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Abstract

Human speakers encode information into raw
speech which is then decoded by the listeners.
This complex relationship between encoding
(production) and decoding (perception) is of-
ten modeled separately. Here, we test how de-
coding of lexical and sublexical semantic in-
formation can emerge automatically from raw
speech in unsupervised generative deep convo-
lutional networks that combine both the pro-
duction and perception principle. We intro-
duce, to our knowledge, the most challenging
objective in unsupervised lexical learning: an
unsupervised network that must learn to as-
sign unique representations for lexical items
with no direct access to training data. We train
several models (ciwGAN and fiwGAN by Be-
gus$ 2021) and test how the networks classify
raw acoustic lexical items in the unobserved
test data. Strong evidence in favor of lexical
learning emerges. The architecture that com-
bines the production and perception principles
is thus able to learn to decode unique infor-
mation from raw acoustic data in an unsuper-
vised manner without ever accessing real train-
ing data. We propose a technique to explore
lexical and sublexical learned representations
in the classifier network. The results bear im-
plications for both unsupervised speech syn-
thesis and recognition as well as for unsuper-
vised semantic modeling as language models
increasingly bypass text and operate from raw
acoustics.

1 Introduction

Speech technology has traditionally been divided
into two parts: automated speech recognition
(ASR) and speech synthesis. Hearing humans, how-
ever, perform both tasks — speech production and
speech perception with a high degree of mutual in-
fluence (the so-called production-perception loop;
Wedel 2004; Vihman 2015). Human speakers en-
code information into raw acoustic speech stream
and decode it using both articulation and audition.

This paper proposes that the two principles
should be modeled simultaneously and argues that
a GAN-based model called ciwGAN/fiwGAN (Be-
gus, 2021) learns linguistically meaningful repre-
sentations from both production and perception. In
fact, lexical learning in the architecture emerges
precisely from the requirement that the network for
production and the network for perception interact
and generate data that is mutually informative. We
show that with only the requirement to produce
informative data, the models not only produce de-
sired outputs (as argued in Begus$ 2021), but also
learn to classify lexical items in a fully unsuper-
vised way from raw unlabeled speech.

1.1 Prior work

Computational models of lexical learning from
speech data have a long history (Résinen, 2012).
Earlier work operated with pre-assumed features
that needed to be extracted from acoustic speech
stream. Recent models operate directly from acous-
tic speech stream and involve a variety of model-
ing approaches, from Bayesian to neural modeling
(Levin et al., 2013; Lee et al., 2015; Chung et al.,
2016; Chrupata et al., 2017; Shafaei-Bajestan and
Baayen, 2018; Kamper, 2019; Chorowski et al.,
2019; Baayen et al., 2019). A recent push towards
unsupervised learning from raw audio means that
models of lexical learning are cognitively more
plausible (Levin et al., 2013; Kamper et al., 2014;
Chung et al., 2016; Hu et al., 2020; Baevski et al.,
2020; Niekerk et al., 2020; Begus, 2021) as hear-
ing infants learn words primarily from unlabeled
acoustic speech stream.

Most of the existing models of lexical learning,
however, focus primarily on either ASR/speech-
to-text (perception) or text-to-speech/speech syn-
thesis (production; see Wali et al. 2022 for an
overview). Variational Autoencoders (VAEs) in-
volve both an encoder and decoder, which allows
unsupervised acoustic word embedding as well



