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ABSTRACT

Machine learning systems are often used to make decisions about individuals,
where individuals may best respond and behave strategically to receive favorable
outcomes, e.g., they may genuinely improve the true labels or manipulate observ-
able features directly to game the system without changing labels. Although both
behaviors have been studied (often as two separate problems) in the literature,
most works assume individuals can (i) perfectly foresee the outcomes of their
behaviors when they best respond; (ii) change their features arbitrarily as long as
it’s affordable, and the costs they need to pay are deterministic functions of feature
changes. In this paper, we consider a different setting and focus on imitative strate-
gic behaviors with unforeseeable outcomes, i.e., individuals manipulate/improve by
imitating the features of those with positive labels, but the induced feature changes
are unforeseeable. We first propose a novel probabilistic model to capture both
behaviors and establish a Stackelberg game between individuals and the decision-
maker. Under this model, we examine how the decision-maker’s ability to anticipate
individual behavior affects its objective function and the individual’s best response.
We show that the objective difference between the two can be decomposed into
three interpretable terms, with each representing the decision-maker’s preference
for a certain behavior. By exploring the roles of each term, we further illustrate
how a decision-maker with adjusted preferences can simultaneously disincentivize
manipulation, incentivize improvement, and promote fairness.

1 INTRODUCTION

Individuals subject to algorithmic decisions often adapt their behaviors strategically to the decision
rule to receive a desirable outcome. As machine learning is increasingly used to make decisions
about humans, there has been a growing interest to develop learning methods that explicitly con-
sider the strategic behavior of human agents. A line of research known as strategic classification
studies this problem, in which individuals can modify their features at costs to receive favorable
predictions. Depending on whether such feature changes are to improve the actual labels genuinely
(i.e., improvement) or to game the algorithms maliciously (i.e., manipulation), existing works have
largely focused on learning classifiers robust against manipulation (Hardt et al., 2016a) or designing
incentive mechanisms to encourage improvement (Kleinberg and Raghavan, 2020; Bechavod et al.,
2022). A few studies (Miller et al., 2020; Shavit et al., 2020; Horowitz and Rosenfeld, 2023) also
consider the presence of both manipulation and improvement, where they exploit the causal structures
of features and use structural causal models to capture the impacts of feature changes on labels.

To model the interplay between individuals and decision-maker, most existing works adopt (or extend
based on) a Stackelberg game proposed by Hardt et al. (2016a), i.e., the decision-maker publishes
its policy, following which individuals best respond to determine the modified feature. However,
these models (implicitly) rely on the following two assumptions that could make them unsuitable
for certain applications: (i) individuals can perfectly foresee the outcomes of their behaviors when
they best respond; (ii) individuals can change their features arbitrarily at costs, which are modeled as
deterministic functions of the feature.

In other words, existing studies assume individuals know their exact feature values before and after
strategic behavior. Thus, the cost can be computed precisely based on the feature changes (using
functions such as ℓp-norm distance). However, these may not hold in many important applications.
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Consider an example of college admission, where the students’ exam scores are treated as features in
admission decisions. To get admitted, students may increase their scores by either cheating on exams
(manipulation) or working hard (improvement). Here (i) individuals do not know the exact values
of their original features (unrealized scores) and the modified features (actual score received in an
exam) when they best respond, but they have a good idea of what those score distributions would be
like from their past experience; (ii) the cost of manipulation/improvement is not a function of feature
change (e.g., students may cheat by hiring an imposter to take the exam and the cost of such behavior
is more or less fixed). As the original feature was never realized, we cannot compute the feature
change precisely and measure the cost based on it. Therefore, the existing models do not fit.

Motivated by the above (more examples are in App. B.2), this paper studies strategic classification
with unforeseeable outcomes. We first propose a novel Stackelberg game to model the interactions
between individuals and the decision-maker. Compared to most existing models (Jagadeesan et al.,
2021; Levanon and Rosenfeld, 2022), ours is a probabilistic framework that model the outcomes and
costs of strategic behavior as random variables. Indeed, this framework is inspired by the models
proposed in Zhang et al. (2022); Liu et al. (2020), which only considers either manipulation (Zhang
et al., 2022) or improvement (Liu et al., 2020); our model significantly extends their works by
considering both behaviors. Specifically, we focus on imitative strategic behavior where individuals
manipulate/improve by imitating the features of those with positive labels, due to the following:
• It is inspired by imitative learning behavior in social learning, whereby new behaviors are acquired

by copying social models’ action behavior. It has been well-supported by literature in psychology
and social science (Bandura, 1962; 1978). Recent works (Heidari et al., 2019; Raab and Liu, 2021)
in ML also model individuals’ behaviors as imitating/replicating the profiles of their social models
to study the impacts of fairness interventions.

