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Abstract

Human speakers encode information into raw001
speech which is then decoded by the listeners.002
This complex relationship between encoding003
(production) and decoding (perception) is of-004
ten modeled separately. Here, we test how de-005
coding of lexical and sublexical semantic in-006
formation can emerge automatically from raw007
speech in unsupervised generative deep convo-008
lutional networks that combine both the pro-009
duction and perception principle. We intro-010
duce, to our knowledge, the most challenging011
objective in unsupervised lexical learning: an012
unsupervised network that must learn to as-013
sign unique representations for lexical items014
with no direct access to training data. We train015
several models (ciwGAN and fiwGAN by Be-016
guš 2021) and test how the networks classify017
raw acoustic lexical items in the unobserved018
test data. Strong evidence in favor of lexical019
learning emerges. The architecture that com-020
bines the production and perception principles021
is thus able to learn to decode unique infor-022
mation from raw acoustic data in an unsuper-023
vised manner without ever accessing real train-024
ing data. We propose a technique to explore025
lexical and sublexical learned representations026
in the classifier network. The results bear im-027
plications for both unsupervised speech syn-028
thesis and recognition as well as for unsuper-029
vised semantic modeling as language models030
increasingly bypass text and operate from raw031
acoustics.032

1 Introduction033

Speech technology has traditionally been divided034

into two parts: automated speech recognition035

(ASR) and speech synthesis. Hearing humans, how-036

ever, perform both tasks — speech production and037

speech perception with a high degree of mutual in-038

fluence (the so-called production-perception loop;039

Wedel 2004; Vihman 2015). Human speakers en-040

code information into raw acoustic speech stream041

and decode it using both articulation and audition.042

This paper proposes that the two principles 043

should be modeled simultaneously and argues that 044

a GAN-based model called ciwGAN/fiwGAN (Be- 045

guš, 2021) learns linguistically meaningful repre- 046

sentations from both production and perception. In 047

fact, lexical learning in the architecture emerges 048

precisely from the requirement that the network for 049

production and the network for perception interact 050

and generate data that is mutually informative. We 051

show that with only the requirement to produce 052

informative data, the models not only produce de- 053

sired outputs (as argued in Beguš 2021), but also 054

learn to classify lexical items in a fully unsuper- 055

vised way from raw unlabeled speech. 056

1.1 Prior work 057

Computational models of lexical learning from 058

speech data have a long history (Räsänen, 2012). 059

Earlier work operated with pre-assumed features 060

that needed to be extracted from acoustic speech 061

stream. Recent models operate directly from acous- 062

tic speech stream and involve a variety of model- 063

ing approaches, from Bayesian to neural modeling 064

(Levin et al., 2013; Lee et al., 2015; Chung et al., 065

2016; Chrupała et al., 2017; Shafaei-Bajestan and 066

Baayen, 2018; Kamper, 2019; Chorowski et al., 067

2019; Baayen et al., 2019). A recent push towards 068

unsupervised learning from raw audio means that 069

models of lexical learning are cognitively more 070

plausible (Levin et al., 2013; Kamper et al., 2014; 071

Chung et al., 2016; Hu et al., 2020; Baevski et al., 072

2020; Niekerk et al., 2020; Beguš, 2021) as hear- 073

ing infants learn words primarily from unlabeled 074

acoustic speech stream. 075

Most of the existing models of lexical learning, 076

however, focus primarily on either ASR/speech- 077

to-text (perception) or text-to-speech/speech syn- 078

thesis (production; see Wali et al. 2022 for an 079

overview). Variational Autoencoders (VAEs) in- 080

volve both an encoder and decoder, which allows 081

unsupervised acoustic word embedding as well 082
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as generation of speech, but these proposals only083

