Abstract

Machine-Generated Text (MGT) detection, a task that discriminates MGT from Human-Written Text (HWT), plays a crucial role in preventing misuse of text generative models, which excel in mimicking human writing style recently. Latest proposed detectors usually take coarse text sequences as input and fine-tune pretrained models with standard cross-entropy loss. However, these methods fail to consider the linguistic structure of texts. Moreover, they lack the ability to handle the low-resource problem which could often happen in practice considering the enormous amount of textual data online. In this paper, we present a coherence-based contrastive learning model named CoCo to detect the possible MGT under low-resource scenario. To exploit the linguistic feature, we encode coherence information in form of graph into text representation. To tackle the challenges of low data resource, we employ a contrastive learning framework and propose an improved contrastive loss for preventing performance degradation brought by simple samples. The experiment results on two public datasets and two self-constructed datasets prove our approach outperforms the state-of-art methods significantly.

1 Introduction

Thriving progress in the field of text generative models (TGMs) (Yang et al., 2019; Kenton and Toutanova, 2019; Liu et al., 2019; Keskar et al., 2019; Lewis et al., 2020; Brown et al., 2020; Gao et al., 2021a; Madotto et al., 2021; Ouyang et al., 2022; Touvron et al., 2023; Anil et al., 2023), e.g., ChatGPT and GPT-4 (OpenAI, 2023), enables everyone to produce MGTs massively and rapidly. However, the accessibility to high-quality TGMs is prone to cause misuses, such as fake news generation (Zellers et al., 2019; Yanagi et al., 2020; Huang et al., 2022), product review forging (Adelani et al., 2020), and spamming (Tan et al., 2012), etc. MGTs are hard to distinguish by an untrained human for their human-like writing style (Ippolito et al., 2020) and the excessive amount (Grinberg et al., 2019), which calls for the study of reliable automatic MGT detectors.

Previous works on MGTs detection mainly concentrate on sequence feature representation and classification (Gehrmann et al., 2019; Solaiman et al., 2019; Zellers et al., 2019; He et al., 2023; Mitchell et al., 2023). Recent studies have shown the good performance of automated detectors in a fine-tuning fashion (Solaiman et al., 2019; Miresghallah et al., 2023). Although these fine-tuning-based detectors have demonstrated their effectiveness, they still suffer from two issues that limit their conversion to practical use: (1) Existing detectors treat input documents as flat sequences of tokens and use neural encoders or statistical features (e.g., TF-IDF, perplexity) to represent text as the dense vector for classification. These methods rely much on the token-level distribution difference of texts in each class, which ignores high-level linguistic representation of text structure. (2) Com-
pared with the enormous number of online texts, annotated dataset for training MGT detectors is a rather low-resource. Constrained by the amount of available annotated data, traditional detectors sustain frustrating accuracy and even collapse during the test stage.

As shown in Fig. 1, MGTs and HWTs exhibit difference in terms of coherence traced by entity consistency. Thus, we propose an entity coherence graph to model the sentence-level structure of texts based on the thoughts of Centering Theory (Grosz and Sidner, 1986), which evaluates text coherence by entity consistency. Entity coherence graph treats entities as nodes and builds edges between entities in the same sentences and same entities among different sentences to reveal the text structure. Instead of treating text as flat sequence, coherence modeling helps to introduce distinguishable linguistic feature at input stage and provides explainable difference between MGTs and HWTs.

To alleviate the low-resource problem in the second issue, inspired by the resurgence of contrastive learning (He et al., 2020; Chen et al., 2020), we utilize proper design of sample pair and contrastive process to learn fine-grained instance-level features under low resource. However, it has been proven that the easiest negative samples are unnecessary and insufficient for model training in contrastive learning (Cai et al., 2020). To circumvent the performance degradation brought by the easy samples, we propose a novel contrastive loss with capability to reweight the effect of negative samples by difficulty score to help model concentrate more on hard samples and ignore the easy samples. Extensive experiments on multiple datasets (GROVER, GPT-2, GPT-3.5) demonstrate the effectiveness and robustness of our proposed method. We also take a small step to explore why GPT-3.5 dataset is overly simple to all the detectors by token importance case study.

In summary, our contributions are summarized as follows:

- **Coherence Graph Construction:** We model the text coherence with entity consistency and sentence interaction while statistically proving its distinctiveness in MGTs detection, and further introduce this linguistic feature at input stage.

- **Improved Contrastive Loss:** We propose a novel contrastive loss in which hard negative samples are paid more attention for improving detection accuracy of challenging sample.

- **Outstanding Performance:** We achieve state-of-art performance on four MGT datasets in both low-resource and high-resource setting. Experimental results verify the effectiveness and robustness of our model.

2 Related Work

Machine-generated Text Detection. Machine-generated texts, also named deepfake or neural fake texts, are generated by language models to mimic human writing style, making them perplexing for humans to distinguish (Ippolito et al., 2020). Generative models like GROVER (Zellers et al., 2019), GPT-2 (Radford et al., 2019), GPT-3 (Brown et al., 2020), and emerging GPT-3.5-turbo (also known as ChatGPT) have been evaluated on the MGT detection task and achieve good results (Gehrmann et al., 2019; Mireshghallah et al., 2023). Bakhtin et al. (2019) train an energy-based model by treating the output of TGMs as negative samples to demonstrate the generalization ability. Deep learning models incorporating stylometry and external knowledge are also feasible for improving the performance of MGT detectors (Uchendu et al., 2019; Zhong et al., 2020). Our method differs from the previous work by analyzing and modeling text coherence as a distinguishable feature and emphasizing performance improvement under low-resource scenarios.

