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Abstract

Inverse reinforcement learning attempts to reconstruct the reward function in
a Markov decision problem, using observations of agent actions. As already
observed in Russell [1998] the problem is ill-posed, and the reward function is
not identifiable, even under the presence of perfect information about optimal
behavior. We provide a resolution to this non-identifiability for problems with
entropy regularization. For a given environment, we fully characterize the reward
functions leading to a given policy and demonstrate that, given demonstrations of
actions for the same reward under two distinct discount factors, or under sufficiently
different environments, the unobserved reward can be recovered up to a constant.
We also give general necessary and sufficient conditions for reconstruction of
time-homogeneous rewards on finite horizons, and for action-independent rewards,
generalizing recent results of Kim et al. [2021] and Fu et al. [2018].

1 Introduction

Inverse reinforcement learning aims to use observations of agents’ actions to determine their reward
function. The problem has roots in the very early stages of optimal control theory; Kalman [1964]
raised the question of whether, by observation of optimal policies, one can recover coefficients of
a quadratic cost function (see also Boyd et al. [1994]). This question naturally generalizes to the
generic framework of Markov decision process and stochastic control.

In the 1970s, these questions were taken up within economics, as a way of determining utility
functions from observations. For instance, Keeney and Raiffa [1976] set out to determine a proper
ordering of all possible states which are deterministic functions of actions. In this setup, the problem
is static and the outcome of an action is immediate. Later in Sargent [1978], a dynamic version
of a utility assessment problem was studied, under the context of finding the proper wage through
observing dynamic labor demand.

As exemplified by Lucas’ critique1, in many applications it is not enough to find some pattern of
rewards corresponding to observed policies; instead we may need to identify the specific rewards
agents face, as it is only with this information that we can make valid predictions for their actions
in a changed environment. In other words, we do not simply wish to learn a reward which allows
us to imitate agents in the current environment, but which allows us to predict their actions in other
settings.

1The critique is best summarized by the quotation: “Given that the structure of an econometric model consists
of optimal decision rules of economic agents, and that optimal decision rules vary systematically with changes
in the structure of series relevant to the decision maker, it follows that any change in [regulatory] policy will
systematically alter the structure of econometric models.” (Lucas [1976])
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In this paper, we give a precise characterization of the range of rewards which yield a particular policy
for an entropy regularized Markov decision problem. This separates the main task of estimation (of
the optimal policy from observed actions) from the inverse problem (of inferring rewards from a
given policy). We find that even with perfect knowledge of the optimal policy, the corresponding
rewards are not fully identifiable; nevertheless, the space of consistent rewards is parameterized by
the value function of the control problem. In other words, the reward can be fully determined given
the optimal policy and the value function, but the optimal policy gives us no direct information about
the value function.

We further show that, given knowledge of the optimal policy under two different discount rates, or
sufficiently different transition laws, we can uniquely identify the rewards (up to a constant shift).
We also give conditions under which action-independent rewards, or time-homogenous rewards
over finite horizons, can be identified. This demonstrates the fundamental challenge of inverse
reinforcement learning, which is to disentangle immediate rewards from future rewards (as captured
through preferences over future states).

2 Background on reinforcement learning

The motivation behind inverse reinforcement learning is to use observed agent behavior to identify the
rewards motivating agents. Given these rewards, one can forecast future behavior, possibly under a
different environment. In a typical reinforcement learning2 (RL) problem, an agent learns an optimal
policy to maximize her total reward by interacting with the environment.

In order to analyse the inverse reinforcement learning problem, we begin with an overview of the
‘primal’ problem, that is, how to determine optimal policies given rewards. We particularly highlight
a entropy regularized version of the Markov decision process (MDP), which provides a better-posed
setting for inverse reinforcement learning. For mathematical simplicity, we focus on discrete-time
problems with finitely many states and actions; our results can largely be transferred to continuous
settings, with fundamentally the same proofs, however some technical care is needed.

2.1 Discrete Markov decision processes with entropy regularization

The environment. We consider a simple Markov decision process (MDP) on an infinite horizon.
The MDP M = (S,A, T , f, γ) is described by: a finite state space S; a finite set of actions A;
a (Markov) transition kernel T : S × A → P(S), that is, a function T such that T (s, a) gives
probabilities3 of each value of St+1, given the state St = s and action At = a at time t; and a reward
function f : S ×A → R with discount factor γ ∈ [0, 1).