use VAEs for either unsupervised ASR (Chung084

et al., 2016; Chorowski et al., 2019; Baevski et al.,085

2020; Niekerk et al., 2020) or for speech synthe-086

sis/transformation (e.g. Hsu et al. 2017). Earlier087

neural models replicate brain mechanisms behind088

perception and production (Tourville and Guenther,089

2011; Guenther and Vladusich, 2012), but they do090

not focus on lexical learning or classification and091

do not include recent progress in performance of092

deep learning architectures. GAN-based synthesiz-093

ers are mostly supervised and get text or acoustic094

features in their input (Kumar et al., 2019; Kong095

et al., 2020; Bińkowski et al., 2020; Cong et al.,096

2021). Donahue et al. (2019) propose a WaveGAN097

architecture, which can generate any audio in an098

unsupervised manner, but does not involve a lexical099

classifier — only the Generator and the Discrimina-100

tor, which means the model only captures synthesis101

and not classification (the same is true for Parallel102

WaveGAN; Yamamoto et al. 2020). Beguš (2021)103

proposes the first textless fully unsupervised GAN-104

based model for lexical representation learning, but105

evaluates only the synthesis (production) aspect106

of their model by only evaluating outputs of the107

Generator network.108

1.2 New challenges109

Here, we model lexical learning with a classifier110

network (the Q-network) that mimics perception111

and lexical learning and is, crucially, trained from112

another network’s production data (the Generator113

network). Using this architecture, we can both114

generate new words in a controlled causal manner115

by manipulating the Generator’s latent space as116

well as classify novel words from unobserved test117

data withheld from training in a fully unsupervised118

manner.119

This paper also introduces some crucial new120

challenges to the unsupervised acoustic word em-121

bedding and word recognition paradigm (Dunbar122

et al., 2017, 2019, 2020). First, the architecture123

requires extremely low vector representation of124

lexical items. In the fiwGAN architecture, the net-125

work needs to represent 2n of classes with only n126

variables. To our knowledge, no other proposal fea-127

tures such dense representation of acoustic lexical128

items.129

Second, the models introduce a challenge to130

learn meaningful representations of words without131

ever accessing training data. The lexical classi-132

fier network is twice removed from training data. 133

The Q-network learns to classify words only from 134

the Generator’s outputs and never accesses training 135

data. But the the Generator never accesses the train- 136

ing data either – it learns to produce words only 137

by maximizing the Discriminator’s error rate. This 138

means that the classifier needs to learn to represent 139

unique lexical items in a highly challenging setting, 140

where training data is two levels removed — only 141

the Discriminator actually accesses training data. 142

Finally, lexical learning in the proposed architec- 143

ture is fully unsupervised. VAEs are a prominent 144

architecture in the unsupervised lexical learning 145

paradigm. The encoder-decoder architecture learns 146

representations of lexical items in an unsupervised 147

manner, but the generation principle is not unsuper- 148

vised: the decoder (equivalent to the Generator) is 149

trained on generating data such that the distance 150

between input data and the generated output is min- 151

imized. In other words, the decoder has full access 152

to the input data and needs to replicate it. In the 153

GAN framework, on the other hand, the Generator 154

needs to learn to produce lexical items for each 155

unique code; the classifier needs to learn to assign 156

unique code to each lexical item by only accessing 157

the Generator’s outputs. Neither the Generator nor 158

the Q-network have access to training data and they 159

do not replicate input data, which means they are 160

fully unsupervised both in the generation and in the 161

classification aspect. 162

Why are these challenges important? First, rep- 163

resentation learning with highly reduced vectors 164

is more interpretable and allows us to analyze the 165

causal effect between individual latent variables 166

and linguistically meaningful units in the output of 167

the synthesis/production part of the model (Section 168

4.3). We also can examine the causal effect be- 169

tween linguistically meaningful units in the classi- 170

fier’s input and the classifier’s output in the percep- 171

tion/recognition part of the model (Section 4.2.2). 172

Reduced vectors also enable analysis of the in- 173

teraction between individual latent variables. For 174

example, each element (bit) in a binary code (e.g., 175

[1, 0], [0, 1], [1, 1]) can be analyzed as a feature φn 176

(e.g. [φ1, φ2]). Such encoding allows both holistic 177

representation learning and featural representation 178

learning. We can test whether each unique code 179

corresponds to unique lexical semantics and how 180

individual features in binary codes ([φ1, φ2]) in- 181

teract/represent sublexical information (e.g. pres- 182

ence of a phoneme; Section 4). Reduced vectors 183
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also allow us to model lexical semantics similarly184