as generation of speech, but these proposals only
use VAEs for either unsupervised ASR (Chung
et al., 2016; Chorowski et al., 2019; Baevski et al.,
2020; Niekerk et al., 2020) or for speech synthe-
sis/transformation (e.g. Hsu et al. 2017). Earlier
neural models replicate brain mechanisms behind
perception and production (Tourville and Guenther,
2011; Guenther and Vladusich, 2012), but they do
not focus on lexical learning or classification and
do not include recent progress in performance of
deep learning architectures. GAN-based synthesiz-
ers are mostly supervised and get text or acoustic
features in their input (Kumar et al., 2019; Kong
et al., 2020; Bifikowski et al., 2020; Cong et al.,
2021). Donahue et al. (2019) propose a WaveGAN
architecture, which can generate any audio in an
unsupervised manner, but does not involve a lexical
classifier — only the Generator and the Discrimina-
tor, which means the model only captures synthesis
and not classification (the same is true for Parallel
WaveGAN; Yamamoto et al. 2020). Begus (2021)
proposes the first textless fully unsupervised GAN-
based model for lexical representation learning, but
evaluates only the synthesis (production) aspect
of their model by only evaluating outputs of the
Generator network.

1.2 New challenges

Here, we model lexical learning with a classifier
network (the Q-network) that mimics perception
and lexical learning and is, crucially, trained from
another network’s production data (the Generator
network). Using this architecture, we can both
generate new words in a controlled causal manner
by manipulating the Generator’s latent space as
well as classify novel words from unobserved test
data withheld from training in a fully unsupervised
manner.

This paper also introduces some crucial new
challenges to the unsupervised acoustic word em-
bedding and word recognition paradigm (Dunbar
et al., 2017, 2019, 2020). First, the architecture
requires extremely low vector representation of
lexical items. In the iwGAN architecture, the net-
work needs to represent 2" of classes with only n
variables. To our knowledge, no other proposal fea-
tures such dense representation of acoustic lexical
items.

Second, the models introduce a challenge to
learn meaningful representations of words without
ever accessing training data. The lexical classi-

fier network is twice removed from training data.
The Q-network learns to classify words only from
the Generator’s outputs and never accesses training
data. But the the Generator never accesses the train-
ing data either — it learns to produce words only
by maximizing the Discriminator’s error rate. This
means that the classifier needs to learn to represent
unique lexical items in a highly challenging setting,
where training data is two levels removed — only
the Discriminator actually accesses training data.

Finally, lexical learning in the proposed architec-
ture is fully unsupervised. VAEs are a prominent
architecture in the unsupervised lexical learning
paradigm. The encoder-decoder architecture learns
representations of lexical items in an unsupervised
manner, but the generation principle is not unsuper-
vised: the decoder (equivalent to the Generator) is
trained on generating data such that the distance
between input data and the generated output is min-
imized. In other words, the decoder has full access
to the input data and needs to replicate it. In the
GAN framework, on the other hand, the Generator
needs to learn to produce lexical items for each
unique code; the classifier needs to learn to assign
unique code to each lexical item by only accessing
the Generator’s outputs. Neither the Generator nor
the Q-network have access to training data and they
do not replicate input data, which means they are
fully unsupervised both in the generation and in the
classification aspect.

Why are these challenges important? First, rep-
resentation learning with highly reduced vectors
is more interpretable and allows us to analyze the
causal effect between individual latent variables
and linguistically meaningful units in the output of
the synthesis/production part of the model (Section
4.3). We also can examine the causal effect be-
tween linguistically meaningful units in the classi-
fier’s input and the classifier’s output in the percep-
tion/recognition part of the model (Section 4.2.2).

Reduced vectors also enable analysis of the in-
teraction between individual latent variables. For
example, each element (bit) in a binary code (e.g.,
[1,0], [0, 1], [1, 1]) can be analyzed as a feature ¢,,
(e.g. [¢1, $2]). Such encoding allows both holistic
representation learning and featural representation
learning. We can test whether each unique code
corresponds to unique lexical semantics and how
individual features in binary codes ([¢1, ¢2]) in-
teract/represent sublexical information (e.g. pres-
ence of a phoneme; Section 4). Reduced vectors



also allow us to model lexical semantics similarly
with established methods of computational seman-
tic modelling, where meaning is often represented
with binary codes (such as in Steinert-Threlkeld
and Szymanik 2020).

