dynamics, we assign high-magnitude
embedding vectors to high-variability samples. This strategy is effective because diversity-based data selection
methods seek data samples far away from selected ones. High-magnitude vectors are often further away from
others compared to low-magnitude vectors, which usually fall into a few clusters around 0. Figure 4 further
illustrates the advantage of our FORGE embedding and makes comparisons. By re-scaling the embedding
vector according to the prediction variability, we avoid neglecting data samples with a low gradient embedding
magnitude but a high prediction variability. We further investigate under which condition our FORGE
approach with re-sacling operation can outperform the baseline BADGE approach without re-scaling.
Theorem 6. Let γBADGE and γFORGE be the maximum feature norm of any data sample in ŜBADGE

and ŜF ORGE, respectively. ΓBADGE is an upper bound of the loss reduction gap in Equation 2,
maxx′,y′,x,y∈ŜBADGE

|r0→T (x, y; fθ) − r0→T (x′, y′; fθ)| ≤ ΓBADGE, and ΓFORGE is also an upper bound
of maxx′,y′,x,y∈ŜF ORGE

|r0→T (x, y; fθ)− r0→T (x′, y′; fθ)|. If the FORGE embedding helps select large feature
norm samples such that γBADGE > γFORGE, when the parameter deviation is large such that ∥∆θT ∥ >

(⋄−1)·ϵ+⃝
2(γBADGE−γFORGE) , where ⋄ = maxx,y∈SFORGE

∥∇θℓ(x,y;fθ0 )∥
∥∇θfθ0 (x)∥ and ⃝ = maxx′,y′,x,y∈ŜF ORGE

∥∥∥∇θℓ(x′, y′; fθ0) −
∥∇θℓ(x,y;fθ0 )∥

∥∇θfθ0 (x)∥ · ∥∇θfθ0 (x′)∥
∥∇θℓ(x′,y′;fθ0 )∥ · ∇θℓ(x′, y′; fθ0)

∥∥∥ are constants, we have

ΓFORGE < ΓBADGE. (7)

This theorem implies that if the re-scaling operation in FORGE embedding can help selecting data samples with
large feature norm and making γFORGE – the maximum feature norm among unselected data samples and their
corresponding selected neighbor ŜF ORGE – smaller than γBADGE, the loss reduction gap upper bound ΓFORGE
of the FORGE embedding is provably smaller. Combining with Proposition 2 and taking the training loss
reduction into consideration, we can further see that if the parameter deviation is large such that ∥∆θT ∥ >

(⋄−1)·ϵ+⃝+
√

[(1−⋄)ϵ+⃝]2−8(γBADGE−γFORGE)[
∑

j∈sF ORGE
wjr0→T (xj ,yj ;fθ)−

∑
j∈sBADGE

wjr0→T (xj ,yj ;fθ)]

4(γBADGE−γFORGE) , our
FORGE approach achieve a higher lower bound of the expected loss reduction.

5.2 Efficient Implementation

Computing the tangent feature ∇θfθ0(x) and the gradient embedding ∇θℓ(x, y; fθ0) are expensive. To
alleviate the computational overhead, prior work (Ash et al., 2020) showed that using the last layer’s gradient
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embedding of a neural network achieves competitive performance. We extend this result and provide analytical
constructions of FORGE embedding using only a single forward pass of a neural network. Such single-pass
construction applies to various vision and language tasks. Our analytical construction involves the last hidden
state (i.e., the input to the last linear layer) z, the sigmoid activation function σ, and the pseudo-label (i.e.,
the prediction) ŷ. The pseudo-label ŷ is a common surrogate of the true label y (Ash et al., 2020), which is
not yet available in the data selection step. Notably, all the following analytical constructions require only a
forward pass through the neural network and is, therefore. computational efficient.

Classification task. In a binary classification task, we have ϕ(x, ŷ, fθ0 , z) = ∥z∥
∥σ(f(x)−ŷ)z∥ · σ(fθ0(x)− ŷ)z.

In sequence classification tasks where each input token has a corresponding hidden state, we use the hidden
state zCLS of the [CLS] token. Concatenating the FORGE embedding vector of each class extends our
approach to multi-class cases.

Span-based QA task. Span-based question-answering (QA) task requires a model to predict the starting
index ŷs and the end index ŷe of an answer in a sequence, using two separated linear layers. For a given
sequence with L tokens, we have ϕ(zs, ŷs, fθ0,s) = 1

L

∑L
i=1

∥zs,i∥
∥σ(fθ0,s(x)i−ŷs,i)zs,i∥ · σ(fs,θ0(x)s,i − ŷs,i)zs,i Then,

we concatenate the staring and ending FORGE embeddings: Cat
(

ϕ(x, ŷs, fθ0,s, zs), ϕ(x, ŷe, fθ0,e, ze)
)

Reward modeling task. The loss function of a reward modeling task is ℓ(xw, xl, fθ) = log σ
(

fθ(xw)−

fθ(xl)
)

, where xw is the preferred winning sample and xl is the other loss sample. Note that the subtraction

fθ(xw)− fθ(xl) within the sigmoid function σ equals to zw⊤θ−1 − zl⊤θ−1, where θ−1 is the parameter of
the last linear layer. Therefore, we can consider zw − zl as the input to the last layer, ignore the gradient
(ezw⊤θ−1−zl⊤

θ−1 +1)−1 of the log-sigmoid function because it is a positive scalar, and have ϕ(zw, zl) = zw−zl.

6 Experiments

We present the empirical verification of our approach and make comparisons with strong baselines.