An agent aims to choose a sequence of actions {A0, A1, ...} from A in order to to maximize the
expected value of total reward ∑∞

t=0 γ
tf(St, At).

It will prove convenient for us to allow randomized policies π, that is, functions π : S → P(A),
where π(·|s) is the distribution of actions the agent takes when in state s. For a given randomized
policy π, we define Tπ ∈ P(S), the distribution of St+1 given state St, by

Tπ(St+1 = s′|St = s) =
∑
a∈A T (s′|s, a)π(a|s).

Given an initial distribution ρ ∈ P(S) for S0 and a policy π : S → P(A), we obtain a (unique)
probability measure Pπρ such that, and any a ∈ A, s, s′ ∈ S, Pπρ (S0 = s) = ρ(s) and

Pπρ (At = a|St = s) = π(a|s), Pπρ (St+1 = s′|St = s,At = a) = T (s′|s, a), for all t.

We write Eπρ for the corresponding expectation and Eπs when the initial state is given by s ∈ S . The
classic objective in a MDP is to maximize the expected value Eπs

[∑∞
t=0 γ

tf(St, At)
]
. With this

2Reinforcement learning and optimal control are closely related problems, where reinforcement learning
typically focuses on the challenge of numerically learning a good control policy, while optimal control focuses
on the description of the optimizer. In the context of the inverse problem we consider they are effectively
equivalent and we will use the terms interchangeably.

3Here, and elsewhere, we write P(X) for the set of all probability distributions on a set X .
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objective, one can show (for example, see Bertsekas and Shreve [2004], Puterman [2014]) that there
is an optimal deterministic control (i.e. a policy π, taking values zero and one, which maximizes
the expected value). This implies that, typically, an optimal agent will only make use of a single
action for each state, and the choice of this action will not vary smoothly with changes in the reward,
discount rate, or transition kernel.

Entropy regularised MDP. Given the lack of smoothness in the classical MDP, and to encourage
exploration, a well-known variation on the classic MDP introduces a regularization term based on
the Shannon entropy. Given a policy π and regularization coefficient λ ≥ 0, the entropy regularized
value of a policy π, when starting in state s, is defined by

V πλ (s) := Eπs
[ ∞∑
t=0

γt
(
f(st, at)−λ log

(
π(at|st)

))]
= Eπs

[ ∞∑
t=0

γt
(
f(st, at)+λH

(
π(·|st)

)))]
.

(1)
Here H(π) = −

∑
a∈A π(a) log(π(a)) is the entropy of π. We call this setting the regularised

MDPMλ = (S,A, T , f, γ, λ). The optimal value is given by V ∗λ (s) := maxπ V
π
λ (s), where the

maximum is taken over all (randomized feedback4) policies π : S → P(A).

We define the state-action value of π at (s, a) ∈ S ×A by

Qπλ(s, a) = f(s, a) + γ
∑
s′∈S
T (s′|s, a)V πλ (s′). (2)

The dynamic programming principle (e.g. Haarnoja et al. [2017, Theorem 2]) gives

V ∗λ (s) = max
m∈P(A)

[∑
a∈A

(
f(s, a)− λ log

(
m(a)

)
+ γEs1∼T (·|s,a)

[
V ∗λ (s1)

])
m(a)

]
= λ max

m∈P(A)

[
1

λ

∑
a∈A

(
f(s, a) + γEs1∼T (·|s,a)

[
V ∗λ (s1)

])
m(a) +H(m)

]
.

(3)

Observing that on the right hand side we are maximizing over a linear function in m plus an entropy
term, and applying [Dupuis and Ellis, 2011, Proposition 1.4.2], we have that for any s ∈ S

V ∗λ (s) = V
π∗λ
λ (s) = λ log

∑
a∈A

e
1
λ

(
f(s,a)+γEs1∼T (·|s,a)[V

π∗λ
λ (s1)]

)
= λ log

∑
a∈A

exp

(
1

λ
Q
π∗λ
λ (s, a)

)
,

(4)
and the maximum in (3) is achieved by the randomized policy m(a) = π∗λ(a|s), where

π∗λ(a|s) =
exp

(
1
λQ

π∗λ
λ (s, a)