with established methods of computational seman-185

tic modelling, where meaning is often represented186

with binary codes (such as in Steinert-Threlkeld187

and Szymanik 2020).188

Second, humans acquire speech production and189

perception with a high degree of mutual influence190

(Vihman, 2015). The production-perception loop191

can facilitate speech acquisition (e.g. in L2 learn-192

ing; Baese-Berk 2019). Production and perception193

also make language dynamic and cause change194

over time (Ohala, 1993). Modeling production195

(synthesis) and perception (recognition) simultane-196

ously will help us build more dynamic and adaptive197

systems of human speech communication that are198

closer to reality than current models which treat199

the two components separately. This can be bene-200

ficial both to speech technologies and to cognitive201

models of speech acquisition.202

Third, the paper tests learning of linguistically203

meaningful representations in one of the most chal-204

lenging training settings. Results from such ex-205

periments test the limits of deep learning architec-206

tures for speech processing. This paper argues that207

learning of linguistically meaningful representa-208

tions self-emerges even in these highly challenging209

learning conditions.210

Fourth, unsupervised ASR (Baevski et al., 2021)211

and “textless NLP” (Lakhotia et al., 2021) have the212

potential to enable speech technology in a number213

of languages with no or little resources. Many of214

these languages feature substantially richer phono-215

logical systems than English. Most deep generative216

models for unsupervised learning focus exclusively217

on either lexical (see above) or phonetic learning218

(Eloff et al., 2019; Shain and Elsner, 2019) and219

do not model phonological learning. The fiwGAN220

architecture with its featural latent space allows221

simultaneous holistic lexical representation learn-222

ing and sublexical learning of phonological con-223

trasts. Exploring how the two levels interact will224

be increasingly important as speech technology be-225

comes available to phonologically rich languages.226

Finally, speech technology is shifting towards227

unsupervised learning (Baevski et al., 2021). Our228

understanding of how biases in data are encoded229

in unsupervised models is even more poorly un-230

derstood than in supervised models. The paper231

proposes a way to test how linguistically meaning-232

ful units self-emerge in fully unsupervised models233

for word learning, how contrasts are encoded in234

the latent space, and how they interact with other 235

variables in a classifier network for unsupervised 236

ASR. Speech carries a lot of potentially harmful 237

social information (Holliday, 2021); a better un- 238

derstanding of how linguistically meaningful units 239

self-emerge and get encoded and how they inter- 240

act with other features in the data is the first step 241

towards mitigating the risks of unsupervised deep 242

generative ASR models. 243

2 Models 244

We use Categorical InfoWaveGAN (ciwGAN) and 245

Featural InfoWaveGAN (fiwGAN) architectures 246

(Beguš 2021; based on WaveGAN in Donahue et al. 247

2019 and InfoGAN in Chen et al. 2016). In short, 248

the ciwGAN/fiwGAN models each contain three 249

networks: a Generator G that upsamples from ran- 250

dom noise z and a latent code c to audio data us- 251

ing 1D transpose convolutions, a Discriminator D 252

that estimates the Wasserstein distance between 253

the generated output G(z, c) using traditional 1D 254

convolutions, and a Q-network Q that aims to re- 255

cover c given Generator output G(z, c). As in the 256

traditional GAN framework, the Generator and Dis- 257

criminator operate on the same loss in a zero-sum 258

game, forcing the Generator to create outputs sim- 259

ilar to the training data. However, the Generator 260

(along with the Q-network) is additionally trained 261

against the accuracy of the Q-network, forcing the 262

Generator to maximize the mutual information be- 263

tween latent code c and generated output G(z, c) 264

and the Q-network to recover this relationship. Ci- 265

wGAN models c as a one-hot vector of several 266

classes, while fiwGAN models c using a binary 267

encoding. 268

In other words, the Generator learns to produce 269

outputs that resemble speech from latent space 270

(that includes both code c variables and random 271

z variables) without direct access the training data. 272

The Q-network takes generated audio speech data 273

(G(z, c)) and needs to figure out what code c the 274

Generator used for each particular output. The Gen- 275

erator needs to encode unique code vector c such 276

that the Q-network will be successful in retriev- 277

ing unique information (unique code vector c) only 278

from the Generator’s audio outputs. Lexical learn- 279

ing thus needs to emerge in a fully unsupervised 280

manner, only from the requirement of the Genera- 281

tor to produce informative data. The training data 282

contains unlabeled raw acoustic data. The Genera- 283

tor could in principle encode any information into 284
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Figure 1: Architecture of the fiwGAN network (Beguš, 2021) as used during the training and test tasks.