6.1 Setup

Tasks and datasets. In the image classification task, we use the VLCS dataset (Gulrajani & Lopez-Paz,
2021) and the VisDA dataset (Peng et al., 2017). The sentiment classification task operates over the Amazon
and Yelp review datasets (McAuley et al., 2015; Zhang et al., 2015). The span-based question-answering
(QA) task employs the Squad and News datasets (Rajpurkar et al., 2016; Trischler et al., 2017). The reward
modeling task utilizes the Anthropic-hh-rlhf dataset (Bai et al., 2022).

Model architecture. we use the Resnet-50 model (He et al., 2015) for the image classification task. The
sentiment classification and the span-based QA task adopt the distilled-Bert models (Devlin et al., 2019;
Sanh et al., 2019) with a classification head and a QA head, respectively. We consider the GPT-2-medium
model (Radford et al., 2019) for reward modeling tasks.

Hyper-parameters. We use the SGD optimization for the Resnet-50 model, the Adam optimizer for the
distilled-Bert models, and the GPT-2 model. The initial learning rate is 1e-4 for all adaptation tasks, and
we use linear decay scheduling for the GPT-2 model in a reward modeling task. The number of epochs for
adaptation tasks is 4, and we train the reward model for 1 epoch. The batch size for the Resnet-50 model is
64, the distilled-Bert model is 16, and the GPT-2 model is 4.

6.2 Baselines

We include random selection, uncertainty-based selection: margin (Balcan et al., 2007) and DUC (Xie et al.,
2023), and diversity-based selection: CORESET (Sener & Savarese, 2018), BADGE (Ash et al., 2020), and
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(a) BADGE (b) Feature norm in BADGE (c) FORGE

Figure 5: The loss reduction gap can be large even if the gradient embedding (BADGE) distance is small (a).
The feature norm explains the large loss reduction gap (b). Incorporating the feature norm term in FORGE
embedding alleviates this issue (c).

CLUE (Prabhu et al., 2021). Approaches such as DynamicAL (Wang et al., 2022) and DULO (Wang et al.,
2023) are omitted due to their prohibitive computational overhead as one requires computing neural tangent
kernel, and the other needs training 4000 proxy models.

Random Randomly selecting a subset of samples without repetition.

Margin Selecting the data samples that are closest to their decision margin and have high uncertainty. The
distance to the decision margin is measured by the difference between the largest logit and the second-largest
logit.

DUC (Xie et al., 2023) The authors first utilize Dirichlet-based uncertainty calibration (DUC) to mitigate
mis-calibration of neural networks under distribution shifts. Then, they use a two-round procedure to select
data samples with high distribution uncertainty and high data uncertainty. Distribution uncertainty helps
identify data samples that are out of the source domain, and data uncertainty captures discriminative samples.

CORESET (Sener & Savarese, 2018) Selecting diverse data samples using a k-center greedy algorithm in
an embedding space. They use the last hidden state to construct embeddings.

BADGE (Ash et al., 2020) Selecting diverse data samples using a k-means++ algorithm in an embedding
space. They use the last layer’s gradient to construct embeddings.

CLUE (Prabhu et al., 2021) They use the last hidden state to construct embeddings and then run k-means
clustering in an embedding space. The uncertainty, measured in predictive entropy, serves as the weight of
the k-means clustering. The data samples that are closest to each clustering center are selected.

6.3 Visualizing Loss Reduction Gap

We investigate the correlation between the embedding distance and the absolute loss reduction gap in
Proposition 2. This correlation is important because diversity-based data selection methods aim to minimize
the distance between pairs on selected and unselected samples (lines 3-6, Algorithm 1).

In these experiments, we use the Caltech (C) and VOC (V) datasets from the VLCS dataset with 5 classes.
We first fine-tune a pre-trained Resnet-50 on the Caltech dataset to obtain a source model. Then, we use
CORESET, BADGE, and our approaches to select 5% data samples from the VOC dataset (i.e., target
domain). The source model is further fine-tuned on the target domain to get the final accuracy, where each
batch is split evenly for source and target data. For the VLCS dataset, we report the average accuracy on
the V, L, and S datasets. We always find using source data stabilizes and improves adaptation.

10
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Table 1: Accuracy decomposition of active adaptation methods with 5% labels.

Method Selected Train Unselected Train Validation Test
CORESET 100.0 ± 0.00 73.68 ± 0.08 73.67 ± 0.25 72.99 ± 0.16

BADGE 100.0 ± 0.00 75.18 ± 0.22 74.15 ± 0.33 73.28 ± 0.21

FORGE (ours) 100.0 ± 0.00 76.13 ± 0.06 75.19 ± 0.26 74.94 ± 0.08

Note: The numbers are average accuracy over three runs. Variance is rounded up.

Table 2: Accuracy of active adaptation methods.

Method Image-CLS on VLCS Image-CLS on VisDA Average5% 10% 5% 10%
Random 74.87 ± 0.74 75.33 ± 0.76 81.91 ± 0.01 84.28 ± 0.01 79.10
Margin 61.43 ± 0.17 64.32 ± 0.18 81.08 ± 0.01 83.59 ± 0.01 72.61
DUC 68.07 ± 0.15 72.78. ± 0.05 81.59 ± 0.01 85.20 ± 0.02 76.91
CORESET 73.50 ± 0.06 74.45 ± 0.26 81.04 ± 0.01 84.85 ± 0.01 78.46
BADGE 73.74 ± 0.18 74.82 ± 1.71 81.37 ± 0.01 84.54 ± 0.01 78.62
CLUE 74.56 ± 0.41 75.56 ± 0.08 81.42 ± 0.02 84.82 ± 0.02 79.09
FORGE (ours) 75.19 ± 0.01 76.06 ± 0.07 82.28 ± 0.01 85.45 ± 0.01 79.75

Note: The numbers are average accuracy over three runs. Variance is rounded up.