)∑
a′∈A exp

(
1
λQ

π∗λ
λ (s, a′)

) for a ∈ A. (5)

From (4) we see that exp
(
V ∗λ (s)/λ

)
=
∑
a∈A exp

(
Q
π∗λ
λ (s, a)/λ

)
and so we can write the optimal

policy as

π∗λ(a|s) = exp
((
Q
π∗λ
λ (s, a)− V ∗λ (s)

)/
λ
)

= exp
((
f(s, a) + Es1∼T (·|s,a)[γV

∗
λ (s1)− V ∗λ (s)]

) /
λ
)
,

(6)

From this analysis, we make the following observations regarding the regularized MDP:

• The optimal policy will select all actions in A with some positive probabilities.
• If λ is increased, this has the effect of ‘flattening out’ the choice of actions, as seen in the softmax

function in (5). Conversely, sending λ→ 0 will result in a true maximizer being chosen, and the
regularized problem degenerates to the classical MDP.

• Adding a constant to the reward does not change the policy.
Remark 1. In many modern approaches, one replaces dependence on the state with dependence on
a space of ‘features’. This has benefits when fitting a model, but does not significantly change the
problem considered.

4Given the Markov structure there is no loss of generality when restricting to policies of feedback form.
Further, by replacing A with the set of maps S → A if necessary, all feedback controls a(s) can be written as
deterministic controls a(·) in a larger space, so when convenient we can consider controls which do not depend
on the state without loss of generality.
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3 Analysis of inverse reinforcement learning

We now shift our focus to ‘inverse’ reinforcement learning, that is, the problem of inferring the reward
function given observation of agents’ actions.

Consider a discrete time, finite-state and finite-action MDPMλ, as described in Section 2. Suppose
a ‘demonstrator’ agent acts optimally, and hence generates a trajectory of states and actions for the
system τ = (s1, a1, s2, a2, ...). We assume that it is possible for us to observe τ (over a long period),
and seek to infer the reward f which the agent faces.

A first observation is that, assuming each state s ∈ S appears infinitely often in the sequence τ , and
the agent uses a randomized feedback control πλ(a|s), it is possible to infer this control. A simple
consistent estimator for the control is

(πλ)N (a|s) =
#{at = a and st = s; t ≤ N}

#{st = s; t ≤ N}
→ πλ(a|s) a.s. as N →∞.

Similarly, assuming each state-action pair (s, a) appears infinitely often in τ , we can infer the
controlled transition probabilities T (s′|s, a). A simple consistent estimator is given by

TN (s′|s, a) =
#{st = s, at = a and st+1 = s′; t ≤ N}

#{st = s and at = a; t ≤ N}
→ T (s′|s, a) a.s. as N →∞.

If our agent is known to follow a regularized optimal strategy, as in (6), and we have a simple
accessibility condition5 on the underlying states, then every state-action pair will occur infinitely
often in the resulting trajectory. Therefore, given sufficiently long observations, we will know the
values of π(a|s) and T (s′|s, a) for all s, s′ ∈ S and a ∈ A.

This leads, naturally, to an abstract version of the inverse reinforcement learning problem: Given
knowledge of π(a|s) and T (s′|s, a) for all s, s′ ∈ S and a ∈ A, and assuming π is generated by an
agent following an entropy-regularized MDPMλ, can we determine the initial reward function f
that the agent faces?

As observed by Kalman [1964], for an unregularized controller the only thing we can say is that
the observed controls are maximizers of the state-action value function, and not even that these
maximizers are unique. Therefore, very little can be said about the underlying reward in the
unregularized setting. Indeed, as already observed in Russell [1998] the problem of constructing a
reward using state-action data is fundamentally ill-posed. One pathological case is to simply take f
constant, so all actions are optimal. Alternatively, if we infer a unique optimal action a?(s) for each
s, we then could take any f(s, a?(s)) ∈ (0,∞] and f(s, a) = 0 for a 6= a?(s).

Further literature. One of the earliest discussions of inverse reinforcement learning (IRL) in the
context of machine learning can be found in Ng and Russell [2000]. Their method is to first identify
a class of reward functions, for an IRL problem with finitely many states and actions, a deterministic
optimal strategy, and the assumption that the reward function depends only on the state variable.
Then, assuming the reward function is expressable in terms of some known basis functions in the
state, a linear programming formulation for the IRL problem is presented, to pick the reward function
that maximally differentiates optimal policy from the other policies. This characterization of reward
functions demonstrates the general non-uniqueness of solutions to IRL problems.