Second, humans acquire speech production and
perception with a high degree of mutual influence
(Vihman, 2015). The production-perception loop
can facilitate speech acquisition (e.g. in L2 learn-
ing; Baese-Berk 2019). Production and perception
also make language dynamic and cause change
over time (Ohala, 1993). Modeling production
(synthesis) and perception (recognition) simultane-
ously will help us build more dynamic and adaptive
systems of human speech communication that are
closer to reality than current models which treat
the two components separately. This can be bene-
ficial both to speech technologies and to cognitive
models of speech acquisition.

Third, the paper tests learning of linguistically
meaningful representations in one of the most chal-
lenging training settings. Results from such ex-
periments test the limits of deep learning architec-
tures for speech processing. This paper argues that
learning of linguistically meaningful representa-
tions self-emerges even in these highly challenging
learning conditions.

Fourth, unsupervised ASR (Baevski et al., 2021)
and “textless NLP” (Lakhotia et al., 2021) have the
potential to enable speech technology in a number
of languages with no or little resources. Many of
these languages feature substantially richer phono-
logical systems than English. Most deep generative
models for unsupervised learning focus exclusively
on either lexical (see above) or phonetic learning
(Eloff et al., 2019; Shain and Elsner, 2019) and
do not model phonological learning. The fiwGAN
architecture with its featural latent space allows
simultaneous holistic lexical representation learn-
ing and sublexical learning of phonological con-
trasts. Exploring how the two levels interact will
be increasingly important as speech technology be-
comes available to phonologically rich languages.

Finally, speech technology is shifting towards
unsupervised learning (Baevski et al., 2021). Our
understanding of how biases in data are encoded
in unsupervised models is even more poorly un-
derstood than in supervised models. The paper
proposes a way to test how linguistically meaning-
ful units self-emerge in fully unsupervised models
for word learning, how contrasts are encoded in

the latent space, and how they interact with other
variables in a classifier network for unsupervised
ASR. Speech carries a lot of potentially harmful
social information (Holliday, 2021); a better un-
derstanding of how linguistically meaningful units
self-emerge and get encoded and how they inter-
act with other features in the data is the first step
towards mitigating the risks of unsupervised deep
generative ASR models.

2 Models

We use Categorical InfoWaveGAN (ciwGAN) and
Featural InfoWaveGAN (fiwGAN) architectures
(Begus 2021; based on WaveGAN in Donahue et al.
2019 and InfoGAN in Chen et al. 2016). In short,
the ciwGAN/fiwGAN models each contain three
networks: a Generator G that upsamples from ran-
dom noise z and a latent code c to audio data us-
ing 1D transpose convolutions, a Discriminator D
that estimates the Wasserstein distance between
the generated output G(z, ¢) using traditional 1D
convolutions, and a Q-network () that aims to re-
cover ¢ given Generator output G(z, ¢). As in the
traditional GAN framework, the Generator and Dis-
criminator operate on the same loss in a zero-sum
game, forcing the Generator to create outputs sim-
ilar to the training data. However, the Generator
(along with the Q-network) is additionally trained
against the accuracy of the Q-network, forcing the
Generator to maximize the mutual information be-
tween latent code ¢ and generated output G(z, ¢)
and the Q-network to recover this relationship. Ci-
wGAN models ¢ as a one-hot vector of several
classes, while iwGAN models c using a binary
encoding.

In other words, the Generator learns to produce
outputs that resemble speech from latent space
(that includes both code c¢ variables and random
z variables) without direct access the training data.
The Q-network takes generated audio speech data
(G(z,¢)) and needs to figure out what code ¢ the
Generator used for each particular output. The Gen-
erator needs to encode unique code vector ¢ such
that the Q-network will be successful in retriev-
ing unique information (unique code vector c) only
from the Generator’s audio outputs. Lexical learn-
ing thus needs to emerge in a fully unsupervised
manner, only from the requirement of the Genera-
tor to produce informative data. The training data
contains unlabeled raw acoustic data. The Genera-
tor could in principle encode any information into
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Figure 1: Architecture of the fiwGAN network (Begus, 2021) as used during the training and test tasks.

the code variables, but given the structure of the
data, the most informative way to encode informa-
tion is to associate each lexical item with a unique
code.

