
Reimagining ABM with LLM Agents via Shachi

So Kuroki 1 Yingtao Tian 1 Kou Misaki 1 Takashi Ikegami 2 Takuya Akiba 1 Yujin Tang 1

Abstract

Large language models (LLMs) are increasingly
used as agents in agent-based modeling (ABM)
to simulate complex social and economic be-
haviors. However, existing implementations of-
ten rely on minimal wrappers around LLMs,
lacking structure, modularity, and support for
reuse, hindering reproducibility, generalization
and exploratory research. We introduce Shachi
(鯱), a general and modular agent framework
for building and evaluating LLM-driven agents
in ABM. Shachi defines a standardized archi-
tecture comprising four core components (LLM,
tools, memory, and configuration) and supports
clear agent-environment and agent-agent inter-
actions. To evaluate its effectiveness, we pro-
vide a benchmark suite of tasks spanning three
levels of complexity, from single-agent behav-
ior to multi-agent communication. Using Shachi,
we reproduce prior LLM-based ABM studies,
conduct systematic agent-task cross-evaluations,
and demonstrate novel exploratory study results.
Shachi enables scalable, reusable, and insightful
research at the intersection of LLMs and ABM
for social science, and is released as an open-
source toolkit. Code: https://anonymous.
4open.science/r/bench-F6E7

1. Introduction
Agent-based modeling (ABM) is a widely used methodol-
ogy for simulating complex systems through the interactions
of autonomous agents, and has been applied to fields such
as economics, sociology, and political science (Gilbert &
Terna, 2000; Gilbert, 2019; Davidsson, 2002). By enabling
researchers to explore emergent phenomena and counter-
factual scenarios, ABM offers a powerful tool for both
theory-building and policy experiments. However, tradi-
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tional ABMs often rely on handcrafted rules and heuristics,
which can limit realism and interpretability.

Recently, large language models (LLMs) have demonstrated
impressive capabilities across a wide range of reasoning,
planning, and decision-making tasks (Guo et al., 2025; Ko-
jima et al., 2022; Achiam et al., 2023), leading to a surge of
interest in deploying them as agents (Park et al., 2023; Gao
et al., 2024; Wang et al., 2024; Anthropic, 2024; Surapaneni
et al., 2025). This momentum has naturally extended into
ABM (Li et al., 2024; Yang et al., 2024; Wu et al., 2023;
Manning et al., 2024), raising hopes that LLMs could alle-
viate the brittleness and manual effort of traditional agent
behavioral designs. Yet, a critical challenge remains: when
used out-of-the-box, LLMs often fail to mimic realistic hu-
man behavior, undermining the reliability and interpretabil-
ity of simulation outcomes. As interest in LLM-based agents
continues to grow, their design and deployment in ABM
demand more structured, careful approaches.

Despite the growing interest in using LLMs for ABM, there
is currently no general framework that supports the design,
evaluation, and reuse of LLM-based agents for ABM. Most
existing works rely on thin wrappers around LLMs, typi-
cally using prompt engineering to simulate agent behavior
without memory, tool-use, or configurable components. As
a result, these ad hoc designs are often tailored to specific
tasks, making it difficult to reproduce results, compare meth-
ods, transfer agents across domains, or conduct exploratory
research. This fragmentation slows progress and raises the
barrier for researchers entering the field. What is missing is
a unified, modular framework that not only standardizes the
internal architecture of LLM agents but also supports rich,
extensible behaviors through components like tool-use and
persistent memory.

To address these challenges, we propose Shachi (鯱) a gen-
eral and modular agent framework for LLM-based ABM.
Shachi introduces a standardized agent architecture built
around four key components: the LLM itself, configs that
define agent behaviors and constraints, tools that extend its
capabilities, and memory for maintaining context and conti-
nuity. While Shachi supports a Gym-style (Brockman et al.,
2016) interface for agent-environment interaction, one of its
core contributions lies in organizing and modularizing the
internal structure of LLM agents. This abstraction allows
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Figure 1: Unifying LLM-based ABM Research with Shachi. Shachi is a general agent framework with a benchmark
suite that accelerates social science research through LLM-based agents in ABM. Shachi facilitates research in this space
by providing 1⃝ A unified agent architecture that standardizes core components (LLM, memory, tools, configuration) for
modular and reproducible design; 2⃝ Cross-task generalization that allows extensive evaluation of different agent designs;
and 3⃝ Support for rich exploratory studies such as backend LLM swap, memory transfer and agents living across multiple
worlds, enabling complex, layered simulations of human-like behavior.

end-users to focus on the logic and implementation of each
component without needing to manage low-level orchestra-
tion or integration. As a result, Shachi enables rapid exper-
imentation, encourages the reuse of existing components,
and lowers the barrier for building complex, human-like
agents in simulation.

Another core contribution of Shachi is the inclusion of ten
benchmark tasks with broad coverage, curated to facilitate
LLM-based ABM research. These tasks, ported from prior
work, are organized into three levels of complexity. Level I
consists of single-agent tasks designed to assess how closely
an LLM agent can emulate individual human behavior in
isolation. Level II progresses to multi-agent scenarios with-
out direct communication, focusing on the emergence of
social dynamics and patterns when multiple agents interact
indirectly within a shared environment. Finally, Level III
introduces inter-agent communication, enabling richer sim-
ulations of real-world social and economic systems where
coordination, negotiation, and shared context play a critical
role. These progressively structured tasks allow researchers
to evaluate agent behavior at increasing levels of complex-
ity and realism, and provide a common testing ground for
comparing different agent designs.

Figure 1 provides an overview of our proposal. Our key
contributions are summarized below:

• Framework Provision We introduce Shachi, a unified
framework for LLM-based ABM research. To demon-
strate its versatility and robustness, we port and reproduce
several existing LLM-based ABM studies using diverse
agent designs and task structures. This validates Shachi
as a reliable foundation for future research and enables
broader access to prior work.

• Agent Design Evaluation By decoupling agents from
tasks via a unified interface, Shachi allows agents devel-

oped for one setting to be applied to others. This enables
systematic cross-evaluation of agent designs, revealing
that some are more robust and generally effective across
tasks, a critical insight for advancing the field.

• Enabling Novel Inquiries Shachi supports exploratory
experiments that go beyond reproduction or benchmark-
ing. We demonstrate studies involving backend LLM
swaps, memory persistence across lives, and cross-
environment interactions, highlighting how the frame-
work supports complex, layered investigations into emer-
gent behaviors.

2. Related Works
ABM is a computational approach to simulate interactions
among autonomous agents within complex systems, en-
abling the study of emergent behaviors and social dynam-
ics (Gilbert, 2019). From a computer science perspective,
ABM integrates agent-based computing, social sciences,
and computer simulation, fostering cross-disciplinary re-
search (Davidsson, 2002). In social sciences, ABM serves
as a “third way” of research, complementing argumentation
and formalization by enabling the modeling of complex pro-
cesses and emergent phenomena (Gilbert & Terna, 2000).
In economics, ABM has evolved into agent-based compu-
tational economics, modeling dynamic economic systems
and revealing insights into market behaviors like strategic
interactions and collective learning (Tesfatsion, 2006; Tesfat-
sion & Judd, 2006). Enhancements in agent design through
behavioral economics and empirical data integration have
made ABM simulations more realistic and applicable to
complex social and economic systems (Steinbacher et al.,
2021). Please refer to Appendix E.1 for additional related
works on conventional ABM. With its wide-ranging ap-
plications, ABM remains a promising research area and
motivates our work.
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Recently, integrating LLMs into ABM has emerged as a
promising direction to enhance the realism and adaptabil-
ity of agents by improving environment perception, hu-
man alignment, action generation, and evaluation (Gao
et al., 2024; Nisioti et al., 2024). For example, Psy-
choBench (Huang et al., 2023) evaluates psychological
traits; generative agents (Park et al., 2023) simulate inter-
active social behaviors; and OASIS (Yang et al., 2024),
Sotopia (Zhou et al., 2024), and EconAgent (Li et al., 2024)
extend these ideas to large-scale simulations and economic
and social reasoning. In the agent-based market domain,
models like StockAgent (Zhang et al., 2024) and Auc-
tionArena (Chen et al., 2023) test strategic and adaptive
decision-making. See Appendix E.2 for more related works.
These studies demonstrate that LLM-based agents enhance
the fidelity and versatility of ABM across a range of com-
plex scenarios. However, while these studies showcase the
potential of integrating LLMs into ABM, they typically lack
a standardized and modular framework for designing, evalu-
ating, and reusing LLM-based agents, which this work aims
to provide. Concurrent efforts such as MLE-Dojo (Qiang
et al., 2025) provide a framework that focuses on iterative
machine learning engineering workflows, offering valuable
insights into LLM training and evaluation protocols, albeit
outside the social simulation and ABM context.