In past two decades, there have been many algorithms proposed to tackle IRL problems. One
significant category of algorithms (MaxEntIRL) arises from the maximum entropy approach to
optimal control. In Ziebart [2010], IRL problems were linked with maximum causal entropy problems
with statistical matching constraints. Similar models can be found in Abbeel and Ng [2004]; Ziebart
et al. [2008], Levine et al. [2011] and Boularias et al. [2011]. A connection between maximum
entropy IRL and GANs has been established in Finn et al. [2016a]. Further related papers will be
discussed in the text below.

5In particular, for every pair of states s, s′, there needs to exist a finite sequence s = s1, s2, ..., sn = s′ of
states and a1, ..., an−1 of actions such that

∏n−1
k=1 T (sk+1|sk, ak) > 0. This is certainly the case, for example,

if we assume T (s′|s, a) > 0 for all s, s′ ∈ S and a ∈ A.
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In MaxEntIRL, one assumes that trajectories are generated6 with a law

P(τ) =
ρ(s0)

Z

∏
t

T (st+1|st, at)e
∑
t f(at,st)

for a constant Z > 0. Comparing with the distribution of trajectories from an optimal regularized
agent, this approach implicitly assumes that π(a|s) ∝ exp{f(a, s)}. Comparing with (6), this
is analogous to assuming the value function is a constant (from which we can compute Z) and
λ = 1. This has a concrete interpretation: that many IRL methods make the tacit assumption that the
demonstrator agent is myopic. As we shall see in Theorem 1, for inverse RL the value function can
be chosen arbitrarily, demonstrating the consistency of this approach with our entropy-regularized
agents. We discuss connections with MaxEntIRL further in Appendix C.

3.1 Inverse Markov decision problems

We consider a Markov decision problem as in Section 2. As discussed above, we assume that we
have full knowledge of S,A, T , γ, and of the regularization parameter λ and the entropy-regularized
optimal control πλ in (6), but not the reward function f .

Our first theorem characterizes the set of all reward functions f which generate a given control policy.
Theorem 1. For a fixed policy π̄(a|s) > 0, discount factor γ ∈ [0, 1), and an arbitrary choice of
function v : S → R, there is a unique corresponding reward function

f(s, a) = λ log π̄(a|s)− γ
∑
s′∈S T (s′|s, a)v(s′) + v(s)

such that the MDP with reward f yields a value function V π
∗
λ

λ = v and entropy-regularized optimal
policy π∗λ = π̄.

As a consequence of this theorem, we observe that the value function is not determined by the
observed optimal policy, but can be chosen arbitrarily. We also see that the space of reward functions
f consistent with a given policy can be parameterized by the set of value functions.
Remark 2. A simple degrees-of-freedom argument gives this result intuitively. There are n = |S|
possible states and k = |A| possible actions in each state, so the reward function can be described by
a vector in Rn×k . From the policy, which satisfies

∑
a∈A π(a|s) = 1 for all s, we observe n×(k−1)

linearly independent values. Therefore, the space of consistent rewards has n× k− n× (k− 1) = n
free variables, which we identify with the n values {v(s)}s∈S .
Remark 3. Ng et al. [1999] provides a useful insight to our result. In Ng et al. [1999] it is assumed
that the rewards are of the form F (St, At, St+1); for a fixed MDP, this adds no generality, as we
can write f(s, a) = E[F (s, a, St+1)|St = s,At = a]. Ng et al. [1999] show that, for any ‘shaping
potential’ Υ : S → R, the reward F̃ = F + γΥ(St+1)−Υ(St) yields the same optimal policies for
every (unregularized) MDP. However, shaping potentials do not describe the space of all rewards
corresponding to a given policy, for fixed transition dynamics. In our results, we instead parameterize
a family of costs f in terms of the value function (Theorem 1), and show these are the only costs
which lead to the given optimal policy for a fixed (regularized) MDP. We also note that Magnac and
Thesmar [2002] give a similar result to ours, using a different randomization of strategies.