• Decision-makers can detect easy-to-manipulate features (Bechavod et al., 2021) and discard them
when making decisions, so individuals can barely manipulate their features by themselves without
changing labels. A better option for them is to hire imposters or steal others’ profiles. Such
imitation-based manipulative behavior is very common in real world (e.g., cheating, identity theft).

Additionally, our model considers practical scenarios by permitting manipulation to be detected and
improvement to be failed at certain probabilities, as evidenced in auditing (Estornell et al., 2021) and
social learning (Bandura, 1962). App. A provides more related work and differences with existing
models are discussed in App. B.1.

Under this model, we first study the impacts of the decision maker’s ability to anticipate individual
behavior. Similar to Zhang et al. (2022), we consider two types of decision-makers: non-strategic
and strategic. We say a decision-maker (and its policy) is strategic if it has the ability to anticipate
strategic behavior and accounts for this in determining the decision policies, while a non-strategic
decision-maker ignores strategic behavior in determining its policies. Importantly, we find that the
difference between the decision-maker’s learning objectives under two settings can be decomposed
into three interpretable terms, with each term representing the decision-maker’s preference for certain
behavior. By exploring the roles of each term on the decision policy and the resulting individual’s best
response, we further show that a strategic decision-maker with adjusted preferences (i.e., changing
the weight of each term in the learning objective) can disincentivize manipulation while incentivizing
improvement behavior.

We also consider settings where the strategic individuals come from different social groups and explore
the impacts of adjusting preferences on algorithmic fairness. We show that the optimal policy under
adjusted preferences may result in fairer outcomes than non-strategic policy and original strategic
policy without adjustment. Moreover, such fairness promotion can be attained simultaneously with
the goal of disincentivizing manipulation. Our contributions are summarized as follows:

1. We propose a probabilistic model to capture both improvement and manipulation; and establish
a novel Stackelberg game to model the interplay between individuals and decision-maker. The
individual’s best response and decision-maker’s (non-)strategic policies are characterized (Sec. 2).

2. We show the objective difference between non-strategic and strategic policies can be decomposed
into three terms, each representing the decision-maker’s preference for certain behavior (Sec. 3).

3. We study how adjusting the decision-maker’s preferences can affect the optimal policy and its
fairness property, as well as the resulting individual’s best response (Sec. 4).

4. We conduct experiments on both synthetic and real data to validate the theoretical findings (Sec. 5).
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2 PROBLEM FORMULATION

Consider a group of individuals subject to some ML decisions. Each individual has an observable
feature X P R and a hidden label Y P t0, 1u indicating its qualification state ("0" being unqualified
and "1" being qualified).1 Let α :“ PrpY “ 1q be the population’s qualification rate, and PX|Y px|1q,
PX|Y px|0q be the feature distributions of qualified and unqualified individuals, respectively. A
decision-maker makes decisions D P t0, 1u ("0" being reject and "1" being accept) about individuals
based on a threshold policy with acceptance threshold θ P R: πpxq “ PD|Xp1|xq “ 1px ě θq. To
receive positive decisions, individuals with information of policy π may behave strategically by either
manipulating their features or improving the actual qualifications.2 Formally, let M P t0, 1u denote
individual’s action, with M “ 1 being manipulation and M “ 0 being improvement.

Outcomes of strategic behavior. Both manipulation and improvement result in the shifts of feature
distribution. Specifically, for individuals who choose to manipulate, we assume they manipulate by
"stealing" the features of those qualified (Zhang et al., 2022), e.g., students cheat on exams by hiring
qualified imposters. Moreover, we assume the decision-maker can identify the manipulation behavior
with probability ϵ P r0, 1s (Estornell et al., 2021). Individuals, once getting caught manipulating,
will be rejected directly. For those who decide to improve, they work hard to imitate the features of
those qualified (Bandura, 1962; Raab and Liu, 2021; Heidari et al., 2019). With probability q P r0, 1s,
they improve the label successfully (overall α increases) and the features conform the distribution
PX|Y px|1q; with probability 1 ´ q, they slightly improve the features but fail to change the labels,
and the improved features conform a new distribution P Ipxq. Throughout the paper, we make the
following assumption on feature distributions.
Assumption 2.1. PX|Y px|1q, PX|Y px|0q, P Ipxq are continuous; both pairs of distributions
`

PX|Y px|1q, P Ipxq
˘

and
`

P Ipxq, PX|Y px|0q
˘

satisfy the strict monotone likelihood ratio property,

i.e. P I
pxq

PX|Y px|0q
and PX|Y px|1q

P Ipxq
are increasing in x P R.
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Figure 1: Strategic interaction

Assumption 2.1 is relatively mild and has been widely
used (Tsirtsis et al., 2019; Zhang et al., 2020a). It can be
satisfied by a wide range of distributions (e.g., exponential,
Gaussian) and the real data (e.g., FICO data used in Sec. 5).
It implies that among qualified (resp. unqualified) individ-
uals and those who improve but fail to change their qual-
ifications, an individual is more likely to be qualified (resp.
to be those who successfully improve) as feature value
increases. Since PX|Y px|1q is always the best attainable
outcome, only unqualified individuals have incentives to
take action (as manipulation and improvement only bring
additional cost but no benefit to qualified individuals).