Previous work on ciwGAN and fiwGAN (Begus,
2021) has focused on the ability of the Generator
to learn meaningful representations of c that en-
codes phonological processes and lexical learning,
with no exploration of the Q-network. In this pa-
per, we focus on the Q-network’s propensity for
lexical learning. Towards this end, we maintain the
architecture of a separate Q-network (in contrast
to the original InfoGAN proposal, where () is esti-
mated by appending additional hidden layers after
the convolutional layers of the Discriminator). This
allows us to explore a fully unsupervised lexical
classifier network that takes lexical items in raw
audio form and classifies them with unique codes
(Figure 1).

3 Experiments

To simultaneously test the performance of the pro-
duction (synthesis) and perception (classification)
in the Generator and the Q-network, we train three
networks: one using the one-hot (ciwGAN) archi-
tecture on 8 lexical items from TIMIT, one with
binary code (fiwGAN) architecture on 8 lexical
items from TIMIT. To test how the proposed archi-
tecture scales up to larger corpora, we also train a
fiwGAN network on 508 lexical items from Lib-

riSpeech (Panayotov et al., 2015).!

3.1 Data

The lexical items used in 8-words models are: ask,
dark, greasy, oily, rag, year, wash, and water. A
total of 4,052 tokens are used in training (approxi-
mately 500 per each word). The words were sliced
from TIMIT and padded with silence into 1.024s
.wav files with 16kHz sampling rate which the Dis-
criminator takes as its input.

In the LibriSpeech experiment, 508 words were
chosen. We discarded the 78 most common lexi-
cal items in the Librispeech train-clean-360 dataset
(Panayotov et al., 2015), because of their dispro-
portionate high frequency (5,290 to 224,173 tokens
per word). We then arbitrarily choose the 508 next
most common words for training, resulting in a
total of 757,120 tokens. The individual counts for
each word in the training set ranges from 571 to
5,113 tokens.

3.2 Perception/classification

To test if the Q-network is successful in learning to
classify lexical items without ever accessing train-
ing data, we take the trained Q-network from the
architecture (in Figure 1) and feed it novel, un-
observed data. In other words, we test if the Q-
network can correctly classify novel lexical items
by assigning each lexical item a unique code.

!Trained checkpoints and data will be released.



Altogether 1,067 test data in raw waveforms
from unobserved TIMIT were fed to the Q-network
(both in the ciwGAN and fiwGAN architectures).
The raw output of this experiment are pairs of
words with their TIMIT transcription and the
unique code that the Q-network outputs in its fi-
nal layer. We test the performance of the models
using inferential statistics rather than comparison
to existing models due to the lack of models with
similarly challenging learning objectives.

To perform hypothesis testing on whether lexi-
cal learning emerges in the Q-network, we fit the
word/code pairs to a multinomial logistic regres-
sion model using the nnet package (Venables and
Ripley, 2002). The dependent variable are the in-
put words (8 classes), the independent variable
is the final code c that the Q-network outputs for
each input. To test lexical learning, we compare
Akaike Information Criterion (AIC; Akaike 1974)
of a model with code c as predictor and an empty
model. In the ciwGAN setting (one-hot encoding),
AIC of a model with c as a predictor is substantially
lower (2129.056, df = 56) than the empty model
(4448.191, df = 7). Figure 2 gives predicted val-
ues for each code/lexical item. The figure suggests
that most lexical items have a clear and substantial
rise in estimates for a single unique code. This
suggest that the Q-network learns to classify novel
unobserved TIMIT words into classes that corre-
spond to lexical items.