Given Theorem 1, we see that it is not possible to fully identify the reward faced by a single agent,
given only observations of their policy. Fundamentally, the issue is that the state-action value function
Q combines both immediate rewards f with preferences v over the future state. If we provide data
which allows us to disentangle these two effects, for example by considering agents with different
discount rates or transition functions, then the true reward can be determined up to a constant, as
shown by our next result. In order to clearly state the result, we give the following definition.
Definition 1. Consider a pair of Markov decision problems on the same state and action spaces,
but with respective discount rates γ, γ̃ and transition probabilities T , T̃ . We say that this pair is
value-distinguishing if, for functions w, w̃ : S → R, the statement

w(s)− γ
∑
s′∈S
T (s′|s, a)w(s′) = w̃(s)− γ̃

∑
s′∈S
T̃ (s′|s, a)w̃(s′) for all a ∈ A, s ∈ S (7)

implies at least one of w and w̃ is a constant function.
6As discussed by Levine [2018], for deterministic problems this simplifies to P (τ) ∝ exp(

∑
t f(at, st)),

which is often taken as a starting point.

5



In this definition, note that constant functions w, w̃ are always solutions to (7), in particular for c ∈ R
we can set w ≡ c and w̃ ≡ (1− γ)c/(1− γ̃). However, this is a system of |A| × |S| equations in
2× |S| unknowns, so the definition will hold provided our agents’ actions have sufficiently varied
impact on the resulting transition probabilities. In a linear-quadratic context, it is always enough to
vary the discount rates (see Corollary 5).
Theorem 2. Suppose we observe the policies of two agents solving entropy-regularized MDPs, who
face the same reward function, but whose discount rates or transition probabilities vary, such that
their MDPs are value-distinguishing. Then the reward function consistent with both agents’ actions
either does not exist, or is identified up to addition of a constant.

Given the addition of a constant to f does not affect the resulting policy (it simply increases the value
function by a corresponding quantity), we cannot expect to do better than Theorem 2 without direct
observation of the agent’s rewards or value function in at least one state.
Remark 4. Definition 1 is essentially a statement regarding invertibility of a linear system of
equations forw, w̃. This indicates that the stability of rewards obtained using Theorem 2 is principally
determined by whether this linear system is well conditioned. This can be measured by the ratio of
its largest to second smallest singular values (the second smallest is due to the constant functions
always being in the kernel of the system) not being too large. Given the inevitable error arising from
statistical estimation of policies and transition functions, a well conditioned system is often a key
requirement in practice. A similar observation will also be valid for the uniqueness results in later
sections.
Remark 5. Our results show that it is typically sufficient to observe an MDP under two environments
(transitions and discount factors) in order to identify the reward. This can be contrasted with Amin
and Singh [2016] and Amin et al. [2017] who show that, if the demonstrator is observed in multiple
(suitably chosen) environments, the (state-only) reward can be identified up to a scaling and shift (the
scaling is natural, given they do not use an entropy regularization). Ratliff et al. [2006] consider a
finite number of environments, but explicitly do not attempt to estimate the ‘true’ underlying reward.

4 Finite horizon results

Over finite horizons, for general costs, similar results hold to those already seen on infinite horizons.
An entropy-regularized optimizing agent will use a policy π∗ = {π∗t }T−1

t=0 which solves the following
problem with terminal reward g and (possibly time-dependent) running reward f :

max
π

Eπs
[ T−1∑
t=0

γt
(
f(t, sτt , a

τ
t )− λ log πt(a

τ
t |sτt )

)
+ γT g(sτT )

]
.

For any π = {πt}T−1
t=0 , s ∈ S, a ∈ A, and t ∈ {0, . . . , T − 1} write

Qπt (s, a) = f(t, s, a) + γES′∼T (·|s,a)

[
V πt+1(S′)

]
,

V πt (s) = EA∼πt(·|s)
[
Qπt (s,A)− λ log πt(A|s)

]
, V πT (s) = g(s)

Then, similarly to the infinite-horizon discounted case discussed in the main text, we have V ∗T = g
and for t ∈ {0, . . . , T − 1},

Q∗t (s, a) = f(t, s, a) + γES′∼T (·|s,a)

[
V ∗t+1(S′)

]
,

V ∗t (s) = V π
∗

t (s) = λ log
∑
a′∈A

exp
{
Q∗t (s, a

′)/λ
}
,

π∗t (a|s) = exp
{
Q∗t (s, a)/λ

}/ ∑
a′∈A

exp
{
Q∗t (s, a

′)/λ
}

= exp

{(
Q∗t (s, a)− V ∗t (s)

)
/λ

}
.