In Figure 5, we first plot the correlation between the gradient distance between each unselected sample x′ and
its closest select neighbor x, ∥ϕBADGE(x, y, fθ0 , ℓ)− ϕBADGE(x, y, fθ0 , ℓ)∥, and their absolute loss reduction
gap, |r0→K(x, y; fθ) − r0→K(x′, y′; fθ)|. With the gradient embedding (BADGE), the loss reduction gap
significantly increases with a minor increase in the embedding distance, diminishing their correlation and
hurting the diversity-based selection performance. Then, we show that the diminished correlation can be
explained by the (tangent) feature norm in Figure 5b. Adopting FORGE, which explicitly considers prediction
variability via the feature norm term, recovers a strong correlation between the embedding distance and the
loss reduction gap.

6.4 Performance Evaluation

We further show that FORGE, which recovers a strong correlation between the embedding distance and
the loss reduction gap (Section 6.3), improves active adaptation performance. Table 1 lists the accuracy
decomposition of active adaptation methods in an image classification task (C to V adaptation in VLCS) with

Table 3: Accuracy of active adaptation methods.

Method Sentiment-CLS Span-QA Average5% 10% 5% 10%
Random 50.53 ± 0.01 51.66 ± 0.01 38.27 ± 0.25 38.84 ± 0.04 44.83
Margin 44.41 ± 0.02 48.57 ± 0.01 33.01 ± 0.11 35.92 ± 0.14 30.48
DUC 48.21 ± 0.01 50.66 ± 0.01 33.59 ± 0.21 37.82 ± 0.09 42.57
CORESET 51.34 ± 0.01 51.33 ± 0.01 37.57 ± 0.17 38.68 ± 0.02 44.73
BADGE 51.26 ± 0.01 52.28 ± 0.02 38.25 ± 0.09 38.91 ± 0.07 45.18
CLUE 50.90 ± 0.01 51.65 ± 0.01 38.21 ± 0.09 38.45 ± 0.06 44.80
FORGE (ours) 51.79 ± 0.01 52.23 ± 0.01 38.67 ± 0.13 39.06 ± 0.18 45.44

Note: The numbers are average accuracy over three runs. Variance is rounded up.
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a labeling budget of 5%. Our approach improves the accuracy on the unselected training set and achieves
a better test performance. Such an advantage further extends to another image classification (C to VLS),
sentiment classification, question answering, and reward modeling tasks with labeling budgets of 5%, 10%,
and 20%.

In the image classification experiments, we consider a more challenging setting. The Caltech (C) dataset
remains the source domain, and we use a mix of the VOC (V), LabelME (L), and SUN (S) as the target
domains. We select data samples evenly from each target domain (e.g., 5% from each target domain). In
VisDA, we consider the synthetic to real transfer. The source domain for sentiment classification is Amazon
review, and the target domain is Yelp review. Both datasets have 5 sentiment classes. For the span-QA task,
we directly use a fine-tuned distilled-Bert on the Squad dataset 1 and use News as the target domain. The
adaptation procedures follow the previous loss reduction gap experiment and always include source domain
data in target domain adaptation. We report the model performance on target domains. For the QA task,
we report the exact match performance. Our approach achieves the best performance among 7 out of the 8
settings and beats the random selection baseline across all settings. In the sentiment classification task with
5% labeling budget, we observe our approach achieves a 1.26% higher accuracy than the random selection
baseline. In contrast, the BADGE approach without the re-scaling operation only beats the random selection
baseline in 4 out of the 8 settings.

Table 4: Reward model accuracy.

Method Reward Modeling
20%

Random 63.01 ± 0.21

BADGE 63.12 ± 0.24

FORGE (ours) 64.45 ± 0.14

In the reward modeling task, we first fine-tune a GPT-2-
medium model on 50% of the Anthropic-hh-rlhf dataset us-
ing the “chosen” response. Then, we employ the warmup
strategy in LESS (Xia et al., 2024) and train the super-
vised fine-tuned (SFT) model using 5% of the remaining
data samples, aiming to help the SFT model capture
better sentence-level data representations instead of the
token-level data representations. We only use the SFT
model with warmup in the data selection step. The re-
ward model training starts with the SFT model without
any warm-up using the Anthropic-hh-rlhf dataset. We
report the accuracy of a hold-out test set. The accuracy of a reward model is measured by the percentage of
the preferred score being greater than the unpreferred score, fθ(xw) > fθ(xl). On average of three different
runs, we find that our approach outperform the BADGE approach, which was the second best approach in
language tasks (Table 3), by 1.33%.

7 Conclusion and Future Work

This work studies a single-round active adaptation problem, aiming to reduce the annotation turnaround time
and promote timely adaptation to distribution shifts. A single-round adaptation problem requires selecting a
subset of data samples for many training iterations. Through theoretical analysis, we show that selecting for
many iterations requires considering the prediction variability of each data sample, which is highly correlated
with a tangent feature norm. Then, we introduce an improved approach called feature-norm scaled gradient
embedding (FORGE) that incorporates prediction variability into the data selection process. Extensive
empirical results with various vision and language tasks demonstrate the effectiveness of our approach.

In the future, it would be interesting to study the prediction variability in the pre-training stage (Chen et al.,
2023; Tirumala et al., 2024) and the pseudo-label bias in gradient embedding construction in the context of
learning with AI feedback (Taori & Hashimoto, 2023; Panickssery et al., 2024).

References
Jordan T. Ash, Chicheng Zhang, Akshay Krishnamurthy, John Langford, and Alekh Agarwal. Deep batch

active learning by diverse, uncertain gradient lower bounds. In International Conference on Learning
1https://huggingface.co/distilbert/distilbert-base-cased-distilled-squad

12



Under review as submission to TMLR

Representations, 2020. URL https://openreview.net/forum?id=ryghZJBKPS.