2.1 INDIVIDUAL’S BEST RESPONSE.

An individual incurs a random cost CM ě 0 when manipulating the features (Zhang et al., 2022),
while incurring a random cost CI ě 0 when improving the qualifications (Liu et al., 2020). The
realizations of these random costs are known to individuals when determining their action M ; while
the decision-maker only knows the cost distributions. Thus, the best response that the decision-maker
expects from individuals is the probability of manipulation/improvement. Figure 1 illustrates the
strategic interaction between them.

Formally, given a policy πpxq “ 1px ě θq with threshold θ, an individual chooses to manipulate only
if the expected utility attained under manipulation UM pθq outweighs the utility under improvement
UIpθq. Suppose an individual benefits w “ 1 from the acceptance, and 0 from the rejection. Given

1Similar to prior work (Zhang et al., 2022; Liu et al., 2019), we present our model in one-dimensional feature
space. Note that our model and results are applicable to high dimensional space, in which individuals imitate
and change all features as a whole based on the joint conditional distribution PX|Y regardless of the dimension
of X . The costs can be regarded as the sum of an individual’s effort to change features in all dimensions.

2We assume individuals have budgets to either manipulate or improve. The generalization of considering the
actions of "manipulate", "improve", and "do nothing" is discussed in App. B.3.
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that each individual only knows his/her label y P t0, 1u and the conditional feature distributions PX|Y

but not the exact values of the feature x, the expected utilities UM pθq and UIpθq can be computed as
the expected benefit minus the cost of action, as given below.

UM pθq “ FX|Y pθ|0q ´ FX|Y pθ|1q ´ ϵp1 ´ FX|Y pθ|1qq ´ CM

UIpθq “ FX|Y pθ|0q ´ q ¨ FX|Y pθ|1q ´ p1 ´ qq ¨ F Ipθq ´ CI

where FX|Y px|1q, FX|Y px|0q, F Ipxq are cumulative density function (CDF) of PX|Y px|1q,
PX|Y px|0q, P Ipxq, respectively. Given the threshold θ, the decision-maker can anticipate the
probability that an unqualified individual chooses to manipulate as PM pθq “ Pr pUM pθq ą UIpθqq,
which can further be written as follows (derivations and more explanation details in App. D.1):

PM pθq “ Pr
´

p1 ´ qq ¨
`

F Ipθq ´ FX|Y pθ|1q
˘

´ ϵ
`

1 ´ FX|Y pθ|1q
˘

ě CM ´ CI

¯

(1)

The above formulation captures the imitative strategic behavior with unforeseeable outcomes (e.g.,
college admission example in Sec. 1): individuals best respond based on feature distributions but not
the realizations, and the imitation costs (e.g., hiring an imposter) for individuals from the same group
follow the same distribution (Liu et al., 2020), as opposed to being a function of feature changes.
equation 1 above can further be written based on CDF of CM ´ CI , i.e., the difference between
manipulation and improvement costs. We make the following assumption on its PDF.
Assumption 2.2. The PDF PCM´CI

pxq is continuous with PCM´CI
pxq ą 0 for x P p´ϵ, 1 ´ qq.

Assumption 2.2 is mild only to ensure the manipulation is possible under all thresholds θ. Under the
Assumption, we can study the impact of acceptance threshold θ on manipulation probability PM pθq.
Theorem 2.3 (Manipulation Probability). Under Assumption 2.2, PM pθq is continuous and satisfies
the following: (i) If q ` ϵ ě 1, then PM pθq strictly increases. (ii) If q ` ϵ ă 1, then PM pθq first
increases and then decreases, thereby existing a unique maximizer θmax. Moreover, the maximizer
θmax increases in q and ϵ.

Thm. 2.3 shows that an individual’s best response highly depends on the success rate of improvement
q and the identification rate of manipulation ϵ. When q ` ϵ ě 1 (i.e., improvement can succeed
or/and manipulation is detected with high probability), individuals are more likely to manipulate
as θ increases. This is because although individuals are more likely to benefit from improvement
than manipulation, as θ increases to the maximum (i.e., when the decision-maker barely admits
anyone), the relative benefit will finally diminish to 0. Thus, more individuals tend to manipulate
under larger θ, making PM pθq strictly increasing and reaching the maximum. When q ` ϵ ă 1, more
individuals are incentivized to improve as the threshold gets farther away from θmax. This is because
the manipulation in this case incurs a higher benefit than improvement at θmax. As the threshold
increases/decreases from θmax to the minimum/maximum (i.e., the decision-maker either admits
almost everyone or no one), the benefit difference between manipulation and improvement decreases
to 0 or ´ϵ. Thus, PM pθq decreases as θ increases/decreases from θmax.