Rearranging this system of equations, for any chosen function v : {0, ..., T} × S → R with
v(T, ·) = g(·), we see that π∗t (a|s) is the optimal strategy for the reward function

f(t, s, a) = λ log π∗t (a|s)− γ
∑
s′∈S
T (s′|s, a)v(t+ 1, s′) + v(t, s),

6



in which case the corresponding value function is V ∗ = v. In other words, the identifiability issue
discussed earlier remains. We note that identifying π in this setting is more delicate than in the
infinite-horizon case, as it is necessary to observe many finite-horizon state-action trajectories, rather
than a single infinite-horizon trajectory.

4.1 Time-homogeneous finite-horizon identifiability.

Following the release of a preprint version of this paper, Kim et al. [2021] was published and presented
a closely related analysis, for entropy-regularized deterministic MDPs with zero terminal value. We
here give an extension of their result which covers the stochastic case and includes an arbitrary
(known) terminal reward.

The key structural assumptions made by Kim et al. [2021] are that the reward is time-homogeneous
(that is, f does not depend on t), and that there is a finite horizon. As discussed in the previous section,
there is no guarantee that an arbitrary observed policy will be consistent with these assumptions (that
is, whether there exists any f generating the observed policy). However, given a policy consistent
with these assumptions, and mild assumptions on the structure of the MDP, we shall see that unique
identification of f is possible up to a constant.
Definition 2. We say a MDP has full access at horizon T (from a state s) if, for some distribution
over actions, for all states s′ we have P(ST−1 = s′|S0 = s) > 0.

It is easy to verify that this definition does not depend on the choice of distribution over actions
(provided it has full support).

This is slightly weaker than assuming that the Markov chain underlying the MDP (with random
actions) is irreducible, as there may exist transient states from which we have full access. It is a
classical result (commonly stated as a corollary to the Perron–Frobenius theorem) that an irreducible
aperiodic Markov chain has full access (from every state). Kim et al. [2021] give an alternative
graph-theoretic view, based on the closely related notion of T -coverings.
Theorem 3. Consider an MDP with unknown time-homogeneous reward function f . In order for
f to be identified (up to a global constant) from observation of optimal policies and the resulting
transitions up to some horizon T > 0, with initialization from some state s, it is necessary that the
MDP has full access at some horizon T ′ ≥ T (from state s).

The following definition is most easily expressed by associating our finite state space S with the set
of basis vectors {ek}Nk=1 ⊂ RN , and writing the transitions T (s′|s, a), for a ∈ A in terms of the
transition matrix T(a) with

T(a)ij = T (ej |ei, a).

While this definition is quite abstract, we will see that it precisely describes when many IRL problem
with fixed terminal reward can be solved.
Definition 3. We say an N -state MDP has full action-rank on horizon T , starting at a state s ≡ ei,
if the matrix with rows given by{

e>i

( T−1∑
t=0

γt
t−1∏
t′=0

T(at′)

)
; a0, ..., at ∈ A

}
is of rank N (with the convention that products are taken sequentially on the right, that is

∏2
t=0At =

A0A1A2, and the empty product is the identity).

Remark 6. Observe that e>i
∏t−1
t′=0 T(at′) is the expected state of St given S0 = ei, when following

the actions {a0, ..., at}. Hence, the quantity e>i
(∑T−1

t=0 γt
∏t−1
t′=0 T(at′)

)
is a time-weighted expected

occupation density for the process, that is, a measurement of how long we spend in each state. We
have full action-rank if our actions are sufficiently varied that there are N linearly independent such
density vectors (cf. [Kim et al., 2021, Corollary 1], where it is the state–action occupation density
which is considered).
Theorem 4. Suppose our MDP has full action rank and full access, at horizon T , from an initial state
s0. Then the time-homogeneous IRL problem is identifiable, that is, knowledge of the (time-dependent)
entropy-regularized optimal strategy π∗t (a|s), and the terminal reward g, is sufficient to uniquely
determine a time-homogeneous running reward f , if it exists, up to a constant.
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Conversely, if our MDP has full access but not full action rank at horizon T , from the state s0, the
IRL problem remains ill posed.