Lexical learning emerges in the binary encod-
ing (iwGAN) as well, but the code vector is even
more reduced in this architecture (3 variables total),
which makes error rates higher compared to the
ciwGAN architecture (Figure 2). The multinomial
regression model with unique binary codes as pre-
dictors fits the data better than the empty model
(AIC = 3248.071,df = 56 for the model with
the predictor and AIC = 4448.191, df = 7 for the
empty model).

Estimates of the fiwGAN multinomial regres-
sion models in Figure 2 suggest most unique codes
feature a single clear and substantial raise in regres-
sion estimates for each unique lexical item. Words
like rag or wash do not seem to have a clear learned
representation in the latent code c.

The binary nature of the latent code in the fiw-
GAN architecture allows testing of whether individ-
ual features (¢1, ¢2, ¢3) carry lexical information.
All individual features are significant as separate
predictors (according to AIC).

CiwGAN FiwGAN
Q-network Q-network
10 wash 10 greasy
05 0.5 \/\
Y] M S =y 0.04
10 greasy 10l year
0.5 0.54
0.0 ool e
rag wash
1.0 1.0
0.5 0.5
—
00 .\/\ N 0.04
i
1.0 veal 1.0 o
208 Z0°] /\/\A,/-
‘(E“ 0.0 % 0.0+
water ask
-g 1.0 g 1.0
Bl o AN A
0.0 0.0
dark water
1.0 1.0
0.5 /\ 0.5
0.0 \ 001 .___.\‘__././‘\,/‘
oily dark
1.0 1.0
0.5 0.5
0.0 0.0l bl S
ask rag
1.0 1.0
05 / 0.5
0.0 e 0.04 —t—
cl c2 c3 c4 ¢5 c6 c7 c8 000 001 010 011 100 101 110 111
Code Code

Figure 2: Estimates of a multinomial regression model.

3.3 Production/synthesis

To test the production (synthesis) aspect of the
model, we generate 100 outputs for each unique
latent code ¢ both in the ciwGAN and fiwGAN
setting (1,600 outputs total). According to Be-
gus (2020); Begus (2021), setting latent codes to
marginal values outside of the latent space reveals
the underlying value of each latent code, which is
why we generate data with code variables set at
3 (e.g. [0, 0, 3], [0, 3, 3], etc). One hundred out-
puts per each code for each model (ciwGAN and
fiwGAN) were analyzed by a compensated trained
phonetician who was not a co-author on this paper.
The annotator annotated generated outputs as either
featuring the eight lexical items, deviating from the
eight items (annotated as else), or as unintelligible
outputs (also else).?

Figure 3 illustrates lexical learning in the Gener-
ator network. Code variables are significant predic-
tors of generated words according to the AIC test in
both models. The learned representations are very
similar both in the Q-network and in the Generator.
One advantage of the Generator network is that
we can force categorical or near categorical out-

“The following regex coding of annotations was used: if
""wa(sh|tch)$", then wash, if "["s]e[ae]r", then year, if "wa-
ter.*$", then water, if "[ao][wia]l[iy].*$" then oily, if "rag.*$",
then rag, if "dar.*$", then dark, if "greas.*$", then greasy, if
"as.*$", then ask.
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Figure 3: Estimates of a multinomial regression model.

puts by manipulating latent variables to marginal
values outside of training range (e.g. in our case
to 3). For example, greasy has 100% success rate
in ciwGAN; water 99% in iwGAN and 96% in
ciwGAN.

4 Holistic and featural learning

Binary encoding allows simultaneous holistic lexi-
cal encoding (unique code = lexical item) as well as
featural learning, where features (bits) correspond
to sublexical units such as phonemes (e.g. [s] or
[J1). This paper proposes a technique to explore
lexical and sublexical learned representations in a
classifier network. To test whether evidence for
sublexical learning emerges in the perception as-
pect of the proposed model, we annotate inputs to
the Q-network for any sublexical property and use
regression analysis with each feature as a predictor
to test how individual features correspond to that

property.