Pranjal Awasthi, Christoph Dann, Claudio Gentile, Ayush Sekhari, and Zhilei Wang. Neural active learning
with performance guarantees. In Neural Information Processing Systems, 2021. URL https://api.
semanticscholar.org/CorpusID:235358351.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova Dassarma, Dawn Drain,
Stanislav Fort, Deep Ganguli, Tom Henighan, Nicholas Joseph, Saurav Kadavath, John Kernion, Tom
Conerly, Sheer El-Showk, Nelson Elhage, Zac Hatfield-Dodds, Danny Hernandez, Tristan Hume, Scott
Johnston, Shauna Kravec, Liane Lovitt, Neel Nanda, Catherine Olsson, Dario Amodei, Tom B. Brown,
Jack Clark, Sam McCandlish, Christopher Olah, Benjamin Mann, and Jared Kaplan. Training a helpful
and harmless assistant with reinforcement learning from human feedback. ArXiv, abs/2204.05862, 2022.
URL https://api.semanticscholar.org/CorpusID:248118878.

Maria-Florina Balcan, Andrei Broder, and Tong Zhang. Margin based active learning. In International
Conference on Computational Learning Theory, pp. 35–50. Springer, 2007.

Yikun Ban, Yuheng Zhang, Hanghang Tong, Arindam Banerjee, and Jingrui He. Improved algorithms for
neural active learning. Advances in Neural Information Processing Systems, 35:27497–27509, 2022.

Yikun Ban, Ishika Agarwal, Ziwei Wu, Yada Zhu, Kommy Weldemariam, Hanghang Tong, and Jingrui He.
Neural active learning beyond bandits. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=g1S72T3FGc.

Gantavya Bhatt, Yifang Chen, Arnav M. Das, Jifan Zhang, Sang T. Truong, Stephen Mussmann, Yinglun
Zhu, Jeff Bilmes, Simon Shaolei Du, Kevin Jamieson, Jordan T. Ash, and Robert Nowak. An experimental
design framework for label-efficient supervised finetuning of large language models. ArXiv, abs/2401.06692,
2024. URL https://api.semanticscholar.org/CorpusID:266977362.

Si Chen, Tianhao Wang, and Ruoxi Jia. Zero-round active learning, 2022. URL https://openreview.net/
forum?id=-O_9iYmcbZm.

Yilan Chen, Wei Huang, Hao Wang, Charlotte Loh, Akash Srivastava, Lam M. Nguyen, and Tsui-Wei Weng.
Analyzing generalization of neural networks through loss path kernels. In Thirty-seventh Conference on
Neural Information Processing Systems, 2023. URL https://openreview.net/forum?id=8Ba7VJ7xiM.

Kevin Crowston. Amazon mechanical turk: A research tool for organizations and information systems scholars.
In Shaping the Future of ICT Research, 2012. URL https://api.semanticscholar.org/CorpusID:
910853.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. In North American Chapter of the Association for Computational
Linguistics, 2019. URL https://api.semanticscholar.org/CorpusID:52967399.

Djellel Eddine Difallah, Michele Catasta, Gianluca Demartini, Panagiotis G. Ipeirotis, and Philippe Cudré-
Mauroux. The dynamics of micro-task crowdsourcing: The case of amazon mturk. In Proceedings of the
24th International Conference on World Wide Web, WWW ’15, pp. 238–247, Republic and Canton of
Geneva, CHE, 2015. International World Wide Web Conferences Steering Committee. ISBN 9781450334693.
doi: 10.1145/2736277.2741685. URL https://doi.org/10.1145/2736277.2741685.

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model uncertainty
in deep learning. In Maria Florina Balcan and Kilian Q. Weinberger (eds.), Proceedings of The 33rd
International Conference on Machine Learning, volume 48 of Proceedings of Machine Learning Research,
pp. 1050–1059, New York, New York, USA, 20–22 Jun 2016. PMLR. URL https://proceedings.mlr.
press/v48/gal16.html.

Ishaan Gulrajani and David Lopez-Paz. In search of lost domain generalization. In International Conference
on Learning Representations, 2021. URL https://openreview.net/forum?id=lQdXeXDoWtI.

13

https://openreview.net/forum?id=ryghZJBKPS
https://api.semanticscholar.org/CorpusID:235358351
https://api.semanticscholar.org/CorpusID:235358351
https://api.semanticscholar.org/CorpusID:248118878
https://openreview.net/forum?id=g1S72T3FGc
https://api.semanticscholar.org/CorpusID:266977362
https://openreview.net/forum?id=-O_9iYmcbZm
https://openreview.net/forum?id=-O_9iYmcbZm
https://openreview.net/forum?id=8Ba7VJ7xiM
https://api.semanticscholar.org/CorpusID:910853
https://api.semanticscholar.org/CorpusID:910853
https://api.semanticscholar.org/CorpusID:52967399
https://doi.org/10.1145/2736277.2741685
https://proceedings.mlr.press/v48/gal16.html
https://proceedings.mlr.press/v48/gal16.html
https://openreview.net/forum?id=lQdXeXDoWtI


Under review as submission to TMLR

Daniel Haas, Jiannan Wang, Eugene Wu, and Michael J. Franklin. Clamshell: speeding up crowds for
low-latency data labeling. Proc. VLDB Endow., 9(4):372–383, dec 2015. ISSN 2150-8097. doi: 10.14778/
2856318.2856331. URL https://doi.org/10.14778/2856318.2856331.

Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778, 2015. URL
https://api.semanticscholar.org/CorpusID:206594692.