2.2 DECISION-MAKER’S OPTIMAL POLICY

Suppose the decision-maker receives benefit u (resp. penalty ´u) when accepting a qualified (resp.
unqualified) individual, then the decision-maker aims to find an optimal policy that maximizes its
expected utility ErRpD,Y qs, where utility is Rp1, 1q “ u,Rp1, 0q “ ´u,Rp0, 1q “ Rp0, 0q “ 0.

As mentioned in Sec. 1, we consider strategic and non-strategic decision makers. Because the
former can anticipate individual’s strategic behavior while the latter cannot, their learning objectives
ErRpD,Y qs are different. As a result, their respective optimal policies are also different.

Non-strategic optimal policy. Without accounting for strategic behavior, the non-strategic decision-
maker’s learning objective pUpπq under policy π is given by:

pUpπq “

ż

X

tuαPX|Y px|1q ´ up1 ´ αqPX|Y px|0quπpxq dx (2)

Under Assumption 2.1, it has been shown in Zhang et al. (2020a) that the optimal non-strategic policy

that maximizes pUpπq is a threshold policy with threshold pθ˚ satisfying PX|Y ppθ˚
|1q

PX|Y ppθ˚|0q
“ 1´α

α .
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Strategic optimal policy. Given cost and feature distributions, a strategic decision-maker can
anticipate an individual’s best response (equation 1) and incorporate it in determining its optimal
policy. Under a threshold policy πpxq “ 1px ě θq, the objective Upπq can be written as a function
of θ, i.e.,

Upθq “ u
´

α ` p1 ´ αqp1 ´ PM pθqqq
¯

¨
`

1 ´ FX|Y pθ|1q
˘

´up1 ´ αq

´

p1 ´ ϵq ¨ PM pθq ¨
`

1 ´ FX|Y pθ|1q
˘

` p1 ´ PM pθqq ¨ p1 ´ qqp1 ´ F I
pθq

¯

(3)

The policy that maximizes the above objective function Upθq is the strategic optimal policy. We
denote the corresponding optimal threshold as θ˚. Compared to non-strategic policy, Upθq also
depends on q, ϵ, PM pθq and is rather complicated. Nonetheless, we will show in Sec. 3 that Upθq can
be justified and decomposed into several interpretable terms.

3 DECOMPOSITION OF THE OBJECTIVE DIFFERENCE

In Sec. 2.2, we derived the learning objective functions of both strategic and non-strategic decision-
makers (expected utilities U and pU ). Next, we explore how the individual’s choice of improvement or
manipulation affects decision-maker’s utility. Define Φpθq “ Upθq ´ pUpθq as the objective difference
between strategic and non-strategic decision-makers, we have:

Φpθq “ up1 ´ αq ¨

´

ϕ1pθq ´ ϕ2pθq ´ ϕ3pθq

¯

(4)

where

ϕ1pθq “
`

1 ´ PM pθq
˘

¨ q ¨
`

1 ´ FX|Y pθ|0q ` 1 ´ FX|Y pθ|1q
˘

ϕ2pθq “
`

1 ´ PM pθq
˘

¨ p1 ´ qq ¨
`

FX|Y pθ|0q ´ F I
pθq

˘

ϕ3pθq “ PM pθq
`

p1 ´ ϵq
`

1 ´ FX|Y pθ|1q
˘

´
`

1 ´ FX|Y pθ|0q
˘˘

As shown in equation 4, the objective difference Φ can be decomposed into three terms ϕ1, ϕ2, ϕ3.
It turns out that each term is interpretable and indicates the impact of a certain type of individual
behavior on the decision-maker’s utility. We discuss these in detail as follows.

1. Benefit from the successful improvement ϕ1: additional benefit the decision-maker gains due to
the successful improvement of individuals (as the successful improvement causes label change).

2. Loss from the failed improvement ϕ2: additional loss the decision-maker suffers due to the
individuals’ failure to improve; this occurs because individuals who fail to improve only experience
feature distribution shifts from PX|Y px|0q to P Ipxq but labels remain.

3. Loss from the manipulation ϕ3: additional loss the decision-maker suffers due to the successful
manipulation of individuals; this occurs because individuals who manipulate successfully only
change PX|Y px|0q to PX|Y px|1q but the labels remain unqualified.