Coherence Modeling. For generative models, coherence is the critical requirement and vital target (Hovy, 1988). Previous works mainly discuss two types of coherence, local coherence (Mellish et al., 1998; Althaus et al., 2004) and global coherence (Mann and Thompson, 1987). Local coherence focus on sentence-to-sentence transitions (Lapata, 2003), while global coherence tries to capture comprehensive structure (Karamanis and Manurung, 2002). Our method strives to represent both local and global coherence with inner- and inter-sentence relations between entity nodes.

Contrastive Learning. Contrastive learning in NLP demonstrates superb performance in learning token-level embeddings (Su et al., 2022) and sentence-level embeddings (Gao et al., 2021b) for natural language understanding. With in-depth study of the mechanism of contrastive learning, the hardness of samples is proved to be crucial in the training stage. Cai et al. (2020) define the
Figure 2: Overview of CoCo. Input document is parsed to construct a coherence graph (3.1), the text and graph are utilized by a supervised contrastive learning framework (3.2), in which coherence encoding module is designed to encode and aggregate to generate coherence-enhanced representation (3.2.3). After that, we employ a MoCo based contrastive learning architecture in which key encodings are stored in a dynamic memory bank (3.2.4) with improved contrastive loss to make final prediction (3.2.5).

3 Methodology

The workflow of CoCo mainly contains coherence graph construction, and supervised contrastive learning discriminator, and Fig. 2 illustrates its overall architecture.

3.1 Coherence Graph Construction

In this part, we illustrate how to construct coherence graph to dig out coherence structure of text by modeling sentence interaction.

According to Centering Theory (Grosz and Snyder, 1986), coherence of texts could be modeled by sentence interaction around center entities. To better reflect text structure and avoid semantic overlap, we proposed to construct an undirected graph with entities as nodes. Specifically, we first implement the ELMo-based NER model TagLM (Peters et al., 2017) with the help of NER toolkit AllenNLP2 to extract the entities from document. An relation $<\text{inner}>$ is constructed between same entities in different sentences and nodes within same sentences are connected by relation $<\text{inner}>$ for their natural structure relevance. Formally, the mathematical form of coherence graph’s adjacent matrix is defined as follows:

$$A_{ij} = \begin{cases} 1 & \text{rel (inner)} \quad v_{i,a} \neq v_{j,b}, a = b \\ 1 & \text{rel (inter)} \quad v_{i,a} = v_{j,b}, a \neq b \\ 0 & \text{rel None} \quad \text{others} \end{cases}$$

where $v_{i,a}$ represents i-th entity in sentence a, which is regarded as node in coherence graph.

3.2 Supervised Contrastive Learning

3.2.1 Model Overview

The training process is illustrated in Fig. 2. Each entry in the dataset is document with its coherence graph. The entries in training set are sampled randomly into keys and queries. Two coherence encoder modules (CEM) f_k and f_q, are initialized the same to generate coherence-enhanced representation D_k and D_q for key and query. A dynamic memory bank with the size of all training data is initialized to store all key representation and their annotations for providing enough contrastive pairs in low-resource scenario. In every training step, the newly encoded key graphs update memory bank following First In First Out (FIFO) rule to keep it updated and the training process consistent. A novel loss composed of improved contrastive loss and cross-entropy loss ensures the model’s ability to achieve instance-level intra-class compactness and inter-class separability while maintaining the class-level distinguishability. A linear discriminator takes query representations as input and gener-

2https://demo.allennlp.org/named-entity-recognition
ates prediction results. The pseudocode of training process is shown in Appendix A.10.

3.2.2 Positive/Negative Pair Definition

In supervised setting, where we have access to label information, we define two samples with same label as positive pair and that with different labels as negative pair for incorporating label information into training process.

3.2.3 Encoder Design

In this part, we introduce how to initialize node representation and graph neural network structure which is utilized to integrate coherence information into semantic representation of text by propagating and aggregating information from different granularity with an innovated coherence encoder module.

Node Representation Initialization. We initialize the representation of entity nodes with powerful pre-trained model RoBERTa for its superior ability to encode contextual information into text representation.

Given an entity e with a span of n tokens, we utilize RoBERTa to map input document x to embeddings $h(x)$. The contextual representation of e is calculated as follows:

$$Z_e = \frac{1}{n} \sum_{i=0}^{n} h(x) e_i,$$ \hspace{1cm} (1)

where e_i is the absolute position where the i-th token in e lies in the whole document.

Relation-aware GCN. Based on the vanilla Graph Convolutional Networks (Welling and Kipf, 2016), we propose a novel method to assign different weight W_r for inter and inner relation r with Relation-aware GCN. Relation-aware GCN convolute edges of each kind of relation in the coherence graph separately. The final representation is the sum of GCN outputs from all relations. We use two-layer GCN in the model because more layers will cause an overfitting problem under low resources. We define the relation set as R, and the calculation formula is as follows:

$$H^{(i+1)} = \frac{1}{|R|} \sum_{r \in R} \text{ReLU}((A H^{(i)}) W_r^{(i)}) W_r^{(i+1)},$$ \hspace{1cm} (2)

where $H^{(i)} \in R^{N \times d}$ is node representation in i-th layer. $A = A + I$, A is the adjacency matrix of the coherence graph, \hat{A} is the normalized Laplacian matrix of \hat{A}, W_r is the relation transformation matrix for relation r.

Sentence Representation. Afterward, we aggregate updated node representation from last layer of Relation-aware GCN into sentence-level representation to prepare for concatenation with sequence representation from RoBERTa. The aggregation follows the below rule:

$$Z_s = \frac{1}{M_i} \sum_{i} \sigma(W_s H_{(i,j)} + b_s),$$ \hspace{1cm} (3)

where M_i represents the number of entities in i-th sentence, $H_{(i,j)}$ represents the embedding of j-th entity in i-th sentence, W_s is weight matrix and b_s is bias. All the sentence representations within same document are concatenated as sentence matrix Z_s.