Like Hui and Mikhail Belkin. {EVALUATION} {of} {neural} {architectures} {trained} {with} {square}
{loss} {vs} {cross}-{entropy} {in} {classification} {tasks}. In International Conference on Learning
Representations, 2021. URL https://openreview.net/forum?id=hsFN92eQEla.

Chip Huyen. Designing machine learning systems. " O’Reilly Media, Inc.", 2022.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: convergence and generalization
in neural networks. In Proceedings of the 32nd International Conference on Neural Information Processing
Systems, NIPS’18, pp. 8580–8589, 2018.

Jaehoon Lee, Lechao Xiao, Samuel S. Schoenholz, Yasaman Bahri, Roman Novak, Jascha Narain Sohl-
Dickstein, and Jeffrey Pennington. Wide neural networks of any depth evolve as linear models under
gradient descent. Journal of Statistical Mechanics: Theory and Experiment, 2020, 2019.

Bo Li, Yezhen Wang, Shanghang Zhang, Dongsheng Li, Kurt Keutzer, Trevor Darrell, and Han Zhao. Learning
invariant representations and risks for semi-supervised domain adaptation. In 2021 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 1104–1113, 2021. doi: 10.1109/CVPR46437.
2021.00116.

Sadhika Malladi, Alexander Wettig, Dingli Yu, Danqi Chen, and Sanjeev Arora. A kernel-based view of
language model fine-tuning. In Proceedings of the 40th International Conference on Machine Learning,
ICML’23. JMLR.org, 2023.

Julian McAuley, Christopher Targett, Javen Qinfeng Shi, and Anton van den Hengel. Image-based recommen-
dations on styles and substitutes. Proceedings of the 38th International ACM SIGIR Conference on Research
and Development in Information Retrieval, 2015. URL https://api.semanticscholar.org/CorpusID:
1012652.

Mohamad Amin Mohamadi, Wonho Bae, and Danica J. Sutherland. Making look-ahead active learning
strategies feasible with neural tangent kernels. In NeurIPS, 2022.

Arjun Panickssery, Samuel R. Bowman, and Shi Feng. LLM evaluators recognize and favor their own
generations. In The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024.
URL https://openreview.net/forum?id=4NJBV6Wp0h.

Xingchao Peng, Ben Usman, Neela Kaushik, Judy Hoffman, Dequan Wang, and Kate Saenko. Visda: The
visual domain adaptation challenge. arXiv preprint arXiv:1710.06924, 2017.

Viraj Prabhu, Arjun Chandrasekaran, Kate Saenko, and Judy Hoffman. Active domain adaptation via
clustering uncertainty-weighted embeddings. 2021 IEEE/CVF International Conference on Computer
Vision (ICCV), pp. 8485–8494, 2021. URL https://api.semanticscholar.org/CorpusID:224714171.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language models are
unsupervised multitask learners. 2019.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+ questions for
machine comprehension of text. In Jian Su, Kevin Duh, and Xavier Carreras (eds.), Proceedings of
the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 2383–2392, Austin,
Texas, November 2016. Association for Computational Linguistics. doi: 10.18653/v1/D16-1264. URL
https://aclanthology.org/D16-1264.

14

https://doi.org/10.14778/2856318.2856331
https://api.semanticscholar.org/CorpusID:206594692
https://openreview.net/forum?id=hsFN92eQEla
https://api.semanticscholar.org/CorpusID:1012652
https://api.semanticscholar.org/CorpusID:1012652
https://openreview.net/forum?id=4NJBV6Wp0h
https://api.semanticscholar.org/CorpusID:224714171
https://aclanthology.org/D16-1264


Under review as submission to TMLR

Yi Ren and Danica J. Sutherland. Learning dynamics of LLM finetuning. In The Thirteenth International
Conference on Learning Representations, 2025. URL https://openreview.net/forum?id=tPNHOoZFl9.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version of bert:
smaller, faster, cheaper and lighter. ArXiv, abs/1910.01108, 2019.

Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A core-set approach. In
International Conference on Learning Representations, 2018. URL https://openreview.net/forum?id=
H1aIuk-RW.

Maohao Shen, Bowen Jiang, Jacky Yibo Zhang, and Oluwasanmi Koyejo. Batch active learning from the
perspective of sparse approximation. arXiv preprint arXiv:2211.00246, 2022.

Yunyi Shen, Hao Sun, and Jean-François Ton. Reviving the classics: Active reward modeling in large language
model alignment. arXiv preprint arXiv:2502.04354, 2025.

Jong-Chyi Su, Yi-Hsuan Tsai, Kihyuk Sohn, Buyu Liu, Subhransu Maji, and Manmohan Chandraker. Active
adversarial domain adaptation. In 2020 IEEE Winter Conference on Applications of Computer Vision
(WACV), pp. 728–737, 2020. doi: 10.1109/WACV45572.2020.9093390.

Rohan Taori and Tatsunori Hashimoto. Data feedback loops: Model-driven amplification of dataset biases.
In International Conference on Machine Learning, pp. 33883–33920. PMLR, 2023.

Kushal Tirumala, Daniel Simig, Armen Aghajanyan, and Ari Morcos. D4: Improving llm pretraining via
document de-duplication and diversification. Advances in Neural Information Processing Systems, 36, 2024.

Adam Trischler, Tong Wang, Xingdi Yuan, Justin Harris, Alessandro Sordoni, Philip Bachman, and Kaheer
Suleman. Newsqa: A machine comprehension dataset. In Proceedings of the 2nd Workshop on Representation
Learning for NLP, pp. 191–200, 2017.

Katherine Tsai, Stephen R Pfohl, Olawale Salaudeen, Nicole Chiou, Matt Kusner, Alexander D’Amour,
Sanmi Koyejo, and Arthur Gretton. Proxy methods for domain adaptation. In International Conference
on Artificial Intelligence and Statistics, pp. 3961–3969. PMLR, 2024.