3. Shachi
Shachi provides a standardized and modular framework
for developing and evaluating LLM-based agents in ABM.
Figure 2 presents an overview of the system architecture,
highlighting how agents interact with environments through
observations, actions, and communication (see Section 3.1),
and how their internal behavior is governed by four key
components (see in Section 3.2). Additionally, Shachi sup-
ports structured experimentation across three levels of social
complexity (see Section 3.3), providing a unified foundation
for rigorous and insightful ABM research with LLMs.

3.1. Interaction Design

The design of agent and environment interaction is central
to Shachi, covering both the interaction between agents and
their environments as well as the communication among
agents themselves. All information required for decision-
making, such as details on available tools and the expected
response format, is passed from the environment to the agent.
This design lets agents be implemented in an environment-
agnostic manner, enabling those built with Shachi to be
evaluated across diverse environments immediately.

Shachi’s environment-agent interface takes inspiration from
OpenAI Gym. At each time step, the environment issues
observations to each agent, and agents respond with ac-
tions. These actions, typically in the form of free text or

structured outputs, are returned to the environment which
processes them to advance the simulation state. As with
Gym, the simulation proceeds in discrete steps, guided by
environment’s STEP() and RESET() methods (see example
in Appendix C.1). However, unlike Gym’s fixed action
spaces, Shachi supports highly expressive agent outputs
and rich observations that include messages, tools, and re-
ward signals. A distinguishing feature of Shachi is that
actions refer to decisions whose outcomes are realized in
the subsequent steps. In contrast, interactions that require
immediate feedback, such as querying a database or ask-
ing another agent a question, are not regarded as actions
and are typically implemented as tool calls (see example in
Appendix C.2) or environment-mediated message passing
within the same time step. Taking stock trading as an exam-
ple, buying/selling a stock is an action since its outcomes
(i.e., price movement) are what we care about in the task
and are produced in the next step, whereas using tools to
check the price of related stocks is not regarded as an action.

A notable design in Shachi is how agent-agent interactions
are implemented through the environment. Instead of direct
function calls between agents, Shachi encourages indirect
interaction via message passing and environment-mediated
utilities. For example, an environment may expose a func-
tion that allows one agent to send a message to another (this
is the case in the OASIS task in our benchmark suite, where
an agent talks to others via an environment-specific COM-
MENT_TO() function). These interactions are then embed-
ded into the observation space and used to simulate realistic
social dynamics such as broadcasting, targeted messaging,
or asynchronous communication.

To ensure responses are produced in the required format
without degrading LLM performance or causing parse er-
rors, we make use of API features such as structured outputs
and function calling, along with strategies like two-step pars-
ing (see Appendix C.3 for more details). During interactions,
agents make decisions based on both immediate observa-
tions and long-term goals or memory. This closely mirrors
human decision-making, where individuals act based on
both current context and prior experience, and is an essen-
tial quality for studying realistic social phenomena in ABM.
Their behavior is shaped by four of Shachi’s core compo-
nents discussed below.

3.2. Core Agent Components

Agents in Shachi are built from four modular components,
each of which is inspired by principles in cognitive science
and designed for extensibility and experimentation.

LLM serves as the agent’s central behavior generator. Just
as human cognition is shaped by language-based reasoning
and internal narration (Vygotsky, 2012), LLMs simulate this
process by converting observations into natural language or
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Figure 2: Shachi Overview. Each agent is composed of four core components that are organized to simulate realistic,
persistent behavior. Agents are installed through task-specific specifications from the environment and task-agnostic ones
from agent design (left). The environment mediates both agent-environment interactions and inter-agent communications
via structured messages and facilitates simulation. Agents receive immediate feedback via tool interfaces (middle). Shachi
supports extensible, reproducible and task-agnostic agent design, enabling rich simulations across diverse ABM tasks in
three levels, for single agent, multiple individual agents and multiple interacting agents scenarios respectively (right).

structured responses. In Shachi, the agent turns an observa-
tion into a prompt and forwards it to the LLM, which returns
an action or message. We support flexible backend substi-
tution, allowing calls to both proprietary APIs and open-
source models. Each LLM call is invoked asynchronously,
enabling efficient simulation through parallelism.

Configs component defines an agent’s identity, constraints,
and behavioral tendencies. Much like psychological traits or
roles in human society (McCrae & Costa Jr, 1997), configu-
rations govern how an agent interprets tasks and responds
to stimuli. In Shachi, this component can be implemented
via prompting strategies or dynamic LoRA (Hu et al., 2022)
module loading, which influence LLM decision thresholds
or tool access policies. This abstraction allows researchers
to simulate diverse agent archetypes or heterogeneous popu-
lations with varying roles or incentives.

Memory models contextual persistence, enabling agents
to maintain coherence over time. Similar to human work-
ing and episodic memory, Shachi’s memory module allows
agents to retrieve relevant past interactions and incorpo-
rate them into current decisions. This is critical for simu-
lating agents with evolving goals, personalities, or social
bonds (Park et al., 2023). Memory implementations in
Shachi are abstracted to support various strategies, from
simple buffer-based recall to more sophisticated retrieval-
augmented or embedding-based approaches. Researchers
can modify the memory capacity, retrieval method, or even
make memory learnable.

Tools component provides agents with access to external
functions or services, reflecting how humans use tools and
technologies to augment cognitive tasks (Norman, 2014).

Cognitive science considers tool use a hallmark of intelli-
gent behavior, allowing agents to transcend their intrinsic
limitations. In Shachi, tools are provided by environments
(task-specific) or from researchers’ toolbox (task-agnostic),
and are defined with a name, a schema describing their pa-
rameters, and a callable function that executes the desired
operation. Agents autonomously decide whether and when
to use these tools, along with which arguments to supply,
making tool use part of their decision-making process. This
component enables researchers to introduce new tools to
simulate domain-specific capabilities, context-sensitive en-
vironment interactions, or even social interactions.

3.3. Benchmark Suite

To support systematic evaluation of LLM-based agents in
ABM settings, we port ten tasks from prior work to form
a benchmark suite, and organize them into three levels of
interaction complexity. We describe the scope and example
tasks for each level below (detailed in Appendices A and B).

Level I tasks involve single-agent behavior in isolation.
These environments are designed to assess how closely
an individual LLM-based agent can resemble a human
when placed in simple, controlled settings. Such tasks
offer a clean setup for probing human-likeness in reason-
ing and behavior, without interference from social con-
text. They are useful for early-stage model validation, fine-
tuning experiments, and persona calibration. Shachi in-
cludes PsychoBench (Huang et al., 2023), CoMPosT (Cheng
et al., 2023), CognitiveBiases (Koo et al., 2024), Emotion-
Bench (Huang et al., 2024) and EmergentAnalogies (Webb
et al., 2023) at this level.
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Level II tasks introduce multiple agents into shared envi-
ronments, but without direct communication. This level as-
sesses agents’ behaviors when only centralized information
is available, and evaluates the agent’s capacity to interpret
centralized observations and adapt to emergent dynamics.
Such settings are useful for studying social behaviors like
implicit coordination or competition, where agents must
infer the presence and influence of others indirectly. Tasks
include EconAgent (Li et al., 2024), StockAgent (Zhang
et al., 2024) and AuctionArena (Chen et al., 2023).

Level III tasks involve rich multi-agent communication.
Agents exchange messages (mediated through the environ-
ment) and must engage in higher-level social behaviors
such as negotiation, teaching, coalition formation, or joint
planning. This level tests the interplay between language,
memory, and interaction history, and enables the simulation
of sophisticated social structures. Evaluation can include
both quantitative performance metrics and qualitative as-
sessments of realism, coherence, or fairness. In Shachi, we
include OASIS (Yang et al., 2024) and Sotopia (Zhou et al.,
2024) as examples at this level.

Together, these benchmark levels offer a structured, extensi-
ble platform for studying the performance and behavior of
LLM agents across a wide range of ABM settings. These
examples serve as starting points for researchers to design
their own ABM tasks. Researchers can reuse the provided
tasks or contribute new ones following the unified interface.

4. Experiments
To demonstrate Shachi as a useful framework for LLM-
based ABM, we identify three key factors:

• Reproducibility A credible framework should allow re-
searchers to efficiently reimplement existing LLM-based
ABM studies with minimal overhead while preserving
the original behaviors and outcomes. We verify this by
porting ten representative prior works into Shachi and
evaluating how faithfully their qualitative and quantita-
tive results can be reproduced (see Section 4.1).