4.1 TIMIT

We focus on one of the the most phonetically salient
sublexical properties in the training data: presence
of a fricative [s], [[]. We include the word for dark
among the words containing [s] because a high
proportion of dark tokens feature [s] frication (due
to dark standing before suit in TIMIT). The data
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Figure 4: Estimates of a logistic regression model.

were fit to a logistic regression linear model with
presence of [s] in the input test data as the depen-
dent variable and the three features (¢1, ¢2, ¢3) as
predictors. Estimates of the regression model in
Figure 4 suggest that the network encodes a sublex-
ical phonemic property (presence of frication noise
of [s]) with ¢3 = 0.

4.2 LibriSpeech

To test how the proposed technique of unsuper-
vised lexical and sublexical learning extends to
larger corpora, we test the Q-network trained on
508 lexical items from LibriSpeech. The model has
9 latent feature variables ¢ which yields 27 = 512
classes. Altogether 10,914 test tokens (withheld
from training) of the 508 unique words were fed to
the Q-network in fiwGAN architecture trained for
61,707 steps.

4.2.1 Holistic representation learning

First, raw classification of outputs suggest that
holistic lexical learning in the Q-network emerges
even when the training data contains a substantially
larger set (508 items and a total of 757,120 tokens)
and a more diverse corpus. The training data here
too is twice removed from the Q-network and the
test data was never part of the training. Figure 5
illustrates four chosen lexical items and the codes
with which they are represented. Each lexical item
features a peak in one unique code. To verify that
this particular code indeed represents that particular
lexical item, we also analyze which other lexical
items are classified with the most frequent code
for each of the four chosen lexical item. There
too, each code represents one lexical item more
strongly.

To test how frequent such well-learned represen-
tations are, we randomly selected 20 out of the 508
lexical items, which includes items with extremely
low representation in the training and test corpora
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left graph).

(e.g. N = 7). Of the 20 randomly selected words,
4 (20%) have representations such that the peak
per lexical item corresponds to the peak per the
most frequent code (as the first three examples in
Figure 5). In 5 further cases (25%), two or more
peaks have the same, but not higher counts than
the word/code peak pair (for a total of 45% of suc-
cessful outcomes if both groups are counted as
successful). In the remaining 55% (11 items), the
peaks do not match across the word/code pairs.?

These counts are fully deterministic and there-
fore conservative. The distribution of code vari-
ables per each word are, however, not independent.
For example, the second most common code for
mister in Figure 5 differs from the most common
one in only one feature (digit). Violation in a sin-
gle feature value is equally treated as violation in
multiple feature values in our counts.

3We counted one case with all counts equal across the
word/code pair as unsuccessful.

Likewise, there is substantial amount of pho-
netic similarity in words classified by a single code.
For example, the word most commonly classified
with [100000001] is indeed still, but other frequent
words for this classification code are state, stand,
stood, story, etc. (Figure 5).

4.2.2 Featural representation learning

These similarities suggest that the network encodes
sublexical properties using individual features in
the binary code. To quantitatively test this hypothe-
sis, we test how the network encodes presence of
word-initial [s] ([#s]). Frication noise of [s] is a
phonetically salient property and restricting it to
word-initial position allows us to test featural and
positional encoding.

Librispeech word/Q-network code pairs are an-
notated for presence of word-initial [s] (dependent
variable) and fit to a logistic regression linear model
with the nine feature variables ¢;_g (part of the bi-
nary code) as independent predictors. Regression
estimates are given in Figure 6. Three features (¢2,
¢3, and ¢5) correspond to presence of initial [s]
substantially more strongly than other features. It
is reasonable to assume that the network encodes
this sublexical contrast with the value of the three
features (¢2, ¢3, ¢5) 0. It would be efficient if the
network encodes word-initial [s] with 3 features,
because there are approximately 54 s-initial words.
The 6 feature codes remaining besides ¢2, @3, ¢5
allows for 26 = 64 classes.