Note that in Zhang et al. (2022), the objective difference Φpθq has only one term corresponding to the
additional loss caused by strategic manipulation. Because our model further considers improvement
behavior, the impact of an individual’s strategic behavior on the decision-maker’s utility gets more
complicated. We have illustrated above that in addition to the loss from manipulation ϕ3, the
improvement behavior also affects decision-maker’s utility. Importantly, such an effect can be either
positive (if the improvement is successful) or negative (if the improvement fails).

The decomposition of the objective difference Φpθq highlights the connections between three types
of policies: 1) non-strategic policy without considering individual’s behavior; 2) strategic policy
studied in Zhang et al. (2022) that only considers manipulation, 3) strategic policy studied in this
paper that considers both manipulation and improvement. Specifically, by removing ϕ1, ϕ2, ϕ3 (resp.
ϕ1, ϕ2) from the objective function Upθq, the strategic policy studied in this paper would reduce to the
non-strategic policy (resp. strategic policy studied in Zhang et al. (2022)). Based on this observation,
we regard ϕ1, ϕ2, ϕ3 each as the decision-maker’s preference to a certain type of individual behavior,
and define a general strategic decision-maker with adjusted preferences.
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3.1 STRATEGIC DECISION-MAKER WITH ADJUSTED PREFERENCES

We consider general strategic decision-makers who find the optimal decision policy by maximizing
pUpθq ` Φpθ, k1, k2, k3q with

Φpθ, k1, k2, k3q “ k1 ¨ ϕ1pθq ´ k2 ¨ ϕ2pθq ´ k3 ¨ ϕ3pθq (5)

where k1, k2, k3 ě 0 are weight parameters; different combinations of weights correspond to different
preferences of the decision-maker. We give some examples below:

1. Original strategic decision-maker: the one with k1 “ k2 “ k3 “ up1 ´ αq whose learning
objective function U follows equation 3; it considers both improvement and manipulation.

2. Improvement-encouraging decision-maker: the one with k1 ą 0 and k2 “ k3 “ 0; it only
considers strategic improvement and only values the improvement benefit while ignoring the loss
caused by the failure of improvement.

3. Manipulation-proof decision-maker: the one with k3 ą 0 and k1 “ k2 “ 0; it is only concerned
with strategic manipulation, and the goal is to prevent manipulation.

4. Improvement-proof decision-maker: the one with k2 ą 0 and k1 “ k3 “ 0; it only considers
improvement but the goal is to avoid loss caused by the failed improvement.

The above examples show that a decision-maker, by changing the weights k1, k2, k3 could find a
policy that encourages certain types of individual behavior (as compared to the original policy θ˚).
Although the decision-maker can impact an individual’s behavior by adjusting its preferences via
k1, k2, k3, we emphasize that the actual utility it receives from the strategic individuals is always
determined by Upθq given in equation 3. Indeed, we can regard the framework with adjusted weights
(equation 5) as a regularization method. We discuss this in more detail in App. B.4.

4 IMPACTS OF ADJUSTING PREFERENCES

Next, we investigate the impacts of adjusting preferences. We aim to understand how a decision-
maker by adjusting preferences (i.e., changing k1, k2, k3) could affect the optimal policy (Sec. 4.1)
and its fairness property (Sec. 4.3), as well as the resulting individual’s best response (Sec. 4.2).

4.1 PREFERENCES SHIFT THE OPTIMAL THRESHOLD

We will start with the original strategic decision-maker (with k1 “ k2 “ k3 “ up1 ´ αq) whose
objective function follows equation 3, and then investigate how adjusting preferences could affect the
decision-maker’s optimal policy.

Complex nature of original strategic decision-maker. Unlike the non-strategic optimal policy,
the analytical solution of strategic optimal policy that maximizes equation 3 is not easy to find.
In fact, the utility function Upθq of the original strategic decision-maker is highly complex, and
the optimal strategic threshold θ˚ may change significantly as α, FX|Y , F

I , CM , CI , ϵ, q vary. In
App. C.2, we demonstrate the complexity of Upθq, which may change drastically as α, ϵ, q vary.
Although we cannot find the strategic optimal threshold precisely, we may still explore the impacts of
decision-maker’s anticipation of strategic behavior on its policy (by comparing the strategic threshold
θ˚ with the non-strategic pθ˚), as stated in Thm. 4.1 below.
Theorem 4.1 (Comparison of strategic and non-strategic policy). If minθ PM pθq ď 0.5, then there
exists pq P p0, 1q such that @q ě pq, the strategic optimal θ˚ is always lower than the non-strategic pθ˚.

Thm. 4.1 identifies a condition under which the strategic policy over-accepts individuals compared to
the non-strategic one. Specifically, minθ PM pθq ď 0.5 ensures that there exist policies under which
the majority of individuals prefer improvement over manipulation. Intuitively, under this condition,
strategic decision-maker by lowering the threshold (from pθ˚) may encourage more individuals to
improve. Because q is sufficiently large, more improvement brings more benefit to the decision-maker.