the code variables, but given the structure of the285

data, the most informative way to encode informa-286

tion is to associate each lexical item with a unique287

code.288

Previous work on ciwGAN and fiwGAN (Beguš,289

2021) has focused on the ability of the Generator290

to learn meaningful representations of c that en-291

codes phonological processes and lexical learning,292

with no exploration of the Q-network. In this pa-293

per, we focus on the Q-network’s propensity for294

lexical learning. Towards this end, we maintain the295

architecture of a separate Q-network (in contrast296

to the original InfoGAN proposal, where Q is esti-297

mated by appending additional hidden layers after298

the convolutional layers of the Discriminator). This299

allows us to explore a fully unsupervised lexical300

classifier network that takes lexical items in raw301

audio form and classifies them with unique codes302

(Figure 1).303

3 Experiments304

To simultaneously test the performance of the pro-305

duction (synthesis) and perception (classification)306

in the Generator and the Q-network, we train three307

networks: one using the one-hot (ciwGAN) archi-308

tecture on 8 lexical items from TIMIT, one with309

binary code (fiwGAN) architecture on 8 lexical310

items from TIMIT. To test how the proposed archi-311

tecture scales up to larger corpora, we also train a312

fiwGAN network on 508 lexical items from Lib-313

riSpeech (Panayotov et al., 2015).1 314

3.1 Data 315

The lexical items used in 8-words models are: ask, 316

dark, greasy, oily, rag, year, wash, and water. A 317

total of 4,052 tokens are used in training (approxi- 318

mately 500 per each word). The words were sliced 319

from TIMIT and padded with silence into 1.024s 320

.wav files with 16kHz sampling rate which the Dis- 321

criminator takes as its input. 322

In the LibriSpeech experiment, 508 words were 323

chosen. We discarded the 78 most common lexi- 324

cal items in the Librispeech train-clean-360 dataset 325

(Panayotov et al., 2015), because of their dispro- 326

portionate high frequency (5,290 to 224,173 tokens 327

per word). We then arbitrarily choose the 508 next 328

most common words for training, resulting in a 329

total of 757,120 tokens. The individual counts for 330

each word in the training set ranges from 571 to 331

5,113 tokens. 332

3.2 Perception/classification 333

To test if the Q-network is successful in learning to 334

classify lexical items without ever accessing train- 335

ing data, we take the trained Q-network from the 336

architecture (in Figure 1) and feed it novel, un- 337

observed data. In other words, we test if the Q- 338

network can correctly classify novel lexical items 339

by assigning each lexical item a unique code. 340

1Trained checkpoints and data will be released.
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Altogether 1,067 test data in raw waveforms341

from unobserved TIMIT were fed to the Q-network342

(both in the ciwGAN and fiwGAN architectures).343

The raw output of this experiment are pairs of344

words with their TIMIT transcription and the345

unique code that the Q-network outputs in its fi-346

nal layer. We test the performance of the models347

using inferential statistics rather than comparison348

to existing models due to the lack of models with349

similarly challenging learning objectives.350

To perform hypothesis testing on whether lexi-351

cal learning emerges in the Q-network, we fit the352

word/code pairs to a multinomial logistic regres-353

sion model using the nnet package (Venables and354

Ripley, 2002). The dependent variable are the in-355

put words (8 classes), the independent variable356

is the final code c that the Q-network outputs for357

each input. To test lexical learning, we compare358

Akaike Information Criterion (AIC; Akaike 1974)359

of a model with code c as predictor and an empty360

model. In the ciwGAN setting (one-hot encoding),361

AIC of a model with c as a predictor is substantially362

lower (2129.056, df = 56) than the empty model363

(4448.191, df = 7). Figure 2 gives predicted val-364

ues for each code/lexical item. The figure suggests365

that most lexical items have a clear and substantial366

rise in estimates for a single unique code. This367

suggest that the Q-network learns to classify novel368

unobserved TIMIT words into classes that corre-369

spond to lexical items.370

Lexical learning emerges in the binary encod-371

ing (fiwGAN) as well, but the code vector is even372

more reduced in this architecture (3 variables total),373

which makes error rates higher compared to the374

ciwGAN architecture (Figure 2). The multinomial375

regression model with unique binary codes as pre-376

dictors fits the data better than the empty model377

(AIC = 3248.071, df = 56 for the model with378

the predictor and AIC = 4448.191, df = 7 for the379

empty model).380

Estimates of the fiwGAN multinomial regres-381

sion models in Figure 2 suggest most unique codes382

feature a single clear and substantial raise in regres-383

sion estimates for each unique lexical item. Words384

like rag or wash do not seem to have a clear learned385

representation in the latent code c.386

The binary nature of the latent code in the fiw-387

GAN architecture allows testing of whether individ-388

ual features (φ1, φ2, φ3) carry lexical information.389

All individual features are significant as separate390

predictors (according to AIC).391
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Figure 2: Estimates of a multinomial regression model.

3.3 Production/synthesis 392

To test the production (synthesis) aspect of the 393

model, we generate 100 outputs for each unique 394

latent code c both in the ciwGAN and fiwGAN 395

setting (1,600 outputs total). According to Be- 396

guš (2020); Beguš (2021), setting latent codes to 397

marginal values outside of the latent space reveals 398

the underlying value of each latent code, which is 399

why we generate data with code variables set at 400

3 (e.g. [0, 0, 3], [0, 3, 3], etc). One hundred out- 401

puts per each code for each model (ciwGAN and 402

fiwGAN) were analyzed by a compensated trained 403

phonetician who was not a co-author on this paper. 404

The annotator annotated generated outputs as either 405

featuring the eight lexical items, deviating from the 406

eight items (annotated as else), or as unintelligible 407

outputs (also else).2 408

Figure 3 illustrates lexical learning in the Gener- 409

ator network. Code variables are significant predic- 410

tors of generated words according to the AIC test in 411

both models. The learned representations are very 412

similar both in the Q-network and in the Generator. 413

One advantage of the Generator network is that 414

we can force categorical or near categorical out- 415

2The following regex coding of annotations was used: if
"ˆwa(sh|tch)$", then wash, if "[ˆs]e[ae]r", then year, if "wa-
ter.*$", then water, if "[ao][wia]l[iy].*$" then oily, if "rag.*$",
then rag, if "dar.*$", then dark, if "greas.*$", then greasy, if
"as.*$", then ask.
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Figure 3: Estimates of a multinomial regression model.