• Comparability By decoupling agents from specific tasks,
a unified framework such as Shachi allows controlled
comparisons of how different design choices affect agent
behavior and task performance. We assess this by testing
agents developed for one benchmark in others, revealing
which designs generalize effectively (see Section 4.2).

• Explorativeness Beyond replication, a useful framework
should facilitate new insights, enabling researchers to ex-
plore emergent dynamics and generate hypotheses about
complex social and economic behavior. We showcase
this by analyzing novel agent behaviors and patterns that
arise in Level II and III settings (see Section 4.3).

4.1. Reproducing Prior Works

Experimental Setup We selected eight out of the ten
tasks for reproduction. These tasks were chosen primarily
because they report concrete, quantitative metrics that make
it feasible to assess reproduction fidelity in a principled way.
All agents were implemented within Shachi using modular
combinations of LLM, memory, tools and configuration
components, preserving as much of the original behavioral
logic as possible. The baselines are variations of the original
agents (e.g., removing all the components and making it a
thin wrapper of LLM) or agents with randomized behaviors.
We refer the reader to Appendix B.1 for detailed settings.

Experimental Results Table 1 shows the reproduction
error for all selected tasks, measured by mean absolute error
(MAE) between the original and the reproduced results.
Across all tasks, Shachi achieves consistently lower error
than the baseline, often by a large margin. This indicates that
Shachi accurately preserves the original agents’ quantitative
outputs, validating its reliability.

While Table 1 provides an aggregated view of reproduction
fidelity, we also present “zoomed-in” results in Figure 3
to illustrate how well Shachi captures the dynamics of the
original simulations. On the left, we visualize the price
trajectories of two stocks in the StockAgent task, showing
a close match between the original and Shachi-reproduced
trends over time. On the right, we show that Shachi also
replicates behavior patterns during the sequential auction
of ten items, as shown in the heatmap of priority scores for
the remaining items across bidding rounds in AuctionArena.
These qualitative visualizations reinforce that Shachi not
only matches the original quantitative outputs but also cap-
tures the underlying temporal and structural patterns.

4.2. Cross-Task Agent Generalization

Experimental Setup In this setting, we fixed the
underlying LLM across all experiments to GPT-4o
(gpt-4o-2024-08-06) (Achiam et al., 2023) to ensure
consistency, and applied agents originally developed for one
task to other tasks. In particular, we study how the pres-
ence or absence of configuration, memory, and tool modules
affects an agent’s ability to generalize.

We include four agents/tasks in this experiment. Note that
the evaluation metrics are task-dependent (see Appendix B),
but all scores are normalized relative to each agent’s in-
domain performance. Agents differ in composition accord-
ing to the task they were originally designed for. For exam-
ple, the agent in EmergentAnalogies consists of an LLM
component without any additional structure, while StockA-
gent includes all components. By evaluating how well each
agent performs when deployed in a new task, we aim to un-
derstand whether components help or hinder generalization.
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Table 1: Reproduction Results. We report the mean absolute error (MAE) for the ported tasks. Shachi constantly achieves
lower errors when compared with the baselines.

PsychoBench CoMPosT CognitiveBiases EmotionBench
Baseline 1.96 0.23 0.24 13.82
Shachi (Ours) 0.80 0.06 0.04 3.37

EmergentAnalogies StockAgent AuctionArena Sotopia
Baseline 0.64 9.07 10.49 3.17
Shachi (Ours) 0.05 2.63 2.22 0.95
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Figure 3: Reproducing System Dynamics. Left: Evolution of the two stock prices in StockAgent, comparing the original
study with our Shachi reproduction; Right: Reported versus reproduced heatmaps of mean priority scores and their changes
before each bidding round in AuctionArena (descending). Together, these results illustrate how well Shachi captures the
dynamics of the original simulations.

Experimental Results We report the normalized perfor-
mance of each agent-task pairing in Table 2. Each column
corresponds to a target task, and each row to an agent, with
its components listed in the parentheses. Scores are normal-
ized such that the in-domain performance (diagonal entries)
is always one, allowing for easier interpretation of relative
effectiveness across tasks.

Two immediate observations emerge from the table: (1) The
EmergentAnalogies task requires only a minimal agent con-
sisting solely of an LLM without additional components. As
a result, all agents’ performance is similar on this task. This
suggests that when the target task is simple and does not
require auxiliary capabilities like tool use or configuration
adaptation, minimalist agents can generalize sufficiently
well. (2) Sotopia represents a complex multi-agent commu-
nication setting that originally uses memory. We expected
the performance from an EmergentAnalogies to be different
from the other three agents on this task due to the lack of a
memory module, but to our surprise, all transferred agents
achieve values close to 1. One possible explanation is that
memory was not effectively leveraged even in the original
setup, or that the LLM’s intrinsic context window suffices
for short-term coherence.

More nuanced patterns appear in the mid-table entries. For
example, the agent from StockAgent includes all four com-
ponents and transfers reasonably well to all other tasks (2nd
row). On the other hand, the agent from AuctionArena
demonstrated similar performance on tasks except for Stock-

Agent (3rd row), which requires tool usage, a component
that the AuctionArena agent does not have. These results
suggest that the presence or absence of the tool component
leads to the observed behavioral differences.

4.3. Exploratory Studies

Shachi’s modular structure enables exploratory investiga-
tions that go beyond reproduction and transfer. We highlight
three studies that analyze how different backend LLMs af-
fect agent behavior, examine whether memory carried across
simulations can alter behavior or characteristics, and demon-
strate how complexity can be built gradually in Shachi by
making agents live in multiple worlds.

4.3.1. IMPACT OF BACKEND LLMS

Experimental Setup For EconAgent, we replaced the sin-
gle model in the original study with widely used models. All
other settings remain unchanged: an economy of 100 sim-
ulated agents evolves over 240 months, and we track both
standard macro-indicator trajectories and the emergence
of two canonical macroeconomic regularities: the Phillips
Curve (Phelps, 1967) and Okun’s Law (Okun, 1963).

Experimental Results Figure 4 visualizes how the choice
of backend LLM affects macroeconomic patterns and in-
dicators. All LLM-based agents collectively show behav-
iors in accordance to both Phillips Curve and Okun’s Law.
Nonetheless, the curves differ in detail: intercept shifts in
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Table 2: Cross-Task Agent Generalization. Scores in each column are normalized against the one on the diagonal. Agents
with all the components (i.e., StockAgent) maintain stable performance when transferred to other tasks.

EmergentAnalogies StockAgent AuctionArena Sotopia
EmergentAnalogies 1.00 1.08 0.62 1.01
StockAgent (config, mem, tool) 1.01 1.00 0.99 1.00
AuctionArena (config, mem) 1.00 0.93 1.00 0.99
Sotopia (mem) 1.00 0.93 0.92 1.00

the Phillips Curve point to varying baseline unemployment
rates, while slope changes in Okun’s Law indicate differ-
ing GDP-unemployment trade-offs. Moreover, although
most LLM backends produce similar variations of indica-
tors, GPT-4.1 Nano yields consistently higher unemploy-
ment, and GPT-4.1 delivers markedly stronger GDP growth.
Our Shachi framework’s modular separation of concerns
allows easy backend change with a single configuration line,
unlike ad-hoc setups, where replacing the LLM typically
means re-implementing or realigning several parts of the
agent pipeline. This streamlined flexibility enables cleaner
comparisons and faster iteration, like what we find here.
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Figure 4: Impact of Different LLMs. Macroeconomic
regularities and indicators in EconAgent. All LLM-based
agents collectively show correct behaviors in regularities
and similar indicators, yet emerging behaviours differ in
details, showing characteristics of different LLMs.

4.3.2. CARRYING MEMORY TO THE NEXT LIFE

Experimental Setup In these studies, we used GPT-4o-
mini as our LLMs and transferred agents from OASIS and
EconAgent tasks without clearing their memories (i.e., their
stream memories contain the observations and experiences
from these tasks) to the CognitiveBiases task. The exper-
iments were conducted multiple times to gauge statistical
significance in our findings.