Document Representation with Attention LSTM. We design a self-attention mechanism for discovering the sentence-level coherence between one sentence and other sentences, and apply LSTM with the objective to track the coherence in continuous sentences and take the last hidden state of LSTM for aggregated document representation containing comprehensive coherence information. The calculation is described as follows:

$$Z_c = \text{LSTM}(\text{softmax}((\gamma \frac{\text{norm}(K) \text{norm}(Q)^T}{\sqrt{d_Z}}) V),$$ \hspace{1cm} (4)

where K, Q, V are linear transformations of Z_s with matrix W_k, W_q, W_v, d_Z is the dimension of representation Z_s, and γ is a hypergamma-parameter for scaling.

Finally, we concatenate Z_c and the sequence representation $h([CLS])$ from the RoBERTa’s last layer to generate document coherence-enhanced representation D.

3.2.4 Dynamic Memory Bank

The dynamic memory bank is created to store as much as key encoding D_k to form adequate positive and negative pairs within a batch. The dynamic memory bank is maintained as a queue so that the newly encoded keys could replace the outdated ones, which keeps the consistency between the key encoding and current training step.

3.2.5 Loss Function

Following the definition of positive pairs and negative pairs above, traditional supervised contrastive
loss (Gunel et al., 2021) treats all positive pairs and negative pairs equally.

However, with recognition that not all negatives are created equal (Cai et al., 2020), our goal is to emphasize the informative samples for helping the model to differentiate difficult samples. Thus, we propose an improved contrastive loss which dynamically adjusts the weight of negative pair similarity according to the hardiness of negative samples. To be specific, the hard negative samples should be assigned larger weight for stimulating the model to better pull same class together and push different class away. The improved contrastive loss is defined as:

\[L_{ICL} = \sum_{i=1}^{M} 1_{y_i=y_j} \log \frac{S_{ij}}{\sum_{p \in \mathcal{P}(i)} S_{ip} + \sum_{n \in \mathcal{N}(i)} r f_{in} S_{in}}, \]

\[r f_{ij} = \beta \frac{D_q^i D_q^j}{\text{avg}(D_q^i D_q^j \mid \mathcal{N}(i))}, \]

\[S_{ij} = \exp(D_q^i D_q^j / \tau), \] (5)

where \(\mathcal{P}(i) \) is the positive set in which data has the same label with \(q_i \) and \(\mathcal{N}(i) \) is the negative set in which data has different label from \(q_i \).

Apart from instance-level learning mechanism, a linear classifier combined with cross entropy loss \(L_{CE} \) is employed to provide the model with class-level separation ability. \(L_{CE} \) is calculated by

\[L_{CE} = \frac{1}{N} \sum_{i=1}^{N} -[y_i \log(p_i)+(1-y_i)\log(1-p_i)], \] (6)

where \(p_i \) is the prediction probability distribution of \(i \)-th sample. The final loss \(L_{total} \) is a weighted average of \(L_{ICL} \) and \(L_{CE} \) as:

\[L_{total} = \alpha L_{ICL} + (1 - \alpha) L_{CE}, \] (7)

where the hyperparameter \(\alpha \) adjusts the relative balance between instance compactness and class separability.

3.2.6 Momentum Update

The parameters of query encoder \(f_q \) and the classifier can be updated by gradient back-propagated from \(L_{total} \). We denote the parameters of \(f_q \) as \(\theta_q \), the parameters of \(f_k \) as \(\theta_k \). The key encoder \(f_k \’s \) parameters are updated by momentum update mechanism:

\[\theta_k \leftarrow \beta \theta_k + (1 - \beta) \theta_q, \] (8)

where the hyperparameter \(\beta \) is momentum coefficient.

4 Experiments

4.1 Datasets

We evaluate our model on the following datasets:

GROVER Dataset (Zellers et al., 2019) is a News-style open-source dataset in which HWTs are collected from RealNews, a large corpus of news from Common Crawl, and MGTs are generated by Grover-Mega (1.5B), a transformer-based news generator.

GPT-2 Dataset is a Webtext-style dataset provided by OpenAI\(^3\) with HWTs adopted from WebText and MGTs produced by GPT-2 XLM-1542M.

GPT-3.5 Dataset is a News-style open-source dataset constructed by us based on the text-davinci-003\(^4\) model (175B) of OpenAI, which is one of the most capable GPT-3.5 models so far and can generate longer texts (maximum 4,097 tokens). The GPT-3.5 model refers to various latest newspapers (Dec. 2022 - Present) whose full texts act as the HWTs part, and the model generates by imitation. We design two subsets: **mixed-** and **unmixed-provenances**, whose details are explained in Appendix A.2.

The statistics of datasets is summarized in Appendix A.1. We randomly sample 500 examples

\(^3\)https://github.com/openai/gpt-2-output-dataset

\(^4\)https://platform.openai.com/docs/models/gpt-3-5
as training data for low-resource setting. As for full dataset setting, we utilize all training data. The implementation details are in Appendix A.4.

4.2 Comparison Models

We compare CoCo to state-of-art detection methods to reveal the effectiveness. We mainly divide comparison methods into two categories, **model-based** and **metric-based** methods. The metric-based methods detect based on specific statistical text-valuation metrics and logistic regression while the model-based methods learn features via fine-tuning a model.

The **model-based** baselines are as follows.

GPT-2 (Radford et al., 2019), **RoBERTa** (Liu et al., 2019), **XLNet** (Yang et al., 2019) are powerful transformers-based models fine-tuned on the binary classification task, implementing GPT-2 small(124M), RoBERTa-base(110M) and XLNet-base(110M).

CE+SCL (Gunel et al., 2021), a state-of-the-art supervised contrastive learning method in various downstream task. We train the detector with Cross-Entropy loss (CE) and supervised contrastive loss (SCL) calculated within a mini-batch.

DualCL (Chen et al., 2022), a contrastive learning method with the addition of label representations for data augmentation.