puts by manipulating latent variables to marginal416

values outside of training range (e.g. in our case417

to 3). For example, greasy has 100% success rate418

in ciwGAN; water 99% in fiwGAN and 96% in419

ciwGAN.420

4 Holistic and featural learning421

Binary encoding allows simultaneous holistic lexi-422

cal encoding (unique code = lexical item) as well as423

featural learning, where features (bits) correspond424

to sublexical units such as phonemes (e.g. [s] or425

[S]). This paper proposes a technique to explore426

lexical and sublexical learned representations in a427

classifier network. To test whether evidence for428

sublexical learning emerges in the perception as-429

pect of the proposed model, we annotate inputs to430

the Q-network for any sublexical property and use431

regression analysis with each feature as a predictor432

to test how individual features correspond to that433

property.434

4.1 TIMIT435

We focus on one of the the most phonetically salient436

sublexical properties in the training data: presence437

of a fricative [s], [S]. We include the word for dark438

among the words containing [s] because a high439

proportion of dark tokens feature [s] frication (due440

to dark standing before suit in TIMIT). The data441
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Figure 4: Estimates of a logistic regression model.

were fit to a logistic regression linear model with 442

presence of [s] in the input test data as the depen- 443

dent variable and the three features (φ1, φ2, φ3) as 444

predictors. Estimates of the regression model in 445

Figure 4 suggest that the network encodes a sublex- 446

ical phonemic property (presence of frication noise 447

of [s]) with φ3 = 0. 448

4.2 LibriSpeech 449

To test how the proposed technique of unsuper- 450

vised lexical and sublexical learning extends to 451

larger corpora, we test the Q-network trained on 452

508 lexical items from LibriSpeech. The model has 453

9 latent feature variables φ which yields 29 = 512 454

classes. Altogether 10,914 test tokens (withheld 455

from training) of the 508 unique words were fed to 456

the Q-network in fiwGAN architecture trained for 457

61,707 steps. 458

4.2.1 Holistic representation learning 459

First, raw classification of outputs suggest that 460

holistic lexical learning in the Q-network emerges 461

even when the training data contains a substantially 462

larger set (508 items and a total of 757,120 tokens) 463

and a more diverse corpus. The training data here 464

too is twice removed from the Q-network and the 465

test data was never part of the training. Figure 5 466

illustrates four chosen lexical items and the codes 467

with which they are represented. Each lexical item 468

features a peak in one unique code. To verify that 469

this particular code indeed represents that particular 470

lexical item, we also analyze which other lexical 471

items are classified with the most frequent code 472