Haonan Wang, Wei Huang, Ziwei Wu, Hanghang Tong, Andrew J Margenot, and Jingrui He. Deep active
learning by leveraging training dynamics. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and
A. Oh (eds.), Advances in Neural Information Processing Systems, volume 35, pp. 25171–25184. Curran
Associates, Inc., 2022.

Jiachen T. Wang, Si Chen, and Ruoxi Jia. One-round active learning through data utility learning and proxy
models. Transactions on Machine Learning Research, 2023. ISSN 2835-8856. URL https://openreview.
net/forum?id=8HQCOMRa7g.

Mengzhou Xia, Sadhika Malladi, Suchin Gururangan, Sanjeev Arora, and Danqi Chen. Less: Selecting
influential data for targeted instruction tuning. arXiv preprint arXiv:2402.04333, 2024.

Mixue Xie, Shuang Li, Rui Zhang, and Chi Harold Liu. Dirichlet-based uncertainty calibration for active
domain adaptation. In International Conference on Learning Representations (ICLR), 2023.

Jifan Zhang, Yifang Chen, Gregory Canal, Stephen Mussmann, Arnav M. Das, Gantavya Bhatt, Yinglun
Zhu, Simon Shaolei Du, Kevin Jamieson, and Robert Nowak. Labelbench: A comprehensive framework
for benchmarking adaptive label-efficient learning. 2023. URL https://api.semanticscholar.org/
CorpusID:266162295.

Xiang Zhang, Junbo Jake Zhao, and Yann LeCun. Character-level convolutional networks for text classification.
In Neural Information Processing Systems, 2015. URL https://api.semanticscholar.org/CorpusID:
368182.

15

https://openreview.net/forum?id=tPNHOoZFl9
https://openreview.net/forum?id=H1aIuk-RW
https://openreview.net/forum?id=H1aIuk-RW
https://openreview.net/forum?id=8HQCOMRa7g
https://openreview.net/forum?id=8HQCOMRa7g
https://api.semanticscholar.org/CorpusID:266162295
https://api.semanticscholar.org/CorpusID:266162295
https://api.semanticscholar.org/CorpusID:368182
https://api.semanticscholar.org/CorpusID:368182


Under review as submission to TMLR

Han Zhao, Chen Dan, Bryon Aragam, Tommi S. Jaakkola, Geoffrey J. Gordon, and Pradeep Ravikumar.
Fundamental limits and tradeoffs in invariant representation learning. Journal of Machine Learning
Research, 23(340):1–49, 2022. URL http://jmlr.org/papers/v23/21-1078.html.

Shiji Zhou, Han Zhao, Shanghang Zhang, Lianzhe Wang, Heng Chang, Zhi Wang, and Wenwu Zhu. Online
continual adaptation with active self-training. In Gustau Camps-Valls, Francisco J. R. Ruiz, and Isabel
Valera (eds.), Proceedings of The 25th International Conference on Artificial Intelligence and Statistics,
volume 151 of Proceedings of Machine Learning Research, pp. 8852–8883. PMLR, 28–30 Mar 2022. URL
https://proceedings.mlr.press/v151/zhou22d.html.

16

http://jmlr.org/papers/v23/21-1078.html
https://proceedings.mlr.press/v151/zhou22d.html


Under review as submission to TMLR

A Table of Notations

Table 5: Table of Notations

Symbol Description

x, y A data sample
N The number of data samples
s A selected subset of data samples
θ The parameters of a model
θt The parameters of a model at the tth training iteration
T The number of training iterations
r0→T (x, y; fθ) The loss reduction ℓ(x, y; fθ0)− ℓ(x, y; fθT

) after T training iterations
∥ · ∥ The L2 norm of a vector
| · | The size of a set
[N ] A set of N natural numbers
ϕ An embedding function
Cat(·, ·) A vector concatenation operator
S A set of selected data samples {xi, yi | i ∈ s}
S ′ A set of unselected data samples {xi, yi | i ∈ [n] \ s}
Ŝ A set of unselected data samples and its closet selected neighbor

{xi, yi, xj , yj | i ∈ [n] \ s, j = arg mins ∥ϕ(xi)− ϕ(xj)∥}
γ The maximum feature norm, max(∥∇θfθ0(x)∥, ∥∇θfθ0(x′)∥)

B Proofs

Proposition 2. (Decomposition of expected loss reduction) Let x be the closest selected neighbor of an
unselected x′ and wj = cj + 1 where cj is the frequency of each x appears as the closest neighbor, the expected
loss reduction ED[r0→T (x, y; fθ)] with a given data distribution D can be decomposed and upper bounded by
(1) a training loss reduction, (2) a maximum loss reduction gap, and (3) a generalization gap:

ED[r0→T (x, y; fθ)]

≥ 1
n

∑
j∈s

wjr0→T (xj , yj ; fθ)︸ ︷︷ ︸
Weighted training loss reduction

+ED[r0→T (x, y; fθ)]− 1
n

n∑
i=1

r0→T (xi, yi; f)︸ ︷︷ ︸
Generalization gap

− 1
n
· max

x′,y′,x,y∈Ŝ
|r0→T (x, y; fθ)− r0→T (x′, y′; fθ)|.︸ ︷︷ ︸
Maximum loss reduction gap

(8)
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Proof. Let (xj , yj) be the closest selected neightbor of an unselected (xi, yi) and ci be the frequency of each
(xj , yj) appears as a closest neighbor, we have:

ED[r0→T (x, y; f)] = ED[r0→T (x, y; f)]− 1
N

N∑
i=1

r0→T (xi, yi; f)