The **metric-based** baselines are as follows. **GLTR** (Gehrmann et al., 2019), a supporting tool for facilitating humans to recognize MGTs with visual hints. We follow the settings of (Guo et al., 2023) and select the Test-2 feature, which counts the top-k predictions.

4.3 Performance Comparison

As shown in Table 1, CoCo surpasses the state-of-the-art methods in MGT detection task by at least 1.23% and 1.64%, 1.75% and 2.83% on the GROVER, GPT-2 limited datasets in terms of Accuracy and F1-Score, respectively. And CoCo achieves comparable performance with the most capable detectors in the complete dataset setting. The result indicates the utility of contrastive learning and the rationality of coherence representation.

Moreover, it should be noticed that compared with metric-based methods, model-based methods usually tend to achieve better results. This can be

<table>
<thead>
<tr>
<th>Dataset</th>
<th>GROVER</th>
<th>GPT-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
<td>Limited Dataset (500 examples)</td>
<td>Full Dataset</td>
</tr>
<tr>
<td>Metric</td>
<td>ACC</td>
<td>F1</td>
</tr>
<tr>
<td>GPT2</td>
<td>0.5747 ± 0.0217</td>
<td>0.4394 ± 0.0346</td>
</tr>
<tr>
<td>XLNet</td>
<td>0.5661 ± 0.0285</td>
<td>0.4707 ± 0.0402</td>
</tr>
<tr>
<td>RoBERTa</td>
<td>0.6621 ± 0.0133</td>
<td>0.5895 ± 0.0221</td>
</tr>
<tr>
<td>DualCL</td>
<td>0.5835 ± 0.0057</td>
<td>0.4626 ± 0.1076</td>
</tr>
<tr>
<td>CE+SCL</td>
<td>0.6870 ± 0.0142</td>
<td>0.5961 ± 0.0197</td>
</tr>
<tr>
<td>GLTR</td>
<td>0.3370</td>
<td>0.4035</td>
</tr>
<tr>
<td>DetectGPT</td>
<td>0.5910</td>
<td>0.4258</td>
</tr>
</tbody>
</table>

| CoCo | 0.6993 ± 0.0119 | 0.6125 ± 0.0159 | 0.8826 ± 0.0018 | 0.8265 ± 0.0036 | 0.8530 ± 0.0019 | 0.8410 ± 0.0018 | 0.9457 ± 0.0004 | 0.9452 ± 0.0004 |

<table>
<thead>
<tr>
<th>Dataset</th>
<th>GPT-3.5 Unmixed</th>
<th>GPT-3.5 Mixed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metric</td>
<td>ACC</td>
<td>F1</td>
</tr>
<tr>
<td>GPT2</td>
<td>0.9023 ± 0.0095</td>
<td>0.8920 ± 0.0073</td>
</tr>
<tr>
<td>XLNet</td>
<td>0.9107 ± 0.0068</td>
<td>0.9037 ± 0.0064</td>
</tr>
<tr>
<td>RoBERTa</td>
<td>0.9670 ± 0.0084</td>
<td>0.9681 ± 0.0077</td>
</tr>
<tr>
<td>CE+SCL</td>
<td>0.9823 ± 0.0053</td>
<td>0.9703 ± 0.0070</td>
</tr>
<tr>
<td>GLTR</td>
<td>0.9255</td>
<td>0.9287</td>
</tr>
<tr>
<td>DetectGPT</td>
<td>0.9220</td>
<td>0.9744</td>
</tr>
<tr>
<td>CoCo</td>
<td>0.9889 ± 0.0044</td>
<td>0.9791 ± 0.0062</td>
</tr>
</tbody>
</table>

Table 1: Results of the model comparison. It should be noticed that DualCL is easily affected by random seed, which may be caused by its weakness in understanding long texts. We do not present the experiment results for DualCL on GPT-3.5 dataset because the documents in GPT-3.5 dataset is so long that DualCL completely fails.
explained because metric-based methods can only concern and regress on a few features, which are over-compressed and under-represented for the detection task. Also, metric-based methods mainly use the pre-trained model for token probability instead of fine-tuning the whole model. And with more training samples involved, the performance of model-based methods improves drastically, while metric-based methods do not benefit much from more training examples. It reveals that logistic regression is not strong enough to take in many texts with diverse semantics. Meanwhile, CoCo outperforms CE+SCL and DualCL regardless of the size of the training set, which suggests the success of improved contrastive loss to solve the performance degradation problem brought by simple negative samples.

We also find GROVER Dataset is the hardest to detect. It is because the GROVER generator is trained in an adversarial heuristic with the objective of deceiving the verifier, which endows the generator with deceptive nature. To our surprise, the GPT-3.5 dataset is overly simple for all detectors. The result is also in accord with conclusions in recent works (Miresghallah et al., 2023; Chen et al., 2023). We conduct extensive experiments on different self-constructed and published GPT-3.5 datasets generated by a series of prompts, validating this thundering conclusion. The experiment details and results are in Appendix A.3. We also implement experiments and discussions to explore further explanations in Section 4.5.2.

4.4 Ablation Study

To illustrate the necessity of components of CoCo, we conduct ablation experiments on the unbalanced 1,000-example GROVER dataset. The ablation models’ structure are as follows:

<table>
<thead>
<tr>
<th>Model</th>
<th>ACC</th>
<th>F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>CoCo (Plain)</td>
<td>0.7697</td>
<td>0.6428</td>
</tr>
<tr>
<td>CoCo (Sentence nodes)</td>
<td>0.7733</td>
<td>0.6379</td>
</tr>
<tr>
<td>CoCo (Coherence)</td>
<td>0.7777</td>
<td>0.6463</td>
</tr>
<tr>
<td>CoCo (Coherence + LSTM)</td>
<td>0.7787</td>
<td>0.6471</td>
</tr>
<tr>
<td>CoCo (Coherence + LSTM + SCL)</td>
<td>0.7827</td>
<td>0.6609</td>
</tr>
<tr>
<td>CoCo</td>
<td>0.7843</td>
<td>0.6684</td>
</tr>
</tbody>
</table>

Table 2: Results of ablation study.