As a corollary, we demonstrate a generalized version of [Kim et al., 2021, Theorem 2].
Corollary 1. Suppose γ 6= 0 and our MDP is deterministic, that is T (s′|s, a) ∈ {0, 1}, and one of
the following holds:

(i) the underlying Markov chain is irreducible and aperiodic (i.e. with randomly chosen actions, the
underlying Markov chain is irreducible and aperiodic)

(ii) the initial state s0 = ei admits a self-loop (i.e. it is possible to transition from this state to itself),
and all states can be accessed from the initial state in at most d transitions

(iii) there exist cycles7 starting at the initial state s0 = ei with lengths |Q|, |Q′|, such that
gcd(|Q|, |Q′|) = 1, and all states can be accessed from the initial state in at most d transi-
tions.

Then there exists a horizon T such that the time-homogeneous IRL problem is identifiable (as in
Theorem 4). In particular, in case (ii), it is sufficient to take any finite T ≥ d+ 1; in case (iii) it is
sufficient to take any finite T ≥ d+RR′.

We can extend this result to a stochastic setting, assuming that our action space is sufficiently rich.
Corollary 2. Suppose γ 6= 0, and our MDP is stochastic and satisfies one of the sets of assumptions
((i), (iii) or (ii)) of Corollary 1 and that from every state, we have at least as many actions (with
linearly independent resulting transition probabilities) as we have possible future states, that is,

rank
{
T (·|s, a); a ∈ A

}
= #

{
s′ : T (s′|s, a) > 0 for some a ∈ A

}
.

Then for any initial state s0, there exists a horizon T such that the time-homogeneous IRL problem is
identifiable (as in Theorem 4). The sufficient bounds on T from Corollary 1 also apply.

This result also addresses a concern raised in Magnac and Thesmar [2002, Section 4.1], as it
demonstrates that, for sufficiently rich control problems, a time-homogeneity assumption on rewards
and the existence of a finite horizon is sufficient to guarantee identifiability.

5 Action-independent rewards

Earlier works such as Amin and Singh [2016], Amin et al. [2017], Dvijotham and Todorov [2010] and
Fu et al. [2018] consider the case of action-independent rewards, that is, where f is not a function of
a. In general, it is not immediately clear whether, for a given observed policy, the IRL problem will
admit an action-independent solution. In this section, we obtain a necessary and sufficient condition
under which an action-independent time-homogeneous reward function could be a solution to a given
entropy-regularized, infinite-time-horizon8 IRL problem with discounting. We shall also obtain a
rigorous condition under which a unique reward function can be identified.

Consider an entropy-regularized MDP environment (S,A, T , γ, λ), as given in Section 2. Without
loss of generality, assume that |S|, |A| ≥ 2 and S = {s1, . . . , s|S|}. Let π̄ : S → P(A) be the
observed optimal policy such that π̄(a|s) > 0 for any (s, a) ∈ S ×A.

For a ∈ A we write π̄(a) ∈ R|S| for the probability vector
(
π̄(a|s1) . . . π̄(a|s|S|)

)T
, and

T(a) ∈ R|S|×|S| for the transition matrix with [T(a)]ij = T (sj |si, a). Fix a particular action
a0 ∈ A, and write

∆ log π̄(a) = log π̄(a)− log π̄(a0) and ∆T(a) = T(a)− T(a0),

where log π̄(a) denotes the element-wise application of logarithm over the vector π̄(a), for any
a ∈ A.

7A cycle is a sequence of possible transitions which start and end in the same state. The length of a cycle
is defined to be the number of transitions, e.g. a cycle {s0 → s1 → s2 → s0} has length 3. An irreducible
Markov chain is aperiodic if there is no common factor (greater than one) of the lengths of all cycles.

8The analogous results for finite-horizon problems with time-inhomogeneous rewards (and general discount
factor) can be obtained through the same method.
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Theorem 5. The above IRL problem admits a solution with action-independent reward f : S → R if
and only if the system of equations

λ∆ log π̄(a) = γ∆T(a)υ, ∀a ∈ A, (8)

admits a solution υ ∈ R|S|. (Note that this is a system of |A| × |S| equations in |S| unknowns, so
this is a non-trivial assumption.)