+ 1
N

( ∑
i∈[N ]\s

r0→T (xi, yi; f) +
∑
j∈s

r0→T (xj , yj ; f)
)

= ED[r0→T (x, y; f)]− 1
N

N∑
i=1

r0→T (xi, yi; f)

+ 1
N

∑
i∈[N ]\s

(
r0→T (xi, yi; f)− r0→T (xj , yj ; f)

)
+ 1

N

∑
j∈s

r0→T (xj , yj ; f) + 1
N

∑
j∈s

cjr0→T (xj , yj ; f)

= 1
N

∑
j∈s

(cj + 1)r0→T (xj , yj ; f) + ED[r0→T (x, y; f)]− 1
N

N∑
i=1

r0→T (xi, yi; f)

+ 1
N

∑
i∈[N ]\s

(
r0→T (xi, yi; f)− r0→T (xj , yj ; f)

)

≥ 1
N

∑
j∈s

wjr0→T (xj , yj ; f) + ED[r0→T (x, y; f)]− 1
N

N∑
i=1

r0→T (xi, yi; f)

− 1
n
· max

x′,y′,x,y∈Ŝ
|r0→T (x, y; fθ)− r0→T (x′, y′; fθ)|.

(9)

Theorem 4. (Loss reduction gap upper bound) Let ℓ(x, y : fθ) = ∥fθ(x)− y∥2 be a mean square error (MSE)
loss function, with definitions in Section 3 and Assumption 3, we have:

r0→T (x, y; f lin
θ )− r0→T (x′, y′; f lin

θ ) ≤ ∥∇θℓ(x, y; fθ0)−∇θℓ(x′, y′; fθ0)∥︸ ︷︷ ︸
Gradient distance

∥∆θT ∥

+ 2 max(∥∇θfθ0(x)∥, ∥∇θfθ0(x′)∥)2︸ ︷︷ ︸
Max feature norm

∥∆θT ∥2

︸ ︷︷ ︸
Variability upper bound

. (10)

Proof. Capturing the loss reduction ℓ(x, y; f lin
θT

)− ℓ(x, y; fθ0) during training is non-trivial because the loss
function ℓ remains non-linear even if the model f lin

θ0
is linearized. Therefore, we resort to the Lagrange mean

value theorem and show that the loss reduction depends on an interpolated gradient:

r0→T (x, y; f lin
θ ) = ℓ(x, y; fθ0)− ℓ(x, y; f lin

θT
) = ∇θℓ(x, y; f lin

θT,α
)⊤∆θT , (11)

where f lin
θT,α

= fθ0(x) +∇θfθ0(x) ·α ·∆θT and α ∈ [0, 1] is an interpolatoin factor. With some re-arrangement
of terms, we quantify the deviation between the interpolated gradient and the gradient embedding, which
depends on the interpolation factor α and the tangent feature ∇θfθ0(x):

∇θℓ(f lin
θT,α

(x), y) = (fθ0(x)− y)∇θfθ0(x)︸ ︷︷ ︸
Gradient embedding

+ α · ∇θfθ0(x)⊤∆θT∇θfθ0(x)︸ ︷︷ ︸
Interpolation deviation

.
(12)
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With this analysis of gradient deviation and the abbreviation Qx,T,x = ∇θfθ0(x)⊤∆θT∇θfθ0(x), we have the
following upper bound on pair-wise interpolated gradient distance:

∥∇θℓ(x, y; f lin
θT,α

)−∇θℓ(x′, y′; f lin
θT,α′ )∥

≤ ∥(fθ0(x)− y)∇θfθ0(x)− (fθ0(x′)− y′)∇θfθ0(x′)∥︸ ︷︷ ︸
Gradient distance

+ ∥α · Qx,T,x − α′ · Qx,T,x)∥︸ ︷︷ ︸
Interpolation distance

+ ∥α′ · Qx,T,x − α′ · Qx′,T,x′)∥︸ ︷︷ ︸
Feature distance

,

(13)

where the first term quantifies the contribution of gradient embedding. For the latter two terms, we further
present upper bounds that grow w.r.t. the feature norms ∥∇θf0(x)∥ or ∥∇θf0(x′)∥. For the interpolation
distance, we have:

∥α · Qx,T,x − α′ · Qx,T,x∥ ≤ ∥∇θfθ0(x)∥2∥∆θt∥. (14)

For the feature distance, we have:

∥α′ · Qx,T,x − α′ · Qx′,T,x′)∥
≤ ∥∇θfθ0(x)−∇θfθ0(x′)∥∥∆θT ∥ ·max(∥∇θfθ0(x)∥, ∥∇θfθ0(x′)∥)
≤ max(∥∇θfθ0(x)∥, ∥∇θfθ0(x′)∥)2∥∆θT ∥.

(15)

Plugging Equations 14 and 15 into 13, we have:

∥∇θℓ(x, y; f lin
θT,α

)−∇θℓ(x′, y′; f lin
θT,α′ )∥

≤ ∥∇θℓ(x, y; f lin
θ0

)−∇θℓ(x′, y′; f lin
θ0

)∥+ 2 max(∥∇θfθ0(x)∥, ∥∇θfθ0(x′)∥)2∥∆θT ∥.
(16)

Combining Equations 11 and 16, we complete the proof:

r0→T (x, y; f lin
θ )− r0→T (x′, y′; f lin

θ )

=
(
∇θℓ(x, y; f lin

θT,α
)−∇θℓ(x′, y′; f lin

θT,α′ )
)⊤

∆θT

≤ ∥∇θℓ(x, y; f lin
θ0

)−∇θℓ(x′, y′; f lin
θ0

)∥∥∆θT ∥
+ 2 max(∥∇θfθ0(x)∥, ∥∇θfθ0(x′)∥)2∥∆θT ∥2.