Experimental Results Figure 5 shows that carry-over
memories alter performance in the CognitiveBiases task.
Notably, memories from OASIS and EconAgent lead to dis-

tinct shifts in cognitive biases. Among the largest changes,
in OASIS, short-term reactions and community pressure
could amplify Hyperbolic Discounting and In-Group Bias.
Agents learned to heavily prioritize immediate feedback
(leading to higher hyperbolic discounting) and reinforce
group identities (raising in-group bias). In EconAgent, re-
peated interactions and asset ownership may heighten the
Endowment Effect while diminishing Loss Aversion and Sur-
vivorship Bias. Because agents regularly gain experience
with actual gains and losses, they become more attached to
assets they already hold (leading to a stronger endowment
effect) and become less sensitive to losses and optimistic
success rates (lowering loss aversion and survivorship bias).

4.3.3. LIVING IN MULTIPLE WORLDS

Experimental Setup We introduce a set of shared agents
that operate across two distinct environments: StockAgent
and OASIS. Unlike typical settings where agents act in
only one environment, agents here cycle between both. In
each cycle, agents first observe the StockAgent environment,
make trading decisions, and act. Then, the group moves
to OASIS, where agents observe the social media, respond,
and act. This loop repeats, with each agent carrying in-
ternal states across environments, allowing knowledge or
strategies learned in one context to influence behavior in the
other. StockAgent settings follow those in Section 4.1, with
stock A representing a 10-year chemical stock and stock B
representing a 3-year tech stock. The OASIS environment
is described in Appendix B.1.10, where the main topic is
about Amazon’s newly established physical stores.

Experimental Results We found that allowing agents to
participate in multiple environments lead to emergent be-
haviors that reflect cross-domain influence. Figure 6 shows
that, with OASIS present, stock prices rise less than in the
StockAgent-only setting. This is surprising to us, as we
expected that introducing the Amazon topic would cause
agents to buy more of the tech-related stock B, leading to
a surge in its price. On the other hand, Table 3 gives more
detailed information under the hood: (1) Introducing social
media increased market activity, as is evidenced by the in-
creased volume in both stocks; (2) The introduced Amazon
topic caused agents to show more willingness to buy the tech
stock and to become reluctant to sell, which is supported by
the increase in #Buys and the decrease in #Sells for stock B;
(3) In contrast, this topic increased both the willingness to
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Figure 5: Memory-transfer-induced Differences in the CognitiveBiases Task. For each bias, the difference is calculated
as the score obtained with carry-over memory minus the score obtained with a fresh memory. Statistically significant
differences are indicated with star-shaped markers.
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Figure 6: Comparison of Price Movements.

Table 3: Change in Key Indicators. Volume refers
to the number of matched orders, while #Buys/#Sells
are the numbers of submitted buy/sell orders. Changes
are computed as the difference between treatment (w/
OASIS) and control (w/o OASIS) conditions.

Indicator %∆ (Stock A) %∆ (Stock B)

Volume +10.0% +20.0%
#Buys +8.4% +6.1%
#Sells +6.6% -8.5%

buy and sell stock A. This information is more in line with
our intuition than with the price movements.

In terms of agent behavioral changes in OASIS, we observe
that some agents began tweeting about Amazon stock, blend-
ing financial observations with social commentary. Other
agents responded with comments, echoing and endorsing the
post, suggesting that economic actions in one environment
can organically propagate into social discourse in another.
Please refer to Section B.2 for the posts and comments.

Our results (averaged over three independent trials) in this
experiment reveal that while agent-level behaviors align
with intuitive financial logic, system-level outcomes do not
necessarily follow, highlighting the importance of empirical
simulation in social science research. At the same time, our
exploratory study demonstrates Shachi’s capacity for rich,
layered simulations by supporting agents that live across
multiple interconnected worlds.

5. Conclusion
Summary In this paper, we introduced Shachi, a general
and modular framework for building LLM-based agents
in ABM. Shachi standardizes agent architecture into four
components (LLM, tools, memory, configuration) and sup-

ports structured interactions with the environment and other
agents. Through experiments, we demonstrated that Shachi
enables reproducible implementation of prior studies, facil-
itates agent design evaluation via cross-task transfer, and
supports exploratory studies that uncover new insights into
social and economic behaviors.

Limitation While Shachi defines four core components
that structure the agent’s behavior, they may fall short for
autonomous agents in complex settings. Currently, agent
behavior is shaped mainly through prompting, which can
guide short-term actions but lacks persistence or internal
consistency. As a result, important elements like motiva-
tional systems or long-term value alignment are not explic-
itly modeled.

Future Works Introducing persistent internal state, such
as a learnable value system or motivational model, may be
an effective way to address the limitation. This would allow
agents to develop and adapt preferences or goals over time,
beyond what can be encoded through prompting alone. In
addition, expanding Shachi to support multi-modal environ-
ments and interactions is also an interesting direction for
future works, enabling more realistic and immersive simula-
tions that reflect the richness of real-world social behavior.

8



Submission and Formatting Instructions for ICML 2025

References
Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I.,

Aleman, F. L., Almeida, D., Altenschmidt, J., Altman, S.,
Anadkat, S., et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

Anderson, P. W. The economy as an evolving complex
system. CRC Press, 2018.

Anthropic. Introducing the model context pro-
tocol. https://www.anthropic.com/news/
model-context-protocol, 2024. Accessed:
2025-05-09.

Arthur, W. B. Inductive reasoning and bounded rationality.
The American economic review, 84(2):406–411, 1994.

Axelrod, R. The dissemination of culture: A model with
local convergence and global polarization. Journal of
conflict resolution, 41(2):203–226, 1997.

Axelrod, R. and Hamilton, W. D. The evolution of coopera-
tion. science, 211(4489):1390–1396, 1981.

Axtell, R. L. Zipf distribution of us firm sizes. science, 293
(5536):1818–1820, 2001.

Bonabeau, E. Agent-based modeling: Methods and tech-
niques for simulating human systems. Proceedings of the
national academy of sciences, 99(suppl_3):7280–7287,
2002.

Bonnotte, N. Unidimensional and evolution methods for
optimal transportation. PhD thesis, Université Paris Sud-
Paris XI; Scuola normale superiore (Pise, Italie), 2013.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,
Schulman, J., Tang, J., and Zaremba, W. Openai gym.
arXiv preprint arXiv:1606.01540, 2016.

Chen, J., Yuan, S., Ye, R., Majumder, B. P., and Richardson,
K. Put your money where your mouth is: Evaluating
strategic planning and execution of llm agents in an auc-
tion arena. arXiv preprint arXiv:2310.05746, 2023.

Cheng, M., Piccardi, T., and Yang, D. Compost: Character-
izing and evaluating caricature in llm simulations. Annual
Meeting of the Association for Computational Linguistics,
2023.

Cohen, M. D., March, J. G., and Olsen, J. P. A garbage can
model of organizational choice. Administrative science
quarterly, pp. 1–25, 1972.

Davidsson, P. Agent based social simulation: A computer
science view. Journal of artificial societies and social
simulation, 5(1), 2002.

Epstein, J. M. and Axtell, R. Growing artificial societies:
social science from the bottom up. Brookings Institution
Press, 1996.

Farmer, J. D. and Foley, D. The economy needs agent-based
modelling. Nature, 460(7256):685–686, 2009.

Gao, C., Lan, X., Li, N., Yuan, Y., Ding, J., Zhou, Z., Xu,
F., and Li, Y. Large language models empowered agent-
based modeling and simulation: A survey and perspec-
tives. Humanities and Social Sciences Communications,
11(1):1–24, 2024.

Gilbert, N. Agent-based models. Sage Publications, 2019.

Gilbert, N. and Terna, P. How to build and use agent-based
models in social science. Mind & Society, 1:57–72, 2000.

Guo, D., Yang, D., Zhang, H., Song, J., Zhang, R., Xu, R.,
Zhu, Q., Ma, S., Wang, P., Bi, X., et al. Deepseek-r1: In-
centivizing reasoning capability in llms via reinforcement
learning. arXiv preprint arXiv:2501.12948, 2025.

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang,
S., Wang, L., Chen, W., et al. Lora: Low-rank adaptation
of large language models. ICLR, 1(2):3, 2022.

Huang, J., Lam, M. H., Li, E. J., Ren, S., Wang, W., Jiao,
W., Tu, Z., and Lyu, M. R. Apathetic or empathetic?
evaluating LLMs’ emotional alignments with humans. In
Advances in Neural Information Processing Systems 37,
2024.

Huang, J.-t., Wang, W., Li, E. J., Lam, M. H., Ren, S., Yuan,
Y., Jiao, W., Tu, Z., and Lyu, M. On the humanity of
conversational ai: Evaluating the psychological portrayal
of llms. In The Twelfth International Conference on
Learning Representations, 2023.

Kirman, A. Ants, rationality, and recruitment. The Quarterly
Journal of Economics, 108(1):137–156, 1993.