Corollary 3. Suppose γ ∈ [0, 1). Assuming a solution to (8) exists, the IRL problem is identifiable
(i.e. the true action-independent reward function can be inferred up to a constant shift) if and only if,
writing K(a) for the kernel of ∆T(a), we know that

{c1 : c ∈ R} =
⋂

a∈A\{a0}

K(a) =
⋂
a∈A
K(a),

where 1 denotes the all-one vector in R|S|. (Note that {c1 : c ∈ R} ⊂ K(a) for any a ∈ A \ {a0}
and ∆T(a0) = 0 implies K(a0) = R|S|.)

Under the entropy regularized framework, the long-run total reward depends on actions through the
entropy penalty term. Therefore, it cannot be reduced to the scenario in Amin and Singh [2016],
where any linear perturbation of the reward function will not affect optimal behavior under any given
environment.

Remark 7. Theorem 5 and Corollary 3 suggest various extensions, in the case when (8) does not
admit a solution, but the assumed property on the kernels in Corollary 3 holds. For example, one
could consider the least-squares solution to the system (8) (which is defined up to a constant). This
gives a choice of value function which, in some sense, minimizes the action-dependence of the
resulting cost function (obtained through Theorem 1).

Fu et al. [2018] give a result similar to Corollary 3. Unfortunately, the role of the choice of actions in
their conditions is not precisely stated, and on some interpretations is insufficient for the result to
hold – as we have seen, the condition of Corollary 3 is both necessary and sufficient for identifiability.
We give a variation of their assumptions in what follows.

Definition 4 (Reward-decomposability). We say states s1, s
′
1 are ‘1-step linked’, if there exist actions

a, a′ ∈ A and a state s0 ∈ S such that T (s1|s0, a) > 0 and T (s′1|s0, a
′) > 0. We extend this

definition through transitivity, forming a set of ‘linked’ states S1. We say say the MDP is reward-
decomposable if all its states are linked.

Note that there is no loss of generality if a specific a′ is selected in this definition (instead of being
allowed to vary), provided a is allowed to vary.

Remark 8. An equivalent definition would be that our MDP is reward-decomposable if S1 = S is
the only choice of nonempty set S1 ⊂ S such that: there exists a set S0 ⊂ S with (i) every transition
(with any action) to S1 is from S0, and (ii) every transition from S0 is to S1. (In other words, Xt ∈ S0

if and only if Xt+1 ∈ S1.) We note that Fu et al. [2018] simply call this property ‘decomposable’,
but this seems an unfortunate choice of terminology given this alternative characterization.

The following final corollary gives a simple set of conditions under which identification is possible,
clarifying (and extending to the stochastic case) the result of [Fu et al., 2018, Theorem C.1].

Corollary 4. Suppose our MDP either has deterministic transitions T (s′|s, a) ∈ {0, 1} or we have
at least as many actions (with linearly independent resulting transition probabilities) as we have
possible future states, that is,

rank
{
T (·|s, a); a ∈ A

}
= #

{
s′ : T (s′|s, a) > 0 for some a ∈ A

}
.

Then the (action-independent) IRL problem is identifiable (i.e. the true action-independent reward
function can be inferred up to a constant shift) if and only if the MDP is reward-decomposable.

It is clear that reward-decomposability is not, by itself, sufficient to guarantee identifiability of
rewards – simply consider the trivial MDP with action space containing only one element (so no
information can be gained by watching optimal policies) but all transitions are possible (so the MDP
is reward-decomposable).

9



The necessity of reward-decomposability, in general, can easily be seen as follows: Suppose there
are sets S0,S1 ⊂ S such that every transition from a state in S0 (under every action) is to a state in
S1, and every transition to a state in S1 is from S0. Then, if we add c ∈ R to the reward in S0 \ S1,
subtract c/γ from the reward in S1 \ S0, and add (1− 1/γ)c to the reward in state S0 ∩ S1, we will
have no impact on the overall value or optimal strategies. A reward-decomposability assumption
ensures S1 = S (which implies S0 = S as every transition into S1 must be from a state in S0), so
this is simply a constant shift; otherwise, we see our IRL problem is not identifiable.
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