CoCo (Plain) removes graph information and encodes only by RoBERTa parts. The model removes contrastive learning and only uses CE loss.

CoCo (Sentence Nodes) treats sentences (instead of entities) as nodes and establishes edges between sentences that share same entities. Node representation is initialized by RoBERTa embedding and mean-pooling operation. Document representation is obtained by one CEM discarding sentence representation and attention LSTM part in Section 3.2.3. Document representation is calculated by mean-pooling operation on sentence node representations. A linear classification head with cross-entropy loss is used for detection.

CoCo (Coherence) incorporates the coherence graph into the representation of document and deploys sentence representation part in Section 3.2.3. The rest are the same with CoCo (Sentence Nodes).

CoCo (Coherence + LSTM) uses attention LSTM for document-level aggregation, and the rest is the same as CoCo (Coherence).

CoCo (Coherence + LSTM + SCL) utilizes the contrastive learning framework, but the loss function is traditional supervised contrastive loss instead of the improved contrastive loss.

As shown in Table 2, coherence information and the contrastive learning framework greatly contribute to the development of model performance, especially in F1-Score. Replacing entity nodes in coherence graph with sentences impairs the detector, which could be caused by semantic overlap between graph representation and text sequence representation. The attention LSTM also plays an important role in preserving coherence information during sentence aggregation. Lastly, the results also shows the advantage of improved contrastive loss over standard supervised contrastive loss.

4.5 Discussion

4.5.1 Model Robustness to Perturbation

To validate the robustness of CoCo to various perturbations, we train CoCo on the GROVER dataset in the low-resource setting and perturb the test set with four different operations: **Delete** (randomly delete tokens in each entry), **Repeat** (randomly select tokens and repeat them twice in the text), **Insert** (add random tokens from the vocabulary of the pre-trained model into random positions in the text), **Replace** (randomly replace tokens with randomly selected tokens from the vocabulary). The perturbation scale is set to 15%. The experiment result is shown in Table 3.

Despite the structural complexity, CoCo keeps
To further investigate the rationale behind the easy-to-detect nature of GPT-3.5 generated texts, we utilize Transformers-Interpret\(^1\), a tool for evaluating feature attribution in predictions based on Integrated Gradients(Sundararajan et al., 2017), for discovering the important tokens in decision-making stage. We fine-tune RoBERTa-base model with a classification head on GPT-3.5 mixed dataset and visualize how tokens in GPT-3.5 mixed test data affect the model predictions. As shown in Fig. 4, we take segments from two text pairs consisting of HWT and its corresponding MGT in GPT-3.5 dataset. It could be noticed that consecutive spans in text generated by GPT-3.5 tend to contribute more to the model decision. However, in HWTs, model pays more attention to individual tokens. Following this observation, we infer that with the improvement of model scale, LLMs fit extremely well to the corpus so that it generates more general expressions compared with HWTs, which follows certain patterns (always demonstrated by a span of tokens) that could be expected by fine-tuned models. Thus, barely all the methods show nearly perfect performance on GPT-3.5 dataset.

As for GROVER dataset, more tokens contribute negatively to the model prediction, even if the prediction is correct. This reflects the deceptive nature of GROVER and explains the reason why it is the hardest dataset in our experiment to some extent.

We discuss more topics in Appendix, e.g., the effect of hyper-parameters (A.5), case study (A.6), static geometric analysis on coherence graph (A.7), and exploration on imbalanced data (A.8).

5 Conclusion

In this paper, we propose CoCo, a coherence-enhanced contrastive learning model for MGT detection. We construct a novel coherence graph from document and implement a MoCo-based contrastive learning framework to improve model performance in low-resource setting. An innovative encoder composed of relation-aware GCN and attention LSTM is designed to learn the coherence representation from coherence graph which is further incorporated with sequence representation of document. To alleviate the effect of unnecessary easy samples, we propose an improved contrastive learning loss to force the model to pay more attention to hard negative samples. CoCo outperforms all detection tasks generated by GROVER, GPT-2, and GPT-3.5, respectively, in both low-resource and high-resource settings.

\(^1\)https://github.com/cdpierse/transformers-interpret
Limitations

In this work, we step forward to better distinguishing MGTs under the low-resource setting. However, several limitations still exist for the broader applications of this detector. Firstly, MGTs are easier to generate and collect than HWTs, which may cause an imbalanced label distribution in the dataset. And CoCo literally corrupts in extremely imbalanced data distribution condition, as shown in A.8. Future work could build upon the contrastive learning method of CoCo with innovation on sampling strategy for harsh low-resource and imbalanced data settings. Secondly, our method artificially generates a coherence graph for every entry, which is not efficient for larger datasets. What’s more, short text, codes, and mathematical proofs, which are hard to generate coherence graphs, are also limitedly detected by CoCo. More distinctive and easy-to-calculate features are worth exploring for generating distinguishable representations for texts with efficiency while better understanding the essence of TGMs. Thirdly, with instruct-based generation and human-in-loop fine-tuning models prevailing, the strategy and defect of TGMs change slightly but constantly. The entity relation with the same semantic granularity and concretization in this paper would not be enough to detect the high-quality content by TGMs in the future. More generative and adaptive detection models should be considered.

Ethical Considerations

We provide insight into the potential weakness of TGMs and publish GPT-3.5 news dataset. We understand that the discovery of our work can be viciously used to confront detectors. And we understand that malicious users can copy the contents of our GPT-3.5 news dataset to disguise real news and publish them. However, with the purpose of calling for attention to detecting and controlling possible misuse of TGMs, we believe our work will inspire the advance of the stronger detector of MGTs and prevent all potential negative uses of language models.