for each of the four chosen lexical item. There 473

too, each code represents one lexical item more 474

strongly. 475

To test how frequent such well-learned represen- 476

tations are, we randomly selected 20 out of the 508 477

lexical items, which includes items with extremely 478

low representation in the training and test corpora 479

6



0.0

2.5

5.0

7.5

10.0

12.5

0
0
0
0
1
0
0
1
1

0
0
0
0
1
1
0
1
1

0
0
1
0
1
0
0
0
1

0
1
0
0
0
1
1
1
0

0
1
0
0
1
0
0
0
1

0
1
0
0
1
0
0
1
1

0
1
0
0
1
1
0
0
1

0
1
0
0
1
1
0
1
1

0
1
0
1
0
1
0
0
0

0
1
0
1
0
1
0
1
0

0
1
0
1
0
1
1
1
0

0
1
0
1
1
0
0
0
0

0
1
0
1
1
1
1
1
0

0
1
1
0
0
0
0
0
0

0
1
1
0
0
0
0
1
0

0
1
1
0
0
0
1
0
0

0
1
1
0
0
0
1
1
1

0
1
1
0
0
1
0
0
0

0
1
1
0
0
1
0
1
0

0
1
1
0
0
1
0
1
1

0
1
1
0
0
1
1
1
0

0
1
1
0
1
0
0
1
0

0
1
1
0
1
0
0
1
1

0
1
1
0
1
0
1
1
1

0
1
1
0
1
1
0
0
0

0
1
1
0
1
1
0
1
1

0
1
1
0
1
1
1
1
0

0
1
1
1
0
1
1
1
0

0
1
1
1
1
1
1
1
0

1
0
0
0
0
1
0
0
1

1
0
0
0
1
0
0
0
1

1
0
1
0
0
1
1
1
0

1
1
1
0
0
0
1
0
1

1
1
1
0
1
1
1
1
0

Code

C
o
u
n
t

well

0.0

2.5

5.0

7.5

10.0

12.5

b
a
c
k

b
a
d

b
la
c
k

b
o
th

b
ri
n
g

b
ro
u
g
h
t

c
a
ll

c
a
lle
d

c
a
m
e

c
a
n
't

c
a
re

c
a
u
g
h
t

c
a
u
s
e

c
lo
s
e

c
o
m
e

c
o
u
rs
e

d
a
rk

d
e
a
d

d
o
n
't

d
o
n
e

d
o
o
r

d
o
u
b
t

d
o
w
n

e
n
o
u
g
h

fa
c
t

fa
ll

fa
r

fe
ll

fe
lt

fin
d

fir
s
t

fo
rc
e

fo
rm

fo
u
n
d

fo
u
r

g
ir
l

g
la
d
g
o

g
o
d

g
o
n
e

g
re
a
t

h
a
lf

h
e
a
d

h
e
a
rd

h
e
a
rt

h
e
re

h
ig
h

h
o
ld

h
o
w
i'm
k
in
g

k
n
o
w

la
s
t

la
w le
t

m
a
d
e

m
e
e
t

m
ig
h
t

m
o
s
t

m
u
c
h

n
o
r

o
h

o
n
c
e

o
u
r

p
a
rt

p
a
s
s
e
d

p
u
t

q
u
ite re
d

ri
g
h
t

s
a
t

s
a
w

s
id
e

ta
lk
te
ll

th
e
e

th
o
u

th
o
u
g
h

th
o
u
g
h
t

th
re
e

th
y

to
ld

to
w
a
rd

to
w
a
rd
s

tr
ie
d

w
e
ll

w
h
e
re

w
h
ile

w
h
o
le

w
h
y

y
o
u
n
g

Word

C
o
u
n
t

011001110

0

5

10

0
0
0
0
0
0
0
0
1

0
0
0
0
0
0
0
1
1

0
0
0
0
0
1
1
0
1

0
0
0
0
0
1
1
1
0

0
0
0
0
1
1
0
0
1

0
0
0
0
1
1
0
1
1

0
0
1
0
0
1
1
0
1

1
0
0
0
0
0
0
0
0

1
0
0
0
0
0
0
0
1

1
0
0
0
0
0
1
0
1

1
0
0
0
0
1
0
0
0

1
0
0
0
0
1
0
0
1

1
0
0
0
0
1
0
1
0

1
0
0
0
1
0
0
0
0

1
0
0
0
1
0
0
0
1

1
0
0
0
1
0
0
1
1

1
0
0
0
1
0
1
0
1

1
0
0
0
1
1
0
0
1

1
0
0
1
0
0
0
0
0

1
0
0
1
0
1
0
0
1

1
0
0
1
1
0
0
0
1

1
0
0
1
1
1
0
0
1

1
0
1
0
0
0
0
0
1

1
0
1
0
0
0
1
0
1

1
0
1
0
0
1
1
0
0

1
0
1
0
0
1
1
0
1

Code

C
o
u
n
t

still

0

5

10

b
e
fo
re

b
e
tw
e
e
n

c
h
ild
re
n

c
h
u
rc
h

c
le
a
r

d
e
a
r

e
v
e
n

fa
c
e

fe
e
l

fir
s
t

h
e
a
r

h
e
re

h
im
s
e
lf

i'm re
d

re
tu
rn
e
d

s
a
m
e

s
a
y

s
c
h
o
o
l

s
e
a

s
e
e

s
e
e
in
g

s
e
e
m

s
e
e
m
e
d

s
e
e
m
s

s
e
n
s
e

s
h
ip

s
ig
h
t

s
in
c
e s
ir

s
m
a
ll

s
o
n

s
o
o
n

s
o
u
l

s
o
u
n
d

s
p
e
a
k

s
p
o
k
e

s
ta
n
d

s
ta
te
s
til
l

s
to
o
d

s
to
ry

s
tr
a
n
g
e

s
tr
e
e
t

s
u
b
je
c
t

s
u
c
h

s
u
d
d
e
n
ly

ta
k
e

te
ll

th
in
k

th
re
e

th
ro
u
g
h

to
o

tr
ie
d

tr
u
th

w
h
e
re

w
h
ile

Word

C
o
u
n
t