Kojima, T., Gu, S. S., Reid, M., Matsuo, Y., and Iwasawa,
Y. Large language models are zero-shot reasoners. Ad-
vances in neural information processing systems, 35:
22199–22213, 2022.

Koo, R., Lee, M., Raheja, V., Park, J. I., Kim, Z. M., and
Kang, D. Benchmarking cognitive biases in large lan-
guage models as evaluators. Annual Meeting of the Asso-
ciation for Computational Linguistics, 2024.

Li, N., Gao, C., Li, M., Li, Y., and Liao, Q. Econagent:
large language model-empowered agents for simulating
macroeconomic activities. Annual Meeting of the Associ-
ation for Computational Linguistics, 2024.

9

https://www.anthropic.com/news/model-context-protocol
https://www.anthropic.com/news/model-context-protocol


Submission and Formatting Instructions for ICML 2025

Manning, B. S., Zhu, K., and Horton, J. J. Automated
social science: Language models as scientist and subjects.
Technical report, National Bureau of Economic Research,
2024.

McCrae, R. R. and Costa Jr, P. T. Personality trait structure
as a human universal. American psychologist, 52(5):509,
1997.

Nisioti, E., Glanois, C., Najarro, E., Dai, A., Meyerson, E.,
Pedersen, J. W., Teodorescu, L., Hayes, C. F., Sudhakaran,
S., and Risi, S. From text to life: On the reciprocal
relationship between artificial life and large language
models. In Artificial Life Conference Proceedings 36,
volume 2024, pp. 39, 2024.

Norman, D. Things that make us smart: Defending human
attributes in the age of the machine. Diversion Books,
2014.

Okun, A. M. Potential GNP: its measurement and signifi-
cance. Cowles Foundation for Research in Economics at
Yale University, 1963.

Park, J. S., O’Brien, J., Cai, C. J., Morris, M. R., Liang,
P., and Bernstein, M. S. Generative agents: Interactive
simulacra of human behavior. In Proceedings of the 36th
annual acm symposium on user interface software and
technology, pp. 1–22, 2023.

Phelps, E. S. Phillips curves, expectations of inflation and
optimal unemployment over time. Economica, pp. 254–
281, 1967.

Qiang, R., Zhuang, Y., Li, Y., K, D. S. V., Zhang, R., Li, C.,
Wong, I. S.-H., Yang, S., Liang, P., Zhang, C., and Dai,
B. Mle-dojo: Interactive environments for empowering
llm agents in machine learning engineering, 2025. URL
https://arxiv.org/abs/2505.07782.

Sakoda, J. M. The checkerboard model of social interaction.
The Journal of Mathematical Sociology, 1(1):119–132,
1971.

Schelling, T. C. Dynamic models of segregation. Journal
of mathematical sociology, 1(2):143–186, 1971.

Steinbacher, M., Raddant, M., Karimi, F., Camacho Cuena,
E., Alfarano, S., Iori, G., and Lux, T. Advances in the
agent-based modeling of economic and social behavior.
SN Business & Economics, 1(7):99, 2021.

Surapaneni, R., Jha, M., Vakoc, M., and Segal,
T. Announcing the agent2agent protocol (a2a).
https://developers.googleblog.com/en/
a2a-a-new-era-of-agent-interoperability/,
April 2025. Accessed: 2025-05-09.

Takata, R., Masumori, A., and Ikegami, T. Spontaneous
emergence of agent individuality through social interac-
tions in large language model-based communities. En-
tropy, 26(12):1092, 2024.

Tesfatsion, L. Agent-based computational economics: A
constructive approach to economic theory. Handbook of
computational economics, 2:831–880, 2006.

Tesfatsion, L. and Judd, K. L. Handbook of computational
economics: agent-based computational economics, vol-
ume 2. Elsevier, 2006.

Vygotsky, L. S. Thought and language, volume 29. MIT
press, 2012.

Wang, L., Ma, C., Feng, X., Zhang, Z., Yang, H., Zhang, J.,
Chen, Z., Tang, J., Chen, X., Lin, Y., et al. A survey on
large language model based autonomous agents. Frontiers
of Computer Science, 18(6):186345, 2024.

Webb, T., Holyoak, K. J., and Lu, H. Emergent analogi-
cal reasoning in large language models. Nature Human
Behaviour, 7(9):1526–1541, 2023.

Wu, P. Y., Nagler, J., Tucker, J. A., and Messing, S. Large
language models can be used to estimate the latent po-
sitions of politicians. arXiv preprint arXiv:2303.12057,
2023.

Yang, Z., Zhang, Z., Zheng, Z., Jiang, Y., Gan, Z., Wang,
Z., Ling, Z., Chen, J., Ma, M., Dong, B., et al. Oasis:
Open agents social interaction simulations on one million
agents. arXiv preprint arXiv:2411.11581, 2024.

Zhang, C., Liu, X., Zhang, Z., Jin, M., Li, L., Wang, Z., Hua,
W., Shu, D., Zhu, S., Jin, X., et al. When ai meets finance
(stockagent): Large language model-based stock trading
in simulated real-world environments. arXiv preprint
arXiv:2407.18957, 2024.

Zheng, S., Trott, A., Srinivasa, S., Parkes, D. C., and Socher,
R. The ai economist: Taxation policy design via two-
level deep multiagent reinforcement learning. Science
advances, 8(18):eabk2607, 2022.

Zhou, X., Zhu, H., Mathur, L., Zhang, R., Yu, H., Qi, Z.,
Morency, L.-P., Bisk, Y., Fried, D., Neubig, G., et al.
Sotopia: Interactive evaluation for social intelligence in
language agents. International Conference on Learning
Representations, 2024.

10

https://arxiv.org/abs/2505.07782
https://developers.googleblog.com/en/a2a-a-new-era-of-agent-interoperability/
https://developers.googleblog.com/en/a2a-a-new-era-of-agent-interoperability/


Submission and Formatting Instructions for ICML 2025

A. Tasks in Shachi

Table 4: Overview of Tasks and Their Levels. Detailed task information is provided in Section B.

# Lvl Task Description

1 I PsychoBench (Huang et al., 2023)
Evaluates psychological traits of LLMs via 13
psychometric scales across personality, interpersonal,
motivational, and emotional domains

2 I CoMPosT (Cheng et al., 2023) Measures LLM simulations’ susceptibility to caricature
through several dimensions

3 I CognitiveBiases (Koo et al., 2024) Evaluates 30 classic cognitive biases with paired
control–treatment prompts

4 I EmotionBench (Huang et al., 2024) Measures shifts in eight core emotions triggered
by situational prompts

5 I EmergentAnalogies (Webb et al., 2023) Probes zero-shot analogical reasoning across
matrix, string, verbal, and story tasks

6 II EconAgent (Li et al., 2024) LLM-powered multi-agent system for macroeconomic
simulation with human-like behaviors

7 II StockAgent (Zhang et al., 2024) LLM-based multi-agent system that simulates real-world
stock trading under dynamic market conditions.

8 II AuctionArena (Chen et al., 2023) Evaluates strategic planning and adaptive reasoning
of LLM agents in simulated dynamic auctions

9 III OASIS (Yang et al., 2024) Large-scale multi-agent simulation benchmark designed
for studying social media phenomena

10 III Sotopia (Zhou et al., 2024) Open-ended role-play environment to simulate complex
social interactions and measure agents’ social intelligence

B. Extra Experimental Setups and Results
B.1. Detailed Task Implementation

B.1.1. PSYCHOBENCH (LEVEL I)

Description PsychoBench (Huang et al., 2023) evaluates the psychological portrayal of LLMs, drawing from psychometric
research to examine their human-like psychological traits.

Method It systematically measures thirteen psychological dimensions categorized into personality traits (e.g., Big Five
Inventory, Dark Triad), interpersonal relationships (e.g., Bem’s Sex Role Inventory), motivational tendencies (e.g., General
Self-Efficacy), and emotional abilities (e.g., Emotional Intelligence Scale). The methodology involves administering
psychometric scales directly via prompts. Crucial experimental parameters include detailed instructions for Likert-scale
responses, randomized question order to ensure robustness, and strict control of model inference temperature (set to zero or
near-zero).

Experimental Settings For the reproduction study reported in Table 1, we follow the original setup and use Llama-2-13b-
chat-hf as the LLM component without a memory component. The task includes neither config nor tool components. We
fix the LLM temperature to 0, test 10 random seeds for question ordering, and average the results. We compute the MAE
between the scores obtained with Shachi (Ours) and those presented in the original paper across all psychological subscales.
We add a naive baseline that answers each prompt by randomly selecting from the available choices. It takes a few minutes
for the LLM to complete all psychometric scales.