Our work complies with sharing & publication policy of OpenAI and all data we collect is in public domain and licensed for research purposes.

Acknowledgements

We thank all the anonymous reviewers and the area chair for their helpful feedback, which aided us in greatly improving the paper.

References

https://openai.com/api/policies/sharing-publication/

Adaku Uchendu, Jeffrey Cao, Qiaozhi Wang, Bo Luo, and Dongwon Lee. 2019. Characterizing man-made vs. machine-made chatbot dialogs. In TTO.

A.2 Details of GPT-3.5 Dataset

GPT-3.5 Dataset for CoCo is our latest dataset for the MGT detection task. There are two subsets in the self-made dataset for easy analysis of the impact of provenance and writing styles: unmixed- and mixed provinces. We use the text-davinci-003 model of OpenAI to generate MGT examples. The maximum length of HWTs is 1024 tokens, and the target generation length is set as 1024 tokens. Here is an example of the MGT data.

And the following data shows the corresponding MGT in the dataset.

A.2.1 Human Written Texts

Unmixed Subset. The HWTs of the unmixed subset are all from The New York Times\(^7\) to exclude the impact of writing style. The time span of our data is Nov 1, 2022 - Dec 25, 2022, making sure that no pre-trained model has learned them. We develop the crawler based on news-crawler\(^8\).

Mixed Subset. The HWTs of the mixed subset come from various sources, listed as Table 5. The time span of the data is Jan 1, 2023 - Jul 7, 2023. We develop the crawler based on Newspaper3k\(^9\).

The dataset is specifically designed for MGTs detection and improving generation models. The contents of dataset are obtained from official news websites and the names of individual people are not mentioned maliciously. And we strongly reject using our dataset to create offensive content or peek at private information.

\(^7\)https://www.nytimes.com/
\(^8\)https://github.com/LuChang-CS/news-crawler
\(^9\)https://github.com/codelucas/newspaper
A.2.2 Machine Generated Texts

As the GPT-3.5 and ChatGPT model need prompts to generate, we write hints for the generation models to generate texts that meet our news-style long text generation. The hints format is as follows, and the content is related to HWTs.

Write a news more than 1000 words.

The news is written by (Authors) from (Source) in (date). Title is (title).

A.3 GPT-3.5 Dataset Generated by Different Prompts and Experiment Results

To further validate the conclusion that GPT-3.5 generated texts are easier to detect, we utilize CNN news as reference and design different prompts for GPT-3.5 generation. The principle is to provide as more information as possible to GPT-3.5 for alleviating the possible gap in semantics and in length.

Keywords as Prompt (KP).

We extract the keywords and entities with GPT-3.5-turbo and provide examples in original news to form the prompt for generation. The prompt format is as follows.

Example prompt for generation.

```
"role": "system", "content": "Extract all the keywords, entities, and examples in the following passage:"
"role": "user", "content": {text}
```

Generate a news passage.

The news is written by (Authors) from (Source) in (date).
Title: Lionel Messi isn’t expected to be back with PSG until early January after World Cup success
Keywords: exploring, mountains, space, Poorna Malavath, Kavya Manyapu, NASA, Mount Everest, Project Shakthi, girls’ education, Ladakh, India, virgin peak, climbing, altitude sickness, safety, motivation, empowerment, education, gender gap, Mount Aconcagua, sponsorship.
Examples: designing space suits, youngest ever woman to summit Mount Everest, climbed a 6,012m virgin peak, raise money to fund girls' education, experiences of climbing a virgin peak, experiences of altitude sickness, purpose of Project Shakthi, India’s Right to Education Act, sponsorship for underprivileged school children, scaling Mount Aconcagua, expanding sponsorship globally.
The target length for generation is 731 tokens.
Add as much details and examples as you can.

Summary as Prompt (SP).

We employ GPT-3.5-turbo to summarize the original texts. The compression ratio is set to $[0.3, 1.0]$, which means the summary is required to be longer than 0.3 of the length of original text and shorter than whole original text. The generated summary is used as prompt and the format is as follows:

```
Generate a news based on the following abstract:
Paris Saint-Germain's coach Christophe Galtier has stated that Lionel Messi is not expected to join the team until early January as he is spending time in Argentina following the World Cup. Kylian Mbappé, Neymar Jr. and Achraf Hakimi, who played for their respective national teams at Qatar 2022, could return to the team as long as they are physically and mentally fit...
The news is written by Matias Grez from CNN in 2022-12-28 00:00:00.
Title: Lionel Messi isn’t expected to be back with PSG until early January after World Cup success
```

Outline as Prompt (OP).

We also outline the skeleton of original texts by GPT-3.5-turbo and feed the outline into GPT-3.5 text-davinci-003. The prompt format is as follows:

```
Prompt for extraction.
```

Example prompt for generation.
We first remove the HWTs that do not have desired length (i.e., 200-1024 tokens). And we take half of the selected HWTs as references to formulate different prompts mentioned above and feed it into GPT-3.5 to get MGTs. The MGTs are sampled by Gaussian Distribution of their lengths. To avoid the possible label leakage brought by text length, we directly filter the no-reference HWTs according to the Gaussian Distribution of MGT lengths.