100000001

0

2

4

6

8

0
0
1
1
0
1
0
0
0

0
1
0
1
1
0
0
0
1

0
1
0
1
1
1
0
0
0

1
0
0
0
0
0
0
0
0

1
0
0
0
0
0
1
0
0

1
0
0
0
0
0
1
0
1

1
0
0
1
0
0
0
0
0

1
0
0
1
0
0
0
0
1

1
0
1
0
0
0
0
0
1

1
0
1
0
0
0
1
0
1

1
0
1
1
0
0
1
0
1

1
1
0
0
0
0
0
0
0

1
1
0
0
0
0
0
0
1

1
1
0
0
0
0
1
0
1

1
1
0
0
1
1
0
1
0

1
1
0
0
1
1
0
1
1

1
1
0
1
0
0
0
0
0

1
1
0
1
0
0
0
0
1

1
1
0
1
0
0
0
1
1

1
1
0
1
0
0
1
0
1

1
1
0
1
1
0
0
0
0

1
1
0
1
1
0
0
0
1

1
1
0
1
1
0
0
1
1

1
1
0
1
1
1
0
1
1

1
1
1
0
0
0
0
0
1

1
1
1
0
0
0
1
0
1

1
1
1
1
0
0
0
0
1

Code

C
o
u
n
t

mister

0

2

4

6

8

a
b
le

a
ft
e
r

a
g
a
in
s
t

b
e
in
g

d
iff
e
re
n
t

e
n
te
re
d

e
x
c
e
p
t

in
s
te
a
d

m
is
s
u
s

m
is
te
r

p
e
o
p
le

p
re
s
e
n
t

u
n
til

Word

C
o
u
n
t

110100001

0

3

6

9

0
0
0
0
1
0
0
0
1

0
0
0
1
1
0
0
0
1

0
0
0
1
1
1
0
0
0

0
0
0
1
1
1
0
0
1

0
1
0
1
1
0
0
0
1

1
0
0
0
0
0
0
0
1

1
0
0
0
1
0
0
0
0

1
0
0
0
1
0
0
0
1

1
0
0
0
1
1
0
0
0

1
0
0
1
0
1
0
0
0

1
0
0
1
1
0
0
0
0

1
0
0
1
1
0
0
0
1

1
0
0
1
1
1
0
0
0

1
0
0
1
1
1
0
0
1

1
0
1
0
0
1
0
0
0

1
0
1
0
1
1
0
0
0

1
0
1
1
1
1
0
0
0

1
1
0
0
1
0
0
0
1

1
1
0
1
1
0
0
0
0

1
1
0
1
1
0
0
0
1

Code

C
o
u
n
t

himself

0

3

6

9

a
g
a
in
s
t

a
n
y
th
in
g

b
e
c
a
m
e

b
e
fo
re

b
e
tw
e
e
n

b
u
s
in
e
s
s

c
o
n
tin
u
e
d

d
iff
e
re
n
t

e
v
e
n

e
v
e
n
in
g

fif
ty

h
e
rs
e
lf

h
im
s
e
lf

in
d
e
e
d

in
s
te
a
d

in
te
re
s
t

its
e
lf

la
te
r

lo
o
k
in
g

m
a
k
in
g

m
e
a
n

m
is
s
u
s

m
is
te
r

m
y
s
e
lf

n
a
m
e

n
o
th
in
g

o
p
e
n

o
th
e
rs

o
v
e
r

p
e
o
p
le

re
a
c
h
e
d

re
a
s
o
n

re
c
e
iv
e
d

re
p
lie
d

ri
v
e
r

th
e
m
s
e
lv
e
s

u
n
til

w
in
d
o
w

Word

C
o
u
n
t

110110001

Figure 5: (left) Raw counts of code distribution per
each of the four chosen tested word (from unobserved
test data). The word with highest count is color-coded
in red. (right) Raw counts of word distributions per
code that has the highest count for each word (in the
left graph).

(e.g. N = 7). Of the 20 randomly selected words,480

4 (20%) have representations such that the peak481

per lexical item corresponds to the peak per the482

most frequent code (as the first three examples in483

Figure 5). In 5 further cases (25%), two or more484

peaks have the same, but not higher counts than485

the word/code peak pair (for a total of 45% of suc-486

cessful outcomes if both groups are counted as487

successful). In the remaining 55% (11 items), the488

peaks do not match across the word/code pairs.3489

These counts are fully deterministic and there-490

fore conservative. The distribution of code vari-491

ables per each word are, however, not independent.492

For example, the second most common code for493

mister in Figure 5 differs from the most common494

one in only one feature (digit). Violation in a sin-495

gle feature value is equally treated as violation in496

multiple feature values in our counts.497

3We counted one case with all counts equal across the
word/code pair as unsuccessful.