Optimal threshold under adjusted preferences. Despite the intricate nature of Upθq, the optimal
strategic threshold may be shifted by adjusting the decision-maker’s preferences, i.e. changing
the weights k1, k2, k3 assigned to ϕ1, ϕ2, ϕ3 in equation 5. Next, we examine how the optimal
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threshold can be affected compared to the original strategic threshold by adjusting the decision-
maker’s preferences. Denote θ˚pkiq as the strategic optimal threshold attained by adjusting weight
ki, i P t1, 2, 3u of the original objective function Upθq. The results are summarized in Table 1.
Specifically, the threshold gets lower as k1 increase (Prop. 4.2). Adjusting k2 or k3 may result in
the optimal threshold moving toward both directions, but we can identify sufficient conditions when
adjusting k2 or k3 pushes the optimal threshold to move toward one direction (Prop. 4.3 and 4.4).
Proposition 4.2. Increasing k1 results in a lower optimal threshold θ˚pk1q ă θ˚. Moreover, when
k1 is sufficiently large, θ˚pk1q ă pθ˚.
Proposition 4.3. When α ď 0.5 (the majority of the population is unqualified), increasing k2 results
in a higher optimal threshold θ˚pk2q ą θ˚. Moreover, when k2 is sufficiently large, θ˚pk2q ą pθ˚.
Proposition 4.4. For any feature distribution PX|Y , there exists an ϵ̄ P p0, 1q such that whenever
ϵ ě ϵ̄, increasing k3 results in a lower optimal threshold θ˚pk3q ă θ˚.

So far we have shown how the optimal threshold can
be shifted as the decision maker’s preferences change.
Next, we explore the impacts of threshold shifts on in-
dividuals’ behaviors and show how a decision-maker
with adjusted preferences can (dis)incentivize manip-
ulation and influence fairness.

Table 1: The impact of adjusted preferences
on θ˚pkiq compared to original strategic θ˚.

Adjusted weight Preference Threshold shift

Increase k1 Encourage improvement θ˚pk1q ă θ˚

Increase k2 Discourage improvement θ˚pk2q ž θ˚

Increase k3 Discourage manipulation θ˚pk3q ž θ˚

4.2 PREFERENCES AS (DIS)INCENTIVES FOR MANIPULATION
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Figure 2: Illustration of scenario 1 (left) and scenario
2 (right) in Thm. 4.5: blue curves are PM pθq and red
arrows show how θ˚ changes when adjusting k1, k2.

In Thm. 2.3, we explored the impacts of thresh-
old θ on individuals’ best responses PM pθq.
Combined with our knowledge of the relation-
ship between adjusted preferences and policy
(Sec. 4.1), we can further analyze how adjust-
ing preferences affect individuals’ responses.
Next, we illustrate how a decision-maker may
disincentivize manipulation (or equivalently,
incentivize improvement) by adjusting its pref-
erences.
Theorem 4.5 (Preferences serve as (dis)incentives). Compared to the original strategic policy θ˚,
decision-makers by adjusting preferences can disincentivize manipulation (i.e., PM pθq decreases)
under certain scenarios. Specifically,
1. When either of the following is satisfied, and the decision-maker increases k1:

(i). q ` ϵ ě 1; (ii).
PX|Y pθ˚

|1q

P Ipθ˚q
ď

1 ´ q

1 ´ q ´ ϵ
.

2. When both of the following are satisfied, and the decision-maker increases k2:

(i). q ` ϵ ă 1 and α ă 0.5; (ii).
PX|Y pθ˚

|1q

P Ipθ˚q
ą

1 ´ q

1 ´ q ´ ϵ
and PM ppθ˚

q ą FCM ´CI p0q.

Moreover, when k1 (for scenario 1) or k2 (for scenario 2) are sufficiently large, adjusting preferences
also disincentivize the manipulation compared to the non-strategic policy pθ˚.

Thm. 4.5 identifies conditions under which a decision-maker can disincentivize manipulation directly
by adjusting its preferences. The condition q ` ϵ ž 1 determines whether the best response PM pθq is

strictly increasing or single-peaked (Thm. 2.3); the condition PX|Y pθ˚
|1q

P Ipθ˚q
ž

1´q
1´q´ϵ implies that θ˚ is

lower/higher than θmax in Thm. 2.3. In Fig. 2, we illustrate Thm. 4.5 where the left (resp. right) plot
corresponds to scenario 1 (resp. scenario 2). Because increasing k1 (resp. k2) results in a lower (resp.
higher) threshold than θ˚, the resulting manipulation probability PM is lower for both scenarios. The
detailed experimental setup and more illustrations are in App. C.