Besides the self-constructed datasets, we also utilize the published GPT-3.5 dataset TuringBench benchmark (abbreviated as GPT-3.5 (TB)) (Uchendu et al., 2020) to validate the deceptiveness of GPT-3.5. The statistics of datasets we use is in Table 6.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Train</th>
<th>Valid</th>
<th>Test</th>
<th># of tokens</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPT-3.5(KP) HWT</td>
<td>446</td>
<td>148</td>
<td>148</td>
<td>427.96 ± 45.49</td>
</tr>
<tr>
<td></td>
<td>MGT</td>
<td>446</td>
<td>148</td>
<td>403.88 ± 75.63</td>
</tr>
<tr>
<td>GPT-3.5(SP) HWT</td>
<td>446</td>
<td>148</td>
<td>148</td>
<td>427.96 ± 45.49</td>
</tr>
<tr>
<td></td>
<td>MGT</td>
<td>446</td>
<td>148</td>
<td>415.72 ± 60.54</td>
</tr>
<tr>
<td>GPT-3.5(OP) HWT</td>
<td>446</td>
<td>148</td>
<td>148</td>
<td>427.96 ± 45.49</td>
</tr>
<tr>
<td></td>
<td>MGT</td>
<td>446</td>
<td>148</td>
<td>429.34 ± 78.62</td>
</tr>
<tr>
<td>GPT-3.5(TB) HWT</td>
<td>5,964</td>
<td>975</td>
<td>1915</td>
<td>236.17 ± 72.96</td>
</tr>
<tr>
<td></td>
<td>MGT</td>
<td>5,507</td>
<td>894</td>
<td>1763</td>
</tr>
</tbody>
</table>

Table 6: Statistics of GPT-3.5 datasets.

We conduct experiments with 3 random seeds and the average results are shown in Table 7. Counterintuitively, even if we elaborate the prompts and eliminate the length difference between MGTs and HWTs, the detection results are still superior, even on outdated baselines like GPT-2. The conclusion might be counterintuitive, but texts generated by the most advanced and popular GPT-3.5 model are the easiest to detect.
Table 7: Experiment of different detectors on different GPT-3.5 Dataset. * : The great performance difference between validation set and test set on GPT-3.5 (TB) are because the test set randomly sample 50% of the words of each article in the dataset (Uchendu et al., 2021). We do not test CoCo on GPT-3.5 (TB) for the reason that such operation greatly influences the coherence in texts. We provide an example of this in Table 8.

Table 8: A comparison example between texts in test set of GPT-3.5 (TB) and GPT-3.5 (OP). The GPT-3.5 (TB) text shows great disorder while GPT-3.5 (OP) text is neat.

Figure 5: Effect of parameters α and τ on model performance.

A.5.2 Graph Parameters

We further investigate the effect of max node number and max sentence number on model performance. The result is shown in Fig. 6. We select max node number from $\{60, 90, 120, 150\}$ and max sentence number from $\{30, 45, 60, 75\}$. The detector performs best when max node number is 90 and max sentence number is 45. The experiment results prove that the large node and sentence number are not necessary for the improvement of detection accuracy. We infer that even though setting large node and sentence number includes more entity information, excessive nodes bring noise to the model and impair the distinguishability of coherence feature.

A.6 Case Study

In this subsection, we conduct a case study with HWT and MGT produced by sensational ChatGPT with the same metadata. As illustrated in Fig. 7, we parse two news as coherence graphs. And we observe that although ChatGPT expresses fluently, it is not coherent from the perspective of coherence graph. Hence, CoCo utilizes the distinctive coherence feature and makes correct predictions. However, RoBERTa fails to discriminate the MGT without noticing the coherence difference. This reflects even the most popular and advanced language model could suffer from weak coherence and be detected by CoCo.
A.7 Static Geometric Analysis on Coherence Graph

We have witnessed performance enhancement by applying the graph-based coherence model to the detection model, but how does the coherence graph help detection? In this subsection, we apply static geometric features analysis to coherence graph we construct to evaluate the distinguishable difference between HWTs and MGTs with explanation. In the following discussion, we take the dataset of GROVER into the analysis. Some basic metrics of data and the corresponding graph are shown in Table 9.

<table>
<thead>
<tr>
<th>Metric</th>
<th>HWT</th>
<th>MGT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Num.</td>
<td>4994</td>
<td>4991</td>
</tr>
<tr>
<td>Avg. Num. of Token</td>
<td>463.2</td>
<td>456.0</td>
</tr>
<tr>
<td>Avg. Num. of Vertex</td>
<td>43.60</td>
<td>32.37</td>
</tr>
<tr>
<td>Avg. Num. of Edge</td>
<td>107.4</td>
<td>65.44</td>
</tr>
</tbody>
</table>

Table 9: Basic metrics of texts and corresponding graphs.

Figure 7: An illustration for case study of our method. Entities in documents are colored green. The blue solid box indicates the sentence. The orange dashed lines are inner edges and green dashed lines are inter edges. Numbers in red indicate the probability of predicted label.

Figure 8: Distribution of average degree of graphs.

As shown in Table 10, The degree of the graph representation of HWTs is 2.980, which is 15.0% larger than MGTs (2.591), which shows disparities of MGTs to form coherent interaction between sentences. Fig. 8 measures the distribution of each graph’s average nodes’ degree, showing that the distribution of HWTs has a longer tail than MGTs.

Furthermore, we analyze the distinguishability of degree features when impacted by other factors. One most considerable influences is the style and genre of different provenance. We chose around 60 articles from The Sun10 and Boston11. Then we use GROVER to mimic their style to generate similar topic news. Fig. 9 shows the degree distribution of HWTs and MGT’s of both provenances.

We use the Jensen–Shannon divergence to evaluate the similarity of the degree distribution. The JS-divergence of MGTs mimicking The Sun and Boston is 0.029, while the JS-divergence of MGTs and HWTs in Boston is 0.050. In The Sun is 0.061. The apparent gap shows that degree distribution can robustly detect MGTs and HWTs when impacted by provenance differences.

Table 10: Average of degree (whole dataset).

<table>
<thead>
<tr>
<th>Metric</th>
<th>Avg. Degree</th>
</tr>
</thead>
<tbody>
<tr>
<td>HWT</td>
<td>2.980</td>
</tr>
<tr>
<td>MGT</td>
<td>2.591</td>
</tr>
</tbody>
</table>

Figure 9: The JS-divergence between MGT and HWTs.