Likewise, there is substantial amount of pho- 498

netic similarity in words classified by a single code. 499

For example, the word most commonly classified 500

with [100000001] is indeed still, but other frequent 501

words for this classification code are state, stand, 502

stood, story, etc. (Figure 5). 503

4.2.2 Featural representation learning 504

These similarities suggest that the network encodes 505

sublexical properties using individual features in 506

the binary code. To quantitatively test this hypothe- 507

sis, we test how the network encodes presence of 508

word-initial [s] ([#s]). Frication noise of [s] is a 509

phonetically salient property and restricting it to 510

word-initial position allows us to test featural and 511

positional encoding. 512

Librispeech word/Q-network code pairs are an- 513

notated for presence of word-initial [s] (dependent 514

variable) and fit to a logistic regression linear model 515

with the nine feature variables φ1−9 (part of the bi- 516

nary code) as independent predictors. Regression 517

estimates are given in Figure 6. Three features (φ2, 518

φ3, and φ5) correspond to presence of initial [s] 519

substantially more strongly than other features. It 520

is reasonable to assume that the network encodes 521

this sublexical contrast with the value of the three 522

features (φ2, φ3, φ5) 0. It would be efficient if the 523

network encodes word-initial [s] with 3 features, 524

because there are approximately 54 s-initial words. 525

The 6 feature codes remaining besides φ2, φ3, φ5 526

allows for 26 = 64 classes. 527

To verify this hypothesis, the presence of [s] in 528

input words (dependent variable) is fit to a logistic 529

regression model with only one predictor: the value 530

of the three features φ2, φ3, φ5 with two levels: 0 531

and 1. Only 5.0% [4.6%, 5.5%] of words classified 532

with φ2, φ3, and φ5 = 1 contain word-initial [s], 533

while 47.9% [44.3%, 51.5%] of words classified 534

as φ2, φ3, and φ5 = 0 contain word-initial [s] (see 535

estimates in Figure 6). 536

4.3 Featural learning in production 537

The fiwGAN architecture allows us to test both 538

holistic and featural learning in both production 539

and perception. Value 0 for φ2, φ3, φ5 has been as- 540

sociated with word-initial [s] in the Q-network (per- 541

ception). To test whether the Generator matches 542

the Q-network in this sublexical encoding, we gen- 543

erate sets of outputs in which all other φ variables 544

(except φ2, φ3, and φ5) and all z-variables are held 545

constant, but the φ2, φ3, and φ5 variables are in- 546

terpolated from 0 to 3 in increments of 0.2. We 547
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polated from 0.0 to 0.8 while all other latent variables
are held constant.

analyze 20 such outputs (where the other φ vari-548

ables and z-variables are sampled randomly for549

each of the 20 sets).550

In 11 out of the 20 generated sets (or 55%), word-551

initial [s] appears in the output for code φ2, φ3, φ5552

= 0 and then disappears from the output as the value553

is interpolated.4 Additionally, in the majority of554

these cases (approximately 8), the change from [s]555

to some other word-initial consonant is the only556

major change that happens as the output transitions557

from [s] to no [s] with interpolation. In other words,558

as we interpolate values of the three features rep-559

resenting [#s], we observe a causal effect in the560

generated outputs as [#s] gradually changes into a561

different consonant with other major acoustic prop-562

erties remaining the same in the majority of cases.563

4Annotated by the authors because presence of [s] is a
highly salient feature.

Figure 7 illustrates this causal effect: the amplitude 564

of the frication noise of [s] gradually attenuates 565

with interpolation, while other acoustic properties 566

remain largely unchanged. The sublexical encod- 567

ing of word-initial [s] is thus causally represented 568

with the same code both in the Generator network 569

and in the Q-network. 570

5 Conclusion 571

This paper demonstrates that a deep neural ar- 572

chitecture that simultaneously models the produc- 573

tion/synthesis and perception/classification compo- 574

nent learns linguistically meaningful units — lex- 575

ical items and sublexical properties (such as pres- 576

ence of a sound) — from raw acoustic data in a 577

fully unsupervised manner. Lexical and sublexical 578

learning emerge simultaneously only from the re- 579

quirement of the Generator to output informative 580

data. In this architecture, we can both (i) generate 581

lexical items in a controlled and predictable manner 582

by manipulating individual variables of the latent 583

space in the Generator network and (ii) classify 584

unobserved test lexical items with a unique highly 585

reduced vector representation in the Q-network. 586

We introduce several challenges to the unsuper- 587

vised acoustic word embedding paradigm. These 588

challenges, while increasing difficulty of the learn- 589

ing objective, bring several new insights into 590

the unsupervised speech processing/textless NLP 591

paradigm (Dunbar et al., 2017; Lakhotia et al., 592

2021). The results of the three computational exper- 593

iments (8-word TIMIT ciwGAN/fiwGAN and 508- 594

word LibriSpeech fiwGAN) suggest that learning 595

emerges despite these challenges. Highly reduced 596

vector representations enable interpretable seman- 597

tic exploration of the latent space and exploration 598

of the causal effect between the latent space and 599

generated outputs. We also demonstrate that deep 600

convolutional networks are able to classify raw au- 601

dio into unique word classes whereby training data 602

is twice removed from the classifier network — the 603

Q-network only learns from the Generator’s out- 604

put (in the production-perception loop) and never 605

accesses training data. Finally, the ability to si- 606

multaneously model holistic lexical representation 607

learning (in the form of unique binary codes) and 608

sublexical (phonetic and phonological) representa- 609

tions in the form of individual feature codes will be 610

increasingly important as unsupervised speech pro- 611

cessing technology becomes more widely available 612

in languages with rich phonological processes. 613
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