4.3 PREFERENCES SHAPE ALGORITHMIC FAIRNESS

The threshold shifts under adjusted preferences further allow us to compare these policies against a
certain fairness measure. In this section, we consider strategic individuals from two social groups
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Ga,Gb distinguished by some protected attribute S P ta, bu (e.g., race, gender). Similar to Zhang
et al. (2020a; 2022), we assume the protected attributes are observable and the decision-maker uses
group-dependent threshold policy πspxq “ 1px ě θsq to make decisions about Gs, s P ta, bu. The
optimal threshold for each group can be found by maximizing the utility associated with that group:
maxθs ErRpD,Y q|S “ ss.

Fairness measure. We consider a class of group fairness notions that can be represented in the
following form (Zhang et al., 2020b; Zhang and Liu, 2021):

EX„PC
a

rπapXqs “ EX„PC
b

rπbpXqs

where P C
s is some probability distribution over X associated with fairness metric C. For instance,

under equal opportunity (EqOpt) fairness (Hardt et al., 2016b), P EqOpt
s pxq “ PX|Y Spx|1, sq; under

demographic parity (DP) fairness (Barocas et al., 2019), P DP
s pxq “ PX|Spx|sq .

For threshold policy with thresholds pθa, θbq, we measure the unfairness as
ˇ

ˇEX„PC
a

r1px ě θaqs ´

EX„PC
b

r1px ě θbqs
ˇ

ˇ. Define the advantaged group as the group with larger EX„PC
s

r1pX ě pθ˚
s qs

under non-strategic optimal policy pθ˚
s , i.e., the group with the larger true positive rate (resp. positive

rate) under EqOpt (resp. DP) fairness, and the other group as disadvantaged group.

Mitigate unfairness with adjusted preferences. Next, we compare the unfairness of different
policies and illustrate that decision-makers with adjusted preferences may result in fairer outcomes,
as compared to both the original strategic and the non-strategic policy.
Theorem 4.6 (Promote fairness while disincentivizing manipulation). Without loss of generality,
let Ga be the advantaged group and Gb disadvantaged. A strategic decision-maker can always
simultaneously disincentivize manipulation and promote fairness in any of the following scenarios:

1. When condition 1.(i) or 1.(ii) in Thm. 4.5 holds for both groups, and the decision-maker adjusts
the preferences by increasing k1 for both groups.

2. When condition 2.(i) and 2.(ii) in Thm. 4.5 hold for both groups and the decision-maker adjusts
the preferences by increasing k2 for both groups.

3. When condition 1.(i) or 1.(ii) holds for Ga, condition 2.(i) and 2.(ii) hold for Gb, and the decision-
maker adjusts preferences by increasing k1 for Ga and k2 for Gb.

Thm. 4.6 identifies all scenarios under which a decision-maker can simultaneously promote fairness
and disincentivize manipulation by simply adjusting k1, k2. Otherwise, it is not guaranteed that both
objectives can be achieved at the same time, as stated in Corollary 4.7.
Corollary 4.7. If none of the three scenarios in Thm. 4.6 holds, adjusting preferences is not guaran-
teed to promote fairness and disincentivize manipulation simultaneously.

The results above assume the decision-maker knows q, ϵ precisely. In practice, these parameters
may need to be estimated empirically. In App. B.5, we further provide an estimation procedure and
present more experimental results when these parameters are noisy.

5 EXPERIMENTS

We conduct experiments on both synthetic Gaussian data and FICO score data (Hardt et al., 2016b).

0.0 0.2 0.4 0.6 0.8 1.0
θ

0.0

0.2

0.4

0.6

P M
(θ

* ) PM(θc)
PM(θaa)
PM(θ *

c )
PM(θ *

aa)

Figure 3: PM pθq of Caucasian
and African American.

FICO data (Hardt et al., 2016b). FICO scores are widely used
in the US to predict people’s credit worthiness. We use the prepro-
cessed dataset containing the CDF of scores FX|Spx|sq, qualification
likelihoods PY |XSp1|x, sq, and qualification rates αs for four racial
groups (Caucasian, African American, Hispanic, Asian). All scores
are normalized to r0, 1s. Similar to Zhang et al. (2022), we use
these to estimate the conditional feature distributions PX|Y Spx|y, sq

using beta distribution Betapays, bysq. The results are shown in
Fig. 9. We assume the improved feature distribution P Ipxq „ Beta

`

a1s`a0s

2 , b1s`b0s
2

˘

and
CM ´ CI „ N p0, 0.25q for all groups, under which Assumption 2.2 and 2.1 are satisfied (see
Fig. 8). We also considered other feature/cost distributions and observed similar results. Note that for
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each group s, the decision-maker finds its own optimal threshold
`

θ˚
s or θ˚

s pkiq or pθ˚
s

˘

by maximizing
the utility associated with that group, i.e., maxθs ErRpD,Y q|S “ ss.