(17)

Theorem 6. Let γBADGE and γFORGE be the maximum feature norm of any data sample in ŜBADGE

and ŜF ORGE, respectively. ΓBADGE is an upper bound of the loss reduction gap in Equation 2,
maxx′,y′,x,y∈ŜBADGE

|r0→T (x, y; fθ) − r0→T (x′, y′; fθ)| ≤ ΓBADGE, and ΓFORGE is also an upper bound
of maxx′,y′,x,y∈ŜF ORGE

|r0→T (x, y; fθ)− r0→T (x′, y′; fθ)|. If the FORGE embedding helps select large feature
norm samples such that γBADGE > γFORGE, when the parameter deviation is large such that ∥∆θT ∥ >

(⋄−1)·ϵ+⃝
2(γBADGE−γFORGE) , where ⋄ = maxx,y∈SFORGE

∥∇θℓ(x,y;fθ0 )∥
∥∇θfθ0 (x)∥ and ⃝ = maxx′,y′,x,y∈ŜF ORGE

∥∥∥∇θℓ(x′, y′; fθ0) −
∥∇θℓ(x,y;fθ0 )∥

∥∇θfθ0 (x)∥ · ∥∇θfθ0 (x′)∥
∥∇θℓ(x′,y′;fθ0 )∥ · ∇θℓ(x′, y′; fθ0)

∥∥∥ are constants, we have

ΓFORGE < ΓBADGE. (18)
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Proof. By the FORGE embedding definition, we have

∥ϕ(x, y, fθ0 , ℓ)− ϕ(x′, y′, fθ0 , ℓ)∥

=
∥∥∥ ∥∇θfθ0(x)∥
∥∇θℓ(x, y; fθ0)∥ · ∇θℓ(x, y; fθ0)− ∥∇θfθ0(x′)∥

∥∇θℓ(x′, y′; fθ0)∥ · ∇θℓ(x′, y′; fθ0)
∥∥∥

= ∥∇θfθ0(x)∥
∥∇θℓ(x, y; fθ0)∥ ·

∥∥∥∇θℓ(x, y; fθ0)−∇θℓ(x′, y′; fθ0)

+∇θℓ(x′, y′; fθ0)− ∥∇θℓ(x, y; fθ0)∥
∥∇θfθ0(x)∥ · ∥∇θfθ0(x′)∥

∥∇θℓ(x′, y′; fθ0)∥ · ∇θℓ(x′, y′; fθ0)
∥∥∥.

(19)

Rearranging some terms, we get a gradient distance term
∥∥∥∇θℓ(x, y; fθ0)−∇θℓ(x′, y′; fθ0)

∥∥∥ in a lower bound
of the FORGE embedding distance:

∥ϕ(x, y, fθ0 , ℓ)− ϕ(x′, y′, fθ0 , ℓ)∥

≥ ∥∇θfθ0(x)∥
∥∇θℓ(x, y; fθ0)∥ ·

∥∥∥∇θℓ(x, y; fθ0)−∇θℓ(x′, y′; fθ0)
∥∥∥

− ∥∇θfθ0(x)∥
∥∇θℓ(x, y; fθ0)∥

∥∥∥∇θℓ(x′, y′; fθ0)− ∥∇θℓ(x, y; fθ0)∥
∥∇θfθ0(x)∥ · ∥∇θfθ0(x′)∥

∥∇θℓ(x′, y′; fθ0)∥ · ∇θℓ(x′, y′; fθ0)
∥∥∥.

(20)

With Equation 20, if we achieve ϵ-cover over FORGE embeddings, ∥ϕ(x, y, fθ0 , ℓ)− ϕ(x′, y′, fθ0 , ℓ)∥ ≤ ϵ, the
gradient embedding also has a bounded coverage:∥∥∥∇θℓ(x, y; fθ0)−∇θℓ(x′, y′; fθ0)

∥∥∥ ≤ ⋄ · ϵ +⃝ (21)

where ⋄ = maxx,y∈SFORGE
∥∇θℓ(x,y;fθ0 )∥

∥∇θfθ0 (x)∥ and ⃝ = maxx′,y′,x,y∈ŜF ORGE

∥∥∥∇θℓ(x′, y′; fθ0) − ∥∇θℓ(x,y;fθ0 )∥
∥∇θfθ0 (x)∥ ·

∥∇θfθ0 (x′)∥
∥∇θℓ(x′,y′;fθ0 )∥ · ∇θℓ(x′, y′; fθ0)

∥∥∥.

Recalling the upper bound of the loss reduction gap, if we use the BADGE embedding, the upper bound
ΓBADGE is

r0→T (x, y; f lin
θ )− r0→T (x′, y′; f lin

θ )
≤ ϵ∥∆θT ∥+ 2 max

x′,x∈ŜBADGE

(∥∇θfθ0(x)∥, ∥∇θfθ0(x′)∥)2∥∆θT ∥2. (22)

With FORGE embedding, the upper bound ΓFORGE is

r0→T (x, y; f lin
θ )− r0→T (x′, y′; f lin

θ )
≤ (⋄ · ϵ +⃝)∥∆θT ∥+ 2 max

x′,x∈ŜFORGE

(∥∇θfθ0(x)∥, ∥∇θfθ0(x′)∥)2∥∆θT ∥2. (23)

If γBADGE > γFORGE, the upper bound ΓFORGE with FORGE embedding is smaller when

ϵ + 2γBADGE∥∆θT ∥ > ⋄ · ϵ +⃝+ 2γFORGE∥∆θT ∥

∥∆θT ∥ >
(⋄ − 1) · ϵ +⃝

2(γBADGE − γFORGE) .
(24)
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