10https://www.thesun.co.uk/
11https://www.boston.com/
A.7.2 Aggregation

Aggregation is a shared metric for complex networks and linguistics, depicting how closely the whole is organized around its core. We propose two metrics to evaluate the aggregation of graph-based text representation in our coherence model, the size of the largest connected subgraph and the clustering coefficient.

In our representation, not all sentences have entities related to others. Hence the graph is an unconnected one. The average number of nodes in subgraphs of MGTs is 4.49 and of HWTs is 4.84. We propose that the size of the largest connected subgraph shows the contents which are closely organized around the topic. Moreover, the size of graphs may be an unfair factor, so we use the portion of nodes in the largest connected subgraph to reflect its size. The average portion in HWTs is 0.6725 and in MGTs is 0.6458. Fig. 10 shows the distribution of the portion of graphs, and HWTs distribute more high-portion ones than MGTs.

The clustering coefficient represents how nodes tend to cluster. For the entities of texts, clustering evaluates how the author narrates around the central theme. The larger the clustering coefficient is, the tighter the semantic structure is. The average cluster coefficient of the graphs of HWTs is 0.2213 and of MGTs is 0.1983, HWTs is 11.6% better than MGTs. Fig. 11 shows the distribution.

A.7.3 Core & Degeneracy

The degeneracy of a graph is a measure of how sparse it is, and the k-core is the subgraph corresponding to its significance in the graph. We propose that, in our graph representation, the degeneracy process of graphs equals summarizing texts semantically. The maximum of core-number shows the complexity of hierarchical structure in texts. Furthermore, the distribution of the core-number reflects the overall sparse and is a graph-perspective N-gram module. Based on experiments, the average core-number of HWTs is 5.772 while MGTs with 4.458. HWTs are 29.5% ahead. Fig. 12 is the distribution of the core-number.
A.7.4 Entropy

Entropy is a scientific concept to measure a state of disorder, randomness, or uncertainty. The well-known Shannon entropy is the core of the information theory, measuring the self-information content. For the graph data, network structure entropy defined as the following can examine the information amount of the graph structure.

\[
\text{Entropy} = - \sum_{i=1}^{N} I_i \ln I_i = - \sum_{i=1}^{N} \frac{k_i}{\sum_{j=1}^{N} k_j} \ln \left(\frac{k_i}{\sum_{j=1}^{N} k_j} \right),
\]

where \(I_i \) is the information content represented by the degree distribution, \(N \) is the number of nodes, and \(k_i \) is the degree of the \(i \)-th node.

Global coherence, from our perspective, equals refining more information inside the semantic structure of the whole text, which matches to structure entropy of our graph representation. From our experiments, the structure entropy of HWTs (2.263) is \textbf{6.80}\% larger than MGTs (2.119), which means HWTs obtain more structured information because their semantic information is globally organized.

We show the network structure entropy distribution in Fig. 13.

A.8 Exploration on Imbalanced Data

Imbalanced distribution in data is another crucial limitation in the task of MGTs detection, which is similar to the low resource limitation. It is imaginable that, with the development of generation technology, MGTs will overwhelmingly dominate low-quality articles since they are easier and faster to generate than human writing. The detection model will face training resources with MGTs as the main part and HWTs as the small part. We test the current models in the imbalanced limitation and find the dramatic decline in accuracy when the ratio of HWTs is less than 30\%, as shown in the Fig. 14. The test is based on the 10\% GROVER dataset.

A.9 Related Work: Graph-based Text Representation

Graph-of Words (GoW) Model (Turney, 2002; Mihailea and Tarau, 2004) is a type graph representation method in which each document is represented by a graph, whose nodes correspond to terms and edges capture co-occurrence relationships between terms. Using GoW, keywords can be extracted by retaining the document graph (Turney, 2002). Thus, graph representation is sensible to apply in tasks like information retrieval (Blanco and Lioma, 2011), categorization (Malliaros and Skianis, 2015) and sentiment classification tasks (Huang and Carley, 2019; Hou et al., 2021).

Most models enhance classification or detection performance by combining graph representation...
with neural networks. Text-GCN (Yao et al., 2019) first builds a single large graph for the whole corpus, followed by Tensor-GCN (Liu et al., 2020) with tensor representation. Also, the relation between words varies, and should be treated as different edges. CoCo matches keywords PLM embedding to nodes and sentence representation, considers dealing inner- and inter-sentence relation differently in GCN, and merges the structure graph and flat sequence representation to predict accurately.

A.10 Pseudocode of CoCo

Algorithm 1 Algorithm of CoCo

Input: Input X, consisting of documents D and corresponding coherence graph G, hyper-parameters such as the size of dynamic memory bank M and batch size S, labels Y

Output: A learned model CoCo, consisting of key encoder f_k with parameters θ_k, query encoder f_q with parameters θ_q, classifier f_c with parameters θ_c

1: Initialize $\theta_k = \theta_q, \theta_c$
2: Initialize dynamic memory bank with $f_k(x_1, x_2...x_M)$, where x_i is randomly sampled from X.
3: Freeze θ_k
4: epoch ← 0
5: while epoch ≤ epoch\text{max} do
6: $n ← 0$
7: while $n ≤ n_\text{max}$ do
8: Randomly select batch b_k, b_q
9: $D_q = f_q(b_q), D_k = f_k(b_k)$
10: $\hat{p} = f_c(D_q)$
11: Calculate L_ICL with equation 5, calculate L_CE with equation 6, calculate L_total with equation 7
12: Backward on L_total and update θ_q, θ_c based on AdamW gradient descent with an adjustable learning rate
13: Momentum update θ_k with equation 8
14: Update dynamic memory bank queue with enqueue(queue, D_k), dequeue(queue)
15: $k ← k + 1$
16: end while
17: if Early stopping then
18: break
19: else
20: epoch ← epoch + 1
21: end if
22: end while
23: return A trained model CoCo