We first examine the impact of the decision-maker’s anticipation of strategic behavior on policies. In
Fig. 23 (App. C.1), the strategic θ˚

s and non-strategic optimal threshold pθ˚
s are compared for each

group under different q and ϵ. The results are consistent with Thm. 4.1, i.e., under certain conditions,
θ˚
s is lower than pθ˚

s when q is sufficiently large.
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PM(θ * (k1))
strategic utility
FX|Y, S(θ|1, s)
non-strategic utility
PM( ̂θ * )

Figure 4: Impact of adjusted preferences (FICO)

We also examine the individual best responses.
Fig. 3 shows the manipulation probability PM pθq

as a function of threshold θ for Caucasians
(blue) and African Americans (orange) when
q “ 0.3, ϵ “ 0.5. For both groups, there exists
a unique θmax that maximizes the manipulation
probability. These are consistent with Thm. 2.3.
We also indicate the manipulation probabilities
under original strategic optimal thresholds θ˚

s ; it
shows that African American has a higher ma-
nipulation probability than Caucasians. Similar results for Asian and Hispanic are shown in Fig. 12.

Note that the scenario considered in Fig. 3 satisfies the condition 1.(ii) in Thm. 4.5, because the
original strategic θ˚

s ă θmax for both groups. We further conduct experiments in this setting to
evaluate the impacts of adjusted preferences. We first adopt EqOpt as the fairness metric, under
which EX„PC

s
r1pX ě pθqs “ FX|Y Spθ|1, sq and the unfairness measure of group Ga,Gb can be

reduced to
ˇ

ˇFX|Y Spθ|1, aq ´ FX|Y Spθ|1, bq
ˇ

ˇ. Experiments for other fairness metrics are in App.
C.1. The results are shown in Fig. 4, where dashed red and dashed blue curves are manipulation
probabilities under non-strategic pθ˚ and strategic θ˚pk1q, respectively. Solid red and solid blue curves
are the actual utilities Uppθ˚q and Upθ˚pk1qq received by the decision-maker. The difference between
two dotted green curves measures the unfairness between Caucasians and African Americans. All
weights are normalized such that k1 “ 1 corresponds to the original strategic policy, and k1 ą 1
indicates the policies with adjusted preferences. Results show that when condition 1(ii) in Thm. 4.5
is satisfied, increasing k1 can simultaneously disincentivize manipulation (PM decreases with k1)
and improve fairness. These validate Thm. 4.5 and 4.6.

Table 2: Comparison between three types of optimal
thresholds (FICO data). For utility and PM , the left
value in parenthesis is for Caucasians and the right is
for African Americans.

Threshold Utility PM Unfairness (EqOpt)

Non-strategic p0.698, 0.171q p0.331, 0.513q 0.136
Original strategic p0.704, 0.203q p0.211, 0.278q 0.055
Adjusted strategic p0.701, 0.189q p0.140, 0.155q 0.028

Table 2 compares the non-strategic pθ˚, orig-
inal strategic θ˚, and adjusted strategic
θ˚pk1q when k1,c “ k1,aa “ 1.5. It shows
that decision-makers by adjusting prefer-
ences can significantly mitigate unfairness
and disincentivize manipulation, with only
slight decreases in utilities. Results for
Asians and Hispanics are in Table 5.

Gaussian Data. We also validate our theorems on synthetic data with Gaussian distributed PX|Y S

in App. C.2. Specifically, we examined the impacts of adjusting preferences on decision policies,
individual’s best response, and algorithmic fairness. As shown in Fig. 21, 22 and Table 6, 7, 8,
these results are consistent with theorems, i.e., adjusting preferences can effectively disincentivize
manipulation and improve fairness. Notably, we considered all three scenarios in Thm. 4.5 when
condition 1.(i) or 1.(ii) or 2 is satisfied. For each scenario, we illustrate the individual’s best response
PM in Fig. 21 and show that manipulation can be disincentivized by adjusting preferences, i.e.,
increasing k1 under condition 1.(i) or 1.(ii), or increasing k2 under condition 2.

6 SOCIETAL IMPACTS & LIMITATIONS

This paper proposes a novel probabilistic framework and formulates a Stackelburg game to tackle
imitative strategic behavior with unforeseeable outcomes. The theoretical results depend on some
(mild) assumptions and are subject to change when ϵ, q, CM , CI change. Although we provide
a practical estimation procedure to estimate the model parameters, it still remains a challenge to
estimate model parameters accurately due to the expensive nature of doing controlled experiments.
This may bring uncertainties in applying our framework accurately in real applications.
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