To verify this hypothesis, the presence of [s] in
input words (dependent variable) is fit to a logistic
regression model with only one predictor: the value
of the three features ¢s, ¢3, ¢5 with two levels: 0
and 1. Only 5.0% [4.6%, 5.5%] of words classified
with ¢9, ¢3, and ¢5 = 1 contain word-initial [s],
while 47.9% [44.3%, 51.5%] of words classified
as @9, ¢3, and ¢5 = 0 contain word-initial [s] (see
estimates in Figure 6).

4.3 Featural learning in production

The fiwGAN architecture allows us to test both
holistic and featural learning in both production
and perception. Value O for ¢, ¢3, ¢5 has been as-
sociated with word-initial [s] in the Q-network (per-
ception). To test whether the Generator matches
the Q-network in this sublexical encoding, we gen-
erate sets of outputs in which all other ¢ variables
(except ¢2, ¢3, and ¢5) and all z-variables are held
constant, but the ¢, ¢3, and ¢5 variables are in-
terpolated from O to 3 in increments of 0.2. We
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Figure 7: Outputs of the Generator network (wave-
forms) when ¢, ¢3, and ¢5 are simultaneously inter-
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are held constant.

analyze 20 such outputs (where the other ¢ vari-
ables and z-variables are sampled randomly for
each of the 20 sets).

In 11 out of the 20 generated sets (or 55%), word-
initial [s] appears in the output for code ¢2, @3, @5
= 0 and then disappears from the output as the value
is interpolated.* Additionally, in the majority of
these cases (approximately 8), the change from [s]
to some other word-initial consonant is the only
major change that happens as the output transitions
from [s] to no [s] with interpolation. In other words,
as we interpolate values of the three features rep-
resenting [#s], we observe a causal effect in the
generated outputs as [#s] gradually changes into a
different consonant with other major acoustic prop-
erties remaining the same in the majority of cases.

4 Annotated by the authors because presence of [s] is a
highly salient feature.

Figure 7 illustrates this causal effect: the amplitude
of the frication noise of [s] gradually attenuates
with interpolation, while other acoustic properties
remain largely unchanged. The sublexical encod-
ing of word-initial [s] is thus causally represented
with the same code both in the Generator network
and in the Q-network.

5 Conclusion

This paper demonstrates that a deep neural ar-
chitecture that simultaneously models the produc-
tion/synthesis and perception/classification compo-
nent learns linguistically meaningful units — lex-
ical items and sublexical properties (such as pres-
ence of a sound) — from raw acoustic data in a
fully unsupervised manner. Lexical and sublexical
learning emerge simultaneously only from the re-
quirement of the Generator to output informative
data. In this architecture, we can both (i) generate
lexical items in a controlled and predictable manner
by manipulating individual variables of the latent
space in the Generator network and (ii) classify
unobserved test lexical items with a unique highly
reduced vector representation in the Q-network.

We introduce several challenges to the unsuper-
vised acoustic word embedding paradigm. These
challenges, while increasing difficulty of the learn-
ing objective, bring several new insights into
the unsupervised speech processing/textless NLP
paradigm (Dunbar et al., 2017; Lakhotia et al.,
2021). The results of the three computational exper-
iments (8-word TIMIT ciwGAN/fiwGAN and 508-
word LibriSpeech fiwGAN) suggest that learning
emerges despite these challenges. Highly reduced
vector representations enable interpretable seman-
tic exploration of the latent space and exploration
of the causal effect between the latent space and
generated outputs. We also demonstrate that deep
convolutional networks are able to classify raw au-
dio into unique word classes whereby training data
is twice removed from the classifier network — the
Q-network only learns from the Generator’s out-
put (in the production-perception loop) and never
accesses training data. Finally, the ability to si-
multaneously model holistic lexical representation
learning (in the form of unique binary codes) and
sublexical (phonetic and phonological) representa-
tions in the form of individual feature codes will be
increasingly important as unsupervised speech pro-
cessing technology becomes more widely available
in languages with rich phonological processes.
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