B.1.2. COMPOST (LEVEL I)

Description CoMPosT (Cheng et al., 2023) investigates how susceptible large language models (LLMs) are to caricature.
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Method To quantify this effect, the framework decomposes caricature into four orthogonal dimensions—context, model,
persona, and topic—which specify the simulated scenario, the LLM configuration, the target opinion, and the domain of
discourse, respectively. Two metrics are introduced: the individuation score, which tests whether the simulated persona is
distinguishable from the default persona, and the exaggeration score, which measures the degree to which the simulation
amplifies persona–topic features.

Experimental Settings In our reproduction study (Table 1), we use GPT-3.5-turbo (gpt-3.5-turbo-0125) as the
LLM component without a memory component. The task includes neither config nor tool components. We compare the
scores produced by our implementation (and a baseline) with those reported in the original paper. Although we replicate the
experimental setup as faithfully as possible, minor differences arise owing to updates in the underlying LLMs. Each method
outputs a distribution of scores. We assess similarity between two such distributions via one-dimensional optimal transport
with the absolute difference as the cost function. In this setting, the transport cost simplifies to MAE between the paired,
sorted samples of the distributions, following Bonnotte (2013). The evaluation takes approximately 20 minutes.

B.1.3. COGNITIVEBIASES (LEVEL I)

Description CognitiveBiases (Koo et al., 2024) evaluates how LLMs exhibit 30 well-known cognitive biases, motivated
by the increasing use of LLMs in high-stakes decision-making.

Method It specifically measures biases such as anchoring, framing, and 28 others commonly identified in psychology and
behavioral economics. The core methodology employs a systematic framework that generates and administers 30,000 bias-
specific test cases across 200 distinct decision-making scenarios, comparing model responses under control vs. treatment
conditions. Crucial parameters include the explicit control/treatment designs for each bias, two standardized answer scales
(7-point Likert or 11-point percentage), and reversed option orders to account for position bias, ensuring reproducibility and
comprehensive coverage.

Experimental Settings For the reproduction study in Table 1, we follow the original setup and use GPT-4o-mini
(gpt-4o-mini-2024-07-18) as the LLM component without a memory component. The task includes neither config
nor tool components. The LLM temperature is fixed at 0. We run the evaluation under three random seeds for question
ordering and report the average. We measure MAE between the bias scores obtained with Shachi (ours) and those in the
original paper across 30 biases. We include a naive baseline that responds to each prompt by randomly sampling from the
available choices. Evaluating all 30 biases requires roughly one hour.

B.1.4. EMOTIONBENCH (LEVEL I)

Description EmotionBench (Huang et al., 2024) evaluates how LLMs respond emotionally to various real-life situations,
drawing from emotion appraisal theory to examine their alignment with human-like emotional reactions.

Method It measures eight key positive and negative emotions (anger, anxiety, depression, frustration, jealousy, guilt, fear,
embarrassment) and tracks how situational contexts raise or lower these emotions compared to a default baseline. It uses
self-report scales (e.g., PANAS), first measuring a model’s default emotional state, then presenting situational prompts, and
finally re-measuring changes in emotional scores.

Experimental Settings For the reproduction study reported in Table 1, we follow the original setup and use GPT-3.5-turbo
(gpt-3.5-turbo-0125) as the LLM component without a memory component. The task includes neither config nor
tool components. We compute MAE between the eight key positive and negative emotion scores obtained with Shachi
(Ours) and those reproduced with their original code on the PANAS scale. We add a naive baseline that answers each prompt
by randomly selecting from the available choices. Evaluating the LLM’s affective state takes roughly one minute.

B.1.5. EMERGENTANALOGIES (LEVEL I)

Description EmergentAnalogies (Webb et al., 2023) evaluates zero-shot analogical reasoning in LLMs, highlighting
analogy’s key role in fluid intelligence.
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Method The benchmark tests a range of domains for abstract pattern induction and relational reasoning, featuring four
core tasks—matrix reasoning, letter-string analogies, four-term verbal analogies, and story analogies. We specifically target
free-response accuracy on the matrix reasoning.

Experimental Settings For our reproduction study in Table 1, we use GPT-4 (gpt-4-0613) as the LLM component
without a memory component. The task includes neither config nor tool components. We set the LLM temperature to 0 and
randomly sampled problems from each category. We use three different seeds for sampling and averaged the results. We
compute MAE between the category-wise averages obtained with Shachi (Ours) and those reproduced with their source
code. As a naive baseline, we include a model that simply generates a random matrix for each prompt. For our cross-task
agent study in Table 2, we utilize GPT-4o (gpt-4o-2024-08-06). We compute an overall average across all categories.
It takes approximately one minute to assess matrix reasoning.

B.1.6. ECONAGENT (LEVEL II)

Description Econagent (Li et al., 2024) is a LLM-powered multi-agent system for macroeconomic simulation with
human-like behaviors.

Method Building on the virtual economic framework of (Zheng et al., 2022), it employs an economic environment
where each agents are placed into a shared, quasi-realistic market with an endowment of specific skills and wealth. Agents
decide how much to work and consume, and their decisions collectively produce macroeconomic dynamics. A rule-based
environment acts as both a central government (collecting taxes) and a central bank (adjusting interest rates), forming
a macroeconomic loop. The original work shows that LLMs-powered agents make realistic decisions individually and,
collectively, produce sounding macro-level dynamics.

Experimental Settings In our experiments in Section 4.3.1, we use several models as the LLM component without a
memory component. The task includes neither config nor tool components. We follow the original paper of simulating 100
agents for 240 months, making 20 annual tax-and-monetary economic cycles. The simulation takes approximately one
hour to execute with our Shachi-based implementation. Unlike the original paper, which employs a single LLM model,
our replication evaluates a widely used model suite. For the carrying memory experiment in Section 4.3.2, we add a buffer
memory to record each agent’s behaviors and transfer an agent to the CognitiveBiases task.
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Figure 7: All Marco-economic Indicators. These are extra results accompanying those in Section 4.3.1.
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Extra Results In Figure 7 we share all macro-economic indicators. All LLMs show a change in indicators, yet emerging
behaviours differ in detail, showing characteristics of different LLMs.

B.1.7. STOCKAGENT (LEVEL II)

Description StockAgent (Zhang et al., 2024) is a large language model-based multi-agent system that simulates real-world
stock trading under dynamic market conditions in a single line.

Method Specifically, it runs event-driven simulations where LLM-driven agents sequentially make loans, buy, sell, predict,
and post and check forum decisions, while the market data and stock prices evolve daily. The framework models two distinct
stocks: Stock A, a 10-year chemical stock, and Stock B, a 3-year tech stock, dynamically simulating their price fluctuations.
Notable parameters include initial agent capital allocations, loan-to-value ratios, interest rates, and real-world-like events
(e.g., financial reports).

Experimental Settings In the reproduction study reported in Table 1 and Figure 3, we follow the original setup and
use GPT-3.5-turbo (gpt-3.5-turbo-0125) as the LLM component with buffer memory component (length 3). The
task contains both config and tool components. Our Shachi implementation exposes a forum API as the tool: each agent
autonomously decides whether to read comments posted the previous day about the stock market. For config, the environment
assigns each agent one of four investment styles—Conservative, Aggressive, Balanced, or Growth-Oriented. We fixed
random seeds and event sequences to match the original study. The simulation runs for 10 days with three sessions per day,
involving 50 agents and 1,500 rounds. We average session-level price changes over three seeds and compute MAE between
the session-by-session price dynamics of stocks A and B produced by Shachi (ours) and those reproduced with the authors’
source code. As a baseline, we remove the tool and memory modules from the agents to isolate their impact on performance.
For our cross-task agent study in Table 2, we deploy 50 agents—25 powered by GPT-4o (gpt-4o-2024-08-06) and 25
by GPT-3.5-turbo (gpt-3.5-turbo-0125). To quantify volatility, we calculate the price change rate for Stocks A and
B between the first and final sessions and average the two rates. Simulating 1,500 rounds required several hours.

B.1.8. AUCTIONARENA (LEVEL II)

Description AuctionArena (Chen et al., 2023) evaluates the strategic planning and execution capabilities of LLM agents
within a dynamic auction environment, motivated by the need for realistic benchmarks of sequential decision-making in
competitive scenarios.

Method The environment specifically assesses skills such as resource allocation, risk management, and adaptive strategic
reasoning. The methodology employs a simulation of open ascending-price auctions where agents act as bidders, making
decisions based on the Belief-Desire-Intention (BDI) framework. Crucial parameters include item valuation (distinguishing
between cheap and expensive items), intentional overestimation of item value to simulate “winner’s curse”, and explicit
prioritization strategies that agents dynamically adjust after each round.

Experimental Settings For the reproduction study reported in Table 1, we follow “Standard Competition” set-
ting, where the evaluated agent (GPT-4-turbo, gpt-4-1106-preview) competes directly against GPT-3.5-turbo
(gpt-3.5-turbo-1106) and GPT-4-turbo (gpt-4-1106-preview) agents. All agents use a chat-history mem-
ory (window 20, token 10,000). The environment supplies a config component but no tools. As for the config, each agent
is assigned one of two strategies: profit-first — maximize final profit, or item-first — win the most items. We fix the
temperature at 0, randomly assign the item order, and use the TrueSkill system to quantify agent performance across 10
auctions with different item sequences. As a baseline, we repeat this comparison while removing the agent’s memory module
to isolate its impact on performance. As for Figure 3, we use the result for GPT-4 (gpt-4-0613) agent in the competition
against GPT-3.5-turbo (gpt-3.5-turbo-0125) and GPT-4 (gpt-4-0613), with items ordered by descending price.
For our cross-task agent study in Table 2, we use a TrueSkill score of GPT-4o (gpt-4o-2024-08-06) in “Standard
Competition” setting. A three-agent, ten-item auction with a $20,000 budget takes about 20 minutes to run.

B.1.9. SOTOPIA (LEVEL III)

Description Sotopia (Zhou et al., 2024) Sotopia introduces an open-ended role-play environment with a multidimensional
evaluation framework to simulate complex social interactions and systematically measure LLM agents’ social intelligence.
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Method In the original Sotopia implementation, at every turn, it concatenates the entire dialogue history from all agents
into a single prompt. In Shachi, by contrast, memory management is an agent-side responsibility, so the environment
supplies only the most recent message. The evaluation result consists of seven metrics (SOC, SEC, FIN, REL, KNO, GOAL,
and BEL).

Experimental Settings For the Table 1 experiments, we follow the original setup and use GPT-4 (gpt-4-0613) as the
LLM component with a buffer memory component (all history with a 16,000 token limit). The task includes neither config
nor tool components. To faithfully reproduce Sotopia inside Shachi, our reproduced agent (the agent reported as “Shachi
(Ours)” in Table 1 and the “Sotopia” line in Table 2) restructures the full conversation history into one prompt in the same
format. We set the LLM temperature to 1. We consider the MAE between the result reported in the original paper and our
experiments. For our cross-task agent study in Table 2, we utilize GPT-4o (gpt-4o-2024-08-06). We apply min–max
normalization using the maximum and minimum values defined for each metric and then calculate the overall average across
these metrics. The evaluation takes approximately 20 minutes.

B.1.10. OASIS (LEVEL III)

Description OASIS (Yang et al., 2024) is a large-scale multi-agent simulation benchmark for studying how up to one
million LLM-based agents interact on social media platforms, focusing on information propagation, group polarization, and
herd effects.

Method OASIS simulates large-scale social media environments by combining an environment server, a recommendation
system, and a time engine. Each user is modeled as an LLM-based agent with a 21-type action space (e.g., posting,
commenting, following), whose behavior and memory evolve in real time. By supporting up to one million agents, OASIS
facilitates the study of complex emergent phenomena, such as information spreading, group polarization, and herd effects,
in both X and Reddit-like settings. In our experiment, we utilize an X-like setting.

Experimental Settings In our experiments, OASIS is employed in both Sections 4.3.2 and 4.3.3 under the same setup,
following one of the original settings. Specifically, we use one influential agent who posts about Amazon (“report:
amazon plans to open its first physical store in new york URL”), and its followers respond, with limited connectivity
among the followers themselves. We use several models as the LLM component based on experiments with a chat-
history memory (window 5, token limit 100,000). The environment supplies a config component but no tools. As for
the config, each agent is assigned a distinct profile, such as “@ohiostate alumni. High tech marketer, salon entrepreneur,
& web design enthusiast. Fashion & food are my passions. Views are my own.” In Section 4.3.2, we use GPT-4o-mini
(gpt-4o-mini-2024-07-18), while Section 4.3.3 employs GPT-3.5-turbo (gpt-3.5-turbo-0125) and GPT-4o
(gpt-4o-2024-08-06). Ten iterations with 111 agents complete in a few minutes.

B.2. Detailed Results from Living in Multiple Worlds

The following box shows the agent logs discussed in Section 4.3.3, where the agents’ posts and comments are labeled in
blue and red. These agents inhabit two distinct worlds.

Detailed behaviors in OASIS when the agents live in both StockAgent and OASIS

• create_post: user_id=14, current_time=3, action=create_post, info={’content’: "Agent plan: I find it quite fascinating as a stock trader to see Amazon making
a move into physical retail. This could potentially impact their stock, especially if they successfully blend the convenience of online shopping with the tactile
experience of a physical store. It’s also worth noting how this decision might influence other online retailers to consider similar ventures, possibly reshaping
the retail landscape. I’ll be keeping a close eye on how this development unfolds and the market’s response to it. #Amazon #RetailInnovation.", ’post_id’:
16}

• create_post: user_id=29, current_time=3, action=create_post, info={’content’: "I’m inspired by the dynamic discussion surrounding Amazon’s move into
physical retail. As a stock trader, I’ve always found it fascinating how business strategies evolve in response to market trends. This new development with
Amazon opening a store in New York brings to light the importance of understanding market shifts and consumer preferences. I believe that integrating
technology into traditional spaces could redefine the shopping experience and potentially offer investment opportunities. I’m curious about how Amazon’s
innovative approach will influence the stock market and retail sector in the coming months. What do you all think? Is this a trend we should watch closely?",
’post_id’: 17}

• create_comment: user_id=1, current_time=0, action=create_comment, info={’content’: "Interesting to see Amazon branching out into physical retail
spaces! It’s a bold move considering their strong online presence. As a stock trader, I’m curious about how this strategy will affect Amazon’s stock and their
competition. What are your thoughts on this step?", ’comment_id’: 1}
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• create_comment: user_id=25, current_time=3, action=create_comment, info={’content’: "As a stock trader, I’m intrigued by how Amazon’s entry into
physical retail could influence both its stock performance and the broader market. This expansion might blur the lines between online and in-store shopping,
setting new standards for the retail industry. What innovations are others anticipating from Amazon’s physical presence?", ’comment_id’: 11}

C. Code Examples
C.1. Gym-style Interface

Listing 1 is a example showing how agents can be organized alongside an environment that follows a Gym-style interface in
Shachi. Each agent receives observations from the environment and produces responses (actions), while the environment
tracks episodes, rewards, and termination conditions.

Listing 1 Example code for the gym-like agent loop used in our framework.
N_EPISODES = 10

async def main() -> None:
agents = [

AgentExample1(model="openai/gpt-4o", temperature=0),
AgentExample2(model="openai/gpt-3.5-turbo", temperature=0),
AgentExample3(model="openai/gpt-4", temperature=0),

]
env = EnvironmentExample()

total_rewards = {agent_id: 0.0 for agent_id in range(len(agents))}
for _ in range(N_EPISODES):

observations = await env.reset()
while not env.done():

futures = {
agent_id: agents[agent_id].step(observation)
for agent_id, observation in observations.items()

}
responses = dict(zip(futures.keys(), await asyncio.gather(*futures.values())))
observations = await env.step(responses)
for agent_id, observation in observations.items():

if observation.reward is not None:
total_rewards[agent_id] += observation.reward

if __name__ == "__main__":
asyncio.run(main())

C.2. Tool Usage

In this framework, the environment provides a tool component that the agent can dynamically call through an LLM. The
agent sends observations to the LLM, which may respond with tool call instructions. The agent executes these tools, returns
their outputs, and continues the conversation until no more tool calls are needed. The final LLM response thus incorporates
results from any tools. Listing 2 shows a minimal implementation of this process.

async def step(self, observation: kujira.base.Observation) -> str:
prompt = observation.format_as_prompt_text()
available_tools = observation.tools

# Convert tool information for LLM
tools_for_llm = [

{
"type": "function",
"function": {

"name": tool.name,
"description": tool.description,
"parameters": tool.parameters_type.model_json_schema(),

16



Submission and Formatting Instructions for ICML 2025

},
}
for tool in available_tools

]

# Chat history with proper typing
messages: list[dict[str, Any]] = [{"role": "user", "content": prompt}]

# Allow up to 5 tool calls
for _ in range(5):

completion = await litellm.acompletion(
messages=messages,
model=self.model,
tools=tools_for_llm,
tool_choice="auto",

)
assistant_message = completion.choices[0].message

# Add message to chat history with proper typing
message_entry: dict[str, Any] = {

"role": "assistant",
"content": assistant_message.content
if assistant_message.content is not None
else "",

}
if hasattr(assistant_message, "tool_calls") and assistant_message.tool_calls:

message_entry["tool_calls"] = assistant_message.tool_calls
messages.append(message_entry)

# If no tool calls, exit
if not hasattr(assistant_message, "tool_calls") or not assistant_message.tool_calls:

return assistant_message.content if assistant_message.content is not None else ""

# Process tool calls
for tool_call in assistant_message.tool_calls:

function_name = tool_call.function.name
function_args = tool_call.function.arguments

# Find corresponding tool
matching_tool = None
for tool in available_tools:

if tool.name == function_name:
matching_tool = tool
break

if matching_tool:
# Execute tool
try:

parameters = matching_tool.parameters_type.model_validate_json(
function_args

)
tool_response = matching_tool.fun(parameters)
response_text = tool_response.format_as_prompt_text()

# Add tool response to chat history with proper typing
tool_message: dict[str, Any] = {

"role": "tool",
"tool_call_id": tool_call.id,
"name": function_name,
"content": response_text,

}
messages.append(tool_message)

print(f"Tool call: {function_name}")
print(f"Arguments: {function_args}")
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print(f"Response: {response_text}")
except Exception as e:

print(f"Error occurred during tool execution: {str(e)}")

# Get final response
final_completion = await litellm.acompletion(

messages=messages,
model=self.model,

)
return (

final_completion.choices[0].message.content
if final_completion.choices[0].message.content is not None
else ""

)

Listing 2: Example code for the tool-usage in our framework.

C.3. Two-step Parsing
Listing 3 presents a minimal example of how agents employ two-stage parsing in Shachi. To generate outputs in the required
format without harming LLM performance, we leverage API features such as structured outputs and function calls, together
with the two-stage parsing strategy.

D. Potential Societal Impacts
Shachi makes it easier to study human-like behavior and social dynamics at scale. Researchers can build LLM-based agents
quickly, run realistic multi-agent experiments, and probe economic patterns, collective decisions, and cultural norms. The
framework’s modular design also supports cross-disciplinary work and lets social scientists, economists, and policymakers
test ideas before trying them in the real world.
These benefits come with ethical risks. Simulations may amplify harmful biases, misrepresent minority groups, or give
users unwarranted confidence in synthetic results. Persistent memory can also store sensitive data, raising privacy issues.
Researchers must log agent data transparently and follow strict ethics rules to avoid misuse or accidental disclosure.
Despite these challenges, Shachi ’s scale, long-term memory, and world-building tools offer great promise. Large-scale
simulations can capture emergent patterns that were once too complex or slow to study, revealing human behaviour at both
macro and micro levels. With proper safeguards, Shachi can become a key platform for robust and responsible research on
collective intelligence.

E. More Related Works
E.1. ABM without LLMs
During the 1970s and 1980s, ABM emerged as a powerful way to study complex social processes. In these formative years,
Schelling (Schelling, 1971) and Sakoda (Sakoda, 1971) revealed how minimal individual preferences can produce starkly
segregated or patterned neighborhoods, while the Garbage Can Model (Cohen et al., 1972) captured the unpredictable
intersections of agents, problems, solutions, and participation opportunities in organizations. Meanwhile, through computer
tournaments of the iterated Prisoner’s Dilemma (Axelrod & Hamilton, 1981), Axelrod showed that ongoing reciprocal
encounters can make cooperation a self-interested strategy. Around the same time, a study illustrated how heterogeneous,
boundedly rational agents on evolving networks can sustain perpetual adaptation and out-of-equilibrium dynamics, setting
the stage for viewing large-scale patterns as emergent from local interactions (Anderson, 2018).
In the 1990s, researchers built on these foundational concepts by applying ABM more intensively to economic and
social phenomena. For example, El Farol Bar problem (Arthur, 1994) highlighted how learning and adaptation among
heterogeneous agents may produce oscillatory behavior, whereas Kirman’s study of ants (Kirman, 1993) demonstrated that
tiny random shifts in decision-making can trigger large-scale herding. Broadening ABM’s scope, Epstein and Axtell (Epstein
& Axtell, 1996) introduced the model to show how wealth, culture, and disease dynamics emerge from simple local rules.
Axelrod (Axelrod, 1997) further explored cultural dissemination, revealing how social interaction fosters both convergence
and enduring diversity.
Since the early 2000s, ABM has steadily expanded into large-scale empirical contexts, including macroeconomics and
public policy. Axtell (Axtell, 2001) demonstrated how firm-size distributions—specifically, the Zipf distribution—could
be replicated from bottom-up processes driven by micro-level agent interactions. In parallel, Bonabeau (Bonabeau, 2002)
surveyed ABM’s exceptional capacity to capture emergent phenomena, emphasizing how complex global patterns can
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arise unpredictably from simpler, localized rules. After the financial crisis of 2008, Farmer and Foley (Farmer & Foley,
2009) further highlighted ABM’s potential for illuminating financial instabilities and guiding policy interventions, thereby
reinforcing the method’s predictive and explanatory power in volatile economic environments.

E.2. ABM with LLMs
Below, we elaborate on representative efforts that investigate human-like behavior in LLM agents across psychological,
social, economic, and financial domains.
One effort in this direction is PsychoBench (Huang et al., 2023), which assesses the psychological portrayal of LLM agents
by examining aspects like personality traits and social intelligence, shedding light on the challenges of modeling human-like
behavior in LLM-based agents. In the realm of social simulations, generative agents (Park et al., 2023) utilize LLMs
to create believable human-like behaviors, including planning, interaction, and reflection, as demonstrated in interactive
environments where agents autonomously coordinate social activities like organizing events. In a similar vein, spontaneously
emergent behaviors—such as personality differentiation, social norm formation, and collective hallucinations—have been
observed through repeated interactions in a simulated community (Takata et al., 2024). OASIS (Yang et al., 2024) extends
this concept by enabling large-scale social media simulations with up to one million agents, facilitating the study of complex
social phenomena such as information spreading, group polarization, and herd behavior. Sotopia (Zhou et al., 2024) further
examines social intelligence by evaluating LLM agents’ coordination, collaboration, and strategic reasoning in diverse
scenarios, identifying challenges in achieving human-like social behavior. In the economic domain, EconAgent (Li et al.,
2024) leverages LLMs to simulate macroeconomic activities by incorporating human-like decision-making processes,
such as work and consumption behaviors, and dynamically adapting to market trends through memory mechanisms. This
approach enables more realistic economic dynamics compared to traditional rule-based or learning-based models. In the
financial domain, StockAgent (Zhang et al., 2024) models investor behaviors influenced by external factors, providing
insights into trading dynamics, while AuctionArena (Chen et al., 2023) focuses on strategic decision-making in competitive
bidding environments, testing LLMs’ ability to manage resources and adapt strategies.
Together, these works provide a foundation for understanding the capabilities and limitations of LLMs in modeling complex
human behaviors across diverse environments.
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Listing 3 Example code for the two-step parsing used in our framework.
async def call_llm(

messages: list[dict[str, str]],
model: str,
temperature: float,
parsing_mode: PARSING_MODE,
parsing_model: str | None = "gpt-4.1-mini-2025-04-14",
response_type: TResponseType | None = None,

) -> str | TResponseType:

# First step: generate in a plain text
completion1 = await litellm.acompletion(

messages=messages,
model=model,
temperature=temperature,
max_retries=MAX_RETRIES,

)
response_text_1: str = completion1.choices[0].message.content

# Second step: parse the plain text into a structured output
completion2 = await litellm.acompletion(

messages=[
{

"role": "user",
"content": f"""

Based on the text provided below, output JSON. If the input is plain text,
extract the necessary information while preserving the original wording
as much as possible. If the input is JSON, output it unchanged, except
fix any formatting errors you find.
```
{response_text_1}
```

The JSON should follow the schema below:
```
{response_type.model_json_schema()}
```
""".strip(),

},
],
model=parsing_model,
temperature=temperature,
response_format=response_type,
max_retries=MAX_RETRIES,

)
response_text: str = completion2.choices[0].message.content
response_obj = response_type.model_validate_json(response_text)
return response_obj
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